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Abstract	

Machine	learning	(ML)	methods	are	becoming	popular	tools	for	the	prediction	and	design	of	
novel	materials.	In	particular,	neural	network	(NN)	is	a	promising	ML	method,	which	can	be	
used	to	identify	hidden	trends	in	the	data.	However,	these	methods	rely	on	large	datasets	
and	 often	 exhibit	 overfitting	 when	 used	 with	 sparse	 dataset.	 Further,	 assessing	 the	
uncertainty	 in	predictions	 for	 a	new	dataset	or	 an	extrapolation	of	 the	present	dataset	 is	
challenging.	Herein,	using	Gaussian	process	regression	(GPR),	we	predict	Young’s	modulus	for	
silicate	glasses	having	sparse	dataset.	We	show	that	GPR	significantly	outperforms	NN	for	
sparse	dataset,	while	ensuring	no	overfitting.	Further,	thanks	to	the	nonparametric	nature,	
GPR	 provides	 quantitative	 bounds	 for	 the	 reliability	 of	 predictions	 while	 extrapolating.	
Overall,	GPR	presents	 an	 advanced	ML	methodology	 for	 accelerating	 the	development	 of	
novel	functional	materials	such	as	glasses.	
	
Keywords:	Neural	network,	Gaussian	process	regression,	Silicate	glasses,	Young’s	modulus,	
Sparse	dataset		
	
Introduction	
Glasses	are	ubiquitously	used	for	a	wide-range	of	applications	such	as	smart	phone	screens,	
optical	fibers,	wind	shields,	and	even	for	nuclear	waste	immobilization1.	In	order	to	address	
the	 ever	 increasing	 infrastructural	 and	 energy	 requirements,	 discovery	 of	 novel	 glass	
compositions	with	properties	tailored	for	particular	applications	is	required1,2.	Predicting	the	
composition–property	 relationships	 holds	 the	 key	 to	 development	 of	 such	 novel	
compositions.	However,	developing	this	map	is	an	extremely	challenging	task	in	glasses	due	
to	 the	 following	 reasons.	 (i)	 Glasses	 can	 be	 formed	 of	 virtually	 any	 element	 or	 its	 oxide,	
provided	the	structure	is	cooled	fast-enough	from	the	liquid	state	to	avoid	crystallization.	This	
allows	 formation	 of	 glasses	 with	 any	 stoichiometry,	 thereby	 making	 the	 possible	 glass	
compositions	 nearly	 infinite3,4.	 (ii)	 Silicate	 glasses	 exhibit	 highly	 complex	 and	 non-linear	
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composition–property	 relationships	 preventing	 any	 direct	 extrapolation	 from	 a	 few	
compositions3.	As	such,	developing	physics-based	models	for	property	predictions	in	glasses	
is	still	an	open	challenge	that	needs	to	be	addressed.	
	
An	alternate	approach	to	predict	new	materials	 is	 to	use	data-based	modeling	 techniques	
such	as	machine	learning2,5–9.	These	methods	rely	on	available	data,	either	from	simulations	
or	 experiments,	 to	 develop	 models	 that	 capture	 the	 hidden	 trends	 in	 the	 input–output	
relationships.	 One	 of	 the	 widely	 used	 and	 attractive	 techniques	 in	ML	 is	 neural	 network	
(NN)10–12.	 NN	 is	 a	method,	 inspired	 from	 the	 neurons	 in	 the	 brain,	 wherein	 a	 non-linear	
network	of	hidden	layer	units	“learn”	from	the	data.	NN	has	been	successfully	used	to	address	
a	 wide	 range	 of	 problems	 exhibiting	 highly	 non-convex	 and	 nonlinear	 input-output	
relationships2,5,6,9,13–16.	In	particular,	ML	has	been	successfully	used	in	oxide	glasses	to	predict	
a	wide	range	of	equilibrium	and	nonequilibrium	composition–property	relationships	such	as	
liquidus	temperature17,	solubility18,	glass	transition	temperature19,	stiffness20,	and	dissolution	
kinetics21.	
	
Despite	wide-spread	applications,	NN-based	methods	have	a	few	inherent	deficiencies	that	
makes	it	unfavorable	for	material	informatics.	Being	a	parametric	method,	NN	relies	on	the	
availability	of	large-scale	data	for	reliable	training19,22,23.	However,	obtaining	such	consistent	
large	 datasets	 require	 a	 large	 number	 of	 experiments	 or	 numerical	 simulations	 that	 are	
prohibitive,	 if	not	 significantly	expensive.	For	example,	 in	 the	case	of	glasses,	 samples	are	
produced	by	the	traditional	melt-quench	process	following	which	further	experiments,	such	
as	 nanoindentation,	 are	 required	 to	 measure	 the	 Young’s	 modulus.	 Carrying	 out	 such	
experiments	on	a	large	sample	set	or	compositional	space	for	would	be	nearly	impossible.	On	
the	other	hand,	sparse	datasets	that	are	consistent	and	accurate	can	be	obtained	even	at	the	
laboratory	scale	or	from	physics-based	simulations.	However,	these	sparse	datasets	may	pose	
some	unique	problems	for	NN-based	ML	algorithms	as	follows.	(i)	Development	of	reliable	
weights	in	NN	requires	training	over	a	sizeable	data	that	is	coming	from	a	consistent	dataset.	
While	experiments	or	simulations	may	provide	consistent	data,	such	datasets	may	be	limited	
in	 size,	 hence	making	 it	 challenging	 to	develop	 reliably	 trained	networks11.	 (ii)	Despite	 its	
ability	 to	 infer	 hidden	 trends	 within	 the	 dataset,	 NN	 can	 exhibit	 overfitting	 due	 to	 the	
parametric	nature	of	the	method.	Overfitting	suggests	that	the	noise	of	the	data	is	memorized	
instead	of	identifying	the	underlying	trend5,24,25,	which	can	occur	in	a	parametric	method	such	
as	 NN.	 This	 situation	 is	 highly	 undesirable	 as	 it	 reduces	 the	 capability	 of	 NN	 to	 predict	
untrained	 data	 coming	 from	 the	 same	 dataset.	 (iii)	 Finally,	 obtaining	 the	 uncertainty	 of	
predictions	of	a	trained	NN	on	a	new	dataset	is	challenging.	This	makes	it	unreliable	to	apply	
NN	for	untrained	compositions,	or	even	to	extrapolate	from	the	trained	dataset.		
	
These	deficiencies	can	be	addressed	by	using	an	advanced	nonparametric	machine	learning	
algorithm,	 namely,	 Gaussian	 process	 regression	 (GPR)26,27,	 which	 uses	 a	 probabilistic	
framework	 for	 predictions28,29.	 In	 GPR,	 the	 prior	 dataset	 coming	 from	 experiments	 or	
simulations	is	assumed	to	be	coming	from	an	underlying	Gaussian	distribution	with	a	well-
defined	mean	and	standard	deviation.	Thus,	the	objective	of	GPR	is	to	estimate	the	underlying	
normal	distribution	by	minimizing	the	error	in	the	prior.	Once	the	function	is	obtained	through	
regression,	 the	 interpolation	 for	 any	other	 input	 variables	 can	be	obtained	 from	 resulting	
distribution.	Note	 that	 since	 the	predictions	 in	GPR	are	 from	a	distribution,	 the	predicted	
value	corresponds	to	the	mean	value	and	confidence	intervals	for	the	prediction	are	provided	
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by	 the	 standard	 deviations.	 Due	 to	 this	 unique	 feature,	 GPR	 presents	 a	 robust	 machine	
learning	 methodology	 to	 develop	 reliable	 and	 accurate	 predictive	 model	 for	 material	
informatics7,30.	
	
Herein,	we	present	a	machine	learning	methodology	using	Gaussian	process	regression	(GPR)	
that	can	“learn”	composition–property	relationships	from	sparse	datasets.	Using	a	few	sparse	
datasets	of	Young’s	modulus	for	various	silicate	glasses,	we	show	that	GPR	can	outperform	
widely	used	machine	learning	techniques	such	as	NN.	Additionally,	GPR	provides	error	bounds	
for	the	predicted	values	thereby	providing	a	quantitative	estimate	for	the	reliability	of	the	
prediction.	 Overall,	 we	 show	 that	 GPR	 presents	 a	 robust	 and	 transferable	 technique	 for	
material	informatics,	that	can	be	used	to	develop	novel	materials	using	even	a	sparse	dataset.		
	
METHODOLOGY	
Data	set	
The	datasets	used	in	the	prediction	comprise	the	Young’s	modulus	values	for	four	different	
families	 of	 silicate	 glasses	 along	 with	 their	 compositions	 and	 density.	 The	 input	 data	 set	
includes	the	molar	percentage	composition	of	the	oxide	components	and	the	density	of	the	
glass.	Output	data	set	is	the	Young’s	Modulus	of	the	glass	compositions.	The	values	of	these	
glasses	are	obtained	 from	the	 INTERGLAD©	Ver.7	 international	glass	database32.	The	 four	
glass	 families	 considered	herein	are	–	 (a)	 calcium	aluminosilicate	 (CAS)	used	as	 alkali-free	
display	 glasses,	 (b)	 sodium	calcium	 silicate	used	 as	 archetypical	window	glasses	 (NCS),	 (c)	
sodium	germanium	silicate	(NGS),	and	(d)	sodium	borosilicate	(NBS)	used	for	nuclear	waste	
immobilization.	Table	1	shows	the	relevant	features	of	these	glasses	including	the	elements	
serving	as	network	former	and	network	modifier	along	with	the	coordination	numbers	of	the	
network	formers	and	the	dataset	size.		
	
Note	that	the	glasses	are	chosen	here	are	so	as	to	represent	different	classes	of	silicate	glasses	
exhibiting	distinct	features	as	follows.	(i)	CAS	presents	a	glass	having	two	network	formers	(Si	
and	Al)	 and	a	network	modifier	 (Ca)33.	Al	 exhibits	 a	 tetrahedral	 structure	exhibiting	 a	net	
negative	charge	which	is	charge	balanced	by	a	Ca2+	cation	in	the	vicinity	that	does	not	form	a	
non-bridging	 oxygen	 (NBO).	 Further,	 Al	 preferentially	 bonds	 with	 Si	 rather	 than	 Al	 in	
accordance	 with	 the	 Loewenstein	 rule34.	 (ii)	 NCS	 presents	 a	 glass	 having	 two	 network	
modifiers	(Ca	and	Na)	and	a	network	former	(Si).	Here,	both	the	network	modifiers	create	
NBO	with	Ca	creating	more	NBOs	than	Na,	which	can	have	some	significant	effects	on	the	
mechanical	properties	such	as	hardness35,36.	 (iii)	NGS	presents	a	glass	having	two	network	
formers	(Si	and	Ge)	and	a	network	modifier	(Na).	Here,	the	network	modifier	creates	an	NBO,	
while	both	the	network	formers	form	tetrahedral	structure	with	O	atoms.	(iv)	NBS	presents	a	
glass	having	two	network	formers	(B	and	Si),	and	a	network	modifier	(Na).	Here,	depending	
on	the	percentage	of	Na,	B	can	have	a	coordination	number	of	three	or	four37.	Note	that	this	
differential	 coordination	number	of	B	 results	 in	a	non-monotonic	evolution	of	mechanical	
properties.	Overall,	each	of	these	glasses	present	a	unique	structure	depending	on	the	local	
and	global	composition,	thereby	exhibiting	a	complex	composition–structure	relationship.	
	

Table	1:	Silicate	glasses	considered	herein	along	with	their	network	former,	network	
modifier	species,	coordination	number,	and	datasize	

Glass	 Network	former	 Network	
modifier	

Coordination	number	
(Network	former)	

Data	
size	
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Calcium	
aluminosilicate	
(CAS)	

Silicon	(Si),	
Aluminum	(Al)	

Calcium	(Ca)	 4	(Al),	4(Si)	 42	

Sodium	calcium	
silicate	(NCS)	

Silicon	(Si)	 Sodium	 (Na),	
Calcium	(Ca)	

4	(Si)	 46	

Sodium	
germanosilicate	
(NGS)	

Silicon	(Si),	
Germanium	(Ge)	

Sodium	(Na)	 4	(Si),	4	(Ge)	 46	

Sodium	 borosilicate	
(NBS)	

Silicon	 (Si),	
Boron	(B)	

Sodium	(Na)	 4	or	3	(B),	4	(Si)	 105	

	
The	datasize	for	each	of	these	glasses	are	given	in	Table	1.	The	dataset	size	is	limited	by	the	
availability	of	relevant	experimental	data	for	the	considered	series	of	glasses.	Further,	Table	
2	presents	the	range	of	values	of	compositions	for	each	of	the	oxide	components.	It	should	
be	noted	that	the	compositions	are	chosen	in	such	a	way	that	the	sum	of	mole	percentage	of	
individual	 oxide	 components	 add	 up	 to	 100%.	 This	 is	 to	 ensure	 that	 the	 compositions	
considered	herein	are	pure	and	does	not	have	any	additional	“noise”	due	to	small	variations	
in	data.	
	

Table	2:	Glass	compositions	considered	herein	with	the	range	of	each	of	the	individual	
oxide	components	

Glass	 Composition	 x	(mol	%)	 y	(mol	%)	 1-x-y	(mol	%)	
CAS	 (CaO)x(Al2O3)y(SiO2)1-x-y	 4.00	to	68.27	 2.90	to	36.10	 16.41	to	66.00	
NCS	 (Na2O)x(CaO)y(SiO2)1-x-y	 4.00	to	27.50	 60.00	to	82.00	 4.50	to	23.80	
NGS	 (Na2O)x(GeO2)y(SiO2)1-x-y	 3.38	to	33.33	 6.68	to	48.31	 33.33	to	86.64	
NBS	 (Na2O)x(B2O3)y(SiO2)1-x-y	 10.00	to	96.91	 2.60	to	80	 0.49	to	39.39	

	
Machine	learning	algorithms	
We	employ	various	supervised	learning	models	to	model	the	data.	The	available	data	set	that	
comprises	of	inputs	and	outputs	is	randomly	divided	into	(i)	a	training	set	and	(ii)	a	test	set.	
While	doing	so,	it	is	ensured	that	the	training	and	test	data	sets	have	reasonable	spread	over	
each	variables’	span.	The	training	set	is	first	used	to	train	the	model,	that	is,	to	optimize	the	
parameters	that	relate	the	inputs	to	the	outputs.	The	test	set,	which	is	fully	unknown	to	the	
model,	is	then	used	to	assess	the	performance	of	the	model—by	comparing	the	outcomes	of	
the	 model,	 for	 inputs	 which	 it	 has	 not	 been	 explicitly	 trained	 for,	 to	 the	 true	 reference	
outputs.	 Here,	 70%	 and	 30%	 of	 the	 data	 are	 attributed	 to	 the	 training	 and	 test	 sets,	
respectively.	Note	that,	in	the	case	of	the	NN	method,	the	training	data	is	further	divided	into	
55%	as	training	set	and	15%	as	validation	set,	totaling	to	70%	of	the	data.	In	the	following,	we	
provide	a	brief	description	of	the	various	supervised	learning	models	used	herein.		
	

(i) 	Neural	network	(NN)	
NN	is	a	nonlinear	supervised	learning	model	that	has	immense	capabilities	to	capture	complex	
data	trends11,12.	A	NN	consists	of	the	input,	hidden,	and	output	layers,	wherein	the	hidden	
layer	contains	a	given	number	of	units	that	take	their	inputs	from	the	input	layer	and	connect	
to	the	output	layer.	A	weight	is	attributed	to	the	links	that	connects	two	units.	The	output	
(ℎ#)	of	a	hidden	layer	unit	𝑖	is	calculated	as:	
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ℎ# = 𝑠 𝑉#𝑥# + 𝑇#,#-
.
/01 		 	 	 			Equation	(1)	

where	𝑠()	 is	 the	activation	function	(or	transfer	 function),	𝑁	 the	number	of	 inputs,	𝑉# 	 the	
weights	of	𝑖th	layer,	𝑥# 	the	input	values,	and	𝑇#,#- 	is	the	bias	term.	To	account	for	the	non-
linearity	 in	 the	 composition–Young’s	 modulus	 relationship,	 the	 activation	 function	 used	
herein	is	a	sigmoid	as	given	below	10,38,39:	

𝑠 𝑢 = 1
14567

	 	 	 	 				Equation	(2)	
The	network	is	first	trained	with	the	training	data	to	obtain	the	weight	parameters	between	
input,	hidden	layer	and	output	layer	units.	Finally,	the	predictive	capability	of	the	network	is	
evaluated	using	the	data	from	the	test	set.	
	

(ii) Gaussian	Process	Regression	(GPR)	
The	GPR	modeling	paradigm	tries	to	find	a	distribution	over	a	set	of	possible	nonparametric	
functions	for	representing	the	relationship	between	a	set	of	input	and	output	datasets26,27.	
Traditionally,	this	relationship	 is	characterized	with	various	classes	of	parametric	functions	
that	 have	 a	 fixed	 model	 structure	 as	 in	 the	 case	 of	 OLS	 or	 NN.	 Given	 a	 training	 set	
{(𝑥1, 𝑦1), (𝑥;, 𝑦;), … , (𝑥=, 𝑦=)},	 a	 GPR	 model	 explains	 the	 response	 𝑦# 	 introducing	 latent	
variables,	𝑓 𝑥# , 𝑖 = 1, 2, 3, … , 𝑛	 from	 a	 Gaussian	 process	 (GP),	 and	 explicit	 basis	
functions,	𝑔(. ).	Here,	the	GP	is	the	set	of	random	variables,	𝑓 𝑥# , 𝑖 = 1, 2, 3, … , 𝑛,	such	that	
they	have	a	joint	Gaussian	distribution	having	mean	function	𝑚(𝑥#)	and	covariance	function,	
also	known	as	kernel	function,	𝑘 𝑥#, 𝑥I = 𝐶𝑜𝑣(𝑥#, 𝑥I).	Given,	𝑓 𝑥# 	and	𝑥#,	the	regression	
output	𝑦# 	is	obtained	from	the	following	probability	distribution	
	

𝑃 𝑦# 𝑓 𝑥# , 𝑥#) ∼ 𝑁 𝑦# 𝑔 𝑥𝑖
𝑇𝛽 + 𝑓 𝑥𝑖 , 𝜎; 			 Equation	(3)	

	
where	 𝑥 ∼ 𝐺𝑃(0, 𝑘 𝑥, 𝑥I ),	𝑔(𝑥)	are	a	set	of	nonlinear	basis	functions	that	transform	the	
original	feature	vector	𝑥	and	𝜖 ∼ 𝑁 0, 𝜎; 	is	the	noise	term	corresponding	to	the	signal	noise.	
As	the	latent	variable	𝑔 𝑥# 	is	introduced	for	each	observation	𝑥#,	the	GPR	model	is	not	having	
fixed	functional	form,	rendering	it	to	be	nonparametric.		
	
Here,	 we	 use	 two	 popular	 kernel	 functions,	 namely,	 exponential	 function	 and	 automatic	
relevance	determination	(ARD)	exponential	 function,	 for	analyzing	the	performance	of	the	
GPR	model.	The	exponential	kernel	has	the	following	form	

𝑘 𝑥, 𝑥I = 	 |UVUI|
W

	 	 	 	 Equation	(4)	
where	𝑙	is	the	length	scale	parameter,	which	is	fixed.	While	for	ARD	exponential,	the	length	
scale	 is	 parameter	 is	 continuously	 leaned	 over	 time,	 aiding	 flexibility.	 The	 length	 scale	
parameters	determine	the	relevancy	of	input	data	to	the	regression	and	it	is	tuned	to	be	larger	
if	an	input	is	irrelevant	for	regression	output.		
	
Makishima	Mackenzie	model	
The	Makishima-Mackenzie	 (MM)	model40	 can	 be	 used	 to	 predict	 the	 Young’s	modulus	 of	
oxide	glasses	from	their	chemical	composition	and	the	density.	This	method	is	derived	from	
the	 idea	 that	 the	 elastic	 energy	 is	 proportional	 to	 the	 dissociation	 energy	 of	 the	 oxide	
constituents	per	unit	volume	along	with	their	packing	efficiency.	For	multicomponent	glasses,	
the	Young’s	modulus	is	given	by	

𝑌 = 2𝑉Z 𝐺/𝑋// 								 	 	 	 Equation	(5)	
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where	 𝐺# 	 and	 𝑋# 	 are	 the	 dissociation	 energy	 per	 unit	 volume	 and	 mole	 fraction	 of	 the	
component	𝑗,	respectively.	The	packing	density	𝑉Z	of	a	glass	with	density	𝜌	given	by	

𝑉Z =
^
_

𝑉/𝑋// 		 	 	 	 Equation	(6)	
where	M	 is	 the	molecular	weight,	𝜌	 is	 the	density,	and	𝑉/ 	 is	a	packing	 factor.	For	a	single	
component	oxide	glass	of	composition	𝐴ab𝑂db,	𝑉/ 	is:	

𝑉/ = 6.023×10;g h
g
𝜋 𝛼/𝑅lg + 𝛽/𝑅mg 			 	 Equation	(7)	

where	𝑅l	and	𝑅m	are	the	respective	ionic	radii	of	the	cation	and	oxygen.	Combining	Equations	
(5),	(6),	and	(7),	Young’s	modulus	can	be	expressed	as:	

𝑌 = ^
_

6.023×10;g h
g
𝜋(𝛼/𝑅lg + 𝛽/𝑅mg) 𝑋// × 𝐺/𝑋// 	 	 Equation	(8)	

	
RESULTS	
Neural	Network	
We	 first	 focus	 on	 the	 predictions	 obtained	 using	 NN	 (see	 Methodology).	 Note	 that	 the	
accuracy	of	predictions	 in	NN	can	be	 improved	by	optimizing	 the	number	of	hidden	 layer	
units.	To	this	extent,	we	train	the	dataset	against	NN	with	varying	number	of	hidden	layer	
units.	Figure	1(a)	shows	the	variation	of	R2	values	for	training	and	test	sets	with	respect	to	the	
number	of	hidden	layer	units	in	the	NN.	We	observe	an	increase	in	the	performance	of	the	
NN	during	training	with	respect	to	the	increase	in	the	number	of	hidden	layer	units,	as	evident	
from	the	R2(training)	which	increases	with	increasing	hidden	layer	units.	In	the	case	of	test	
set,	we	observe	that	the	R2(test)	initially	increases	with	the	number	of	hidden	layer	units.	This	
suggests	that	the	predictive	capability	of	the	NN	is	 increasing	with	 increasing	hidden	 layer	
units.	However,	beyond	a	critical	number	of	hidden	layer	units,	six	in	this	case	(see	Fig.	1(a)),	
we	observe	that	the	R2(test)	starts	decreasing	drastically.	This	is	due	to	overfitting	wherein	
the	parameters	of	 the	NN	capture	 the	noise	along	with	 the	underlying	 relationship	 in	 the	
training	dataset.	As	such,	any	input	other	than	that	from	the	training	set	will	result	in	a	poor	
prediction	 by	 this	 NN.	 Thus,	 the	 optimum	 value	 of	 the	 number	 of	 hidden	 layer	 units	
corresponds	 to	 that	 wherein	 the	 R2(test)	 exhibits	 a	 maximum	 or	 near	 maximum,	 while	
ensuring	that	the	training	set	also	exhibits	a	near	maximum	R2	value.	Based	on	this	analysis,	
we	chose	a	net	with	six	hidden	layer	units	to	predict	the	Young’s	modulus	of	CAS	glasses.		
	
Figure	1(b)	shows	the	predicted	values	of	Young’s	modulus	for	the	CAS	glasses	with	respect	
to	 the	 true	 measured	 values	 for	 a	 NN	 with	 six	 hidden	 layer	 units.	 To	 benchmark	 the	
performance	of	NN,	we	also	performed	ordinary	least	squares	(OLS).	We	observe	that	while	
the	 results	 for	 the	 training	set	 is	notably	 improved	 for	NN	with	an	R2(training)	of	0.772	 in	
comparison	to	the	OLS	method	with	an	R2(training)	of	0.694,	the	test	set	exhibits	a	notably	
poorer	performance	(R2(test)	=	0.590	for	NN	against	R2(test)	=	0.693	for	OLS).	This	suggests	
that	even	the	optimized	NN	exhibits	lower	poorer	predictive	capability	than	the	OLS	for	small	
dataset.	This	exemplifies	the	inherent	limitation	of	NN,	which	requires	a	large	number	of	data	
points	 in	 the	 training	 set	 to	 develop	 a	 reliable	 network	 with	 appropriate	 weights	
corresponding	to	each	unit.	
	
In	order	to	ensure	the	generality	of	our	results,	we	extend	our	study	to	three	more	silicate	
glass	compositions—namely,	sodium	calcium	silicate	(NCS),	sodium	germanium	silicate	(NGS),	
and	 sodium	 borosilicate	 (NBS)—with	 varying	 dataset	 size	 (see	Methodology).	 Note	 these	
glasses	are	chosen	so	as	to	represent	different	features	such	as	multiple	network	formers,	or	
network	modifiers,	or	coordination	numbers	(see	Methodology).	Further,	the	composition–



	 7	

structure	relationships	in	these	glasses	are	highly	non-trivial	and	depends	closely	on	the	local	
environment	around	each	atomic	species.	As	such,	the	ability	to	predict	the	Young’s	modulus	
from	 the	 compositions	 of	 these	 glasses	 provides	 an	 insight	 into	 the	 transferability	 and	
robustness	of	ML	algorithms.	
	
Figures	 2(a)–(c)	 show	 the	predicted	 values	 of	 Young’s	modulus	with	 respect	 to	measured	
values	for	NCS,	NGS,	and	NBS	glasses	using	NN,	respectively.	We	observe	that	the	prediction	
is	improved	when	the	size	of	the	dataset	is	increased.	Figures	2(d)–(f)	shows	the	variation	of	
R2	values	for	training	and	test	set	with	respect	to	number	of	hidden	layer	units	for	NCS,	NGS,	
and	NBS	 glasses,	 respectively.	 As	 in	 the	 case,	 of	 CAS	 glasses,	we	 observe	 overfitting	with	
increasing	number	of	hidden	layer	units.	Further,	for	the	optimum	number	of	hidden	layer	
units,	we	observe	that	the	results	are	significantly	improved	when	the	training	set	is	larger.	
This	could	be	attributed	to	the	fact	that	NN	requires	a	large	training	set	to	ensure	reliable	
prediction	without	overfitting.	As	such,	the	small	size	of	data	obtained	from	experiments	(as	
in	the	present	case)	or	simulations	would	be	 insufficient	to	train	a	robust	NN,	reducing	 its	
utility	and	rendering	it	unreliable.	
	

	 	
Figure	1.	(a)	R2	of	training	set	(left	axis)	and	R2	of	the	test	set	(right	axis)	with	respect	to	

the	number	of	hidden	layer	units	in	the	NN	for	calcium	aluminosilicate	(CAS)	glasses.	Lines	
are	guide	for	eye.	(b)	Predicted	Young’s	modulus	with	respect	to	measured	Young’s	
modulus	for	calcium	aluminosilicate	(CAS)	glasses	using	NN	with	6	hidden	layer	units.		

	
	
	

	 	 	
(f) 

(b) (c) 

(a) (b) 

(a) 
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Figure	2.	Predicted	Young’s	modulus	(in	GPa)	with	respect	to	measured	values	for	(a)	
sodium	calcium	silicate	(NCS),	(b)	sodium	germanium	silicate	(NGS)	and	(c)	sodium	

borosilicate	(NBS)	glasses	corresponding	to	6,	5,	and	6	hidden	layer	units,	respectively.	R2	
of	training	set	(left	axis)	and	R2	of	the	test	set	(right	axis)	with	respect	to	the	number	of	

hidden	layer	units	in	the	neural	network	for	(a)	NCS,	(b)	NGS	and	(c)	NBS	glasses.	Lines	are	
guide	for	eye.	

	
Gaussian	Process	Regression	
Now,	we	focus	on	the	predictions	based	on	GPR	(see	Methodology).	Figure	3(a)	shows	the	
predicted	 values	 of	 Young’s	 modulus	 of	 CAS	 glasses	 using	 GPR	 with	 exponential	 kernel	
functions	in	comparison	to	the	experimental	results.	We	observe	that	R2	values	of	0.818	and	
0.794	are	obtained	corresponding	to	the	training	and	test	sets,	 respectively.	These	results	
confirm	that	the	GPR	exhibits	a	better	agreement	with	the	experiments	than	NN.	Further,	R2	
values	 of	 the	 test	 set	 are	 comparable	 to	 that	 of	 the	 training	 set	 suggesting	 an	 optimum	
training.	This	could	be	attributed	to	the	nonparametric	nature	of	GPR,	which	prevents	any	
overfitting	of	the	data.	Overall,	we	observe	that	GPR	can	perform	better	than	NN	in	predicting	
the	properties	even	for	a	small	dataset.	
	
While	 the	 predictions	 using	 GPR	 with	 exponential	 kernel	 function	 are	 better	 than	 those	
offered	by	NN,	it	still	exhibits	a	notable	scatter	as	exemplified	by	the	R2	value	~	0.8.	In	order	
to	improve	the	predictions,	we	train	the	CAS	glass	data	using	GPR	with	automatic	relevance	
determination	(ARD)	exponential	kernel	function	(see	Methodology).	Note	that	ARD	kernel	
functions	have	an	additional	degree	of	freedom	through	a	length	scale	parameter,	which	can	
be	tuned	to	obtain	higher	predictive	accuracy	by	reducing	the	noise	standard	deviation	(see	
Methodology).	 Figure	3(b)	 shows	 the	predicted	 values	of	 Young’s	modulus	of	 CAS	 glasses	
using	GPR	with	ARD	exponential	kernel	functions	in	comparison	to	the	experimental	results.	
Interestingly,	we	observe	that	the	predictions	using	ARD	kernel	exhibits	notable	improvement	
in	comparison	to	exponential	kernel	function	(see	Fig.	3(a))	as	evidenced	by	the	R2	values	of	
0.925	and	0.878	for	 the	training	and	test	set,	 respectively.	This	could	be	attributed	to	the	
variable	length	scale	parameter	employed	in	ARD	kernels	due	to	which	the	predictions	can	be	
improved	by	assigning	differential	relevance	to	the	points	in	the	dataset.	Overall,	these	results	
suggest	that	GPR	with	ARD	kernels	can	significantly	outperform	NN,	especially	in	the	case	of	
small	datasets.	
	

(b) 

(e) (d) 
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Figure	3.	Predicted	Young’s	modulus	(in	GPa)	of	calcium	aluminosilicate(CAS)	using	the	
GPR	with	respect	to	the	measured	values,	taking	kernel	function	as	(a)	exponential,	(b)	
ARD	exponential.	The	symbols	represent	the	mean	predicted	values	and	error	bars	

represent	the	standard	deviation	corresponding	to	each	mean	prediction.	
		
Now,	we	focus	on	the	predictions	of	the	Young’s	modulus	for	the	three	glass	compositions	
using	GPR	with	ARD	exponential	kernel.	Figures	4(a)–(c)	shows	the	predicted	Young’s	modulus	
for	the	NCS,	NGS,	and	NBS	glasses	using	GPR	in	comparison	to	their	experimental	values.	We	
observe	 that	 the	 predictions	 from	 the	 GPR	 exhibits	 a	 close	match	with	 the	 experimental	
values	both	for	the	training	and	test	sets.	This	is	confirmed	by	the	high	R2	values	for	each	of	
the	glasses.	Further,	the	standard	deviation	corresponding	to	each	of	the	predicted	values	is	
represented	 by	 the	 error	 bars.	 This	 provides	 a	 quantitative	 measure	 of	 the	 reliability	
corresponding	to	each	predicted	value,	thereby	improving	the	confidence	in	the	predictions.	
Overall,	this	establishes	the	robustness	and	transferability	of	GPR	to	predict	properties	even	
from	a	small	dataset.		
	
Further,	Table	3	shows	the	standard	deviation	of	the	input	values	and	the	predicted	Young’s	
modulus	 values	 obtained	 from	 the	 GPR	 for	 different	 glass	 compositions.	 Note	 that	 the	
standard	deviation	of	the	training	set	represents	the	level	of	“noise”	present	in	the	signals	
used	for	training.	On	the	other	hand,	the	standard	deviation	in	the	test	set	correspond	to	the	
uncertainty	in	the	prediction	given	the	distribution	of	the	training	data.	We	observe	that	the	
standard	deviation	for	the	Young’s	modulus	varies	for	each	glass	compositions.	It	is	found	to	
be	significantly	 lower	 for	glass	compositions	having	 low	 input	“noise”,	 suggesting	 that	 the	
reliability	of	predictions	can	be	improved	by	using	a	consistent	and	accurate	dataset.	Even	for	
the	 high	 noise	 values	 for	 the	 input	 compositions,	 it	 should	 be	 noted	 that	 the	 standard	
deviation	observed	here	is	indeed	low	considering	the	range	of	the	Young’s	modulus	values	
for	the	glasses.		

(a) 



	 10	

	 	 	
Figure	4.	Predicted	Young’s	modulus	(in	GPa)	with	respect	to	measured	values	for	(a)	
sodium	calcium	silicate	(NCS),	(b)	sodium	germanium	silicate	(NGS),	and	(c)	sodium	

borosilicate	(NBS)	glasses	using	GPR	with	ARD	exponential	kernel	function,	respectively.	
Note	that	the	symbols	represent	the	mean	predicted	value	and	error	bars	represent	the	

standard	deviation	corresponding	to	each	predicted	value.	
	
	

Table	3:	Standard	deviation	of	the	Young’s	modulus	values	obtained	from	the	GPR	with	
ARD	exponential	kernel	function	for	different	glass	compositions	considered.	

	 Standard	deviation	of	Young’s	modulus	(GPa)	in	the:	
Glass	 training	set	 test	set	
CAS	 3.052	 4.027	
NCS	 0.828	 1.523	
NGS	 0.052	 0.561	
NBS	 0.362	 1.822	

	
DISCUSSION	
Now,	 we	 compare	 the	 predictive	 capability	 of	 two	 commonly	 used	methods–MM	model	
(analytical	 physics-based	 method),	 and	 NN	 (parametric	 machine	 learning	 method)–with	
respect	 to	 the	GPR	with	ARD	exponential	kernel	 functions.	Note	 that	 the	 results	 from	NN	
correspond	to	that	of	the	optimized	NN,	that	is,	ensuring	there	is	no	overfitting.	Figures	5(a)	
to	5(d)	shows	the	predicted	Young’s	modulus	 in	comparison	to	the	measured	values	using	
MM	model,	NN,	and	GPR	with	ARD	exponential	function	for	the	four	chosen	glasses,	namely,	
CAS,	NCS,	NBS,	and	NGS,	respectively.	First,	we	observe	that	the	machine	learning	methods,	
that	is,	NN	and	GPR,	significantly	outperforms	the	MM	model.	This	is	evident	from	the	low	R2	
values	 of	 0.307,	 0.547,	 and	 0.233	 for	 CAS,	 NCS,	 and	 NBS	 glasses	 (see	 Figs.	 5(a)–(c)),	
respectively,	for	MM	model.	This	is	ascribed	to	the	fact	that	the	MM	model	is	essentially	a	
linear	additive	model	wherein	stiffness	is	a	linear	functional	of	the	composition	and	density	
of	glasses	(see	Methodology).	As	such,	MM	model	is	inherently	unable	to	capture	any	non-
linearity	in	the	composition–Young’s	modulus	relationship,	which	is	commonly	observed	in	
silicate	glasses.	While	MM	model	is	known	to	provide	a	reasonable	estimate	of	the	order	of	
magnitude,	it	systematically	under-/over-predicts	the	slope.	Further,	it	is	notoriously	unable	
to	 predict	 the	 Young’s	modulus	 of	 glasses	 containing	 borate	 species31.	 This	 is	 due	 to	 the	
differential	coordination	number	boron	can	take	depending	on	the	cations.	

Second,	GPR	clearly	outperforms	NN	for	all	the	glass	compositions	chosen.	This	is	exemplified	
by	the	high	R2	values	of	0.912,	0.910,	0.981,	and	0.999,	for	CAS,	NCS,	NBS,	and	NGS	glasses,	
respectively,	predicted	using	GPR	with	ARD	exponential	kernel	functions	(see	Figs.	5(a)–(d)).	

(b) (c) (a) 
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This	is	due	to	the	unique	ability	of	GPR	to	capture	the	model	uncertainty	by	identifying	the	
underlying	 probability	 distribution	 from	 which	 the	 data	 is	 sampled.	 Thanks	 to	 the	
nonparametric	nature	of	GPR,	it	is	independent	of	any	structural	limitation	(hidden	layers	and	
number	of	hidden	layer	units	as	in	the	case	of	NN)	and	can	be	used	even	for	a	small	dataset	
to	obtain	reliable	predictions	without	overfitting.	On	the	contrary,	NN	is	limited	by	the	specific	
model	structure	to	be	learned	and	hence,	can	exhibit	overfitting5	depending	the	data	size	and	
the	model	structure	such	as	number	of	hidden	layers	and	hidden	layer	units.		

Third,	GPR	can	better	capture	the	data	variability	due	to	the	dedicated	covariance	(kernel)	
function,	a	functional	handle	which	NN	do	not	have	employed	in	the	model.	In	other	words,	
upon	training,	GPR	identifies	the	underlying	distribution	for	the	dataset	wherein	the	mean	
corresponds	to	the	predicted	value,	with	the	confidence	interval	of	prediction	provided	by	
the	standard	deviation.	Thus,	GPR	enables	one	to	identify	whether	the	predictions	from	the	
model	are	reliable	or	not	in	a	quantitative	manner	(see	Table	3),	thereby	addressing	one	of	
the	fundamental	issues	in	using	ML	methods	for	property	prediction.	This	is	in	contrast	with	
NN,	where	just	one	output	value	is	obtained	as	the	prediction.	As	such,	the	model	uncertainty	
is	 not	 accurately	 captured	 by	 the	 NN.	 This	 makes	 it	 challenging	 to	 identify	 whether	 the	
predictions	from	NN	for	a	new	data	set	or	an	extrapolation	are	reliable	or	not.		

Finally,	using	ARD	kernel	with	GPR	exhibits	 improved	results	with	respect	 to	ordinary	GPR	
with	exponential	function.	This	is	attributed	to	the	nature	of	the	length	scale	parameter	which	
determine	the	relevancy	of	input	data	to	the	regression.	In	the	case	of	GPR	with	exponential	
kernel	function,	the	length	scale	parameter	is	kept	constant.	On	the	other	hand,	in	the	case	
of	 ARD	 exponential	 kernel	 function,	 the	 length	 scale	 parameter	 is	 treated	 as	 a	 variable.	
Accordingly,	depending	on	the	relevance	of	the	input	with	respect	to	the	output,	the	length	
scale	parameter	is	tuned	so	as	to	maximize	the	predictive	capability.	For	example,	if	an	input	
is	irrelevant	for	regression	output,	the	length	scale	parameter	is	increased	so	that	the	kernel	
functions	attains	a	 low	value	and	vice-versa.	 This	 is	apparent	from	the	R2	values	reported	
herein.	GPR	model	 trained	with	ARD	exponential	kernel	 function	significantly	outperforms	
the	GPR	model	trained	with	exponential	kernel	function.	

	

	 	

(b) (a) 
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Figure	5.	Comparing	the	three	different	models	(MM	model,	GPR	and	NN)	for	(a)	calcium	
aluminosilicate	(CAS),	(b)	sodium	calcium	silicate	(NCS),	(c)	sodium	borosilicate	(NBS)	
glasses,	and	(d)	sodium	germanium	silicate	(NGS).	Note	that	NGS	contains	only	two	

models	(GPR	and	NN)	due	to	unavailability	of	data	for	MM	model.	
	
CONCLUSIONS	
Overall,	we	 present	 a	 robust	methodology	 using	GPR	 to	 predict	 the	 properties	 of	 silicate	
glasses.	We	show	that	GPR	provides	rigorous	estimates	for	the	Young’s	modulus	for	a	wide	
range	 of	 glass	 compositions,	 even	 for	 small	 datasets.	 Since	 GPR	 identifies	 the	 underlying	
distribution	corresponding	to	a	dataset,	the	standard	deviation	of	the	distribution	obtained	
can	 quantitatively	 provide	 the	 reliability	 of	 the	 predictions.	 Further,	 thanks	 to	 the	 non-
parametric	 nature	 of	 GPR,	 it	 avoids	 overfitting	 even	 for	 a	 small	 dataset,	 which	 is	 a	
fundamental	 issue	 observed	 in	 NN.	 Finally,	 the	 methodology	 presented	 herein	 is	 highly	
transferable	and	can	be	used	to	develop	glass	compositions	with	tailored	properties,	thereby	
accelerating	the	development	of	novel	functional	glasses.	
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