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Molecular dynamics simulations and methods of importance sampling are used to study the heat
transport of low dimensional carbon lattices. For both carbon nanotubes and graphene sheets, heat
transport is found to be anomalous, violating Fourier’s law of conduction with a system size depen-
dent thermal conductivity and concomitant nonlinear temperature profiles. For carbon nanotubes,
the thermal conductivity is found to increase as the square root of the length of the nanotube, while
for graphene sheets the thermal conductivity is found to increase as the logarithm of the length
of the sheet over the system sizes considered. The particular length dependence and nonlinear
temperature profiles place carbon lattices into a universality class with nonlinear lattice models,
and suggest that heat transport through carbon nano-structures is better described by a Levy walk
rather than simple diffusion.

The heat transport properties of low dimensional lat-
tices have received considerable recent attention, due to
experimental and simulation reports claiming a violation
of Fourier’s law of conduction.1–4 Experimentally, reports
on both carbon nanotubes and graphene sheets have
shown indications of anomalous conductivities, though
difficulties extracting definitive values are complicated
by boundary effects. To date there is little theoretical
consensus on the underlying mechanism or its generality
to guide interpretation of such measurements.5,6 Carbon
nano-structures offer an ideal material to test predicted
theoretical scaling relations, but to do so computation-
ally requires robust simulation methods, which have thus
far led to many contradictory reports.7–14

Here we use molecular simulation and dynamic impor-
tance sampling15–17 to show that thermal transport in
carbon nanotubes and graphene sheets violates Fourier’s
law. Specifically, we demonstrate that over the system
sizes considered the thermal conductivity of low dimen-
sional carbon lattices increases with their characteristic
size, in a manner dependent on dimensionality and dis-
tinct from finite size effects related to phonon confine-
ment. Our results clarify that heat transport in low di-
mensional carbon lattices is anomalous despite the statis-
tics of heat currents being Gaussian and linear response
remaining valid. Rather, the size dependent thermal con-
ductivity is due to the confinement of momentum fluc-
tuations, resulting in slowly decaying heat current cor-
relations. These correlations result in energy transport
that is better described by a Levy walk, rather than a
simple diffusive process, as has been proposed for simple
nonlinear lattice models.18,19

In macroscopically three-dimensional materials,
Fourier’s law, j = −κ∇T , connects a heat current, j,
to a temperature gradient, ∇T , through a material

dependent constant, the thermal conductivity, κ. In
low dimensional systems, those whose extents can
be taken arbitrarily large in only one or two spatial
dimensions, and which conserve momentum, the heat
current for fixed boundary temperatures has been found
to scale with the characteristic size of the system, L, as
j ∼ L−1+α, where α is an anomalous exponent between
0 and 1.20 This has been interpreted as a size dependent
conductivity, κL ∼ Lα, that diverges in the thermody-
namic limit of L→∞ in analogy with other examples of
long-time tail behavior.21 Both simulations and theory
for simple nonlinear lattices agree that this divergence
occurs, though the value of α and the underlying
mechanism are debated. Recent mode-coupling theory22

and renormalization group calculations23 predict two
distinct universality classes with α = 1/3 or 1/2, for 1d
systems depending on the dominant nonlinearity and
boundary condition,24 but both expect a logarithmic
divergence for 2d systems.5 These findings are supported
by some numerical calculations, though others have
reported distinct exponents,25,26 as well as a sensitivity
of α to model details.27

Simulation studies on carbon nanostructures are more
limited, and at present there is not agreement on whether
transport is normal or anomalous. Studies on nanotubes
have reported normal transport,7–9 though others have
reported exponents of α = 1/4 to α = 1/2.10,28,29 It
has been argued that out of plane flexural modes in 2d
graphene sheets tame a logarithmic divergence,12 though
if sufficiently strained, anomalous transport is claimed
to be restored.13 Most simulations reporting anoma-
lous transport employ nonequilibrium simulation tech-
niques, which are typically faster to converge for large
systems than analogous equilibrium calculations based
on Green-Kubo theory. This has led researchers to ques-
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tion whether anomalous transport in realistic lattices a
nonequilibrium effect.

In order to determine which, if either, universality class
carbon lattices fall into, we consider both a single walled
carbon nanotube and a graphene sheet. In both cases,
we consider only heat transported from classical nuclear
degrees of freedom. To simulate these systems, we em-
bed the isotopically pure solids in periodic boundary con-
ditions, and orient them such that the largest length,
2L + 2δ, is along the z direction. The size of the simu-
lation box is set to ensure no residual lattice strain. The
individual atoms evolve through the equation of motion,

mv̇i(t) = Fi[x(t)]− γivi(t) + Ri(t) (1)

wherem is the mass of a carbon atom, vi is the ith atom’s
velocity, Fi[x(t)] is the conservative force acting on the
ith atom from the other atoms, described here by the
gradient of a Tersoff potential parameterized to recover
the phonon spectrum of carbon nanostructures.30 The
second and third terms in Eq. 1 describe a Langevin ther-
mostat that obeys a local detailed balance with a temper-
ature Ti, by dissipating energy through the friction, γi,
and adding energy by a random force Ri(t) with Gaus-
sian statistics described by 〈Ri(t)〉 = 0, 〈Ri(t)R

T
j (t′)〉 =

2γikBTiδijδ(t− t′)1, where kB is Boltzmann’s constant.

In all simulations, two distinct thermostats act on
groups of atoms, denoted by l and r, each over a re-
gion of length δ along the z direction and are separated
by a distance L. In these two regions, m/γi = 1 ps and
the temperature in each group is set to Tl/r = T ±∆T/2.
Outside of these thermostat regions, γi = 0, and the
atoms evolve with Hamiltonian dynamics. For all cal-
culations we consider T = 300 K, δ = 1 nm, and have
checked that our choice of δ is large enough given γ to
not affect our observed scaling behavior, as consistent
with other observations.37 We consider a (10,10) nan-
otube, and a graphene sheet with width 20 nm, which is
sufficient to converge effects from finite width.

The heat transport through the carbon lattices is stud-
ied by monitoring the energy exchanged with the stochas-
tic thermostats that act as ideal reservoirs. Specifically,
the energy current through the kth reservoir is given by
a sum over Nk atoms in that region,

jk(t) =

Nk∑
i∈k

[−γivi(t) + Ri(t)] · vi(t) (2)

and thus the energy exchanged from the rth reservoir into
the lth reservoir over a time tN is the integrated current

J(tN) =

∫ tN

0

dt [jl(t)− jr(t)] (3)

where Eq. 2 is interpreted in the Stratonovich sense. If
the system is driven into a nonequilibrium steady-state

by maintaining a temperature difference between the two
reservoirs, the thermal conductivity can be defined as,

κL = lim
∆T→0

lim
tN→∞

−〈J(tN)〉∆T
tN∆T

L (4)

where the long time limit is taken to ensure a steady-
state, ∆T is taken small as the conductivity is defined
as a linear response coefficient, and 〈. . . 〉∆T denotes a
stochastic average at fixed ∆T . If Fourier’s law holds,
∆T/L can be identified as the temperature gradient in
the limit that L→∞.

Alternatively, if the system is maintained at thermal
equilibrium, where the reservoirs are fixed to a common
temperature, T , the conductivity is computable from the
mean-squared fluctuations of the total energy exchanged,

κL = lim
tN→∞

〈J2(tN)〉0
2tNkBT 2

L (5)

where at long times, for a finite open system, the mean-
squared fluctuations are expected to scale linearly with
time. This exact expression follows from the definition
of κL in Eq. 4 and the stochastic process in Eq. 1, and
is an example of an Einstein-Helfand moment, equiva-
lent to a Green-Kubo relation.31 These two expressions
for κL offer independent means for studying the system
size dependence of the thermal conductivity, and their
equivalency reports on the domain of validity of linear
response, and the ergodicity of the lattices considered.

Shown in Figs. 1a,c) are the results of the nonequilib-
rium response of the integrated current to an imposed
temperature bias, using tN = 10 ns, for both carbon
nanotubes and the graphene sheets for a variety of L’s
that span 1 nm to 1 µm as a function of the boundary
temperature difference, ∆T . For the nanotubes and the
sheets, of all lengths considered and temperature differ-
ences up to ± 70 K, we find a linear relationship between
the integrated current and the thermodynamic bias. The
linearity implies that the conductivity can be extracted
through Eq. 4. If Fourier’s law were valid, we would ex-
pect to find the slope of J versus ∆T decrease linearly
with L. Instead, the data are collapsed using a scaling
form afd(L) = 〈J〉∆T /tN∆T as shown in Figs. 1b,d).
The dimensionless scaling function, fd(L), depends on
the spatial dimension d, where

fd(L) =


(

1 +
√
L/`1

)−1

, d = 1

(1 + L/`2 lnL/nm)
−1

, d = 2
(6)

interpolates between a ballistic limit for small L where
〈J〉∆T is independent of L and an anomalous limit for
large L where for d = 1, 〈J〉∆T ∼ L−1/2, implying that
α = 1/2 and for d = 2, 〈J〉∆T ∼ lnL/L. The lengths,
`1 = 3.1 nm and `2 = 3.4 nm, and a is a constant equal
to 1 meV/ps K per carbon atom in the reservoirs.
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a) b) c) d)

e) f) g) h)

1.5 6.5

FIG. 1. Fluctuations and response of the integrated heat current. Mean integrated current for a) carbon nanotubes and c)
graphene sheets as a function of boundary temperature difference ∆T . Scaled integrated current for b) carbon nanotubes and
d) graphene sheets. Probability of the integrated current for e) carbon nanotubes and g) graphene sheets at equilibrium over
tN. Scaled integrated current distributions for f) carbon nanotubes and h) graphene sheets. The color bar indicates the system
size, L, throughout (a-h), the solid lines in (b,f) are guides to the eye, and the insets show typical snapshots of the systems.

Studying heat transport from the corresponding equi-
librium fluctuations is cumbersome because it requires
converging a second moment and thus necessitates long
averaging times.32 This has lead to a dearth of reports
employing equilibrium calculations in these systems for
large L. In order to achieve high statistical accuracy,
we employ a recently developed importance sampling
scheme.16 Rather than targeting the second moment di-
rectly, we importance sample the probability of a given
fluctuation in J , P (J), using a variant of diffusion Monte
Carlo for nonequilibrium steady-states known as the
cloning algorithm.33 Specifically, we sample tilted, or de-
formed, distributions of the exchanged energy,

Pλ(J) = P (J)e−λJ+ψ(λ)tN (7)

where λ is a statistical biasing parameter that reweights
fluctuations in J , and ψ(λ)tN = − ln〈exp[−λJ ]〉0 is a
scaled cumulant generating function that normalizes the
new distribution. Using a range of λ’s, we can re-
late a set of Pλ(J) to P (J) using histogram reweighting
techniques,15,34 enabling us to construct P (J) far into
the tails of the distribution. From the distribution, we
can arrive at a statistically superior estimate of linear

and nonlinear transport coefficients, over Green-Kubo
calculations.16,17

Shown in Figs. 1e,g) are the results of P (J) for both
the carbon nanotubes and the graphene sheets for a range
of L’s. For these calculations, we use tN =20 ps, a range
of 10 λ’s distributed around 0, and generate 5 × 104 in-
dependent trajectories to converge the results. We use
the multistate Bennet acceptance ratio to combine his-
tograms at different λ’s.35 For the range of probabili-
ties probed, we find that the distributions are Gaussian.
From Eq. 7, the curvature of these distributions deter-
mine κL, and we find we can use the same scaling func-
tion, fd(L), to collapse the distributions. Specifically, we
use a large deviation scaling form, where J and lnP (J)
are divided by tN and fd(L), implying all moments of
J scale proportional to tN and fd(L). This collapse is
shown in Figs. 1f,h), and uses the same `d as in the
nonequilibrium calculations. This consistency between
nonequilibrium and equilibrium calculations is a conse-
quence of linear response, which holds despite the heat
transport being anomalous. This rules out claims that
the anomalous transport is a nonequilibrium effect. The
size dependence of the fluctuations of the integrated cur-
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FIG. 2. Size dependent conductivities for a,b) carbon nan-
otubes and c,d) graphene sheets. In a,c) the red lines are
proportional to fd(L)L and in b,d) they are guides to the
eye. Filled symbols are computed from equilibrium fluctu-
ations using Eq. 7 and empty symbols are computed from
nonequilbrium steady states using Eq. 4 Errorbars computed
from one standard deviation are the size of the symbols.

rent manifest increased correlation times for momentum
fluctuations of the particles in the thermostat regions, as
the size of the system increases. The scaling of 〈J2〉0 with
L thus directly reports on slowly decaying heat current
correlations.36

From both the nonequilibrium and equilibrium calcu-
lations, we can explicitly compute κL, which is shown in
Fig. 2 for the nanotubes and graphene sheets as func-
tions of L. In order to place them on the same scale, we
plot them relative to their values for L = 5 nm, and find
that these data are well described by the scaling func-
tion fd(L)L. We find quantitative agreement between the
conductivities computed from equilibrium fluctuations of
the time integrated current, as well as direct nonequilib-
rium simulations, as expected from linear response and
the Gaussianity of the current distributions in Fig. 1. For
both sets of systems, the conductivity initially increases
linearly with L, signifying the role of ballistic phonon
modes in transporting the energy for small systems. For
L > 20 nm, we find that κL scales sub-linearly in a
manner that depends on dimensionality. This crossover
length is consistent with estimations of the phonon mean
free path using the speed of sound and heat capacity,

and with extrapolations based on Matthiessen’s rule.37

This value is significantly lower other estimates of the
phonon mean free path evaluated at low frequencies.38

It is also much smaller than mean free paths inferred
from the Boltzmann equation based calculations of the
thermal conductivity,39 however such calculations are not
typically capable of describing anomalous transport due
to their perturbative treatment of anharmonicities and
neglect of nonMarkovian effects.40 We find that for the
1d nanotubes, the thermal conductivity continues to in-
crease as

√
L over the range of system sizes studied, and

can fit α = 0.5 ± 0.05 to the data. For the 2d sheets,
we find the thermal conductivity increases as ln L over
the system sizes studied. This particular anomalous be-
havior is consistent with lattice models with interaction
potentials with high symmetry.22

In models like the FPUT chain and hard spheres on
a line, the breakdown in Fourier’s law has been inter-
preted as the emergence of a Levy walk process for en-
ergy transport.19,41–43 Specifically, rather than a normal
diffusion, it is proposed that quasiparticles transport en-
ergy via a stochastic process in which ballistic motions
with random direction occur over time intervals, τ , drawn
from a power-law distribution, φ(τ) ∼ τ−2−α, where α is
the same anomalous exponent as in κL.44 Such motions
result in a mean squared displacement of the energy car-
riers that scales super-diffusively, ∼ t2−α. In the limit of
an infinite closed system, the prediction of super-diffusive
spreading of energy can be tested by following the decay
of a localized perturbation.

We have considered an L =25 nm nanotube, with
an initially localized temperature profile, T (z) = T +
T1[Θ(L − δ − z) − Θ(L + δ − z)], where Θ denotes
a Heaviside function, and evolved in time in the ab-
sence of coupling to the thermostats. This is shown in
Fig. 3a), where we have taken T1 =700 K, and show
the time dependent temperature profile averaged over
104 random initial conditions. By fitting the width of
these distributions using a local Gaussian form, T (z) =
T+∆T (t) exp[−(z−L)2/2σ2(t)], we conclude that the ki-
netic energy spreads super-diffusively as predicted from
the Levy walk model, σ2(t) ∼ t2−α, with an exponent
consistent with α = 1/2, shown in Fig. 3b). Scattering
based imaging techniques like StroboSCAT45 could po-
tentially be used to confirm this analogous behavior in
suspended graphene or MoS2 sheets.

The Levy walk model also makes a prediction regard-
ing the nonequilibrium steady state temperature profile
for an open system.46 In the limit that L is large, for
α = 1/2, the temperature profile is given by

T (Z) = T (0) +
∆T

C

∫ Z

0

dZ ′
1

(Z ′ − Z ′2)1/4
(8)

where Z = z/L and C = 8Γ(3/4)Γ(7/4)/3
√
π where

Γ is the Gamma function.44 Shown in Fig. 3c) is the
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c)

a) b)

MD
Levy walk

FIG. 3. Superdiffusion heat transport. a) Time dependent
temperature profile following a localized perturbation. Blue
lines are from molecular dynamics simulations, spaced 5 fs
apart, and black line are approximate Gaussian fits to the
Levy-stable distribution. b) Markers show the best fit vari-
ance from the time dependent temperature profiles as a a
function of time, and the solid line is a fit to σ2(t) = at3/2 +b.
c) Scaled temperature profile for L = 500 nm nanotube solid
line, and in the dashed line the best fit to Eq 8.

scaled temperature profile for a L = 500 nm carbon nan-
otube and ∆T = 100 K. The profile is nonlinear, as
has been previously observed, with temperature jumps
at the thermostat boundaries due to well documented
Kapitza resistances.47 For large nanotubes, we find that
the Kapitza resistance contribution shrinks, and the pro-
files converge to a stable nonlinear form, which can be
well fit by Eq. 8, and deviates significantly from the linear
profile expected from Fourier’s law. This persistent non-
linearity is a consequence of the nonlocal relation between
the heat current and local temperature gradients result-
ing from the Levy walk Green’s function.44 The emer-
gence of a Levy walk can be understood as a consequence
of the confinement of momentum fluctuations that cor-
relates motion over long times. This nonlocal transport
mechanism can be utilized in nanophononic devices to
enhance thermal rectification effects.48

In this work, we have shown that carbon lattices de-
scribed by a detailed molecular model exhibit anomalous
heat transport over the range of system sizes studied, for
both 1d nanotubes and 2d graphene sheets. The anoma-
lous exponent α that relates the divergence of the thermal
conductivity to the system’s characteristic length was ex-
tracted from direct nonequilibrium calculations in steady
state and transiently, and from spontaneous equilibrium
fluctuations, where the latter was enabled by recently de-

veloped importance sampling method. While the calcula-
tions are restricted to L < 2 µm, all means of extracting
α consistently find that κL ∼ L1/2 for 1d carbon lattices,
and κL ∼ lnL for 2d carbon lattices, and are consistent
with the Levy walk model of low d heat transport. While
we have focused on carbon materials, out results should
extend to other materials capable for being synthesized
into nanotubes and sheets like boron nitride.

Acknowledgments. The authors thank Garnet Chan
and Kranthi Mandadapu for helpful discussions, the US
National Science Foundation via grant CHE-1665333 and
the UC Berkeley College of Chemistry for support.

∗ dlimmer@berkeley.edu
[1] C.-W. Chang, D. Okawa, H. Garcia, A. Majumdar, and

A. Zettl, Physical review letters 101, 075903 (2008).
[2] X. Xu, L. F. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao,

S. Bae, C. T. Bui, R. Xie, J. T. Thong, et al., Nature
communications 5, 3689 (2014).

[3] N. Yang, G. Zhang, and B. Li, Nano Today 5, 85 (2010).
[4] M. Wang, N. Yang, and Z.-Y. Guo, Journal of Applied

Physics 110, 064310 (2011).
[5] S. Lepri, R. Livi, and A. Politi, in Thermal transport in

low dimensions (Springer, 2016) pp. 1–37.
[6] A. Dhar, Advances in Physics 57, 457 (2008).
[7] J. Che, T. Cagin, and W. A. Goddard III, Nanotechnol-

ogy 11, 65 (2000).
[8] S. Maruyama, Physica B: Condensed Matter 323, 193

(2002).
[9] N. Mingo and D. Broido, Nano letters 5, 1221 (2005).

[10] J. Wang and J.-S. Wang, Applied physics letters 88,
111909 (2006).

[11] A. Cao and J. Qu, Journal of Applied Physics 112,
013503 (2012).

[12] D. L. Nika, A. S. Askerov, and A. A. Balandin, Nano
letters 12, 3238 (2012).

[13] L. F. C. Pereira and D. Donadio, Physical Review B 87,
125424 (2013).

[14] M. Park, S.-C. Lee, and Y.-S. Kim, Journal of Applied
Physics 114, 053506 (2013).

[15] U. Ray, G. K.-L. Chan, and D. T. Limmer, The Journal
of chemical physics 148, 124120 (2018).

[16] C. Y. Gao and D. T. Limmer, Entropy 19, 571 (2017).
[17] C. Y. Gao and D. T. Limmer, Journal of Chemical

Physics (2019).
[18] S. Denisov, J. Klafter, and M. Urbakh, Physical review

letters 91, 194301 (2003).
[19] P. Cipriani, S. Denisov, and A. Politi, Physical review

letters 94, 244301 (2005).
[20] S. Lepri, R. Livi, and A. Politi, Physical review letters

78, 1896 (1997).
[21] B. J. Berne and D. Forster, Annual Review of Physical

Chemistry 22, 563 (1971).
[22] L. Delfini, S. Lepri, R. Livi, and A. Politi, Journal of

Statistical Mechanics: Theory and Experiment 2007,
P02007 (2007).

[23] H. Spohn, Journal of Statistical Physics 154, 1191
(2014).

[24] G. Lee-Dadswell, Physical Review E 91, 032102 (2015).

mailto:dlimmer@berkeley.edu


6

[25] T. Mai, A. Dhar, and O. Narayan, Physical review letters
98, 184301 (2007).

[26] L. Delfini, S. Lepri, R. Livi, and A. Politi, Physical re-
view letters 100, 199401 (2008).

[27] P. I. Hurtado and P. L. Garrido, Scientific reports 6,
38823 (2016).

[28] Z. Yao, J.-S. Wang, B. Li, and G.-R. Liu, Physical Re-
view B 71, 085417 (2005).

[29] J. Shiomi and S. Maruyama, Japanese Journal of Applied
Physics 47, 2005 (2008).

[30] L. Lindsay and D. Broido, Physical Review B 81, 205441
(2010).

[31] S. Viscardy, J. Servantie, and P. Gaspard, The Journal
of chemical physics 126, 184513 (2007).

[32] R. E. Jones and K. K. Mandadapu, The Journal of chem-
ical physics 136, 154102 (2012).

[33] C. Giardina, J. Kurchan, and L. Peliti, Physical review
letters 96, 120603 (2006).

[34] D. Frenkel and B. Smit, Understanding molecular simu-
lation: from algorithms to applications, Vol. 1 (Elsevier,
2001).

[35] M. R. Shirts and J. D. Chodera, The Journal of chemical
physics 129, 124105 (2008).

[36] S. Lepri, R. Livi, and A. Politi, EPL (Europhysics Let-

ters) 43, 271 (1998).
[37] R. N. Salaway and L. V. Zhigilei, International Journal

of Heat and Mass Transfer 70, 954 (2014).
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