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Mass Transfer Controlled Reactions in Packed Beds
at Low Reynolds Numbers

Peter S. Fedkiw
Materials and Molecular Research Division, Lawrence Berkeley Laboratory
and Department of Chemical Engineering, University of California,

Berkeley, California 94720

December, 1978

Abstract

This dissertation examines the a priori prediction and correlation
of mass-transfer rates in transport limited, packed-bed reactors at
low Reynolds numbers,

The solutions to the governing equations for a flow~through porous
electrode reactor indicate that these devices must operate at a low
space velocity to suppress a large ohmic potential drop. Packed-bed
data for the mass-transfer rate at such low Reynblds numbers have been
examined and found to be sparse, especially in liquid systems.

Models which have appeared in the literature to simulate the solid-
void structure in a bed are reviewed. Only within thé framewofk of
these geometric models can the fundamental transpoft equations be
solved. In this work the bed was envisioned as an array of sinuéoidal
periodically constricted tubes (PCT). WNo other work exploiting this
model for mass-transfer calculations has appeared in the literature.
The velocity field in such a tube should be a good approximation to
the converging-diverging character of the velocity field in an
actual bed. The creeping flow velocity profiles were found by a

numerical solution for this geometry. These results were used in the



convective~diffusion equation to find mass transfer rates at high
Péclet number for both deep (Graetz-like) and shallow (Lévéque-like)
beds. The convective-diffusion equation was also solved for low
Péclet numbers in a deep bed. All calculations assumed a transport
limited condition, wherein the reactant concentration at the tube
surface is zero. These calculations were expressed in terms of a
mass—~transfer coefficient.

Mass~transfer data were experimentally taken in a transport
controlled, flow-through porous electrode to test the theoretical
calculations and to provide data presently unavailable for deeper beds.

It was found that the éinusoidal PCT model could not fit the data
of this work or that available in the literature. However, all data
could be adequately described by a model which incorporates a channeling
effect. The bed was successfully modeled as an array of dual sized

straight tubes.
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Chapter 1

Introductory Remarks

This thesis is concerned with the low Reynolds number (< 1)
behavior of the mass~transfer rate in fixed, packed-bed reactors.
Attention is focused on reactions which are controlled by the rate
6f mass transfer of a reactant from the fluld phase to the packing
‘material, Figure 1.1 is a schematic illustration of the physics
in question. One single packing particle is shown in an isolated
view from all of its surréunding neighbors. A reaction takes place
at the particle surface, or if this is a porous catalyst, within the
particle. The transfer of the reactant from the fluid to the particle
is the controlling factor in the rate of reaction. It would be
advantageous to predict Q.Rri;ri the rate of reaction at the particle.
This would involve solving the governing differential equations for
fluid flow and mass transfer subject to appropriate boundary conditions.
However, this fundamental approach cannot be applied due to the random
nature of the particle arrangement. One must resort to models of the
geometry of the packing structure in order to solve the governing
equations. A major portion of this thesis is concerned with solving
the transport equations within the framework of the periodically
constricted tube model. This model has recently been proposed in the
literature, and no work prior to this effort has exploited this model
for packed bed mass-transfer calculations. Of course, no model can

be proved successful unless it is compared with experimenfal data.
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Figure 1.1 Isolated packing particle from a two-phase, packed-
bed reactor.



As a part of this research effort, an experimental program to measure
mass-transfer rates in a transport-controlled porous electrode reactor
was carried out. The comparison between data and theory allows one

to refine the model when tﬁe agreement between the two is not acceptable.
This was the situation with the periodically comnstricted tube model.

The data are better fit by a straight tube model which incorporates

a channeling effect.

The remainder of this chapter is divided into ftwo sections. The
first section introduces and outlines the remaining chaﬁters. The
second presents a literature survey of the geometrical models for  the
void-solid arrangements in aApacked bed and discusses the periodically

constricted tube model which is used in this work.

Chapter Outlines

The chemical engineering literature can be gleaned to find
reams of work on mass-transfer rates in two-phase packed bed reactors.
The results are correlated by a mass-transfer coefficient. The
majority of this work, however, is for large Reynolds numbers. There
is very little work done at low Reynolds numbers because most unit
operations involving packed beds proceed at a high space velocity.
Chapter 2 introduces the design equations for a mass-—-transfer controlled
porous electrode in which it is sometimes necessary to operate at a
low space velocity. The equations which describe a porous electrode
operating at a limiting current (mass-transfer controlled rate of
reaction) are solved. These solutions point out the need for more

reliable mass-transfer coefficient data in the low Péclet number region



(i.e., low Reynolds number, high Schmidt number). The need for data
taken in deeper beds than are currently available in the literature
also becomes apparent;

"Chapter 2 is of an introductory néture, but the next four chapters
are of a theoretical nature. At the time this thesis was written,
all four of these chapters have either appeared in published form
(Chapters 3 and 4), or are at the printer's (Chapter 5), or are currently
béing reviewed for publication (Chapter 6). The titles of the chapters
are the same as the published form; These chapters are written in
essentially the same format as when they were submitted to the journal
for publication. Only minor-indexing type changes were made to conform
to this thesis. Consequently, there is some unavoidable overlap and
duplication.

Chapter 3 (AIChE J., 23, 255, 1977) continues the discussion of
- the periodically constricted tube (PCT) model. The calculations for
the velocity profiles in sinusoidal PCT are presented. With these
velocity profiles available, the mass—-transfer equations can be solved.
The Graetz-like eigenvalue problem for the developed mass-—transfer
rate in a sinusoidal PCT is developed and solved in this chapter and
the results applied to the packed bed mass—transfer coefficient.

In the course of examining the literature for mass-transfer
coefficient daté at low Péclet numbers, it soon became apparent that
there was confusion as to the behavior of the coefficient in this
limit. Some workers reported that the coefficient approached a
constant nonzero value, whiie others reported it to decrease continually

with the Péclet number.



Chapter 4 (Chem. Eng. Sci., 33, 1043, 1978) explains this discre-
pancy. The behavior of the mass—tranéfer coefficient in this limit
depends upon its definition. A singular perturbation approach is used
to demonstrate this conclusively., The results are generally valid
in that no model of the geometry is necessary to draw the conclusions.

Chapter 5 (to appear in Chem. Eng. Sci., 1979) uses the sinusoidal

PCT model to add a predictive capability to the analysis of Chapter 4.
This chapter presents calculated values for the low Péclet number
mass—-transfer coefficient for deep beds.

Chapter 6 (submitted to AIChE J., October, 1978) completes the
calculations of asymptotic mass-transfer coefficients in sinusoidal
PCT by presenfing the Léveéque-like values. These mass-transfer coefficients
are valid in the entrance region to the mass transfer section at high
Péclet numbers. These results are applied to the packed bed.

Chapter 7 discusses the experimental program of this thesis.
Transport limited mass—-transfer coefficients were measured in a porous
flow through electrode constructed of 3.18 mm spheres.

Chapter 8 suggests empirical formulae to merge the asymptotic
mass~transfer coefficients of Chapters 3, 5, and 6 to cover the non-
asymptotic regions, and attempt to parameter fit the data of Chapter 7
to the PCT model. Careful examination of the data reveals that the
PCT model cannot fit these data nor the available literature data
satisfactorily. The data suggest that a nonuniform flow distribution
is present in the bed and needs to be taken into account. A channeling
model consisting of an array of dual sized straight tubes is found to

fit the data of this work and literature values.



Models of the Packing-Void Geometry in a Packed Bed

It would be useful to predict the reaction rate in a packed bed
by solving the fundamenﬁal three dimensional transport equations
subject to appropriate bouﬁdary conditibns. The effect of flowrate,
particle size and shape, and depth of packing on the overall reaction
rate in the bed could then be predicted. But even in the simplest
case of no kinetic limitations with constant concentration
along the particle surface, this fundamental appfoach cannot be used
due to the randomness of the particle packing. Alternative routes
have been used to approach an understanding of the mass—fransfer rates
in packed beds. Some of theée alternative approaches will now beé
discussed.

Much experimental work has been done in this field. Most
workers have used test systems in which the concentration of the

- transferring species is constant at the particle surface. This is a
well characterized system.- The resulté are correlated by a mass-
transfer coefficient. Some of this work will be discussed in Chapters
2, 4, and 8., This empirical approach is quite useful in correlatihg
the results of this complex physical situation. However, it does have
its limitations. Each set of experiments is confined within a certain
flowrate and packing depth. The effort of many workers is required to
establish a parameter space large enough to formulate a wide ranging

correlation. The effect of experimental uncertainty must be considered

when examining such data.



The random nature of the particle pack is the roadblock in
applying the fundamental approach. The application of a statistical
theory for fluid—particle systems could be used to overcome this
difficulty. Howéver, as fointed out by Bremner ( 1 ), "The present
status of the subject may be likened to that of nonequilibrium molecular
statistical mechanics prior to the advent of the work of Kirkwood."

To utilize such an approach for a packiﬁg of uniformly sized spheres,
the angular distribution of contact points on a central reference
sphere is required. With this information, a cell representative of
the statistical features of the entire bed can be constructed, and

the transport equations sol%ed within this framework. A theory to
generate such information does not exist yet. Nayak and Tien ( 2 )
have made a contribution to this effort by developing a statistical
theory to predict the local coordination number (total number of contact
points, irregardless of orientation) on a particle in a randomly

packed bed by maximizing the "entropy" of the configuration. Haughey
and Beveridge ( 3 ) have reviewed the statistical structural properties
of a packed bed and in another work ( 4 ) have critically examined the
statistical models used to account for the porosity variation about

a reference sphere. Many references which pertain to the structural
aspect of particle arrangements may be found in these works.

The averaging of the transport equations over a suitable reference
volume is another approach used to solve the gbverning equations.

This is the most profitable route to follow in a utilitarian sense.

The differential equations thus generated can be solved and the solutions



are used routinely in design, scaleup, and control. The averaged
equations involve phenomenological coefficients such as the dispersion
coefficient énd the film mass~transfer coefficient. Newman in an appendix
of Dunning's thesis ( 5 ) ﬁas presented an averaging of the mass-
transfer equations. These will be discussed in more detail in the

next chapter. Slattery ( 6 , 7 ) has discussed the averaging of the
fluid motion equations, while Whitaker ( 8 ) and Gray ( 9 ) have
discussed the averaging of the convective-diffusion equation. Brenner

( 1 ) has developed a methodology for averaging of the momentum equation
taking into account the forces and couples acting on the packing
particles. |

The final approach examined here is the use of geometrical models
for the solid-void arrangement. A major portion of this thesis is
devoted to exploiting one of these models, consequently, the following v
discussion will be in some detail,

Figure 1.2 lists models which are found in the literature. For
each of these (except the last) both the fluid motion and mass-transfer
equations have been solved. |

The bed is envisioned as a spatially periodic replication of the
structures shown on this figure. The geometrical parameters of the
model geometry are chosen such that the macroscopic parameters of the
bed are reproduced (e.g., porosity, average particle size, specific
interfacial area, ...)

With these models .available, the solutions to the fiuid motion

and convective diffusion equation become tractable. These solutions



Figure 1.2 GEOMETRIC MODELS FOR THE SOLID-VOID STRUCTURE IN
: A PACKED BED

FREE SURFACE-CELL MODEL CELL EMBEDDED IN A CONTINUUM

S .

HAPPEL (1958) BRINKMAN (i947)
' NEALE AND NADER (1974)

CAPIL_LARY SEGMENT SIMPLE CUBIC PACKED SPHERES

SORENSEN AND STEWART (1974)
&

PERIODICALLY CONSTRUCTED TUBE

- o

PETERSEN (1958)
PAYATAKES, TIEN, TURIAN (1973)
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can then be used to predict the phenomenological coefficients of the
averaged detailed equations. 1In this thesis we will be interested
in the predictions for the mass-transfer coefficients.

- These models may be divided into three classes: those which
envision the fluid flow in the bed as equivalent to that past a
particle; those which envision the bed flow as equivalent to flow
through a conduit (or a network thereof); and, in a class by itself,
fhe simple cubic packed bed of uniform sized spheres considered by
S¢rensen and Stewart (11,12).

The calculations of Sgdrensen and Stewart are a significant piece
of work. These authors did ﬁot specifically intend their calculations
to be a model for a randomly packed bed of spheres, but they do guide
one's thinking in approaching this problem. They have‘numerically
solved the convective diffusion equation and fluid motion equations
for this geometry and presented results for the mass-transfer coefficient
over a large variation of Péclet number and packing depth. Their
results will be cited many times in the remainder of this thesis.

It has been pointed out (13,14) that the conduit models become
a better approximation to the flow paths as the porosify approaches
one, whereas the flow past a particle is a better approximation as the
porosity approaches zero. In the intermediate range of porosities
found in most beds (0.3 < £ < 0.7) , both models can be applied.

The free surface-cell ﬁodel was developed by Hapfel (32).

A packing particle is imagined to be isolated from all of its neighbors

by a surrounding sphere of fluid. The fluid streams past the outer
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shell with the superficial bed velocity. The shear at the outer
surface is set equal to zero, thus the disturbance caused by the
particle isbconfined to this shell of fluid. Pfeffer and Happel (15)
have solved the éonvective—diffusion equation at low Péclet numbers
using the creeping flow velocity profile given by Happel (32). However,
they used a constant concentration boundary condition at both the
particle surface and the outer free surface, which corresponds to a
fictitious source of material. This criticism has been raised by Appel
(16), Nelson and Galloway (17), and Sdrensen and Stewart (10). Nelson
and Galloway (17) attempted to overcome this problem by postulating
a surface renewal type boundary condition for the free surface
concentration. Criticism of this approach will be postponed until
Chapter 5. Pfeffer (18) has solved the high Péclet number convective-
diffusion equation for this model with the constant-surface-concentration
boundary condition. His results indicate that the mass-transfer
coefficient is proportional to the cube root of the Péclet number.
El-Kaissy and Homsy (19) have used a regular perturbation solution to
consider inertial effects in this model.

The cell embedded in a continuum model is geometrically similar
to Happel's free surface cell. This model was first proposed by
Brinkman (20) to predict the permeability of a bed and again by
Neal and Nader (13) to predict the effective diffusivity in a packed
bed. This model in a sense recognizes that two length scales characterize
a packed bed. One is a macroscopic length scale over which significant

changes take place in measurable quantities, and the other is a smaller
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length scale of the order of the packing diameter. Two general
solutions governing the physical process under consideration are
generated, one for the continuum and the other for the cell. These
two solutions are then matched at the shell boundary. Tardos et al.
(21) have used the creeping flow velocity profile given by Neal and
Nader (22) to solve the high Péclet number mass-transfer problem for
a constant-surface-concentration boundary condition. Their results
indicate a cube-root dependence of the mass-transfer rate on the Péclet
number. No one has attempted to solve the low Péclet number mass-
transfer problem with this model. The same criticism which applies
to Happel's model also applies here.

The capillary models have been routinely applied in the calculation
of permeabilities. Extensive reviews of this subject have been
given by Scheidigger (23), Bear (24), and Dullien (14). Surprisingly,
there has not been much published work which uses this model for mass-
transfer rate calculations in a packed bed. The calculations of
Sgrensen and Stewart (10) are applicable here. Kataoka et al. (25) have
used this conduit model to correlate their mass~transfer data.

In the simplest application, the bed is envisioned as an array
of these tubes parallel to the main flow direction and completely
passing from one face of the bed to the other. Various amplifications
on this theme are possible; e.g., the conduits may be arranged skew to
the main flow direction. Consideration of this effebt gives rise to
the tortuosity coefficient. The bed has also been modeled as a network

of channels in which tubes meet at an intersection and branch out in
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a new direction (26,27). These models have not yet been exploited
for mass—-transfer calculations.

A new cbnduit model has recently been proposed in the literature.
The periodically constricted tube model was suggested by Petersen (28)
to explain abnormaliy high effective diffusivities in catalyst particles.
This model was further expanded on by Payatakes et al. (29,30) as a
means to predict the permeability of a nonconsolidated bed. These
authors have outlined a procedure to determine the model parameters
from the macroscopically measured variables of the bed. As originally
envisioned by Payatakes et al., the pore space in the bed is generated
by the intersection of two parabolic wall channels, thus forming a
converging conduit and a diverging conduit each one half period length
long and which meet at a cusp. The orientation of this flow channel
was parallel to the main flow direction. In a later publication (31),
this model was refined to include an angular distribution of these
segments about-the main flow direction. In this same publication's
discussion section 1t was postulated that some finite number of these
segments feed into a central mixing point where the fluid is totally
mixed and redistributed to the same number of segments downstream.
This is a further refinement of the model leading to lateral mixing via
a network.

The converging-diverging character of the flow through these
periodically constricted tubes is thought to give a good approiimation

to the actual velocity profile in the intersticies of the bed. With .

this approximation to the velocity profile, a more refined
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solution to the convective diffusion equation should be possible.
A major portion of this thesis is concerned with solving the
transport equations in a sinusoidal periodically constricted tube
and applying these results as a model for a packed bed. No other work
has been published exploiting this model for mass-transfer calculations.
The bed is envisioned as an array of sinusoidal periodically
constricted tubes aligned with the main flow direction. The creeping-
flow motion equation is solved within this geometry, and the solution
to the convective—diffusion equation with a constant wall concentration
under various limiting conditions of the dimensionless parameters is

presented.
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Chapter 2

Limiting Current Porous Electrodes and Mass-Transfer Coefficients

Summary

This chapter presents design equations for a porous electrode
operating at the limiting current. The equations involve a dispersion
coefficient and a film mass-transfer coefficient, both of which are
discussed in some detail. Some available data for effective mass-~
transfer coefficients are presented. The distinction between these
two coefficients is pointed out. The solution to the porous electrode
equations indicate that additional mass-transfer data are needed for
low Péclet numbers and deeper beds than are currently available in the

literature.

Porous Electrodes

The utility of porous electrodes as a unit operations-electrochemical
reactor has been discussed by Newman and Tiedemann (33,34). We shall
not delve into this area but rather present the differential equations
which describe a porous electrode.

The fundamental three dimensional transport equations cannot be
solved directly, and hence an alternative approach is used. The
equations are averaged to make them more tractable. In the appendix
of Dunning's dissertation (5), a discussion of average quantities and
a derivation of certain transport equations is discussed. The governing
equations for a porous electrode have been given by Newman and Tiedemann

(33) in a detailed form in their review article. These equations
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can be reduced to the following form for a steady-state porous electrode

with multiple electrode reactions.

Electrode reaction

'z s. ML e (1)
A 3
i
Mass balance
dzc. dc,
E I v—2= ak (c, - c. ) (2)
e TV Ez £1°%1 T Ciw
dz
Ohm's Law
12 = —KV®2 (3)
Faraday's Law
Sii
kfi(ci - Ciw) = % Eg%-fj (4)

Kinetic rate expression

V°12 = g Z fj(n,ciw) . (5)
J
Equation (1) is an abstract representation for the electrode reaction;
. ++ - ++ - . .
e.g., in Cu deposition, Cu + 2e = Cu . Equation (2) is a mass
balance on component i and  includes a dispersive flux where E
is the dispersion coefficient. The concentrations are an average over
the volume of the solution in the pores, and z is the streamwise
coordinate in the bed. The term akfi(ci - ciw) represents the rate
of consumption of reactant i per unit volume of the bed, where k

fi

is the film mass-transfer coefficient for reactant i , and Ciw is
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thé concentration at the packing surface. Ohm's Law follows from the
assumption of a well-supported electrolyte. The effective conductivity
Kk 1is taken as 81’5 Ko (33) where Ko is the free stream value.

The current density i2 in the solution is referred to the entire

cross section of the electrode, and @2 vis the volume-averaged potential
of the solution phase. Faraday's Law relates the wall flux of reactant
i to the appropriately summed rates of its consumption in electro-
chemical reaction j . The kinetic expression fj relates the

h

divergence of i to the appropriate driving forces for the jt

2
reaction which are the local overpotential and the local wall concen-
trations. A Butler-Volmer fype of kinetic equation is an appropriate
form for this function.

This set of équations has been numerically solved subject to
boundary conditions by Trainham and Newman (35) for the special case
of dilute metal ion recovery. The evolution of H2 was incorporated
as a secondary reaction only in the kinetic expression. Alkire and
Gould (36) have also solved these equations for multiple metal ion
recovery. Alkire and Gracon (37) simulated a single electrode reaction
by solving these equations. Furthér reviews may be found in Newman and
‘Tiedemann (34).

It is useful to examine the solution to these equations when the
mass transfer of the reactant from the solution to the packing
controls the rate of reaction. Such a situation becomes physically

realizable if the exchange current density for the reaction is very

high. In the recovery of electropositive heavy metal ions this is
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usually a good approximation. " In this case, the kinetic expréssion is
no longer necessary, and the system of equations one needs to examine
is given by 2, 3, and 4 with Ciw << ey -

Newman and Tiedemann (34) have solved these equations for a single
electrode reaction. The solution depends upon the boundary conditions
imposed. The following solution satisfies the Wehner-Wilhelm (38)
boundary conditions for the concentration and assumes that the packing
matrix is at a uniform potential. The counterelectrode is placed
upstream of the bed. This is the configuration shown at the top of

Figure 2.1. (A discussion of the various configurations and the effect

on electrode performance has been given by Trainham and Newman, 39.)

1 h
e_y/B + EE-eBy/D exp [—UL(-l + J%)}
B B

c
—=0 = ; E (6)
¢g L D 1. B
B + —E-(l - B) exp [;uL 3t T
B D
nFvc !
_ F v [.2, OL/B D '
A@z == akf [B eLe 3 (L. +1+D )OL] 7)
where
ak, , gake 1+ /1% 4D
y = _V_ z , D = ) E, B= 2 (8)

Equation 6 gives the concentration of the reactant leaving the bed,
and equation 7 expresses the solution chmic potential drop across
the electrode. When the axial dispersive flux is unimportant, D'
becomes small, and equations 6 and 7 reduce to the expressions first

given by Bennion and Newman (40).
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Figure 2.1 Various configurations of counterelectrode placement
and current collector placement relative to the direction
of the fluid flow. (Taken from reference 39.)
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The behavior of these solutions is dependent upon the phenomenological
coefficients kf and E . Before we discuss these solutions, a

discussion on these two coefficients is in order.

Dispersion Coefficient

The necessity of a dispersion coefficient is a direct consequence
of our ignorance of the detailed velocity and concentration fields
in the intersticies of the packing. It is not a fundamental quantity
but rather a derived quantity which is generated by averaging the detailed
three dimensional transport equations. It consequently also depends
upon the boundary conditions at the particle surfaces for the fields
in question. This fact has not always been recognized in the literature.

Sankarasubramanian and Gill (41) have solved the convective-
diffusion equation in a pipe with first-order kinetics at the reactive
wall., They have demonstrated that the dispersion coefficient generated
by this solution when the kinetic rate constant is large is an order
of magnitude smaller than the dispersion coefficient calculated by
Taylor (42) in the absence of a reactive wall.

All of the dispersion coefficient data and correlations known
to this author are taken from beds with nonreactive particles. This
should be kept in mind, because one is forced to utilize these results
for want of something more appropriate.

Sherwood et al. (43) have reviewed dispersion coefficient data
in their text. They present in graphical form a compilation of a large
number of workers' results for the dispersion coefficient as a function

of Reynolds and Schmidt number.



21

Some authors have assumed that the dispersion coefficient is
simply the sum of a molecular diffusion term and a turbulent eddy

term. One may then write

+§'E. 9

Other, more sophisticated models for the dispersion coefficient
have been presented in the literature. The model developed by Gunn
(44) and by Miyauchi and Kirkuchi (45) is of most interest here. These
workers have realized that the dispersion coefficient in creeping
flow cannot reach the turbuient eddy value given by the second term
of equation 9. The details of their theory are unimportant. It is
impressive that Miyauchi and Kirkuchi were able to fit dispersion
coefficients in creeping flow over 10 orders of magnitude of the Péclet
number with their calculations. The correlation is in a convenient

equation form given below.

E _1, v 4 1 -2x
R, 0.17x["2x(1‘e )] (10)
(o] [o]
where
6/7
10-666/(v/aDo) (V/apo) < 15
X =
2/3

8-731/(v/a00) (v/aDO) > 15

Figure 2.2 is a plot of the dispersive Péclet number (v/aE)

as a function of the molecular Péclet number according to equation 9
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and equation 10. The Taylor dispersion coefficient through a tube is
included for comparison's sake. Equation 10 will be used in the

course of this work for the dispersion coefficient.

Mass-Transfer Coefficients

The film mass—transfer coefficient is a measure of the local
reaction rate in the bed. It is a derived quantity which is not
very convenient to measure. The concentration of a reactant far
upstream and far’downstream of a reactor is more readily accessible
to experimental détermination. These measurements are correlated by
the effective mass~transfer coefficient km . In the mass-transfer
controlled reactor under discussion, the definition of km is

k = -l (cp/ep) . (11)

These two mass—transfer coefficients are related as has been
pointed out by Newman and Tiedemann (34). This relationship can be
derived by equating cL/cF from equation 11 to cL/cF given in

equation 6. This manipulation results in

]
B + 2—-(1—3) exp |-oL l-+ l%
k 2 A\B D
m B aL

5 (12)
1+D'/B
The experimental km measurements can then be corrected by equation 12
to give kf . A value for the dispersion coefficient is also needed.

Chapter 4 will examine equation 12 in the limit of zero Péclet number.
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Figure 2.3 presents km data available in the literature. Each
of these data points was collected in a mass~transfer controlled
bed with the Reynolds number (v/av) less than one. Both gas and
liquid phase data are included. There are two important points to
note about this data collection.

The lines sketched on this figure are drawn to indicate the
asymptotic trends of km with the Péclet number (v/aDo) . Clearly,
there are different trends. In‘the lower Péclet number range, km
becomes linearly proportional to v , whereas in the higher Péclet
number range km becomes prpportional to the cube root of v . This
second line is a plot of Wilson and Geankopolis' (52) correlation

of their data:

1/3
k d vd
mp _ 1.09 P
) = (D ) . (13)

(o] o}

The tabular listing on this figure shows the al product of
the bed from which the data were taken. It is seen that most data
were taken in relatively shallow beds (recall that alL is
6(1 - e)L/dp) . The aL values range from 3 (one particle layer)
to 29,

These data points can be corrected individually with equation 12
to give the kf values required in the porous electrode equations.
This is awkward. It would be more convenient if these results were

expressed in an equation form. The Wilson-Geankopolis correlation is



Figure 2.3 Low Reynolds number mass-transfer coefficients in packed beds. The original
publications for the above tabular listing may be found in references (46, 47,
48, 49, 50, 51, 52, 53) respectively.
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valid in the higher Péclet number region, but it overestimates km
as the Péclet number decreases. Furthermore, it shows the wroﬁg
functional dependence. One goal of this thesis is to provide a
correlation for the low Reynolds number mass-transfer coefficient.

For illustrative purposes at this point, let the effective

Sherwood number (the dimensionless km) be given by

1 1 L
] + . (14)
Shy ~ 1.20 Pep 0 414 4 1.017 (= pe )1/3

aL B

The arguments and reasoning which substantiate this expression will
be developed in the remaining chapters.

Figure 2.4 illustrates a plot of this equation. The high Péclet
number data are satisfactorily fit, but the low Péclet number data
are overestimated. The correct asymptotic trend is recovered, however.
Chapter 8 discusses why this correlation as written overestimates km
in this region, and a better fitting equation is suggested there
after the data of this work have been introduced. It should be
reemphasized that equation 14 is only offered pedagogically at this
point so that the behavior of the porous electrode equations can be

discussed.

Ohmic Considerations as a Design Constraint

The porous electrdde equations 6 and 7 can be studied as a
function of flowrate and packing depth with the aid of equation 10
for the dispersion coefficient and equations 12 and 14 for the Sherwood

number.
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2.4 Comparison of experimental effective Sherwood numbers with those predicted
using a combination of the straight tube asymptotes with € = 0.4 and al = 15.
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Newman and Tiedemann (34) have discussed the design constraints
that might be imposed on an electrode. (This reference should be
consulted for a more detailed presentation.) The conversion of the
reactant is a constraint which sets the cL/cF value that must be
achieved. The ohmic potential drop across the solution is a second
design constraint.

The potential variation in the solution across the electrode is
sketched schematically in figure 2.5 for a cathodic bed. There is a
larger electrical driving force at the inlet to the reactor (x = 0 ,
nearest to the counterelectrode) than at the outlet. Consider the
reactor which is to be desigﬁed to carry out a specific electrochemical
reaction. If the potential variation in the solution becomes large
enough, undesired secondary reactions may become significant.

As an example, consider a waste stream containing 660 mg Cu/%
with a pH of two. Suppose this Cu is to be removed in a porous
electrode. Hydrogen evolution is the undesired secondary reaction.
Figure 2.6 is a Pourbaix diagram for this reaction. From it one‘can
see there is approximately 0.33 V available to drive this reaction
until the evolution of H2 is thermodynamically possible. One can
choose the operating conditions of the reactor such that the electrical
driving force at the inlet of the reactor does not exceed this value.
In the absence of specific kinetic information, this front-face
potential is arbitrarily halved, and the resulting 0.16 V is set
equal to the electrical driving force at the exit of the electrode.
This establishes a value for the maximum allowable solution ohmic

potential drop.
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Figure 2.5 Solution-phase and solid-matrix-phase potentials, as
functions of cathode position.
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Figure 2.6 Pourbaix diagram to illustrate ohmic considerations in

a porous electrode.
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Care must be taken in establishing the electrical driving force
at the rear of the reactor. If it is set too low, a limiting-current
condition may not be sustained by the available driving force. A
kinetic expression for thé reaction would be helpful in establishing
the minimum allowable driving force at the reactor exit. The Trainham
and Newman (35 ) analysis incorporates the kinetics.

Newman and Tiedemann (34) have presented an ingenious graphical
technique to calculate the packing depth and flowrate required to
satisfy the conversion and ohmic drop criteria. They assumed that
dispersion was unimportant (D' = 0) and utilized the km data in
a graphical form. Their results will not be duplicated here, but
rather an alternative approach is presented which includes the dispersive
flux and assumes a km correlation equation is available.

Figure 2.7 is a plot of the dimensionless solution potential drop
- as a function of the Péclet number. The curves are parameterized in
GL corresponding to the design conversion for the reactor. The flowrate
required to meet the design specifications can be found from the
abscissa since the ordinate and OL are set. Equatibns 11 and lh.are
then used to calculate the bed depth.

The computer program wriiten to generate figure 2.7 is presented
in Appendix B.

For typical values of n, €, Do’ Kys Cpo and A@z , the ordinate
may vary from 10 to 106. Figure 2.7 indicates that the corresponding

Péclet numbers will roughly vary from 1 to 103. The bed depth will



Figure 2.7 Design plot for a limiting-current porous electrode given the maximum allowable
solution potential drop and the required conversion.
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depend upon the value set for the conversion. It 1s clear that the
packing depth required to achieve a certain conversion increases
with the Péclet number. These two observations show that more experi-
mental km data in the loﬁer Péclet number range are required. It
is precisely in this region of Péclet numbers that km is changing
from a cube root dependence to a linear dependence on v . It is
also clear that data areneeded for deeper beds than those currently
reported in the literature.

The purpose of this thesis 1s to understand better the km

behavior in this low Reynolds number region.
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Chapter 3

Mass Transfer at High Péclet Numbers
for Creeping Flow in a Packed-Bed Reactor

Abstract

An isotropic homogeneous packed bed reactor is modeled as an
array of sinusoidal periodically constricted tubes (PCT). The
effective asymptotic-bed Sherwood number has been calculated for
mass transfer at large Péclet number with a constant wall concentration
and creeping-flow hydrodynamics. The bed friction factor has also
been calculated. The results for these macroscopic bed quantities
‘depend upon two ratios of the microscopic PCT period length, average

radius, and sinusoidal amplitude.
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Scoge

The mass~transfer rate occurring across a packed bed reactor can
be predicted a priori if the exact geometry of the flow channels is
known. This is usually impossible except for a uniformly structured
bed. It then becomes necessary to introduce micrbscopic channel models
for the bed. The simplest model considers the bed to be an array
of straight cylinders. A higher order approximation accounts for the
fact that the straight conduit model cannot reproduce the contortions
the fluid must pass through in the bed. A periodically constricted
tube (PCT) model of a bed, however, is a step in this realization.

The converging, diverging character of the flow in these tubes is a
better approximation to the true nature of the flow in the actual bed.

Using the PCT ﬁodel for the flow channels in a bed, the appropriate
governing equations can then be solved for the Sherwood number of
the bed. Specifically, the Navier—Stqkes equations must first be
solved for the velocity field which is then used in the convective
diffusion equation to solve for the reactant concentration profile.
This paper presents results for the friction factor and the Sherwood
number of a deep bed modeled as an array of sinusoidal PCT. Creeping
flow has been assumed, and the wall concentration of the reactant is
constant through the depth of the bed. Since the Schmidt number for
liquid reactants is high, a large reactant Péclet number is assumed

in the analysis.
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Conclusions and Significance

A homogeneous, isotropic packed bed reactor can be modeled
as an array of periodically constricted tubes. By neglect of
entrance region effects, the governing equations for fluid flow and
mass transport need only be solved in a single period due to the
assumed homogeneity of the bed.

| Interior collocation on a finite~difference grid was used to
reduce the creeping-flow Stokes stream function equation in a
sinusoidal PCT to a set of coupled, fourth order, ordinary differential
equations. This approach is much more economical than solving the
fullelliptic partial differeﬁtial equation by overrelaxation.

At a high reactant Péclet number in the fully developed mass~-
transfer region, the convective diffusion equation for the reactant
in a PCT can be reduced to a Graetz-like eigenvalue problem. This
technique is valid for laminar flow in any PCT.

Figure 3.9 shows the friction factor, Reynolds number product in
creeping flow for a packed bed modeled as an array of sinusoidal PCT.
The results depend upon the two dimensionless geometric variables
T, and A/rA (figure 3.2). As the average wall radius decreases or
as the amptitude inc¢reases, the product increases.

Results are presented in figure 3.11 for the asymptotic Sherwood
number of a deep bed reactor with a large reactant Péclet number in
creeping flow. Again‘the results depend upon the two dimensionless
geometric variables. The bed Sherwood number exhibits different

behavior in the amplitude-radius ratio (A/rA) for small and large
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values of «r In beds of long skinny tubes (small rA), the Sherwood

A °

number increases with A/rA s Whereas for larger r, this trend

reverses itself.

Introduction

The flow channels in a randomly packed bed defy an analytic
expression. To predict a priori the transfer rates in a bed, it
then becomes necessary to resort to empirical correlations or,
alternatively, to a microscopic model for the flow channels. The
appropriate rate equations can be solved within the framework of the
model to predict the performance of a bed. Of course, the structured
formulation of a microscopic channel model is a framework to understand
better the empirical correlations.

The simplest model of a bed considers the flow channels to be
an array of_straight tube capillaries embedded in an impermeable
matrix. Sheidegger ( 23 ) and more recently Dullien ( 14 ) have
provided a review of this approach. Such a first order approach
cannot, however, without introduciﬁg another parameter, satisfactorily
correlate experimental data. The straight streamlines which result
from applying the capillary model seem to be an inappropriate
approximation to the twisting, converging, diverging character of
the flow in an actual bed. . This undulating character of the flow
can have tremendous consequences on the bed pressure drop and the
fluid-to-particle (or vice~versa) mass transfer rates.

Petersen's ( 28 ) work suggested that the flow channels in a bed

can be modeled as an array of periodically constricted tubes (PCT).
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Michaels ( 54 ), Houpeurt ( 55 ), Batra et al. (56 ), Dullien and
Azzam ( 57 ), Payatakes et al. (29,30) and Sheffield and Metzner ( 58 )
have contributed to this line of thought. The convergling, diverging
nature of the flow in these model tubes is a better approximation

to the true character of the flow in the bed. Payatakes et al.

have argued by statistical and heuristic means that the problem of
modeling the flow behavior in an array of randomly sized PCT reduces

to considering a single dimensionless PCT. They've presented a
technique to calculate fhe PCT model parameters,

Having a f£low channel model in hand, one can then proceed to
calculate the pressure drop'and the reactént concentration profile
across a packed bed reactor. Specifically, the Navier-Stokes equation
must be solved first for the velocity field (neglecting free convection);
and then the convective-diffusion equation must be solved for the
concentration profile of each reactant. Payatakes et al. have outlined
a technique for solving the full Navier-Stokes equations in a PCT.

' knowledge has been done on the mass transfer

No work to the authors
problem in a packed bed reactor modeled as an array of these PCT. 1In
this work we have calculated the asymptotic, creeping-flow Sherwood
number (based on a logrithmic mean concentration driving force)

for a single limiting reactant with a high Péclet number. Physically,
these restrictions correspond to a liquid reactant flowing through a
deep bed at a low Reynolds number. The reactant wall concentration

is assumed constant throughout the length of the reactor, corresponding

to a limiting current condition.
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The behavior of the effective mass-transfer coefficient through
a packed bed depends upon the flow regiﬁe. For a deep bed, the
effective maés—transfer coefficient in creeping flow will become
independent of the velocity. This is in contrast to the entry region
where the transfer rate is proportional to the veiocity to the 1/3
power. The entry region has an effective transfer coefficient larger
than that for deeper beds. Calculating the deep-bed asymptotic
Sherwood number thus gives a lower limit to the expected behavior.
The horizontal line of figure 3.1 shows the nature of this Sherwood number.
The dashed lines indicate entry-region coefficients for two different
sized beds. The line marked aL = 10 is the Wilson-Geankopolis ( 52 )
correlation. The left and right hand sides of this figure indicate
schematically regions where axial diffusion and turbulent convection,
respectively, become important. The turbulent region line is a
plot of the Bird et al. ( 59 ) correlation while the low Péclet number
region is a plot of S¢grensen and Stewart's ( 12 ) calculations for

a simple cubic packed bed of spheres.

Mathematical Modeling

Creeping Flow in a PCT

The PCT considered is generated by the surface of revolution of
a cosine function about the axis of symmetry as shown in figure 3.2,
All lengths are made dimensionless with the period of oscillation £ .

The creeping-flow equations are to be solved in this geometry. Because

no inertial effects are present and the tube wall is axially symmetric
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Figure 3.1 Expecled behavior of bed Sherwood numbers.
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Figure 3.2 The wall of a PCT generated by r,(z) = rp, - A cos (27z).
All lengths are made dimensionless with respect to the
period length %.
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at z = 0 ,0.5,and 1 , the vadisl velocity v will be zero at
these same positions. It then follows the streamwise velocity vg
will be an even periodic funciion of =z with the same frequency as
the wall oscillation. These considerations make it clear that the
governing equations need be only solved in 0 < z < 0.5 for this
particular geomeiry.

A packed bed is modeled as an array of thesePCT. The fluid
approaches the bed at a superficial approach velocity v . The
average dimensional velocity Vpg” through each tube is defined such

where r

- 2
that the flow rate in each tube is equal to <v, >Tr Ad

Ad TTAd
is the length averaged dimensional vadius. Geometrical considerations
show that <vAd> can be written in terms of the approach velocity as

W4 14 5 (A/rA):]

where A is the dimensionless wall oscillation amplitude. The
governing equations need be solved in a single PCT. These results
can then be applied to the entire bed due to the assumed homogeneity
and periodicity of the structure.

The dimensionless, incompressible Navier-Stokes equations for
creepingéflow with axial symmetry can Be reduced to a single, linear,
fourth order partial differential equation by introducing the

normalized stream function Y as

EY =0 @)



where

The stream function equation is to

conditions
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— (2)

(3)

be solved subject to the boundary

Y =20 4(1)
r=0
33;(—]{- %%)= 0 4(id)
%% =0 ) 4(iii)
r = rw(z)
Y =1 4(iv)
and a periodicity condition
2™ e = 220 ¢ ) 0,1,2 (5)
— Y(t,2z) = —— Y(r,z + m) n,m = 0,1,2, ...
Bz(n) Bz(n)

The boundary conditions of equation 4 state that at the centerline

i) the radial velocity is zero, ii) the axial velocity is symmetric,

and at the wall iii) there is no slip on the axial velocity, and

iv) the flow rate at each cross section is a constant, here referred

to a straight cylinder of radius

rA.
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N P

No amalytic solution fovr equations 1, 4, and 5 could be found.
Interior collocaiion on a finite-difference grid was used to generate
an approximate solution. The collocation approximation technique is
examined by Finlayson ( 60 ), Villadsen ( 61 ), and Villadsen and
Stewart ( 62 ).

A transformed radial coordinate 1 is introduced by
. 4
= v/v {(z) . 6
n /. (2) (6)

The boundary conditions of equation 4 along the wall are then transferred
to the coorvdinate curve 1n = 1 . 1In this new coordinate, the interior
collocation technique on a finite-difference grid can be used to
approximate the hydrodynamics. Assuwe - a solution for the normalized
stream function of the form
NCP
2 4 2 2.2 2
Y(n,z) = 2n° 4+ ) 7@ - nD%, (2, . (M) . (7)
. k k1
k=1,
The first two terms on the right side vepresent the Hagen-Poiseuille
solution. The summation of terms can then be considered as a correction
. : ; ; . 2 .
function to the basic parabolic flow. The functions ¢k_l(n ) in the
summation term can be any cowmpleie set of functions, The weighting
2 2,2 . . .
factor N (1 - n7) assures the correct behavior of the solution at
the boundary points n =0 and n = 1 . The coefficients Ak(z) are
unknown functions of =z o be determined subject to the boundary

conditions
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A(0) = A" (0) = 0
AL(O.S) = AL"(O.S) =0 .

(8)

These conditions result from the periodic, symmetric tube wall. In
non-creeping flow, these coefficients would not identically equal zero
but some constant which must be determined as part of the solution.

A friction factor for a packed bed may be defined as

3 /-AP
_ 36¢ Bl 1
fp =2 ( L ) 2" (9

ov

A porosity dependence has been explicitly incorporated into this
definition. For creeping flow, the product of the Reynolds number and

the bed friction factor is a constant given by

arpd W

14
2 v NCP
fyRe, = 72( 2 ) [1 ik (A/rA)z] f(-r—A-) {1 + kzl A (2)
0

(10)

[2,_(0) - ¢§-1<°)/2]} dz .

This equation was derived by integrating the pressure gradient in the
Navier-Stokes equations over a period at the centerline. The left side
of equation 10 depends upon the macroscopic bed quantities while

the right side depends upon the microscopic model parameters

A
and A/rA only.
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Convective Diffusion Equation at High Péclet Numbers

The dimensionless, steady-state, convective-diffusion equation
for a single limiting reactant can be written in generalized vector

notation as

vec . =~ (11)

This equation with a creeping flow velocity profile is to be solved

in the far downstream region of a PCT for the asymptotic solution as
Pe > o , Solving this equation in a straight tube after neglecting
diffusion in the axial direction results in the well-known Graetz

. solution. At high Pe it is also valid to neglect diffusion parallel
to the streamwise velocity in a PCI.

It is convenient to solve equation 11 in a transformed coordinate
system (Y,£,0) (figure 3.3). The Y coordinate is constant along
streamlines and is found directly from the stream function. The §
direction is parallel to the streamwise velocity at all positions and
is scaled such that & = 0 at the beginning of a period and § =1
at the end. It is defined implicitly by (W)+(VE) = 0 . The angular
coordinate 6 has its usual meaning. In this coordinate system,
diffusion will be important in the P direction and negligible in
the & direction, at high Péclet numbers.

With neglect of diffusion in the & direction, equation 11 can

be written as
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Figure 3.3 The (¥,£,8) coordinate system.
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Ve osc A 1 ( 't ac) (12)
Pe h,h,h, 9 9 '
By O Pe by 3\ By 3

Explicit forms for two of the metric factors can be determined. By

inspection he =t , Since the stream function represents the amount

of fluid flowing in a stream tube between a point and the axis,

2

Y = vgrhwdw (13)

O’\'G-

r2
A

after appropriate normalization. It follows that the metric factor

hW is related to the streamwise velocity vg :

2
T
a1
hw TR (14)
g
Equation 12 now becomes
oCc 8 3
3 " T, W (cere o ) (1)

which applies to any PCT.

Unfortunately, equation 15.cannot be solved by a separation of
variables technique. One can, however, formulate a perturbation
solution to equatioﬁ 15 in the deep region of the bed where the entrance
effects have been damped. Equation 15 suggests as a first approximation

that

TF =0 . (16)
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at large Pe . This would imply that the concentration 1s a function
of ¢ onlyrand is constant along a streamline. Any function of
will suffice. The first order term in the perturbation solution
shoﬁld then be a function only of { . The second order term will
then be a diffusive correction function to take into account that

the concentration must also be changing in the & coordinate.

Assume a solution of the form

Substitution of equation 17 into equation 15 yields

aC aC
2 8 0 2 1
% LW (“/50 "aha"a'u7> (18)

after neglect of the diffusive term in C2 .
In the far downstream region of a PCT, the fractional decrease

of concentration through each period must be the same, that is

CW,E + 1) = cw,Be a9

where B 1is independent of position. If we set Cz(w,O) = 0 , this

means that C2 and Cl are related:
N o -8B

Equation 18 can now be integrated from £ =0 to & =1 , to obtain

a Sturm-Liouville eigenvalue problem for the function Cl(w) .
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d dcl)
1
o) = [ e v (22)
' 0
r,Pe r, Pe -
a=a-e®hH S-Zp -2 (23)

The integral in equation 22 is carried out over the arc length for
a constant value of Y in the integrand. The second identification
of A to B 1in equation 23 is possible since Pe » » ,

Equation 21 is to be solved subject to the conditions

c,(0) = 1 24(1)
c (1) =0 24(i1)
c1(0) = -A/G'(0) . 24(111)

Condition (i) is a normalization for the first order solution.
Condition (ii) satisfies the limiting reactant constraint of a zero
wall concentration. Condition (iii) results from the fact that the
concentration must be finite on the centerline, a singular point of
equation 21.

The first eigenvalue of equation 21 can be related to the
effective Sherwood number for a deep porous bed which is modeled as
an array of PCT. A macroscopic mass balance on the reactant over
the length of the period can be written in terms of an effective
mass-transfer coefficient -km (Newman and Tiedemann, 34 Bennion
and Newman, 40 ). The £ in equation 20 can then be related to this

coefficient as
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B=k_ alv . | (25)

With equation 25 and 23, the Sherwood number for a limiting reactant

in a deep bed with creeping flow and high Péclet number can be written

as

£ km 2€ 2
Sh =ET=->\ (26)

ar Ad\/l +Q/NA/x,)”

Equations 26 and 21 are the main results of this analysis. By
means of the perturbatiqn approach, we have demonstrated how the two-
dimensional convective-diffusion equation in a PCT can be reduced to
a Graetz-like eigenvalue problem at high Péclet numbers. The first
eigenvalue of this problem is simply related to the bed Sherwood
number as givgn in equation 26,

The eigenfunction Cl(w) generated by the perturbation analysis
is a first order approximation to the concentration distribution. It
identically satisfies equation 16 and gives the correct integral
properties to the correction function Cz(w,i) . The local transfer
rate to the wall can be found by differentiation of this profile with
respect to the normal distance from the wall. After a change in

coordinate system (see next section), the analysis yields

| VB(z)rw(z) dCl

9n w 2rA dp

(27)
p=1

where
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ov
B = 5

The local wall flux is thus proportional to the square root of the
local shear rate. The integral of equation 27 over the surface area
of a period is related to the eigenvalue.

The left side of equation 26 depends upon the macroscopic bed
quantities a and € . The right side is a function of PCT geometry
and flow regime through the dependence on A . The eigenvalues of
equation 21 are independent of the Péclet number in.creeping flow.
Thus, irrespective of curvature effects, the asymptotic Sherwood

number is a constant independent of the Péclet number for a deep bed.

Method of Solution

The unknown coefficients Ak(z) in the interior-collocation
approximation for the stream function can be determined as follows.
Equation 1 in the (n,z) coordinate system is applied to equation 7.
(The E4 operator in the (n,z) coordinate system is given in
Appendix A). Interior collocation is then used at NCP points in the
n coordinate. Since the n function dependence is a priori postulated
through the ¢k_l(n2) , this step reduces the partial differential
equation to a set of coupled, fourth order, ordinary differential
equations for the unknown Ak . This set of equations is solved on
a finite-difference grid in the =z coérdinate by the method of
Newman ( 63 ). Legendre polynomials were used for the ¢k_l(n2) .
The n collocation points were chosen to be the zeros of the shifted

Legendre polynomials of order NCP-1
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ny = /=5

where x; is the zero of the ordinary Legendre polynomial. The
wall, n =1, was also used as a collocation point.

The eigenvalue problem as posed in equations 21 thru 24 is ill
suited numerically to the Y coordinate. Equation 21 has two singular
points, one at ¢ = 0 , the other at Y = 1 . The singularity at
Y = 0 presents no problems; however that at Y = 1 does. An
analysis of equation 21 near the point ¢ =1 indicates that the
first derivative of -Cl- approaches infinity. A change in coordinate

will eliminate this singularity. Define a length-like transformation

variable p as

b= 20" - ot (28)

. Equation 21 and its boundary conditions then transform as

e oma i w
¢ (p=0) =1 | 30(4)

;=1 =0 30 (i)

é% C;p=0)=0. | 30(iii)

Equations 29 and 30 were solved by the method suggested by Newman
(64) . for eigenvalue problems.,

The computer programs are given in Appendix B.
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Results and Discussion

The hydrodynamic results will be discussed first, followed by the
mass transfer problem.

"The interioxr collocation solution technique for stream function
required a maximum of nine (NCP = 9) n collocation points to insure
sufficient accuracy of the solution. It was found that more collocation
points were required as the dimeﬂsionless wall radius was increased,
nine being the maximum for the most extreme case considered (rA = 0.5,
A/rA = 0.5)., Since this approximation solution is solved in a generalized
(n,z) coordinate system, it facilitates a straightforward calculation
for the velocity field in an& tube in the shape of a periodic body of

-revolution. The reduction of the eliptic partial differential equation
to a set of coupled orxrdinary equations is more economical to solve in
terms of computer time usage.

A boundary collocation solution technique was also attempted but
was discarded. The general solutions‘(by separation of variables)
to equation 1 involve modified Bessel functions of the first kind.
Unfortunately these functions do not form a complete set, and the
correction function expansion technique similar to equation 7 did not
converge.

Figure 3.4 shows a comparison between the creeping flow axial
velocity profile calculated here and that reported by Payatakes et al.
for a tube Reynolds number equal to one. The profiles are compared
at the minimum and maximum (z = 0.5) constriction diamefers. The
tube wall for these profilesvis generated by two parabolas intersecting

at z = 0.5 with their respective minima at z =0 and z =1 .
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Figure 3.4 Comparison of calculated axial velocity profiles with

those of Payatakes et al. for a parabolic PCT.
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(See figure 1 of Payatakes et al.). The boundary conditions for the
Ak's in equation 8 were at z = 0 and 1.0 for this situation. The
velocity heré is scaled with respect to the average velocity in a tube
of constant radius equal t§ the constriction radius. At the centerline,
the viscoﬁs flow profile is slightly larger than that of Payatakes

et al. calculations. However, near thé wall this trend is reversed.

The integral of all the profiles is equal to a constant defined by the
flowrate.

Figures 3.5 thru 3.8 show some typical creeping flow profiles in a
sinusoidal PCT. The two dimensionless geometry groups ) and A/rA
completely determine the solﬁtion behavior, These four figures
- 1llustrate the effect on the velocity profiles of manipulating one
of these variables with the other held constant. The velocity profiles
have been normalized with the average velocity at the average radius.

The effect on the axial and radial velocity profiles of varying
the wall amplitude at a constant average radius is shown in figures 3.5
and 3.6. The radial velocity profile is plotted at =z = 0.25 . At this
position v, attains its maximum value, These figures indicate that
at a constant radius the variation in the velocity profiles across a
half period becomes more dramatic as the oscillation amplitude increases.

Figure 3.7 and 3.8 illustrate the velocity profiles for a varying
wall radius at a constant A/rA . The effect of the tube geometry is
again seen. The radial velocity increases with r, since the velocity
of the fluid in the radial direction is proportional to the slope of

the wall. However, the varilations in the axial velocity profiles across
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Figure 3.5 Effect of amplitude/radius ratio on axial velocity
profiles for a sinusoidal PCT with r, = 0.1.
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Figure 3.6 Effect of amplitude/radius ratio on radial velocity

profiles in a sinusoidal PCT for r, = 0.1 at z = 0,25.
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Figure 3.7 Effect of average tube radius on axial velocity profiles

in a sinusoidal PCT for A/rA = 0.1.
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Figure 3.8 Effect of average tube radius on radial velocity profiles
in a sinusoidal PCT for A/rA = 0.1 at z = 0.25,
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the half period become less pronounced with increasing Ty - This
effect is due to the drag'induced by the wall. As T, increases
the effect of the wall fluctuations become less important to the
fluid in the cenfral core of the tube.

The frofiles of figures 3.5 thru 3.8 have been nondimensionalized
with respect to the average axlal velocity at the average tube radius.

This normalization procedure illustrates the variation

of the profiles from that at the average tube radius. If these profiles
’ r (z)
W

2
are multiplied by ) » the resulting profiles are then normalized

r
A
by the average axial velocity at position 2z . Such a calculation

shows that the parabolic axial velocity profile is approached as r,

becomes smaller. The radial velocity profile is then given by

continuity. In the limit of r, -~ 0 , the Hagen-Poiseuille case is

A

recovered.
Figure 3.9 iilustrates the bed friction factor, Reynolds number

product of equation 10 as a function of r, and A/rA . The product

A
fBReB involves the macroscopic bed pafameters L ,€,and a.

The microscopic PCT parameters T, and A/rA can be varied while
holding these bed parameters constant. As A/rA increases, the tubes
become more narrow at their constrictions. Because of the increased
resistance this reduced flow area offers, the bed pressure drop increases
with A/rA . This effect decreases with larger T, since the
constriction size at any A/rA increases with Ty o
The relative insensitivity of fBReB with r, seen in figure 3.9

supports the approximation of assuming the Hagen-Poiseuille pressure

gradient, flowrate relationship holds locally for sinusoidal PCT. This
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Figure 3.9 Friction factor, Reynolds number product for a packed bed

modeled as an array of sinusoidal PCT.
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approximation was used by Sheffield and Metzner ( 58 ).

Tﬁe Blake-Kozeny eqﬁation as given in Bird et al. ( 59 )
empirically recommends=a’7alue'bf 150 for the product' fBReB .
Sdrénsen and Stewart ( il ) have -calculated the velocity profiles
across a simple cubic packing of uniformly sized spheres. Their
pressure-drop results yield a theoretical value of 158. Figure 3.9
shows that a range of parameters (r,, A/rA) will give a fBReB
near these two values. The A/rA ratio which give fBReB a value
near 150 seem to be concentrated near 0.33.

The straight tube capillary model gives the intercept value of
72 on figure 3.9 The usual argument given in explaining the discrepancy
between this value and the empirically best fit value of 150 is a
tortuosity and shape factor. The PCT model of a packed bed does not
resort to these factors. However, anqther geqmetrical parameter
(A/rA) has Been added.

The mass-transfer analysis presented in this work can be used
to calculate the high Péclet number asymptotic Sherwood number for any
periodic tube. Only the stream function need be known. Calculated
results are presented for the sinusoidal PCT of figure 3.2viﬁ creeping
flow. The results are a function of the two dimensionless geometric

parameters r, and A/rA .

A
Figure 3.10 presents the first eigenvalue of equation 21 normalized
with respect to the first eigenvalue of the straight-tube Graetz

problem _(AG = 0.91419). This plot can also be interpreted as the

)

ratio of the asymptotic Sherwood number (based on the average radius Trd
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Figure 3.10 Eigenvalues for the mass transfer problem in a sinusoidal
PCT normalized with respect to the Graetz problem.
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of a sinusoidal PCT to that in a straight tube of radius LIV IR

Figure 3.11 presents the Sherwood number for a packed bed modeled
as an array of sinusoidal PCT. The concentratidﬁ drop across the

bed can be written as

aL
1n cF/cL = ShB —E—/%eB . : (31)

Figure 3.10 shows a monotonic behavior of the eigenvalues with r,

and A/rA . However, the bed Sherwood number shows different trends

Sh. increases with A/r

for small and large ~r For small Ty s B

A A

whereas for larger r, this trend reverses itself. This effect is
caused by the geometrical term in equation 26.
The quantity 2e/a in equation 26 is the standard definition for

the equivalent radius of the bed. This defines the bed in terms of

a straight cylinder network of radius req d having the same surface

b

area to empty volume ratio. The quantity rid[l + (1/2)(A/rA)2]

in the denominator of equation 26 defines another equivalent radius
rz‘
vd * _
For long skinny PCT (small rA), the ratio (req/rv)2 is greater than

This is the volumetric average radius for a sinusoidal PCT.

one and increases with A/r Thus for a bed composed of these tubes,

A"
the Sherwood number increases as A/rA is increased. However, as LN

becomes larger, the ratio _(req/rv)2 becomes less than one and ShB

decreases with A/rA .
For most beds, r, will be bounded approximately by 0.3 < r, < 0.5

while the A/rA ratio will be in the range 0.2 < A/rA < 0.5 , perhaps
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Figure 3.11 Asymptotic Sherwood number for a packed bed modeled as
.an array of sinusoidal PCT.
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close to 0.33. Payatakes et al. report these parameters for a
randomly packed bed of glass spheres as r, = 0.3, A/rA = 0.36 , and

for a bed of sand as = 0.31, A/rA = 0.41.

A

" Sprensen and Stewartv( 12 ) have calculated the asymptotic
value of the Sherwood number in a simple cubic packed bed of uniformly
sized spheres. Their results yield ShB = 0.619 . This information
“can be used in conjunction with the friction factor, Reynolds number
ﬁroduct calculated by these same authors. This suggests that the
PCT parameters for a simple cubic packing of spheres are T, ® 0.5
and A/rA ~ 0.33 . We expect this ) value to be an upper limit for
" uniform spheres since the siﬁple'cubic packing has the highest porosity
of all sphere packing configurations.

No experimental packed bed heat or mass—transfer correlations
are known to the authors which demonstrate a "~ transfer rate
- independent of velocity. Three factors can mask this asymptote.
1) At veryblﬂw velocities axial dispérsion may become important.
2)' At high flowrates turbulence becomes important. 3) At thé
intermediate flowrates the entire bed may be in the entry'region
(small al). However, the asymptotic Sherwood number gives a conservative
estimate useful for design purposes.

The solution to the creeping flow equations exhibited separation
flow for some values of the geometry parameters. (See chapter 6
for the range of these parameters.) These separation zones were

neglected in this analysis for simplicity sake. Consequently, the Sherwood

number is underestimated in this parameter range.



68

Chapter 4

Low Péclet Number Behavior of the Transfer Rate
: in Packed Beds

Abstract

The asymptotic behavior of the mass-transfer coefficient in a
packed bed reactor at low Péclet numbers is dependent upon how the
coefficient is defined. A singular perturbation approach coupled
with heuristic arguments is used to demonstrate fhat the film mass—~
transfer coefficient.in deep beds épproaches a constant value as the
Péclet number decreases. The film coefficient is utilized in the
one-dimensional model of a bed as a sink term in the governing equation.
The volumetric, or effective, mass-transfer coefficient,which
relates the overall reactant conversion to a logarithmic mean con-
centration driving force, decreases linearly with the Péclet number
as the Péclet number approaches zero. The distinction between the
two coefficients is important in the low Péclet nﬁmber region.
Analogous results apply to heat tfansfer. Reported experimental

data support these predicted trends.
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Introduction

The behavior of the particle-to~fluid (or vice-versa) heat or
mass transfer rate in packed beds at low Péclet numbers has been a
source of confusion in the chemical engineering literature. The
question is, '"Does the transfer rate approach a steady value as
the Péclet number decreases,or does it continually decrease with
the Péclet number?" This can be rephrased by asking whether the
Sherwood number reaches a constant value or decreases as the Péclet
number is lowered. We shall demonstrate in this paper that both
trends are possible depending.upon how the Sherwood number is defined.

The experimental determination of transfer coefficients at low
Péclet numbers is vexing. The fluid leaving the bed is very near
its saturation value in the transferred quantity. This creates a
large uncertainty in the driving force at the exit of the bed which
'is used in defining the effective transfer coefficient. Free |
convection may also become an important effect. To overcome these
difficulties, various workers have used diluted beds, transient, and
frequency response methods to determine more accurately the low-
Péclet-number beﬁavior.

Since the Schmidt and Prandtl numbers for liquids are quite
large [0(103)], most low Péclet number data are found in gaseous
systems. Furthermore, most workers have varied the Reynolds number
only. The free conVection effects should be minimized in the gaseous
systems.

The quantity of data for low Péciét numbers is understandably

small. Table‘4.l is a compilation (with no claim to completeness) of
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Table 4.1 Compilation of works which have reported heat or mass
transfer data i