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Abstract

Traumatic brain injury (TBI) is a major public health issue around the world and can be especially 

devastating in children as TBI can derail cognitive and social development. White matter (WM) is 

particularly vulnerable to disruption post-TBI, as myelination is ongoing during this period. 

Diffusion magnetic resonance imaging (dMRI) is a versatile modality for identifying and 

quantifying WM disruption and can detect diffuse axonal injury (DAI or TAI (traumatic axonal 

injury)). This review covers dMRI studies of pediatric TBI, including mild to severe injuries, and 

covering all periods post-injury. While there have been considerable advances in our 

understanding of pediatric TBI through the use of dMRI, there are still large gaps in our 

knowledge, which will be filled in by larger studies and more longitudinal studies. Heterogeneity 

post-injury is an obstacle in all TBI studies, but we expect that larger better-characterized samples 

will aid in identifying clinically meaningful subgroups within the pediatric TBI patient population.
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Introduction

Traumatic brain injury (TBI) is the leading cause of death and disability in children and can 

cause significant white matter (WM) disruption. These disruptions are associated with 

cognitive dysfunction and can persist for years post-injury. Disruptions to the corpus 
callosum (CC) are common and are associated with difficulties in cognitive tasks and motor 

coordination [1–4]. With diffusion MRI (dMRI), researchers can model the WM tracts and 

quantify the level of organization. dMRI assesses the diffusion of water in the brain by 

measuring the Brownian motion of water at thousands of points across the brain. Diffuse 

axonal injury (DAI) is common in TBI, especially in more severe injuries. DAI results from 

the shearing forces experienced during injury, when neurons are stretched, disrupting ion 

balance and action potential propagation. DAI can only be definitively diagnosed 

postmortem, but dMRI is more sensitive to DAI than other imaging modalities such as CT 

(computed tomography) and conventional MRI. Outcome post-injury is heterogeneous and 

is only partly explained by indices of acute injury severity. Advanced brain imaging, such as 

dMRI, holds the potential to reveal biomarkers of injury and recovery that can improve our 

understanding of this process and facilitate the assessment of new treatments.

Diffusion MRI models the diffusion of water in the brain, by collecting data across multiple 

directions (at least 6) equally distributed around a sphere. Higher angular resolution 

sequences are generally better at resolving of crossing fibers, as more detailed diffusion data 

is collected, but this is only to a point [5]. In each voxel of the brain image, diffusion is 

represented as an ellipsoid, modeling the diffusion in various directions. Diffusion along the 

primary eigenvector (primary axis of diffusion—along the fiber bundle) is known as axial 

diffusivity (AxD); radial diffusivity (RD) is the average of diffusion in the two non-primary 

directions, perpendicular to the fiber bundle, and mean diffusivity (MD, also called ADC 

(apparent diffusion coefficient)) is the average of diffusion in all three directions. The most 

commonly used measure of white matter organization is fractional anisotropy (FA). FA is a 

ratio of diffusion in all directions, calculated using Eq. 1:

FA = 3
2

λ1 − λ 2 + λ2 − λ 2 + λ3 − λ 2

λ1
2 + λ2

2 + λ3
2 (1)

It has a scale of 0–1, with 0 meaning perfectly isotropic diffusion (in all directions equally), 

and 1 meaning perfectly anisotropic diffusion (in only 1 direction). Low FA indicates that 

the WM organization has been compromised, indicating potential demyelination, 

inflammation, Wallerian degeneration, or other disruptions to the WM microstructure.

Methods to analyze dMRI data generally fall into five categories, described here in order 

from basic to more involved. The first is the ROI (region of interest) approach, where 

microstructural information is averaged across a particular region. The ROI approach is the 

simplest and requires a prior hypothesis to drive the selection of the ROI, but can be well-

powered as averaging the signal over a region can reduce the impact of noise or signal 

variation. The second approach is the whole-brain voxel-based analysis (VBA), in which 
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measures are assessed voxel-by-voxel, across the whole WM. VBA does not require a prior 

hypothesis, but with thousands of voxels to correct across for multiple comparisons, it may 

not be as well-powered as the ROI approach, although it can be better powered to detect 

diffuse effects that may not coincide with any one ROI. The third approach is TBSS (tract-

based spatial statistics), part of the FSL package [6]. In TBSS, microstructural measures are 

projected onto a skeleton of the WM. In this way, TBSS limits data dimensionality relative 

to VBA, improving power, while not requiring prior hypotheses. The fourth category is 

tractography, in which the vector information in each voxel is used to reconstruct the WM 

fiber tracts, and microstructural measures can be sampled along a tract. The benefit of 

tractography is that disrupted areas can be localized to tracts, whereas in voxel-based 

approaches, this depends on using an atlas, and areas where multiple tracts cross cannot 

usually be further identified. By identifying affected tracts, ties to neurobehavioral 

dysfunction can more definitively be made, based on literature in healthy individuals 

identifying which tracts underlie particular functional domains. Combining the fiber tracts 

with a cortical parcellation, one can create connectivity matrices, where the nodes are 

cortical regions, and edges are the density of fibers connecting those regions, the basis of the 

fifth approach. Graph theory is a branch of mathematics that is concerned with network 

topology, and there are a number of local and global measures that can be calculated on a 

given matrix.

Moderate-severe TBI (msTBI), which is marked by a Glasgow Coma Scale (GCS) score of 

3–12 [7], can lead to chronic disability, including motor, cognitive, academic, and emotional 

disturbances [8–12]. There is considerable heterogeneity in the neuropathology caused by 

TBI, which can be an obstacle to group-level analyses. Mild TBI (mTBI) or concussion 

makes up the majority of TBI cases, approximately three quarters of all TBI cases. Loss of 

consciousness either does not occur or is very brief, and the varied and often non-specific 

symptoms that do occur acutely make it difficult to diagnose at times. Most people recover 

within a few weeks of the injury, but some patients experience persistent disruptions to 

cognitive function, sleep, and mood, along with headaches. This has been termed post-

concussion syndrome (PCS) and occurs in approximately 10–20% of children in the months 

to years post-injury [13, 14]. The heterogeneity of mild TBI often results in small effect 

sizes, making group-level analyses even more difficult than those including more severe 

brain injuries.

This review covers dMRI studies of closed head injury of all severities across patients under 

18 years old. We included studies covering the range of post-injury periods, from 1 day to 

many years post-injury, but do not include cross-sectional studies with an excessively wide 

post-injury range (e.g., 1 day to 9 months), as the acute period is highly dynamic and can 

yield effects in the opposite direction to those from later periods. Some studies include 

pediatric patients along with adults, but these have not been included here, as ongoing brain 

development limits the conclusions that can be made from such studies. We are also not 

including studies of intentional brain injury, as the pathophysiology differs and the 

sociological factors surrounding child abuse require us to consider it a separate issue. We 

start with mTBI, from the acute to chronic periods. The review then moves to moderate and 

severe TBI (msTBI), from the acute to chronic periods, and ends with studies including the 

whole range of severity. As there are multiple dMRI methods, we have included these 
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processing details in the text, and in Tables 1 and 2. An important factor to consider is the 

use of overlapping samples across publications—these can give an impression of a larger 

body of pediatric TBI work, when it is in fact still a small field. In Tables 1 and 2, we 

attempted to identify overlapping samples, but we may have missed some due to differences 

in reporting details on sample ascertainment. Both sections end with special attention paid to 

longitudinal studies. Especially in children undergoing rapid brain and cognitive 

development, longitudinal studies are critical to delineate the post-injury trajectory. With the 

heterogeneity of TBI, more longitudinal studies are necessary to better understand the 

factors that impact recovery.

Mild brain injury

There are mixed results in studies of dMRI after mild, with both increases and decreases in 

FA being reported. The time post-injury is critical to consider, as different aspects of the 

recovery process will differentially affect dMRI measures (e.g., edema can lead to increases 

in FA). A recent review and meta-analysis of this issue in adults found FA increases in the 

acute phase, but decreases in symptomatic patients in the chronic phase [52]. The post-acute 

phase is marked by more heterogeneity, likely in part due to variability in the patient group 

and differences in the time course of recovery across patients. Adding development to this 

question complicates it further, as we expect FA to increase as myelination continues until 

around age 30.

Acute

Immediately following mTBI (or concussion), FA tends to be higher in patients, and 

MD/ADC and RD are both lower, relative to controls. Analyzing dMRI measures voxel-

wise, researchers have shown these effects in the CC, corona radiata, along with frontal, 

temporal, and parietal WM [20, 24], and this correlates with symptoms [20]. Using 

tractography to focus on the CC reveals similar effects, with higher FA and lower MD in 

mTBI participants [17, 19], again correlated with symptom severity and cognitive 

difficulties. Focusing on the fornix, Yallampalli et al. found higher FA in TBI, along with 

poorer cognitive performance, suggesting that disruptions to the fornix underlie memory and 

processing speed deficits often seen post-injury [21]. Yuan et al. [26] used graph theory to 

investigate network topology post-injury, finding higher small-worldness, clustering, path 

length, and modularity. Longer path length indicates a less efficient network, as information 

has to traverse more connections to reach a given point. Higher clustering indicates greater 

segregation between different parts of the brain, as does higher modularity. This redundancy 

on a local level could be interpreted as adaptive, as local connections are supported to 

counteract disruptions to long-distance connections. Small-worldness reflects the balance 

between integration and segregation, and the increases seen here appear to be due to 

increased clustering, relative to changes in path length [26].

Post-acute

In the post-acute phase, studies again show higher FA and lower MD in concussed patients 

compared to healthy controls. The two studies included here study patients 2 weeks– 2 

months post-injury. This has been shown in FA and MD averaged across the whole brain 

[23] (see Fig. 1), and specifically in the corpus callosum, anterior corona radiata, inferior 
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fronto-occipital fasciculus, inferior longitudinal fasciculus, anterior thalamic radiation, and 

uncinate [22] using TBSS. FA and MD were correlated with symptom severity as well. 

These results come from overlapping samples, however, so dMRI in the post-acute phase 

remains an understudied question. Publication bias may play a role here, as null findings are 

rarely reported. Also, the heterogeneity of the recovery period likely makes group analyses 

of mTBI at this point even more difficult.

Chronic

There are few cross-sectional studies of dMRI in the chronic post-concussion phase, likely 

because most disruptions have resolved in mild injury, and remaining disruptions are likely 

nominal and vary among patients. In adults, most studies of the chronic period are focused 

on individuals still reporting symptoms [52]. While not a study of chronic mTBI in children, 

Stamm et al. [53] showed that retired NFL players who had started playing tackle football 

before age 12 had lower FA and higher RD in the corpus callosum using tractography, 

suggesting that early exposure to repetitive head impacts might impact WM development 

[53]. While it is unlikely that such a binary variable truly represents risk, there may be a 

sensitive period of development during which head impacts cause more disruption. Larger 

studies are needed to truly understand this possibility.

Longitudinal studies

There have been several longitudinal studies of mTBI using dMRI. Mayer et al. (2012) 

examined patients 1–3 weeks post-injury, and again 3–5 months post-injury, using an ROI 

approach. They found higher FA and lower RD than healthy controls in the superior and 

anterior corona radiata, and the cerebellar peduncle at the first time point, which increased 

over time. Van Beek et al. [25] similarly found higher FA in mTBI patients 1 month post-

injury, using tractography. Longitudinal effects were mixed over the next 5–7 months, with 

the splenium showing increases in FA in both groups, while the genu showed FA increases 

only in healthy controls [25]. While the mathematical performance of these patients 

improved over time, working memory performance did not. Two longitudinal studies on the 

same cohort examined change in adolescent athletes both pre- and post-season. Davenport et 

al. [16] and Bahrami et al. [18] found that a higher level of exposure to subconcussive 

impacts, as measured with helmet-based sensors, was associated with lower FA in the IFOF 

and SLF, and more voxels showing abnormal FA (2 SD above or below healthy controls) 

[16, 18]. These studies are small and thus more likely to be swayed by outliers. Additionally, 

impact sensors are an evolving technology, so results must be interpreted with caution.

Moderate-severe brain injury

Acute

There are few imaging studies of the acute time period in msTBI, likely because patients 

with more severe injuries may be in the hospital for an extended period, unable to complete 

a research study. The two studies that do include imaging during this time period include 

patients across the severity spectrum (mild to severe). These studies include partially 

overlapping datasets, with participants between 1 and 18 years old, and involved a scan in 

the first 2 weeks post-injury, followed by an assessment either 6–12 months post-injury [47] 
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or 1–3 years post-injury [45]. Using an ROI approach, researchers found that ADC (apparent 

diffusion coefficient) from the peripheral gray and white matter explained the level of 

disability [47] and later neurocognitive function [45].

Post-acute

The post-acute period, here clustering patients between 2 and 5 months post-injury, is 

largely marked by decreases in FA and increases in MD/ADC and RD. These differences are 

present in the frontal lobes [34, 36, 38, 42], temporal lobes [34, 42], cingulum bundle [28, 

37, 38], uncinate [27, 38], and corpus callosum [34]. Focusing on the amygdala, Juranek et 

al. found higher MD in the amygdala and hippocampus [40]. Using tractography in 

overlapping samples, Levin et al. and Oni et al. found that higher frontal FA and lower RD 

were associated with higher scores on the GCS and GOS and faster reaction time, while 

McCauley et al. found that the WM integrity of the frontal WM and cingulum were related 

to a memory task [34, 36, 38]. Wilde et al. found that the WM integrity of a cingulum ROI 

was also correlated with reaction time [37]. Dividing patients into two groups based on 

interhemispheric transfer time, Dennis et al. found that one group had widespread deficits in 

WM integrity, while the other group showed minimal disruptions [43].

Chronic

Here, we consider the chronic phase to include studies at least 6 months post-injury, but 

often “chronic” is considered anything after the first year post-injury. Across the brain, 

researchers find lower FA in TBI, relative to healthy controls and those with milder injuries 

[32, 42, 50] (see Figs. 2 and 3). The corpus callosum in particular shows lower FA in TBI, 

which is associated with cognitive deficits [2, 41]. Expanding the set of ROIs examined, 

Yuan et al. and Kurowski et al. used the Johns Hopkins University (JHU) WM Atlas and 

found significantly lower FA in TBI, which was correlated with injury severity [33] and 

executive function [48]. These deficits also extend to the ventral striatum, which includes the 

nucleus accumbens, caudate, and olfactory tubercle. This may partially underlie difficulties 

in controlling inhibition, and other executive functions [44]. Tracts that support visuomotor 

function and posture are also disrupted, with lower FA in the corticospinal tract, posterior 

thalamic radiation, optic radiation, and cerebellum. These are associated with balance issues 

and poorer eye tracking performance [8, 35]. Using graph theory, Caeyenberghs et al. 

[39]also found longer path length in TBI and lower global efficiency, along with alterations 

to the network hubs. These alterations were correlated with deficits in executive function 

[39]. Adamson et al. found increased AD in TBI in the corpus callosum, corona radiata, 

internal capsule, and cerebellar peduncle, and when focusing on those voxels showing 

abnormal AD, also found significantly higher MD in TBI [49] (Fig. 4). The inclusion of 

patients classified as complicated mild may have obscured effects in this study however.

Longitudinal studies

Longitudinal studies of msTBI tell a mixed story—with some evidence of recovery paired 

with evidence of continued disruption. In two longitudinal studies of overlapping samples, 

Wu et al. and Wilde et al. found evidence of recovery, in FA increases and MD/ADC 

decreases, along with continuing disruption, in FA decreases and MD/ADC increases [1, 51] 

(see Fig. 3). Clinical and demographic factors may influence recovery as well: Ewing-Cobbs 
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et al. found signs of recovery in younger children but not in adolescents [29], and Genc et al. 

found greater recovery in patients with milder injuries [46]. Dennis et al. did not find a 

significant effect of age or severity, but found two subgroups of patients based on post-acute 

interhemispheric transfer time (IHTT). Those patients with significantly slower IHTT than 

healthy controls showed progressive decline in WM organization over time, while those with 

IHTTs within the healthy control range showed evidence of recovery [30]. Several studies 

have examined how dMRI measures in the acute or post-acute phase can predict chronic 

outcome. Higher FA and lower MD/ADC predict improved scores on tests of reading [28], 

executive function [27], and a global measure spanning nine cognitive domains [45]. Using a 

graph theory approach, Yuan et al. found higher small-worldness in the TBI group at time 1, 

which decreased over time [31]. Small-worldness is a ratio of clustering to path length, 

factors that individually show non-significant effects at time 1, but decreases in clustering 

appear to underlie the longitudinal changes in small-worldness. Unlike dMRI metrics, the 

direction of these results appears to be consistent across mTBI and msTBI, as Yuan et al. 

found similar effects after concussion [26].

Conclusions

Diffusion MRI is a useful and popular tool for examining WM disruptions after TBI, as 

evidenced by the increasing number of publications each year [54]. Here, we review recent 

work using dMRI to examine WM disruption in pediatric TBI. Mild TBI is typically marked 

by initial increases in FA relative to healthy controls that may continue over the next few 

months. While initial increases in FA may reflect edema and other acute neuropathology, 

higher FA after this period in mild injury is less likely to indicate such neuropathology, as 

cerebral edema following moderate-severe TBI generally resolves within the first 10 days 

[55]. There are many possible explanations behind the increased FA seen after mild TBI—

axonal edema/swelling could lead to increased FA through the restriction of free water 

diffusion. Additionally, diffusivity measures are very likely impacted by interactions with 

nonneuronal cells, such as microglia. One study cited here included patients across the 

severity spectrum in the first several months post-injury [46]. They showed non-significantly 

higher FA in mild TBI, while severe TBI patients had significantly lower FA relative to 

healthy controls. The discrepancy between the acute effects seen in mild TBI and those seen 

in more severe injuries is likely due to differences in neuropathology—macroscopic injuries 

seen in more severe cases may be a larger factor than those at play in mild cases. We 

speculate that the higher FA that may be seen in mild TBI after the first 2 weeks may 

indicate recovery processes. Animal studies have shown that FA increases in areas of fiber 

reorganization and remyelination after injury [56, 57]. Repeated mild head impacts, 

however, are associated with decreased FA. Similarly, more severe head injury leads to 

decreased WM organization (decreased FA), which may recover in some patients or in some 

tracts, but can also become a continuing and progressing problem. The works cited here 

report disruptions to the WM organization in nearly every WM tract, but the corpus 

callosum is still the most commonly cited area of disruption.

The heterogeneity of TBI raises the question of why the field considers TBI patients as a 

singular group, when the data suggests this is not the case. It seems likely that identifying 

subgroups within the patient population based on clinical, demographic, and/or imaging 
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variables might advance our understanding of mechanisms of injury and recovery, as other 

fields have done [58]. However, the vast number of possible clinical and demographic 

variables makes identifying groups difficult. There are few studies that have reported age 

effects. Myelination continues through early adulthood, so we could hypothesize that 

younger children would show disruption in different tracts than older adolescents, or that 

those tracts that mature later are more likely to show disruptions, but this has not been 

thoroughly examined in the literature. Of the papers covered here, only Ewing-Cobbs et al. 

[29] reported a significant age effect, with adolescent patients not showing the same signs of 

recovery as younger patients. Beyond age, pubertal status might reveal some effects, as other 

studies have shown that hormones play a role in injury and recovery [59]. Through larger 

collaborative studies, such as the ENIGMA model [60–62], the CARE consortium [63], and 

TRACK-TBI study [64], this task will hopefully become easier. With a greater 

understanding of the factors that affect recovery from TBI, and especially those unique to 

developing children and adolescents, we will be able to reduce the morbidity of TBI.
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Fig. 1. 
Whole-brain diffusion tensor imaging tractography for one healthy adolescent (left) and one 

adolescent after concussion (right). Warmer colors indicate higher fractional anisotropy, 

whereas cooler colors indicate lower fractional anisotropy values. Diffuse increases in white 

matter tract fractional anisotropy are present after injury compared with an uninjured brain, 

likely reflecting subtle tissue damage associated with concussion. Reprinted with permission 

from Virji-Babul et al. [23]
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Fig. 2. 
Differences between IHTT-slow and control groups (left panel), and between IHTT-normal 

and control (right panel) in FA of the frontal corpus callosum. The p values are shown 

corresponding to the color bar, and results are FDR corrected across all points on all tracts 

tested (q < 0.05)—blue areas are those at or above the FDR threshold (not significantly 

different). Adapted with permission from Dennis et al. [43]
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Fig. 3. 
Part a illustrates group differences at 3 months post-injury in TBI versus OI participants 

derived from TBSS and rendered upon a series of three-dimensional T1-weighted images 

from a template image as this allows a more global perspective of changes occurring 

throughout the brain. Part b illustrates group TBI versus OI group differences at 18 months 

post-injury. Part c reflects changes within the TBI group (18–3 months), and part d reflects 

changes within the OI group over time. The following is applied to the TBI group in all 

comparisons (a–d): areas denoted in red represent areas of lower ADC, areas in blue indicate 

areas of higher ADC, areas in green represent areas of lower FA, and areas in yellow 
represent areas of higher FA. Reprinted with permission from Wilde et al. [51]
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Fig. 4. 
Voxel-wise comparison of FA maps using threshold-free cluster enhanced correction in 

TBSS. Note. Results of voxel-wise group comparisons showing the parts of the whole brain 

skeleton (at FA > 0.2, in green) with differences in terms of FA between the moderate/severe 

TBI group as compared to the TC group (a) and mild RF + TBI group (b). Lower values in 

the moderate/severe TBI group as compared to other groups are displayed in red-yellow. 

The results are overlaid on a MNI152 1 mm T1 brain in radiological convention (right = 
left), and for visualization purposes, regions in the whole brain skeleton with significant 

group differences were “thickened” towards the full width of the white matter tract. TC 
trauma control group, TBI traumatic brain injury, FA fractional anisotropy. Adapted with 

permission from Königs et al. [50]
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