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Abstract

Summary—Hip fracture risk assessment is an important but challenging task. Quantitative 

CT-based patient-specific finite element (FE) analysis (FEA) incorporates bone geometry and 

bone density in the proximal femur. We developed a global FEA-computed fracture risk index to 

increase the prediction accuracy of hip fracture incidence.

Purpose—Quantitative CT-based patient-specific finite element (FE) analysis (FEA) 

incorporates bone geometry and bone density in the proximal femur to compute the force (fracture 

load) and energy necessary to break the proximal femur in a particular loading condition. The 

fracture loads and energies-to-failure are individually associated with incident hip fracture, and 

provide different structural information about the proximal femur.

Methods—We used principal component analysis (PCA) to develop a global FEA-computed 

fracture risk index that incorporates the FEA-computed yield and ultimate failure loads and 

energies-to-failure in four loading conditions of 110 hip fracture subjects and 235 age- and 

sex-matched control subjects from the AGES-Reykjavik study. Using a logistic regression model, 

we compared the prediction performance for hip fracture based on the stratified resampling.
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Results—We referred the first principal component (PC1) of the FE parameters as the global 

FEA-computed fracture risk index, which was the significant predictor of hip fracture (p-value < 

0.001). The area under the receiver operating characteristic curve (AUC) using PC1 (0.776) was 

higher than that using all FE parameters combined (0.737) in the males (p-value < 0.001).

Conclusions—The global FEA-computed fracture risk index increased hip fracture risk 

prediction accuracy in males.

Keywords

Hip fracture risk; Principal component analysis; Bone strength; Finite element analysis; 
Osteoporosis

Introduction

Osteoporosis is among the most common and costly metabolic bone diseases [1], causing 

bones to become weak and brittle and greatly increasing the risk of fracture [2, 3]. 

Although osteoporosis can affect any bone in the human body, osteoporotic fractures of the 

proximal femur are the most devastating outcome of the disease, often signaling an end to 

independent living in the functional elderly. Fracture risk assessment and risk stratification 

through screening are necessary to reduce the incidence of hip fracture. The areal bone 

mineral density (aBMD) extracted from the dual-energy X-ray absorptiometry (DXA), a 

2D-projection technique, sometimes provides limited information about skeletal factors on 

fracture risk [4, 5].

Quantitative CT (QCT) imaging is one of the most powerful methods for assessing bone 

quality in the proximal femur; after three-dimensional (3D) segmentation of the proximal 

femur, features such as volumetric bone mineral density (BMD) of the cortical and 

trabecular bone and bone geometry can be computed. Although DXA has undergone many 

years of development and has benefited from multiple studies of large cohorts and QCT 

measures have not undergone as much analysis, QCT has the potential to provide improved 

prediction of hip fracture once additional research and development are performed [6]. 

QCT is much more sensitive to changes in trabecular BMD and can identify reductions 

in trabecular BMD well before DXA. DXA aBMD combines cortical and trabecular bone 

into one measure, thereby obscuring measurements of trabecular BMD and reducing the 

sensitivity of DXA to changes in trabecular BMD. When bone loss is rapid, such as during 

use of glucocorticoids or during spaceflight, trabecular bone is lost first, and use of DXA 

aBMD understates bone loss because cortical bone is superimposed over trabecular bone 

[7, 8]. Patient-specific finite element analysis (FEA) from QCT images incorporates bone 

geometry, cortical thickness, and the three-dimensional distribution of bone density in the 

proximal femur to compute the force (fracture load) necessary to break the proximal femur 

in a particular loading condition. The fracture load can be defined as the force at the onset 

of fracture (the yield strength) or the maximum force the proximal femur withstands before 

complete fracture (the ultimate strength or load capacity), which are calculated using FEA 

with linear or nonlinear material properties, respectively. FEA-computed fracture loads are 

the most robust measure of proximal femoral structural integrity and, therefore, hip fracture 

risk [9, 10]. In particular, the ultimate strength or load capacity of the proximal femur which 
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is computed with nonlinear FEA is associated with incident hip fracture in men and women, 

and in men even after controlling for aBMD [11].

Finite element models compute the force necessary to break the proximal femur when forces 

and other boundary conditions are applied to reflect a specific loading condition, such as 

single-limb stance during walking or impact onto the greater trochanter from a fall in a 

specific direction [11]. Although the FEA-computed yield or ultimate strengths for different 

loading conditions are individually associated with incident hip fracture, and are mutually 

correlated, each yield and ultimate strength for each loading condition provides different 

structural information about the proximal femur that contributes to a subject’s overall hip 

fracture risk. The energy transferred to the proximal femur prior to reaching ultimate failure 

in a particular loading condition may also be associated with fracture risk. Therefore, in this 

study we used principal component analysis (PCA) to examine a combination of the FEA-

computed yield and ultimate strengths and energies-to-failure in various loading conditions 

to obtain a more robust measure of fracture risk than individual FEA-computed strengths. 

Principal component analysis is a commonly used method to reduce the dimensionality of 

data by selecting the most important features that capture the most information [12]. PCA 

can also speed up the algorithm for prediction by getting rid of correlated variables which 

do not contribute to decision making [13]. Therefore, we employed PCA to develop a global 

FEA-computed hip fracture risk index based on the FE model results of 110 hip fracture 

subjects and 235 age- and sex-matched control subjects in a subset of the AGES-Reykjavik 

study [14]. PCA is one of the most widely used dimension reduction techniques to transform 

a large number of variables into a smaller number of variables by identifying the correlations 

and patterns, while preserving most of the valuable information. The objectives of this study 

were (1) to construct a global FEA-computed fracture risk index derived from the most 

important FE parameters of fracture risk based on PCA that is associated with incident hip 

fracture and (2) to determine if the global FEA-computed fracture risk index, after adjusting 

for aBMD and covariates, can predict hip fracture better than the FE yield strength, ultimate 

failure load and energy-to-failure in a single loading condition or their combination in four 

different loading conditions.

Methods

Subjects

In this study, we used 110 hip fracture subjects and 235 age- and sex-matched control 

subjects from the Age Gene/ Environment Susceptibility (AGES) Reykjavik study [11, 

14]. The AGES-Reykjavik study is an ongoing population-based study which contains the 

baseline QCT scans of subjects who had no metal implants at the level of the hip [14]. 

Subjects were followed for 4 to 7 years, through November 15, 2009. Forty-two males and 

68 females suffered hip fractures during the follow-up period. Meanwhile, 92 male and 143 

female control subjects were selected from a pool of age- and sex-matched subjects. The age 

of the male fracture group was from 71 to 93 years with a standard deviation (SD) = 5.6 

years, and that of the female fracture group was from 67 to 93 years with SD = 5.9 years 

(Table 1). Accordingly, the age range of the control male group was from 70 to 90 years with 

SD = 5.2 years, and that of the control female group was from 67 to 92 years with SD = 
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5.7 years. The average heights were 174.6 cm and 174.9 cm for male fracture and control 

subjects, respectively. The average heights were 159.6 cm and 159.2 cm for female fracture 

and control subjects, respectively. In this study, we only included the subjects without any 

missing data for all covariates and FEA parameters, which is the minor differences in the 

number of included subjects in the dataset used in Keyak et al. [11].

FEA-computed parameters

The FE models simulated mechanical testing of the femur in which displacement was 

incrementally applied to the femoral head [11, 15]. The computed reaction force on 

the femoral head initially increased, reached a peak value (the fracture load), and then 

decreased. To achieve this mechanical behavior, the FE models employed heterogeneous 

isotropic elastic moduli, yield strengths, and nonlinear post-yield properties. These 

properties were computed from the calibrated QCT density (ρCHA, g/cm3) of each voxel 

in an element, which was then used to compute the ash density (ρash, g/cm3) (ρash = 0.0633 

+ 0.887 ρCHA), and ρash was used to compute mechanical properties [16-18]. Each linear 

hexahedral finite element measured 3 mm on a side, and the mechanical properties of 

the element were computed by averaging the values of each property over all voxels in 

the element, while accounting for the volume fraction of each voxel within the element. 

Together, these mechanical properties described an idealized density-dependent nonlinear 

stress–strain curve for each element [11, 15]. Material yield was defined to occur when the 

von Mises stress exceeded the yield strength of the element. After yield, the plastic flow 

was modeled assuming a plastic strain-rate vector normal to the von Mises yield surface 

and isotropic hardening/softening. Displacement was applied incrementally to the femoral 

head, and the reaction force on the femoral head was computed at each increment as the 

distal end of the model was fully constrained. For the fall models, the surface of the greater 

trochanter opposite the loaded surface of the femoral head was constrained in the direction 

of the displacements while allowing motion transversely.

Based on our FE modeling method from the QCT data [11, 15, 19, 20], twelve FE 

parameters were evaluated for each subject: yield strength (force at onset of fracture) 

calculated during single-limb stance (Sy) and impact from a fall onto the posterior (Py), 

posterolateral (PLy), and lateral (Ly) aspects of the greater trochanter; ultimate strength 

(failure load capacity) calculated during single-limb stance (Su) and impact from a fall onto 

the posterior (Pu), posterolateral (PLu), and lateral (Lu) aspects of the greater trochanter; 

energy-to-failure calculated during single-limb stance (Senergy) and impact from a fall 

onto the posterior (Penergy), posterolateral (PLenergy), and lateral (Lenergy) aspects of the 

greater trochanter. The yield strength was defined as the load at which the von Mises stress 

in 15 contiguous finite elements exceeded the yield strength for the element. Ultimate failure 

load was defined the maximum FE-computed force on the femoral head. Energy-to-failure 

was defined as the area under the force versus displacement curve up to the ultimate failure 

load. The Pearson correlation coefficient was applied to measure the linear correlation 

among 12 FE parameters. Although fracture parameters were inherently correlated, the 

fracture load for each loading condition provided different structural information about the 

proximal femur that contributes to a subject’s overall fracture risk. The yield strength was 

Cao et al. Page 4

Osteoporos Int. Author manuscript; available in PMC 2024 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



defined as the load at which the von Mises stress in 15 contiguous finite elements exceeded 

the yield strength for the element.

Statistical analysis

The data from both male and female subjects were collectively analyzed to examine the 

overall effects of FE parameters on hip fracture. Additionally, we analyzed male and female 

subjects separately to assess the gender-specific differences in the effects of hip fracture. In 

this study, we conduct the following three types of statistical analyses: (i) multiple linear 

regression analysis was performed to identify which FE parameters were the most important 

determinants of fracture risk; (ii) principal component analysis was utilized to construct 

a global FEA-computed risk index based on the FE parameters; (iii) we applied several 

statistical models to evaluate the hip fracture prediction performance using both the global 

FEA-computed fracture risk index and individual FE parameters.

(i) Multiple linear regression analysis—To identify which FE parameters were 

the most important determinants of fracture risk, multiple linear regression analysis was 

performed with each FE parameter serving as the dependent variable [11]. Based on our 

previous study [11], fracture status and the demographic parameters, age, sex, height, and 

weight were considered as candidate independent variables. All FE parameters, height, and 

weight are standard normalized using the z-score normalization algorithm. To select the 

most important independent variables in the multiple linear regression, we first performed 

a simple linear regression model to test the association between each of the candidate 

independent variables and each of the 12 FE parameters. In the multiple linear regression, 

we only retained the independent variables with p-value < 0.1. Interactions between fracture 

status and demographic parameters were also considered as independent variables. Also, 

if an interaction term was retained, the individual independent variables making up that 

interaction were retained, regardless of the p-value for the individual independent variable. 

The multiple linear regression analyses were performed for each of the FE parameters 

accounting for the retained independent variables. In all of these analyses, FE parameters, 

age, height, and weight were standardized by subtracting the mean and dividing by the SD 

of the pooled data.

(ii) Principal component analysis—The FE parameters for each loading condition 

provided different structural information about the proximal femur that contribute to a 

subject’s overall fracture risk. Therefore, to obtain a more robust measure of fracture 

risk, we investigated using principal component analysis (PCA) to develop a global FEA-

computed risk index based on the FE parameters which were mutually correlated. In 

addition to analyzing data from males and females combined (the whole sample), we 

also applied PCA to the male sample and female sample, separately. We used a logistic 

regression model to test the association between hip fracture status and each of the principal 

components. Let FX be the fracture status, where FX = 1 if the subject suffered a hip 

fracture and FX = 0 otherwise. For the jth principal component, the logistic regression model 

was expressed by logit(Pr(FX)) = β0j + β1jPCj. The top principal components were retained 

with p-value < 0.05.
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(iii) Statistical model for hip fracture prediction—To evaluate the hip fracture 

prediction performance using the global FEA-computed fracture risk index, we considered 

six covariates which contain four demographic parameters, age, sex, height, and weight, 

and two clinical parameters, health status (HEALSTAT; excellent, very good, good, fair, or 

poor) and bone medication status (BMDMED; yes or no). Meanwhile, we also consider the 

CT-derived total femur areal bone mineral density (aBMDCT) which was calculated from 

the existing QCT scans of the AGES-Reykjavik cohort. In our previous study, aBMDCT 

has been reported to be correlated with DXA total femur aBMD with r = 0.935 [9]. 

The area under the receiver operating characteristic (ROC) curve (AUC) indicated the 

predictive performance for each of the classification models, where the ROC curve showed 

the relationship between true positive rate and false positive rate. A larger AUC indicated 

better the performance of the model at distinguishing between the positive and negative 

classes. We divided the data based on the incidence of hip fracture into a training set 

(80% of subjects) and test set (20% of subjects) and analyzed male subjects separately 

from female subjects as well as analyzing the whole sample. To choose the best predictive 

model based on the training set, we used three linear classification models, namely, logistic 

regression (logistic), linear discriminant analysis (LDA), and partial least squares analysis 

(PLS), along with six non-linear classification models, random forest (RF), quadratic 

discriminant analysis (QDA), mixture discriminant analysis (MDA), neural networks 

(NNET), multivariate adaptive regression splines (MARS), and K-nearest neighbors (KNN) 

[21]. In the training set, we used stratified leave-one-group-out cross-validations (LGOCVs), 

repeating this procedure 25 times. For each LGOCV, we used 75% of the data to build the 

classification models and 25% of the data to predict and calculate the AUC. After choosing 

the best models, we built those models using the entire training set and predicted the 

fracture status based on the test set. To compare the performance for predicting hip fracture 

using (a) the global FEA-computed fracture risk index, aBMDCT, and covariates, (b) the 

FE parameters, aBMDCT, and covariates, and (c) aBMDCT and covariates, we performed 

stratified resampling 1000 times. Then, we applied a one-sided Student’s t-test to compare 

the resampled AUCs since we were interested in whether the predicative performance of one 

model was significantly better than the other model. To assess the disparity in predictive 

performance for hip fractures using the above three resampled AUC values, we also utilized 

the one-way analysis of variance (ANOVA).

Results

Within the male sample, the fracture and control groups were not significantly different 

with respect to age, height, weight, and the three energies-to-failure in the fall loading 

conditions (PLenergy, Penergy, Lenergy) at the time of the CT scan (p-value > 0.120; Table 

1). However, the remaining nine FE parameters were significantly lower in each fracture 

group than in the respective control group (p-value < 0.001). In contrast, within the female 

sample, the fracture and control groups were significantly different with respect to weight 

(p-value = 0.036). As for the male group, age, height, and the three energies-to-failure 

in the fall loading conditions in the female group (PLenergy, Penergy, Lenergy) were not 

significantly different between fracture and control groups (p-value > 0.513). Similarly to 

the male group, the remaining nine FE parameters were also significantly lower in each 
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fracture group than in the respective control group (Lu, p-value = 0.007; all others, p-value < 

0.001; Table 1).

For the multiple linear regression analyses (Table 2), after controlling for four demographic 

parameters (age, sex, height, and weight) and interactions, the FE parameters except for 

Pu, and energies-to-failure in the fall loading conditions were associated with hip fracture 

(p-value < 0.1). However, Pu was significantly lower in each fracture group than in the 

respective control group when not controlling for demographic parameters and interactions 

(p-value < 0.001) (Table 1) and had the higher R2 = 0.5217 (Table 2). Note that the 

interaction of fracture and weight was not retained in our analysis since all p-values for 

this interaction were greater than 0.1. Therefore, we considered nine hip fracture-related 

FE parameters (Sy, Su, Senergy, Py, Pu, PLy, PLu, Ly, and Lu) in the following analysis. 

PCA was applied to these nine FE parameters, which were inherently highly correlated. 

The proportions of variance explained by the first principal component (PC1) were 83.31%, 

78.23%, and 80.65% for the whole sample, male sample, and female sample, respectively. 

We found that PC1 of the FE parameters was the only significant predictor for hip fracture 

(p-value < 0.001 in the whole sample, male sample, and female sample). Therefore, we 

referred to PC1 as the global FEA computed fracture risk index. Using the LGOCV, we 

found that the performance of using PC1 along with aBMDCT and covariates, or the nine 

FE parameters combined along with aBMDCT and covariates, were better than that of only 

using aBMDCT and covariates to predict hip fracture (Table 3). In particular, we observed 

the superior predictive performance within the whole sample and male sample of PC1 

compared with FE parameters combined for all nine classification models; however, within 

the female sample, FE parameters combined had greater AUC than PC1. Logistic regression 

and PLS had the greatest AUCs among nine models (Table 3), and were chosen as the 

two best models. For PLS and logistic based on stratified resampling (Figs. 1 and 2), in 

the whole sample, logistic performed better than the PLS by using PC1 and FE parameters 

combined along with aBMDCT and covariates, which were also better than Logistic using 

aBMDCT and covariates (p-value < 0.001). In contrast, within the male sample, PLS using 

PC1 and FE parameters combined with aBMDCT and covariates was better than PLS using 

aBMDCT and covariates (p-value < 0.001).

We performed ANOVA for AUC based on logistic. We observed that the resampled AUCs 

with aBMDCT and covariates were different with the resampled AUCs with PC1 or FE 

parameters combined in the whole sample (p-value = 0.05) and in the male sample (p-value 

= 0.01), but no such difference was found in the female sample (p-value = 0.68). According 

to ANOVA for AUC based on PLS, the difference was still observed in the male sample with 

p-value < 0.01. Remarkably, within the female sample, a distinct pattern emerged from PLS, 

which is consistent with the Student’s t-test results shown in Fig. 1. There were different 

resampled AUCs in the female sample with p-value = 0.05. In contrast, in the whole sample, 

there was no difference observed (p-value = 0.97).

In particular, we observed the superior predictive performance in male sample of PC1 

compared with the predictive performance of each FE parameter based on PLS (p-value = 

0.02 for Ly; all others, p-value < 0.01) (Fig. 2). For the female sample, all of the AUCs of 

PLS using one of the FE parameters were greater than the corresponding AUC using PC1 

Cao et al. Page 7

Osteoporos Int. Author manuscript; available in PMC 2024 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with p-value > 0.1, except for Ly (p-value = 0.0145). We also observed similar predictive 

performance based on logistic. In the male sample, the predictive performance using PC1 

was better than the predictive performance of each FE parameter (p-value = 0.02 for Su; 

p-value = 0.04 for Ly; all others, p-value < 0.01). In the female sample, all of the AUCs of 

logistic using one of the FE parameters were similar to the corresponding AUC using PC1 

with p-value > 0.1, except for Ly (p-value < 0.01) and Senergy (p-value = 0.04).

Discussion

This is the first study to construct a global FEA-computed risk index by principal component 

analysis based on multiple fracture-related FEA-computed fracture loads and energies under 

different loading conditions. The global FEA-computed fracture risk index, after adjusting 

for aBMDCT and covariates, predicted hip fracture better than each individual FE parameter 

(yield strength, ultimate failure load, and energy-to-failure) and also better than the FE 

parameters combined in the whole sample and the male sample but not the female sample 

(Figs. 1 and 2; Table 3). Meanwhile, predicting fracture in the female sample was inherently 

more difficult than predicting fracture in the male sample because the difference between 

female fracture and control subjects is much smaller than that for males. In our previous 

work [11], the age-matched design of this study enhanced our ability to explore gender 

differences in proximal femoral strength and incident hip fracture as a function of age. In 

particular, our cross-sectional analysis of age-related FE parameter (Su, PLu, Pu, and Lu) 

loss by gender and fracture status may explain why proximal femoral strength was strongly 

associated with incident hip fracture in men but much less so in women (Table 2).

Although the FE parameters are individually associated with incident hip fracture, and 

are mutually highly correlated, they each provide different structural information about 

the proximal femur that can influence a subject’s overall fracture risk. The superior 

performance, in both men and women, of the assessment of hip fracture risk by using 

the global FEA-computed risk index and FE parameters combined along with aBMDCT and 

covariates compared with aBMDCT and covariates is not surprising. The CT-derived total 

femur aBMD was considered, which has a strong correlation with aBMD from DXA (r = 

0.935) [9]. The predictive performance by incorporating information from FE parameters 

was better than only using aBMDCT and covariates in the male sample and female sample 

(Fig. 1; Table 3), implying that the FE parameters can provide additional information in 

the assessment of hip fracture risk by incorporating bone geometry, cortical thickness, and 

the three-dimensional distribution of bone density in the proximal femur. Meanwhile, the 

global FEA-computed risk index plus the aBMD from DXA was better than the aBMD 

only (Fig. 1; Table 3). Although aBMD from DXA correlated with bone weakness and 

fragility fracture [22], DXA is a 2D-projection technique that poorly accounts for bone 

geometry and size and is a poor predictor of hip fracture in subjects with osteopenia 

(T-scores between −1 and −2.5). Thus, aBMD provides limited information about skeletal 

factors on fracture risk. However, several studies have been conducted using 2D-derived 

indices other than aBMD which showed better and independent predictive capacity, such 

as the hip structure analysis techniques [23], the 2D FEA [24], and the hip axis length 

[25]. With the emergence of QCT scan-based FE modeling, better estimates of proximal 

femoral strength have become possible [26]. Our study employed three-dimensional (3D) 
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FE models from QCT scans, which explicitly represent the 3D geometry and distribution 

of material properties that make each femur structurally and mechanically unique and is 

therefore more robust than two-dimensional (2D) models from DXA. Principles of physics 

dictate that hip fracture occurs when an excessive force is applied to the proximal femur, i.e., 

when the applied force exceeds the force that the proximal femur can support. This force, 

which varies with the type of loading and force direction, is known as the proximal femoral 

strength, fracture load [11, 20], or load capacity [15] computed using patient-specific FEA. 

Patient-specific FEA-computed fracture loads and energies are the most robust measures 

of proximal femoral structural integrity and, therefore, benefitted for evaluating the hip 

fracture risk. The comparison of QCT FEA-computed fracture loads and energies and other 

measurements derived from 2D images deserves further study.

Conclusions

In summary, FEA-computed fracture loads and energies were associated with incident hip 

fracture in most of loading conditions that were examined, and the global FEA-computed 

fracture risk index that was investigated by principal component analysis increased hip 

fracture risk prediction accuracy in the male sample more than that in the female sample. 

The global FEA-computed fracture risk index was most strongly associated with incident hip 

fracture in men after accounting for aBMD from DXA and other clinical and demographic 

parameters. Thus, FE parameters from 3D FE models includes information about hip 

fracture beyond that of aBMD from 2D models, especially in the male sample. The 

significance and complexity of these findings, particularly with respect to sex and age 

effects, indicate that additional studies of FE modeling for hip fracture risk assessment are 

likely to enhance our understanding of this significant public health problem.
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Fig. 1. 
The predictive performance of logistic and PLS based on stratified resampling. The values 

over the lines indicated the p-values obtained from the one-sided Student’s t-test. The values 

on top of the boxes indicated the average AUCs by using PC1 along with aBMDCT and 

covariates (PC1 + aBMDCT + Cov) versus using aBMDCT and covariates (aBMDCT + Cov) 

or FE parameters combined with aBMDCT and covariates (FE combined + aBMDCT + Cov). 

Notes: The abbreviations of FE parameters are yield strength (force at onset of fracture) 

calculated during single-limb stance (Sy) and impact from a fall onto the posterior (Py), 

posterolateral (PLy), and lateral (Ly) aspects of the greater trochanter; ultimate strength 

(failure load capacity) calculated during single-limb stance (Su) and impact from a fall onto 

the posterior (Pu), posterolateral (PLu), and lateral (Lu) aspects of the greater trochanter; 

energy-to-failure calculated during single-limb stance (Senergy) and impact from a fall 

onto the posterior (Penergy), posterolateral (PLenergy), and lateral (Lenergy) aspects of the 

greater trochanter
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Fig. 2. 
The predictive performance of PLS using each FE parameters compared with that of using 

PC1. The values over the lines indicated the p-values were obtained from the one-sided 

Student’s t-test. The values on top of the boxes indicated the average AUCs by using PC1 

along with aBMDCT and covariates (PC1 + aBMDCT + Cov) versus using each of FE 

parameters along with aBMDCT and covariates (* + aBMDCT + Cov)
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