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Privacy guarantees for personal 
mobility data in humanitarian 
response
Nitin Kohli1,3, Emily Aiken2,3 & Joshua E. Blumenstock1,2

Personal mobility data from mobile phones and other sensors are increasingly used to inform 
policymaking during pandemics, natural disasters, and other humanitarian crises. However, even 
aggregated mobility traces can reveal private information about individual movements to potentially 
malicious actors. This paper develops and tests an approach for releasing private mobility data, which 
provides formal guarantees over the privacy of the underlying subjects. Specifically, we (1) introduce 
an algorithm for constructing differentially private mobility matrices and derive privacy and accuracy 
bounds on this algorithm; (2) use real-world data from mobile phone operators in Afghanistan and 
Rwanda to show how this algorithm can enable the use of private mobility data in two high-stakes 
policy decisions: pandemic response and the distribution of humanitarian aid; and (3) discuss practical 
decisions that need to be made when implementing this approach, such as how to optimally balance 
privacy and accuracy. Taken together, these results can help enable the responsible use of private 
mobility data in humanitarian response.

Personal mobility data has the potential to provide critical information to guide the response to humanitarian 
crises, and to advance several of the Sustainable Development Goals (SDGs). For instance, recent work has 
shown that mobility data can be used to model and prevent the spread of epidemics1–3, monitor and assist 
displaced populations after natural disasters4–6, target emergency cash transfers7,8, and flag riots and violence 
against civilians9,10. The COVID-19 pandemic in particular demonstrated that aggregated personal mobility 
data can provide critical insight into population movement11–15, and resulted in a push for collaborations among 
governments, technology companies, and researchers to leverage these data to inform evidence-based pandemic 
response measures16.

At the same time, personal mobility data is, by definition, personal, so its analysis – even for humanitarian 
purposes – may create privacy risk. Individual mobility data can expose personally identifying and sensitive 
information, including individuals’ home and work locations, travel patterns, and interpersonal interactions. 
Moreover, since certain locations are endowed with social meaning, mobility data can be used to draw inferences 
about an individual’s life, including their political preferences17 and sexual orientation18,19. Even coarsening the 
spatial and temporal characteristics of individual locations traces provides little privacy protection, due to the 
idiosyncratic nature of human movements throughout daily life20. There has thus been widespread criticism and 
controversy about the use of such data by governments21, private companies17, civil society22, and researchers23.

To mitigate such personal inferences about individuals from digitally-derived mobility data – and the potential 
harms that could follow from these revelations – active measures must be taken to ensure that individual privacy 
is protected when such data are analyzed or released. The traditional approach to protecting privacy is to release 
only aggregated statistics about group movement rather than individual mobility trajectories24. However, such 
aggregation is typically insufficient to de-identify individuals in mobility traces20,25, so other papers have turned 
to other techniques including distorting spatiotemporal information26,27, obfuscating individual trajectories28, 
and data slicing and mixing29.

This paper develops and tests an approach to producing provably private mobility statistics from personal data 
based on differential privacy30. A number of previous studies have shown how differentially private approaches 
can add carefully calibrated noise to aggregated mobility statistics to ensure that the amount of individual 
information leaked by such statistics is bounded31–40. In comparison to past work, the focus of our study is on 
understanding the implications and tradeoffs that arise when using private mobility statistics in humanitarian 
settings. We are specifically interested in how differential privacy impacts intervention accuracy, i.e., the accuracy 
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(and effectiveness) of policy decisions that are based on private mobility data rather than standard (non-private) 
data.

This paper makes three main contributions. First, we develop an algorithm for computing differentially 
private mobility information, and derive the guarantees that this algorithm provides for both data privacy and 
intervention accuracy. Second, we provide experimental results on the tradeoff between privacy and the accuracy 
of downstream policy decision in two real-world humanitarian contexts: response to (1) pandemics and (2) 
natural disasters and violent events. Third, we discuss the nuanced implementation choices that policymakers 
and algorithm developers are likely to grapple with in deploying such systems, and their effects on the privacy-
accuracy tradeoff and ability to effectively deliver humanitarian aid.

Results
Building and testing a differentially private mobility matrix
Our first set of results formalize the notion of a private mobility matrix, propose a novel algorithm for generating 
such matrices, and derive guarantees on the privacy and accuracy provided by this algorithm. In general, a 
mobility matrix is a data structure that quantifies the extent to which a population moves between regions in a 
fixed period of time—see Fig. 1A for an example of a an O-D matrix derived from mobile phone records. The 
most common form of mobility matrix, an origin-destination matrix (hereafter abbreviated as an O-D matrix), 
indicates for each pair of regions (i, j) the number of trips taken by individuals from i to j. Mobility matrices are 
widely used by scholars and policymakers, and are playing an increasingly critical role in many humanitarian 
settings1,2,13,14. However, as discussed above, the raw data in mobility matrices are sensitive, and can compromise 
the privacy of the individuals whose data are used to construct those matrices34,41.

Algorithm  1, described in detail in the “Methods” section, provides a computationally efficient method 
to construct differentially private30 origin-destination matrices from individual mobility data. At its core, this 
algorithm adds very carefully calibrated noise to the underlying data, in a specific way that both protects the 
privacy of individuals and ensures the fidelity of the resulting O-D matrix—see Fig. 1 for a schematic diagram 
of this framework. In the Supplementary Information S1, we prove that our algorithm satisfies ϵ-differential 
privacy (Theorem S1, Supplementary Information). This proof mathematically guarantees that no one with 
access to the private O-D matrix could infer “too much” about any individual trip (or any individual) whose 
data was contained in the matrix. The algorithm quantifies “too much” using a privacy loss parameter ϵ ≥ 0 
(Definition S1, Supplementary Information). This privacy loss parameter ϵ is thus critical to understanding the 

Figure 2.  Panel A: A portion of an origin-destination matrix, showing movement between 10 districts of 
Afghanistan on January 1, 2015, as calculated from data provided by a mobile phone operator. Panel B: The 
origin-destination matrix is passed into our private O-D matrix algorithm (as described in Algorithm 1) for 
trip-level protection (T =1) with privacy parameter ϵ = 0.1 and suppression threshold τ = 15. Panel C: The 
same portion of the origin-destination matrix, this time after being privatized by our private O-D matrix 
algorithm (with ϵ = 0.1). Panel D: Movement from Kabul to other districts of Afghanistan on January 1, 2015, 
based on the highlighted row of the private origin-destination matrix in Panel B. Kabul, the origin district, is 
shown in black.
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function of the algorithm, as it governs the maximum information about an individual trip (or an individual 
person) is leaked by a private mobility matrix. Smaller values of ϵ provide more robust privacy guarantees while 
larger values increase the risk that individual data could be compromised.

However, a central concern—and a focal point of our work—is that increases in privacy come at a cost. In 
particular, as ϵ decreases, the resulting private mobility matrix looks less and less like the true (non-private) 
mobility matrix. In the Supplementary Information S1, we derive formal guarantees of the worst-case accuracy 
loss of the private O-D matrix algorithm as a function of ϵ. In particular, Theorems 2, 3, and 4 show that the 
accuracy loss of our algorithm exponentially decreases as ϵ increases; Theorem 5 further shows that, when 
using multiple private mobility matrices to estimate changes in population flows, the detection error decreases 
according to Θ(ϵ exp(−ϵ)) as ϵ increases.

To provide intuition for the tradeoff between privacy and accuracy, Fig. 2 illustrates how the privacy loss 
parameter ϵ relates to differences between the original O-D matrix and the private O-D matrix. To construct the 
figure, we use a large dataset of mobile phone records provided by one of the largest mobile network providers 
in Afghanistan, covering roughly 7 million individuals and containing over 3 billion phone transactions over 
305 days (for details about the data used in this paper, see Table 1). We use our algorithm to construct a private 
O-D matrix from these data, and compare this private matrix to a non-private O-D matrix constructed from the 
raw data. In the figure, we observe that the errors introduced by privatization are quite small. For ϵ = 0.1 the 
median absolute error (i.e., the median difference between any given private matrix count and the corresponding 
non-private matrix count) is 6 trips at the admin-2, and the median relative error (the absolute error divided 
by the non-private matrix count) is 2.54% at the admin-2 level. For ϵ = 1—a relatively weaker level of privacy 
protection—the median absolute error is 0 trips and the median relative error is under 0.01% at the admin-2. As 
a general matter, the relative accuracy of our algorithm tends to increase as the difference between a non-private 
count and the suppression threshold increases; that is, lower mobility areas tend to have lower relative accuracy 
than higher mobility areas after applying our algorithm. This observation is consistent with prior research that 

Rwanda 2008 Afghanistan 2015 Afghanistan 2020

Dates Feb. 3–Feb. 9, 2008 Sep. 28–Oct. 4, 2015 Jan. 1–Oct. 31, 2020

Number of days 7 7 305

Number of transactions 13 million 64 million 3.2 billion

Number of subscribers 541 thousand 2.79 million 7.12 million

Admin-2 level 30 districts 34 provinces 34 provinces

Admin-3 level 416 sectors 421 districts 421 districts

5th percentile of trips per subscriber (admin-2 level) 0.00 0.00 0.00

5th percentile of trips per subscriber (admin-3 level) 0.00 0.00 0.00

Mean trips per subscriber (admin-2 level) 1.53 0.26 14

Mean trips per subscriber (admin-3 level) 2.88 1.73 52.00

95th percentile of trips per subscriber (admin-2 level) 10 2 52

95th percentile of trips per subscriber (admin-3 level) 20 9 251

Table 1.  Summary of the call detail record datasets used in our empirical simulations.

 

Figure 3.  Left: Absolute errors in matrix entries for differentially private O-D matrices, relative to non-
private matrices (derived over all days in our Afghanistan 2020 dataset and all origin-destination pairs at the 
admin-2 or province level). Absolute error is calculated as the difference between an O-D matrix count in the 
private matrix and the corresponding O-D matrix count in the non-private matrix. The distributions shown 
are taken over all 305 days in our 2020 CDR dataset (see Table 1) and all origin-destination province pairs. 
Right: Relative errors in matrix entries for differentially private O-D matrices, relative to non-private matrices. 
Relative error is calculated as twice the absolute error in a private O-D matrix count, divided by sum of the 
private and non-private O-D matrix counts for the same cell. Again, the distributions shown are taken over all 
305 days in our 2020 CDR dataset (see Table 1) and all origin-destination province pairs.
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the accuracy of differentially private analyses (in general) tend to increase as the size of the underlying data 
increases42.

How does privatizing mobility data affect humanitarian interventions based on those data?
The preceding results suggest that our algorithm introduces only modest errors when creating a private version 
of the O-D matrix. However, it is not clear if and how those modest decreases will impact downstream policy 
decisions based on private O-D matrices. Our next set of results therefore illustrate how policies in two key 
humanitarian settings are affected by the privatization of mobility data.

Specifically, we evaluate private O-D matrices in the context of a hypothetical pandemic scenario in 
Afghanistan, and in natural disaster scenarios in Afghanistan and Rwanda. These case studies leverage location 
data recorded in call detail records (CDR) collected by mobile phone operators (see Table 1)—the same sort 
of data that has raised privacy concerns in a wide range of contexts discussed in the Introduction20–23. The 
raw CDR indicate, for each phone call made on the operator’s network, the date, time, and duration of the 
call, identifiers for each subscriber involved in each call, and the location of the cell tower through which each 
call was placed. This last piece of information is what makes it possible to infer the approximate location of 
each originating subscriber at the time of the phone call. From these raw location trace data, we calculate daily 
O-D matrices recording daily movements between each pair of administrative subdivisions in each country 
(see Fig. 1C for an example), and then show how those matrices – and the private version of them – influence 
downstream humanitarian interventions.

Non-pharmaceutical interventions in pandemic response
Our first case study compares the effectiveness of private and non-private mobility data in guiding public health 
interventions intended to stop the spread of contagious disease. This is an increasingly common application of 
mobility data, and an approach that was used to inform non-pharmaceutical interventions to the COVID-19 
pandemic11–14. Our analysis simulates a pandemic scenario, where the spread of the disease is modeled using 
a classic SIR (Susceptible, Infected, Recovered) model43, adapted to account for the fact that many modern 
diseases are influenced by human mobility44. We consider policy decisions that may be enacted when disease 
prevalence estimates from the mobility-informed SIR model exceed a certain threshold (such as travel 
restrictions, medication distribution, and so on), and test the extent to which the timing of such decisions differs 
when private and non-private O-D matrices are used for mobility modeling.

To conduct these simulations, we use the same large dataset of mobile phone records from Afghanistan in 
2020 used to calculate errors in matrix counts from privatization (Fig. 2). Daily O-D matrices at the province 
(admin-2) and district (admin-3) level derived from the CDR for 305 days are used as inputs to the mobility-
informed SIR model, assuming that mobility data is available on a daily basis (but epidemiological data is 
available only at the start of the pandemic). We simulate three possible pandemics—pandemics initiating in 
Hirat, in Kabul, and in a randomly selected origin region—with 1% of individuals in the original region infected 
on the first day. In these simulations, we measure intervention accuracy by studying the daily (binary) decisions 
policymakers would make about whether or not to institute local anti-contagion policies, comparing the 
decisions that would be made with private data to those that would be made with non-private data. We measure 
the accuracy, precision, and recall of these binary decisions, with the assumption that policies are put into place 
at a threshold of 20% estimated disease prevalence.

As shown in Table 2, we find that intervention accuracy remains fairly high when using differentially 
private O-D matrices at the admin-2 (province) level (e.g. accuracy of policy decisions = 96-99% for ϵ = 0.5
). However, when simulations are conducted with a finer spatial granularity—modeling disease spread at the 
district, or admin-3, level—intervention accuracy drops, and there is higher accuracy variance across pandemic 
simulations (e.g. accuracy of policy decisions = 72-91% for ϵ = 0.5). This difference highlights the importance 
of implementation choices like spatial granularity in deployments of the private O-D matrix algorithm: in 
general, the accuracy loss incurred by privatization will be larger at high spatial resolutions, when individual 
entries in the O-D matrix counts are smaller.

The value of the privacy loss parameter ϵ also has important implications for intervention accuracy. Higher 
values of ϵ—which correspond to less noise being added to mobility matrices in the private O-D matrix 
algorithm—lead to higher intervention accuracy (e.g. accuracy of policy decisions = 97-99% at the admin-2 
level and 77-91% at the admin-3 level for ϵ = 1.0). Lower values of ϵ—meaning more noise added to mobility 
matrices—lead to lower intervention accuracy (e.g. accuracy of policy decisions = 90-98% at the admin-2 level 
and 64-83% at the admin-3 level for ϵ = 0.1). The choice of ϵ ultimately comes down to a policy decision on the 
relative importance of privacy and accuracy; we discuss methods for tuning the privacy-accuracy tradeoff at the 
end of the results section.

We also note that the precision and recall of policy decisions based on private O-D matrices can depend 
on the source of the pandemic, even for the same value of ϵ. For instance, compared to Kabul, which has the 
highest precision and recall (Table 2), performance drops when the pandemic originates in Hirat (or in a random 
location). This occurs because the volume of trips is much lower in less populous regions: whereas 18,602 trips 
originate from Kabul on an average day, only 3,733 originate in Hirat. Thus, when we apply our algorithm, the 
noise and suppression introduced into small counts has a larger effect on the mobility-adapted SIR dynamics 
than for larger counts. This sensitivity highlights the importance of empirically evaluating the privacy-accuracy 
tradeoff in context, before deciding if and how to implement in policy.

Geographic targeting of humanitarian aid after natural disasters and violent events
Our second case study illustrates how the privatization of mobility data can impact the allocation of humanitarian 
aid (such as medical resources, temporary shelter, and food) following natural disasters and other shocks. This 
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application is motivated by the fact that mobility data derived from mobile phones and social media have been 
used to inform post-disaster humanitarian interventions, including following the 2010 earthquake in Haiti4, the 
2019 wildfires in California45, and most recently during the 2023 earthquake in Turkey46. In our hypothetical aid-
targeting scenario we simulate a short-term shock—such as an earthquake, landslide, flood, or violent event—
and measure the degree of out-migration (as the total out-trips observed in an O-D matrix) in the following 
week. We assume a government or other policy actor seeks to provide humanitarian aid to the migrants in the 
areas with the most out-migration.

For our aid targeting simulations, we use two CDR datasets related to real-world natural disasters and violent 
events in simulating the implications of our private O-D matrix algorithm for targeting humanitarian aid. In 
Afghanistan, we study the battle of Kunduz in 2015, which resulted in the displacement of more than 100,000 
people according to official statistics47. We focus on displacement in the week following the largest single day of 
the battle, using a CDR dataset of around 64 million transactions associated with 2.8 million mobile subscribers 
(Table 1). In Rwanda, we study mobility in the week following the Lake Kivu Earthquake of 2008, using a CDR 
dataset that includes around 13 million transactions associated with half a million mobile subscribers (Table 
1). In these settings we measure intervention accuracy using two metrics: first, we compare estimated total out-
migration from the affected area using private data to non-private data, and second we calculate the accuracy 
of the top 3 regions of out-migration (i.e., the regions receiving the most migrants after a disaster) identified in 
private data in comparison to those identified in non-private data.

In Table 3 we show that in both the Afghanistan and Rwanda contexts, private O-D matrices with trip-level 
protection have relatively low error in determining total out-migration following natural disasters and violent 
events in comparison to non-private data (e.g. percent error = 2.54–8.27% for ϵ = 0.5). All private counts are 
biased downwards relative to non-private counts due to suppression of small values in private O-D matrices 
(Fig. S2, Supplementary Information). As in the simulations of non-pharmaceutical interventions in pandemic 
response, we observe that intervention accuracy using private mobility matrices is higher at the admin-2 level 
(percent error = 2.54–7.38% for ϵ = 0.5) than at the admin-3 level (percent error = 4.98–8.27% for ϵ = 0.5). 
Unintuitively, however, we actually observe higher intervention accuracy for small values of ϵ (which correspond 
to large amounts of noise added to mobility matrices) than for large values of ϵ (which correspond to adding 
small amounts of noise). This arises from the use of a suppression threshold. By Theorem S2 (Supplementary 
Information), a non-private count below the threshold is more likely to become non-suppressed in Step 3 of the 
algorithm when a smaller ϵ is used compared to a larger one, thereby making the total out-migration flow more 
accurate for ϵ = 0.1 compared to ϵ ∈ {0.5, 1}.

Private O-D matrices with trip-level protection also have relatively low error in identifying the areas of largest 
out-migration for targeting humanitarian aid. We focus in our simulations on selecting the top 3 geographies 
with the most out-migration for targeting post-disaster resources. We find that selection with private data is 
90-100% accurate for ϵ = 0.5 (Table 3). Unlike in measuring total out-migration, we observe little sensitivity to 
the spatial granularity of simulation or the value of ϵ in identifying the top regions of out-migration. This result 
may be at least partially explained by the fact that identifying the top regions of out-migration from a relatively 
small number of regions with large out-migration flows is a less nuanced task than identifying the exact degree of 
outflow. In general we also do not observe much sensitivity to the number of regions targeted for humanitarian 

Admin-2 level (provinces) Admin-3 level (districts)

Accuracy Precision Recall Accuracy Precision Recall

Panel A: Pandemic initiating in Kabul

 Non-private 100% 100% 100% 100% 100% 100%

 ϵ=0.1 98% (2%) 94% (10%) 95% (10%) 83% (11%) 61% (27%) 64% (27%)

 ϵ=0.5 99% (0%) 98% (3%) 98% (3%) 91% (8%) 79% (21%) 80% (20%)

 ϵ=1.0 99% (0%) 98% (2%) 98% (2%) 91% (9%) 78% (22%) 80% (22%)

Panel B: Pandemic initiating in Hirat

 Non-private 100% 100% 100% 100% 100% 100%

 ϵ=0.1 90% (8%) 64% (33%) 63% (33%) 64% (12%) 16% (27%) 18% (29%)

 ϵ=0.5 96% (5%) 85% (21%) 85% (21%) 72% (12%) 33% (29%) 35% (30%)

 ϵ=1.0 97% (5%) 89% (20%) 89% (20%) 77% (11%) 44% (29%) 45% (29%)

Panel C: Pandemic initiating randomly

 Non-private 100% 100% 100% 100% 100% 100%

 ϵ=0.1 93% (8%) 74% (31%) 74% (32%) 71% (15%) 33% (36%) 34% (37%)

 ϵ=0.5 97% (5%) 89% (19%) 89% (19%) 79% (13%) 52% (31%) 53% (32%)

 ϵ=1.0 98% (3%) 93% (12%) 93% (12%) 82% (12%) 58% (30%) 59% (30%)

Table 2.  Average errors in pandemic response (measured in accuracy, precision, recall) by degree of privacy 
introduced in the mobility matrix, at the admin-2 (left) and admin-3 level (right). Accuracy, precision, and 
recall are calculated for each province/district across all 305 timesteps in the simulation, and averages are taken 
across all provinces/districts. Standard deviations across provinces/districts are reported in parentheses.
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aid (for example, if 5 or 10 regions are identified instead of 3, as shown in Fig. S3 (Supplementary Information 
S1).

Private O-D matrices with individual-level protection exhibit similar behavior as those with trip-level 
protection (as specified by the parameter T in our algorithm). Table S3 (Supplementary Information) shows 
that as increasingly restrictive values of T are used, our total out-migration measure under-counts total out-
migration. However, the value of T does not have much impact on the accuracy of identifying the top-k 
districts of out-migration districts. Compared to trip-level privacy—which provides weaker privacy protections 
to individuals—we find that the privacy-accuracy tradeoff between individual- and trip-level privacy to be 
nuanced. In some situations, the accuracy of out-migration using individual-level protection is higher than 
using trip-level privacy (e.g., for the Lake Kivu earthquake at the admin-2 level, matrices with individual-level 
protection experience 4.87–5% error (Table S3, Panel D), compared to 6.23-8.88% error at the trip-level (Table 
3, Panel B)); in other situations, the relationship is reversed (e.g., for the Battle of Kunduz at the admin-2 level, 
matrices with individual-level protection incur 15.39–18.15% error (Table S3, Panel A), compared to 1.98-2.61% 
error at the trip-level (Table 3, Panel A)). We observe a similar phenomenon in identifying the top-k districts: in 
some situations, private O-D matrices with individual-level protection are more accurate at identifying the top-k 
districts of out-migration (e.g., for the Lake Kivu earthquake at the admin-2 level, matrices with individual-level 
protection are 100% accurate (Table S3, Panels D–F), whereas matrices with trip-level protection are 90.47–
95.25% accurate (Table 3, Panel B)); in other circumstances, private matrices with trip-level protection are more 
accurate (e.g., for the Battle of Kunduz at the admin-2 level, matrices with individual-level protection are 85.71% 
accurate (Table S3, Panels A-C), whereas matrices with trip-level protection are 90.47% accurate (Table 3, Panel 
A)).

How should policymakers navigate the tradeoff between privacy and accuracy?
Our main results show that policymakers can switch from non-private to private mobility matrices—which 
guarantee a certain degree of protection of individual mobility traces—with relative little accuracy loss. For 
example, in simulating the accuracy of nonpharmaceutical interventions in mobility-informed pandemic 
response, we found an accuracy of 72–99% for policies enacted using private mobility matrices. Accuracy is 
similar for policy decisions related to mobility-informed targeting of humanitarian resources following natural 
disasters, at 77–99%. However, our results also underscore that there is a key tradeoff between privacy and 
accuracy (shown in Fig. 2 and made explicit in Theorems S1–S5, Supplementary Information). In the case of the 
private O-D matrix algorithm, this tradeoff is quantified by the privacy loss parameter ϵ.

What is the benefit of increasing privacy by reducing ϵ? So far, we have shown that decreasing ϵ generally 
comes with a decrease in accuracy for downstream policy interventions. All else being equal, we would like 
to maintain the highest standard of accuracy in policy interventions informed by mobility data—but doing 
so comes at a loss to the privacy of individual mobility traces. In this section, we use properties of differential 
privacy (Lemmas S2 and S3, Supplementary Information) to derive worst-case privacy guarantees for the policy 
intervention simulations from the previous section. We then compare these worst-case privacy guarantees to 
the expected individual-level privacy loss, and discuss practical methods for policymakers to determine the 
appropriate tradeoff between privacy and accuracy.

Worst case vs. expected privacy loss
The privacy guarantees for our differentially private O-D matrix algorithm (Lemmas S2 and S3, Supplementary 
Information) suggest that worst-case privacy loss for individuals can be quite high. Privacy loss is a unitless 
quantity that measures the maximum additional information an adversary learns about any individual when 
their data is used in our private O-D matrices - such information includes whether an individual traveled at least 
once, where they traveled to and from, and any idiosyncratic travel patterns and routines they have may have, 
among others. As the number of days used in the simulation increases, this releases additional O-D matrices that 
adversaries can use to infer personal information about individuals. The mathematics of ϵ-differential privacy 
formalize this intuition, and indicates that the likelihood an individual’s data is compromised increases linearly 
in the amount of information they contribute. For example, in the pandemic simulation in Afghanistan, 305 
private mobility matrices are released. When trip-level privacy is used, the privacy loss for an individual over the 

Admin-2 level Admin-3 level

Non-Private ϵ = 0.1 ϵ = 0.5 ϵ = 1 Non-Private ϵ = 0.1 ϵ = 0.5 ϵ = 1
Panel A: Battle of Kunduz in Afghanistan

 Total out-migration 49,994 49,001 48,725 48,722 87,007 83,327 82,671 82,609

 Percent error in total out-migration 0.00% 1.98% 2.54% 2.61% 0.00% 4.23% 4.98% 5.05%

 Accuracy of top-k regions (k = 3) 0.00% 90.47% 90.47% 90.47% 0.00% 85.71% 90.47% 90.47%

Panel B: Lake Kivu Earthquake in Rwanda

 Total out-migration 32,627 30,595 29,930 29,801 51,102 48,085 47,331 47,320

 Percent error in total out-migration 0.00% 6.23% 8.27% 8.66% 0.00% 5.90% 7.38% 8.66%

 Accuracy of top-k regions (k = 3) 100.00% 90.47% 95.24% 90.47% 100.00% 100.00% 100.00% 100.00%

Table 3.  Average errors in total migration counts and top-k regions of out-migration, by degree of privacy 
introduced in the mobility matrix, at the admin-2 level (left) and admin-3 level (right).
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entire simulation is ϵ(n1 + ... + n305), where nj  is the number of inter-region trips an individual took on day j 
that appear in the CDR. Likewise, when trip-level privacy is used in our case studies of the Lake Kivu Earthquake 
in Rwanda and the Battle of Kunduz in Afghanistan, where 7 days of O-D matrices are released, the privacy loss 
over the entire simulation is ϵ(n1 + ... + n7), where nj  is the number of inter-region trips an individual took 
on day j that appear in the CDR. In both cases, the worst-case privacy loss is defined as the maximum privacy 
loss an individual incurs in a simulation. However, our empirical results indicate that expected privacy loss is 
substantially lower.

In both case studies, the expected privacy loss across the population is much lower than the worst-
case characterization. In our pandemic case study in Afghanistan, the average individual makes a total of 
n1 + ... + n305 = 14 province-to-province trips and n1 + ... + n305 = 52 district-to-district trips during the 
305 days of the simulation; these trips are aggregated in mobility matrices (Table 1), so the average individual-
level privacy loss is 14ϵ at the admin-2 level and 52ϵ at the admin-3 level for the entirety of the simulation. For 
a value of ϵ = 0.5, this corresponds to a total privacy loss of 7 for provinces and 26 for districts; the privacy loss 
accordingly shrinks with smaller values of ϵ. This means that, using the 305 released private O-D matrices, the 
information an adversary gains about an individual (such as whether they traveled, and if so, to and from where) 
is, on average, at most 7 times higher at the province level (and at most 26 times higher at the district level) than 
had their data not been used at all. (For comparison, in the non-private approach, the information an adversary 
gains about the average individual is, in principle, unbounded; but using differential privacy, privacy loss can 
be limited by the choice of ϵ and the number of O-D matrices released.) In our case study of the Lake Kivu 
earthquake in Rwanda, only seven days of mobility matrices are released, and the average individual makes 1.53 
trips at an admin-2 level and 2.88 trips at an admin-3 level (Table 1). For a value of ϵ = 0.5, this corresponds to a 
total privacy loss of 0.77 for provinces and 1.44 for districts. Privacy loss in our case study of the Battle of Kunduz 
in Afghanistan is expected to be even smaller: over the seven days of data released, the average individual makes 
0.26 trips at an admin-2 level and 1.73 trips at an admin-3 level (Table 1). For a value of ϵ = 0.5, this corresponds 
to a total privacy loss of 0.13 for provinces and 0.87 for districts.

While there are few benchmarks against which we can compare the expected privacy loss of our algorithm, the 
numbers we observe are within the range of privacy losses observed in existing differential privacy deployments. 
For instance, Google’s COVID-19 Community Mobility Reports incurs a total privacy loss of 2.64 per day33. 
While Google users are likely more mobile than the individuals in our dataset, this provides a rough point 
of comparison. If Google’s COVID-19 Community Mobility Reports were released for seven days, as in our 
disaster response scenarios, the total privacy loss would accumulate to 18.48. If Google’s COVID-19 Community 
Mobility Reports were released for 305 days, as in our pandemic response scenario, the total privacy loss would 
accumulate to 805.2.

To further stress-test our method, we implement a state-of-the-art membership inference attack from Pyrgelis 
et al. (2017)48, which uses machine learning tools to attempt to predict whether an individual’s information 
is included in an aggregate dataset (see Supplementary Information S1). We find that the raw (non-private) 
mobility matrices we test do indeed leak information about membership of individuals in the construction of the 
matrix: machine learning classification models achieve an average AUC of 0.62-0.63 in a held-out test set (Table 
S1). The risk of membership inference implied by these AUC values is low in absolute terms and in comparison 
to prior work48, but nonetheless indicates that attackers could gain access to individual information through the 
non-private mobility matrix. When our method is used to privatize the mobility matrix prior to the membership 
inference attack, the attacker’s accuracy is lowered in some, but not all, cases (AUC decrease of 0-3% in Table S1). 
These modest decreases in AUC can have meaningful implications at scale: for instance, roughly 100,000 fewer 
individuals could be identified as being more likely to exist in the O-D matrix than a random individual (of the 
7.12 million individuals in the entire dataset). The protections provided by our method are less than those of the 
empirical tests of differential privacy in Pyrgelis et al. (2017), in part because the baseline leakage of individual 
information (absent privatization) is much lower. Our setting is also challenging because we simulate providing 
the adversary with considerably more data per individual than in prior work48.

Methods to tune the privacy-accuracy tradeoff
How should policymakers choose a value of ϵ to navigate the privacy-accuracy tradeoff? Across applications of 
differential privacy, there is no consensus on the “right” way to set ϵ42,49–51. In humanitarian applications, where 
accurate statistics can directly improve individual and social welfare, one realistic approach is to maximize the 
amount of privacy an algorithm can provide subject to accuracy constraints that are determined by programmatic 
requirements52,53.

In situations where policymakers have a maximum tolerance for accuracy loss, one might imagine using 
estimates of intervention accuracy loss from the datasets being released to set ϵ. For instance, consider an aid 
organization seeking to target relief to the top-3 Admin-3 locations with the highest out-migration during the 
Battle of Kunduz. Suppose the aid organization wants to provide the strongest privacy protections possible, 
provided the algorithm has at least 90% intervention accuracy. The aid organization generates Table 3 and 
chooses the smallest value of ϵ that yields 90% accuracy, namely ϵ = 0.5. Then, the aid organization uses our 
algorithm with ϵ = 0.5 to generate private O-D matrices to determine the 3 locations to receive relief. (Note that 
this approach, while intuitively appealing, has a subtle caveat: technically, the parameters of an algorithm, such 
as the value of ϵ, can leak privacy when chosen based on the data51,54–56. One approach to address this would be 
to compute private mobility matrices on pre-program data and set ϵ based on simulations on those data, before 
applying the chosen ϵ to the deployment data).

Alternatively, policymakers could set ϵ using heuristics based on our algorithm57. For example, one simple 
heuristic approach is to determine ϵ based on a policymaker’s tolerance for error of an O-D matrix count based 
on the noise introduced by Step 2 of Algorithm  1. The standard deviation of the Laplace distribution with 
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λ = ϵ−1T  is given by T
√

2/ϵ, so we can bound on the set of feasible ϵ for a given O-D matrix count accuracy α
, as α ≥

√
2T/ϵ ⇐⇒ ϵ ≥

√
2T/α. For example, if policymakers require that the typical error in each entry of 

the O-D matrix is at most 10 (trip-level privacy), then they can set ϵ ≥
√

2/10 ≈ 0.14. However, if policymakers 
instead can tolerate a typical error of at most 50, then any ϵ ≥

√
2/50 ≈ 0.028 will suffice. While simple, this 

heuristic has two drawbacks: First, it ignores the impact of the post-processing steps of our algorithm, which can 
affect the overall accuracy of our algorithm58–60 and downstream applications61–63; And second, this heuristic 
only utilizes the first two moments of the Laplace distribution to find a rough balance between the privacy level 
ϵ and the typical error.

A final option is to use the privacy-accuracy tradeoff theorems provided in the Supplementary Information 
to configure the algorithm to behave optimally. Theorems S6 and S7 (Supplementary Information) provide 
explicit formulas for policymakers to set ϵ based on context-specific needs. For example, suppose policymakers 
require 95% confidence that the error in an entry of the private O-D matrix be at most 10. Using Theorem 6, the 
policymakers can utilize any ϵ ≥ −(10.5)−1 ln(0.05) ≈ 0.285. Compared to the value of 0.14 from the simple 
heuristic above, Theorem 6 enables policymakers to achieve a similar goal of bounding errors in each cell by 10 
while utilizing a larger ϵ, thereby enabling the construction of more accurate private matrices. Theorem 7 can be 
similarly utilized to readily translate a policymaker’s tolerance for error in terms of the parameter ϵ.

In addition to ϵ, the choice of the suppression threshold τ  can also affect the privacy-accuracy tradeoff. As 
is the case with ϵ, there is no single way to set the suppression parameter. Historically, different organizations 
have used varying suppression thresholds based on their perception of privacy risk. For example, the US Centers 
for Disease and Control and Prevention use a suppression threshold of 15 for their cancer statistics64, whereas 
California’s Department of Education uses a threshold of 10 for their public education statistics65. In situations 
where an organization already has a suppression standard s, it can be used to set τ  based on the noise introduced 
by our algorithm. (Since the threshold only applies to Step 3 of the algorithm, it is sufficient to consider the 
impact of the noise from Step 2 of the algorithm). We consider two natural heuristics. The first heuristic leaves 
the suppression unchanged (τ = s), as the expected noise introduced by the Laplace distribution is 0. While 
this heuristic allows τ  to account for the average noise introduced, it does not capture the variability of the noise 
introduced by the Laplace distribution. Thus, a second heuristic sets τ = s ±

√
2/ϵ, where the + or − is chosen 

based on domain-specific concerns. For example, if the policymaker’s intervention accuracy requires few cells 
to be suppressed, they can set τ = s −

√
2/ϵ and provide additional privacy protections to individuals via data 

minimization. Alternatively, if the policymaker is concerned that small sub-populations could now appear in 
the private O-D matrix due to the introduction of noise, they could set τ = s +

√
2/ϵ to reduce the likelihood 

of such an event.

Discussion
In this paper, we presented a differentially private algorithm for releasing O-D matrices to learn about 
the mobility of a population without learning “too much” about any individual (or any individual trip). We 
analytically derived closed-form expressions for the privacy-accuracy tradeoff and showed that our algorithm 
can be configured to produce accurate private mobility matrices for a wide-range of parameter settings.

We then tested the performance of our differentially private O-D matrix algorithm using mobility data from 
two humanitarian settings. In these settings, we compare policy decisions made using the original mobility data 
to decisions made from a privatized version of our data. This allows us to empirically characterize the privacy-
accuracy tradeoff, and calibrate privacy in a way that allows the policymaker to still make effective decisions. 
Our closing discussion provides more general and practical guidance for calibrating privacy (i.e., setting ϵ) based 
on the policymaker’s tolerance for uncertainty.

As digital devices proliferate throughout the developing world, the data generated by those devices are 
increasingly being used to advance the Sustainable Development Goals. In these and other “social good” 
applications, it is imperative to consider and respect the privacy of the individuals behind the data. Our 
algorithm, analysis, and discussion highlights one way to provide strong privacy guarantees while still allowing 
for policymakers to make informed decisions. We hope future work can improve and expand upon these 
methods, to provide a more robust set of options for using private data in effective humanitarian response.

Methods
Differentially private O-D matrices
The main text provides an intuitive description of the differentially private O-D matrix algorithm. Here we 
formalize the algorithm, and describe a number of accuracy and privacy guarantees. We defer the formal 
presentation of these statements, as well as their proofs, to the Supplementary Information S1.

Our Private O-D Matrix algorithm (Algorithm 1) requires four inputs: the dataset d which is used to construct 
the private O-D matrix, a value of ϵ to control the privacy-accuracy tradeoff in the private matrix, a value T which 
has two interpretations based on whether trip-level differential privacy or individual-level differential privacy is 
required, and a threshold parameter τ ∈ Z≥0 that ensures the noisy matrix entries are non-negative and enables 
suppression of small counts when desired. We describe these last two parameters in more detail below.

When individual-level differential privacy is required, T represents the maximum number of trips that any 
one individual can contribute to the mobility matrix. In order to ensure that the dataset d does not contain more 
than T trips for any individual, a preprocessing transformation can be applied to censor additional trips. One 
such algorithm that does so runs as follows. For each individual, the algorithm determines the number of trips 
θ they took. If θ > T , the algorithm selects T trips uniformly at random to keep and drops the remaining θ − T  
trips from the dataset. If θ ≤ T , the algorithm leaves all θ trips in d. Alternatively, when trip-level differential 
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privacy is required, setting T = 1 achieves this requirement, as the presence or absence of any trip changes any 
count in the O-D matrix by 1.

For any choice of τ ∈ Z≥0, the entries of the private matrix are guaranteed to be non-negative. The magnitude 
of τ  determines the level of suppression present in the private output. When τ = 0, there is no suppression of 
the values in the matrix. As we increase τ , we increase the set of small counts to be suppressed. Prior to provable 
privacy techniques, it was common practice in statistical disclosure control to suppress information derived 
from a small number of individuals66. While suppression alone offers no provable privacy guarantee, it can 
inform end-users that the statistic may be unreliable due to the limitations in the data collection methods, such 
as having low phone coverage in a particular region. Additionally, for certain types of humanitarian responses – 
such as those involving disease spread – regions with small mobility counts are likely to provide fewer vectors for 
disease spread (and hence could be less relevant for mitigation strategies) compared to those regions with higher 
mobility counts. Consequently, suppression may be a useful signalling apparatus to policymakers.

Algorithm 1.  Private O-D Matrix

This algorithm is accompanied with a several provable guarantees. For starters, our algorithm satisfies ϵ
-differential privacy (Theorem S1, Supplementary Information). In addition to the privacy guarantee, our 
algorithm has strong accuracy guarantees, which we call the privacy-accuracy tradeoff theorems. With high 
probability: (1) the algorithm preserves cells that would have been suppressed absent differential privacy; (2) the 
algorithm does not suppress cells that would not have been suppressed absent differential privacy; (3) for non-
suppressed cells, the algorithm’s error decays exponentially as ϵ increases; and (4) for non-suppressed cells, when 
examining the difference in cell counts across different time periods, the algorithm’s error decreases according to 
Θ(ϵ exp(−ϵ)) as ϵ increases. These statements are made rigorous in Theorems S2, S3, S4, and S5 respectively in 
the Supplementary Information. Theorems 6 and 7 utilize Theorems 4 and 5 to provide policymakers with exact 
formulas to calculate ϵ based on their context-specific needs.

Empirical simulations
Data
Our simulations that use the private O-D matrix algorithm for real-world policy decisions rely on location traces 
derived from mobile phone metadata (call detail records, or CDR). We use three call detail record datasets: one 
from Afghanistan in 2015, one from Afghanistan in 2020, and one from Rwanda in 2008. Table 1 summarizes 
these data. Our dataset from Afghanistan in 2020 is 305 days long and contains transactions from around 7 
million subscribers; the remaining two datasets are only 7 days long (as the focus on specific natural disasters or 
violent events) and contain data for half a million (Rwanda) and around three million (Afghanistan) subscribers, 
respectively. In each dataset the CDR include the date, time, and duration of each call placed on the mobile 
phone networks, along with pseudonymized IDs for the originating subscriber and the recipient. They also 
record the cell tower through which each call was placed, providing a measure of the approximate location of 
each originating subscriber. We derive daily O-D matrices at the admin-2 and admin-3 level for each dataset by 
geolocating cell towers to administrative subdivisions, and then counting the number of trips observed in the 
data on a daily basis (where a trip occurs if a subscriber places a call or text in one administrative subdivision 
and a subsequent call or text in a different subdivision).
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Algorithm parameters
Across all simulations, we use a suppression threshold of 15, which is used in practice by the US Centers for 
Disease and Control and Prevention in their cancer statistics64, as well as the US Department of Health and 
Human Services National Institute on Minority Health and Health Disparities67. For information on the share of 
O-D matrix counts that are suppressed in each datasets, see Table S2 in Supplemental Information. We set T = 1 
to provide trip-level protections with ϵ ∈ {0.1, 0.5, 1}. We also vary the value of T in the geographic targeting 
simulations to quantify the impact that individual-level privacy has on the utility of downstream policy decisions 
(described below).

Non-pharmaceutical interventions in pandemic response
For this case study, we rely on the mobility-based SIR (Susceptible, Infected, and Recovered) model introduced 
by Goel and Sharma44, which adapts the classic SIR model of Kermck and McKendrick43 by including features 
to model human mobility. In the mobility-based SIR model, at any time t, individuals in region i ∈ [k] are 
categorized into one of three groups: they are either susceptible to the disease, infected with the disease, or 
recovered from the disease. The number of individuals in these groups is given by Si(t), Ii(t), and Ri(t) 
respectively. We denote the population of region i at time t as Ni(t) = Si(t) + Ii(t) + Ri(t). As time goes on, 
the number of individuals in these compartments can change. The epidemic dynamics are a function of both 
intra- and inter-region disease spread, described by the following differential equations involving a k × k O-D 
matrix M, that are governed by three parameters: β, α, and µ.

	

dSi(t)
dt

= −βSi(t)Ii(t)
Ni(t)

−
αβSi(t)

∑
j∈[k]

Mi,j Ij (t)
Nj (t)

Ni(t) +
∑

j∈[k] Mi,j

dRi(t)
dt

= µ
Ii(t)
Ni(t)

dIi(t)
dt

= dSi(t)
dt

− dRi(t)
dt

The parameter β describes the frequency of mixing of intra-region populations in combination with the virality 
of the disease: how likely is an infected person to meet a non-infected person from the same region and transfer 
the pathogen? The α term in the differential equations describes the frequency of mixing with inter-region 
visitors in relation to the frequency of mixing with intra-region residents: how likely is an infected person to 
meet a visitor and transfer the pathogen? The last parameter µ describes the rate of recovery from disease: what 
proportion of the infected population recovers each day?

In principle, β, α, and µ could all vary from region to region on the basis of a number of factors (for example, 
community cohesion, access to healthcare in the area, and mobility restrictions), but for simplicity we keep them 
constant across regions. To configure this model, we set α = 1, meaning that there is no difference between 
the degree of mixing with residents and the degree of mixing with visitors. We additionally set β and µ based 
on estimated dynamics from the COVID-19 pandemic. SIR estimates of β range between 0.06 and 0.39 in SIR 
models fit in 2020 in a set of nations; estimates of µ range between 0.04 and 0.19 in the same set of studies68–70. 
For this case study, we set β = 0.10 and µ = 0.04.

The mobility-based SIR model relies additionally on mobility matrices M and a time-invariant regional 
population values N1, ..., Nk . To compare the intervention differences between the private and non-private 
regimes, we constructed non-private mobility matrices using the CDR from Afghanistan along with private 
versions with ϵ ∈ {0.1, 0.5, 1} using our private O-D matrix algorithm at the trip level. We estimate the regional 
population values N1, ..., Nk  by inferring a home location for each subscriber in the CDR dataset using the most 
common cell tower through which they placed calls between the hours of 8pm and 6am. These regional counts 
N1, ..., Nk  could leak information about individuals, so in the differentially private version of the pandemic 
simulation we privatize the regional population counts N1, ..., Nk  with the same value of ϵ as the OD matrices.

As described in the results section, we use the mobility-based SIR model with daily origin-destination 
matrices to calculate epidemic curves (Fig. S1, Supplementary Information), and compare the accuracy of policy 
decisions taken when SIR models are deployed with private and non-private OD matrices.

Geographic targeting of humanitarian aid after natural disasters and violent events
Our second simulated policy context is the targeting of humanitarian aid after natural disasters, violent events, 
and other shocks. As described in the results section, we calculate daily O-D matrices for time periods associated 
with two such shocks in our datasets: the Battle of Kunduz in Afghanistan in 2015, and the Lake Kivu Earthquake 
in Rwanda in 2008. We calculate daily O-D matrices for seven days following each event and calculate the two 
statistics using both private and non-private O-D matrices: (1) the total amount of out migration from the 
affected area, and (2) the top-k districts with the most out migration. We assess the accuracy of both statistics 
using private data in comparison to non-private data. We also assess the sensitivity of these results to the choice 
of k (Fig. S3, Supplementary Information). To show the impact the utility of downstream policy decisions using 
individual-level privacy, we also perform geographic targeting simulations by selecting different values of T 
(Table S3, Supplementary Information).
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Data and code availability
The mobile phone datasets from Afghanistan and Rwanda contain detailed information on billions of mobile 
phone transactions. These data contain proprietary and confidential information belonging to a private telecom-
munications operator and cannot be publicly released. Upon reasonable request, we can provide information 
to accredited academic researchers about how to request the proprietary data from the telecommunications 
operator. Contact the corresponding author for any such requests.
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