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People and organizations constantly exchange personal information such as health data.

However, the use and exchange of this information poses two salient challenges. First, trust

among data users and providers is not homogenous, but data is supplied according to indi-

vidual authority and rights. Second, people and organizations use this data for uncountable

and often divergent purposes. State-of-the-art web services are rigid, “one-size-fits-all” solu-

tions that do not meet all users’ needs nor allow providers to distinguish among users. This

tension between information need and service provision calls for sophisticated mechanisms

to simultaneously enable customization and service access based on specific trust relation-

ships. Our goals are twofold: first, enable differential access to a provider’s services—data

and computation capability—according to privacy and operational policies. Second, enable

consumer-controlled service customization to access and computationally manipulate data to

fulfill specific needs within the authority granted by the provider. Our approach leverages the

COAST architectural style’s principles and implementation mechanisms and the Rei policy

language. The context of our work is decentralized information systems, where constituent

personal services operate under multiple, distinct authorities. We evaluate our approach in

the context of the healthcare domain and present COASTmed, an EHR management system

prototype which exhibits the proposed solutions to the described challenges.
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Chapter 1

Introduction: Service Security and

Customization

In the process of routine interactions with different organizations, people disclose personal

information with the purpose of obtaining some service, supporting some group, or simply

because it is required by law. As a result, personal information is distributed among many

agencies: travel services hold holiday itineraries, financial agencies manage accounts and

loans, medical providers store health records, schools track for academic performance, and

so on. Personal information is used and shared by individuals and organizations according

to nuanced trust relationships in a wide array of domains for various purposes.

However, sharing and use of individuals’ data in decentralized contexts presents two salient

problems . First, the dissemination of personal data poses privacy concerns. Individuals and

organizations spontaneously restrict access to their information due to lack of trust or just

because some party has no business accessing certain kinds of data. However, it is difficult to

capture these heterogeneous trust relationships among consumers and providers of personal

information—both individuals and organizations—in software systems and support nuanced,
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per-user access permissions to personal information services. As a result, these services’

capabilities are often reduced to the “minimum common denominator”, restricting access to

privileged users that would otherwise have extended access authority to an organization’s

assets. In addition, insiders’ abuse within organizations is not uncommon, and neither is the

incongruence between data disclosure policies and offered services. Hence organizations lack

sufficient guarantees of privacy policy compliance.

Second, the myriad of current and potential uses of personal information in an array of

domains makes it difficult for information providers—people or organizations—to personalize

their services to meet the specific needs of all users. Therefore, services are usually rigid

“one-size-fits-all” solutions that hardly satisfy any of their users’ needs and render tasks

more difficult—services may return additional unrequested data and require considerable

post-collection manipulation. It is a recurrent problem for system developers, for example,

to find suitable web services for their application needs. Current web services follow a

“vending machine model” where functions are unilaterally made available online and users

have no control or flexibility to customize when interacting with these services [133], therefore

creating a tension between information need and service provision, and diminishing the

overall utility of the service.

Given the described problems, the main challenges are (a) granting access to personal

information according to appropriate, desired relationships between individuals and organi-

zations (e.g., granting a doctor access to a patient’s health records, but not to his financial

data), and (b) allow individuals and organizations to obtain the required personal informa-

tion for diverse, specific uses (e.g., allowing the doctor to run an algorithm using a patient’s

blood tests result held at a laboratory so that he can infer the cause of symptoms).

To approach these challenges and ameliorate the described problems, novel mechanisms are

needed to build software systems which (a) allow service providers to offer flexible, fine-

grained services (arrangements of capabilities) on a per-user basis and according to privacy
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and operational policies, and; (b) enable service consumers to customize services to suit

specific information and computational needs.

Current technologies fail to adequately meet the described challenges typically occurring in

highly decentralized settings. Despite research and development of authorization models for

controlled data access, web services aimed for data integration, and customization efforts

(section 4), adequate solutions offering differential authority and customization of personal

information services have not yet been realized.

Our research goals (detailed in section 3) are twofold:

• First, enable differential access to a provider’s services, where the provider has the ca-

pacity to distinguish among service consumers, making available personal information

and computational capability according to privacy and operational policies. Differen-

tial service provision permits organizations treating users idiosyncratically, maintaining

multiple trust relationships, and restricting and expanding the per-user availability of

information and service functionality.

• Second, enable service customization, allowing service consumers to manipulate per-

sonal information and use the services’ computational capabilities at will, however

within the given authority and rights to access these assets.

These goals address clear shortcomings in the current practice, which is often fraught with

bureaucratic and inefficient (often manual) intra- and inter-organizational processes for shar-

ing, using, and protecting personal information, burdening all the involved parties:

• Individuals encounter difficulty in accessing, in a meaningful and automated way, their

own data when it is spread across many agencies. Similarly, they are often unable to

control the dissemination of their personal data, in contrast to specifically authorizing

parties to manipulate particular data.
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• Data holders have difficulty in providing particularized access to individuals’ data

when access rights and trust relationships are dynamic and complex; often the de facto

outcome is loosely defined and coarse-grained boundaries.

• Service providers are constrained to offer a few standard services to their users due

to the overhead of attempting to suit services to fit all individual needs. Services

typically remain static—despite needs for change arising—because of the potential

for inadvertently disrupting existing users. Moreover, the services provided are often

divorced from privacy and operational policies, rendering vulnerable the privacy of the

information, and providing opportunity for the discrepancy among drifting services

and policies, and for insiders authority abuse.

• Service users—even when authorized—have difficulty accessing personal information

when it is spread across various data holders and held in different formats, making it

difficult to integrate and manipulate the data to fit specific needs.

The ubiquity of web services, the popularity of mashups, continuous customization and per-

sonalization efforts, the vast dissemination of individuals’ data, widely adopted data mining

practices, increasing security threats to personal data, and the proliferation of integration

standards are indicators that our goals resonate with current needs for secure but open

information sharing.

Key motivating insights emerged from reflecting on the described challenges and on the

pursued goals:

• Considering decentralization is essential given that data is distributed among au-

tonomous agencies.

• Differential access requires sophisticated fine-grained authentication, authorization,

and security models compliant with specific privacy policies.
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• Services ought to be tightly coupled with organizational policies to prevent privacy

violations.

• Security needs to be an inherent property, not bolted-on after the fact.

• Given potential unknown uses of a service, the burden of service customization needs

to lie on the user and not on the provider.

The context of our work is decentralized information systems, whose individual constituent

services operate under multiple authorities. Our hypothesis is that a software system

rooted in dynamic architectural principles involving capability-based security and compu-

tation exchange, along with formal policy specifications can offer policy-based differential

access to personal information services, while simultaneously enabling user-controlled ser-

vice customization in decentralized contexts.

Along with the described insights, our hypothesis led to the formulation of our approach

towards service customization and policy-driven differential access to personal data and our

evaluation methodology (detailed in section which involves:

(a) the combination of formal policies and architectural principles and techniques—grounded

on mobile code and capability URLs—for achieving fine-grained customization and

policy-based differential access to personal information and computational services (de-

tailed in sections 6.1 and 6.2);

(b) the assessment of the suitability and practical feasibility of the proposed techniques

through conceptual and technical analysis, and experimental application development

(section 7), and;

(c) the evaluation of our approach in the context of the healthcare domain, specifically

addressing electronic health record management systems, based on comparative analyses

and on patient information access, sharing, and, use scenarios (described in section 8).
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The contributions and outcomes of our research are:

(a) Setting forth novel techniques that, unlike current approaches and technologies, simul-

taneously enable providers to securely offer per-user, customizable personal information

services that comply with the organization’s data disclosure policies. In concrete, these

techniques enable binding privacy and operational policies to an organization’s capabili-

ties. According to these bindings, consumer-specific services are dynamically generated,

coherent with formally defined policies. We leverage formal policy languages in order to

specify domain specific policies.

(b) The secure, privacy-aware, customizable use and sharing of personal information in de-

centralized, trust-dependent domains though architectural principles on computational

exchange. We leverage the principles of the COAST architectural style, which are rooted

on the decentralized, dynamic, and asynchronous bilateral exchange of, not only infor-

mation, but computations among peers. We provide an architecturally sound reference

application which simultaneously enables provider controlled policy-based differential

access to personal data services and user-controlled service customization.

(c) Design guidance for using the developed technique by way of the COASTmed prototype

(section 7). This system allows to (1) formally specify policies with respect of the access

to patients health records; (2) bind these policies to specific system capabilities, and;

(3) permit users to achieve the desired customization given their individual authority to

access these services. Customization is achieved through functional composition, namely

by combining the capabilities and data made available to them by the system.

(d) Insight into the advantages, limitations, and the appropriate application contexts of

the developed techniques compared to other approaches with similar goals. We gain

these insights through theoretical and practical analyses by way of system development

experience, and comparative and scenario based evaluations.
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Chapter 2

Motivation

Many domains share the described challenges regarding the secure access, integration, shar-

ing, and diverse use of personal data distributed across agencies, where trust relationships

between people and organizations are disparate, and so is the authority to access this data.

We provide a few examples:

• Financial management. Participants in financial markets access and manage differ-

ent aspects of individuals’ finances. Banks maintain accounts and refinance loans and

mortgages; credit companies track acquisitions and manage credit card balances; fi-

nancial advisors manage our investments, bonds, and assets; the IRS keeps account of

our taxes; stock traders access aggregate purchase trends; credit bureaus craft personal

credit reports, and so forth.

• Judicial system. Lawyers, courts, law enforcement officers, investigators, penitentiaries,

and defendants participate to share, obtain, disclose, and withhold data relevant to a

case for their individual goals. Due to the competitive forces inherent in a trial, there

are many rules and restrictions on the authority to access and use data relevant to the

defendant, and the extent of such access.
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• Employment records are a recollection of a person’s work history. This data is of

interest to many parties such as new employers, credit institutions, recruiters, and the

government for assessing experience in a given field, as an indicator of stability and

reliability, or for other types of background checks. However, not everyone is entitled

to obtain all or part of this personal record; access is context dependent and requires

the data owner’s authorization.

• Government agencies. Diverse government branches hold distinct information about

individuals. For example, the DMV records our authority to drive, the IRS holds our

income and tax data, the Social Security Administration manages our retirement earn-

ings, and so on. Given the autonomy of these institutions, sharing information among

them for diverse reasons—such as gathering more information about an individual or

aggregating data for statistical studies of the population—is cumbersome, even when

authorized. To somewhat deal with this complexity, digital government applications

are aimed to improve communication between citizens and their governments, however

mired with legal and technical challenges to preserve individuals’ privacy [222].

• Healthcare. The healthcare industry involves a network of users and uses of health

data for various (often conflicting) purposes. Effectively accessing and sharing med-

ical records among healthcare providers has been a long standing challenge—time-

consuming and bureaucratic processes delay the delivery of healthcare. The sensitive

nature of this data requires rigorous disclosure control based on the data addressee, as

well as on the context and purpose of use.

“Collaborative systems require making information accessible to all who need it [however]

protect[ing] sensitive and confidential information, allowing only authorized personnel to re-

trieve and manipulate them” [275]. However, current web services, customization, and access

control technologies are insufficient to effectively and simultaneously support fine-grained ser-

vice customization and differential access to services. They either focus on service provision
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or on authorization and secrecy without offering a integral approach for supporting both

service consumers and providers with respect to their (often opposing) needs and concerns.

In section 4, an overview of these areas is provided, as well as discuss why these technologies

do not properly address the described challenges when appropriate.

2.1 Motivating Domain: EHR Management

The healthcare industry involves a network of users and uses of patient data for various

(often conflicting) purposes. The problem we approach is typical in this domain, where the

difficulty of securely sharing medical records among various stakeholders—patients, doctors,

researchers, insurance companies, and government agencies—is a well-known problem [67].

Healthcare is mired in bureaucratic processes; paper-based medical records are still used,

sharing is frequently done through faxed documents upon patients’ requests, and patients are

repeatedly providing the same information, even to the same healthcare provider. Effectively

accessing and sharing health records among patients, healthcare providers, and other involved

parties has been a long standing challenge. In addition, trust among the stakeholders in this

domain is not homogeneous, but disparate trust relationships are held, and so are the types

of services and data exchanged, the purposes for exchange, and the restrictions imposed for

accessing the data.

To ameliorate these time-consuming and often bureaucratic processes, the healthcare domain

is increasingly seeking digital optimizing technologies. For example, the adoption of elec-

tronic health records (EHR)—the recollection of data related to a patient’s medical condition

and treatment across time in a digital format—is on the rise. EHR management systems

include the technology to manage—add, delete, update, organize, and share—digital records.

Recorded information is, for example, patient identifying information, symptoms and com-

plaints, clinical observations, laboratory tests, diagnostic imaging reports, treatments, ther-
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apies, drugs administered, allergies, legal permissions, and the like [97]. Some EHR systems

additionally have tools for scheduling appointments, requesting referrals and prescription

refills, and decision support tools such as drug interaction finder [90]. Researchers and

system developers make a distinction between EHR and personal health record (PHR) sys-

tems; whereas the former serves health care professionals, PHR systems are designed for

end consumers—i.e. patients—so they can manage their own health information and be

actively involved in their own health care [251]. PHR examples are Microsoft HealthVault

and GoogleHealth [184].

Despite the availability of open source and commercial EHR and PHR systems and the

perceived benefits of their use—improved quality, safety, and efficiency—adoption is slow

and few healthcare practices (barring large medical groups and hospitals) have fully func-

tional EHR systems; cost, unsuitability of tools to practice-specific processes, uncertainty of

returns on the investment, the transience of vendors, privacy and confidentiality concerns,

and the resistance natural to breaking away from traditional processes are some of the most

significant barriers of adoption [35][90]. Although an Integrated Care EHR is meant to be a

“repository of information regarding the health of a subject of care in computer processable

form, stored and transmitted securely, and accessible by multiple authorized users” [141],

current technology still falls short in living up to this definition; patients and providers still

find themselves navigating in a complex healthcare system and in the need of immediate

access to their own health records. What remains constant with regards to the collection

and use of health data—and more generally of any private data despite of the domain—is

the need for “selective information sharing” [277] among multiple decentralized parties.

Therefore, choosing the healthcare domain as a source of our examples, practical experiments

(section 7), and evaluation scenarios (section 8.1) to approach the described research problem

is deliberate:
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• Despite the advances made in information system technologies, sharing medical data

involves a chain of time-consuming processes mostly involving traditional methods of

communication (e.g., phone, fax, mail).

• Patients often lack immediate access to their health information or to healthcare asso-

ciated expenses.

• The sensitive nature of the information, legal strictures, and privacy and security

threats related to the inter-organizational exchange of health data require rigorous

and secure authorization practices and fine-grained dissemination control (based on

user, context, and purpose of data use) to protect patient privacy.

• Patient information disclosure is contingent on a complex set of regulations—patient

privacy is protected by the Health Insurance Portability and Accountability Act (HIPPA)

(albeit fraught with ambiguous semantics) as well as by organization-specific privacy

policies. Health information systems are created without tight conformance to these

rules, leading to information authority abuse and privacy breaches in this field [69][75].

• It is not clear how healthcare processes, systems, and services capture or are bound to

privacy policies and regulations.

• It is extremely important to effectively document, communicate, and perform evalua-

tions on diagnoses, procedure outcomes, and therapies—the need for distributed and

decentralized health information systems is imperative [49].

• There is an essential need for the effective and safe exchange distributed health data

both for treating patients and to support socially beneficial privacy-preserving data

mining and analysis practices for domains such as public health [159][73][162].

• Over the last decade, electronic health record systems have been increasingly adopted

and have become core applications within hospitals [134][49]. These systems not only

engender social benefits, but reduce costs and optimize processes.
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• The Government is actively promoting and funding through the Health Information

Technology for Economic and Clinical Health Act (HITECH) (issued by the United

States Department of Health and Human Services in 2009) the adoption and “meaning-

ful use” of EHR technologies; this is a good opportunity for the technological flourishing

of the healthcare domain and the market growth for EHR systems [52].

• Agile and secure access and manipulation of personal data can arguably facilitate more

effective healthcare delivery [90]. In addition, healthcare systems “improve the quality,

completeness, depth, and accessibility of health information” and enable communica-

tion among parties involved in healthcare [91].

2.1.1 Motivating Scenarios: Obtaining EHR Data

The following scenarios address shortcomings in the domain regarding the lack of immediately

available data, systems and services policy compliance, patient information privacy and

security, the invariability and inflexibility of information services, and the integration of

distributed and independently managed data.

• A patient visits a hospital for the treatment of some medical condition. As part of

the treatment process, the patient’s demographic data as well as data related to his

symptoms and diagnosis is collected and entered into the hospital’s electronic health

records database. At a later date, the patient requires access to his medical record held

by this hospital. In order to obtain a copy of his records, he needs to make a formal

request either by mail, fax, or in person.

• A patient makes an appointment with a diabetes specialist. The doctor requires blood

tests results performed at a laboratory a week prior to the patient’s visit. The patient

calls the lab to requests that test results be sent to the physician. A few days later,

the complete lab tests arrive by mail at the doctor’s office (figure 2.1).
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Figure 2.1: A patient in the effort to access and share his EHR.

• Academic researchers are investigating the relationship between diabetes and cardio-

vascular diseases. For this purpose, they require access to health records from multiple

sources. After numerous conversations with healthcare providers and depending on the

hospitals’ administrative workloads and the time it usually takes to process this type

of requests, they obtain various sets of anonymized records, information released after

careful analysis of internal privacy policies. They extract and standardize the data

(given in several different formats, discarding what is unneeded) and run a specialized

analysis algorithm on this data (figure 2.2).

Figure 2.2: Researchers trying to obtain and organized distributed medical information.

• A patient diagnosed with hip osteoarthritis requires a hip replacement. Concerned

about the procedure’s cost, the patient calls her doctor’s office, the hospital, and her

insurance company regarding costs and coverage. Due to complex healthcare and

insurance processes, the patient receives incomplete information. After the procedure,
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the providers bill the insurance and several weeks later the patient receives an invoice

for an amount well in excess of the anticipated costs (figure 2.3).

Figure 2.3: Patient trying to obtain data from multiple, inter-related service providers.

Thus, obtaining the required information to which each user is entitled to access is time

consuming and binds users to bureaucratic processes.
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Chapter 3

Research Questions and Goals

The challenge of decentralized, secure, and meaningful personal information sharing is com-

mon to many domains. Cumbersome (often manual) processes and the shortcomings of

current technologies in appropriately addressing these problems lead us to ask the following

overarching research question: can we enable the different participating parties in a given

domain to access the information and computation capabilities they need, in the way and at

the time required, and within the boundaries imposed by the service provider by law or for

the sake of privacy? From this main question we derive more specific questions, namely:

1. How can providers of personal information—these being individuals whom the data

describes or organizations which collect and store this information—safely expose this

data according to specific trust relationships?

2. Can consumers in turn customize these services, manipulating personal data to fit

specific information needs, and integrate remote data provided by those decentralized

services? If so, what are the challenges and requirements for customizing such services?

3. What are the principal design decisions for a software system to simultaneously enable

customization and policy-based differential service access?
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4. Can such a system be developed in practice and what are the appropriate technologies

for doing so?

Inspired by these research questions, our research has two overarching goals. First, enable

differential access to a provider’s services—both data and computational capability—where

the provider discloses information according to privacy and operational policies. Differential

access permits providers to distinguish among users, treat users idiosyncratically, maintaining

multiple trust relationships, restricting and expanding the per-user availability of information

and functionality.

Second, enable service customization, allowing service consumers to manipulate personal

information and use the services’ computational capabilities at will, however within the

given authority and rights to access these assets

Concrete objectives that these overarching goals encompass include:

1. Enabling fine-grained control over the access to a provider’s services (both data and

computation capabilities) by supporting differential access according to specific trust and

legal relationships. For example, according to a hospital’s privacy policies, a patient

is entitled complete access to his health records, but insurance companies may only

access patients’ performed procedures’ dates and codes.

2. Allowing a service provider to revoke the capabilities granted to service consumers ac-

cording to changing trust relationships. For instance, a hospital can deny future access

to de-identified medical records to a researcher whose access agreement has expired.

3. Enabling service composition and customization that allows the user to fulfill specific

needs. For example, a researcher can run a sophisticated analysis algorithm for type 2

diabetes on a population’s lab results.

4. Enabling integration of information from different sources under different spans of
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authority. For example, the CDC may use services from various hospitals to monitor

and detect epidemic outbreaks.

The proposed approach described in subsequent sections are directed towards answering to

these research questions and fulfilling our goals.
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Chapter 4

The Context of this Work

Several communities have addressed decentralization, data management, service provision

and composition, customization, authorization and access control, trust, privacy, and infor-

mation integration standards, all relevant topics within our research. We highlight some of

this work in light of the challenges we attempt to solve, providing the context of our research.

4.1 Software Architecture

Since the mid-nineties, many academic papers and books on Software Architecture have been

written, refining the field’s concepts and addressing the overlapping and iterative stages of

software development—from requirement elicitation, to design, and to implementation and

testing [213][235][34][252]. The architecture of a software system involves the overarching

design decisions governing its behavior [252]. There are however other meanings of software

architecture. For example, Perry et al. refer to architecture as a set of elements (processing,

connecting, or data), form, and rationale; form determines the relationship among elements

and rationale involves the motivation of design choices for satisfying system constraints
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[213]. Others consider architecture as as a collection of interacting components [116]. More

recent studies view architecture as an arrangement or configuration of components—which

encapsulate data and functionality—and connectors—which enable the interaction among

components [34][252]. In depth studies, for instance, address software connectors and their

application context, such as Mehta et al.’s connector taxonomy [189].

Much research has been made towards capturing software architectures, namely on methods

to model software as a set of components and connectors. Designing architectures is about

abstracting the fundamental properties of the system from the implementation details, and

therefore deal with the complexity and intangibility of software in a tractable way. Modeling

methods range from graphical boxes and arrows diagrams such as those found in UML nota-

tions [124] to more formal representations such as those described in architecture description

languages (ADL) [188]. A variety of tools address these methodologies, supporting the mod-

eling process. For example, Rational Rose models UML diagrams [218] and Archstudio [88]

models architectures with xADL, an XML-based ADL. Other tools support the process of

collaborative design, for example Calico [182] and other e-whiteboard applications [66][85].

An important topic within Software Architecture are architectural styles—named collections

of design decisions that constraint software design in specific ways, are appropriate for a

particular development context, and which elicit desired properties in software systems [252].

Examples of architectural styles are pipe-and-filter, layered, object-oriented, blackboard,

client-server, and event-based just to name a few [252]. Our research deeply relates to the

notion of architectural styles, since our approach is grounded on the COAST style, described

in following sections (section 5.1).

Lastly, design patterns sit closer to software implementations, providing solutions for recur-

ring design and development problems. For example, the observer pattern where an object

notifies a list of observer objects regarding changes in state is widely used within event-based

systems. Gamma et al. provide a comprehensive account of design patterns [114].
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4.2 Decentralized Systems

Decentralized systems are composed of distributed components managed by independent

authorities. Extensive work has been devoted to communication protocols, availability, and

fault tolerance in distributed and decentralized systems. Decentralization has also been dis-

cussed within autonomous systems, decision and control, signal processing, real-time systems,

security, data management, networking, e-commerce, among others. E-commerce systems

rely on the engagement of multiple parties; agents automate product and merchant broker-

ing, product buying and selling, and negotiation in electronic markets [126]. Decentralization

also challenges collaboration between geographically dispersed software development teams

where the tradeoff is between collaboration and autonomy [39]. Decentralization is at the

core of P2P computing [191], file sharing [233] and decentralized multicasting [63], where

peers collaborate to complete tasks and share data. Decentralization has also been consid-

ered in the context of system availability, re-deployment, and runtime reconfiguration when a

proprietary system is part of a larger network of cooperating systems [180]. Middleware [98]

is an extensive field not only dealing with interoperability and synchronicity, but as well with

decentralization given the communication and coordination difficulties between autonomous

processes. However, the prime example of decentralization is the Web, which has scaled to

be the largest decentralized system driven by a set of architectural principles [107]. The

common trait of the described research (including ours) is communication, collaboration,

and coordination between various entities for diverse purposes, ours dealing specifically with

the decentralized access, sharing, and management of personal information.
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4.3 Information Management Systems

This field has greatly evolved from centralized relational databases to dataspaces of diverse,

distributed, and interrelated sources of free text, structured information, and semistructured

data [110][220]. The Web itself grew from a distributed, hypermedia-based information man-

agement platform [42]. The challenge still is to integrate information fragmented by location,

device, application, and ownership, challenges for which researchers have proposed diverse

management strategies such as grouping, semantic tagging, linking, and relations-based ap-

proaches [152]. In our context, the challenge is to create privacy-aware services for indi-

viduals and organizations to manage their information across autonomous, distributed, and

disparate sources. This challenge is related to personal information management [145] given

that individuals may, to some extent, share control and ownership of their data with many or-

ganizations. For example, in the healthcare domain, accessing information on-the-spot from

hospitals, physicians, and labs can optimize the delivery of healthcare [216]. Sustainable

information systems ought to be (rather dauntingly) open, scalable, flexible, portable, dis-

tributed, standard-conforming, semantically interoperable, service-oriented, user-accepted,

applicable to any media, and lawful [51]. Substantial research is focused on semantic search

and interoperability [50][172][220], given the diversity of terminologies organizations adopt,

as well as on system scalability and distribution [271]. The information management and

security needs in decentralized contexts such as healthcare remain substantial.
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4.4 Web Services

4.4.1 Service Provision

Service Oriented Architectures (SOA) [100] have been proposed to promote integration and

interoperability by enabling software systems to access information and applications exposed

by organizations through web services. Competitive technologies to implement SOAs include

SOAP-based [16] and RESTful web services [223]. SOAP-based services rely on a triad of

technologies: UDDI repositories to register and search for services, WSDL specifications to

describe services in terms of inputs and outputs, and XML-based SOAP messages which

provide a standard format of communication. Extending these technologies, the WS-* spec-

ifications provide a wide variety of additional services such as security, reliable message

delivery, and service coordination. In contrast, RESTful web services follow the constraints

of the REST architectural style [107] to access and manipulate resources through standard

HTTP operations.

A significant drawback of these technologies is that providers are solely in control of the

offered services and it is the burden of the user to manipulate syntactically and semanti-

cally the obtained information to fit specific needs. Current web services do not differentiate

among users, but are mostly publicly offered through rigid, static, and uniform interfaces.

As a workaround, private UDDI directories have been used to provide access to internal

services [83]. There are, however, significant problems with this approach. First, it entails a

very coarse-grained access policy; service is granted to anyone who has access to the direc-

tory. Second, there is no mechanism to prevent access to this service if unauthorized parties

somehow obtain access to the private UDDI. Third, UDDI is an standard that failed to be

widely adopted; public UDDI registries such as those offered by IBM and SAP have gone out

of service. An alternative for offering private web services (discussed in developers forums)

is to run these services within private firewall-protected networks, allowing only in-house
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access or through a VPN. However, these are awkward workarounds and hacks which, alike

to the private UDDI solution, only provide a binary access control policy. SOAP autho-

rization headers provided with user and password information have been also used to access

services. While this approach allows treating users individually, there is a great overhead

to provide differential services in such way. For decentralized SOAs, authentication, secrecy,

and integrity are necessary but insufficient for asset protection and service customization.

4.4.2 Service Composition

Developers solve more complex problems through service composition, namely combining

services to solve specific problems and building applications such as mashups—systems com-

posed out of third party services [274]. Popular service composition approaches include

BPEL, OWL-S, DAML, Web Components, XLANG, WSFL, WSCL, Petri Nets, among oth-

ers [19][190]. While some of these methods are implementation-oriented (e.g., BPEL and

OWL-S), others are for the purpose of specification and analysis (e.g., Petri Nets and FSM).

These languages allow composing services through the orchestration of service calls, therefore

explicitly describing the sequence in which services are invoked and the inputs and outputs

that link these services. Some of these languages are oriented to analysis and verification,

but it is not straightforward how to proceed to an actual implementation. Additionally,

there are specialized development environments such as SWORD [215] and Self-Serv [40] to

support the automated and semi-automated composition of services.

The shortcoming of some service composition technologies is having to use several, often

difficult, XML-based languages and standards to achieve basic compositions, the difficulty

of describing complex services, and resulting bulky and unmanageable service descriptions.

Current web services constrain developers to “embrace many technologies that must be

integrated in an intricate manner” [209]. Also, in contrast to our approach (section 6), it is
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not possible to compose complex services or “flows” from atomic message exchanges [240].

Moreover, recall that the building blocks of these service compositions are rigid, static com-

ponents which do not provide the flexibility of customization. Therefore, it is difficult to find

the required services to achieve the desired compositions, unless all services are developed

purposefully to work together, which is not the case in decentralized settings as the ones we

portray. Even then, the resulting service may not precisely fit the needs of all users.

However, the most significant drawback of these technologies is that they are mostly or-

chestration languages, where only one party controls the business process interactions [209],

an unacceptable option for our problem domain whose essential characteristic is decentral-

ization. This is for example the case of BPEL4WS, one of the most widely used service

composition technologies. In BPEL4WS, executable processes, similar to a flow-chart, de-

scribe the order of activities, the parties involved, the messages exchanged, and exception

handling rules [264]. For example, in a travel scenario the travel agent solely controls the

interactions with a customer, dictating a fixed sequence of steps that the behavior that both

a customer and the provider need to perform in order to schedule a trip [260].

In service choreography, independent parties observe the rules for interaction for standalone

message exchanges. The most popular choreography language in current web service tech-

nologies is the Web Services Choreography Description Language (WS-CDL), which speci-

fies contracts involving the common observable behavior of all participants [209]. “WS-CDL

is a language for specifying peer-to-peer protocols where each party wishes to remain au-

tonomous and in which no party is master over any other” [261]. So for example, a choreog-

raphy description may specify the publicly observable interactions that parties in the roles

of buyers and sellers may have. However, WS-CDL lacks explicit support for multi-party

interactions—it does not compose nor execute multi-party processes. WS-CDL is a design

and not an implementation artifact—its descriptions are used to generate web services code

skeletons or internal BPEL processes to assist with interoperability [32]. So in the buyer and
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seller example, the WS-CDL may be used to generate a buyer-side BPEL which describes

what are the sequence of seller’s service invocations, and therefore the information exchange

from a single party’s point of view. Therefore WS-CDL is not standalone, but requires in-

tegration with WSDL (to bind to specific WSDL interfaces), BPEL, and other web service

standards; WS-CDL is far from a simple service composition solution.

4.4.3 Service Customization

Researchers distinguish between customization and configuration, the former requiring source

code modification or extension [247], while configurable services explicitly specify the pos-

sible variations. For example, in [245] a meta-model specifies the variability of a service

so that the set of possible configurations can serve different users; domain experts specify

pre-configurations for different types of users, and users can create service variants.

Most customization approaches leverage semantic web technologies to: transform services

configurations published in directories to obtain others more suited to specific needs [228];

automatically select services that meet user preferences and constraints through semantic

translation [181]; use ontologies to transform customer requirements into high-level service

process models that are implemented by services discovered at run-time [61]; recommend

services by performing a similarity evaluation between a user’s parameters and service of-

ferings by measuring the distance between concepts in an ontology [59]. Other rule- and

policy-based approaches translate user preferences into rules in a high-level policy language

[138] and allow users to submit customization requests to service providers in order to build

new services based on the providers’ policies [171]—this approach requires the provider to

actually fulfill those requests.

Orchestration languages also allow service users to configure services through a sequence of

service calls. Indeed, composition is closely related to customization, given that composition
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allows customizing a service. For instance, Srivastava et al. refer to customization when

both RDF/DAML-S and BPEL4WS allow selecting at runtime among different branches of

execution constituted by different service compositions [240]. As will be seen in subsequent

chapters, we achieve in our approach service customization through service composition,

thus exploring this relationship. In the aforementioned typology, our approach is closer to

customization, therefore pre-defined configurations controlled by the provider do not exist,

but offered services can be used as building blocks to compose custom services.

Despite the availability of the described approaches, little attention has been paid to service

customization. Moreover, these techniques provide very limited customization capabilities,

by and large pre-defined by the service provider, where users do not have much ability to

customize services to their own needs. In addition, these approaches mostly rely on the

traditional web services stack, hence bear all the disadvantages previously discussed.

4.5 Service Security and Access Control

Providers may want to offer their services only to some users, defining per-user authority over

those services. To that end, authentication protocols verify the identity of parties [199]. For

example, third party two-way authentication services such as Kerberos mutually authenticate

communicating parties [243]. These protocols are based on public-key and other encryption

algorithms such as password-based one-way encryption functions [164]. In addition, digital

signatures demonstrate the authenticity of a message which cannot be altered or repudiated

[199]. With these protocols, systems can enable name lookup, principals grouping, program

loading, delegation, access control, revocation, and identity management [165].

Given an authenticated identity, access control mechanisms authorize the access to assets

(e.g., functions, databases, devices), bestow the corresponding permissions, and prevent
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using assets in unauthorized ways [175]. Authorization describes what each user is allowed

or not to do. For example, the model described by Lampson identifies a set of principals,

objects (e.g., files), requests to operate on objects, and a reference monitor which grants or

denies a request [165]. Traditional access control models include: (a) discretionary access to

individual objects based on user identity and on user-specific rules; (b) mandatory access is

based on subjects and objects categories, and; (c) in role-based permissions are associated to

roles [231]. In addition, domain-specific identity management and access control mechanisms,

for example, in the context of healthcare can be found in Chen et al. [68] and [15]. However,

it has been argued that none of the traditional access control models on its own is sufficient

in complex, large-scale decentralized environments such as federated healthcare [15].

Access control and authorization models have been proposed for SOAs, such as models

based on principals and objects’ attributes [275] and workflow-based models (i.e. according

to workflow processes and policies) [139]. Some web service providers also rely on network

level security mechanisms such as HTTPS and digital certificates for data transmission and

authentication [204]. The disadvantage of many of these models (e.g., Kerberos) is the

centralized authentication, key escrow, and dependency on certificate authorities.

There are software systems for which security—authentication and authorization—is core to

the application (e.g., operating systems). But although these security models and protocols

are widely adopted, well-founded technologies, they are often tacked on software systems

without being central to the architecture. Therefore, it depends on system developers to

wisely choose the appropriate technologies so that the implemented system has no security

gaps. As we describe in section 6, authorization and secrecy are a fundamental part of the

architectural principles of our approach, thus security is a given, there and always, and not

a mere afterthought.

The SOA world has also established security standards as part of their WS* stack. WS-

Security [195], for example, includes digital signatures, encrypted messages, or identifying to-
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kens in SOAP messages’ headers [44]. Other associated specifications and extensions to WS-

Security are: WS-SecurityPolicy specifies web services constraints, capabilities, and require-

ments in terms of policy assertions [242]; WS-Trust provides asserted credentials through the

exchange and brokering of security tokens to establish trust [194]; WS-Federation enables

groups in different authority spans to authenticate and authorize access to each other’s re-

sources [174]; WS-SecureConversation allows defining secure messaging semantics, contexts,

and session keys [241]. Other OASIS standards are Security Assertions Markup Language

(SAML) and eXtensible Access Control Markup Language (XACML) which allow the ex-

change of security-related data and specify role-based access control rules [204].

However, these XML-based standards are vulnerable, suffering, for example, message rewrit-

ing attacks [44]. We agree with O’Brien et al. [204] in that interoperability (and security)

start to fail on services based on a complex specification stacks—other than WSDL and

SOAP—when they are not adopted by all vendors or the same versions are supported. Also,

developers often resort to non-standard workarounds such as service access through virtual

private networks in order to provide (at least) binary authorization to services: users are

either allowed or forbidden to access a service. WS* technologies do not enable fine-grained,

per-user access, and selective use of web services, but are limited to adapt traditional access

control technologies to SOAs.

4.6 Privacy

Privacy concerns have been addressed in many fields such as networks and communications,

UI design, and HCI. Considerable amount of work has been done in the context of pri-

vacy and data mining practices. An array of privacy mechanisms have been proposed to

prevent re-identification of individuals in anonymized records containing sensitive informa-

tion. Privacy methods include data randomization, data swapping, and record distribution
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among autonomous hosts [12][74][108]. More sophisticated privacy preserving methods are

for example k-anonymity [249], l-diversity [178], t-closeness [168] and differential privacy

[95], each one improving the others’ deficiencies to minimize the risk of re-identification. A

persistent challenge in this field, however out of our research scope, is the inference problem

in the face of existing personal background information [102][198]—namely, when sensitive

personal information can be inferred from other available data. A related line of work is

that of privacy concerns when using personalized services. Wang proposed a framework for

privacy-enhanced personalization that follows product line techniques to model and enforce

user-defined privacy constraints in web personalization [262].

4.6.1 Privacy Concerns in the Healthcare Domain

One of the subjects individuals are most private about is their health information. Malicious

or unintentional disclosure of a person’s present or past medical condition can have serious

social and economic consequences such as ostracism, insurance coverage denial, and medical

identity theft, as well as other minor issues such as targeted marketing [184][17].

The Health Insurance Portability and Accountability Act of 1996 (HIPAA) was issued by the

U.S. Department of Health and Human Services [96] with the goal of protecting patient health

information. HIPPA provides the guidelines for the collection, use, and disclosure of health

data, protecting “individually identifiable health information” (e.g., name, address, social

security number). Entities covered under HIPPA are health care providers, health insurance

agencies, and health care clearinghouses. The rule authorizes the digital transmission of

health data for patients’ treatment and health delivery operations, and payment of health

services purposes, as well as the transmission of de-identified data for research and public

health purposes. These agencies are required to disclose the minimum necessary protected

health information needed for specific purposes [45].
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Patient’s privacy concerns and the potential risk of identification within de-identified databases

have led to the research and development of various privacy-preserving methods and tools

such as statistical privacy for databases [12], web search [270][272], location [161], and

healthcare-specific [30]. In fact, data protection and privacy is one of the most fundamental

requirements of EHR applications [137] demanding not only organizational but technical

safeguards to comply with HIPAA [70].

Healthcare providers establish specific privacy policies regarding collection, use, and distri-

bution of health data to comply with both HIPAA rules and organization-specific work ethics

and operation. “A privacy policy statement normally contains specific purposes for which

data can be used or disclosed” [45]. We distinguish between privacy notice and organiza-

tional policies. Polices within a privacy notice are those presented to the patient with the

intention of informing how the collected data will be stored and handled. These policies are

either presented in paper at the time of service or in digital format when using online ser-

vices. The Platform for Privacy Preferences (P3P), for example, allows websites to provide

machine readable descriptions of their privacy notices, making them accessible to users [81].

Organizational policies are instead those providing the guidelines for operation and employee

behavior within an organization. These policies may be included in organization manuals,

employee contracts (as a confidentiality agreement), or may be implicit and passed on in the

day to day operation of the organization. Our work is rather concerned with organizational

policies given our focus on enabling services that provide differential authorization and rights

according to specific privacy policies. Organizational policies may be further categorized in

internal and external policies. Internal policies dictate the behavior and the information

access rights within the organization, therefore guiding the clinical staff—general and spe-

cialist physicians, nurses, interns, residents, and administrative staff—through the workflow

of a highly hierarchical domain with diverse levels of permissions. External policies instead

regard the disclosure of information to people and agencies outside the organization. A sys-

tem’s operation thus needs to perform according to organization-established policies so that
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the offered services effectively comply with the privacy standards that the institution has

promised its customers and with internally-imposed regulations. Our approach is designed

to explicitly bind services to organizational privacy policies (section 6.1.3).

4.7 Privacy Policy Languages

Privacy policy languages describe, in a machine-readable format, policies to protect people’s

and organization’s privacy and to comply with privacy laws. Although these are the main

goals, policy languages have different purposes such as: informing users and publishing or-

ganizational privacy policies; capturing users’ own privacy policies; describing and enforcing

intra-organizational policies, and; supporting access control mechanisms [163]. Bonatti et

al. differentiate among and compare languages by the type of policies they can express:

role-assignment policies, access control policies, privacy policies, and obligation policies [55].

Syntactic differences among these languages are in part due to their deployment context.

Most languages are based on XML, the lingua franca for interoperability in web-based com-

munication. For example, P3P allows websites to describe their privacy policies in a machine-

readable format that can be interpreted by agents installed in users’ computers [80]. A P3P

Preference Exchange Language (APPEL) instead allows users to specify their privacy poli-

cies so that they can be compared to websites’ policies for incompatible attitudes towards

data use and distribution [79].

Our work is more related to languages which capture obligations towards customers’ data

and internally enforce legal and self-imposed privacy policies. Examples are IBM’s Enter-

prise Privacy Authorization Language (EPAL) [23] and OASIS’s eXtensible Access Control

Markup Language (XACML) [203]. In EPAL, policies are a set of rules involving parties,

actions, purpose, conditions, and obligations. XACML instead provides a request/response
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language where given a query, an action is permitted or denied according to a set of privacy

rules. In addition, OASIS “XSPA profile” describes how to use XACML to exchange domain-

specific privacy policies and promote interoperability among organizations in the healthcare

domain [202]. Compared to P3P-like languages, these make a finer-grained distinction of

users, purposes, and conditions, having as well policy refinement capabilities [27].

Policies have also been expressed in deontic logic based languages, therefore based on rights,

prohibitions, and obligations. Rei, for example, is a logic-based policy language designed for

pervasive applications where mobile devices dynamically access nearby services and devices

[147]. Rei has also been used to augment semantic web languages such as OWL-S (used

to describe services’ capabilities) with privacy annotations, namely rules based on domain-

specific ontologies [148]. Basin et al. propose a language based on first-order temporal logic

to specify security policies [33]. Ponder is also a language designed for the specification

of security policies, including authorization, filtering, refrain, and delegation policies [84].

However, Ponder is oriented towards access control to network, storage, and application

management more than authority over private information.

Although languages themselves do not guarantee conformance to policies, they can be used

along other mechanisms to enforce conformance as proposed in our approach 6. Yee et al.

derive a set of requirements for systems to be able to comply with defined privacy policies

and propose an architecture for service-oriented systems that protect consumer privacy [273].

The Platform for Enterprise Privacy Practices (E-P3P) is a more comprehensive approach

(thus not only defines a language) which enables the enforcement of privacy promises made

to customers [154]. However, E-P3P focuses more on inter-enterprise management of poli-

cies rather than on organization-specific policies to support privacy-preserving services. In

alignment with the goals of our work, Karjoth et al. provide a model where organization-

wide privacy policies are enforced throughout business operations to protect personal data

from privacy violations [153]. Particularly relevant to our work is privacy in the context of
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Electronic Health Records (EHRs). The Cassandra system [37] for instance, includes a lan-

guage for expressing security policies which is role-based and which supports credential-based

access control—appropriate in our context of decentralized systems.

4.8 Policies and Services

Core to the contribution of our work is offering services that comply with the organizational

privacy and operational policies with regards to individuals’ data disclosure. Other research

work has tacked comparable goals. For example, Kagal et al. [147][148], in the context

of the Semantic Web, leverage ontologies to model capabilities, security requirements, and

privacy policies to match users and request to the appropriate Web services. Their OWL-S

Matchmaker tool then verifies that services fulfill request requirements, and that users comply

likewise to the service’s policies. Kagal et al. use the Rei policy language to describe security

and privacy annotations. Although their goals are akin to our work, namely integrating

policies with capabilities, our technical and operational approach are fundamentally different.

Our solution based on computational exchange seeks to simplify policy-based differential

service access, while Kagal et al.’s implementation is based on the notably complex WS

collection of languages and specifications. Also, services need to be created for each user/user

type (as opposed to being generated on the fly according to policies), therefore it may suffer

scalability problems. In addition, our research encompasses not only the authorized exchange

of information, but the user-controlled service customization. Kagal et al. tackle an issue

that we want to include in our future work, namely inspecting as well the services’ output for

privacy policy violations, highly dependent on how services are implemented. Kagal et al.

also consider the user’s policies for service delivery. However, since our approach empowers

users to customize their own services, they can computationally manipulate services’ output

to meet their needs.
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Rezgui et al. [222] present an object-oriented alternative that relies on the combination of

digital privacy credentials, data filters, and mobile privacy preserving agents (implemented

as Aglets [166]) in the context of Web services for e-Government. Privacy credentials define

the service access scope a user is entitled to and data filters use those credentials to select the

appropriate and authorized data from the provider’s local assets. Mobile privacy have the

goal of preserving privacy at remotes sites by returning from the service not only information,

but an agent that provides a privacy-aware interface to this information within the service

user. Our research, at this point, is not concerned with how the information will be used

and disseminated by service users.

More traditional approaches include mandatory access control models for web services, where

policies are formally specified on a temporal-logic-based language and are processed by a

policy enforcement engine which generates platform-specific access control components that

mediate access to Web services [237]. Attribute-based access control is another alternative

to protect confidential information, however making it accessible to authorized personnel

though richer service-level semantics [275]; incoming service access request messages are

forwarded to a “Policy Decision Service” for approval or denial. However, the disadvantage

of this approach is the repetitive assessment of access permissions. In contrast, our approach

generates (after the appropriate credential presentations) a per-user service access reference

(a Capability URL described in 5.1) based on the existing policies; from then on the user is

free to access the service without further identity presentation or policy approval processes.

The Web Services Policy Language (WSPL) produces policy rules as a sequence of predicates;

rules involve, for example, authentication, QoS, messaging security, and privacy associated

to web services [18]. WSPL is similar to our approach in that service users must formulate

requests that are acceptable to the provider to obtain the required service results. More

importantly, WSPL supports some limited version of differential access. For example, a

policy may specify how much each member type is required to pay for service use. WSPL
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also has strong considerations for decentralization—autonomous intermediaries may handle,

under defined policy conditions, confidential personal information exchanged between service

and consumer. This work is however different from our approach in that it is focused on

the characteristics of the messaging protocols between service user and consumer, and on

obtaining “acceptable” service outputs in terms of criteria such as format, encryption, and

certification. These requirements are, in general, domain independent ones, while the policies

we address are domain-specific, therefore associated with an organization’s operation. Also,

incoming messages are inspected and compared with policies to either deny or accept a

request. In COAST—the architectural style on which our approach is grounded—each service

CURL is generated for a specific user based on the organizations’ policies, so there is no

need to repeatedly inspect incoming messages against all service’s policies. Also, compared

to Rei—the policy language we use—XACML (language from which WSPL is a subset from)

specifications increasingly become verbose and complex.

The SOA community provides the WS-Privacy specification which describes services (and

thus organizations’) privacy policies to a web client [196]. It is implemented as the P3P

specification previously described. Other similar work involves a negotiation approach where

user agents negotiate with service providers on the amount of personal information to disclose

to obtain service results [254]; privacy preferences are specified as domain specific ontologies

in the DAML language. Although this work is concerned with organizational data disclosure

policies, the focus is on informing users of such practices and allowing them to compare

policies with their own preferences, but not necessarily on deriving services from policies or

on constraining services such that policies are enforced. Chou et al. propose a two-leveled

access control policy where policies from both the service user and the service provider are

accounted for, as well as the service’s own security attributes, when selecting composite

services (sequences of service invocations) through a service filtering process (services that

the user is not allowed to invoke are discarded) [71].
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More tangentially, the WS-Policy specification [29] defines the security requirements and

constraints for parties exchanging messages (requirements such as “all messages shall be

encrypted using the AES algorithm”). WS-SecurityPolicy extends WS-Policy by describing

service constraints and requirements to secure messages as policy assertions. These speci-

fications are, however, unrelated to the goal of overseeing domain-specific data-disclosure.

COAST’s infrastructure provides secure messaging so that security is part of every COAST

application, allowing the architect to focus on the application semantics. Bhatti et al. further

integrates WS-policy with the XML-based X-GTRBAC access control policy specification

language to enable more fine-grained access privileges to Web services [46]. In this autho-

rization framework, policies attached to different service components are combined to output

the appropriate access control policy for a given role. Examples are provided in the context

of EHR systems.

Policy languages have also been used to describe the conditions under which web services

are offered or requested to assist in the process of service negotiation and service selection

based on functional and non-functional properties [11].

4.9 Trust and Reputation

Trust management goes beyond computer security to handle the dynamic relationships be-

tween parties and to exchange information across organizational boundaries. Most trust

and reputation models rely on personal experience and third-party recommendations [226].

In peer-to-peer networks trust relationships are built over time through the interaction be-

tween nodes [170]. For example, in P2P file sharing, each peer has a unique global trust

value based on the peer’s upload history [151]. In the Web of Trust (WoT) [164] trust is

propagated through a chain of nodes or aggregate user opinions [125][170]. Other types of

trust models are statistical—requiring a number of parties to recommend an entity—and
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hybrid which also considers the credibility of the recommenders [170]. WS-Trust allows web

services to be accessed based on a token issued by an authenticating Security Token Service.

Trust and reputation models can be integrated into the foundations of a software system

through the constraints of appropriate architectural styles (e.g., the event-based PACE style

[248]). In the context of our sample domain, interactive trust negotiation to access data is

at the core of an EHR systems architecture [14].

4.10 Ontologies

An ontology is the organized knowledge structure that describes a domain, involving con-

cepts, their relationships, and facts [65]. Associations between concepts may involve special-

ization (B is a subcategory, type, or class of A), containment (B is a part of A), roles (A’s

role is B), attributes (B is a property of A), and more complex time-based, state, location,

and causal relations [244]. Ontologies are essential in knowledge-based and domain-specific

systems, and equally important to enable shared understanding and concept reusability in

inter-organizational communication.

Ontologies can be captured through informal natural language, semi-informal structured

natural languages, semi-formal artificial languages, or formal proofs and theorems [256]. Vi-

sually, an ontology can be described as a directed graph where nodes are the concepts and

edges describe the relationships among them. Ontology technologies include both languages

and tools to describe and formalize ontologies. Examples of such technologies are the Knowl-

edge Interchange Format [119], WebODE, Ontolingua, Protégé-2000, WebOnto, Chimaera,

OntoSaurus, and Loom [77][236]. Most of these technologies were built as standalone tools,

however, some produce OWL-, RDF,- or XML-based definitions and database schemas that

can be used by other systems.
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Ontologies may also be explicitly specified through database schemas or implicitly found

within existing databases. WebODE [78] and SOR [176], for example, use relational databases

to store and perform inferences over ontologies. The difference between an ontology and a

database schema, a quite subtle one, is often misunderstood. Uschold argues that while

an ontology is the structure of some domain, a schema is the structure of a database, so

the purposes of these technologies are different; the focus of a database is the efficient data

storage and retrieval, while the focus of ontologies is to provide humans and systems shared

understandings [256]. Other work considers both data models or information modeling tech-

niques, yet ontologies are favored when specifying domain knowledge requires “enriched”

meaning [183]. We add to this discussion by pointing out the difference between storing an

explicit ontology in a database and deriving an ontology through inferences made on the

structure of a database. In the former case, for example, a three column table may store

an ontology where the first column specifies the relationship between objects named in the

second and third columns. In the later case, we can infer relationships between objects, for

example, though the existence of foreign keys.

Given the similarity and natural compatibility between ontologies and schemas (both ways

of organizing knowledge), tools have been developed to transform ontology specifications

to database schemas [25], and inversely tools to automatically extract an ontology from

a database schema (e.g., Li et al. obtain OWL ontologies from relational databases [167]

). In the former case, the purpose is leveraging databases’ scalability, security, transac-

tion management, and optimized search. However, a disadvantage of storing ontologies in

databases is the difficulty to make runtime modifications [25], while domains concepts and

their relationships are always evolving.

Ontologies are very relevant to our work since the domains we consider are complex and

highly dynamic—numerous interacting parties exchange various aspects of personal infor-

mation. Therefore, this complexity demands a structured organization of knowledge and
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shared semantics for meaningful inter-agency data exchange. In particular, domain vocabu-

laries are essential for the specification of domain policies.

4.10.1 Healthcare Information Standards

Standards in the health industry have been developed to achieve interoperability among

health care providers and inter-agency medical systems to record, exchange, and process

patients’ health information. Several organizations are involved in the making of these

standards such as the European Committee for Standardization (CEN) [2], Health Level 7

(HL7), the International Organization for Standardization Technical Committee for Health

informatics (ISO/TC 215), OpenGALEN, and the Integrating the Healthcare Enterprise

(IHE) industry initiative [97][234].

Standards differ in goal and scope; some standards specify the content structure of medical

information, others information communication and security protocols, and others provide

a shared vocabulary among health care providers [232][97].

Content structure standards. Examples of EHR content structure standards for ex-

changing biomedical data are the openEHR archetype, HL7 Clinical Document Architecture

(CDA), CEN EHRcom (or EN 13606), DICOM SR, and the Medical Markup Language

[97][234]. For example, openEHR archetypes are structured information models—expressed

in the Archetype Definition Language (ADL)—which describe computable, reusable, discrete

medical concepts such as “blood pressure” [36]. In addition, some of these protocols allow in-

cluding multimedia—pictures and videos. Also, some standards are specific for certain type

of content—DICOM is for medical imagery, existing already a standard library of domain

knowledge [1][232].

Communication and security protocols allow submission, location, query, and retrieval
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of electronic health records. They may also provide security services such as message encryp-

tion and user authentication (often through the Transport Layer Security (TLS) protocol)

[97]. Examples of such protocols are EHRcom, Web Access to DICOM Persistent Objects

(WADO), DICOM Structured Reporting (DICOM SR), the Retrieve Information for Display

(RID), and the IHE Cross-Enterprise Document Sharing (XDS) [97]. Content structures are

exchanged, for example, via XML, ebXML, or EDI messages. WADO, for example, defines

web interfaces to access DICOM content. Some standards may define both content structures

and access protocols, such as EHRcom.

Shared vocabulary standards provide vocabularies and code systems that support the

semantic exchange between healthcare professionals and systems. Examples are the Logical

Observation Identifiers Names and Codes (LOINC)[5][186], the Systematized Nomenclature

of Medicine (SNOMED) [239], RxNorm (defines clinical drug names), the World Health

Organization’s Anatomical Therapeutic Chemical (ATC) Classification System, the Inter-

national Classification of Diseases (ICD), the Current Procedural Terminology (CPT), the

International Classification of Primary Care (ICPC), and The GALEN Common Reference

Mode [97][232][131]. LOINC, for example, allows identifying and reporting clinical and labo-

ratory observations so that healthcare stakeholders—such as physicians, hospitals, laborato-

ries, pharmaceutical manufacturers, government agencies, and the like—can not only share,

but automatically process, organize, and analyze information. Integration among these stan-

dards is achieved through technologies such as the Unified Medical Language System (UMLS)

which maintains mappings among vocabularies [131] and the ARTEMIS middleware which

enables interoperability between systems using diverse vocabularies [56].

Content structure standards such as HL7 messages may embed this standard domain knowl-

edge. For example, openEHR archetypes may contain ontological definitions authored by

domain professionals or as defined in standards (such as LOINC or SNOMED), as well as

bindings between local and external vocabularies [36][97]. Similarly, the HL7’s Vocabulary
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Technical Committee creates the domain terms used in CDA documents to disambiguate

domain jargon [232].

Despite the existence of structural and communication standards, the problem of inter-

operability, share understanding, and widespread use of electronic health records and the

described standards remains [131]. Hindering the pragmatic interoperability among health-

care institutions are multiple, competitor standards, slow standardization processes, a lack

of balance between clinical domain expertise and software engineering efforts, and propri-

etary interests, among others [131]. Moreover, in spite of semantic translation efforts such as

UMLS and ARTEMIS, redundancies, errors, and ambiguity are inevitable given the amount

of clinical information involved. The need to create and manage shared, inter-institutional

EHRs lingers [234].
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Chapter 5

Foundational Technologies: COAST

and Policy Languages

Our approach includes a conceptual, technical, and experimental analysis of the suitability of

combining a set of architectural principles and techniques with formal policies for achieving

fine-grained customization and policy-based differential access to personal data services.

Accordingly, this work exploits and contributes to recent studies in Software Architecture,

specifically to the COAST architectural style for the design of decentralized, adaptive, and

secure systems [121][122].

With the goal of providing policy-based differential access to services, we exploit the Rei

policy language for defining privacy and operational policies. Rei is chosen among other

policy languages after thorough evaluations (section 6.1.2) due to its compact, well-defined,

and expressive logic-based syntax. These technologies, in combination, are core components

of our approach for achieving the solution to the identified problem.

Following, we present the architectural foundations of COAST (section 5.1.1), its supporting

infrastructure (section 5.1.2), and its comparison to other styles and technologies 5.1.3.
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Additionally, we provide an overview and evaluation of a set of selected policy languages,

leading to Rei as the technology of choice for implementing our approach (section 5.2).

5.1 The COAST Architectural Style

We have chosen to begin our studies using COAST for three fundamental reasons:

• COAST has a strong emphasis on decentralization, a fundamental characteristic of

domains such as healthcare and e-commerce. Decentralization is at the heart of the

problem we approach, involving multiple autonomous parties, multiple uses of personal

information, divergent trust relationships among them, and variable authority to access

personal information.

• COAST is designed to provide secure on-demand services which are created and ter-

minated independently. Its foundations in mobility and the ability to compose com-

putations from available assets provides a customization power not achievable with

traditional web services. Also, its strong focus on adaptation allows evolving, expand-

ing, and creating new services, necessary to cope with changing trust relationships in

these dynamic domains.

• Lastly, and importantly, in COAST security is everywhere, always, and built into the

provided supporting infrastructure; the supported capability-based security is appro-

priate to enable differential access to a provider’s services.

5.1.1 Architectural Foundations

An architectural style is a named collection of design decisions applicable to a particular

development context, which constrains a system’s design to elicit beneficial properties in
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resulting software systems [252]. The COAST architectural style was conceived for decen-

tralized contexts were parties come and go as they wish, and create, terminate, evolve, and

use autonomous services for their own purposes. COAST’s design decisions are rooted in

a paradigm of computational exchange, where peers bilaterally exchange, not only infor-

mation, but computations. In COAST, the application state evolves through the dynamic

and asynchronous transfer of computations, allowing the application to scale and evolve in

a decentralized way.

The COAST principles are as follows:

• All services are computations whose sole means of interaction is the asynchronous mes-

saging of closures (functions plus their lexical-scope bindings), continuations (snapshots

of execution state), and binding environments (maps of name/value pairs).

• All computations execute within the confines of some execution site 〈E,B〉 where E

is an execution engine and B a binding environment.

• All computations are named by capability URLs (CURLs), unforgeable, cryptographic

structures that convey the authority to communicate. Therefore, computation x may

deliver a message (closure, continuation, or binding environment) to computation y if

and only if x holds a CURL uy of y.

• The interpretation of a message delivered to computation y via CURL uy is uy-

dependent.

Security. Given that communication and application evolution in COAST is by way of

computational exchange, and therefore exposed to the security risks of mobile code crossing

organizations’ boundaries, it is imperative that security mechanisms are inherent to the

architecture and not a development afterthought. In COAST security is everywhere, always.
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COAST is based on two security principles. First, the Principle of Least Authority (POLA)

[227] dictates that: (a) the default situation is the lack of access; accessibility should be based

on arguments on why authority should be granted, and; (b) users should be granted the

least amount of privileges necessary to complete their task. In COAST, security comprises

authority (assets granted access to) and rights (use rights of those assets). Second, COAST

sustains capability-based security [53] which provides an unforgeable “key” conferring both

authority and rights. “Holding a key implies the authority to send messages to [an] entity or

to pass the key to a third party” [53]. Similarly in COAST, a key is reified by a capability

URL and entities are computations. These principles confine the authority and rights of

computations communicating with and accessing the services of another one.

Figure 5.1: Notional structure of a COAST execution host
[121].

Execution environments. An execu-

tion environment 〈 E, B〉 is a execution

engine/binding environment pair that

exists within some host. Multiple ex-

ecution environments can exist within

the same host. Execution engines are

language-specific interpreters or compil-

ers which execute code. E may en-

force site-specific semantics such as lim-

its on the consumption of processor cy-

cles, memory, storage, or network band-

width. Binding environments are a set

of key/value pairs which provide the lexical context for executing computations, therefore

bounding the functional capability of incoming computations. These environments may con-

tain primitive values, data structures (including binding environments), and general purpose

and/or domain-specific functions. In accordance with POLA, environments should contain

only the necessary capabilities that an incoming authorized computation need to execute.
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COAST computations. A COAST computation is the execution of a closure c by exe-

cution engine E in the context of binding environment B. As described, B provides the

local functional capability—the global bindings—available to that closure. c may specialize

its capability by composing functions from bindings available in B. Also, closure c may

gain additional capabilities by receiving additional binding environments in a message from

trusted computations to augment B.

Capability URLs are the pivotal architectural elements providing capability-based se-

curity, conferring authority and rights to communicate with computations they name. A

CURL ux is a cryptographic, unforgeable, tamper-proof, and digitally signed (by x’s execu-

tion host) reference to computation x which other computations use to send messages to x.

ux can hold additional metadata (including closures)—arbitrary semantic information un-

derstood and used by x to process messages sent using ux. CURLs constrain the interaction

computations can have with each other given that they are bound to specific binding envi-

ronments. Therefore, a CURL ux implicitly denotes the services offered by x, accordingly

providing functional capability to closures sent in a message to x using ux. CURLs contain

all the information that the named computation will need in the future to serve the CURL

holder(s). In addition, computations may gain additional capabilities by holding CURLs to

other computations—computation x gains additional capabilities, those contained in com-

putation y, by obtaining uy. CURLs may cap capabilities as well, not only by addressing

capability-limited computations, but through temporal and use count semantics.

Asynchronous messages. When a computation x sends an arbitrary message m to y using

CURL uy, both m and uy are delivered to y. Messages may contain primitive values, data

structures, binding environments, and closures. y needs to understand the semantics of m in

order to evaluate it. A closure c, content of message m, leaves behind its global bindings at

Bx. These are then “re-wired” with bindings at By. If some binding within m is not locally

resolved, it is discarded. Otherwise, c is evaluated. If a “reply-to” CURL is provided, the
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result is returned to the addressee.

Message interpretation is at the core of COAST’s security principles; CURLs and their

corresponding computations and binding environments prevent malicious code from being

evaluated, since no local computation beyond the scope of B is possible. For instance, it is

impossible for c to execute functions to access the file system at y since the required functions

do not exist in By. Therefore, the execution site determines the capabilities and side-effects

of all visiting computations.

Framed in Software Architecture concepts [252], COAST’s software components are compu-

tations control system functionality and access to data. CURLs and asynchronous messages

are software connectors which permit the interaction between decentralized computations.

Figure 5.1 presents the notional structure of a COAST execution host (figure from [121]).

5.1.2 Motile/Island

Although architectural styles are detached from implementation details, some technologies

are more appropriate than others in order to adhere to a particular architectural style.

Some architectural frameworks and infrastructures have been developed to support building

applications cohesive with an specific architectural style. For example, the Myx framework

was purposefully built to develop conforming applications to the Myx style [87]. Similarly,

the Motile/Island infrastructure [121] is provided to assist mapping COAST’s architectural

constraints to application implementations.

Motile is a single-assignment functional language deliberately created for the serialization

and exchange of mobile code among COAST peers. In Motile, computation exchange is

reified by mobile code. COAST computations (which include closures and binding environ-

ments), messages, and CURLs are implemented in Motile. In addition, to waive common
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shared memory problems, all Motile data structures—used to build COAST primitives—are

persistent and immutable [207].

Actors. COAST computations are implemented as actors [13], computational agents that

are capable of receiving messages. In response to messages, actors either send a finite set

of messages to other actor(s), execute some private computation, or spawn (create) one or

more new actors. Actors are complex data structures that principally maintain a thread

of execution by which messages are sent and received. Actors are initialized with specific

binding environments, and therefore with an initial set of functional capabilities. Motile

actors are named by one or more CURLs which provide specific authority and rights to

other communicating actors.

Islands are the reification of COAST hosts—single address spaces described by an IP ad-

dress/communication port combination. Islands host one or more actors. A root actor is

a the top of an arrangement of clans—a semantic grouping of actors (e.g., image process-

ing or audio playback clan). The rationale to this arrangement is modularity, separation

of concerns, and decomposition of a COAST system into manageable units of computation.

Communication between inter-island actors is secure and encrypted; islands are self-certified

[149], associated to a public key, and issued CURLs are cryptographically signed. In contrast

to centralized authentication approaches previously discussed (section 4), self-certification is

independent of certificate authorities and in tune with decentralization.

Compilation and Serialization. Bedrock to the COAST infrastructure is a compiler

which translates Motile closures into Racket, a dialect of the Scheme functional programing

language. Closures are then serialized and transmitted to actors running on some other

islands, where they are recompiled into Motile closures. Closures leave their global binding

environments and are rebound with the available bindings at the actor receiving the closure.

COASTcast is an application for decentralized, dynamic, and collaborating HD video
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streams which demonstrates how to build dynamic, decentralized applications with COAST

(developed by UCI student Kyle Strasser). Computations embodying encoders, decoders,

proxies, and pub/sub relays are dynamically created, manipulated, and reconfigured, moved

from one host to another, and arranged to share SOA-style services to stream real-time

video from and to fixed island assets (i.e. from cameras to displays). Computations hosted

on different islands show how decentralized collaboration and inter-organizational processes

can be carried out through computational exchange.

5.1.3 Comparison with other styles and technologies

COAST is a complex style which is composed by or shares properties with other styles,

therefore obtaining as well their evoked benefits. For example, COAST is a peer-to-peer

composite style, where autonomous peers communicate through a network; peers behave

like either clients or servers within individual interactions. However, COAST also describes

the security constraints of communication and the structure of peers. Also, alike event-

based styles, parties in COAST communicate by way of asynchronous messages [117][252].

However in COAST, messages are not limited to events which parties broadcasts to one or

more parties, but are also means of one-to-one communication and direct invocation.

COAST is also strongly founded on the mobile code style, where code is sent to be executed

in a remote host [112][252]. Fuggetta et. al identify three types of mobile code: (a) remote

evaluation (code is evaluated elsewhere), (b) code on demand (code is fetched from else-

where and evaluated locally), and; (c) mobile agent (both code and data move elsewhere to

execute, leveraging the host’s resources). COAST style and mechanisms are able to imple-

ment these three paradigms which are application- and context- dependent. In comparison

with other mobile code technologies, COAST and Motile/Island infrastructure is chosen

over technologies such as Agent Tcl, Ara, Sumatra, Telescript [112]; COAST intentionally
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supports weak mobility to protect local assets [122], while these technologies support strong

mobility, therefore migrate both code and execution state, imposing additional security chal-

lenges. Other technologies supporting weak mobility are, for example, Facile, Aglets, M0,

and Tacoma [112]. However, these technologies do not address potential communications

constraints according to the individual user’s privileges nor the conditions of code mobility;

M0, for instance, executes the received code unconditionally. COAST explicitly imposes

security constraints on the capability to communicate and execute code with remote hosts.

In addition, COAST further addresses the context in which mobile code is evaluated. In

other words, COAST is also concerned with the structure of components (i.e. hosts) and

not only on the means for communication (connectors).

There are other styles addressing distribution and decentralization. For example, elements in

the C2 style also maintain a message-based communication. However C2 relies on message

routing intermediaries and it is strongly focused on achieving a distributed model-view-

controller pattern, an important but distinct goal from ours [252]. Also, C2 enforces layered

communication, in which event notifications and request flow unidirectionally from one com-

ponent to the other. In COAST, any peer may be communication initiator or receiver.

In the distributed objects style, method calls to an object are performed across a network

[252]. This style is itself a combination of the object-oriented and the client-server style.

However, as analyzed by Taylor et al., interactions are mostly synchronous [252]. In ad-

dition, objects have uniform interfaces for all callers, therefore not appropriate for service

customization. An ad hoc solution may be to customize services according to variation in

method parameters, however distinction among users is not the focus of the style and this

solution may not scale. COAST naturally enables combining services, while service compo-

sition with distributed objects would involve a series of method invocations to a single or

multiple objects, locally combining individual results to perform subsequent invocations.

Representational State Transfer (REST), the style which describes the architecture of the
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Web, is also appropriate for large-scale, distributed, and decentralized systems [107]. REST

focuses on communication protocols and the structure of data elements, but is not concerned

with the structure of components (clients and servers). However, the way web applications

work has changed significantly since the academic paper on REST was published in 2002.

Erenkrantz et al. recognize the dissonance between more recent web applications and the

prescribed principles of REST [99]. For example, applications such as e-commerce rely on

stateful interactions; cookies are used to resume previous interactions. They also found that

others, such as web-based archives, require dynamic instead of static resource representa-

tions. Widely adopted SOAP-based web services are based on custom methods other than

HTTP’s uniform interfaces (however hijacking the GET method to perform non-idempotent

operations) and are not amenable to intermediaries and caching [99][223]. Most relevant to

our work, are emergent applications and technologies such as mashups and AJAX, which

through asynchronous request obtain data and code to perform client-side computations [99].

The examples laid out by Erenkrantz et al. demonstrate that current needs require richer

interactions that go beyond what distributed hyper-media (as described by REST) can offer.

5.2 Policy Specification Languages

With the goal of enabling fine-grained, trust-based control over a provider’s services (G1), it

is necessary to accurately capture trust and legal relationships among consumer and provider.

Policy languages are appropriate for capturing service access conditions; formal policies are

unambiguous and support avoiding conflicts given their proneness to automated interpreta-

tion and processing. In addition, the formal specification of policies facilitates their storage

and categorization, promotes the use of standardized concepts, makes them more easily

available and transmitted, and further enables interoperability between systems.

Accordingly, it is necessary, as a first step, to select an appropriate policy language for
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capturing policies. As previously described (section 4.7), privacy policy languages have

different goals. We are interested in leveraging a language that is able to describe intra-

organizational policies (i.e. internal business rules), and therefore support access control

processes to COAST-enabled services.

We evaluate a set of policy specification languages based on their expressiveness, hence their

ability to represent selected organizational privacy policies. Our goal here is not to perform

an exhaustive breadth- nor depth-wise evaluation of policy languages—thus neither covering

all languages nor the extent of their expressive power—but to provide a representative set of

alternatives to describe policies in our experimental domain. The analyzed policy languages

are EPAL, XACML, Cassandra, PeerTrust, Ponder, and Rei. We briefly looked at languages

such as Protune [54], SecPAL [38], RDM2000 [276], RT [169], PolicyMaker [48], KAoS [257],

and WSPL [18]. However, these were not analyzed in depth either because the goals of the

language were too divergent from ours (e.g., RDM2000 focus on role-based delegation), there

was not sufficient guidance and example documentation (e.g., KAoS), or because we analyze

a very similar language in semantics and syntax.

5.2.1 Evaluation Criteria

We evaluate the appropriateness of the following languages based on their purpose and

semantics, and their ability to convey policies in our experimental domain—healthcare, and

more specifically related to the access to electronic medical records. The language ought to

be able to express subjects (people and organizations involved), their active roles, objects

(to what access is being granted or denied), attributes, obligations, rights, prohibitions,

conditions, exceptions, usage (purpose), and temporal constraints; a set of statements that

include these semantics constitute authorization rules to access a service (i.e. data) [211].

In appendix A, we provide a collection of sample health care practitioners’ privacy poli-
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covered concept policy

P1 subject, object, right Only cardiologists are allowed to access cardiac medical records.

P2 temporal constraint No one shall have the ability to delete clinical information until the
appropriate time period has expired (6 years).

P3 active role A doctor should be granted the permissions assigned to the primary
care physician of a patient (read and modify his/her EHR) only
when the patient has designated him as the primary care physician.

P4 condition A specialist physician (e.g., cardiologist) may prescribe drugs if the
treated illnesses is related to his/her specialty (e.g., cardiac-related).

P5 usage The hospital may limit the access to anonymous medical data only
to authorized organizations for research purposes.

P6 prohibitions Hospital staff other than physicians may not order lab tests.

P7 exceptions A physician may order a lab test except when he is not part of the
patient’s care team.

P8 attributes, obligations A person must be a custodial parent or legal guardian must provide
proof of kinship to request access to the electronic health record of
a patient under the age of 18.

Table 5.1: Privacy policies in the healthcare domain

cies to illustrate the type of authorization and rights parties have with respect to patients’

data. These have been extracted from hospitals’ and insurance companies’ privacy policy

documents (we resort to external policies given the unavailability of internal policies docu-

ments), as well as from relevant scenarios found in the academic literature and (if required)

adjusted to be read from within a healthcare organization’s—such as a hospital—perspective

[255][205][277][17][187][210] [105]. The privacy policies we use for language evaluation have

been selected from this collection (and modified as required to illustrate certain concepts),

and are shown in table 5.1.

53



5.2.2 Languages Overview and Evaluation

Enterprise Privacy Authorization Language (EPAL)

EPAL is a language for specifying enterprise privacy policies involving authorization rights

and data handling in information systems (W3C submission) [23]. In EPAL, a privacy

policy is a list of rules; those that come first have precedence over subsequent ones. EPAL

allows defining domain-specific elements with well-defined semantics to compose rules: ruling

(e.g., allow), user category (e.g., sales department), action (e.g., store), data category (e.g.,

customer-record), purpose (e.g., order-processing), condition (e.g., the customer is older than

13 years of age), and obligation (e.g., delete the data 3 years from now). A rule must have

a user category, an action, a data category, and a purpose.

An EPAL policy is a well-formed xml-based document (conforming to the EPAL schema)

whose root is the <epal-policy> element. Policy documents include a domain vocab-

ulary composed of one or more elements of type <user-category>, <data-category>,

<purpose>, <action>, <container>, and <obligation>. For example, an electronic

health record data category is formalized as:

<data-category id="EHR" parent="EHR">

<short-description language="en">

Electronic Health Record

</short-description>

<long-description language="en">

Patient’s digital record which contains the patient’s health

data

</long-description>

</data-category>

Given this domain specific vocabulary reified as a set of declared elements, policies are
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specified as in the following example: email can be used for the book-of-month club only if

consent has been given and age is more than 13 [22].

<rule id="rule1" ruling="allow">

<data-user id="borderless-books"/>

<data-category id="email"/>

<purpose id="book-of-the-month-club"/>

<action id="read"/>

<condition id="consentToBookClub"/>

<condition id="olderThan13"/>

<obligation id="retention">

<parameter id="days">5</parameter>

</obligation>

</rule>

We provide the complete EPAL specification of the policies in table 5.1 in appendix B.1.

EPAL fails to successfully describe P2 which involves the time constraint “until the ap-

propriate period has expired (6 years)”. Although EPAL can express date comparison, it

has no capabilities to naturally express date subtraction (e.g., (current date - EHR

modification date) >= 6 years). There are two workarounds to this problem. One

involves keeping a counter as an attribute of EHR elements which keeps track of the days

since the EHR was last modified. The second workaround—as suggested by the EPAL

authors—is to keep a parameter <years>6</years>indicating that the data can be deleted

after 6 years; the system requires understanding the domain-specific structure of the EPAL

specification to interpret and provide the appropriate permissions according this parameter.

Although we described policies P4 and P6 in EPAL, the descriptions did not fit naturally

with the semantics of the language. In the case of P4, we needed to associate a medical

condition (e.g., arteriosclerosis) with a clinical speciality (e.g., cardiology). However making

those kinds of associations is not straightforward. As a workaround we included an additional
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attribute TreatedConditionArea to specify a matching speciality to a patient’s illness.

P6—which expresses a prohibition for hospital staff other than physicians—had to be ex-

pressed in EPAL as an exception; first we wrote a policy that allowed physicians to order

lab tests, followed by one one which denied hospital staff from ordering lab tests. EPAL

mechanism to express exceptions is through rule precedence; when rules are in conflict, the

first one is followed and subsequent rules are ignored. Rule precedence which requires the

ordering of rules, however, can be difficult when an organization has hundreds of policies.

P7, which is intended to express an exception (“a physician may order a lab test except when

he is not part of the patient’s care team”), was described more naturally as the rephrased

condition “a physician may order a lab test if he is part of the patient’s care team”.

In EPAL (and in XACML as well), obligations have a different semantic from what we

intend. An obligation is an activity a party needs to perform as required by law or as a

condition for something else to happen. In EPAL and XACML, an obligation is an action

that is taken as an additional step after some rule has been processed.

What is still unclear is EPAL’s assumption with regards to default permissions and prohibi-

tions. The question is whether any action is prohibited unless otherwise specified or if both

authorizations and prohibitions need to be explicitly specified. For example, according to the

policy “physicians can modify medical records”, should a system prohibit EHR modification

to everyone by default unless otherwise specified?

Lastly, EPAL is meant to express policies and practices which deal with the access to infor-

mation (<data-category>). Policies such as “a parent or legal guardian must accompany a

patient who is a minor” are not meant to be described in EPAL. Therefore, an organization

is ought to use an alternative language for non-data-related policies and this is inconvenient

at best. Ideally, a single language should suffice and be extensible to describe any kind of

organizational and process-related policies.
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XACML and the XSPA profile

Both XACML and XSPA are approved OASIS standards for secure and authorized commu-

nication and interoperation between organizations. XACML is an attribute-based language

for defining access control policies and enabling the evaluation of access requests. For in-

stance, requests to access a resource and the corresponding response are both described in

XACML. The language model has three main components: policy set, policy, and rule. A

rule specifies permissions or prohibitions, the effect or consequence of the rule evaluating to

true, conditions, obligation expressions, and advice expressions. A policy is a set of rules.

XACML policies are well-formed XML documents that conform to an approved schema.

XSPA provides a standard nomenclature for the exchange of healthcare-oriented security

and privacy policies over XACML [202]. XSPA’s purpose is enabling interoperation in the

healthcare community through common understanding of specific permission codes that

authorize various actions with respect to medical information. XSPA provides standard ter-

minology implemented as element attributes such as subject id, provider id, role, permission,

resource id, purpose of use, confidentiality code, allowed organizations to access a resource,

and so on. XSPA leverages the HL7 Healthcare Permission Catalog [136] which provides

a detailed and coded specification of permission types that can be used as values to the

XSPA’s urn:oasis:names:tc:xspa:1.0:subject:hl7:permission attribute. For ex-

ample, the value urn:oasis:names:tc:xspa:1.0:hl7:prd-003 stands for the “Review

Medical History” permission.

Find the XACML specification of our sample policies from table 5.1 in appendix B.2. We

only used XACML to specify the sample policies given that they involve more general spec-

ifications, while XSPA is more appropriate for more detailed permission descriptions. For

example, compare the general “access to medical records” to more detailed ones such as

“review patient identification” and “review patient medications”, both which are implicitly
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included in the more general permission.

Compared to EPAL, XACML is more expressive, however at the cost of increased complexity.

XACML can describe who, what resource, what action, and when to access specific medical

data. Also, XACML allows resolving the evaluation of conflicting rules. For example, it may

be stated that a deny permission returned after evaluating a rule overrides the results of the

rest. Furthermore, XACML provides a rich set of functions to compare strings, numbers,

dates, urls, and so on which allowed us to specify temporal conditions such as in P2 (whereas

EPAL failed to do so).

Similarly to EPAL, it is difficult to specify exclusivity and exceptions with XACML (i.e.

“only cardiologists” (P1) and “hospital staff other than physicians” (P6)). Assumptions must

be also made on whether the access to a resource is prohibited unless it is explicitly granted;

XACML (as far as we could tell) is silent on these assumptions. However, XACML supports

denying groups and individuals access to resources. If explicit denial is required, scalability

issues will arise when a domain has hundreds of roles. For example, if only physicians are

allowed to modify health records, then access prohibition policies ought to be specified for

nurses, interns, administrative staff, and every healthcare personnel other than physicians;

the result is extremely long and complex policy specifications. In addition, XACML supports

negative rules—however not appropriate for describing P1—where a group member is denied

access to a resource, permission which he/she would be otherwise be granted given the access

rights of the group. These kind of exceptions, although supported, are not recommended

given that they could lead to policy violations.

XACML is closely coupled with implementation details, making assumptions on how the

data is stored. XACML supports setting xPath expressions as attribute values, therefore

assuming information is stored as XML documents (e.g., XML-stored health records). Al-

though supporting xPath adds to the richness of the language, it sacrifices the flexibility to

use other types of data storage and system implementations. This is one of the reasons we
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did not select XACML in our approach. XACML is not only a policy specification language,

but a more integral component and an active participant in servicing data access requests

in particular implementations.

Another issue with XACML is its verbosity; there is more boilerplate code and long XML

namespace declarations than domain specific concepts that actually describe policies. With-

out tool and user interface support for specifying and reading XACML policies (to perhaps

non-technical administrative employees), the language by itself is unusable for describing

complex policies. The same applies to EPAL.

Both EPAL and XACML have not been commercially adopted. Some argue that XACML

was designed for monolithic organizations, failing to meet the needs of federated enterprises

with independent system users and distributed deployments [82].

Cassandra

Cassandra is both a high-level, declarative policy language with formally defined seman-

tics and a supporting trust management system [37]. Cassandra supports credential- and

role-based authorization to resources. In addition, Cassandra can refer to remote policies,

therefore it is appropriate for large-scale distributed systems.

Cassandra is based on Datalog with constrains, therefore it depends on a constraint domain

C—a first order language supporting, at least, boolean values and the identity predicate

(=). Cassandra’s rules include parameterized roles, parameterized actions, and predicates.

A rule is formed from a prefixed head predicate, one or more prefixed body predicates, and

a constraint expression that is an element in C: Eloc �Eiss.p(~e)← loc1 � iss1.p1(~e1), ..., locn �

issn.pn(~en), c, where pi is a predicate name while ei is an optional expression tuple. Cassandra

predicates may specify a rule issuing party (Eiss) and a location (Eloc). A policy guiding

access control decisions is constituted by one or more rules.
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Cassandra can also express a credential Eloc � Eiss.p(~e) ← c, where entity Eiss issues a cer-

tificate asserting p(~e) which is owned and stored by Eloc. This property is very important

for decentralization since “access control in large-scale heterogeneous distributed comput-

ing environments is fundamentally different from access control in a single administrative

domain”; in the former, system users may be unknown.

Cassandra’s syntax includes pre-defined predicates to define role membership, activation, and

permissions: permits(e,a) (entity e may perform action a), canActivate(e, r) (entity

e can activate role r), hasActivated(e, r) (entity e has activated role r; indicates who

is active in which role), canDeactivate(e1, e2, r) (entity e1 can deactivate e2’s role

r), isDeactivated(e, r) (deactivates e’s role r), and canReqCred(e1, e2.p(~e)) (e1

is allowed to request/receive credentials asserting p(~e) issued by e2; specifies the conditions

for disclosing a credential). For example, the rule Alice�UCam ← canActivate(Alice

, Student(Math)) asserts that Alice is a Math student. Through the canDeactivate

predicate, Cassandra supports cascading permission revocation.

Cassandra has a strong focus on the activation and deactivation of roles. Access to a

resource—granted through the permits(e,a) predicate—is conditional on the activation

of an associated role; a permission denotes a specific trust relationship (e.g., consenting to

access an electronic health record through the Treating-physician() role). Also, Cassan-

dra’s advantage is its consideration for decentralization given the pre-defined predicates for

trust management and credentials exchange between parties (i.e. canReqCred predicate).

For instance, the case study addressed by the authors is a national Electronic Health Record

system, where policies are complex given the nature of the domain. In contrast to EPAL

and XAMCL, it is not particularly concerned with user attributes nor on the properties of

the accessed resources.

Although the core language is small, it can gain expressiveness through expanding the con-

straint domain C, therefore through user-defined, domain-specific functions and predicates.
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This flexibility allows to custom tailor policies for specific domains and organizations. For

example, the domain-specific rule

isStudent(name, college, subject)} ← matriculated(name,matricDate)

states that a person is a student if he/she is matriculated. However, this flexibility comes

at the price of potential disagreement in the understanding and interpretation of policies,

the burden of specifying the policy syntax and semantics, and potentially an obstacle to

interoperability.

In Cassandra, the meaning of “role” is more embracing than the traditional meaning of

a role—a position occupied within an organization and the responsibilities and rights ap-

pointed to it [103]. A role in Cassandra is a subject attribute; activating such role is equiv-

alent to setting the attribute. Examples are Register-patient(), Express-consent(),

and Access-denied-by-patient()—predicates which otherwise may be interpreted as

actions such as Read-record-item(pat,id). While the authors choice of a more broad

role definition is deliberate given that role activation has an observable effect on the state of

their operational model, the semantics of a role remain counterintuitive and confusing.

Alike XACML, the language in Cassandra is closely tied to implementation details—recall

that Cassandra is both a language and a system. The language’s syntax is focused not only

on expressing natural language policies but on how the policies are implemented and enforced

by the system, even if the policy is physically separate from the application code. This tight

coupling has both benefits and drawbacks: the benefit is straightforward integration with

the implementation through shared syntax and semantics; the drawback is that it is less

clear as a standalone language since it is biased towards how the authorization model is

operationalized, thus less useful with other implementations.

In our experience, it was difficult to naturally express the policies in table 5.1 with Cassandra;

often policies had to be rephrased or molded to Cassandra’s semantics. For example the
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policy “no one shall have the ability to delete clinical information until the appropriate time

period has expired (6 years)” was rephrased to “clinical information can be deleted after

the appropriate time period has expired (6 years)”. However, the rephrased policy could be

incorrectly interpreted as “anyone has the right to delete clinical information after 6 years”.

As previously mentioned, it is difficult in Cassandra to refer to resource properties with the

provided pre-defined predicates, unless it is in relationship to a subject.

Despite these disadvantages, a wise design decision (and where EPAL and XACML stay

silent) is not supporting prohibition or negation; unless explicit rights are given to access

some resource or execute an operation, everything is prohibited for everyone. Not support-

ing negation results in more simple, unambiguous, and compact policies, and resolves the

complexity of conflict resolution of contradictory policies.

PeerTrust

PeerTrust is a policy language to support run-time trust negotiation and access control to

sensitive resources in peer-to-peer architectures [118][200]. PeerTrust enables establishing

trust between parties by supporting the exchange of information to proof the identity and

trustworthiness of parties to each other. Exchanged data are digital credentials that may be

endorsed or “signed by” third parties. Trust negotiation, for instance, involves an iterative

process of credential exchange until both parties are satisfied and have enough reasons to

trust each other.

The language is based on first order Horn rules lit0 ← lit1, ..., litn, where liti is a predicate

with 0 or more arguments. For example, a person may access an electronic health record

if he/she is a doctor: access(ehr, X) ← doctor(X). In addition to this basic rule

for composing policies, the syntax liti@Authority supports specifying certifying authorities,

where authority Authority asserts the predicate liti. For example, a hospital can certify that
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X is a doctor: access(ehr, X) ← doctor(X) @ "hospital". Therefore, the “hospital”

authority is in charge of evaluating the predicate doctor(X). The authority argument can

be nested such that liti@Authority1@Authority2 means that Authority2 can assert that

Authority1 asserts liti. For example, a university may implicitly enable a student to certify

his/her student status to a third party by supplying a university-issued student id. The

assertion or denial of such predicates is a key feature for establishing trust-based relations.

PeerTrust assumes an environment where peer A sends a query to peer B; peer B’S re-

sponse depends on who A is. $contextj within the syntax liti@Authority$contextj en-

ables, for example, specifying the author or requester of a given query. For example,

in the policy access(ehr, X) $ Requester = X ← Requester = "Dr. Brown", $

Requester = X refers to the author of query access(ehr, X). This feature of the lan-

guage can be leveraged to limit the authority to a particular query. In this example, the

predicate Requester = "Dr. Brown" states the condition that the requester to access the

required EHR must be Dr. Brown.

As mentioned above, PeerTrust rules enable the interaction and the establishment of trust

between autonomous peers for the controlled access to resources or the execution of actions.

In our example, peer A sends the request access(ehr, Dr. Brown) to peer B; B enquiries

(to itself given @"hospital") whether Dr. Brown is a doctor: doctor(Dr. Brown). If the

predicate is true, then access to the record is provided.

Through a logic-based approach, PeerTrust allows expressing a wide variety of policies based

on predicates. In this aspect, its syntax and semantics are very similar to those of Cassandra,

both relying mostly in application-specific predicates. PeerTrust is, however, particularly

focused on credential exchange and third party certification to initiate a trust relationship;

although access to resources can be described, it is not emphasized. Consequently, PeerTrust

literature presents few examples and guidelines with respect to service access control.
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In addition, PeerTrust does not explicitly show how to describe environment and temporal

conditions such as the current date; our solution for expressing P2 (showed in table 5.1)

was an ad-hoc one, however without the certainty of having expressed the corresponding

predicates correctly (pertaining to EHRs expiration date).

PeerTrust does not support (or is silent on the topic of) negation, prohibition, exceptions,

or explicit exclusion, making it difficult to describe many policies. Also it does not explicitly

support logical conjunction nor disjunction, therefore, in P8, we had to generalize guardian

(X,Y) where the policy reads “custodial parent or legal guardian”.

Ponder

Ponder is a declarative, object-oriented policy language for distributed objects systems;

policies are associated to a single or a group of objects [84]. Policy typing, instantiation, and

inheritance is supported. in Ponder, a policy “is a rule that defines a choice in the behavior

of a system”, is independent from the system’s implementation, and supports the dynamic

modification of the system’s behavior.

At a minimum, a Ponder policy refers to: (a) a “subject”—the user or principal (human or

software); (b) a “target”—the object that the subject wants to access, and; (c) an “action”

to be performed on the target. Subjects or targets of a specific type can be grouped in a

“domain” such as /employees. Additionally, time- or attribute-based constraints can be

imposed on policies through the when keyword. Constraints can also be enforced on a group

of policies (or meta policies) which are specified with a subset of the Object Constraint

Language (OCL).

For example, a simple authorization policy such as “a doctor who is a hospital’s employee is

authorized to treat hospital patients” is specified:
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inst auth+ Doctor{

subject /hospitalEmployee/Doctor;

target /hospitalPatients;

action treat());

}

Ponder supports access control to resources or services through authorization (positive and

negative), delegation, information filtering (transforms an action’s input or output according

to some condition), obligation (actions which must take place triggered by an event), and

refrain policies (actions that subject’s must refrain from making). These policy types have

a well-defined syntax that guides the policy maker in clearly and flexibly defining organiza-

tional policies.

Lastly, Ponder allows to specify composite policies through grouping, role association, rela-

tionships, or policies based on management structures. Groups of policies can be associated

by being applied to the same target or relate to the same department or action. Roles policies

associate policies that are performed by the same type of subject (e.g., manager, physician).

Role policies inheritance is also supported—the role manager inherits as well the policies

of role employee. Relationship policies associate different subject roles through rights and

obligations towards each other, or towards common target resources.

In summary, Ponder is a language whose main goal is specifying access control polices stating

the activities that a principal can perform with respect to a target. It is good language choice

when the goal is protecting services and information from unauthorized access. Ponder

supports both positive and negative authorization policies as well as exclusions, therefore

making it straight forward to specify policies such as P1 where only one type of member

within a domain is authorized to perform an action.

Ponder is a very rich and well-defined language, and it is very clear what is defined by the
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language and what is domain specific (defined by the policy maker). This trait makes it easier

to specify policies and prevent ambiguities. In addition, actions are associated directly with

object methods (with reference to the OO programming style), so from an implementation

standpoint it makes it easier to translate policies to system behavior. This, of course, has

the drawback of being bounded to a particular programing language or paradigm.

In our experience specifying the evaluation policies, run into the difficulty of not begin able

to express the relationship between more than two entities (subject and target) in Ponder.

For example, in P3, the subject is the doctor and the target is a health record, but there

where no means to include the patient that the record belongs to; it may be desirable to

grant access to this patient’s health record according to the attributes of the specific patient.

Instead we are constrained to refer more generally to a “patientEHR”. Similarly, we failed

to specify P5, given the complicated association between the illness domain that the drug is

meant to cure and the physician’s specialization. Ownership relationships and other more

complex associations between entities are difficult to specify in Ponder.

Rei

Rei is a language based on deontic logic—policies are expressed in terms of rights, pro-

hibitions, obligations and dispensations (obligation waivers) [147]. The version of Rei we

evaluate is implemented in Prolog; alternative versions of Rei are described in semantic web

languages. According to the authors themselves, the logic-based notation is far more expres-

sive than the DAML+OIL and OWL alternative implementations [148]. Alike previously

discussed policy languages, Rei itself is domain independent, but depends on a vocabulary

of domain classes and their properties (e.g., patient, body temperature) in order to specify

meaningful policies.

Rei supports three types of objects: (a) policy objects described as PolicyObject(Action
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,Conditions), where a PolicyObject may be a right, obligation, prohibition, or

a dispensation; (b) meta-policies which enable conflict resolution by describing policies

precedence or priority; (c) speech acts that describe policy delegation, revocation, and can-

celing, and requests for an action or a right.

A policy is a set of rules. Rules are associated to subjects in the form of has(Subject,

PolicyObject), where a subject is an specific entity or a class of entities (e.g., Dr. Brown

or physicians). Recall that a policy object stands for a deontic concept, an action, and a

condition. Therefore, expressing the policy “an individual has the right to print if he/she is

an employee” can be expressed as:

has(X, right(printAction, (employee(X))))

If the subject is Joe, the same rule is expressed:

has(Joe, right(printAction, (employee(Joe))))

Rei provides further expressiveness to describe an action through specific parameters: action

(ActionName, TargetObjects, Pre-Conditions, Effects). For example, the print-

ing action with the pre-condition that the printer having both a cartridge and paper can be

represented as:

action(printOnePageHP, [printerHP], (containsCartridge(printerHP),

availablePaper(printerHP, X), X > 1),availablePaper(printerHP,

X-1))

Rei also provides syntax and semantics for action cardinality and order: seq(A,B) (action

A happens before B); nond(A,B) (either action A or action B can take place); repetition

(A) (action A can happen multiple times); once(A) (action A can happen only once). Rei

also allows constructing more complex conditions through the logical conjunctions and and

or, and the negation not.
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Rei is a compact, well-defined and expressive language for describing business policies. Alike

some analyzed languages, Rei is silent on whether all actions are prohibited unless they are

explicitly authorized. However, the presence of the prohibition PolicyObject suggests that

prohibitions must be explicitly stated as well as rights. For example, it is not straightforward

to express the constraint that “only cardiologists are allowed...” in P1. As a workaround,

the “cardiologist” class of users can be authorized to access cardiac EHR data and simply

assume others are forbidden of such access. A third alternative is to express a prohibition

policy from which users of type “cardiologists” are excluded.

Also, it is difficult to express policies such as “subject A requests access to X which belongs

to or is part of subject B”. TargetObjects within action(ActionName,TargetObjects

,Pre-Conditions,Effects) allows specifying an entity as the target of the action. How-

ever, the policy maker may wish to specify a predicate that refers to a specific type of

object. For example, in policies P3 and P8 we may instead want to refer to ehr(B) as a

TargetObjects to refer to a specific patient’s health record. Similarly, we may want to “pre-

process” an object before granting authorization to it. For example, in P5 we can express

anonymized(EHR) in order to refer to the set of EHRs deprived of personal identifiers.

Lastly, another difficulty was the lack of arguments to Rei’s actions. This can be clearly

observed with policy P4; instead of action prescribeDrug we may want to express an

action along the lines of prescribe(Drug), where Drug is a variable that can be referred

to in the body of the action’s conditions (Pre-Conditions).

5.2.3 Evaluation summary

Individual strengths make these languages good candidates for expressing healthcare policies.

For example, EPAL and XACML are very expressive and can describe policies in great

detail (also due to the extensibility of XML). Cassandra allows to parametrize roles and
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actions, and therefore can specify more nuanced policies. In addition, rich policies can be

flexibly expressed in Cassandra through user-defined constraint domains, and thus by way

of domain specific predicates. Finally, Cassandra provides the ability to specify the location

and issuer of policy predicates, therefore supporting decentralization and collaborative policy

description. PeerTrust instead responds to user queries depending on the identity of the

requester and the trust built through a sequence of credential exchanges. Ponder allows

grouping subjects and targets hierarchically by domain, increasing domain knowledge and

gaining understanding of organizations asset and personal structures. Ponder also offers

tool support for describing policies. Lastly, Rei’s compact syntax based on the solid logic

fundaments of Prolog allows readability even without tool support. Common to all these

approaches is the definition of a subject, an action, the target object, and a set of conditions

within a policy.

Despite these strengths, no language can fully specify the set of evaluation healthcare policies

(as observed in table 5.2)—mainly EHR access control policies—due to divergent purposes

and design decisions embedded in these languages. EPAL and XACML focus on fined-

grained attribute-based authorization to data. Cassandra and PeerTrust emphasize on trust

management and the exchange of credentials. Ponder describes policy hierarchies through

policy typing, inheritance, and instantiation as an access control approach. Rei has de-

ontic foundations, thus describes policies in terms of rights, prohibitions, obligations and

dispensations. These different goals evoke significant differences in syntax and semantics. A

common disadvantage of most of these policy languages is the ability to describe an action’s

target as “x which belongs to y”—for example, “Dr. Brown (subject) can read (action) Joe’s

electronic health record (target)”.

Given these differences in language semantics, goals, advantages, and disadvantages, the

choice of policy language is application- and organization-specific, thus according to which

is best suited for the task at hand. As a result of this analysis, we have chosen to use Rei to
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P1 P2 P3 P4 P5 P6 P7 P8

EPAL

XACML

Cassandra

PeerTrust

Ponder

Rei

Table 5.2: Evaluation privacy policies languages

describe policies in healthcare, our sample domain. We have chosen Rei for its simple, clear,

compact, and flexible logic-based syntax and semantics. Although Rei failed to successfully

describe some policies, we will assume from now on that everything is forbidden unless

it is explicitly stated. This solves the difficulty of expressing policies such as P1—“Only

cardiologists...” is rephrased as “Cardiologists are allowed...”. In the process of formalizing

natural language policies, we realized that reasonable rephrasing (without changing the

semantics of the policy) is necessary to make more precise privacy statements and produce

correct formal policies.

Although Cassandra is also a logic-based language with properties such as compactness, we

chose not to use it for two main reasons. First, it is heavily focused on the activation and

deactivation of roles which can be easily expressed in Rei. Second, in Cassandra there is no

clear distinction between actions and roles, making it hard to write policies and understand.

We decided not using XML-based languages—XACML and EPAL—due to their verbosity

and complexity; without effective tool support XML-based policy descriptions are hard to

manage. However, the widespread adoption of XML, available processing tools and language

bindings, increased interoperability, and expressiveness are unarguable benefits of choosing

semantic web notations [253].

The purpose of PeerTrust diverges from our objectives; we are not particularly interested
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in the iterative exchange of credentials. PeerTrust, however, may be appropriate as a Web-

of-Trust-like mechanism for establishing trust between parties. Although we are concerned

with trust relationships, this initial stage in which parties gain this trust is out of the scope

of this research.

Although Ponder is a concrete and well described language, we exclude it from our work

since it does not provide the flexibility to define other types of authorization properties and

relationships besides the ones predefined in the language syntax. This is in part due to being

an object oriented language where classes have predefined properties, and thus it is difficult to

add more properties without creating new classes. Ponder, therefore, was unable to express

P4 which exhibits more complicated relationships between objects and attributes. Also, it

appears that rules only allow a single constraint-expression (condition), hence authorizations

that are contingent on multiple conditions cannot be expressed in a simple way.

The goal of selecting a policy language—Rei as chosen by way of this evaluation—is ulti-

mately binding internal privacy and operational policies to an organization’s offered services

in order to guarantee compliance. In section 6.1.1 we describe how we leverage Rei’s con-

cepts to describe domain-specific privacy and operational policies, how policies are thereafter

evaluated in order to make access permission decisions (section 6.1.2), and how they are im-

plemented within a software system (section 7.3).
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Chapter 6

Policy-Based COAST Services

Several key insights motivate our approach. First, individuals and organizations are au-

tonomous, independent, act in their own self-interest pursuing their individual goals, and

interact upon specific trust relationships. Therefore, accommodating decentralization is es-

sential. Parties must be able to effectively offer, revoke, use, and compose services that

belong to independently managed organizations.

Second, given that these parties have different relationships and trust is not homogenous, it

is an important requirement to protect an organization’s assets to differentiate among service

consumers. This requires sophisticated fine-grained authorization and security mechanisms

so that users are provided with bounded custom capabilities according to privacy policies

defined by the service provider or by the individual whom the data describes, or by both.

Third, services ought to be tightly coupled with organizational policies to prevent privacy

violations. It is rather common that privacy and operation policies are implicitly embedded

in the culture of an organization or documented within static documents. These policies are

usually divorced from systems’—and the provided services—behavior, opening up privacy

breach and insiders’ abuse opportunities. Therefore, services that are user-specific need to
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be created according to and bound to policies.

Fourth, security is an imperative given that data and computation cross agency boundaries.

Differential access itself calls for security provisions—parties may maliciously or accidentally

attempt to access information and functionality which has not been conferred to them,

attempt to execute malicious code, or give the granted capabilities inappropriate uses.

Lastly, given the myriad uses and users of a service, it is unlikely for service providers to

tailor services to meet the diverse current and future needs of all users. Therefore, the burden

of service customization needs to lie on the user and not on the provider.

These insights lead to a novel approach towards web-based services which have two funda-

mental properties: first, services are personalized by the provider for particular users or user

types according to explicit and well understood privacy policies to specialize offerings for

their array of users, and at the same time protect the provider’s assets (information and

algorithms). Second, services are customizable—they allow users to leverage the available

capabilities to compose new services. These properties tackle the weaknesses of current web

services: rigidness, uniformity, and generalization. In short, the principal goal of our work is

to enable service providers to dynamically create, based on a set of formally defined privacy

policies, user-specific services which can be customized by service consumer applications.

Figure 6.1 captures the main idea of our approach: a service provider maintains, on one hand

valuable and protected domain information, and on the other hand the relevant privacy and

operational policies that regulate the access to this data. Based on these policies, user-

specific services (e.g., service client 1, service client 2, and service client 3) are dynamically

created, each with a bounded set of capabilities (i.e. functions, e.g., fa()) and potentially

with access to some domain data. These bestowed privileges are coherent with a principal’s

individual authority as prescribed by the policies. Service consumers (e.g., client 1, client 2,

and client 3) use their corresponding services by way of capability URLs (introduced in 5.1)
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by sending messages to their services, messages which may contain custom closures (e.g.,

λ(a(b(x)))) to be executed by the service for a desired result information (a response is sent

back to the user) or side effect (the execution of the service has some effect in the state of

the overall system such as the modification of the domain information).

service
provider

service client 1 service client 2 service client 3

domain data

based on

data access

message and response

message

client 1

policies

fa(), fb(), fc() fc(), fd(), fe() fb(), fe(), fg()

client 1 client 1

CURL + λ(a(b(x))) CURL + λ(e(c(d(x)))) CURL + λ(g(x))

Figure 6.1: A provider, based on a set of policies, dynamically creates user-specific services.

In this context, an information service provider is an individual and decentralized system

managed by a single island (in COAST parlance) and which has a set of capabilities and

information to offer to distinct service users. This individual system/island may exist within

a larger organization and interact with other organization-wide islands. In section 7.6 we

elaborate in the role of a provider within a system of systems in the context of COASTmed.

In the following sections, we describe in more detail the constituent elements of this approach.

In concrete, we describe how policies are specified and enforced for individual users, how

service capabilities are specified and bound to formal policies, how services are dynamically

created for specific users, and ultimately how users leverage service capabilities to compose

custom services.
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6.1 Policy-based Differential Service Provision

One of the main goals of this work is permitting service providers to deliberately restrict the

access to their information and algorithms. This capability enables providers to differentiate

among their users for purposes of both access control and service specialization. Leading

to policy-based service provision are the formal specification and evaluation of policies, the

specification of user services, the associations between policies and service capabilities, and

lastly the dynamic creation of user-specific services and their corresponding CURLs.

6.1.1 Specifying Policies

Privacy-aware services provide patient data solely to authorized parties with distinct access

privileges. To guide the behavior of these services, it is necessary to capture organizational

policies describing the conditions under which data is disclosed. Policies thus dictate how

systems and users ought to behave so that processes and individual activities involving in-

dividuals, organizations, and data are in compliance with the defined policies. We focus on

privacy and operational policies related to the disclosure of personal information in support

of policy-based access control. Although operationally they are treated equally, there is a

semantic distinction between privacy and operational policies; the former are put in place

with the goal of protecting agency assets from unauthorized intruders while the later sup-

port the division of responsibilities within an organization. For example, a privacy policy

may prevent interns from accessing customers’ information, while an operational policy may

dictate that only senior nurses and doctors are responsible for discharging a patient.
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Using Rei to specify policies

Formal policies not only disambiguate natural language, but also allow automated process-

ing. We have selected the Rei policy language to specify policies, after evaluating a set of

languages which included EPAL, XACML, Cassandra, PeerTrust, and Ponder (section 5.2).

The criteria of evaluation included the ability to express subjects, roles, data objects, at-

tributes, obligations, rights, prohibitions, conditions, exceptions, use purpose, and temporal

constraints. Rei was selected for its expressiveness, simplicity, flexibility, and compactness.

To simplify policy specification we restrict and modify Rei’s syntax and semantics to better

suit our goals, namely policy-based access control to services. For instance, since we are only

concerned with a principal’s authority to access a resource—i.e. with a principal’s right—

we exclude both the obligation and the dispensation policy objects. In addition, we adopt

Cassandra’s assumption that everything that is not explicitly allowed is forbidden—a “closed

world assumption”—therefore disallowing the prohibition policy object. The unavailability

of prohibitive policies significantly simplifies a policy document, lessening the probability of

conflicting policies. We also differentiate between direct and indirect target objects, since we

want to be able to express policies such as “the nurse has the right to dispense IV therapy

to patients”, where IV therapy is the direct target object and patients is the indirect target

object. Lastly, we exclude from our constrained version of Rei the concepts of action pre-

conditions and effects which are, at this stage, unnecessary for this access control approach.

Therefore, the contents of a policy in our simplified version or Rei is as shown in figure 6.2,

where “the basic components of any authorization policy are the actor, action and target”

[144], as well as conditionals on those authorizations.

policy(subject, action, direct target, indirect target, (conditions))
Figure 6.2: A policy’s contents.

Policies bestow rights according to zero or more conditions. These are domain- and organization-
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specific, and are defined by the service provider. For example, a policy stating that only

cardiology specialists are allowed to modify the portion of medical records pertinent to car-

diac ailments may be specified in our version of Rei as:

policy(physician,update,cardiac_ehr,patient,(instanceOf(*physician

*,cardiologist)))

In the previous policy, the condition instanceOf(*physician*,cardiologist) requires

the subject in the *physician* role to be a cardiologist. Thus policy conditions establish

the relationships between objects, entities, or concept. In the previous example instanceOf

describes a relationship between physician and cardiologist. Policies can refer abstractly to

subjects and objects by referring to roles and object categories. For example, in the previous

policy, *physician* refers to a principal’s role.

To implement policies, we use a delimiter symbol “*” to indicate that *physician* is

a variable. In other words, abstract conditions include variables, for whose evaluation it

is necessary to provide real values to these variables. In addition, Rei’s conditions are

operationalized as predicates—a natural approach given Rei’s functional nature—namely

functions that return boolean values. For example, the condition predicate availablePaper

(printerHP, X) stating that “the available paper in the printerHP printer is X” returns

true or false when a value is assigned to X.

Types of policies

We identify three types of policy conditions:

(a) dependent to a principal’s role, identity or association;

(b) dependent on environmental conditions such as time and date, and;

(c) contingent upon the target (i.e. argument) of an action.
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An example of a condition based on a principal’s role is when the access to an electronic

health record is conditional on a person being in the attending physician role: instanceOf(*

person*, attending physician). Our approach, however, not only subsume role-based

access control, but policies can also refer to specific principals in support of identity-based

access control (IBAC). A condition upon the principal’s identity instead provides fixed

values to conditions related to principals as opposed to variables. For example, instanceOf

(Andrew Jones, attending physician) is no longer an abstract condition, but acts

upon the identity of a principal. However, based on experience, associating permissions to

roles is preferred, since it is known that individuals-based policy specification does not scale

[203][37]. Also, conditions can be related to a principal’s association to a group. For example

department(*person*, cardiology) states that a person is required to be a member of

the cardiology department.

Context or environment conditions are those which restrict access to service data and

computation based on endogenous factors such as the time of day or the date. For example,

a policy that states that a medical intern can only access the EHR database between 8:00

A.M. and 6:00 P.M. may be specified as:

policy(intern,access,EHR,patient,(after(*currentTime*,7:59),

before(*currentTime*,18:01)))

There are other interesting environmental conditions that can be exploited, such the outside

temperature. For example, through a COAST-enabled controller, a heating system can be

turned on according to the policy

policy(person,turnHeatOn,null,null,(lower(*currentTemp*,65))))

A policy which depends on the direct and indirect targets of an action, for example, may

allow a physician to update a patient’s electronic health record if and only if the physician

is the patient’s primary care physician:
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policy(physician,update,EHR,patient,(primaryCarePhysician(*

physician*,*patient*)))

A policy may include and combine all these described type of conditions; there is no con-

straint on the number of conditions a policy may have.

Negation and alternative conditions

Conditions may also be negative, which is useful when specifying exclusions in a policy. For

example, a policy may state that residents may perform supervised procedures unless they

are junior residents. This is accomplished in Rei through the negation not :

policy(resident,perform supervised procedures,null,null,(not(

instanceOf(*resident*,junior resident))))

Policies may also include alternative conditions, namely a privilege is bestowed if at least one

within a set of alternative conditions is true. Rei’s logical conjunction or allows specifying

alternative conditions. For example, a policy may state that a physician may prescribe

aspirin if the patient is in pain or if he requires a blood thiner.

policy(physician,prescribe,aspirin,patient,(or(diagnosis(*patient

*,pain)), (diagnosis(*patient*,poor blood flow))))

Through direct and indirect policy objects we can provide more complex semantics on the

relationship between subjects, actions, and objects, and to refer to an object in reference to

another (i.e. to whom and for whom relationships). So in the prior policy, the subject is the

physician, aspirin is the direct target, and the patient is the indirect target.
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Policies and ontologies

Although Rei is domain independent, policy specification relies on domain vocabularies to

capture domain rules and knowledge. These vocabularies increase shared understanding of

policies within organizations and domains. For example, the policy:

policy(physician,prescribe,fluoroquinolones,patient,(diagnosis(*

patient*,anthrax)))

states that a physician can prescribe fluoroquinolones if the patient has been diagnosed with

anthrax. Both fluoroquinolones and anthrax are terms within the ATC code and the

ICD-10 healthcare ontologies correspondingly.

Resolving conflicting policies

One of the challenges surrounding policy specification is addressing policy conflict. Much

of the work addressing this issue provide algorithms to resolve conflicting permission and

prohibition policies. For example, Uszok et al. provide an algorithm to detect and harmonize

positive vs. negative authorization policies, positive vs. negative obligations, and positive

obligation vs. negative authorization [257]. Sujansky et al. address similar challenges where

one rule permits access to a data type while another rule denies access to an instance of the

same data type [246]. These algorithms consist in, for example, evaluating policies in order,

ignoring subsequent, potentially conflicting related policies as done by the EPAL language

[17]. In addition, EPAL defines a default ruling (decision) for when no rule is related to a

specific request. XACML has available different combining algorithms, such as prioritizing

“deny” or “permit” decisions, choosing the “first applicable” rule (such as done in EPAL),

and granting access if no rule returns a “deny” decision [203]. Rei, for instance, leverage

meta-policies to resolve modality conflicts (i.e. positive vs. negative or right vs. prohibition)

or to establish policy priority. Similar precedence or priority approaches are addressed by
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Jaeger et al., who deal with conflicts in “access control spaces”; the purpose of these algo-

rithms is to replace “ad hoc policy modifications to resolve conflicts” [142]. Kamoda et al.

present the free variable tableaux conflict detection method, which translates policies to log-

ical sentences to detect conflicts between authorization and obligation policies, propagation

and action composition policies, Chinese wall policies, separation of duty policies, and time

constraint policies [150]. Samarati et al. present an overview of policy conflict resolutions

methods (e.g. denials-take-precedence, most-specific-takes-precedence, most-specific-along-

a-path-takes-precedence, strong/weak, priority level, positional, grantor-dependent, time-

dependent) [229]. Even a conflict database has been proposed to characterize the types of

conflicts that may arise while combining policies [94].

In our approach, we do not have to deal with this type of conflict resolution, since, by design

principle, we do not allow prohibitive policies—we assume everything is forbidden unless

explicitly authorized. This simplifies policy specification and increases security by minimizing

the opportunities for unauthorized access. Also to our advantage is that our modified version

of Rei is based on propositional logic, and therefore is decidable and complete [113]. In other

words, we can determine the truth value of a propositional formula using a truth table,

therefore no policy evaluation result (having all the required information) is undecidable.

However, we can solve for redundant policies based on roles (although these are not consid-

ered a case of conflicting policies). Consider for example the policies

policy(employee,scheduleVacation,null,null,null)

policy(physician,scheduleVacation,null,null,null)

which bestow the right to schedule a vacation to both employees and physicians. Since a

physician is a type of employee, this policy is redundant. To solve this, we can discard the

policy appertaining to the sub-role, since the sub-role is included in the super-role. It may

be however desired to keep both policies, since in the future, a policy maker may decide to
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withdraw this right to employees with the exception of physicians. This decision is domain

and organization specific.

A conflict situation is, however, when trying to add a policy whose subject, action, and

target already exist within the policy document. One option is not to allow this addition

but suggest the user to modify the existing policy. A second option is to let the policy maker

choose between these two policies. A third option is to merge the two policies by simply

appending the list of conditions of the new policy to the list of conditions of the existing one

such that

policy1(physician,readEHR,patient,null,(inDepartment(*physician*,

traumatology), name(*physician*, John)))

and

policy2(physician,readEHR,patient,null,(primaryCarePhysician(*

patient*, *physician*)))

become

policy3(physician,readEHR,patient,null,(inDepartment(*physician*,

traumatology), name(*physician*, John), primaryCarePhysician(*

patient*, *physician*)))

However, we need to address conflicting policy conditions for a given subject-action-target

tuple. Consider this example provided by Kim et al. [158]

P1: (BusinessPartner, ((Read, OrderInfo), Research, CurrentTime=5PM-11PM, 0))

P2: (BusinessPartner, ((Read, OrderInfo), Research, CurrentTime=11PM-9AM, 0))

where policies conflict on condition CurrentTime. There are three possible solutions to

resolve this conflict: first, reject the addition of this new policy altogether and send a mean-
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ingful error message to the policy maker; second, allow the policy maker to choose which

to keep among the conflicting conditions; third, merge the conditions such that the conflict-

ing predicates in the previous example resolve into the predicate CurrentTime=5PM-9AM.

The problem with the third option is that not all conditions will be resolvable in such way.

Therefore, the best option in this case is to allow the policy maker to make a deliberate

choice between the conflicting conditions.

There are instances, however, where semantically equal predicates are not necessarily in

conflict. Consider for example the policy

policy(employee,access,privateDocument,null,(inDepartment(*

employee*,accounting), inDepartment(*employee*,auditing)))

where the two inDepartment conditions are not in conflict, but together specify that an

employee must be part of both the accounting and the auditing department to access a

document privateDocument. Since it is difficult for a software program to guess the intent

of the policy maker, the most sensible solution is to allow the policy maker to choose to

include one or the other, or both conditions in the resolved policy.

6.1.2 Policy Evaluation

In order to assess if a principal is entitled to access a set of computation capabilities and

information, it is necessary to evaluate the policies that are relevant to the principal. The

evaluation process relies on knowledge representation, where policies and their conditions

include relations described as facts and rules. As previously described, an abstract policy is

composed of variable and constant values. Evaluating a policy involves replacing variables

with constants and verifying that the policy conditions are met. Conditions are operational-

ized as predicates (functions which return a boolean value), whose execution, given a set of

arguments, return true or false. For example, we can evaluate the policy:
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policy(physician,update,EHR,patient,(primaryCarePhysician(*

physician*,*patient*)))

by providing real values to the variables *physician* and *patient*:

policy(Dr Jones,update,EHR,John Smith,(primaryCarePhysician(Dr.

Jones,John Smith)))

This policy’s predicate evaluates to true if and only if Dr. Jones is John Smith’s primary care

physician, therefore granting Dr. Jones access to the update EHR capability with respect to

that particular patient. To assert the relationship between Dr. Jones and John Smith, the

availability of a fact base is necessary.

For permissions to be granted to a principal, all the policy conditions need to evaluate to

true and at least one within a set of alternative conditions, if any, needs to evaluate to true.

In other words, the result of a policy’s evaluation is the result of the logical conjunction of

all its conditions’ truth values. For example, the policy

policy(person,submitTimeSheet,null,null,(equal(*currentMonthDay

*,1),or(role(*person*,intern),role(*person*,contractor))))

can be translated to propositional logic. Let right(submitTimeSheet), equal(*currentMonthDay

*,1), role(*person*,intern), and role(*person*,contractor) be the propositional

variables R, C1, C2, and C3 correspondingly. Then, this policy can be translated to

C1 ∧ (C2 ∨ C3)→ R

This means that both C1 and (C2∨C3) need to be true for R to be true. For (C2∨C3) to

be true, at least one of C2 and C3 needs to be true. Therefore, a person can submit a work

time sheet if the day of the month is the 1st (C1 is true) and if the person is an intern or a

contractor (either C2 or C3 is true or both).
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Given that the first step to evaluate a policy requires replacing variables with constants, it

is necessary to provide the evaluation function with the policy and a list of key-value pairs

of variable names and their values (e.g., var-name-1, value-1, var-name-2, value-2 ...). If all

of the values to replace their corresponding variables are provided, then the policy evaluates

either to true or false. On the contrary, if one or more variable values are not provided, the

policy is not evaluated and instead the ‘not-evaluated value is returned.

In section 7.4.1 we provide an in-depth description on how policies and conditions are oper-

ationalized, how facts are obtained, and how policies are evaluated in practice in the context

of COASTmed.

6.1.3 Associations of Policy and Service Capabilities

User-specific services are differentially provided to diverse stakeholders according to an or-

ganization’s policies. For doing so, a tight coupling between policies and the organization’s

capabilities—namely, its COAST islands’ bindings)—is necessary. For example, a policy

policy(person,book-OR,null,null,(instanceOf(*person*,nurse)))))

which states that a principal has the right to book an operating room if he/she is a nurse

is associated with a function OR/book. Therefore, if all the policy’s predicates in the above

policy (instanceOf(*person*,nurse)) evaluate to true, then the principal or subject in

the nurse role is authorized to use this capability, made available within the user-specific

service’s binding environment. Every policy permission needs to be associated to a specific

functional capability in the system (figure 6.3).

We have explored different alternatives to capture these associations between policy rights

and capabilities, which can be categorized as implicit or explicit associations. Explicit as-

sociations between policies and system capabilities are one-to-one or one-to-many mappings
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POLICY DOCUMENT CODE FILE

policy 1: right to print

policy 2: right to create  
              EHR

policy 3: right to book OR

policy 4: right to discharge 
              patient

policy 5: right to prescribe

Rei λ
(define (print) .....)

(define (EHR/create x) ...)

(define (OR/book x) ....)

(define 
  (PATIENT/discharge x) ....)

(define (prescribe x y) ....)

Figure 6.3: Associations between policies and capabilities.

of policy rights and function names, associations stored, for example, in a database (figure

6.4). A one-to-one relationship is for example a right to print a document with a function

print. A one-to-many relationship is, for example, a right to access an EHR with both the

functions EHR/read and EHR/edit.

Implicit associations can be made by giving both the policy action and the capability—

such as a function or a binding environment—the same name. For example, the policy action

EHR/create is implicitly associated to the function EHR/create() by name, and therefore

this function is made available to the user. In another example, a policy action EHR/-

MANAGE is bound to the EHR/MANAGE binding environment, thus making available all the

bindings within that environment (e.g., EHR/create, EHR/edit, EHR/delete). Therefore,

there is not an explicit association existing within a database, but a system’s implementa-

tion needs to link policy actions and functions by name at runtime. In other words, when

retrieving the capabilities that are granted for a specific principal, the system first looks for

a function or binding environment in the global binding environment whose name matches

the policy right. If this is not found, then the system proceeds to look up, within the explicit

associations database table, the corresponding associated capabilities to be included in the

user-specific binding environment.
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POLICY CAPABILITY

fa ( )
fb ( )
fc ( )
fd ( )
fe ( )
fg ( )

policy 1

policy 2

policy 3

policy 4

policy 5

policy 5

POLICIES
p1, p2, p3, p4, p5

Global binding
environment
fa( ), fb( ), fc( ),

fd( ), fe( ), fg( )

Figure 6.4: Explicit associations of policies and capabilities.

6.1.4 Service CURLs

As described in section 5.1, a CURL is a cryptographic structure that provides authority

to communicate with the computation it names. In the context of our work, consumers

access, use, and communicate with specific COAST-enabled services through provider-issued

CURLs. A message sent through a CURL may contain primitive values, data structures, or

custom closures that leverage the user-specific authorized bindings. The interpretation of

this message is up to the provider.

A CURL holds different pieces of information: the issuing island, a path, the CURL’s unique

identifier, an expiration date (the span of validity of the CURL), the use count (may be only

used n times), arbitrary metadata, and a cryptographic signature certifying the CURL’s

provenance, and thus its validity. For instance, a user can continue using the service as long

as a CURL is not expired, has a use count greater than zero, and has not been revoked by

the service provider. More conceptual and technical details on CURLs can be found in [123].

To obtain a service CURL for using an island’s authorized capabilities, it is necessary to

authenticate a service consumer’s digital credentials. These credentials are such as unique

identifiers (UUID), public keys, or any other authentication mechanism such as those based

on certificate authorities or on a web of trust. Our work makes the assumption that these

mechanisms are in place and that users are trusted to be who they claim they are. Authen-
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tication is, therefore, out of the scope of our investigation.

Based on the user’s authenticated credentials, a CURL generation service retrieves from a

policy database all the policies that are relevant to the principal based on role or identity.

These policies are evaluated to return a list of true, false, and ‘not-evaluated values. The

only variable value that is provided, along with policies to be evaluated, for this stage of

the evaluation process (service CURL creation stage) is the user’s unique identifier. In

other words, initially only role- or identity-based policies are evaluated; we assume that

environmental conditions as well as well as conditions that depend on the target of the action

are service request-specific. For example, a condition that states that a given capability

is only to be used between 9:00 A.M. and 5:00 P.M. will evaluate to either true or false

depending on the time of day the service is accessed.

Following, the list of capabilities associated with those policies that either evaluated to

true or to ‘not-evaluated are retrieved. Here, we exploit a CURL’s ability to embed arbi-

trary metadata by including information on these authorized capabilities. Since CURLs are

tamper-proof, it is not possible for malicious parties to expand their authority to a provider’s

services by altering the authorized capability information contained in the metadata. In ad-

dition, information about the relevant policies that were not evaluated is also included in

the CURL’s metadata so that they can be re-evaluated at service-use time. Figure 6.5 pro-

vides a graphic description of a CURL’s contents, including the metadata we include to

operationalize this policy-based access control technique.

issuing island

DOMAIN SPECIFIC METADATA

issuing island path expiration date use count uuid authorized capabilities policies digital signature

Figure 6.5: A CURL’s anatomy.

The activity diagram in figure 6.6 provides a graphic description on the set of activities and

decisions involved for a consumer to obtain a user-specific service CURL.
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User requests 
service CURL

Provider 
matches user 
identity with 
system roles

Send error 
message to 

the user

Relevant policies 
are retrieved 

based on user's 
role/identity

Policies are 
evaluated

Match 
compliant 
policies to 
capabilities

Generate CURL, 
embedding matched 

capabilities' information 
and unresolved policies

Send CURL 
to user

[User not a recognized 
system user]

[Yes]

[No]

[At least one policy 
evaluates to true]

[No]

[Yes]

Figure 6.6: Obtaining a user-specific CURL.

6.1.5 Services Definition

An organization’s services are the externalization, in a form amenable to service consumers,

of information and computation capabilities (i.e. software functions). Every COAST host or

island is initialized with a set of capabilities; for instance, a healthcare provider’s island may

host a database of electronic health records along with functions to create, modify, and share

them, to assign roles to employees, book operating rooms, manage medical supplies, and so

on. Islands can thus host a number of computations or services with diverse capabilities.

As previously described, a service is a computation which executes in the context of a binding
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environment, a complex structure which holds a set of key/value pairs. This structure

contains the set of primitive values, data structures, and functions (which may have access

to domain data) that constitute the service’s lexical scope (namely the bindings that are

reachable by the service’s closure) and which, therefore, are made available to consumers.

In addition, environments can be merged, combined, constrained (removal of bindings), and

augmented (addition of individual bindings).

ι client 1

ι Service provider DB

α service 1
fa(), fb(), fc()

α service 2
α service 3

α client 1 α client 2

fa(), fd(), fe()
fd(), fg()

ι client 2

message & response
data accessι

actor
island

α

Figure 6.7: A provider’s services.

In our work, we exploit COAST’s

binding environment sculpting in

order to enable organizations to

expose the desired functional ca-

pability and data as services.

Organizations can compose di-

verse binding environments based

on different binding combina-

tions, therefore producing services

that are appropriate for particular

users and uses.

For example, the service provider in figure 6.7, makes available capabilities fa(), fb(), fc(),

fd(), fe(), and fg(). The services offered to different users are composed as subsets of this set

of functions. For example, service 1 includes bindings fa(), fb(), and fc(); service 2 includes

bindings fa(), fd(), and fe(), and; service 3 includes bindings fd() and fg(). Figure 6.8 pro-

vides a more descriptive, domain specific example, where a healthcare provider offers different

EHR-related services to different users: patients can access the get-patient-ehr() func-

tion; physicians can retrieve a patient EHR through get-patient-ehr() or multiple EHRs

through get-all-patients-ehr(); authorized researchers may obtain only anonymized

EHRs (get-all-anonymous-ehr()), and; internal policy makers may create and evaluate
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ι service provider

α physician

patientpolicy makerphysician researcher

get-patient-ehr
get-all-patients-ehr

α policies
create-policy
evaluate-policy

α researcher
get-all-anonymous-ehr

α patient
get-patient-ehr

message data access

EHR

Figure 6.8: A healthcare provider’s services.

policies through create-policy() and evaluate-policy().

In sum, different services can be derived from the combination and composition of these

assets—combination involves providing different permutations of these assets as services,

while composition involves leveraging those assets to compose more complex ones. Compo-

sition is a key concept for customizing services, which we will address in section 6.2.

6.1.6 Dynamic Creation of Consumer-specific Services

After a consumer application has obtained a service CURL, it is ready to access the provider’s

authorized capabilities. As a result of exploring different mechanisms to provide user-specific

services, we have identified two main techniques for creating user services. The first one is

to create persistent services, where services remain “alive” after their creation, this being at

the first service call or at an arbitrary time determined by the parent computation. In other
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words, the service is constantly running, waiting for messages to process. To create persistent

services, the authorized capabilities—identified as a consequence of policy evaluation—are

immediately used as a binding environment to instantiate a new user service. The CURL

to this long-running service is then sent to the user. In this case, it is not necessary to

include authorized capabilities information—namely binding environment information—in

the CURL’s metadata since the CURL directly addresses the user-specific service.

A second technique is to dynamically create services which are spawned to serve an incoming

user’s request and terminate after serving it (i.e. executing or rejecting the message sent along

with the CURL). The use of these services that serve and terminate is recommended when

there is high variability in the frequency of service access, mostly according to diverse user

types. For example, physicians may be frequently accessing EHR services, while patients will

access it sporadically. Therefore, in many cases a user service may be idle most of the time.

Given an exponential number of users, constantly executing user services misuse resources

(i.e. memory and processing power). A CURL issued to a service user thus does not address

the user-service per se, but addresses an intermediary. This proxy computation, using the

incoming CURL’s metadata, dynamically spawns a new user-specific service to process the

incoming message. In more detail, the process for a new service creation is as follows:

1. The user sends a message using the service CURL to a proxy computation αcreate-

service.

2. αcreate-service retrieves both un-evaluated policies and capability information from

the CURL’s metadata.

3. αcreate-service inspects the user’s message to determine whether any of the un-evaluated

policies (due to lack of provided variable values at CURL creation time) is relevant

to the user’s message. For example, a custom user closure may include function EHR/

delete(); a relevant policy may describe the restrictions on the capability to delete
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a health record such as record’s expiration date.

4. The set of relevant policies (included within the CURL’s metadata) are evaluated. If

any of the policies evaluates either to false or to ‘not-evaluated the user’s message is

discarded without evaluation and an error message is sent to the user.

5. If all policies evaluate to true, the αcreate-service computation uses the authorized

bindings (retrieved from the CURL’s metadata) and dynamically creates within an in-

dependent thread of execution a new user-specific service; its lexical scope is composed

and bound by those authorized bindings, namely, the user has only those capabilities

available and nothing else.

6. Following, the user’s message is forwarded to this newly created, personalized service

for evaluation. The message is semantically interpreted by this computation.

7. If a custom closure exist within the message, it will only be executed if it is composed

by or includes only the authorized bindings. Otherwise, the message is rejected.

8. The user-specific service terminates after the user’s message has been processed (i.e.

the thread of execution is terminated).

Figures 6.9 and 6.10 graphically describe this process. The sequence diagram in figure 6.9

provides an account of the sequence of steps required for a user to access a provider’s services

and the computations involved in the process. The activity diagram in figure 6.10 presents

in detail the decision process that leads to either executing or rejecting a user’s message.

There may be instances where having long running services—as opposed to services that

serve and terminate—is desired. Consider for example an application where a physician

spawns a long running computation at a clinical laboratory which notifies her of her patients’

test results. Thus an alternative that would satisfy the constraints of our design is to

provide authorized users to spawn a long running computation (service) which may have an
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X
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Figure 6.9: Sequence of messages for CURL request, and service creation and use.

expiration date after which it terminates. Therefore, according to the previously described

steps, the user service creates this long running computation and sends the computation’s

CURL to the user before terminating.

Policy evaluation at service creation

As previously discussed, evaluating policies requires providing values to policy variables

and executing individual policy conditions to obtain their collective truth values. We also

mentioned that there is a two-stage policy evaluation process: at CURL creation time and

before dynamic service creation. While some policies are based on rather static conditions

(conditions which infrequently change) such as a user’s role within an organization, other
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Figure 6.10: Dynamic creation of user services.

policies include more dynamic conditions such as the time of day or the day of the week

to restrict access to capabilities. Therefore, at CURL creation time, known policy variable

values are those related to the subject’s identity or affiliation, assuming the subject is a

recognized system user. So the abstract policy

policy(physician,readEHR,patient,null,(inDepartment(*physician*,

traumatology), name(*physician*, John)))

is replaced at the first stage of evaluation by, for example,

policy(physician,readEHR,patient,null,(inDepartment(12345,

traumatology), name(12345, John))))

therefore replacing the subject variable within conditions with the subject’s unique identifier.

Following this replacement, policy conditions, which are implemented as predicates with

access to backend domain databases, are evaluated (thus executed) to obtain the policy’s

truth value.
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For a policy for which at least one condition cannot be evaluated for the lack of variable

values, the ‘not-evaluated value (as opposed to true or false) is returned. For example, in:

policy(physician,readEHR,patient,null,(inDepartment(12345,

traumatology), name(12345, John), primaryCarePhysician(*patient

*, 12345)))

the variable patient is not provided with a value because the given value will depend on

whose EHR the physician is trying to access in a service use instance and on whether the

physician is the primary care doctor for that specific patient. These initially unresolved

policies are, therefore, embedded within the service CURL and are left to be re-evaluated at

service-creation time.

6.1.7 Capability Accounting

Keeping track of when and how a capability is being used may be important in order to

restrict or terminate a relationship with a service user that is no longer considered trustwor-

thy or to control that the bestowed capabilities are not being misused. Through capability

accounting, the provider is thus aware of the capabilities apportioned to each party. Our

approach supports two types of capability accounting: (a) CURL-issuing tracking, and; (b)

capability use monitoring.

To oversee the issued CURLs, providers are required to keep some state, in specific the

issued CURL’s unique identifier, the bestowed capabilities, the island address as specified

in the user’s reply-to CURL (the address to whom the issued service CURL is being sent

to), and a boolean value indicating whether the CURL has been revoked. A specialized

computation, call this αservice-curls, automatically stores this information at CURL-creation

time (after appropriate policy evaluation). A provider may choose to only store CURLs

issued to out-of-island computations to reduce overhead. This record keeping also allows the
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provider to revoke the validity of a CURL, and thus revoke the given capabilities, when a

user becomes untrustworthy or simply when the business relationship ends. Therefore, an

incoming message is only processed if, based on the record keeper, the CURL has not been

revoked. Figure 6.11 graphically describes service access in both valid and revoked CURL

scenarios. The left side of the image shows a αcreate-service computation spawning a new

user service to forward the user’s message to after checking the validity of the used CURL.

The right side of the image shows an alternative scenario where the user attempts to use the

service, however the αcreate-service computation after consulting with the CURL registry,

determines that the used CURL has been revoked and therefore an error message is sent

back to the user.

provider

Iuser

use-service

user-
service 1

4

1

issued 
CURLS

2

Message

5

valid CURL scenario

Iprovider

Iuser

use-service

create-
service

1,3

issued 
CURLS

2

revoked CURL scenario

valid 
CURL

revoked 
CURL

Message and response Spawn

Database accessResponse

3
create-
service

Figure 6.11: Valid and revoked CURL scenarios.

A second capability accounting practice involves monitoring the use of authorized capabilities

by inspecting the types of messages that are being processed by services. A provider’s log
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stores both executed and rejected closures (sent in incoming messages), along with the used

CURL, a timestamp, whether the closure was executed, and if appropriate the reason for

rejection. A closure—and therefore the user’s message—is rejected either because the policies

stored in the CURL evaluate to false or to ‘not-evaluated, or because the closure includes

bindings not existing in the authorized binding environment (e.g., attempting to make a

call on create-EHR when that capability has not been provided to the user). Although

the semantics of a closure are very difficult to analyze in an automated way, a GUI can

assist a human auditor to manually inspect the code within incoming messages for potential

misuse of the granted capabilities. To facilitate this manual process, message auditing can

be tailored to specific needs through filtering techniques (for storage or retrieval of closures),

for example, based on the criticality and the potential for misuse of the used capabilities,

or on the identity service user (a provider may be interested in monitoring service use of

specific customers).

Other related work

Other work has also addressed concerns related to capability accounting. For example, the

PicketLink project, which addresses identity management, includes a Token Registry which

stores and enables tracking an identity provider’s issued and revoked security tokens [214].

Another line of research is web site use tracking [26][21][185]. Existing tools in this category

include Google Analytics [120], Kissmetrics [4], and trak.io [9]. However their work addresses

different concerns from our focus on provider asset privacy and security, focusing instead on

using the tracked information for marketing and usability improvements.
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6.2 Consumer-controlled Service Customization

Customization is increasingly desirable and important in many domains. For instance, com-

panies have changed their business models to transition from mass production to mass cus-

tomization, enabling customers to customize products according to their own needs instead of

expecting customers to adapt to pre-defined product features [160]. Customization is, thus,

not merely a luxury or a convenience feature within a software system. In the healthcare

domain, for instance, customization is a fundamental need [193] where lack of customizabil-

ity of EHR systems is a significant barrier for their adoption [57]. For example, healthcare

professionals have expressed the need of customization of EHR systems for documentation

activities that provide an alternative to rigid, traditional narrative charting, and therefore

that account for the users’ workflow [115]. Although [115] is mostly concerned with user in-

terface customization—authors propose the implementation of customized templates—this

study shows how system users, even within the same organization and within a narrow

domain area (e.g., patient visit documentation), have individual preferences.

Given these motivations, our goal is to enable custom service composition through compu-

tation mobility—inbound mobile code is executed by the service provider, leveraging the

available local computational and information assets. We leverage, to this end, COAST’s

implementation infrastructure, which enables customizing services “out-of-the-box”. In the

next two sections, we will describe in more detail how users can customize single-source ser-

vices as well as compose more complex, multi-source services by leveraging the capabilities

offered by various, decentralized and disjoint services.
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6.2.1 Customizing Single-Source Services

Providers make available to users a set of capabilities which can be used “as is”. In other

words, COAST services allow using specific system functions (i.e. procedure call) in a com-

parable way to current WS* services. Therefore, a physician is capable of obtaining all

patient records through a function get-all-patients-EHR. However, it is often necessary

to post-process the obtained information for specific purposes, a common challenge we de-

scribed in 6.2. For example, a physician may only be interested in finding out what is the

average age of patients with diabetes. In this scenario, obtaining all patients records is a

misuse of bandwidth and local processing power. These are the kind of scenarios where the

power of customization is very valuable.

Customization can be achieved through functional composition—the provider offers a set of

authorized capabilities which can be used by service users to compose new services suited

to their specific needs. In other words, given that actors themselves are computational

environments, the available bindings that compose the lexical scope of an actor can be

combined to compose custom closures. A provider, for example, may offer capabilities fa,

fb, and fc (figure 6.12). A user computation may send a message with the closure (lambda

()(c(a x))), which is executed by a provider’s service to obtain some result.

ι service provider ι service user

α service
α use service

msg: ( fc ( fa (x))

result of 
( fc ( fa (x))

fa(x), fb(x), fc(x)

message response
ι α   actorisland

Figure 6.12: Service customization.
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ι healthcare provider

α patient
β get-patient-EHR

α physician α researcher
β get-all-anonymous-EHR

ι actorisland α

β get-patient-EHR
β get-all-EHR

Figure 6.13: A COAST peer running 3 user services.

To provide a more concrete example, a healthcare provider’s COAST peer may have, at

startup, three services running (figure 6.13): one for John (αpatient), another for Dr. Smith

(αphysician), and a third one for Dr. Jones (αresearcher), each with their correspond-

ing binding environment (denoted by β) 1. Dr. Jones, using a CURL @researcher sends

αresearcher, for example, a custom closure λaverage-age computes the average age of pa-

tients with diabetes by leveraging the provided get-all-anonymous-ehr domain function

(figure 6.14). The output of function get-all-anonymous-ehr is a vector of hash tables,

where a hash table contains an individual patient’s information. Although the function to

obtain the desired data was not explicitly provided by the service, COAST allows customiz-

ing services by way of function composition and code mobility. An example of such custom

service composition is:

(define average-age

(lambda()

(let* ((patients-vector (get-all-anonymous-ehr))

(num-of-patients (vector/length patients-vector))

(vector-of-ages (vector/map patients-vector

(lambda(x) (hash/ref x ’age #f)))))

(/ (vector/fold/right vector-of-ages + 0)

num-of-patients))))

1Figure 6.13 illustrates a partial view of the system, depicting only the service provider.

101



ι hospital ι researcher
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msg: λ average-age:
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(...(get-anonim-ehr)...))

result: 54
fget-anonym-ehr()

message response
ι α   actorisland

Figure 6.14: EHR service customization.

Also, as described in 6.1.6, a custom closure will execute only if it is composed using the

authorized bindings. For example, a user service may provide capabilities make-ice-cream,

add-nuts, and add-fudge to create custom ice-cream images. A custom closure (λ () (

add-fudge (add-whipped-cream (add-nuts (make-ice-cream "chocolate"))))) is

discarded, since the capability to add-whipped-cream has not been provided to the user

(i.e. it is not available in the service’s bounded execution context, even if the function exists

within the island). Services or computations are closed execution environments where the

user is constrained to use only the authorized functions and data made available to him/her.

Thus, enabling appropriate differential access demands fine-grained management of these

functions to curtail or augment composition power and access to data.

As described by these examples, our approach and accompanying platform provide security

of information and capabilities, yet the expressiveness of functional composition. The foun-

dations of the COAST infrastructure on the lambda calculus allow this expressive power.

The lambda calculus is a universal model of computation where functions can be provided

as arguments to other functions, and where functions can be combined to compose other op-

erators [135]. Not only it is possible to construct these fist-class functions (functions which

take functions as arguments), but also higher-order functions (functions which produce other

functions) [31]. Given these powerful formal, mathematical foundations [72], COAST-based

services provide a degree of flexibility to customize services that cannot be provided with-
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out mobile code and functional composition; the provided functions are used by service

consumers as the building blocks of custom-made services.

6.2.2 Customizing Multi-Source Services

Not only is it possible to compose custom services from a single provider, but computation

mobility allows processing and integrating data from multiple sources. Just like current

mashup technologies, our aim is to integrate decentralized components and information into a

single application. However, the power of code mobility provides us with increased flexibility

and expressiveness to compose services and applications with decentralized constituents.

Custom services can be composed with multiple services’ capabilities controlled by a single or

by multiple providers (i.e. exist within a single or multiple decentralized islands). The way

these custom services are composed are specific to the consumer application’s purpose and

information needs. We identify three patterns of message exchange among computations to

achieve custom service composition, patterns which can be associated to well-known network

topologies [250]: (a) in the “independent communication” star pattern, a user performs in-

dependent remote computations from different intra- or inter-island services independently,

retrieving information and locally processing a combined result from the set of individual

service requests 6.15; (b) in the “dependent communication” star pattern, the user applica-

tion invokes services in sequence, using the result of one service as the argument for the next

one 6.16, and; (c) in the ring pattern, custom closures travel through multiple services, pro-

cessing messages and producing intermediate results that are sent to the next computation

before returning an aggregated result to the user (figure 6.17). Although figures 6.15, 6.16,

and 6.17 depicts services within different islands, this typology applies as well if they existed

within a single island, thus managed by the same authority. Under this type of classification,

single-source service customization described in 6.2.1 follows a point-to-point topology.
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msg: serv2()

msg: r2
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Figure 6.15: Independent star topology.

Figures 6.18, 6.19, and 6.20 illustrate scenarios based on these service composition patterns.

Figure 6.18 describes a scenario where Dr. Jones, the researcher from the example in section

6.2.1, is interested in comparing the average ages of diabetes patients by state to further

investigate the reason for their variation (if any). He sends independent custom closures to

different health organizations across states to retrieve this information. All service requests

are disjoint and sent independently of each other (independent communication star).

Iuser

use-service

Iprovider2

service 2

Iprovider1

service 1

Iprovider3

service 3

msg: serv1()

msg: r1

msg: serv2(r1)

msg: r2

msg: serv3(r2)

msg: r3

Message and response

1
2 3

Figure 6.16: Dependent star topology.
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msg:
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Figure 6.17: Ring topology.

Figure 6.19 instead depicts a patient who places a prescription order through a pharmacy’s

online service. He first retrieves the prescription from his EHR at the health center and then

uses that information to place the prescription order. Numbers on top of the arrows indicate

the order of events. Therefore, the result retrieved from one service is used as an argument

for another’s invocation (dependent communication star).

The scenario in figure 6.20 is a more complex and interesting one; Ann, a hospital admin-

researcher

EHR
provider 1

EHR
provider 2

EHR
provider 3

msg: λ average-age( )
resp: 40

msg: λ average-age( )
resp: 50

msg: λ average-age( )
resp : 45

Message and response

Figure 6.18: Independent star topology scenario.
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msg: λ place-order(prescription)
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msg: λ get-presciption( )
resp: prescription

1

2

Figure 6.19: Dependent star topology scenario.

istrator, is in charge of the drugs inventory within a hospital. Using an application in her

PDA, she sends a custom closure to a computation which handles the EHR database to

calculate the weekly needs of medication based on the consumption rate of a set of drugs.

The result of this computation is then forwarded to a hospital service which manages the

drug inventory. The custom computation compares the weekly needs with the current stock,

therefore calculating the amount of each prescription drug to purchase. Ann’s custom com-

putation continues its path towards the pharmacy’s COAST island to place an order given

the needed drug quantities. Finally, a confirmation of the placed order is sent back to Ann.

The following code snippet is an example of such custom closure. This last scenario truly

distinguishes COAST-based services from current services technologies. Enhanced expres-

siveness through custom, mobile closures enable richer multi-source service compositions

that satisfy a wider audience of users.
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(curl/send @EHR

(λ()

(let ((required-drugs (calculate-drug-stock-needs

(get-stock-info)

(weekly-drug-consumption-rate))))

(curl/send @pharmacy (λ()(place-order required-drugs))))))

6.2.3 Comparison to Other Related Technologies

Other studies have also addressed customization. Mashups, for instance, emerge from the

need of application composition and customization leveraging remote services. Mashups’ in-

novation was departing from developer-controlled service composition to enable consumers—

mostly novice developers—to create their own applications from existing web services [173].

Liu et al. [173], for example, propose a “mashup component model” which provides a set of

hospital
administrator

EHR

drug distributor

1

2

3

resp: order confirmation

msg: λ place-order(computed quantities)

msg: curl/send 
         @drug-distributer 
         λ place-order(λ compute-quantities())

Figure 6.20: Ring topology scenario.
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UI components that are linked to backend services selected from a service catalogue such as

UDDI. End-users can then drag-and-drop in the browser these visually represented services

to compose custom ones. However, as the author argues, mashups are lightweight and end-

user oriented composition technologies which are not suited to the types of data-sensitive,

privacy-aware, and large-scale applications that we address in this research. In addition,

Liu’s approach still requires semantic and technical interoperation of services backing this

visual service composition technology. Composing mashup applications involves “significant

manual programming effort” [274]. Based on our first-hand experience building a mashup

involving a travel and leisure guide during a course project, composing new applications

using existing services as building blocks is difficult at best. Semantically and structurally

different, and often incompatible services, as well as the unavailability of needed services,

brings about systems which misrepresent their initial design. In addition, often times most of

the data returned by the service is useless for the client, thus discarded, misusing bandwidth

and processing resources in the process of service composition.

SOA technologies also contribute to service composition and business processes through

technologies such as BPML, XLANG, WSFL, WSCL, BPSS, and BPEL4WS. However, and

as Lui et al. and Mandell et al. [181] point out, these are complex technologies that

have become barriers to service composition and have not achieved the goal of seamless

interoperability. In addition, a significant shortcoming of current web services technologies

is the lack of consideration for the needs of a diversity of users—“one-size-fits-all” services

constrain users to work around them to obtain the desired information. The current norm

is that users need to adapt to services as opposed to services adapting and enabling users to

satisfy specific needs.

Other research efforts, leveraging SOA technologies, have approached service customization

[181][61][228][245]. Mandell et al. [181], for example, leverage semantic web technology to

augment the BPEL4WS process modeling technology with a Semantic Discovery Service to
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enable custom service discovery and composition and improve service interoperability. In

this context, customization refers to the ability to automatically select constituent services

that meet the constraints of individual users (the approach excludes automated composition

and the service workflow is fixed). Cao et al. [61] leverage as well domain ontologies to

address the dynamic definition of service process models according to customer requirements.

Although users can find services that meet specific constraints for composition, individual

services used as building blocks are rigid, non-customizable solutions, therefore more limiting

in terms of composition capability. In addition, and according to Liu et al., once these SOA-

based composite services are deployed, it is difficult to customize them according to changing

users’ needs given their long development lifecycle.

In another study, Nguyen et al. [201] leverage product line techniques to model service vari-

ability, thus enabling users to tailor services to their needs. Sam et al. [228] go a step further

to allow the automated transformation of web services’ configurations, published in direc-

tories, to others more suited to consumers’ needs. Stollberg et al. [245] similarly approach

service variability and complementary modeling techniques for managing such variabilities.

This research however, involves configuration of service interfaces rather than customization,

where the service provider defines the allowed service variations. Our notion of customization

is far more flexible, expressive, and more user-controlled than what Nguyen et al. propose,

and not limited to one, but to multiple decentralized services. In addition, this line of re-

search focuses on service inputs and output types, however not on manipulating the core

functionality and behavior of the service enabled by COAST’s mechanisms.
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6.3 Limitations and Scope of this Work

Despite the novelty and expected benefits of our approach towards service customization

and differential access, there are some limitations and open questions that we do not address

and are out of the scope of this dissertation proposal.

Automated service discovery. COAST is silent on automated mechanisms for discover-

ing services offered by islands. Therefore, developers need to turn to (out of band) island-

and site-specific documentation in order to compose custom services. However, a current

priority and a first step is laying out strong foundations on how to effectively exploit, protect,

and customize those services before focusing in automated discovery.

Trust and reputation. In decentralized systems, where private and critical data is ex-

changed, mutual trust among parties is essential. The challenges in this aspect are (a)

determining whether the service user is who he claims he is, and (b) determining whether

this authenticated party is reliable or trustworthy. While the former challenge is a matter of

“identity trust”, the latter deals with a party’s reputation. An example of this distinction is

the following: a party attempting to access a service may claim to be a government agency;

although it is considered trustworthy, it is necessary to verify its identity (i.e. public key

associated with a real world identity). Both identity and trustworthiness are necessary so

that service CURLs are issued to the right hosts. On the other hand, a research institution’s

identity might have been established, but the provider may not know if this is a reliable user.

In this case, it is necessary to assess, for example, its academic reputation.

Unfortunately, COAST island self-certification is not enough to promote trust among parties.

More specialized trust management is necessary to dynamically assess the trustworthiness

of other participating parties when trust boundaries are crossed [157]. Existing trust and

reputation models can be integrated with our approach [127]. For example, the semantic

web community proposes a model where users have a combined trust score based on multiple
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individual scores given by users [224]. To obtain reputation information we can refer to

models such as community-based models used in P2P networks [10][263], specially those

classified as distributed reputation systems [146][92].

Although implementing existing trust models or creating new ones is beyond the scope of

our research, we make explicit some assumptions on how parties are authenticated and how

trust is promoted to carry out fruitful interactions. We assume a “Web of Trust” model

where each party chooses who to trust [62]; parties have available a trust graph, such as

the one described by Hamouid et al. [132], where nodes authenticate public keys of other

nodes based on social relationships without relying on a centralized certificate authority.

Each node has a publicly-known identifier, cryptographically bound to a private key by way

of a “witness” that is generated by another node. In addition, we assume that a provider,

through an appropriate communication protocol, obtains service users’ reputation ratings

based on recorded past experiences from other known service providers.

Privacy policy languages. Although our work involves deriving user services from specific

privacy policies, our work is not focused on neither creating a new privacy policy language

(given their availability) nor recommending specific languages to describe policies in our

domain or in a set of domains. However, we leverage existing policy languages for our

scenarios and describe the rationale of our choice. Our approach, rather, focuses on demon-

strating the feasibility of deriving binding environments and CURLs according to a set of

policies, independently of their specification language. That said, future work is necessary to

assess whether particular languages are appropriate for specific domains, whether domain-

independent languages can be used across many domains, or if new languages ought to be

created due to the inability to capture the desired semantics with existing ones. Depend-

ing on the specific situation, domain specific languages can be created to allow specifying

domain-specific privacy policies.

Statistical privacy techniques. Although differential access to providers’ services sup-
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ports individuals’ privacy by allowing only authorized parties to access personal information,

our approach does not solve the privacy problem, namely the unauthorized dissemination

and misuse of personal information. Parties may have background information [198] that

in combination with the data obtained by service providers allows making inferences to de-

identify and discover private information about individuals [102]. Our concern is rather the

unauthorized disclosure of specific data about individuals. This said, service providers may

well implement diverse privacy mechanisms available [12] as a core part of the service to

prevent disclosing personal information that is too revealing and which may compromise

individuals’ privacy. This work also excludes concerns, however legitimate, of how personal

information obtained through a service is used; in fact, in the healthcare domain, HIPPA

itself states that “there are no restrictions on the use or disclosure of de-identified health in-

formation” [96]. Although relevant to our line of research, we also exclude from the scope of

this research the persistence of data provenance information across transactions and research

related to “sticky” policies [192].

System usability. Although we provide basic interfaces as part of our experimental EHR

system, we do not focus on specific usability issues for the notional participants of our test

domain (e.g., patients and doctors). We instead provide the core mechanisms to enable

service customization and differential access that are essential in order to build domain-

specific tools that consider usability issues for the specific system users.

Access control for services within processes. In our work, we do not specifically

consider services which are part of larger processes. The policy languages and access control

mechanisms for these type of services which are part of an orchestration or a choreography of

services usually include constructs for, for example, stating that action A ought to be called

before action B, or that the user is obligated to perform action C every time action B is

invoked. For instance, Rei itself counts with syntax to support this type of coordination se-

mantics and action sequences. These concerns are rather relevant within workflow languages

112



such as YAWL [258].

Our approach allows calling services independently from each other. However, interesting

future work could support workflow through coordination of services whose dependent invo-

cation is guided by formal policies.

113



Chapter 7

Practical Experiments: COASTmed

To assess the practical feasibility of our approach we conduct experiments involving system

development. To this end, we developed COASTmed, a prototype founded on COAST’s

architectural constraints and techniques and formal privacy policies. COASTmed is an

EHR management system which, supporting decentralization, offers services to diverse users

with distinct service access privileges. The development of this application is part of the

evaluation of our approach, specifically aimed at answering the question on whether we can

successfully build in practice Internet-based services which exhibit the desired properties

with the proposed techniques (formulated in section 3).

The system properties that we aim to exhibit with COASTmed are: (a) provider-controlled,

policy-driven differential service provision, and; (b) consumer-driven customization. In other

words, COASTmed enables providers to differentiate among users who are entitled to differ-

ent information and capabilities, while at the same time allowing users to flexibly customize

the use of such services within the boundaries imposed by the provider. COASTmed is also

the artifact for the scenario-based evaluations in section 8.1.

COASTmed can be downloaded from https://bitbucket.org/abaquero/coastmed.
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In following sections, we describe the approached problems in the context of the healthcare

domain, in specific with respect to the use and sharing of electronic health records, and

motivate the choice of this experimental domain (section 7.1). In addition, we describe a set

of forward looking scenarios from a COAST perspective regarding the on-the-spot access to

healthcare information. Then, we provide a description of COASTmed’s initial architecture

(section 7.2) and a description of the leveraged domain data model (section 7.1.2). Following,

we explain more in-depth how access policies for the provided services are specified (section

7.3), how user CURLs are created and issued to domain users 7.4, and how these CURLs

are used to dynamically create a user service and serve a user’s request (section 7.5).

7.1 Empirical Domain: EHR Management

Healthcare is largely a decentralized enterprise—a network of people and organizations are

involved in some aspect of patients’ healthcare, frequently accessing and sharing patient in-

formation for different purposes (figure 7.1). A nontrivial consequence of these interactions

is the dispersion of patient data among uncountable, decentralized digital locations. Despite

HIPAA regulations and other locally imposed privacy and operational policies to protect pa-

tients’ data, there are precedents of privacy breaches due to, for example, insiders’ authority

abuse [225]. The preeminent problem is that these policies may be vague and often detached

from the operation of information systems. Consequently, internal and external organization

services do not always comply with these regulations.

A second, no less important problem is that patient information is used for diverse (often

unanticipated) purposes. Yet, it is unfeasible for healthcare organizations holding patient

data to deliver personalized information for every current and future user and need. Although

Web service technologies are being deployed in this domain to deliver patient information

in replacement of exchanging physical documents, these are rigid, unilaterally controlled
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Figure 7.1: Parties and interactions in the healthcare domain.

solutions which hardly satisfy their users’ needs and curtail access rights to otherwise more

privileged users. As we mentioned in section 6.2, customization is a fundamental need in

this domain, where users, even within the same organization, have individual information

needs (regarding, for example, content, format, visualization, and interaction modes) with

respect to patient data.

Given these challenges, there is a need for more suitable web services for this complex

domain involving an intricate network of users and uses of patient data, heterogenous trust

relationships among parties, and convoluted legal and privacy strictures with respect to

management and disclosure. We identify two salient challenges for these novel information

services: (a) granting access to patient data according to appropriate, desired relationships

between individuals and organizations, and; (b) allowing authorized user applications to

obtain the required patient data for diverse uses.
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Our work approaches the essential need of speedy and safe exchange of distributed patient

data in support of efficient and coordinated healthcare delivery, epidemic outbreak surveil-

lance, health sciences research, and other socially beneficial goals. COASTmed is meant

to provide customizable EHR information services to independent and heterogeneous users.

The critical nature of data, the number of participating parties, and the various trust rela-

tionships in this complex and highly decentralized domain provides a fine example that leads

to the exploration of both the challenges and the enabling technologies for the secure and

privacy-aware collaboration between parties to share, access, and use health-related data

and capabilities.

7.1.1 Rethinking the EHR Scenario: Sharing and Using Patient

Data in COASTmed

The following scenarios address shortcomings in the domain regarding the lack of immediately

available data, systems and services policy compliance, patient information privacy and

security, the invariability and inflexibility of information services, and the integration of

distributed and independently managed data.

When John’s electronic record was first created, a CURL was issued to him by the healthcare

provider to enable accessing his health record at any time from either his laptop or mobile

phone. This CURL allows him to see only his medical record and no other information or

system functionality. Doctors and nurses are also authorized to access John’s and other

patients’ data to provide them with medical treatment. Principal-specific CURLs provide

healthcare employees individual authorities with respect to the access, management, and

manipulation of electronic records.

At a later time, John accesses an online service to make an appointment with Dr. Smith. At

the appointment, John uses a mobile user interface assistant to send a single-use CURL to
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the doctor’s email to allow her to access, on the spot, a laboratory’s data service to obtain

John’s blood work results. The issued CURL is created upon the patient’s request by the lab

according to its own privacy policies. Dr. Smith can only access the most recent results and

the CURL cannot be used again. These restrictions are embedded in the CURL to preserve

the patient’s privacy. Using the issued CURL, the doctor sends a custom algorithm to the

lab’s service to perform specialized data analyses and diagnostics on John’s health data.

Jane has been diagnosed with hip osteoarthritis and requires a hip replacement. Concerned

about the expenses, Jane uses a CURL issued by her physician to access her health record

where the recommended procedures are recorded. She sends a custom computation with the

procedure’s code to her insurance company’s online service by way of a policy-holder-specific

CURL. The service identifies the patient through metadata encoded within the incoming

CURL. The custom computation executes, calculating the expected expenses based on her

insurance plan. The insurance company also allows Jane to compare the costs of various

providers in the area using a patient-specific service.

Researchers are investigating the relationship between diabetes and cardiovascular diseases.

Multiple healthcare providers, according to their own privacy policies, issue a CURL for the

researchers use. The capabilities conferred by CURLs restrict the access to the specifics of

patients’ records, but enable researchers to retrieve aggregate patient data. Given that ser-

vices are computational environments, researchers may send custom closures such as custom

statistical algorithms to their researcher-specific service. For example, using the data hosted

by the service provider, the custom closure computes the average age of patients diagnosed

with diabetes. This closure can only leverage the capabilities authorized, thus those available

within lexical reach of the service.

The issued CURL has both time and use count constraints—researchers can only access the

provider service at most a hundred times as defined by the provider during the validity of

the CURL, namely it expires a month after it was issued. If researchers attempt to use
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the issued CURL after the permitted use count has been exhausted or after the CURL’s

expiration date, the service request will be denied, thus the user message is discarded.

In addition, healthcare providers offer different services to a wide range of users. For exam-

ple, pharmaceutical companies use services for the evaluation of prescription drugs through

periodic analyses of patients’ treatment and outcomes; the CDC installs long-running com-

putations in key healthcare facilities to detect epidemic outbreaks. Healthcare providers

generate and distribute CURLs addressing policy-conforming, privacy-aware, and special-

ized services which provide the degree and depth of access parties have agreed upon, limiting

functional capability to their specific authority.

7.1.2 EHR Data Model

A data model describes, at a high level, the domain concepts and the relationships among

them, and at a lower level the way these are organized, stored, and accessed within a software

system. In our domain, the data model largely involves patient’s health information such as

symptoms, laboratory results, and diagnoses.

To obtain a realistic data model for the COASTmed prototype, we looked at various open

source healthcare information systems such as PrimaCare [179], VistA [206], WorldVistA

[268], AstronautVistA [24], FreeMed [111], GNUmed [3], OpenMRS [7], and OpenEMR [6].

At the heart of most of these systems is an electronic health record management component

such as the Computerized Patient Record System (CPRS) in VistA. Most have very rich

data models, which reflects the complexity of the domain. VistA is particularly complex, not

only composed of the CPRS but also of modules for pharmacy and laboratory management,

clinical imaging, dentistry, billing, a patient portal (MyHealthVet - www.myhealth.va.gov),

and other specialized functions for patient treatment and hospital administration.

119



In order to conduct practical experiments on the interactions between the EHR management

system and diverse parties, we chose to use PrimaCare’s data model due to its richness and

detail as well as the availability of a small sample patient data.

PrimaCare is an electronic health record management system developed by the Primary Care

Doctors’ Organization Malaysia (PCDOM) with the goal of improving healthcare delivery

and providing a standard interface to different associated hospitals, clinics, and healthcare

offices. The overarching components of PrimaCare’s data model are health record manage-

ment, an ontology of standardized concepts, and a set of administrative functions such as

accounting, billing, and room scheduling. Health record management includes patient de-

mographics, medical history, diagnoses, treatments, interventions, and so on. Appendix C

shows a detailed list of PrimaCare’s data model elements.

In addition, PrimaCare uses international healthcare standards such as the International

Classification of Primary Care (ICPC) [265]—which describes patient’s reported symptoms

or complaints, diagnosis, treatments, interventions, test results, and referrals—the Interna-

tional Classification of Diseases (ICD) [208], the Anatomical Therapeutic Chemical (ATC)

drug taxonomy [267], and the Logical Observation Identifiers Names and Codes (LOINC)

describing laboratory and clinical observations [186].

7.2 Initial System Architecture

Electronic health record management applications are complex systems composed of tens

or even hundreds of components encapsulating different aspects of the healthcare delivery

and management process (e.g., EHR management, drug interaction checking, prescription

refill, home monitoring, and more [91]). COASTmed focuses on the secure service provision

aspect of an EHR application, thus the components of our architecture heavily address access
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control mechanisms.

Figure 7.2 features the initial architecture of COASTmed, where a root computation α root

creates, at startup, three services or computations: (a) α service CURLs; (b) α policy manager,

and; (c) α user services. Each of these services are reified as closures executing in indepen-

dent threads of computation, receiving and processing incoming messages, and each with its

own capabilities or binding environment. Computations’ capabilities, namely the functions

within running closures’ lexical scopes, are assigned at their creation time by α root, their

parent computation, comprising a purposefully selected subset of the root’s capabilities.

ι COASTmed

α root α policy 
manager

α service 
CURLs

α user 
services

ontologies

policies

EHR

message

data access

message &
response

spawn

ι
α   actor

island

Figure 7.2: Initial system architecture.

α service CURLs generates user-specific CURLs that allow individual users, based on their

authenticated identity, to access authorized services; the CURL stores as metadata the names

of the authorized capabilities (binding environments or functions) for the user the CURL is

being issued to. To obtain this CURL, users send a message to α service CURLs.

To create CURLs, α service CURLs coordinates with α policy manager which handles

policy creation and evaluation. CURLs are created based on the result of evaluating policies

that are relevant to a specific user based on identity or role within an organization. To create

and evaluate policies, α policy manager has access to: (a) domain ontologies which define the
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terminology for policy specification; (b) the policy database to record and retrieve policies,

and; (c) domain information such as the organizational structure and patient’s records to

obtain facts, the basis for policy evaluation.

Finally, α user services is the computation responsible to create user-specific services in

response to a user’s message. The behavior of this computation reflects Agha’s actor model

[13] which is foundational to COAST’s principles: a computation implemented as an actor

creates or “spawns” other actors in response to receiving a message. After the creation of

the user’s service, the message is forwarded to this computation for processing.

These components include also cross-cutting concerns or aspects such as capability account-

ing, namely the monitoring of capability delivery and use. For example, both α service CURLs

and α user services address capability accounting aspects, the former to keep track of issued

CURLs, and the later to monitor capability use by users.

The described architecture is the initial architecture of COASTmed (at t0). This architecture

ι COASTmed

α root α policy 
manager

α service 
CURLs

α user 
services
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EHR

α serv 1

message
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Figure 7.3: System architecture at tn.
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dynamically changes in response to both the organization’s expanding needs and based on

users’ requests which result in the spawning user-specific computations (figure 7.3). In

our current implementation of COASTmed, all user services exist within the same island.

However, a provider may choose to allocate services within different islands according to

some criteria. For example, a healthcare provider may choose to spawn critical services,

such as those with more expansive access to health records, within more secure servers,

or services for users who may run more computation intensive data analyses within more

powerful servers.

7.3 Specifying Policies in COASTmed

In COASTmed, access control to services is performed based on policies set forth by a data

provider such as a hospital, healthcare professional, or an overseeing health policy making

agency. Privacy and operational policies in the context of EHR management and healthcare

more generally may define the context and rights to access, create, and modify patients’

data, supervise billing and insurance, manage medical supplies, coordinate the use of human

and physical resources such as physicians, equipments, operating and recovery rooms, and

so on (see related research on the healthcare resource management in [221] and [269]).

Policies are thus specified by an authorized policy maker such as a hospital administrator or

an internal auditor. From our perspective, this principal is just another service user whose

assigned capabilities include the ability to create, modify and delete policies. Therefore, at

t0 the single policy that enables creating all the system’s policies, and consequently all users’

services, is “a principal in the role of policy maker has the right to create policies.” This

right is associated to a binding environment who has two capabilities: policy/new and

predicate/new which enable creating policies and policy predicates correspondingly.
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In COASTmed, policies are represented in Rei, stored in database, and translated to the

underlying implementation language for executing policy evaluation. To provide a concrete

example of how a policy is created, consider the policy “a physician has the right to access

a patient’s electronic health record if and only if the physician is the patient’s primary care

physician.” To specify this policy, the policy maker sends a custom closure to COASTmed

(lambda()

(policy/new

"A physician has the right to access a patient’s electronic

health record (read and modify his/her EHR)."

"physician"

"EHR/access"

"patient"

null

(list (predicate/new "If the physician is the patient’s

primary care physician." "primaryCarePhysician(*physician*, *

patient*)" #t))))

This lambda expression includes the policy/new function, which takes as arguments the

policy’s natural language description, the subject (physician), the authorized action (EHR

/access), an optional policy direct target object (patient), an optional indirect target

(null, no indirect target in this policy), and zero or more conditions. Conditions are created

using a second function predicate/new which takes as arguments a predicate description,

a predicate expressed in Rei (primaryCarePhysician(*physician*, *patient*)), and

a boolean value depending on whether the predicate is positive or negative (#t). Although

our approach does not allow prohibitive policies, we do consider negative policies to express

exclusions and exceptions. For example, the description of the negative version of the ex-

ample’s predicate is “If the Physician is not the Patient’s primary care physician”. The

consequence of this policy is granting access to all EHRs to physicians with exception to
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those for whom they are the patient’s primary care physician.

The α policy manager then stores the policy and predicates in the database. Policy

rights and predicates are stored separately in different database table for predicate reuse,

so that multiple policies can include the same condition. Along with the Rei predicate,

α policy manager stores its translation to an expression in the underlying programming

language—Racket in our case—for future evaluation so that compilation is done once for each

predicate. For instance the predicate primaryCarePhysician(*physician*, *patient

*) is translated to the lambda expression

(λ (args) (primaryCarePhysician (cadr (assoc ’physician args)) (

cadr (assoc ’patient args))))

which replaces the variables ’physician and ’patient with constants provided through an

association list args of key-value pairs, and then invokes the function primaryCarePhysician

on those replaced variables.

Figure 7.4 describes the database structure for policies and predicates. Note that the field

for policy conditions includes references to predicates in the predicates table.

DESCRIPTIONID SUBJECT ACTION TARGET CONDITIONS

1 A physician has the 
right to access a 
patient's EHR

physician EHR/access patient 1

DESCRIPTIONID REI RACKET POSITIVE?

1 If the physician is 
the patient's primary 
care physician

primaryCarePhysician(
*physician*, *patient*)

(primaryCarePhysician 
physician patient)

#t

POLICIES

PREDICATES

Figure 7.4: A relational database structure to store policies
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This policy can be retrieved in Rei notation for policy analysis and comprehension

policy(physician,accessEHR,patient,null,(primaryCarePhysician(*

physician*,*patient*)))

It is not expected that policy makers write programming language closures in order to create

and modify policies. Custom user interfaces that include form-like fields correspondent to

individual policy elements can be provided to non-technical policy makers. For instance,

the COASTmed prototype provides a basic user interface to specify policies through a web

browser (figure 7.5). A service client underlying the user interface dynamically composes

these complex closures based on the policy maker’s input. In addition, visualization tools

can be provided to view and organize existing policies, as well as to filter them based on

the action, subject, or direct or indirect target. For example, a policy maker may want to

view all policies that bestow the right to order lab tests or those policies that apply only to

nurses, and so on.

Description

Subject

Action

Target

Conditions

-- select subject --

-- select action --

-- select target --

Description

Predicate

Positive?

- select predicate -

add condition + add alternative condition +

CREATE POLICY

Figure 7.5: User interface to specify policies
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Figure 7.6 graphically describes the policy creation process in COASTmed using a web-based

user interface. This figure depicts two separate islands, where service provider (I COASTmed)

and service user (I policy maker) are autonomous. COASTmed thus may have both internal

and external users with respect to their affiliation with the provider. The policy maker, for

example is an internal user of COASTmed, while a patient is an external user.

ι policy maker ι COASTmed

α policy 
manager

α user 
services

ontologies

policies

message

data access

response

ι
α   actor

island

α create 
policies

UI - browser

UI event
1

2

34
5

Figure 7.6: Policy creation process

7.3.1 Describing Policies Using Ontologies and User Interfaces

In 6.1.1 we outlined the relationship between ontologies and policies. Ontologies provide

vocabularies to capture knowledge and concepts within a domain. In the healthcare domain,

ontologies are particularly critical given the vast amount of existing domain terms. For

instance, Puri et al. argue that no single ontology is sufficient to capture the growing needs

of this domain and that integration and mapping between multiple ontologies is necessary

[217]. To this end, COASTmed currently includes the LOINC (clinical observations) and the

ICD (diseases classification) standard healthcare ontologies, and we seek to integrate other

standard ontologies in future work.

Although our approach does not advocate for a specific way to represent ontologies, COAST-
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med’s system architecture includes a database management component for storage and re-

trieval of ontology instances (see figure 7.2). Different ways have been proposed to capture

domain ontologies within a database. In COASTmed, a database table is an ontology class

(e.g., table employee) and each column name is a class property (e.g., name and age), con-

cept adopted from [25][176]. Class properties can be used to establish relations. For example,

the name relation may associate a principal (identified through an unique identifier) and the

name John. These relations establish domain facts, which are essential for policy evaluation.

In the context of our work, ontologies provide a vocabulary to specify policies, thus policies

and conditions (predicates) can be composed using these standard concepts. Although our

research focuses on the backend functionality of access control techniques rather than on

the user interface aspect of COASTmed’s clients, we provide some insights on how a policy

specification tool interfaces with an ontology service for specifying policies appertaining to a

domain. Figure 7.7 shows how the drop down boxes from 7.5 can be populated with domain

ontologies. The second argument to the “diagnosis” predicate is selected from the ICD10

ontology maintained in COASTmed’s database.

Predicate diagnosis patient Typhoid fever

Figure 7.7: Using ontologies for policy specification

There are other lines of research from which to borrow ways to reason about, navigate

through, and visualize ontologies within the user interface. For example, the WebODE

ontology workbench [78] includes a tree-like ontology browsing, which may provide a selection

alternative to drop down boxes for filling in policy forms such as in figure 7.5.
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7.4 Generating Service CURLs

In order to use COASTmed’s capabilities, a user or consumer needs to first obtain a user-

specific service CURL as described in 6.1.4. Figure 7.8 illustrates the sequence of steps for

a CURL to be issued to a user.

ι user

message & response

ι COASTmed

α policy 
manager

α root

policies

message

data access

response

ι
α   actor

island

α request 
CURL

1

2
4

CURLs

5

α service 
CURLs

3 EHR

msg:
UUID

fwd msg:
UUID

msg: eval-
policies + 

UUID

msg:
CURL

Figure 7.8: A service consumer’s service CURL request

First, the service consumer sends a message

(curl/send @COASTmed (service-request/new 12345 @me))

where: (a) curl/send is COAST’s primitive to send a message to another computation; (b)

@COASTmed is the public curl addressing the COASTmed service provider; (c) service-request

/new is a message type understood by the service provider, requesting a new service CURL;

(d) 12345 is the user’s UUID which may be a social security number, a public key, or any

other unique identifier; (e) @me is the reply-to CURL to which the response (which may

contain a service CURL) needs to be sent.
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The root computation α root at COASTmed receives this message, and interpreting the

message type forwards the request to α service CURLs, the specialized computation whose

responsibility is to create service CURLs. Next, α service CURLs looks up the EHR

database to retrieve the set of roles (if any) that user 12345 fulfills in the system. For

example, this UUID may belong to Dr. Smith, who has the physician role.

The user’s identification number along with the roles fulfilled in the system are sent to the

α policy manager computation, which retrieves all the policies relevant to the user’s roles.

In the previous example, the retrieved policies will be those whose subject is either physician

or any if its parent roles. A parent role of physician is, for example, employee. Thus a policy

that bestows a right to a hospital employee gives the same right to all physicians, since a

physician is a specific type of healthcare employee. For example, consider the policies in

table 7.1 (taken mostly from appendix A). The relevant policies for Dr. Smith are P2, P3,

P4, P5, and P11. Note that P11 is selected as a relevant policy since employee is a parent

role to physician.

7.4.1 Evaluating Policies at CURL Creation Time

The relevant policies retrieved are then evaluated by α policy manager’s evaluation function,

which takes as input a list of policies and an association list of arguments (i.e. (list (

list k1 v1) (list k2 v2) ...)). At this stage, the only known variable value is the

principal’s identity, therefore the conditions’ variables which match the policy subject are

associated to the user’s UUID. In this example, the arguments input to the evaluation

function are (list (list ’physician 12345) (list ’employee 12345)) since the

relevant policies’ subjects—physician and employee—are associated to Dr. Smith’s UUID.

Those policies that do not include conditions (P4, P5, and P11) automatically evaluate to

true. Alternatively, for those policies which include conditions (P2 and P3) the list of condi-
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description subject action target conditions

P1 Only clinical psychologists
can update patients’
psychological evaluation.

clinical psy-
chologist

PhsycEval/

update

patient

P2 Medical specialist doctor
may be allowed to access
the results of sensitive
medical test.

physician SensTestResults

/read

patient specialist(*
physician*)

P3 A doctor can access a
patients health record
when the patient has
designated him as his/her
primary care physician.

physician EHR/access patient primaryCarePhysician

(*physician*, *
patient*)

P4 A specialist physician (e.g.,
cardiologist) may prescribe
drugs if the treated
illnesses is related to
his/her specialty (e.g.,
cardiac- related).

physician Drug/prescribe patient

P5 Physicians may order
laboratory tests.

physician Tests/order patient

P6 Hospital pharmacists have
only read access to
prescription files.

hospital
pharmacist

Prescriptions/

read

P7 Nurses can make a
housekeeping request.

nurse Housekeeping/

request

P8 The patient has the right
to inspect and obtain a
copy of the medical
records.

patient EHR/read patient

P9 A patient’s insurance
company may access
medical procedure
information for billing
purposes.

insurance
company

EHRprocedures/

read

patient insuranceCompany(*
insurance company

*, *patient*)

P10 Neonatal nurses can
update infants health
records.

nurse EHR/update patient specialization(*
nurse*, neonatal
) and newborn(*
patient*)

P11 Employees can enroll in
provided skill development
programs.

employee DevProg/enroll

Table 7.1: Sample policies
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tion variables is retrieved; recall that in Rei’s conditions, variables are delimited by asterisks

(*). For each policy predicate, the list of variables is checked against the argument list for

a match in order to replace variables with argument values. If any of a policy’s conditions

has unresolved variables, for example “patient” in P3’s condition, the policy evaluates to

‘not-evaluated. The reason for unresolved variables is because there are some contextual

variables that depend on the specific service request. For example, consider the condition

later(*current-time*, "12:00 P.M."), which constrains access to some function de-

pending on the time of day it is invoked; the value of *current-time* is unknown until

the action is invoked.

Instead, if all the policy conditions’ variables have a corresponding value according to the

argument list—namely if there exists a value for every predicate variable—the evaluation

function is executed for each policy condition. This function takes two values as input: the

argument list (the association list of variable names and known values) and the database-

retrieved implementation language (i.e. Racket) version of a Rei policy condition. Variables

in the Racket predicate are replaced with values and each predicate is executed just as any

programming language function to obtain a truth value. For example, the Racket version

of P3’s condition specialist(*physician*) is (lambda(args)(specialist (cadr (

assoc "physician" args))). When this predicate executes, the provided argument list

args is used to match the variable physician with its associated value. Therefore, in the

example, what is ultimately executed is (specialist 12345). This predicate returns #t

or #f depending on whether user 12345 is a specialist physician or not.

For policy execution, it is necessary that all its condition predicates exist within α policy manager

execution’s environment as functions which return a boolean value. Therefore, α policy manager

has to be able to reach a function

(define specialist

(lambda (uuid)
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......))

which accesses the EHR database to check a fact and return a truth value.

Given that Dr. Smith is not a a specialist physician but a general practitioner, the function

(specialist 12345) evaluates to #f. Consequently, P2 evaluates to false. Recall that

if there are more than one condition in a policy, it only takes one evaluating to false for

the policy to be false. Also recall that for composite alternative conditions—e.g., if subject

is either a nurse or a physician—only one needs to return true for the policy to be true

(assuming other simple conditions are true as well).

To recap, the result of the evaluation of the policies in 7.1 for user 12345 is as in table 7.2.

policy eval result

P2 F

P3 ‘not-evaluated

P4 T

P5 T

P11 T

Table 7.2: Evaluation of sample policies

The evaluation results are returned to α service CURLs. Policies that evaluate to #f are

discarded (i.e. P2) and the remaining policies are matched with their associated capabilities

as shown in table 7.3. As described in section 6.1.3, first, implicit capability associations are

made by searching in the global binding environment for a binding which has the same name

as the policy action. If a match is not found for a particular policy action, the database is

consulted for explicit associations (since policy action and corresponding function may not

have the same names). In the current implementation of COASTmed, capabilities are reified

as binding environments that may contain one or more functions.

133



policy capability

P3 EHR/access

P4 Drug/prescribe

P5 Tests/order

P11 DevProg/enroll

Table 7.3: Sample policies and capabilities associations

Following, a CURL addressing α user services is created for user 12345 (Dr. Smith),

which contains as metadata the set of authorized capabilities as well as the unevaluated

policies. Metadata is implemented as a hash table, where keys are ’UUID, ’environments

and ’policies and their corresponding values, for this example, are 12345, (list

SensTestResults/read Drug/prescribe Tests/order DevProg/enroll), and (list

(vector P3 physician EHR/access patient (list (primaryCarePhysician physician

patient)))) correspondingly. This CURL is graphically described in figure 7.9.

issuing island path expiration date use count uuid authorized capabilities policies digital signature
www.EHR.com

127.0.0.1
5001

null 10e100 10e100 12345
EHR/access 

Drug/prescribe 
Tests/order 

DevProg/enroll

P3 IQB1AwUBMVSiA5J...

Figure 7.9: CURL sent to Dr. Smith

Finally, this CURL is issued to the user by sending a message to the computation addressed

by @me in the user’s request; the user stores this CURL for future use. If instead, all policies

evaluate to #f , no user CURL is generated since it means that the user currently has no

rights with respect to COASTmed’s services, therefore an error message is sent to the user.

This CURL is conceptually similar to the token proposed by Gavriloaie et al. [118], namely

a “non-transferable token that she can use to access the service repeatedly without having to

negotiate trust again until the token expires.” Access control by way of CURLs is different

from traditional access control in many aspects. Although policies could be repeatedly

checked with traditional role-based access control, narrowing down the space of policies that
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have to be repeatedly checked (i.e. those embedded within CURLs) in domains where there

are potentially hundreds of roles, policies, and users can improve performance and reduce

the overhead. In addition, traditional access control is more focused on the graphic user

interface by allowing buttons and menus corresponding to specific actions to be present

or absent according to the user’s authority, but here we are dealing with access control

with regards to mobile code execution which is not meant to be used by end users but by

application programmers. Therefore, access control through CURLs works at a lower level

than traditional access control. Also, having metadata regarding the authorized capabilities

also informs consumers what are the base building blocks which can be used to build more

complex custom services. Moreover, CURL-specific code can be embedded to interpret the

user’s message. Lastly, the way traditional access control works is through a number of if

else statements scattered around the code to “show/hide” different secured elements. This is

error prone and is certainly less secure than providing users with personalized and bounded

services, where unauthorized capabilities are simply absent and unreachable.

7.4.2 Capability Accounting

In section 6.1.7 we argued that service providers may want to keep track track of the CURL

issued to different users in order to augment, constrain, or revoke previously bestowed rights.

If at least one policy is evaluated to either true or to ‘not-evaluated, in other words if a user

CURL is generated, α service CURLs records information about the issued CURL in a

database. The information recorded is the address the CURL was issued to, the issued

CURL’s unique identifier, the bestowed capabilities, and whether this CURL has been re-

voked. The “revoked” field will be accessed at the user’s requests to determine whether the

CURL has been or not revoked, and accordingly process or reject the user’s message.
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7.5 Using Services through User-specific CURLs

Having been issued a CURL, a user can make use of it to access the capabilities authorized

to him/her. Figure 7.10 shows the sequence of steps for consumers to use COASTmed

services. First, the user application retrieves the CURL @COASTmed from its private CURL

repository in order to send a message to the service. A message may contain primitive

values, binding environments, and closures that are interpreted by the provider. Leveraging

the capabilities bestowed, information included in the CURLs metadata (see figure 7.9),

Dr. Smith sends a closure (lamda()(EHR/access 54321)) through a user interface to

COASTmed to obtain a patient’s health record. When α user services, the computation

which @COASTmed names, receives a user’s message it first checks for three conditions: that

the used CURL has not been revoked, that the CURL’s use count has not been exhausted,

and that the CURL is not expired. The second and third conditions are automatically

handled by the COAST infrastructure. If these three conditions are met, α user services

retrieves the list of unevaluated policies from the CURL’s metadata. If the list is empty,

then α user services creates a new user service to serve the user’s request. Otherwise, a

second stage of policy evaluation for the unevaluated policies takes place.

7.5.1 Evaluating Policies at Service Use Time

Recall that user-specific CURLs may include, as metadata, policies that remained uneval-

uated at CURL creation time (see section 7.4.1). The reason for having this second round

of evaluations is that the authority to use some capabilities may depend on the context of

the specific service use instance. These are for instance environment factors such as the

time and date or the specific action’s targets (i.e dependent on a function’s arguments). For

example, the target to an action PATIENT/prescribe is patient ; a condition to prescribe

medicines to a patient is that the physician who prescribes ought to be the patient’s pri-
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Figure 7.10: Dynamic user-specific service creation

mary care physician. Another example is where the patient needs to explicitly consent to

a specific physician treating him; information regarding consent is retrieved for the specific

patient that is subject to the user’s action from the fact base. COASTmed currently does

not account for patient-specific policies with respect to their data, but it requires little effort

to also including patient specific policies that are combined at run time with the provider’s

own policies to provide a more patient-controlled access to his/her data.

At an incoming user message, α user services sends α policy manager those unresolved

policies for re-evaluation only if they are relevant to the user’s message. To determine whether

the policies within the CURL are relevant, the user’s closure is inspected for matches between

the used capabilities and the policy rights. If there are no matches, namely no capability

that is relevant to any of the policies embedded in the CURL is being used in the custom

closure, no policy evaluation is done and α user services creates a user-specific service to

execute the closure.

Otherwise, if policy rights are relevant to the capabilities used within the closure, these
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are evaluated in the same way as at CURL creation time (i.e. at the first stage of policy

evaluation). Policy conditions are individually evaluated. The list of arguments that is

provided to this process is as follows:

• the subject variable within each policy is matched with the user’s UUID, embedded in

the CURL’s metadata (see figure 7.9);

• the policy’s direct target is determined by the first argument of the corresponding

function call within the user’s message;

• the policy’s indirect target is determined by the second argument of the corresponding

function call;

• the remaining variables are evaluated within Racket’s read-eval-print-loop (REPL)

through reflection techniques; for example, the policy variable current-time is matched

to an existing language variable current-time existing within α user services’s

lexical scope.

For example, if a policy’s subject is “physician”, the action is “prescribe”, the direct target

is “aspirin”, the indirect target is “patient”, and a user’s closure is (lambda()(prescribe

"aspirin" 4444)), then the variable “physician” is matched to the UUID embedded in

the CURL and the variable “patient” is matched to 4444 and replaced in all the policies’

conditions.

Going back to the example, assume the user’s closure sent to COASTmed is (lambda()(EHR

/access 54321)). The right or capability which the unevaluated policy in the CURL (P3)

provides authority to is “EHR/access”. Since this capability is used in the user’s closure then

P3 is considered relevant to the user’s request. Then P3’s conditions are evaluated—in this

case primaryCarePhysician(*physician *patient*). The argument to the evaluation

function is (list (list "physician" 12345)(list "patient" 54321)), where the
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target “patient” is matched with the EHR/access function’s first argument (i.e. 54321). The

Racket version of the condition is retrieved and it is executed by applying the associative list

as an argument. The executed function is then (primaryCarePhysician 12345 54321).

This policy condition evaluates to true if, according to the EHR database, Dr. Smith is the

primary care physician of the patient with UUID 54321, and false otherwise. If it evaluates

to true the the user’s message (with the embedded custom closure) is sent to a newly created

user service for execution. Otherwise, if P3 is false, meaning that Dr. Smith is not authorized

to access this patient’s record, the user’s message is not processed and an error message is

in turn sent to the user.

The EHR database plays a primary role in the evaluation of policies, since it is where all

the organization’s facts live. Predicates corresponding to policy conditions, when executed,

retrieve information from the database to obtain a truth value. Organizations can choose

how to organize and store this information (e.g., alternatively in XML files), and predicates

are proxies between policies and these facts.

For further clarification on the two stages of policy evaluation, we describe in table 7.4 the

differences between the first and second stage policy evaluation processes.

7.5.2 Other Explored Techniques to Retrieve Facts

Recall that to evaluate policies it is necessary to establish and retrieve facts about the

relationship between concepts. We explored other alternatives before choosing to implement

conditions as predicates that retrieve information from a database. One of these experiments

involved expressing explicit logic-based relations in Racklog, the Racket implementation of

Prolog. In Racklog, we can define a relation age and declare relation instances:

139



first stage second stage

time of evaluation at CURL creation time at service creation time

evaluated policies all those relevant to the
user’s roles

all those relevant to a user’s
message

source of the policies COASTmed’s policy
database

user’s CURL metadata

consequence of policies
evaluating to true

capabilities authorized to
user

if all evaluate to true, user’s
message is processed

consequence of policies
evaluating to false

capabilities excluded from
user’s binding environment

user’s message is rejected

consequence of
unevaluated policies

policies stored in CURL’s
metadata for later evaluation

user’s message is rejected

Table 7.4: Differences between first and second stage of evaluation

(define %age

(%rel ()

[(’John 32)]

[(’Mary 40)]

[(’Lisa 21)]))

Another example is the relation “patientIllness”, defined as:

(define %patientIllness

(%rel ()

[("John Doe" "chicken pox")]

[("Jane Doe" "diabetes")]))

With these relations we can perform queries such as (%which ()(%age ‘Mary ‘60))

which returns #f and (%which (what) (%patientIllness "John Doe" what)) which

returns ‘((what . chicken pox)).

However, we found that this approach is not scalable since these relations are hard-coded

and cannot be dynamically retrieved from a database.
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In another experiment, we defined relations based on database structures. For example, the

relation patient_demographics.name associates the primary key column of table “pa-

tient demographics” to the table column “name”. Therefore, the evaluation of the pol-

icy condition patient_demographics.name(12345, Benites) is either true or false de-

pending on whether the last name of patient with id 12345 is Benites according to the

database. At the implementation level we name this relations according to the pattern [table

name].[column name]. However, this approach is too tightly coupled to low-level backend

components, making it difficult to scale and adapt to other sources of information, and

exposing the database structure may pose security issues.

Other researchers have also worked on similar policy translations. For example, Samuel et

al. transform OWL and Semantic Web Rules (specified in SWRL or RuleML) into Prolog

for automated reasoning on ontologies, knowledge bases, and rules [230]. There is also an

ample research field and technologies for representing knowledge. For example, the LOOM

knowledge representation system which builds concept taxonomies over which inferences can

be made [177]. A LOOM concept is, for example, Man ≡ λ x.Male(x) ∧ Adult(x), where

a subject needs to fulfill both predicates (Male(x) and Adult(x)) to be classified as a man.

7.5.3 Dynamically Creating User Services

As previously described, there are three situations in which α user services, conditional on

the user having a valid CURL, creates a new user-specific service:

• if the policy list in the CURL’s metadata is empty;

• if there are not any relevant un-evaluated policies (embedded in the CURL) to the

user’s message (none of the policies’ capabilities exists in the user-formed closure);

• there are relevant policies to the user’s message, but they all evaluate to true.
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To dynamically create a user-specific service, α user services retrieves the authorized ca-

pabilities information from the CURL’s metadata and creates a new binding environment

which has as key-value pairs the functions’ names and their corresponding lambda expres-

sions. This environment may also contain primitive values and data structures. Keys are

retrieved from the CURL’s metadata regarding the authorized capabilities, while their val-

ues, e.g., the corresponding functions’ syntax, are provided by the underlying language’s

evaluation handler.

α user services jumpstarts in a separate thread of computation a closure whose lexical scope

is defined by this binding environment. The closure usually involves a loop which receives

and executes messages, and performs capability accounting as described in 7.5.5. Figure 7.11

shows the relevant aspects of dynamic service creation based on CURL-embedded data.

ι user ι COASTmed

message
response

ι
α   actor

island

α use 
service

α user 
services

msg:
CURL (...EHR/access 
Drug/prescribe 
Tests/order 
DevProg/enroll....) + λ

α user -specific
service

spawn
transcient service

fwd msg:
CURL+ λmsg: result λ

EHR/access 
Drug/prescribe 
Tests/order 
DevProg/enroll

β

β binding environment

Figure 7.11: Dynamic service creation based on CURL’s data
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7.5.4 Typed Messages

As prescribed by COAST’s principles, the interpretation of a message delivered to computa-

tion y via a CURL uy is uy dependent. However, to increase shared understanding between

service consumer and service user, COASTmed supports message types. For example, to

request a user CURL, a user uses message type service-request/new and for using the

service through a CURL the message type service-call/new is used. Other message types

examples are CURL to send a CURL to another computation or error/new to send and error

message through type. Message typing is also used in the COASTcast prototype [121], the

first COAST application.

Message types generate structured tuples that allow COASTmed to interpret users’ intent.

Any island or computation can define their own message types; whomever wishes to commu-

nicate with this computation needs to use the available computation-specific message types.

A message that leverages a message type is, for example,

(curl/send @COASTmed (service-request/new "123" @me))

which sends a message to COASTmed using CURL @COASTmed to request a service CURL

for user with UUID 123 by way of message type service-request/new. This way, a computation

in the COASTmed can route this request to the computation responsible of generating and

issuing CURLs (e.g., α service CURLs in figure 7.8).

Another way to support message types and achieve the same effect is by leveraging a CURL’s

path which is basically a list of symbols. These arbitrary, provider-defined values can be used

to interpret incoming messages. An example is provided in [123]:

(let* (.....

(path (list ’books ’sale))

....)

(curl/new sale path metadata))
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However, there is subtle distinction between message interpretation through CURLs’ path

values and message type tuples. Since a path’s values are fixed, the interpretation of a

message based on those values is always the same since the data in the CURL cannot be

changed or tampered with. In contrast, message types provide a more flexible technique for

message interpretation—the provider declares a set of message types that it can interpret

and accordingly the user uses these message types to communicate with the provider. The

choice of message type depends on the user’s needs with respect to the system. These

different message types can be included in a CURL’s metadata or can be advertised out-of-

band. However, both CURL paths and message types can be orthogonally used according

to the provider’s own rules. For example, a CURL’s path (list "student" "ics") may

identify a user as an ICS student, while message types class/enroll and class/drop

allow enrolling and dropping classes correspondingly.

The benefit of using typed messages is to allow the provider to understand the user’s intent.

Recall that the service provider defines what are the permitted message types and that, as

dictated by the COAST style principles, the interpretation of a message depends on the

receiving computation and on the CURL used to send the message, so no security property

is violated though the use of message types. If a user maliciously or unintentionally misuses

a message type (e.g., sends a closure along in a service-request/new message type, when

it should send a user’s UUID), the message will simply be rejected since the message can

not be correctly interpreted.

7.5.5 Capability Accounting for Tracking Service Usage

Capability accounting is also performed when the user successfully or unsuccessfully tries to

use his/her user-specific service. The rationale is to allow the service provider to keep track

of how the bestowed capability is being used and whether the user’s message was rejected
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and why. There are three stages at which capability accounting can take place after a user

has already been issued a CURL:

1. when α user services receives a user message that remains unexecuted due to policy

non-compliance (i.e. not all the policies relevant to the message evaluate to true);

2. when one or more bindings within the user’s closure are recognized or exist within the

service’s scope. This may be possibly due to a syntactic error in the custom closure or

due to a malicious attempt to use an unauthorized capability;

3. when the user’s mobile code executes successfully.

Therefore, capability accounting includes both successful and unsuccessful interactions with

the service. The information stored in the database for capability accounting purposes is

the CURL’s resource key (a unique identifier), the closure sent using the CURL, the date,

a boolean value stating whether the closure was executed or not, the reason, and the failed

policy if such reason was because a policy evaluating to false.

Since a principal using a given CURL to access a service may not be the user to whom

the CURL was issued (the CURL may have been shared with a third party or the CURL

may have been obtained in an unauthorized or illegal manner), a provider may want to also

record, for capability accounting purposes, the island address of the consumer computation.

Having this information may enable the provider to curtail access to the service if the message

sender is unknown or if it has been recognized as an untrusted party. Although the current

version of the COAST infrastructure does not support obtaining the service user’s address,

the forthcoming version of the infrastructure will allow the collection of this information

based on the TCP connection information.
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7.6 COASTmed within a Large Organization

COASTmed—a service provider—constitutes an individual, decentralized island which pro-

vides a set of capabilities and information to a group of users. However, COASTmed may

be one of many systems/islands within a larger organization. Therefore, COASTmed is part

of a system of systems.

Take for example a large organization such as Kaiser Permanente which is a consortium of

many regional hospitals and medical groups; some of them belong to Kaiser while others are

owned by individual physicians in partnership with Kaiser. In this context, COASTmed is

an individual system managed by one of Kaiser’s subsidiaries which offers a set of capabilities

within the organization. Each subsidiary then manages, so to say, their own COASTmed.

Individual health record systems have no knowledge of other systems and databases, but

exist and behave autonomously.

Now, Kaiser may decide that all of its subsidiaries have to comply with a policy that states

that clinical researchers must be approved for access to medical information not only at

a local level, but by an organization-wide auditor. Therefore, each local system needs to

somehow be aware of this policy so that all Kaiser’s affiliated services are governed by the

same policy. In such a case, an organization-level policy maker can define this global policies.

There are two ways to go about implementing these global policies within local systems. The

fist approach is to provide a “master” policy maker with the right to create new policies in

each local system. This means that this individual needs to be registered as an authorized

system user in every system, hold the role of policy maker, and the policy

policy(policy maker,POLICY/create,null,null,null)

needs to exist in every local policy database. Therefore, the master policy maker has a

CURL for each subsystem that allows her to create policies. The policy maker through a
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Figure 7.12: A master policy maker creating a new global policy within each service provider system.

user interface (such as the one presented in figure 7.5) can define policies. An underlying

COAST computation then sends the same policy-creation message to all Kaisers’s branches

as described in figure 7.12.

A second alternative is to have all individual providers retrieve these organization-wide

policies from a central database. In this scenario, the CURL creation process described in

section 7.4 would not only retrieve policies for a particular user role from the local database,

but also from the global policy database (figure 7.13).

From a manager’s perspective, both approaches achieve the same goal. However, these im-

plementations have technical tradeoffs that may have consequences in the ability to enforce

these policies. For example, the second approach has less overhead in terms of creating

global policies since these are stored in a single, organization-wide database. The drawback

is however a central point of failure—if the central policy system is down for some reason

no provider can implement such global policies. The first approach instead has more com-
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putational overhead since the same policy needs to be stored in multiple policy databases,

however the enforcement of such policy does not depend on the reliability of a central policy

providing island. In addition, this approach respects decentralization, which is at the core

of this domain scenario. Also, the global policy maker can verify that local branches are en-

forcing this policy by periodically checking whether the defined global policies are effectively

within the policy database of each local system by sending each local provider a message

(lambda()(policy-exists? policy)) and expecting all of them to respond true.
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Figure 7.13: Policies also being retrieved from a global database at CURL creation time.

7.7 Implementation Technologies

COASTmed leverages Motile/Island, the existing COAST infrastructure. Although archi-

tectural styles are detached from implementation details, this infrastructure is provided to

assist in the development of COAST applications. This implementation enforces developers

to comply with the communication and computation execution constraints imposed by the

COAST architectural style. Motile is a language for the serialization and exchange of mobile
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code among COAST peers. Islands are the implementation of peers—single address spaces

identified by an DNS name, a port number, and a public key—which host one or more ac-

tors, the reification of COAST computations. Islands provide the required management and

communication infrastructure—including CURLs—for computations to execute and com-

municate. Motile allows defining both computations and the closures exchanged. The main

components and connectors in Motile are thus actors, binding environments, CURLs, is-

lands, the compiler, and the serializer. Motile is written in Racket, an implementation of the

Scheme functional programming language. An in depth conceptual and technical description

of Motile/Island can be found in [122].

To specify policies, we leverage the Rei policy language, whose foundations on deontic logic

allows describing policies in terms or rights, prohibitions, obligations, and dispensations.

Policies are rules associated to subjects. Although Rei is domain independent, policy spec-

ification relies on domain vocabularies. Rei was chosen among other policy languages after

thorough evaluations (section 5.2) due to its compact, well-defined, and expressive logic-

based syntax for describing healthcare policies, as well as its natural compatibility with

COAST. Kagal et al. developed a policy engine implemented in the Prolog language to

reason about policies specified in Rei. We have, however, chosen to translate Rei policies

to Racket (COASTmed’s underlying implementation language) due to implementation con-

venience so that conditions (implemented as predicates) can be executed at runtime. We

explored a similar approach to Kagal et al. by expressing policies and relations in Racklog,

which embeds Prolog-style programming in Racket [8]. However, and as we discussed in

7.5.2, this approach did not scale since predicates are hard-coded.

We also use HTML and JSON to provide some basic graphic user interfaces to interact with

COASTmed computations. JSON enables exchanging data structures from COAST com-

putations to the browser and vice versa. Lastly, we use the MySQL database management

system to store and retrieve policies and domain data.
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7.8 Design and Development Experience Insights

Our experience with designing and developing COASTmed provides valuable insights and

recommendations for future design and development of COAST- and policy-based applica-

tions. It is first and foremost necessary to define what are the persistent internal and external

services, the concerns they address, and their responsibilities within the system. A system’s

descriptive architecture involves conceptualizing these services and their interactions. Along

these lines it is important to define the types of messages these computations will exchange.

In COASTmed we leveraged a custom message type system that encapsulated messages in

well defined, typed tuples that computations where built to process.

In addition, it is necessary to set forth the capabilities (including data availability) that will

be exposed to users, as well as the user/role specific policies that enable the exposure of such

capabilities as services.

One of the difficulties encountered in the implementation was leveraging the low level prim-

itives and functions of the COAST infrastructure. To solve this challenge, which improved

the usability of Motile/Island, we built a set of utility functions on top of these primitives to

facilitate the creation and execution of computations, and the creation of Motile closures and

CURLs. These utility functions deal with boilerplate code and enabled focus on the distinc-

tive properties of individual computations. Having said that, an implementation framework

such as Motile/Island is essential to implement systems that adhere to the COAST style.

Motile/Island helps maintaining architectural consistency, namely that computation behav-

ior and interaction abides by the principles set forth by COAST. Motile/Island takes care of

these issues, allowing designers and developers to focus on the domain specific aspects that

aim to solve specific problems.

Also, communication between COAST computations and user interfaces needs to be more

closely addressed since the current implementation component dealing with graphic user
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interfaces is fairly complex. There needs to be a better understanding about the different

communication patterns between computations and front-end user interfaces. In addition,

appropriate GUIs are extremely important for the effective specification of policies. Although

our policy language based on Rei is more amenable to human understanding, therefore easier

to manually specify policies compared to XML-based languages such as XACML, having

an easy-to-use graphic interface that offers choice alternatives is more usable and prevents

specification errors.

Developing COASTmed involved a steep learning curve; without simple examples of how

to set up computations and how to send messages among each other it proved difficult to

map architectural principles to implementation techniques. However, once we got the first

computations up and running it was easier to use the COAST infrastructure, replicate this

process, and scale the application. With COASTmed as a reference implementation we aspire

to provide future design and development guidance for other COAST-based applications and

more insight on the formal specification of access control policies.

The key benefits of using COAST as the architectural style for the development of COASTmed

and in general for service oriented applications are:

1. flexibility and dynamicity to create services on the fly by combining at will an organi-

zation’s available assets;

2. security through the concept of capability with respect to a service as well as the

“boundedness” of services, where unauthorized functions are not reachable within the

service’s lexical scope;

3. expressiveness to create more complex, user-defined services through functional com-

position and mobile code;

4. focus on decentralization to allow multiple autonomous parties to be both service
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consumers and providers, and securely collaborate in complex data sharing processes.

Therefore, COAST was essential for the development of COASTmed and more generally

to obtain properties of user-differentiability and customizability. Perhaps these properties

could be obtained with other technologies, however this would involve more complex solu-

tions based on a set of multiple architectural styles (e.g., mobile code, event-based) and tech-

nologies (e.g., message buses, code interpreters, sandboxing, mobile agents), while COAST

represents a “one stop” solution to these challenges.

Furthermore, the benefit of combining COAST principles and formal policies is the ability to

(a) dynamically create user-specific services according to upfront and well defined criterion

(captured in policies), and; (b) adherence of services’ behavior to access control policies.
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Chapter 8

Evaluation

The main, high level question that we seek to answer is “does our approach enable the

different participating parties in a given domain to access the information and computation

capabilities they need, in the way and at the time required, and within the boundaries

imposed by the service provider by law or for the sake of privacy?” The aforementioned

boundaries limit users’ authority by, in turn, disallowing the access to information and

capabilities they are not entitled to use.

Our hypothesis is that the enabling technologies to achieve this secure yet flexible access

to data and computation are services whose essential properties are the provider-controlled

differential service provision and the user-controlled customization which are simultaneously

enabled through solid architectural principles based on capability-based computational ex-

change in combination with formal policies.

We evaluate our conceptual and technical approach towards testing this hypothesis (de-

scribed in sections 6 and 7) through practical experiments and comparative analyses in the

healthcare context. The choice of empirical domain is deliberate; healthcare involves a net-

work of users and uses of patient data for various (often conflicting) purposes, uncountable
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trust relationships, and complex legal and ethical strictures.

Our evaluation methodology comprises scenario-based evaluations (section 8.1) and qualita-

tive comparative analyses (section 8.2). Scenario-based evaluations consider the context-

dependent ability of a system to meet the desired properties [156]. For this stage, we

COASTmed use as a testbed for scenario simulations.

Qualitative comparative analyses instead are carried out with systems and technologies ap-

proaching similar challenges in the healthcare and other domains with respect to the desired

properties—differential access and customization.

8.1 Scenario-based Evaluations

Our research instinctively calls out for scenario-based evaluations which consider the context-

dependent ability of a system to meet the desired properties [156].

We describe a set of bounded scenarios or “vignettes” which capture inter-agency processes in

healthcare, our sample domain, involving information exchange and access control semantics

based on complex data disclosure policies. Scenarios for these evaluations are collected from

the literature on healthcare and EHR and more generally in the Software Architecture and

Information Systems domains, such as those found in [37][101]. Our goal is to simulate these

complex healthcare scenarios by way of decentralized and policy-compliant COAST-based

services. Through these simulations we determine if our proposed techniques enable diverse

parties to access and manipulate capability and information based on provider-defined and

trust-based authorizations, therefore answering our research question (section 3).

More concretely, we select scenarios which reflect the goals set forth in section 3, namely:

1. G1: Enable fine-grained control over the access to a provider’s services (both data and
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computation capabilities) by supporting differential access according to specific trust

and legal relationships.

2. G2: Allow a service provider to revoke the capabilities granted to service consumers

according to changing trust relationships.

3. G3: Enable service composition and customization that allows the user to fulfill specific

needs.

4. G4: Enable integration of information from different sources under different spans of

authority.

Therefore, across vignettes we expect to address the provider’s ability to capture relevant in-

formation access policies and create policy-conforming services; the service consumer’s ability

to customize a service—composed from the functions offered by a binding environment—to

suit specific needs; the ability to use CURLs to enforce differential access to services; and

the effort involved in integrating information from different sources.

We then use COASTmed as the artifact for empirical evaluation to build a set of simulations

based on these selected scenarios. These scenarios and corresponding simulations are thus

dispositive in demonstrating that these goals can be achieved with our techniques, namely

that users can use and customize services they are entitled to, but cannot perform computa-

tions that violate organizational privacy policies. Scenario-based evaluations have been also

adopted in related work such as the Cassandra trust management system [37].

We make assumptions regarding trust and reputation management conducted by participat-

ing parties as discussed in section 6.3 and address the enactment of these scenarios not from

an end-user/user interface perspective, but from an underlying system development one.

155



8.1.1 Simulation Setup

To run our simulations, we set up an arrange of islands corresponding to service users and

providers within the evaluation scenarios. Recognized system users have a unique identifier,

which is a number for purpose of simulation, but meant to be a unique identifier such as

a public key. How providers obtained these unique identifiers is out of the scope of our

research, but we assume they are obtained through Web of Trust mechanisms or by way of

certified credentials.

To better visualize the inputs and outputs of the simulations, we have built a simple user

interface, which allows requesting a service CURL for a specific user (UUID), viewing the

bestowed capabilities for a given user, and using the provided capabilities by way of user-

created custom closures (figure 8.1). The providers’ public CURLs to which a user sends a

message to obtain a service CURL is hardcoded in the client for convenience. However, a

public CURL is meant to be obtained as a serialized text file by email or by downloading it

from the provider’s website [123].

Figure 8.1: Simulation’s main screen.

We implemented dummy capabilities for the purpose of demonstration. Domain facts re-

quired for the evaluation of policies are obtained from a backend database, whose schema

mostly resembles the Prima Care open source EHR system (see section C). In addition, we

will refer across scenarios to a set of hypothetical users, whose names, roles, and unique

identifiers are described in table 8.1.
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UUID Name Role

1 Jim physician

2 Jackie nurse

3 Tom intern

4 Laura administrator

5 John patient

6 Jane patient

7 CDC government

8 Mary resident

9 Peter physician

Table 8.1: Sample users

8.1.2 Goal 1: Differential Access Support

Objective: Demonstrate how fine-grained control over the access to a provider’s services

(both data and computation capabilities) is enabled by supporting differential access accord-

ing to specific trust and legal relationships.

Scenario 1a: Hafner et al. present a scenario where a physician can view and modify any

medical record for which he or she is the designated primary physician [129]. The context of

their work is the UCON policy model and the SECTET framework for model-driven security

for healthcare architectures. This scenario illustrates information access conditions based on

role and relationship with a third party.

Formal policies: the policies which capture the physicians’ rights with respect to their pa-

tients’ EHR, namely their ability to view and update a patient’s EHR on the condition that

the physician is the patient’s primary care one are:

policy(physician,EHR/view,patient,null,(primaryPhysician(*

physician*,*patient*)))

policy(physician,EHR/update,patient,null,(primaryPhysician(*

physician*,*patient*)))
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Simulation setup: For this simulation we have four principals, a hospital holding electronic

health records, Jim who is a physician (UUID 1), and patients John (UUID 5) and Jane

(UUID 6). Jim is John’s primary care physician, but not Jane’s. There are two islands in

this simulation: island I EHR with address www.EHR.com:5000 managed by the hospital

and island I Jim with address www.JIM.com:5001 running on Jim’s PDA.

Inputs and expected outputs: Jim obtains a service CURL issued by I EHR bestowing him

capabilities EHR/view and EHR/update. He first sends a closure lambda()(EHR/view 5))

whose goal is to view John’s EHR. The expected output of such computation is John’s EHR.

Since we are implementing dummy functions, the service simply returns a notification string

which confirms the access to the EHR, but in reality a vector of values, a string, a hash map,

or XML-formatted information as defined by the user with health information is meant to

be returned.

As a counterexample, Jim sends a a second message with the closure lambda()(EHR/update

6)) whose goal is to update Jane’s EHR. Since the policy states that a physician can update

an EHR only if the physician is the patient’s primary care doctor, we expect that the access

to this record will be denied since Jim is not Jane’s primary care physician.

Simulation result: the simulation run with our prototype demonstrates the expected outputs.

Figure 8.2 shows Jim’s (UUID 1) authorized capabilities (EHR/view and EHR/update) as

well as the result of message lambda()(EHR/view 5)) sent to the provider (I EHR). Like-

wise, figure 8.3 shows the expected output, where Jim (UUID 1) is forbidden from accessing

Jane’s EHR (UUID 6). The previously described policies, embedded in the CURL issued to

Jim, are evaluated upon message receipt (as described in section 7.5.1). The provider’s

fact database, in the former case, confirms that Jim is John’s primary care physician

so the policy policy(physician,right(EHR/view,(patient),(primaryPhysician(*

physician*,*patient*)))) evaluates to true. In the later case, policy policy(physician

,right(EHR/update,(patient),(primaryPhysician(*physician*,*patient*)))) eval-
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uates to false, since Jane is not Jim’s patient.

Figure 8.2: Scenario 1a: Jim (UUID 1) viewing John’s EHR (UUID 5)

Figure 8.3: Scenario 1a counterexample: Jim (UUID 1) attempting to update Jane’s EHR (UUID 6)
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Scenario 1b: Ferreira et al. describe a scenario where nurses must have read access to

the EHR of the patients registered within their department [106]. Their work focuses on

“break the glass” policies within a virtual electronic medical record system. The conditions

for service access in this scenario is not only role but affiliation.

Formal policies: the following policy, relevant to this scenario, allows a nurse to view an

EHR if the patient is registered in the same department to which the nurse is affiliated.

policy(nurse,EHR/view,patient,null,(equal(employeeDepartment(*

nurse*), patientDepartment(*patient*)))

Simulation setup: in this scenario, there are four principals involved—the hospital, Jackie

who is a nurse within the Intensive Care Unit (UUID 2), and patients John (UUID 5) and

Jane (UUID 6). John has been admitted to the Intensive Care Unit, while Jane is being

treated in the Ambulatory Unit. Two islands interact in this scenario: island I EHR with

address www.EHR.com:5000 managed by the hospital and island I Jackie with address

www.JACKIE.com:5002.

Inputs and expected outputs: in this simulation, we expect Jackie to only be able to access

the capability EHR/view 5 as described by the policy. It is expected that Jackie can view

John’s EHR by sending a message lambda()(EHR/view 5)) to I EHR since both Jackie

and John are registered as nurse and patient within the ICU. Instead, we do not expect

Jackie to be able to access Jane’s EHR, since Jane is in ambulatory care.

Simulation result: figures 8.4 and 8.5 show the inputs and outputs of this scenario. Jackie

obtains the service CURL issued by I EHR which entitles her to read health records.

The result to message lambda()(EHR/view 5)) is John’s EHR, while the result of mes-

sage lambda()(EHR/view 6)) is an error message, since Jackie is not entitled to access

Jane’s EHR according to the policy. To determine this authorization, the condition equal

(employeeDepartment(*nurse*), patientDepartment(*patient*)) is executed; in
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the first case equal(employeeDepartment(2), patientDepartment(5)) returns true,

while in the counterexample case equal(employeeDepartment(2), patientDepartment

(6)) returns false.

Figure 8.4: Scenario 1b: Jackie (UUID 2) viewing John’s EHR (UUID 5)

Figure 8.5: Scenario 1b counterexample: Jackie (UUID 2) attempting to view Jane’s EHR (UUID 6)
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Scenario 1c: The following scenario is based to the one found in Bhatti et al., who integrate

WS-Policy with X-GTRBAC to bridge the gap between web services and access control poli-

cies [47]: interns may access health records between 9AM and 5PM. This scenario illustrates

contextual access rights according to environment conditions.

Formal policies: the following policy states that interns are allowed to view any EHR as

long as it is between 9AM and 5PM.

policy(intern,EHR/view,null,null,(after(*currentTime*, 9AM),

before(*currentTime*, 5PM))))

Simulation setup: three principals are involved in this scenario—the hospital (service provider),

Tom who is an intern (UUID 3), and the patient John (UUID 5). Two islands interact in

this scenario: island I EHR with address www.EHR.com:5000 managed by the hospital and

island I Tom with address www.TOM.com:5003.

Inputs and expected outputs: Tom as an intern has the right to view patient electronic health

records. Therefore, we expect Tom to be able to access John’s EHR between the hours of

9AM and 5PM, but not outside this time frame.

Simulation result: through the simulation, we can successfully demonstrate that Tom can

only access John’s EHR within the indicated hours (figure 8.6), but not after 5PM and before

9AM of the following day (figure 8.7). The policy variable *currentTime* is replaced by

the current time according to the provider’s system, and accordingly, the relevant policy

evaluates to either true or false.

These three simulations demonstrate that we can achieve the goal of enabling the provider

to exercise fine-grained access control to its services by defining formal policies which restrict

access to capabilities according to role, target of the action, and external conditions.
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Figure 8.6: Scenario 1c: Tom (UUID 3) viewing John’s EHR (UUID 5) sometime between 9AM and 5PM.

Figure 8.7: Scenario 1c counterexample: Tom (UUID 3) is denied to access John’s EHR (UUID 5) after
5PM.

8.1.3 Goal 2: Capability Revocation

Objective: Demonstrate what service providers are able to revoke the capabilities granted

to service consumers according to changing trust relationships.

Scenario 2a: In another scenario described by Ferreira et. al administrative staff have no

access to the system at present [106]. We assume in this scenario that an administrator has

at t0 access to view hospital employees’ payroll, and at t1 this access right was revoked. With

this scenario we illustrate a changing relationship between service user and provider, where

the provider revokes completely the access previously granted to a service.
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Formal policies: the service provider defines a policy which states that an administrator has

the right to view the organization’s payroll information.

policy(administrator,PAYROLLS/view,null,null,null))

Simulation setup: there are only two participants in this simulation, the hospital providing

the information service and Laura, a hospital administrator (UUID 4). Corresponding to

these parties, there are two islands—I EHR with address www.EHR.com:5000 managed by

the hospital and I Laura with address www.LAURA.com:5004.

Inputs and expected outputs: what we intend to demonstrate in this simulation is that at

t0 Laura is able to use a view-payrolls function by sending a message (lambda() (

PAYROLLS/view)). However, at t1 the provider revokes Laura’s CURL and she can no

longer access any service.

Simulation result: we run the simulation twice; on the first one, we observed the service

providing Laura with the expected output (figure 8.8). Figure 8.9 instead, shows Laura’s

client obtaining an error message after the provider revoked the CURL (by setting the revoked

field in the CURL registry database table to true).

Figure 8.8: Scenario 2a: Laura (UUID 4), a hospital administrator viewing the organization’s payrolls at t0.
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Figure 8.9: Scenario 2a counterexample: Laura (UUID 4), at t1, receives an error message when attempting
to use again the view-payrolls capability.

Scenario 2b: Gerraoui et al., in the context of the OASIS role-based access control model,

describe a scenario where, before returning data to a particular healthcare provider, it is

checked that the healthcare provider has not been excluded from access by the patient. This

scenario is different than the previous one in that it is not the provider revoking a capability

to a service, but where the patient forbids the access to his/her record to a healthcare

provider.

Formal policies: the policies that are relevant in this scenario are, first, a policy which states

that a resident has the right to view an EHR unless it is a forbidden EHR. A second policy

instead allows patients to forbid the access to their health record to particular resident.

policy(resident,EHR/view,patient,null,(not(forbiddenEHR(*resident

*,*patient*))))

policy(patient,EHR/forbid,person,null, null)

Simulation setup: in this simulation there are three principals, the hospital providing the

information service, Mary the resident (UUID 8), and John the patient (UUID 5). There are

three islands in this simulation: island I EHR with address www.EHR.com:5000 managed

by the hospital, island I Mary with address www.MARY.com:5008, and I John with address

www.JOHN.com:5005.
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Inputs and expected outputs: First, we expect for Mary to be entitled to view and update

patients EHRs. He sends a closure lambda()(EHR/update 5)) which returns John’s EHR.

Then, John, using his own user interface within a mobile phone, forbids the access to John to

view his EHR sending message (lambda() (EHR/forbid 8 5)) to the hospital’s service.

We expect that, after the user executes this closure in the service, Mary will not be able to

access John’s EHR again.

Simulation result: COASTmed behaved as we expected. Figure 8.10 shows Mary successfully

accessing John’s EHR. Following, John forbids the access to his records to John as shown in

figure 8.11. When Mary attempts to access John’s EHR again, she receives an error message

stating that the access to this patient’s EHR is forbidden as shown in figure 8.12.

Figure 8.10: Scenario 2b t0: Mary (UUID 8), a hospital resident accessing John’s EHR (UUID 5).

Scenario 2c: In addition, Gerraoui et. al describe a scenario where access is not permitted

to a specific principal despite of their role: Jane’s health record may not be accessed by Tom.

This scenario is similar to the previous one, but illustrates how permissions and exception

can be described in terms of a principal’s identity rather than on his/her role.

Formal policies: the following policy states that an intern can view a health record unless

the patient is Jane and the intern is Tom (recall we cannot express prohibitive policies, but

we can express exceptions to a rule).
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Figure 8.11: Scenario 2b t1: John (UUID 5) forbids Mary (UUID 8) from accessing his EHR.

Figure 8.12: Scenario 2b t3: Mary (UUID 8) no longer can access John’s EHR (UUID 5).

policy(3,EHR/view,patient,null,(not(equal(*patient*,6))))

Simulation setup: three principals, the hospital, Tom the intern (UUID 3), and Jane the

patient (UUID 6) are involved in this scenario. There are two islands in this simulation:

island I EHR with address www.EHR.com:5000 managed by the hospital and island I Tom

with address www.TOM.com:5003.

Inputs and expected outputs: we expect that when Tom obtains a service CURL, the granted

capability to be EHR/view. However, when he sends a closure (lambda()(EHR/view 6))

to the hospital service, access should be denied since the condition not(equal(*patient

*,6)) should return true. In this case, the relevant policy is selected based on user’s identity
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in addition to relevant role-based policies for Tom.

Simulation result: figure 8.13 shows the expected result, where Tom (UUID 3) is denied from

accessing Jane’s EHR (UUID 6). As a counterexample, figure 8.14 shows Tom successfully

accessing John’s EHR (UUID 5).

This set of scenarios have demonstrated that a provider can completely revoke the access

previously provided to a principal, a principal can be excluded of accessing specific informa-

tion, and that access to a capability or to perform an action on a particular target can be

denied on the basis of both user and target identities.

Figure 8.13: Scenario 2c: Tom (UUID 3) is denied the access to Jane’s EHR (UUID 6).

Figure 8.14: Scenario 2c counterexample: Tom (UUID 3) can successfully access John’s EHR (UUID 5).
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8.1.4 Goal 3: Service Customization

Objective: Demonstrate that it is possible to enable service composition and customization

by using the capabilities of one or more providers allows users to fulfill specific needs.

Scenario 3a: Sobolev et. al describe a scenario where a patient is issued a referral to a

specialist, which the patient uses to schedule an appointment [238]. Their work includes

Statecharts, a graphical specification system for representing reactive systems as and ex-

tended version of finite-state machines that consider parallelism and event broadcasting.

This scenario illustrates how a user can compose custom closures that leverage capabilities

from disparate sources to fulfill specific needs. The communication pattern this scenario

follows is that of a dependent star (section 6.2.2).

Formal policies: two different providers independently define access control policies. The

hospital defines a policy

policy(patient,REFERRAL/get,specialist,null,null)

which enables a patient to obtain a referral. A second provider corresponding to the specialist

physician defines, in an scheduling system, a policy

policy(patient,APPT/schedule,patient,null,null)

which allows a patient to schedule an appointment.

Simulation setup: three principals, the hospital and the specialist (both service providers),

and Jane the patient (UUID 6) are involved in this scenario. There are three islands in this

simulation: island I EHR with address www.EHR.com:5000 managed by the hospital and,

I SPEC with address www.SPEC.com:5008 managed by the specialist, and island I Jane

with address www.JANE.com:5006.

Inputs and expected outputs: in this simulation we expect the user to receive a appointment
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confirmation as a result of a message

(new/motile/procedure

‘(lambda()

(curl/send ,curl-specialist

(service-call/new

(new/motile/procedure

‘(lambda()

(APPT/schedule ,(REFERRAL/get 9 6))))

#f ,user))))

sent to @EHR which first requests a referral from I EHR (by way of the expression (

REFERRAL/get 9 6)) and then the computation proceeds ((curl/send ,curl-specialist

....)) with such a referral to make an appointment with the specialist (at I SPEC)

(through the execution of expression (APPT/schedule [result of,(REFERRAL/get 9

6)])).

Simulation result: figure 8.15 shows the screenshot of the simulation, where, first, Jane clicks

on both “Get service CURL @EHR” and “Get service CURL @SPEC” buttons to obtain

the service CURLs from both providers. I EHR grants her the REFERRAL/get capability,

and I SPEC grants her the APPT/schedule capability. For this simulation we built a

slightly different user interface since we are building complex closures whose expressions are

executed by different computations. When the user clicks on the “Send Complex Closure”

button, the closure in the previously defined code snippet is sent to I EHR. The output of

this computation is an appointment confirmation message sent by the specialist (I SPEC).
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Figure 8.15: Scenario 3: Jane (UUID 6) composes a custom closure to obtain an specialist referral from the
hospital an make with it an appointment with the specialist.

8.1.5 Goal 4: Data Integration

Goal: Enable integration of information from sources under different spans of authority.

Scenario 4a: Kukafka et al. discuss extending EHR systems to support public health

concerns, leveraging individuals’ data to make community-level assessments that can aid

clinicians to diagnose and treat, researchers to recruit clinical trial volunteers, and policy

makers [162]. One of the requirements is infectious disease surveillance based on real-time

data collection in the face of low reporting compliance rate. Therefore, we can imagine a

scenario where the Centers for Disease Control and Prevention obtains illness information

from healthcare providers to detect in real-time disease epidemics and issue community alerts

and prevention measures. With this scenario we show how a user can obtain information

from different sources to thereafter process this information locally. The communication

pattern that this interaction fulfill is that of an independent star (section 6.2.2).

Formal policies: in this scenario, a hospital providing services defines the policy
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policy(government,EHR/viewAnonymous,null,null,(authorized(*

government*)))

which states that only authorized government agencies may access anonymous health records.

Another healthcare provider, a clinic, specifies also a policy that has the same semantics.

Simulation setup: in this scenario we have three principals, a hospital holding electronic

health records, a clinic holding a separate set of health records, and the CDC (UUID 7), an

organization interested in detecting epidemiological outbreaks. In this simulation there are

three islands: island I EHR with address www.EHR.com:5000 managed by the hospital,

island I Clinic with address www.CLINIC.com:5008 managed by a clinic, and island I CDC

with address www.CDC.com:5007 run by the CDC.

Inputs and expected outputs: first, the CDC obtains service CURLs from both the hospital

and the clinic by sending a message to their public CURLs @EHR and @Clinic correspond-

ingly. They both bestow the capability EHR/viewAnonymous to the CDC. The CDC sends

a custom closure

(lambda()

(letrec

((EHR-list (EHR/anonymous)) ;;retrieves the anonymous EHR

(hash2014 (make-hasheq)) ;; to store 2014 diagnosis

(hash2013 (make-hasheq)) ;; to store 2013 diagnosis

;;function which returns increase in diagnostics per illness

from 2013 to 2014 if it is more or equal to %50

(increase-perc (lambda(key-list)

(cond

((empty? key-list) null)

((<= 50 (/ (* 100 (- (hash-ref hash2014 (car key-list))
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(hash-ref hash2013 (car key-list))))

(hash-ref hash2013 (car key-list))))

(cons (list (car key-list)

(/ (* 100 (- (hash-ref hash2014 (car key-list))

(hash-ref hash2013 (car key-list))))

(hash-ref hash2013 (car key-list))))

(increase-perc (cdr key-list))))

(else (increase-perc (crd key-list))))))

;; function to transform the list of illness increases to a string

(toString(lambda(l s)

(cond

((empty? l) s)

(else (toString (cdr l) (string-append s (caar l) " " (

number->string (cadar l)) "%<br />")))))))

;; aggregates the number of patients per illness, per year

(map

(lambda(patient)

(let ((illness (vector-ref patient 1))

(hash

(cond

((equal? (vector-ref patient 2) 2013) hash2013)

(else hash2014))))

(cond

((hash-has-key? hash illness)

(hash-set! hash illness (+ 1 (hash-ref hash illness))))

(else (hash-set! hash illness 1)))))

EHR-list)
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;; returns the result as a string and the aggregated results for

all illnesses for both 2013 and 2014

(list (toString (increase-perc (hash-keys hash2014)) "")

hash2013 hash2014)))

which uses the provided anonymous health records to detect alarming increases in diagnostics

from 2013 to 2014 for different illnesses.

Simulation result: figure 8.16 shows the expected results to the CDC’s custom computations

by retrieving the spikes in diagnosis for given illnesses. The CDC can then locally integrate

this different information from decentralized healthcare providers since the number of diag-

nostics per illness, per year is also returned as part of the response. Therefore the CDC can

perform the same infectious illness increase calculations at a regional or national level.

Figure 8.16: Goal 4, scenario 2 input and output for CDC.
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Scenario 4b: In this scenario a patient consolidates his data from decentralized pharma-

cies, clinics, and hospitals. We illustrate how a computation can travel through a series of

services aggregating information before the result is sent back to the user. This complex

communication pattern is what we refer to as ring topology (section 6.2.2).

Formal policies: a hospital defines a policy

policy(person,EHR/view,patient,null,(equal(*person*,*patient*)))

which allows a patient to retrieve his/her EHR. At the same time, a clinic describes a similar

policy. A third health services provider, namely a pharmacy defines a policy

policy(person,PRESCRIPTIONS/view,patient,null,(equal(*person*,*

patient*)))

which allows a patient to retrieve his/her historical record of ordered prescriptions.

Simulation setup: in this scenario we have three service providers—a hospital, a clinic,

and a pharmacy—and a service user, the patient John (UUID 5). There are four islands

in this simulation: island I EHR with address www.EHR.com:5000, island I Clinic with

address www.CLINIC.com:5008, island I Pharmacy with address www.PHARM.com:5008,

and island I John with address www.JOHN.com:5005 managed by John.

Inputs and expected outputs: John is interested in aggregating to his local EHR his records

held at different providers. He clicks on the three buttons “Get Service CURL @EHR”, “Get

Service CURL @Clinic”, and “Get Service CURL @Pharmacy” to obtain the service CURL

issued by each provider. We expect that given the stated policies the hospital, clinic, and

pharmacy will provide him with the capabilities EHR/view, EHR/view, and PRESCRIPTIONS

/view correspondingly. Then, John sends a complex closure
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(new/motile/procedure

‘(lambda()

;; retrieves John’s EHD from the hospital

(let ((EHR-hospital (EHR/view 5)))

;; sends the closure to the clinic’s service carrying with

it the hospital’s EHR

(curl/send ,curl-clinic

(service-call/new

(new/motile/procedure

‘(lambda()

;; retrieves John’s EHR from the hospital

(let ((EHR-clinic (EHR/view 5)))

;; sends the closure to the pharmacy’s service

carrying with it both the hospital’s and the clinic’s EHR

(curl/send ,,curl-pharmacy

(service-call/new

(new/motile/procedure

‘(lambda()

(let ((prescr (PRESCRIPTIONS/view 5)))

(cons ,,EHR-hospital

(cons ,EHR-clinic (list presc))))))

#f ,,user)))))

#f #f)))))

to I EHR which collects John’s EHR, then travels to I Clinic collecting John’s record at

the clinic, proceeds to I Pharmacy to retrieve John’s prescription history information, and

finally comes back as a response to John with all the aggregated records within a vector.

Simulation result: the result of this complex interaction can be observed in figure 8.17 which
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shows the capabilities each provider bestows to John, the input with this complex closure,

and the aggregated output—three strings which stand for John’s EHR held at the hospital,

his EHR held at the clinic, and the list of prescriptions gathered from the pharmacy.

Figure 8.17: Goal 4, scenario 1 input and output for patient John.
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8.2 Comparative Analysis

In this stage of the evaluation, we assess COASTmed and COAST-based services more

generally through comparative analyses with respect to the desired properties with a rep-

resentative set of technologies and systems approaching similar challenges regarding web

services, privacy, access control, and customization. Most of them have been found in the

authorization and trust management literature, which emphasizes the need for formalizing

policies to support access control mechanisms. These are either healthcare specific or ap-

propriate for the healthcare context. Specifically, we assess the ability of these technologies

to (a) expressively capture privacy and operational policies; (b) offer policy compliant ser-

vices; (c) provide user-specific services, and; (d) allow users to customize the service to fit

individual requirements within the granted functionality. In doing so, we provide insight on

how our approach is superior and not just different. This evaluation is limited to functional

capabilities and excludes usability and user interface aspects.

Following, we provide an overview of the evaluated technologies and systems (section 8.2.1

and 8.2.2), and describe (section 8.2.3) and discuss (section 8.2.4) the results of our analysis.

8.2.1 Technologies Overview

SOA Orchestration and Choreography

Benyoucef et al. [41] set forth the criteria for effectively modeling healthcare processes and

assess the suitability of leading SOA technologies—orchestration and choreography—with

respect to these criteria. Their motivation is the need to formally capture complex healthcare

processes given that physical processes are increasingly replaced by electronic ones. This is a

challenging endeavor since healthcare processes are highly dynamic and process integration,

collaboration, and exception handling need to be achieved among decentralized healthcare
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information systems. The goal of this work is to support healthcare processes through

automated technologies. More specifically, their focus is micro-level decentralized processes

and data flows that relate to individual patients and their healthcare providers.

Orchestration is the executable process within or controlled by a single organization, while

choreography is the sequence of inter-organizational messages that are part of a business pro-

cess. Comparison criteria of languages for web service orchestration and choreography (i.e.

BPEL and WS-CDL correspondingly) includes usability, capabilities, and evolution. Specific

evaluation features are tool support, ease of use, scalability, ease of monitoring, abstraction,

security, privacy, exception handling, peer-to-peer representation, human vs automated pro-

cesses representation, reusability, and maintainability. The comparison of these technologies

is done in the context of a scheduled workflow which involves canonical patient medical en-

counters, whose steps depend on temporal and sequential constraints (registration, ordering

of diagnostic images, image acquisition, and examination and viewing).

Researchers found that neither orchestration nor choreography can fulfill the requirements

set forth in their evaluation to model complex healthcare processes. Most relevant to our

work is the evaluation of security and privacy features. Neither web service orchestration nor

choreography satisfactorily support security and privacy of service assets. Assessments in

this work show that orchestration technologies (BPEL in specific) cannot represent task- nor

process-level security. BPEL can be extended through plug-ins to include security features,

however at increased complexity. In addition, not every orchestration tool supports exten-

sions. Likewise, the WS-CDL choreography language, although it is partially integrated with

WS-Security, has no capabilities to represent secure communications which are of outmost

importance between decentralized parties. In both cases, communication security and data

integrity may be separately supported by interaction protocols.

Orchestration does not support organization nor patient privacy since the evaluated tech-

nology has no construct for modeling privacy. Also, information about internal, potentially
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private processes need to be shared with the overall orchestration process, and thus it is vis-

ible to other parties—in BPEL, processes and data are stored in a single location that is the

BPEL server; external technologies are required to secure BPEL processes. Choreography

partially supports privacy since private processes and data management can be made invis-

ible to other parties through abstract process interfaces, and expose only what is required

to be known for process participation in a peer-to-peer style. The authors however agree

that the choice between orchestration and choreography is contextual and a combination of

technologies may compensate for each other weaknesses.

Comparing widely adopted SOA technologies for combining services such as the ones dis-

cussed in this work is natural since our work is concerned, from a users’ perspective, with

the integration of information from decentralized services. Although our work is amenable

to the decentralized nature of service choreography, it is more related to orchestration—our

goal is giving control to the provider to securely expose services and data which may involve

an “orchestration” of internal services, and allow users to combine different services to obtain

the required data. Therefore our focus is providing control and flexibility to individual users

and providers to participate in decentralized processes. The great advantages of our work

over these technologies are that the participation of services in a process can be differen-

tially provided according to the user’s identity. Also, unlike this technologies, we provide

the semantics and capabilities for user-side service customization. Neither orchestration nor

choreography technologies can model customized interactions with process services.

XACML

In section 5.2 we introduced the eXtensible Access Control Markup Language (XACML), a

language to specify access control policies for web resources. However, XACML is also an

access control and data-flow model [203]. The main components of this model are: (a) the

Policy Administration Point (PAP) which manages the creation of policies; (b) the Policy
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Enforcement Point (PEP) which performs access control; (c) the context handler which

receives an AC decision request from the PEP and constructs a XACML context request;

(d) a Policy Decision Point (PDP) which evaluates the pertinent policies and makes an

authorization decision to send back to the PEP; (e) the Policy Information Point (PIP)

which retrieves attribute values that are needed by the PDP to evaluate policies.

A nontrivial disadvantage of XACML is that it is limited to provide a “permit” or “deny”

request decision, but it is not clear how these policies and decisions are bound to services.

The OASIS standard [203] loosely states “if access is permitted, then the PEP permits access

to the resource; otherwise, it denies access”. In addition, Bhatti et al. argue that XACML

does not provide a mechanism to bind individual service components to specific policies

[47]. That said, XACML is a very well thought and robust access control model, whose

elements can be implemented as COAST computations handling different concerns of policy

specification, evaluation, and enforcement, however with the increased security the COAST

infrastructure provides and the flexibility of service use through mobile code.

SAML

The Security Assertion Markup Language (SAML) is an OASIS XML-based standard which

allows defining assertions regarding the identity of a user to authenticate and authorize access

to web services [60]. However, as noted by Bhatti et al. [47], SAML was not designed to

describe authorization policies on its own, but its purpose is to share identity information

among people and organizations, and more specifically exchange security tokens (containing

assertions) between an identity provider and a service provider. SAML provides a single sign-

on alternative to commonly used site-specific user passwords. Although SAML is a security

standard for web services, it is not a competing approach, but potentially a complementary

one for implementing the authentication component which our approach does not address.
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WS-Policy

WS-Policy is a language for describing policies for web services [29]. Security policies describe

web services’ properties such as the type of encryption used, capabilities, and requirements.

In other words, policies are assertions which advertise the conditions under which a service is

provided. WS-Policy complements WSDL service description by providing additional infor-

mation that otherwise would be provided out-of-band. Service consumers need to understand

the semantics of these policies to decide on whether to interact with the service and what it

is required to do so.

WS-Policy was not designed to support access control. The semantics of these policies are

related to requirements and capabilities in terms of security of communication (e.g., use

of one or the other cryptographic protocol, language, message format), and are tangential

to the goal of overseeing domain-specific data-disclosure. In addition, as notified in the

WS-Policy specification, this language is not concerned with how policies are attached to

a Web service. Furthermore, WS-Policy is not a standalone standard, but is meant to be

used in conjunction with application-specific protocols and other WS* standards, therefore

increasing the complexity of any solution. The COAST infrastructure “as is” handles the

underlying communication protocols and message encryption, and CURL metadata can be

leveraged to advertise the accepted message formats (e.g., message types).

WS-Security

WS-Security [195] is a specification to augment SOAP-based communication with security

mechanisms such as encryption, message authentication, integrity and confidentiality, user

and password, SAML assertions, digital signatures, Kerberos tickets, X.509 certificates, and

the like. With WS-Security, a SOAP message can be partially or completely secured through

encryption, digital signatures, and security credentials [47].
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The distinction between WS-Policy and WS-Security is that while WS-Policy advertises the

requirements for communication, such as the type of encryption that ought to be used when

communicating with a service, WS-Security provides the basis to implement it. WS-Security

has the specific and narrow scope of addressing communication security, but these semantics

are very different from access control and authority concerns.

Traditional Access Control

Mandatory, discretionary, role, and attribute-based are traditional access control models

[175][275][103] used not only in the web services context, but more broadly in centralized

and distributed systems where users have different rights with respect to system capabilities.

Mandatory access control, mostly used in the military domain, assigns objects and subjects

to labelled security classes. Labels describe the sensitivity of an object, while for subjects

they describe the security clearance level. A subject can access an object if his/her clearance

level is equal or higher to the one required by the object.

Discretionary access control (DAC) is also based on a collection of subjects and objects, a set

of subjects’ access rights with respect to specific objects, and optional constraint predicates.

These rights are commonly read, write, and execute. For each object a record is maintained

regarding the access rights that different principals have with respect to that object.

Role-based access control (RBAC) is perhaps the most common access control model. RBAC

generalizes DAC by assigning rights to user roles as opposed to principals. These assign-

ments are made at a system wide level, rather than being granted by the individual object

owners. Namely, users do not have “discretionary” access to objects, but permission are

assigned to roles, which have different authorization levels with respect to a system’s ob-

jects. Principals can then access authorized objects by being assigned one or more roles.

RBAC balances granularity and generalizability [47]. The rational behind RBAC is that
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roles bestow responsibilities and qualifications that enable accessing certain resources and is

a more scalable approach than DAC.

Lastly, attribute-based access control (ABAC) to objects is provided on the basis of subjects’,

objects’, and environment’s attributes. An access control rule specifies the combination of

this attributes that must be fulfilled in order for a subject to be granted access to an object.

These access control models are not competing approaches to COAST-based services. In

fact, COASTmed implements both RBAC and ABAC—policies may allow diverse access

capabilities based on role membership, contextual conditions, and principals’ and targets’

attributes. COAST is silent on the conditions under which access to capabilities is bestowed;

it is assumed that a CURL is issued to a trusted principal in order to use a set of capabilities.

However, how trust is established and how of capabilities are assigned to each principal is

specific to the application. This is why our approach involves complementing COAST with

formal policies to capture access control semantics supported by these models.

However, these access control models on their own are not a solution to the problems

approached—they are abstract, conceptual models, detached from implementation details.

They neither provide a policy vocabulary nor specify how access control rules are effectively

bounded to services. It seems that, the role of these models, in general, ends after a “permit”

or “deny” decision has been made, and thereafter the security of the resource (and how to

maintain this security) is left to the application programmer. In addition, they are focused

on allowing providers to protect their assets, but have no regard on the users’ needs, let

alone provide customization capabilities (although it can be argued that personalization and

customization can be provided on the basis of these models).

184



8.2.2 Systems Overview

AquaLogic Data Services Platform (ALDSP)

Borkar et al. present the access control mechanisms of the AquaLogic Data Services Plat-

form (ALDSP), a middleware technology which allows building data services that integrate

information from multiple sources [58]. A data service, as described by the authors, is an

XML schema describing information along with a set of XQuery functions to access and

manipulate such information. ALDSP can automatically generate data services from WSDL

descriptions or SQL metadata. Clients use services by invoking their XQuery functions.

ALDSP is characterized by its focus on very granular user access control to resources in-

cluding both business objects and relational database information. For instance, a resource

hierarchy includes a data space, a set of data services, the elements or “shape” of individual

services (i.e. of business objects), and accessor functions to the service elements. Access

control policies can be applied at different levels within this hierarchy: at the data service

level; at the function level by determining which users are allowed to invoke it and under

what conditions, and; at the object element level by performing different actions with respect

to the access to “securable” elements such as omitting, replacing, or encrypting information

according to access rights. To manage these security configurations, ALDSP provides a user

interface which allows selecting the “securable” elements and functions in the resource hier-

archy, adding policy conditions, and linking XQuery security functions to secured elements.

Policy conditions such as “access occurs after” or “deny access to everyone” are pre-defined

and can be selected through this user interface. Alike in our approach, a user needs to meet

the policy conditions that are applicable to the resource accessed through the data service.

A subtle difference is that in COAST services access permissions are related to specific func-

tions or actions, while ALDSP takes a more object oriented approach where restrictions are

imposed on resources.

185



This approach involves a three-tier architecture, where ALDSP defines the data service

elements and functions that are subject to access control (i.e. the context in which access

control is needed), the underlying Web Logic Server (WLS) security framework manages and

enforces policies, and an authorization provider (such as an XACML authorizer) performs

accessibility checks based on the resource identifier, the user’s identity, and any relevant

context information; access to a resource is permitted or blocked accordingly. Also, ALDSP

allows specifying additional XQuery security functions describing more complex access con-

trol rules for accessing a secured data element when it cannot be captured through WLS

policies. Lastly, ALDSP can be integrated with the AquaLogic Enterprise Security (ALES)

system for more advanced access control involving function replacement (when the user is

not allowed to invoke a given function) and security filtering of retrieved data before it is sent

to the user. Each of these components approaches a particular security concern, however

at increased complexity in terms of the required component integration and the know-how

required for policy makers to specify complex policies using all these diverse technologies. In

other words, there is a trade-off between a clean separation of concerns through well defined

components and having to manage different, independent technologies for the specification

of security policies (i.e. XQuery functions, ALDSP resource hierarchy selection, WLS, and

ALES). As a result, policies are scattered among the different layers of ALDSP’s architecture.

In addition, ALDSP does not provide an explicit policy formalism, but policies are captured

by and visible through multiple graphic user interfaces provided by these technologies.

An important feature of ALDSP is considering service composition by allowing imposition of

access control despite on whether the data service is being directly invoked or if it is part of

a composite service calling. In other words, ALDSP considers the access control policies of

all of a service’s constituents. Indirect function invocation is discovered via inlining, which

is in some way similar to our approach where mobile code sent by the user is inspected to

perform access control based on pending policies. Another approached concern, which we

have not considered in our studies, is optimization in the face of the overhead that access
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control imposes on an application.

A very important distinction between this work an ours is that the assumption in ALDSP is

that data services are public unless specific restrictions are placed on a resource hierarchy.

Instead, our approach makes a closed world assumption, where everything is prohibited

unless explicitly authorized. We believe that the principle of least privilege is far more

secure in the face of potential policy maker errors and security oversights.

AquaLogic Data Services Platform (ALDSP) [58]

Problem addressed Fine-grained access control to data services.

Goal Ability to impose granular access control restrictions through data-driven security
policies in SOA data services.

Contribution A middleware platform—with fine-grained access control capabilities—for
building data services that integrate information from heterogeneous sources.

Scope data service architect or administrator

Architecture type Layered architecture

Prototype ALDSP which exhibits access control features such as the specification of data-
driven security policies.

Used technologies WebLogic Server, XQuery

Domain Domain independent technologies, however appropriate for business processes.

Table 8.2: ALDSP summary

A Policy-Based Authorization Framework for Web Services (X-GTRBAC + WS-

Policy)

Bhatti et al. [47] address a problem we also approach, namely the lack of differentiation

web services make between users, making only binary access control decisions: authorized or

non-authorized. Their approach to this problem is a policy-based authorization framework,

where, alike our approach, formal policies are the basis for service use.

Policies—contextual constraints on service use—are specified in the WS-Policy profile of the
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X-GTRBAC access control policy specification language. The integration of WS-Policy and

X-GTRBAC bridges the gap between web services security and traditional access control

mechanisms. In X-GTRBAC, permissions are based on roles; X-GTRBAC constraint ex-

pressions are used to impose rules for assigning users to roles and permissions to roles. A

permission gives access to a specific service instance addressed by the “name” field within

a WSDL specification. Policies can be associated individually to web service description

(WSDL) components through policy attachments. One of their contributions is an algo-

rithm to compute the effective access policy for a web service that is available to a role based

on the relevant individual policy attachments.

Policy conditions may include temporal constraints and non-temporal logical expressions.

These expressions capture rules related to subject roles’ attributes. Constraints are satisfied

if all conditions are satisfied.

To invoke a service, this must be registered and its usage policies published (in WS-Policy);

policies are bound to WSDL component definitions. The user application invokes the service

using the user’s credentials. The Web application retrieves the service’s policy attachments

and merges them into a single use policy. The Web application then encodes the user’s access

request along with credentials within a SAML Authorization Decision Query and sends it to

the PDP. The X-GTRBAC processor then evaluates assertions, comparing SAML informa-

tion with WS-Policy specification and returns a SAML Authorization Decision Statement

providing a “permit” or “deny” decision. Accordingly, the service is either invoked or not. A

user can access a service if role membership and contextual constraints such as user location

and system load are satisfied according to the service policy. Their architecture is a decen-

tralized one, where the policy decision point and the policy execution point are managed

by independent entities. This work also supports user authentication through credential

expressions within policies which define the credentials that ought to be presented by the

user to be assigned a role defined within the service.
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According to our evaluation criteria, this approach captures formal policies, produces policy

compliant services, and offers role-based services. Policies are bound to services by binding

WSDL descriptions to policy assertions or predicates. This approach is similar to ours in that

the a policy for a given principal is the combination of individual policy scopes—a collection

of subjects to which a policy applies to—which include that subject. In COASTmed, the

policy document that is relevant to a principal is the collection of policies whose subject is

the principal (by identity or by role).

The core difference with our approach is that in X-GTRBAC + WS-Policy roles are as-

sociated to services, where in COASTmed roles are associated to individual capabilities,

where a service is a set of capabilities. Another distinction is that services assign users to

roles according to credentials, where roles are a local concept and may not be shared among

services. In other words, services may require different credentials to assign a user to the

role “employee”. In COASTmed, roles are organization- and system-wide understood, and

capabilities are provided according to those roles. In COASTmed policies are dynamically

selected, as opposed to statically attached to services, and evaluated per each user; accord-

ingly, a user-specific service is built. To the extent that we understand the operationalization

of this approach, providing differential access to a growing number of users, requiring in-

creasing number of WSDL descriptions, to the point of being unmanageable. In addition,

users have the burden to figure out what is the appropriate and authorized service to use.

COASTmed takes a different approach by saying “tell me who you are and I will tell you ev-

erything you are entitled to with respect to this service/organization and make it accessible

through a single CURL”.

Also, in Bhatti et al. a policy is relevant to a particular service access (which may include a set

of operations on different ports), where for us, policies are particular to individual functions,

the primitives of a service. Granularity is achieved through the exponential combination of

roles and Web service instances. However, our COAST-based techniques provide far more
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service granularity and flexibility—while in traditional web services a user calls on a single

operation, in COASTmed users have available the power of functional composition.

One of the drawbacks of this approach is reliance on mapping two policy languages—X-

GTRBAC and WS-Policy—adding to the complexity of policy specification. Also, no con-

crete policy example is provided by the authors, so it is not evident how to specify these

policies and in what does mapping between the two languages consist.

X-GTRBAC + WS-Policy [47]

Problem addressed “Current authentication mechanisms for Web services do not differ-
entiate between users in terms of fine-grained access privileges.”

Goal Fine-grained, role-based access control to web services.

Contribution A policy-based authorization framework for web services.

Scope web service providers and consumer applications

Architecture type Service Oriented Architecture

Prototype Health information web service for physicians with varying authorizations.

Used technologies X-GTRBAC AC language and WS-Policy language. A Java-based
policy decision point (PDP) and a PHP-based policy processing model.

Domain Any but example provided with relation to a health information system.

Table 8.3: X-GTRBAC + WS-Policy summary

Marmite

Mashups, web applications built by combining information and functionality from disparate

sources, are an increasingly popular technology to manipulate information existing in dis-

tributed servers to fit information needs [274]. Data is asynchronously requested from dis-

tributed web services most often in an XML-based format or obtained through other methods

such as web scraping and used as an application building block.

A disadvantage of these “end-user” approaches is that the user requires programming ex-

perience to create mashups. Although technologies such as Ajax, RESTful web services,
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RSS, and Atom are rather simple and facilitate mashup development [274], mashups are not

built by end users but by application developers. Addressing this disadvantage, the Marmite

browser plugin provides a graphical interface for composing mashups [266].

Marmite follows a pipe and filter architecture, where three different types of operators—

sources, processors, and sinks—manipulate data from remote sources. Sources gather data

through web services or by navigating the HTML structure of web pages; processors alter in

some way the data; sinks display the information by displaying it on a web page, saving it

to a file, or other types of output. Data flows from sources to processors and finally to sinks.

Marmite and mashups more generally recognize that a provider cannot support the needs

of all users, and therefore share our goal of allowing users to customize services. However,

there are also fundamental differences with our approach. First, while mashup applications

are composed by fixed, publicly available services that provide the same data to every user,

our approach includes a more personalized access to data to which individual users are en-

titled to. Also, mashups and COAST-based services differ in the way service customization

is operationalized; mashups rely on SOAP, RESTful web services, and Ajax, while custom

services in COAST are achieved through mobile code. Our approach excels on its expres-

siveness to customize services through functional composition, not only being able to collect

and manipulate information from a single source, but to compose computations that travel

across multiple services to obtain the desired data in terms of content and presentation.

Additionally, as argued by Yu et al. [274] mashups are an opportunistic use of services for

short-lived applications, and are not meant for critical and business processes applications,

for which our approach is fitting.

The advantage that Marmite offers is its usability and its reach to non-technical users by pro-

viding a user interface based on Apple’s Automator. It provides simultaneous visualizations

of the data operators through which data flows and of the resulting data. In comparison,

our techniques, as they currently stand, require substantial programming skills. This ap-
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parent disadvantage is an accidental and not an essential one; graphic tools can be built

on top of the provided customization mechanisms to allow individuals to customize services

in expressive ways. Our approach also assumes that organizations count with the required

technical support and that application programmers build tools on behalf of end-user to

access information.

Marmite [266]

Problem addressed Available web content is not in a form amenable to end users’ needs.

Goal Allow end-users to create mashups to combine existing web content and services with-
out requiring programing expertise.

Contribution The Marmite tool which allows end-users with create mashups from exist-
ing web content and services without requiring programming knowledge (Marmite offers a
graphic user interface).

Scope End users

Architecture type Pipe and filter / data flow

Prototype Marmite, and end-user programming tool to create mashups.

Used technologies XUL, XPATH, Javascript, XBL.

Domain Any

Table 8.4: Marmite summary

Cassandra

Cassandra is an authorization and trust management system, which includes the policy

language described in section 5.2. Cassandra focuses on trust management, thus enabling the

establishment of trust between strangers—its role-based access control is contingent on the

presentation of user credentials asserting user attributes. In other words, trust negotiation

dictates who is authorized to request credentials and enables retrieving those credentials from

some other party. Defined policies support automated credential retrieval—user credentials

can be retrieved over the network. These credentials are issued by a registration authority

and are the basis for access control. However, trust management is only conceptual, thus
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has not been implemented in the presented prototype (it is meant to be implemented with

digital certificates and public key signatures). Our approach also relies on trust mechanisms,

however while their work is meant to rely on a certificate authority, COAST relies on self-

certified islands along with decentralized Web of Trust (WoT) mechanisms.

Cassandra’s policy specification semantics has strong focus on the activation and deactivation

of roles and on specifying the entities that are authorized to activate system roles. There

are four predefined operations in a Cassandra service: activating or deactivating a role,

requesting a credential, or executing some action. COASTmed also supports role based-

access control, but policies can be as low level as necessary, specifying per-individual or

per-organization policies. Cassandra also considers the exchange and combination of inter-

organizational policies, an aspect which our techniques does not address.

At a user’s request, policies are evaluated to make an access control decision. Our approach

is similar to Cassandra in this regard, however COASTmed evaluates some policies only

once; others which depend on time or attributes of the specific service use instance are

evaluated at every request. A substantial difference between Cassandra and our work it that,

we explicitly bind policies with system bindings, therefore policies are effectively enforced.

Cassandra makes an “accept” or “deny” access decision following policy evaluation, but it

does not specify how services comply with policies from then on (i.e. how access rights are

bound to capabilities).

Also, Cassandra is silent with regards to customization. However, we assume that it has the

capability of personalizing services for users through policy-description-driven access control.

However, services are still solely controlled by the provider. In contrast, our mobile-code-

based solution provides the expressive power to allow users to customize a service in addition

to the provider-controlled fine-grained access control to system functionalities.
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Cassandra [37]

Problem addressed Specification and enforcement of security policies in large-scale dis-
tributed systems.

Goal Supporting distributed role-based access control based on digital credentials and formal
authorization policies.

Contribution A policy language and a system to support role-based access control in dis-
tributed contexts.

Scope Service users and providers

Computing paradigm Functional paradigm for policy specification and imperative for the
policy evaluator and the access control engine.

Prototype A prototype which includes capabilities to express and evaluate policies and an
access control engine. Provides a user interface for reading policies and handling requests
involving actions, credentials, and role activation.

Used technologies Datalog C (Datalog with constraints) for policy specification and
OCaml for prototype coding.

Domain Any, however presents evaluation scenarios in the EHR domain.

Table 8.5: Cassandra summary

Haas et al.

Haas et al. propose a privacy aware system where patients define privacy policies to con-

trol the disclosure of their data, held by specialized EHR storage enterprises, to third parties

(however, it is not clear how policies are specified and whether they exist in natural language

or expressed in some formalism). The important aspect of this work is that the patient does

not need to trust the data holder, since this cannot access patient information unless it is

authorized by the patient. This system also provides data disclosure logging so that patients

can audit disclosures, detect policy violations, and trace the data legitimately disclosed. In

addition, disclosed patient data is always accompanied with data provenance information

(patient identity, data consumer, data provider, and relevant privacy policy). The enabling

mechanisms are fingerprinting and digital watermarking to link data and provider and there-

fore legitimize of the disclosure. Consumers can be new data providers under the obligation

of running a protocol to tag the data with new consumers’ information. Through logging
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and data tagging, data providers cannot repudiate unauthorized disclosures. A provided

prototype includes the storage of patient data and the trust model based on privacy policies

that enables information request access or denial, as well as enabling tracing data flows.

We share with this work the policy-based approach to the authorized disclosure of patient

data. However, there are two fundamental differences: first, in Haas et al. the data holder

has no authority over the held information; second, we consider that in COASTmed both

the data holder and the patient could define privacy policies for the disclosure of patient

data (although we have not implemented integration of patient policies yet). The advantage

of Haas et al.’s work is the ability to tag data with provenance information, therefore not

limiting policy compliance to a single interaction and disclosure, but addressing the conti-

nuity of compliance throughout the flow of patient data. However, their forensic approach

to the disclosure through the identification of unauthorized disclosures, while valuable, does

not prevent unauthorized disclosures despite the policies set forth; at this point any damage

has already been done. Thus in practice policies are not associated to services. Given that

policies are automatically bound to services in COASTmed, it is not possible to perform

unauthorized disclosures to begin with. However, the limitation of our approach is that it

does not consider how and to whom service consumers disclose the obtained service data.

InfoShare

The problem Jin et al. address is the frequent inability to make available, at the point of

care and in a privacy preserving manner, patient medical history scattered across healthcare

providers [143]. There is a need for access control frameworks to allow authorized users

to retrieve health information from distributed EHR sources, integrating heterogeneous col-

lections of data, and allowing patients to control the access to their data. Their goal is,

therefore, to provide patients with a mechanism to authorize parties access to records held

at specific data providers and to aggregated records created on the fly. The contribution
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Haas et al. [128]

Problem addressed Electronic health records are stored by specialized enterprises which
maintain this data. However, patients often have no control over the disclosure of their data.

Goal Protect patient privacy from unauthorized data disclosures by allowing patients to
control and monitor the disclosure of their data.

Contribution A privacy-protecting EHR system with policy-based access control and data
access logs, and a digital watermarking model to trace data flows through data provenance
tagging.

Scope Patients and data providers

Prototype An electronic health record system which allows patients to control the disclosure
of their health information through defined privacy policies.

Used technologies Asymmetric fingerprinting, digital watermarks, cryptographic commit-
ments, authentication, data encryption.

Domain Electronic health records

Table 8.6: Haas et al. summary

is an access control model and policy scheme for sharing, at different levels of granularity,

single EHR instances and aggregated data (considering different access control policies from

each source) and resolves disparate and conflicting source’s policies to aggregate EHRs.

EHRs are modeled as a property-labelled hierarchical structure. Labels assist in data filtering

for authorized disclosure of data objects according to data properties. The authors present

a prototype for sharing EHRs “views” through patient consent where the authorized data

portion is matched with the user’s request. Access to data is also conditional on usage

purpose (payment, treatment, research, etc).

Our work shares the common goal of providing role- and policy-based access to private

personal information. The fundamental difference is that while our work is more concerned

with the data disclosure from a single data provider, this work emphasizes the aggregation of

health data from different sources, combining policies not to violate individual data disclosure

conditions. Policies are formally defined in a XPath-like notation such as

P4: (<GP,*>, ao, {treatment}, deny)
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where ao is an object

(/VirtualEHR/History//*,<{h2},{general},*>)

in the EHR hierarchy. One of the disadvantages of this approach from a decentralization

perspective is its dependence on a centralized registry service for patients and providers.

Experience with SOA’s UDDI suggests that service and data providers lack incentive to

register in such registry services. It is not made clear, however, whether the service provider

or InfoShare administrators are responsible for of registering a service to the registry.

Another disadvantage compared to our approach is complexity with regards to policy specifi-

cation. Although they present algorithms to resolve conflicting authoritative and prohibitive

policies, our approach is more simple by allowing only positive policies: everything that is

not authorized within the policies is implicitly inaccessible.

Although the combination and aggregation of decentralized and potentially conflicting poli-

cies that Jin et al. address is a necessary and important contribution and future work we

would also want to address, this is a concern that is subsequent to the one we approach.

An advantage, however, of our work is concern for the utility of the service to the user, in

specific service-consumer personalization and customization.

Privacy Policy Compliance System (PPCS)

This work [273] proposes an architecture for a Privacy Policy Compliance System (PPCS).

Its design is informed by privacy legislation and requirements to protect personal privacy

when using web services requiring personal data disclosure. Both consumer and providers

have their individual privacy policies: consumers’ policies describe the to whom, what, and in

what circumstances information should be shared; providers state what personal information

is required and how it will be used. If there is no conflict between consumer’s and provider’s
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InfoShare [143]

Problem addressed Need to obtain, in a privacy-aware manner and according to corre-
sponding authorizations, patient EHR information on the fly from multiple data providers.

Goal Guaranteeing that only authorized users can access EHR information from individ-
ual or multiple sources, considering aggregate and potentially conflicting privacy policies of
individual data sources.

Contribution An access control scheme for selective sharing of patient information from
multiple sources (virtual composite EHRs) and a policy scheme to resolve anomalies in
aggregate inter-organizational policies.

Scope Patients, data providers, and healthcare providers

Computing paradigm Object oriented

Prototype InfoShare: an EHR sharing system for federated healthcare networks that pro-
vides authorized “views” of patient information to authorized parties. Patients define access
control policies in the form of consent and based on these policies the system allows or
denies user access. InfoShare retrieves and aggregates EHR data to compose a virtual com-
posite EHR, resolving policy conflict in the process. Main architecture components are
the Consent Management Service, Policy Composition Service, and EHR Authorization and
Selection Service.

Used technologies HL7 Clinical Document Architecture (XML schema) for representing
EHRs; XPath-like expressions to select EHR data elements; Jaxe XML editor for labeling
data with properties; X.509 attribute certificates for patient consent; Java servlets for system
implementation.

Domain Electronic health records

Table 8.7: InfoShare summary

policies, the provided web service is activated. In other words, the service’s policies state

“this is what I will do with your disclosed data; if you agree you may use the service, if

not you cannot access it”. The goal of this work if very similar to those of P3P platforms

described in section 4.

The requirements that this architecture fulfills are accountability, identifying data collection

and disclosure purposes, consent, limiting data collection, use, disclosure, and retention, data

accuracy, security safeguards, openness on polices and practices, individuals’ data access,

and challenging policy compliance. A privacy policy specifies, for each data portion, a data

collector, the nature of the data, purpose of collection, retention time, and the parties the
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data may be disclosed to.

The proposed architecture includes three main components: a privacy controller, the Private

Data Import/Export, and a set of Service Processes. The privacy controller monitors the

flow of information between consumer and provider; makes log entries and allows accessing

the log; deletes private information after use; allows consumer to update his/her personal

information, and; informs consumers the disclosure of their information. The Private Data

Import/Export component discloses and receives private data from other providers. Service

Processes components are provider’s services which collect data according to privacy policies.

One of the benefits of this work is that individuals can audit, by accessing logs, to whom

and what data has been disclosed to third parties. A disadvantage, commonly found in

our evaluation, is that privacy policies are seem to be loosely coupled with the behavior of

system’s services, providing opportunity for unauthorized disclosures to third parties. In

addition, Yee et al. do not provide a concrete policy specification language, nor explain how

conflicting policies between consumer and provider are resolved. They provide a conceptual

architecture but do not include a proof-of-concept prototype, making the argument of the

feasibility of this system weaker. Also, with respect to our research goals, this study does

not consider neither service customization nor personalization.

Privacy Policy Compliance System (PPCS) [273]

Problem addressed Proliferation of web services requires protecting the privacy of web
service users and that providers comply with privacy policies of users.

Goal Give service consumers control over their private information.

Contribution An architecture for privacy policy compliance systems.

Scope Information consumers and providers.

Domain Any

Table 8.8: Privacy Policy Compliance System (PPCS) summary
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Web Service Access Control (Coetzee et al.)

This work provides a logic-based approach to access control for web services [76]. The authors

propose extending WS-Policy to allow a service to publish access control requirements as

policy statements. While WSDL describes a service and WS-Policy specifies authorization

and confidentiality requirements, none of them address access control information.

A policy in this work is a collection of assertions that must be fulfilled to access a service.

A service is an object whose methods can be invoked. An assertion describes some aspect

about a service user, such as the employee id, the employee’s seniority, an associated credit

card number, and so on. Assertions are provided by a requestor who is a proxy between a

user and the service provider, and who maintains a trust relationship with the provider.

The provided policy language supports the following access control rules

cando(Object, Role, SignA)

trust(Requestor, K_R)

request(requestor(Requestor, K_R), assert(attr1, attr2, attr3))

active(Requestor, Role):- trust(Requestor, KR), request(requestor(

Requestor, KR), assert(attr1, attr2, attr3))

access(Object):- active(Requestor, Role), cando(Object, Role,

SignA)

Service consumers and providers communicate through SOAP messages augmented with

access control information as part of message headers (to decouple application and access

control logic). Headers are inspected before each service invocation to perform an authoriza-

tion check by a logic-based authorization manager (developed as a Prolog inference engine).

This manager responds to access requests (e.g., access(PlaceOrder)?) by checking the

assertions about the user against an internal policy base and accordingly grants or denies

access to the web service. The policy base defines access control rules involving object,
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methods, subjects, and signed actions (e.g., cando(ExpediteOrder, management, +exe

)). However, and unlike our approach, Coetzee et al. only regard assertions about the user,

but do not address more fine-grained access control based on the properties of arguments

that object methods are being invoked with. For example, although physicians may have

access to a prescription service, the physician’s may only be allowed to prescribe to her own

patients, where the patient’s name or UUID is the argument to the method prescribe.

This approach, like ours, supports formal policy specifications and role-based access control.

Each role is defined by a set of assertions; users are matched to roles by matching assertions

in the incoming message with assertions about roles. If there is a match between user

assertions and policy rules, a specific role is activated, permitting the user to invoke the

requested service method. Additionally, policies can be modified and extended without

affecting the functionality of the service.

Trust relationships are established between consumer and provider through and initial pre-

sentation of credentials. This approach supports changing trust relationships by decoupling

trust statements from facts. In our approach, trust can be withdrawn by revoking bestowed

CURLs. The advantage that this access control model has over ours is that access control

decisions are made at runtime, supporting the dynamic policy base where facts are added and

updated. Our approach requires re-issuing user CURLs to adapt to new facts and policies,

which depending on how often policies and role membership change, it may be an overhead.

The substantial differences with our approach are that access control information is embed-

ded in message headers, access decisions are based on user assertions, and service requests

are mediated by a trusted intermediary. The relative disadvantage compared to our work is

that every policy needs to be repeatedly checked every time there is a service request for au-

thorization information. In our approach, policies related to the user’s role are checked once

while the user’s role holds, and only those which depend on the context and the environment

are checked at every request; a CURL issued to a user entitles him/her to use a service until
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the CURL’s expiration or use count exhaustion without having to redundantly check some

access control processes. Another drawback is that in this model the service user is required

to understand the semantics of the access control requirements; in COASTmed the service

consumer is only required to understand the semantics of the service.

This work does not explicitly consider service customization or personalization, only selective

access according to user roles.

Coetzee et al. Web Service access control [76]

Problem addressed Address security concerns in web services environments where un-
known users request access to services. While WS-Policy defines requirements of authenti-
cation and confidentiality, it does not include access control conditions.

Goal Provide access control solutions to protect an organization’s resources from unknown
users.

Contribution A logic-based access control scheme for web services.

Scope Service providers and consumers.

Architecture type Service oriented

Computing paradigm Object oriented

Used technologies SOAP messages to invoke services (with access control information
embedded in message headers); an authorization manager built in Prolog; services are objects
whose methods are invoked.

Domain Any

Table 8.9: Coetzee et al. Web Service access control summary

OASIS

OASIS is a role-based access control model which extends traditional RBAC models by sup-

porting decentralized role management, parameterized roles, and role appointment [28][101].

In decentralized RBAC, each organization part of a larger network, manages their own

roles locally and roles are service-specific. Decentralization is supported by an event-based

architecture and distributed resources are wrapped by OASIS services. Changes in the envi-
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ronment are notified to every service through asynchronous messages so that access control

policies are checked for compliance at all times.

A significant difference with our approach is that while in COAST-based services policy

specification is the liaison between user roles and services, in OASIS services define the

roles that are allowed to make use of their methods through defined policies. Users present

credentials which are checked against policy specifications. Credentials which satisfy policy

constraints lead to role activation (a role membership certificate is issued) and service use

authorization. Rules on role membership determine the conditions under which a role is

activated for a principal and the conditions that must remain true to avoid role deactivation.

Conditions on role activation may include presenting appointment certificates—long lived

credentials bestowing some kind of qualifications—obtained once users have been authenti-

cated. Roles may be appointed through appointment certificates by other authorized roles

(e.g., the administration releases an appointment certificate to a hospital physician of the

form employed_doctor(id)). The difference with more traditional role delegation is that

the appointer does not need to hold the role privileges of the appointee (e.g, the administrator

does not need to have medical qualifications to appoint a physician).

One of the differences with our capability-based approach is that in OASIS roles are activated

in the context of sessions. In COAST, CURLs are issued to principals in particular roles and

contain all the information needed to serve a request, thus there is no concept of sessions.

Parameterized roles permit having a fine-grained specification of roles since diverse role

parameters or parameter combinations can bestow different privileges or express exceptions

to default role privileges (e.g., Dr. Jones may not access my EHR). Parameters may be, for

example, id or location of a computer, name and id of a role activator, group membership,

pre-requisite roles, patient the activator is treating in the case of a healthcare scenario, and

so on. Also, environmental conditions such as the time of day or a temporary status may
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expand or limit role activation and consequent service access (e.g., an employe currently on

duty: on_duty(id)).

Similarly to our techniques, policy rules are formally expressed in a model based on propo-

sitional logic. For example, a policy that states that a principal may acquire the role

doctor_on_duty when she is at work is expressed: local_user(id?), employed_doctor

(id?), on_duty(id) ` doctor_on_duty(id).

OASIS was put into practice within an national health service system where electronic health

record fragments are retrieved from within a network of decentralized healthcare providers to

obtain integrated patient information. An indexing service maintains a directory of health

record fragments hosted at various OASIS-aware healthcare service providers. Privacy is

further preserved by anonymizing service requests before retrieving data fragments so that

individual providers cannot know the nature of the data requesting organization (e.g, re-

quester may be a HIV specialist). Comparatively, our approach has no difficulty in retriev-

ing information fragments from different sources, and may be in some circumstances more

efficient than OASIS since policy checking does not to be done every time, unless policies are

request-dependent (as opposed to user-dependent). In OASIS, access control is performed

for each data fragment locally. While OASIS maintains a role-based model, COAST is based

on capability-based security.

It can be argued that OASIS, to some extent, provides personalization through parameterized

roles by defining fine-grained policies according to role parameters. However, OASIS focus

is neither personalization nor customization. It does not provide customization capabilities

to allow users to tailor the service to their own needs.
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OASIS [28][101]

Problem addressed Traditional RBAC models lack decentralized role management, pa-
rameterized roles, and role appointment (as opposed to delegation).

Goal Supporting decentralized and secure information access.

Contribution A role-based access control model which supports decentralized role manage-
ment, parameterized roles, and role appointment.

Scope A role-based access control model for decentralized role management.

Architecture type Event-based

Used technologies For the NHS EHR prototype: XML representation of policies; Post-
greSQL Object-Relational database to store active predicates; SOAP messages over HHTPS
for asynchronous communication; J2EE for backend.

Domain Any / example in EHR domain

Table 8.10: OASIS summary

PERMIS PMI

PERMIS PMI is a policy-driven, role-based privilege management infrastructure [64]. Poli-

cies define recognized system roles, the privileges assigned to each role, the conditions over

those privileges, and the parties authorized to assign roles. Policies may include environmen-

tal parameters such as date or time of day. Policies are stored in digitally signed attribute

certificates (signed by a locally trusted authority) within LDAP directories.

To use services, users present roles (also stored in attribute certificates)—digitally signed

by a role-assigning authority—and the PERMIS decision engine checks them against the

policies in LDAP directories to accordingly grant or deny access to services. Roles issued by

an organization are also hierarchically stored in LDAP directories using distinguished names.

Alike COASTmed, PERMIS supports rights inheritance where superior roles have the same

authority as roles lower in the role hierarchy. In a service pull mode, as well supported

in PERMIS, the decision engine retrieves user roles from pre-configured LDAP directories.

COAST-based services can also support pull and push modes—users can send computations

to be evaluated by a service, or a long-running or user-spawned service can send messages
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to the user based on a user’s subscription to the service’s notifications.

Policy specifications are semantically based on the Ponder policy language and syntactically

specified in a DTD schema. The PERMIS policy elements are: (a) a SubjectPolicy which

specifies user subject domains (e.g., National Healthcare professional); (b) a RoleHierar-

chyPolicy which specifies the recognized policy roles and their hierarchical structure; (c)

SOAPolicy which enumerates the trusted authorities to designate roles to subjects (e.g., the

National Department of Health); (d) RoleAssignmentPolicy which assigns roles to subjects;

(e) TargetPolicy specifies the target domains (e.g., PrescribingApplications); (f) the Action-

Policy specifies the parameterized actions supported by target domains (e.g, Prescribe); (g)

TargetAccessPolicy associates roles with authorized actions, corresponding targets, and ac-

cess conditions. Access control policies explicitly specify methods and arguments supported

by each target application (i.e. object). Alike our approach, in PERMIS, everything is

denied unless explicitly granted.

The authors claim PERMIS’s suitability for large-scale applications given that digitally-

signed role assignments can be distributed among participating parties who require them for

access control purposes. This model has been used in the experimental context of electronic

transmission of drug prescriptions (ETP), where parties involved have different privileges.

For example, a pharmacist is only entitled to see the prescriptions that she is responsible to

dispense. Roles are assigned to different healthcare providers and government agencies (e.g.,

physician, decease control agency) and are used by ETP decision engines to grant permis-

sions. Some higher authority (the Secretary of State for Health in the provided example)

defines access control policies. The ETP prototype provides services to allow doctors to pre-

scribe drugs (prescribe method), for pharmacists to dispense them (dispense method), for

patients to receive free prescriptions (dontCharge method), and perform administration func-

tions (administrate method). At incoming service requests, the ETP fetches both the policy

and the user’s role from configured LDAP directories to make an access control decision.
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One of the fundamental differences with our approach is that policies in COASTmed are local

to individual healthcare providers, while PERMIS PMI considers situations where there is

a higher authority such as the National Department of Health which defines the policy for

all participants, and local ETP systems which access a central LDAP directory to fetch this

global policy and use it to perform local access control. The drawback is that while there

are national disclosure guidelines such as HIPAA, individual institutions have their own

privacy policies, thus PERMIS, in this aspect, does not support decentralization. Also, we

consider access control for local participants, therefore supporting the division of labor within

an organization and hindering insiders’ threats. In addition, PERMIS services are rather

coarse-grained, one-size-fits-all, and non-customizable as proposed in our model. Finally, a

centralized privilege management infrastructure is difficult to manage when there hundreds

of roles, targets, and actions in a domain and PERMIS policies may quickly become verbose

and complex.

PERMIS PMI [64]

Problem addressed Contextual to the sample domain, Electronic Transmission of Pre-
scriptions do not enforce authorization but trust medical professionals not to abuse their
privileges.

Goal Ensure that only medical professionals involved in the Electronic Transmission of
Prescriptions can access the system to prescribe drugs to patients.

Contribution A policy-driven, role-based privilege management infrastructure.

Scope Service users and policy making authorities.

Architecture type SOA

Used technologies XML formatted policies; digitally signed X.509 attribute certificate;
LDAP directories

Domain Example in electronic transfer of prescriptions

Table 8.11: PERMIS PMI summary
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Privacy and Access Control for IHE-Based Systems (Katt et al.)

The Integrating the Healthcare Enterprise (IHE) organization promotes sharing of health-

care information among information systems. This work proposes a security architecture

for access control and privacy which supports IHE ontologies, interfaces, and communica-

tion standards (e.g., HL7 and DICOM) [155]. This architecture supports and differentiates

between standard access control policies and privacy policies. Access control policies sup-

port role-based access to resources—mappings between roles and health document types are

encoded in a Rule-Base. Privacy policies represent patients preferences with respect to the

disclosure of their information. For example, a patient may choose to disclose only part of

his health record to a doctor or to another party for a specific purpose. COASTmed also

supports role-based access to resources, and it can be extended to include patient-specific

policies that are taken into account when disclosing their personal information.

In Katt et al., a patient’s EHR is a collection of documents or resource objects potentially

distributed among various healthcare providers or domains. Although the EHR pieces are

physically distributed, a user within a requesting domain perceives an EHR as a single, unified

virtual resource. In contrast, information providers within responding domains perceive each

portion of an EHR as an individual document. Users do not need to check their rights with

respect to each distributed resource; a decision request is sent to a central Policy Decision

Point, which fetches individual patient’s privacy policy from a Policy Administration Point.

If the user is entitled to access the entire virtual EHR, a permit decision message is sent

back to the user. The user sends the request along with this decision to every responding

domain so that each EHR portion is fetched to the user. If the user has no access right to

every portion of an EHR, the central Policy Decision Point forwards the request to an Policy

Enforcement Point at each responding domain, which in turn send a multi-resource request

back to the central Decision Point; a decision on this multi-resource request is done based

on the fetched policies. A decision response is the sent in response to the decision request
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to each responding domain so that specific EHR portions are returned to the requester.

Policies are described in XACML, one of our evaluated languages (see section 5.2.2). For

example, a policy which grants a user full access to a patient’s data is described as:

<subject category=access-subject> userx_id </subject>

<subejct category=owner-subject> patientx_id <subject>

<resouce> any </resource>

<actoin> read/write </action>

Identity assertions as well as Policy Decision Point’s decision assertions sent to the Policy En-

forcement Points at responding domains are specified in the SAML authorization standard.

The architecture components exhibited in a provided prototype are the Policy Enforcement

Points within each domain, a central Policy Decision Point, and a central Policy Adminis-

tration Point which hosts access control and privacy policies.

The advantage of this approach is the ability to make fine-grained access control decisions

based on individual EHR documents. However, the described data request process is rather

complex and requires numerous messages between enforcement, decision, and administration

points, and heavily relies on a centralized Policy Decision Point (single point of failure).

In a COAST-based model, CURLs are issued to users by individual “response domains”

based on a policy-based access control process. From then on, users use these CURLs to

retrieve information from different sources, and locally or remotely integrate it. There is

no centralized authority or policy repository nor numerous request messages to obtain the

authorized information. In addition, it is not clear how, in Katt et al., information is returned

to the user and on whether the user can customize the information services to obtain the

required unprocessed or processed data.

Another difference between this work and ours, is that while our focus is on how individual

providers can offer services enforcing their own policies, Katt et al. are more concerned with
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the aggregation of distributed, decentralized data. However, we do address data integration

from sources under different spans of authority as part of our research goals (goal 6 3).

Specifying policies is not a simple endeavor; alike specifying policies in our prototype, it

requires domain expertise. However, an as mentioned by the authors, usability studies and

easy-to-use interfaces are required to make policy specification feasible in day-to-day practice.

Privacy and Access Control for IHE-Based Systems [155]

Problem addressed It is challenging to provide effective access control mechanisms and
support privacy of information in distributed EHR systems.

Goal Supporting a single decision information request with respect to multiple distributed
resources composing an EHR.

Contribution A security architecture for access control and in support of patient privacy
for distributed IHE systems.

Scope Requesting and responding domains

Architecture type SOA

Prototype A security system which retrieves virtual EHRs from multiple sources.

Used technologies IHE XDS profile for interoperability when sharing EHR; XACML policy
language; SAML documents for identity and decision statement assertions.

Domain Electronic Health Records

Table 8.12: Privacy and Access Control for IHE-Based Systems summary

8.2.3 Analysis Results

An overview and evaluation of a set of technologies addressing access control, security, and

policies specifications for web services and systems (section 8.2.1) demonstrate that none

of these technologies alone can achieve, simultaneously, the goals of differential access and

customization of services. These technologies are either abstract models (such as well-known

access control models) or standalone languages specifications (e.g., WS-Security and WS-

Policy) which are meant to be used in conjunction with other technologies and within more

comprehensive architectures, and thus do not provide a holistic solution to our problem. For
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example, both WS-Security and WS-Policy extend the semantics of a SOAP messages with

security features and requirements, however they do not provide guidance on how services

effectively enforce these policies and security requirements.

Most of the analyzed systems (section 8.2.2) have a policy-based approach to the authorized

disclosure of patient data—the evaluation of explicitly specified policies in a formal language

is the foundation for authorization and access control decisions to access data and invoke

restricted system functions. Various formalisms, diverse in semantics and syntax, are used to

capture privacy policies. For example, ALDSP supports XQuery and WebLogic security poli-

cies; OASIS policy model is based on propositional logic; InfoShare leverages an XPath-like

notation; Bhatti et al. choose the X-GTRBAC access control policy specification language,

and; Coetzee et al. extend WS-Policy to enable access control for web services. Systems

are also different in the expressiveness and the difficulty to specify policies. For example,

InfoShare supports the specification of both authorization and prohibition policies, requiring

policy conflict resolution, while Cassandra, PERMIS, and COASTmed minimize complexity

by allowing only positive policies (i.e. everything is denied unless explicitly granted).

Systems also differ on who is responsible for defining policies. For example, in Haas et al.

the patient is exclusively responsible for defining disclosure policies while the data holder

neither defines policies nor has access to data. In contrast, in InfoShare and the Privacy and

Access Control for IHE-Based Systems (hereafter, Katt et al.) both the data holder (e.g., a

hospital) and the patient may specify data disclosure policies. Similarly, Yee et al.’s PPCS

allows both web service consumers and providers to define policies, the former regarding the

circumstances in which his/her information should be shared and the later on the disclosure

policies the user needs to accept in order to use the service; these policies may be in conflict

or may be orthogonal. In COASTmed and ALDSP, an organizational policy maker or data

service administrator defines the privacy and security policies (although in the future we aim

to combine policies defined by both data holders’ and individuals’ whom the data describes).
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Some of the evaluated systems have the ability to provide services that are explicitly tied

to and compliant with policies. Systems such as the Policy-Based Authorization Framework

(hereafter Bhatti et al.), ALDSP, InfoShare, OASIS, PERMIS PMI, and COASTmed make

explicit the association between policies and offered services. For instance, Bhatti et al. de-

fines policy attachments which bind policies and web service components; ALDSP imposes

access restrictions on business objects elements and accessor functions, and allows omitting,

perturbing, and filtering according to policies the returned information; InfoShare’s policies

explicitly point to hierarchically structured data objects returned to users; in OASIS, service

access is contingent on presenting role membership certificates issued according to policies,

where services are associated to roles; in PERMIS, target applications’ methods and argu-

ments are specified within access control policies; COASTmed explicitly binds policies with

system functions, generates service CURLs based on the evaluated policies, and thus poli-

cies are effectively enforced; PPCS ties policies and services by checking for non-conflicting

provider and service consumer policies before allowing access to a service.

In contrast, in other systems it is not made explicit how access rights are bound to capabil-

ities. For example, in Cassandra, policy evaluation produces either an “accept” or a “deny”

access decision (presumably, access control mechanisms bind policies and services); in Haas

et al. patient policies are checked against requests to, accordingly, grant or deny access to

data; in Katt et al., a central policy decision makes a “multi-decision accordingly” sent to

individual policy enforcement points, but it is not detailed how policy enforcement is carried

out and how services are effectively tied to these decisions; alike PPCS, Coetzee et al. allows

access to a service according to role assignment based on valid user assertions, but alike all

of the above mentioned cases it is not clear how policies and services are explicitly bound.

Most evaluated systems—Bhatti et al., ALDSP, Cassandra, Coetzee et al., PERMIS PMI,

and Katt et al.—provide role-specific services addressing user categories or role membership.

However, it may also be desirable to treat individuals distinctively despite of their roles (such
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as when articulating exceptions), therefore requiring more flexibility than the provided role-

based access control. In the Pervasive Healthcare Systems Architecture (hereafter, Rafe et

al.), consumers subscribe to services of interest, therefore in some sense services are audience-

specific, however not specific to any particular user. A more fine-grained approach to access

control considers also subject identity. InfoShare, for example, provides authorized views

of patient data to both roles and principals; in OASIS all privileges are associated with

both roles and principals; in COASTmed, policy specification is the liaison between user

roles and services. However, COASTmed not only supports role based-access control, but

policies can be as low level as necessary, specifying per-organization or per-individual policies

according to distinctive attributes. In PPCS, the user’s privacy policy is user-specific (i.e.

the information a user chooses to disclose), however the service itself is the same for all users;

what may be user-specific is the provider’s disclosure policy thereafter with respect to the

user’s disclosed information.

With the exception of COASTmed, none of the evaluated systems enable user-controlled

customization—services such as in PERMIS are rather coarse-grained, one-size-fits-all. Mar-

mite is a very distinctive system from the other evaluated ones, focusing in service composi-

tion rather than on access control. Recall that Marmite is a browser plugging which allows

end users to compose mashups. In contrast to COASTmed, Marmite is meant for end users

and uses as building blocks traditional, rigid web services. COASTmed is geared towards

application programmers building customizable services. In some way Rafe et al. offers

customization by allowing users to receive only notifications from events of interest, how-

ever they are not personalized nor custom; notifications are either public or private, without

further granularity to subscribe to and publish events. Note that while personalization is

controlled by the provider, customization gives users some degree of control. OASIS also

provides limited personalization through parameterized roles. Distinctively, COASTmed’s

code mobility enables customization by allowing the user to compose expressive closures

which are executed by the service to obtain the required data as described in section 6.2.
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expressively

captures policies

policy compliant

services

user-specific

services

customizable

service

TECHNOLOGIES

SOA

orchestration

No

authorization

semantics in

BPEL

SOA

choreography

No

authorization

semantics in

WS-CDL

XACML

presumably

AC mechanisms

between policies

and services

authorization

based on user’s

attributes

SAML

may support

provision of

user-specific

services based on

identity

WS-Security

if security

requirements

adhere to

WS-Policy

specifications

(regarding

communication

security)

WS-Policy

if the service

implementation

is faithful to

advertised

policies
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RBAC, MAC,

ABAC, &

DAC

presumably

AC mechanisms

between AC rules

and services

presumably

users provided

different services

according to AC

rules

SYSTEMS

ALDSP

policies

enforced by the

WLS

X-GTRBAC

+ WS-Policy

WSDL

descriptions

bound to policy

assertions

role-based AC

Marmite

By allowing

to compose

mashups from

remote web

sources.

Cassandra

presumably

AC mechanisms

between policies

and services

role-based AC

Haas et al.

policy

specification not

described

patient

policies checked

against request

and access to

data granted or

denied

accordingly

patient-specific

services and data

requester-specific

data provided

InfoShare

policies

explicitly point

to hierarchically

structured data

objects returned

to users

provides

authorized views

of patient data to

requesters (both

roles and

principals)
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Privacy Policy

Compliance

System

(PPCS)

policy

specification not

described

presumably

mediated by a

Privacy

Controller and a

Private Data

Import/Export

component

very

coarsely-grained -

data owners and

other parties;

presumably

differential

service according

to patient

policies on

disclosure

Coetzee et al.

Web Service

access control

service name

specified in AC

policies

role-based AC

OASIS

service access

based on role

membership

certificate

presentation;

certificate issued

according to

policies (indirect

relationship

between policies

and services)

all privileges

associated with

roles and

principals

PERMIS PMI

target

applications

(objects)

methods and

arguments

specified in AC

policies

role-based AC
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Privacy and

Access

Control for

IHE-Based

Systems

presumably

mediated by a

Policy Decision

Point and a

Policy

Enforcement

Point.

role-based AC

Pervasive

Healthcare

Systems

Architecture

N/K

consumers

subscribe to

services of

interest

Partial

customization

through event

subscription

Table 8.13: Evaluation summary

8.2.4 Discussion

Decentralization is at the heart of the problem we seek to mitigate, thus the common trait

of the evaluated systems is their focus on decentralization. However, many existing EHR

solutions exhibit centralized Supervisory Control and Data Acquisition (SCADA) types of

architectures [86]. SCADA supports architectures of distributed sensors and actuators—

therefore mostly focused on hardware control—which are governed by a central controller.

These architectures are more appropriate when rigorous control is desired, therefore its ap-

propriateness for controlling actuators and acquiring data from distributed sensors in man-

ufacturing plants. These networks are awash in security weaknesses, have a single point of

failure, and are subject to frequent attacks [140]. Moreover, they are not meant to cap-

ture processes involving complex communities of autonomous parties. They could, however,

be components within larger decentralized systems such as COASTmed, for example, for

controlling medical devices through policy-based services.

One of the distinctive properties of COASTmed and more generally of COAST-based services

is that trust mechanisms are meant to be decentralized. COAST relies on self-certified
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islands along with decentralized Web of Trust (WoT) mechanisms, while approaches such as

Cassandra rely on centralized certificate authorities. Also, in COASTmed, policies are local

to individual healthcare providers, while in PERMIS, for example, a centralized authority

such as the National Department of Health defines policies by which local services operate.

Another example is Katt et al. which relies on a centralized policy repository to make access

control decisions to obtain distributed data.

The analyzed technologies and systems exhibit substantial differences in goals—Katt et

al. focuses on the aggregation of distributed data, while COASTmed emphasizes on how

individual providers can offer services enforcing their own policies. However, they are all

concerned with the authorized and secure access to data. An important insight provided

by this evaluation is that technologies focus on either access control (some through formal

policies) or on customization, whereas none of them have the dual goal of offering a secure,

yet customizable service access. Access control technologies, which constitute most of the

analyzed systems and technologies, are focused on allowing service providers to securely

expose their resources, however they disregard users’ needs. Services are largely unilaterally

controlled. In the analyzed literature, access control and service customization are mostly

unrelated and detached system concerns. Our intention is to bridge this gap by providing

services that benefit and address concerns of both service consumers and providers. COAST-

based services stands out by simultaneously enabling differential access to services and user-

controlled customization.

One of the limitations that we have found with regards to access control with many of these

systems and technologies is that access control can be compared to a gate keeper; once a

“permit” decision has been made, access control mechanisms are not specially concerned

with how thereafter rules and policies are effectively enforced and maintained. The severity

of this issue is that if for some reason access control fails (e.g., human mistake or system bug),

the user could gain access to much more information and capability than what was intended.
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In systems such as ALDSP, information and capabilities are open to any user unless specific

restrictions are tacked on individual elements and functions. In contrast, our COAST-based

approach assumes a closed world where everything is prohibited unless explicitly authorized

since we assume every piece of information and capability is potentially sensitive. We consider

this a more secure approach and less prone to error. COAST-based services are created based

on policy evaluation, therefore capabilities that are not authorized for a given user do not

even exist in the service’s lexical scope. Even if, by mistake, a policy maker provides an

unintended right to some party, only the capability associated to that mistaken right will

be added to the user’s service, therefore a potential security and privacy threat is somewhat

mitigated. Of course, the potential consequences of any such unintended right will depend

on the nature of the bestowed capability. It is thus important to address access control

with respect to web services, mostly of those inter-organizational. Unfortunately, as Bhatti

et al. argue, “access control in Web services is a neglected frontier that has not seen the

development and adoption of many standards” [47]. It is also argued that although there is

a vast body of literature in the area of access control, traditional access control techniques

are not appropriate for web services given that web services are inherently different from

objects [43] and where users are not known upfront [20].

Another difference between these systems and COASTmed is that access control is a process

performed in its entirety at every service request. For example, in Katt et al., a single request

requires complex and repetitive policy checking and multiple inter-host messages to access

data within distributed providers. In COASTmed, role- and identity-related policies are

checked once while the user maintains the same role to obtain a user-specific service CURL.

Only time- or date-related policies or those which depend on the properties of the specific

service request require evaluation at every request. Additionally, a provider may arbitrarily

deny service to a given principal for any reason just by revoking the principal-specific CURL.

However, given that roles within organizations change, it is important to reflect this change

219



within service CURLs. One approach to this is to revoke CURLs of users whose roles have

changed and automatically issue a new CURL with the updated authorizations according

to the newly assigned roles (or divest from any right if the user has no assigned roles).

A second approach which would make more sense when roles within a domain are highly

dynamic, is to simply check all the relevant policies at service use time. Choosing between

these approaches is domain dependent, and the choice depends on which approach requires

less overhead (check policies versus revoke and reissue CURLs). We have not addressed

this topic in depth since we consider the problem of role validity appertaining to service

adaptation and evolution which we will pursue in future work.

The evaluated systems have, however, many advantages and features worth adopting in fu-

ture work. For example, ALDSP not only considers policies to access information and func-

tions, but also post-processes information retrieved by a read operation by filtering unau-

thorized data; Cassandra considers the exchange and combination of inter-organizational

policies; Haas et al.’s approach tags data with provenance information to support the conti-

nuity of policy compliance throughout the flow of patient data; InfoShare aggregates health

data from different sources, combining their individual policies and resolving conflicting ones

in order to comply with all providers’ privacy requirements; Katt et al. has the ability to

make fine-grained access control decisions based on individual EHR documents whose frag-

ments are dispersed among autonomous providers.

We believe that one of the barriers for adoption of some technologies, including COASTmed,

is the complexity of formalizing policies. However, the critical nature of the information

justifies this difficulty. Policy languages have undeniable advantages such as unambiguously

capturing domain rules and automating policy evaluation and conflict resolution. Health care

systems are critical and increasingly ubiquitous; ensuring their reliability, quality, accuracy

is crucial [219]. Formal policies, specified by expert teams of domain policy makers and

developers, are essential to ensure these properties, thus guiding the correct system behavior.
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To facilitate their specification, appropriate user interfaces and policy reuse are needed to

support policy makers in their tasks as well as basic user interfaces to capture individual’s

policies (such as patient consent) to make policy specification feasible in day-to-day practice.

8.3 Generalizability to Other Domains

Our evaluations, in specific the practical experiments with COASTmed and the scenario-

based evaluations, are strong indicators that our proposed model is applicable to real systems

and generalizable to other equally dynamic domains where the salient difference is the type

of data exchanged. Our approach to the safe and customizable access to personal informa-

tion can be extended to other domains which experience similar challenges (see section 2),

such as the financial and governmental worlds. For example, consider Kukafka et al.’s sce-

nario where healthcare organizations gather real-time data for disease surveillance [162]. In

another hypotetical scenario, government agencies such as the Bureau of Economic Analysis

or the Federal Reserve are interested in monitoring individuals’ saving ability by comparing

disposable income vs. savings across time. These agencies may send custom computations

to banks and credit unions that, without revealing the identity of customers, provide them

with this information.

We focus on individuals’ information because it clearly depicts the challenges related to

access and sharing of private data. However, this problem can be related to any type of

data. For example, government agencies such as DARPA, the State Department, the CIA,

the FBI, and so on, hold classified documentation whose access depends on rigorous autho-

rizations according to various levels of security clearance. Another example is e-commerce,

where customers have various levels of service access based on the particular terms of their

subscriptions. The National Institute for Standards and Technology (NIST) for instance

produced a report which exhibits the information access control needs of a wide array of
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public and private organizations in domains such as “energy, financial, communications, in-

surance, manufacturing, computers, and services” for “law enforcement, benefits delivery,

medical/hospital, nuclear/energy, space exploration, defense, tax system, information collec-

tion and dissemination, air traffic, and service center operations” activities [104]. Differential

access and service customization capabilities can thus be leveraged and applied to any do-

main with complex relationships between individuals, organizations, and information where

the key guiding principles for party interaction are trust and authority.
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Chapter 9

Conclusion

In these studies, we seek to solve problems regarding the safe disclosure and meaningful use of

personal information, which concern both consumers and providers of personal data services.

First, trust between consumers and providers is complicated, nuanced, and not homogenous,

thus the management of an organization’s data disclosures is highly complex and requires

complying with ethical and legal policies. Although an organization’s data disclosure policies

may be somewhere described, they are often isolated from information systems’ operations,

and therefore services for users within and foreign to an organization do not always comply

with these regulations. Compounding the problem is the difficulty to capture these nuanced

trust relationships with current technologies and provide per-user services that are bound

to organizational privacy policies. Second, current information services are rigid, “one-size-

fits-all” solutions that do not meet the ever-changing needs of a diverse pool of people and

organizations, whereas information is used for myriad, divergent, and unforeseen purposes.

This is the result of providers lacking the ability to differentiate among users.

In light of these challenges, our work seeks to mediate this tension between information

need and service provision through dynamic architectures that enable customization, while
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simultaneously provide service access based on specific trust relationships. Our ultimate

goal is to provide flexible and customizable, yet secure and privacy-aware Internet-based

data services which operate according to organizational policies. The system properties

that we pursue are therefore twofold: (a) policy-based differential access, which enables

providers to treat users individually by providing privacy-aware services that make available

authorized information and computation capability while deny the access to forbidden assets

according to formally defined policies, and; (b) service customizability, which allows

individual users to computationally manipulate personal information to fulfill specific data

needs, within the authority granted by the provider according to individual rights to access

data according to ownership, trust, and legal relations.

Our solution to these challenges consist on an architecture-centric approach, where a combi-

nation of novel Software Architecture principles and policy languages enable building services

which elicit the desired, above-described properties. Our work on secure and customizable

Internet-based services is rooted on the principles of the COAST architectural style [121]—

which succeeds current Web architectures to meet increasing openness, flexibility, dynamicity,

and security demands—along with the expressiveness of the Rei policy language to formalize

organizational policies describing data disclosure and service access conditions.

Guiding these studies is the characterization of the principal design decisions for engineering

services which simultaneously enable customization in order to fulfill diverse information

needs and policy-compliant differential service access. The elements of our model which,

together, approach the challenges set forth are:

1. expressively capturing privacy and operational policies using an appropriate for-

mal policy language such as Rei (sections 6.1.1 and 7.3); our modified version of Rei

allows associating subjects (identities or roles, e.g., physician ), actions (e.g., prescribe),

direct and indirect action targets (e.g., NSAID to patient), and a set of binding con-
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ditions (e.g., if physician is the patient’s primary care physician); we adopt a “closed-

world” assumption, where everything is forbidden unless explicitly authorized (thus we

ignore Rei’s prohibitive policies);

2. associating a system’s functional capabilities with a set of provider-defined privacy

and operational policies with the goal of controlling the access to these capabilities

(section 6.1.5); capabilities (e.g., EHR/new) and policy rights (e.g., the right to create

a new EHR) can be explicitly or implicitly associated—where explicit associations

make a direct relation between a capability identifier within a database table (e.g.,

capability EHR/create and right EHR-create), an implicit association has no need to

lookup database tables since capability and policy right are linked by homonymity.

3. leveraging COAST’s Capability URLs and formal policies to create tokens which

allow accessing user-specific services (sections 6.1.2, 6.1.4, and 7.4); CURLs em-

bed authority information—i.e. the capabilities a principal is entitled to use—that

enables differentiating among service users or user types and specializing service of-

ferings; these user-specific CURLs are dynamically generated based on the relevant

policies for a given user and the aforementioned association of policies and capabili-

ties; policies are evaluated to obtain the truth values of policy conditions according

to a particular user and context, and the capability information corresponding to the

associated policies which evaluate to true are embedded within issued CURLs.

4. exploiting COAST’s binding environment sculpting to expose functional capabili-

ties as services (section 6.1.5); a binding environment provides the lexical scope for

a user-specific service, namely a set of key-value pairs corresponding to the reachable

functions and data within a service; sculpting in this context is composing a binding

environment from a chosen subset of the universe of system capabilities; by virtue of

environment sculpting, it is not possible for a user to access unauthorized capabilities,

since these forbidden bindings are simply absent from a bounded user service;
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5. leveraging COAST’s capability-based security—CURLs and binding environments—to

dynamically create bounded, user-specific services based on the authorization

semantics embedded in CURLs (sections 6.1.6 and 7.5); context specific policies are

evaluated at service use to accordingly allow or deny access to a service; if all contextual

policies evaluate to true, the capability information within CURLs is used to spin up a

new service (computation) which has that set of capabilities as a binding environment;

following, the user’s message is forwarded to these newly created service for execution;

given that CURL creation and service use are contingent on policy evaluation and that

unauthorized capabilities do not exist within user services, policies are enforced and

directly bound to services;

6. exploiting computation composition and mobility to allow users to create custom

services and obtain the required data through user-created closures built on the autho-

rized capabilities (section 6.2); customization was naturally enabled by COAST—given

that the style permits the exchange of mobile code between decentralized peers and

that services are computational environments (i.e. can execute mobile code sent in

messages), users can exploit functional composition by using the available capabilities

made available (in binding environments) by the service provider as building blocks to

create more complex functions to process and manipulate the accessible data.

The contributions and outcomes of this research work are, therefore,

• novel techniques for binding formally defined privacy and operational policies to orga-

nizations’ Web-based personal data services (section 6.1);

• an architecturally sound approach which, by way of architectural principles and a

formal policy language, simultaneously enables provider-controlled policy-based dif-

ferential access to personal data services and user-controlled service customization;
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this architectures enables the secure, privacy-aware, customizable use and sharing of

personal information in decentralized, trust-dependent domains (section 6);

• design guidance for using the developed techniques in practice by way of the COASTmed

prototype; this healthcare application allows formally specifying policies that are bound

to specific capabilities and permits users to achieve the desired customization given

their individual authority to access these services (section 7);

• insights on the advantages, limitations, and application contexts of our model compared

to other systems and technologies with similar goals (sections 8.1 and 8.2).

We tested, through a set of evaluation methods, our hypothesis that a software system

rooted in dynamic architectural principles involving capability-based security and compu-

tation exchange, along with formal policy specifications can offer policy-based differential

access to personal information services, while simultaneously enabling user-controlled ser-

vice customization in decentralized contexts. These methods included:

1. the experimental assessment of the practical feasibility of the proposed techniques

for achieving policy-based differential service provision and fine-grained customization

through prototype development; successfully, we developed COASTmed, a notional

EHR management system which elicits the desired properties—provides customizable

services to diverse type of users with distinct access privileges (section 7);

2. scenario-based evaluations which leverage specific bounded scenarios or vignettes in

the healthcare domain regarding complex inter-agency interactions and access control

(section 8.1). We captured the policies guiding these interactions and simulated these

scenarios using COASTmed as the evaluation artifact. The expected system behavior

was observed in every scenario—parties could successfully access and use the authorized

information, while unauthorized capabilities were effectively denied;

227



3. qualitative comparative analyses with respect to the desired properties—differential

service access and user-controlled service customization—with systems approaching

similar challenges (section 8.2). The most important result in this portion of the

evaluation is that we have not found, to this date, a comparable system which provides

user-specific, privacy-aware services that simultaneously allow users to customize their

experience with the service through rich computational manipulation.

The main question we embarked to answer to is: does our approach enable the different

participating parties in a given domain to access the information and computation capabil-

ities they need, in the way and at the time required, and within the boundaries imposed by

the service provider by law or for the sake of privacy? The answer to this question is yes;

our approach based on principles of computational exchange and capability-based security

along with formal policies elicit, in systems offering Internet-based services, the pursued

system properties: services which treat users individually and provide them with the ability

of tailoring services to their need within some imposed boundaries. Also, we have provided

answers to more detailed research questions set forth in section 3:

1. information services providers can have fine grained control over the disclosure of their

data and the access capabilities by: (a) formally capturing disclosure policies that are

based on role membership or other environment and action’s target conditions (section

7.3); (b) associating policies and capabilities to provide privacy-aware services that

differentiate users (sections 6.1, 7.4, and 7.5), and; (c) allowing the provider to revoke

privileges through provided capability accounting mechanisms (sections 6.1.7,7.4.2, and

7.5.5). In these services, trespassing authorization rights is simply not possible.

2. safe code mobility and functional composition—supported by the COAST infrastructure—

are the enabling technologies for using, customizing, and integrating capabilities of one

or more decentralized computations (section 6.2).
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3. the development of the COASTmed prototype is the evidence that a system that pro-

vides services exhibiting differential access and customizability can be built in practice

(section 7). The Motile/Island infrastructure provided by COAST and the Rei pol-

icy language are appropriate technologies for obtaining these desired properties and

support multiple parties, multiple uses of personal information, and different trust re-

lationships. However, these are suggested technologies and do not exclude others that

may as well maintain the properties of the COAST style. For example, other domains

may find another policy language more suited to a particular type of policies or other

frameworks supporting mobile code and asynchronous communications may also be

appropriate for building style-compliant services.

The context of this work is decentralized information systems, whose constituent services

operate under multiple, distinct authorities. This work is relevant within Service Oriented

Architectures, yet our approach is fundamentally different from current uniform, rigid, and

unilaterally provided Web services. COAST-based services are computationally enabled,

customizable, user-specific, and expose personal data and system capabilities according to

formal policies. Our work applies access control features—providers define per-user authority

over their services—and it is further motivated by the insufficiency of traditional access

control models for complex, large-scale decentralized domains such as healthcare [15].

In addition, this work approaches essential requirements of healthcare applications, namely

authorization, data confidentiality, availability, utility, and access to the legitimate use of

health records [278][15]. However, our approach not only provides enormous opportunities in

the area of healthcare—made evident by the number of EHR and related companies arising

(e.g., Practice Fusion, Epic, and NextGen)—but within many domains where complex party

interactions are guided by a multitude of trust relationships and access strictures.

Our research naturally leads to extensive and interesting future work such as on “break the
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glass” policies, policy conflict and resolution, service evolution, information provenance and

traceability, patterns of information integration, and privacy-aware systems. Also, we have

considered policies that allow accessing services, but not policies that act upon the results

of such computations to therefore decide whether the information can be safely returned to

the user or if providing this information would violate some privacy policy.

The main take away from our work is that the access and management of personal in-

formation in heterogeneous trust domains goes beyond individual web services and access

control technologies, but requires more complex solutions based on sound architectural de-

sign founded on coherent architectural principles such as the presented model. Design and

rationale prevails and guides all software activities, from requirements, to architectural con-

ception, to implementation, and testing, allowing to elicit, maintain, and evolve the desired

system properties [252].
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Appendix A

Examples of privacy policies

Following, we provide a collection of sample health care practitioners’ privacy policies which

illustrate the type of authorization and rights parties have in this domain and that ought to be

captured to offer policy-based services. These policies have been obtained from hospitals’ and

insurance companies’ publicly available privacy policy documents, and from scenarios found

in the academic literature. We differentiate between internal and external policies: internal

policies are those mainly for the purpose of division of labour among an organization’s

employees, while external policies communicate how patient’s data will be handled and the

conditions under which patient data is disclosed.

A.0.1 Hospital organizational privacy policies

Internal policies

• We may collect information about the patient from different sources, such as from the

patient himself/herself, his/her family or designated representative, insurance compa-

nies, employers or other health care providers. Such information may be name, address,
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birth date, social security number, medical and mental health history, payment sources,

physicians names, family contacts, and medical information such as test results, health

records, and diagnosis.

• We may contact the patient as a reminder of an appointment for care or treatment at

our facility.

• We may contact the patient about treatment options, health-related benefits, or other

products or services that may be of interest.

• We may also contact you to conduct case management or care coordination.

• Only authorized doctors can see or update certain patients data (e.g., only clinical

psychologists can update the patient’s psychological evaluation).

• Only a specialist doctor may be allowed to see a section of the records of his/her patient

that pertain to the results of very sensitive medical test.

• We may share patient information with our departments to coordinate the different

health care services that he/she may need, such as prescriptions, lab work, or x-rays.

• No-one shall have the ability to delete clinical information until the appropriate time

period has expired (6 years).

• All accesses to clinical records shall be marked on the record with the subjects name,

as well as the date and time.

• A doctor should be allowed to access a patient’s health record only when the patient

has designated him as his/her primary care physician.

• Only a specialist physician (e.g. cardiologist) may prescribe drugs for illnesses related

to his/her specialty (e.g. cardiac-related).

• Only physicians may order lab tests.
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• Only members of a patients active care team should be able to access to the patients

records. Thus, although a physician may have the right to order a lab test by virtue

of the qualifications and responsibilities that determine his role, the physician should

have the right to do so for the patient’s record only when he/she is part of the patient’s

care team. Another example, the primary care team in general wards should be given

access to a patients records only after the ER unit has requested transfer of the patient

to one of those wards.

• Certain team members may delegate duties and associated permissions to other team

members.

• The primary care physician in care of the patient is provided with read/write access

to a prescription file.

• The hospital pharmacists have only read access to prescription files.

External policies

• Patient may ask us to restrict how we use and disclose his/her information to carry out

treatment, payment and health care operations to your family, friends or other persons

you identify. We may agree to or deny your request.

• Patient health information is not to be disclosed for any purpose unless the patient

has signed a form authorizing the use or disclosure.

• The patient may revoke a given authorization in writing, unless we have taken any

action in reliance on the authorization (interpreted as “authorization revocation cannot

be retroactive”).

• The patient has the right to inspect and obtain a copy of the medical records that the

Hospital uses, subject to certain limited exceptions. This information includes your
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medical and billing records, but may not include some mental health information.

• We may disclose protected health information as necessary with health care providers

involved in your treatment, such as physicians, hospital staff or outside consultants (e.g.

pathologists or radiologists) or for the purpose of making decisions about patients’ care

to a doctor or health facility upon request.

• We may share patient information with other health care facilities to which he/she is

transferred.

• We will make uses and disclosures of patients’ medical procedures and treatment and

submit claims to health insurance companies for billing purposes, verify eligibility, or

to request pre-authorization of medical services.

• We may send health plan statements to the policyholder, who may or may not be the

patient.

• With patient’s approval, we may disclose your protected health information to desig-

nated family, friends, and others who are involved in your care.

• We may share limited protected health information with designated family, friends, and

others who are involved in their care without your approval if the patient is unavailable,

incapacitated, or facing an emergency medical situation.

• We may disclose limited protected health information to a public or private entity that

is authorized to assist in disaster relief efforts in order for that entity to locate a family

member or other persons that may be involved in some aspect of caring for the patient.

• We may use a patient’s’ protected health information to determine whether he/she

might be interested in or benefit from treatment alternatives or other health-related

programs, products or services which may be available to you as a member of the

health plan.
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• We may share patient information with public health or other legal authorities charged

with preventing or controlling disease, injury or disability (e.g. CDC or state public

health departments).

• We may share patient information with a person who may have been exposed to a

communicable disease or may otherwise be at risk for contracting or spreading a disease

or condition when permitted by law.

• We may share patient information as authorized under workers compensation laws or

other similar programs established by law.

• We may share patient information to conduct our Academic Medical Center training

programs, such as for physicians who are pursuing advanced training or faculty and

students of academic health affiliates.

• We may share patient information for medical research when approved by an Institu-

tional Review Board (IRB) or a Privacy Board. For example, we may compile research

databases or create limited data sets permitted by federal regulations.

• We may share patient information with the Food and Drug Administration (FDA) to

support activities related to the quality, safety or effectiveness of a product or activity.

• We may share patient information to compile patient census data, conduct quality

improvement programs, or review the qualifications of health care professionals.

• We may share patient information as required by law to report abuse or domestic

violence.

• We may share patient information as required by law in response to a warrant, sub-

poena or summons.

• We may share patient information as required by law to identify or locate suspects,

witnesses or missing persons.
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• We may share patient information as required by law if patient is, or is suspected of

being, a victim of a crime

• We may share patient information as required by law to alert law enforcement officials

when we believe a death may have resulted from criminal conduct.

• We may also share patient information with law enforcement authorities to identify or

apprehend an individual.

• We may share patient information as required by military command authorities if the

patient is a member of the Armed Forces.

• The patient may receive an accounting of disclosures of your information made by us

in the six (6) years prior to the date of request.

• Patient may inspect and obtain a copy of his/her protected health information con-

tained in a designated record set for as long as the information is maintained.

A.0.2 Insurance company organizational privacy policies

• We may use information regarding patients’ medical procedures and treatment to pro-

cess and pay claims.

• We may use information regarding patients’ medical procedures and treatment to de-

termine whether services are medically necessary.

• We may use information regarding patients’ medical procedures and treatment to oth-

erwise pre-authorize or certify services as covered under your health benefits plan.

• We may forward patients’ medical procedures and treatment information to another

health plan, which may also have an obligation to process and pay claims on your

behalf.
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• We may disclose patients’ protected health information to another health care facility,

health care professional, or health plan for quality assurance and case management,

but only if that facility, professional, or plan also has or had a patient relationship with

you.

• With patient’s approval, we may disclose your protected health information to desig-

nated family, friends, and others who are involved in payment for your care in order

to facilitate that persons paying for your care.

• If the patient has designated a person to receive information regarding payment of the

premium on your long-term care or Medicare supplemental policy, we will inform that

person when the premium has not been paid.

• At times it may be necessary for us to provide some of your protected health in-

formation outside persons or organizations, such as auditing, accreditation, actuarial

services, legal services who assist us with our health care operations.

• We may communicate with the patient regarding his/her claims, premiums, or other

things connected with your health plan or insurance.

• The patient has the right to request to receive communications regarding your protected

health information from us by alternative means or at alternative locations (if a patient

wishes messages to not be left on voice mail or sent to a particular address, we will

accommodate reasonable requests).

• We may request and receive from the patient and his/her health care providers pro-

tected health information either prior to enrollment in the health plan to determine

eligibility to enroll and to determine rates.
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Appendix B

Sample healthcare policies expressed

in various policy languages

In section 5.2 we evaluated a set policy the languages for their ability to express organiza-

tional privacy and operational policies in the healthcare domain. To do so, we selected a set

of sample policies described in table 5.1 and formalized them using the evaluated languages.

These policies where selected (and modified as required to fit the evaluation criteria) from

the domain policies in appendix A. Evaluation criteria included ability to express subjects,

their active roles, objects, attributes, obligations, rights, prohibitions, conditions, exceptions,

usage (purpose), and temporal constraints.

Following, we provide the specification of the policies in table 5.1 in EPAL, XACML, Cas-

sandra, PeerTrust, Ponder, and Rei (all policies are specified in all languages).
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B.1 EPAL

Policy Document Domain Vocabulary

<epal-vocabulary version="1.2" xmlns="http://www.research.ibm.com/

privacy/epal" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:

schemaLocation="http://www.research.ibm.com/privacy/epal epal.

xsd http://www.w3.org/2001/XMLSchema xs-dummy.xsd ">

<vocabulary-information id="EHR-vocabulary">

<short-description language="en">EHR vocabulary</

short-description>

<long-description language="en">Vocabulary for the

implementation of the policies governing the EHR system</

long-description>

<issuer>

<name>Administrative department</name>

<organization>Hospital ABC</organization>

<e-mail>admin@hospitalabc.com</e-mail>

<address>Sample address</address>

<country>United States</country>

</issuer>

<location>http://www.hospitalabc.com</location>

<version-info end-date="2001-12-31T12:00:00" last-modified="

2001-12-31T12:00:00" revision-number="1" start-date="

2001-12-31T12:00:00" test="false"/>

</vocabulary-information>
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<user-category id="Person">

<short-description language="en">Person</short-description

>

<long-description language="en">Person</long-description>

</user-category>

<user-category id="Staff" parent="Person">

<short-description language="en">Hospital staff</

short-description>

<long-description language="en">Hospital staff</

long-description>

</user-category>

<user-category id="Physician" parent="Staff">

<short-description language="en">Physicians</

short-description>

<long-description language="en">Physicians employees of

the Hospital ABC</long-description>

</user-category>

<user-category id="PCP" parent="Physician">

<short-description language="en">PCP</short-description>

<long-description language="en">Primary care physician</

long-description>

</user-category>

<user-category id="Cardiologists" parent="Physician">

<short-description language="en">Cardiologists</

short-description>
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<long-description language="en">Physicians specialists in

cardiology</long-description>

</user-category>

<user-category id="Patient">

<short-description language="en">Patient</

short-description>

<long-description language="en">Patient treated in the

Hospital ABC</long-description>

</user-category>

<user-category id="Organization">

<short-description language="en">Organization</

short-description>

<long-description language="en">External organization</

long-description>

</user-category>

<data-category id="EHR">

<short-description language="en">EHR</short-description>

<long-description language="en">Electronic Health Records

</long-description>

</data-category>

<data-category id="AnonymousEHR">

<short-description language="en">AnonymousEHR</

short-description>

<long-description language="en">Anonymous Electronic

Health Records</long-description>
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</data-category>

<data-category id="CardEHR" parent="EHR">

<short-description language="en">Cardiology EHR</

short-description>

<long-description language="en">Cardiology related

information within a patient’s Electronic Health Records</

long-description>

</data-category>

<data-category id="Prescriptions">

<short-description language="en">Prescriptions</

short-description>

<long-description language="en">List of drugs prescribed

to a patient</long-description>

</data-category>

<data-category id="LabOrders">

<short-description language="en">Laboratory Orders</

short-description>

<long-description language="en">Laboratory Orders</

long-description>

</data-category>

<purpose id="Treatment">

<short-description language="en">Medical treatment</

short-description>

<long-description language="en">Medical treatment</

long-description>
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</purpose>

<purpose id="AdministrativeHousekeeping">

<short-description language="en">Administrative

housekeeping</short-description>

<long-description language="en">Administrative information

organization</long-description>

</purpose>

<purpose id="Research">

<short-description language="en">Research</

short-description>

<long-description language="en">Research</long-description

>

</purpose>

<purpose id="Supervision">

<short-description language="en">Supervision</

short-description>

<long-description language="en">Supervision</

long-description>

</purpose>

<action id="Access">

<short-description language="en">Access</short-description

>

<long-description language="en">Access which includes

viewing and modifying</long-description>

</action>
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<action id="Delete">

<short-description language="en">Delete</short-description

>

<long-description language="en">Delete</long-description>

</action>

<action id="Prescribe">

<short-description language="en">Prescribe drugs</

short-description>

<long-description language="en">Prescribe drugs</

long-description>

</action>

<action id="Read">

<short-description language="en">Read</short-description>

<long-description language="en">Read data only</

long-description>

</action>

<action id="Order">

<short-description language="en">Order</short-description>

<long-description language="en">Order</long-description>

</action>

<container id="Person">

<short-description>Person details</short-description>

<attribute id="Name" maxOccurs="1" minOccurs="1" simpleType="

http://www.w3.org/2001/XMLSchema#string">
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<short-description>Person’s full name</short-description

>

</attribute>

</container>

<container id="Physician">

<short-description>Physician details</short-description>

<attribute id="Name" maxOccurs="1" minOccurs="1" simpleType="

http://www.w3.org/2001/XMLSchema#string">

<short-description>Physician’s full name</

short-description>

</attribute>

<attribute id="Speciality" maxOccurs="unbounded" minOccurs="1

" simpleType="http://www.w3.org/2001/XMLSchema#string">

<short-description>Physician’s speciality</

short-description>

</attribute>

</container>

<container id="EHR">

<short-description>Electronic health record</

short-description>

<attribute id="ModificationDate" maxOccurs="1" minOccurs="1"

simpleType="http://www.w3.org/2001/XMLSchema#dateTime">

<short-description>Record modification date</

short-description>

</attribute>

</container>
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<container id="Patient">

<short-description>Patient details</short-description>

<attribute id="TreatedCondition" maxOccurs="unbounded"

minOccurs="1" simpleType="http://www.w3.org/2001/XMLSchema#

string">

<short-description>Condition or illness treated</

short-description>

</attribute>

<attribute id="Age" maxOccurs="1" minOccurs="1" simpleType="

http://www.w3.org/2001/XMLSchema#integer">

<short-description>Patient’s age</short-description>

</attribute>

<attribute id="TreatedConditionArea" maxOccurs="unbounded"

minOccurs="1" simpleType="http://www.w3.org/2001/XMLSchema#

string">

<short-description>Medical area to which the condition

or illness treated belongs</short-description>

</attribute>

<attribute id="PCP" maxOccurs="1" minOccurs="0" simpleType="

http://www.w3.org/2001/XMLSchema#string">

<short-description>Name of patient’s primary care

physician</short-description>

</attribute>

<attribute id="CareMember" maxOccurs="unbounded" minOccurs=

"1" simpleType="http://www.w3.org/2001/XMLSchema#string">

<short-description>Physician or care provider on patient

’s active care</short-description>

</attribute>
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<attribute id="Guardian" maxOccurs="0" minOccurs="2"

simpleType="http://www.w3.org/2001/XMLSchema#string">

<short-description>Patient’s parent or legal guardian</

short-description>

</attribute>

</container>

<container id="Organization">

<short-description>Organization details</short-description>

<attribute id="Name" maxOccurs="1" minOccurs="1" simpleType="

http://www.w3.org/2001/XMLSchema#string">

<short-description>Name</short-description>

</attribute>

<attribute id="authorized" maxOccurs="1" minOccurs="1"

simpleType="http://www.w3.org/2001/XMLSchema#boolean">

<short-description>Authorized?</short-description>

</attribute>

</container>

</epal-vocabulary>

<epal-policy default-ruling="allow" global-condition="NCName"

version="1.2" xmlns="http://www.research.ibm.com/privacy/epal"

xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http

://www.research.ibm.com/privacy/epal epal.xsd http://www.w3.org

/2001/XMLSchema xs-dummy.xsd ">

<policy-information id="Hospital policy">
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<short-description language="en">Privacy policy Hospital

ABC</short-description>

<long-description language="en">Privacy policy Hospital ABC</

long-description>

<issuer>

<name>Administrative department</name>

<organization>Hospital ABC</organization>

<e-mail>admin@hospitalabc.com</e-mail>

<address>Sample address</address>

<country>United States</country>

</issuer>

<location>http://www.hospitalabc.com</location>

<version-info end-date="2001-12-31T12:00:00" last-modified

="2001-12-31T12:00:00" revision-number="" start-date="

2001-12-31T12:00:00" test="false"/>

</policy-information>

<epal-vocabulary-ref id="EHR-vocabulary" location="http://www.

hospitalabc.com" revision-number="1"/>

<condition id="Cardiology?">

<predicate refid="http://www.research.ibm.com/privacy/epal#

string-equal">

<function refid="http://www.research.ibm.com/privacy/

epal#string-bag-to-value">

<attribute-reference container-refid="Physician"

attribute-refid="Speciality"/>

</function>

<attribute-value simpleType="http://www.w3.org/2001/

XMLSchema#string">Cardiology</attribute-value>
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</predicate>

</condition>

<condition id="Older_6_years?">

<predicate refid="http://www.research.ibm.com/privacy/epal#

integer-greater-than">

<function refid="http://www.research.ibm.com/privacy/

epal#string-bag-to-value">

<attribute-reference container-refid="EHR"

attribute-refid="\textcolor{red}{?}"/>

</function>

<attribute-value simpleType="http://www.w3.org/2001/

XMLSchema#integer">6</attribute-value>

</predicate>

</condition>

<condition id="PCP?">

<predicate refid="http://www.research.ibm.com/privacy/epal#

string-equal">

<function refid="http://www.research.ibm.com/privacy/

epal#string-bag-to-value">

<attribute-reference container-refid="Patient"

attribute-refid="PCP"/>

</function>

<function refid="http://www.research.ibm.com/privacy/

epal#string-bag-to-value">

<attribute-reference container-refid="Physician"

attribute-refid="Name"/>

</function>
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</predicate>

</condition>

<condition id="AuthorityToPrescribe?">

<predicate refid="http://www.research.ibm.com/privacy/epal#

string-equal">

<function refid="http://www.research.ibm.com/privacy/

epal#string-bag-to-value">

<attribute-reference container-refid="Physician"

attribute-refid="Speciality"/>

</function>

<function refid="http://www.research.ibm.com/privacy/

epal#string-bag-to-value">

<attribute-reference container-refid="Patient"

attribute-refid="TreatedConditionArea"/>

</function>

</predicate>

</condition>

<condition id="Authorized?">

<predicate refid="http://www.research.ibm.com/privacy/epal#

string-equal">

<function refid="http://www.research.ibm.com/privacy/

epal#string-bag-to-value">

<attribute-reference container-refid="Organization"

attribute-refid="authorized"/>

</function>

<attribute-value simpleType="http://www.w3.org/2001/

XMLSchema#boolean">true</attribute-value>
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</predicate>

</condition>

<condition id="InCareTeam?">

<predicate refid="http://www.research.ibm.com/privacy/epal#

string-is-in">

<function refid="http://www.research.ibm.com/privacy/

epal#string-bag-to-value">

<attribute-reference container-refid="Patient"

attribute-refid="CareMember"/>

</function>

<function refid="http://www.research.ibm.com/privacy/epal#

string-bag-to-value">

<attribute-reference container-refid="Physician"

attribute-refid="Name"/>

</function>

</predicate>

</condition>

<condition id="Guardian?">

<predicate refid="http://www.research.ibm.com/privacy/epal#

string-is-in">

<function refid="http://www.research.ibm.com/privacy/

epal#string-bag-to-value">

<attribute-reference container-refid="Patient"

attribute-refid="Guardian"/>

</function>

<function refid="http://www.research.ibm.com/privacy/epal#

string-bag-to-value">
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<attribute-reference container-refid="Person"

attribute-refid="Name"/>

</function>

</predicate>

</condition>

P1: Only cardiologists are allowed to access cardiac medical records.

<rule id="P1" ruling="allow">

<short-description language="en">P1</short-description>

<long-description language="en">Only cardiologists are

allowed to access cardiac medical records.</long-description>

<user-category refid="Cardiologists"/>

<data-category refid="CardEHR"/>

<purpose refid="Treatment"/>

<action refid="Access"/>

<condition refid="Cardiologist?"/>

</rule>

P2: No one shall have the ability to delete clinical information until the appro-

priate time period has expired (6 years).

<rule id="P2" ruling="allow">

<short-description language="en">P2</short-description>

<long-description language="en">No one shall have the

ability to delete clinical information until the appropriate

time period has expired (6 years).</long-description>

<user-category refid="Staff"/>
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<data-category refid="EHR"/>

<purpose refid="AdministrativeHousekeeping"/>

<action refid="Delete"/>

<condition refid="Older_6_years?"/>

</rule>

P3: A doctor should be granted the permissions assigned to the primary care

physician of a patient (read and modify his/her EHR) only when the patient has

designated him as the primary care physician.

<rule id="P3" ruling="allow">

<short-description language="en">P3</short-description>

<long-description language="en">A doctor should be

granted the permissions assigned to the primary care physician

of a patient only when the patient has designated him as the

primary care physician.</long-description>

<user-category refid="Physician"/>

<data-category refid="EHR"/>

<purpose refid="Treatment"/>

<action refid="Access"/>

<condition refid="PCP?"/>

</rule>

P4: A specialist physician may prescribe drugs if the treated illnesses is related

to his/her specialty.

<rule id="P4" ruling="allow">

<short-description language="en">P4</short-description>
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<long-description language="en">A specialist physician (

e.g. cardiologist) may prescribe drugs if the treated illnesses

is related to his/her specialty (e.g. cardiac-related).</

long-description>

<user-category refid="Physician"/>

<data-category refid="Prescriptions"/>

<purpose refid="Treatment"/>

<action refid="Prescribe"/>

<condition refid="AuthorityToPrescribe?"/>

</rule>

P5: The hospital may limit the access to anonymous medical data only to au-

thorized organizations for research purposes.

<rule id="P5" ruling="allow">

<short-description language="en">P5</short-description>

<long-description language="en">The hospital may limit

the access to anonymous medical data only to authorized

organizations for research purposes.</long-description>

<user-category refid="Organization"/>

<data-category refid="AnonymousEHR"/>

<purpose refid="Research"/>

<action refid="Read"/>

<condition refid="Authorzed?"/>

</rule>

P6: Hospital staff other than physicians may not order lab tests.

<rule id="P6a" ruling="allow">

<short-description language="en">P6a</short-description>
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<long-description language="en">Physicians may order lab

tests.</long-description>

<user-category refid="Physitian"/>

<data-category refid="LabOrders"/>

<purpose refid="Treatment"/>

<action refid="Order"/>

</rule>

<rule id="P6b" ruling="deny">

<short-description language="en">P6a</short-description>

<long-description language="en">Hospital staff may not

order lab tests.</long-description>

<user-category refid="Staff"/>

<data-category refid="LabOrders"/>

<purpose refid="Treatment"/>

<action refid="Order"/>

</rule>

P7: A physician may order a lab test except when he is not part of the patient’s

care team.

<rule id="P7" ruling="deny">

<short-description language="en">P7</short-description>

<long-description language="en">A physician may order a

lab test except when he is not part of the patients care team

.</long-description>

<user-category refid="Physician"/>

<data-category refid="LabOrders"/>

<purpose refid="Treatment"/>
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<action refid="Order"/>

<condition refid="InCareTeam?"/>

</rule>

P8: A person must be a custodial parent or legal guardian must provide proof

of kinship to request access to the electronic health record of a patient under

the age of 18.

<rule id="P8" ruling="allow">

<short-description language="en">P8</short-description>

<long-description language="en">A custodial parent or

legal guardian must provide proof of kinship to request access

to the electronic health record of a patient under the age of

18.</long-description>

<user-category refid="Person"/>

<data-category refid="EHR"/>

<purpose refid="Supervision"/>

<action refid="Read"/>

<condition refid="Guardian?"/>

</rule>

</epal-policy>
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B.2 XACML

Policy Document Preamble

<?xml version="1.0" encoding="UTF-8"?>

<Policy

xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:oasis:names:tc:xacml:3.0:core:schema:

wd-17 http://docs.oasis-open.org/xacml/3.0/

xacml-core-v3-schema-wd-17.xsd"

xmlns:md="http:www.med.example.com/schemas/ehr.xsd"

xmlns:ct="http:www.med.example.com/schemas/conditionTaxonomy.xsd

"

xmlns:ao="http:www.med.example.com/schemas/

authorizedOrganizations.xsd"

PolicyId="urn:oasis:names:tc:xacml:3.0:example:EHRPolicy"

Version="1.0"

RuleCombiningAlgId="identifier:rule-combining-algorithm:

deny-overrides">

<Description> EHR access control policy</Description>

<PolicyDefaults>

<XPathVersion>http://www.w3.org/TR/1999/REC-xpath-19991116

</XPathVersion>

</PolicyDefaults>

<Target>

<AnyOf>

<AllOf>
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<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:

anyURI-equal">

<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#anyURI">

urn:example:med:schemas:record

</AttributeValue>

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource"

AttributeId="urn:oasis:names:tc:xacml:2.0:resource:

target-namespace"

DataType="http://www.w3.org/2001/XMLSchema#anyURI"/>

</Match>

</AllOf>

</AnyOf>

</Target>

P1: Only cardiologists are allowed to access cardiac medical records.

<Rule RuleId= "urn:oasis:names:tc:xacml:3.0:example:P1" Effect="

Permit">

<Description>Only cardiologists are allowed to access cardiac

medical records.</Description>

<Target>

<AnyOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">
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<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">

cardiologist

</AttributeValue>

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:1.0:

subject-category:access-subject"

AttributeId="urn:oasis:names:tc:xacml:3.0:example:

attribute:role"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

</Match>

</AllOf>

</AnyOf>

<AnyOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:3.0:function:

xpath-node-match">

<AttributeValue

DataType="urn:oasis:names:tc:xacml:3.0:data-type:

xpathExpression"

XPathCategory="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource">

md:record/md:medical/md:cardiac

</AttributeValue>

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource"
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AttributeId="urn:oasis:names:tc:xacml:3.0:

content-selector"

DataType="urn:oasis:names:tc:xacml:3.0:data-type:

xpathExpression"/>

</Match>

</AllOf>

</AnyOf>

<AnyOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">

<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">

read

</AttributeValue>

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:action"

AttributeId="urn:oasis:names:tc:xacml:1.0:action:

action-id"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

</Match>

</AllOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">

<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">
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write

</AttributeValue>

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:action"

AttributeId="urn:oasis:names:tc:xacml:1.0:action:

action-id"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

</Match>

</AllOf>

</AnyOf>

</Target>

</Rule>

P2: No one shall have the ability to delete clinical information until the appro-

priate time period has expired (6 years).

<Rule RuleId= "urn:oasis:names:tc:xacml:3.0:example:P2" Effect="

Deny">

<Description>No one shall have the ability to delete clinical

information until the appropriate time period has expired (6

years).</Description>

<Target>

<AnyOf>

<AllOf>
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<Match MatchId="urn:oasis:names:tc:xacml:3.0:function:

xpath-node-match">

<AttributeValue

DataType="urn:oasis:names:tc:xacml:3.0:data-type:

xpathExpression"

XPathCategory="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource">

md:record

</AttributeValue>

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource"

AttributeId="urn:oasis:names:tc:xacml:3.0:

content-selector"

DataType="urn:oasis:names:tc:xacml:3.0:data-type:

xpathExpression"/>

</Match>

</AllOf>

</AnyOf>

<AnyOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">

<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">

delete

</AttributeValue>

<AttributeDesignator
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MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:action"

AttributeId="urn:oasis:names:tc:xacml:1.0:action:

action-id"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

</Match>

</AllOf>

</AnyOf>

</Target>

<Condition>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

date-less-or-equal">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

date-one-and-only">

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:environment"

AttributeId="urn:oasis:names:tc:xacml:1.0:environment:

current-date"

DataType="http://www.w3.org/2001/XMLSchema#date"/>

</Apply>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

date-add-yearMonthDuration">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function

:date-one-and-only">

<AttributeSelector

MustBePresent="false"
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Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource"

Path="md:record/md:modificationDate/text()"

DataType="http://www.w3.org/2001/XMLSchema#date"/>

</Apply>

<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#yearMonthDuration">

P6Y

</AttributeValue>

</Apply>

</Apply>

</Condition>

</Rule>

P3: A doctor should be granted the permissions assigned to the primary care

physician of a patient (read and modify his/her EHR) only when the patient has

designated him as the primary care physician.

<Rule RuleId="urn:oasis:names:tc:xacml:3.0:example:ruleid:P3"

Effect="Permit">

<Description>

A doctor should be granted the permissions assigned to the

primary care physician of a patient (read and modify his/her

EHR) only when the patient has designated him as the primary

care physician.

</Description>

<Target>

<AnyOf>
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<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">

<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">

physician

</AttributeValue>

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:1.0:

subject-category:access-subject"

AttributeId="urn:oasis:names:tc:xacml:3.0:example:

attribute:role"

DataType="http://www.w3.org/2001/XMLSchema#string"

/>

</Match>

</AllOf>

</AnyOf>

<AnyOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:3.0:function:

xpath-node-match">

<AttributeValue

DataType="urn:oasis:names:tc:xacml:3.0:data-type:

xpathExpression"

XPathCategory="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource">

md:record/md:medical

</AttributeValue>
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<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource"

AttributeId="urn:oasis:names:tc:xacml:3.0:

content-selector"

DataType="urn:oasis:names:tc:xacml:3.0:data-type

:xpathExpression"/>

</Match>

</AllOf>

</AnyOf>

<AnyOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">

<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">

write

</AttributeValue>

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:action"

AttributeId="urn:oasis:names:tc:xacml:1.0:action:

action-id"

DataType="http://www.w3.org/2001/XMLSchema#string"

/>

</Match>

</AllOf>
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</AnyOf>

</Target>

<Condition>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function

:string-one-and-only">

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:1.0:

subject-category:access-subject"

AttributeId="urn:oasis:names:tc:xacml:3.0:example:

attribute:physician-id"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

</Apply>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function

:string-one-and-only">

<AttributeSelector

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource"

Path="md:record/md:primaryCarePhysician/md:

registrationID/text()"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

</Apply>

</Apply>

</Condition>

</Rule>
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P4: A specialist physician may prescribe drugs if the treated illnesses is related

to his/her specialty.

<Rule RuleId="urn:oasis:names:tc:xacml:3.0:example:ruleid:P4"

Effect="Permit">

<Description>

A specialist physician (e.g. cardiologist) may prescribe

drugs if the treated illnesses is related to his/her specialty

(e.g. cardiac-related).

</Description>

<Target>

<AnyOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">

<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">

physician

</AttributeValue>

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:1.0:

subject-category:access-subject"

AttributeId="urn:oasis:names:tc:xacml:3.0:example:

attribute:role"

DataType="http://www.w3.org/2001/XMLSchema#string"

/>
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</Match>

</AllOf>

</AnyOf>

<AnyOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:3.0:function:

xpath-node-match">

<AttributeValue

DataType="urn:oasis:names:tc:xacml:3.0:data-type:

xpathExpression"

XPathCategory="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource">

md:record/md:medical

</AttributeValue>

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource"

AttributeId="urn:oasis:names:tc:xacml:3.0:

content-selector"

DataType="urn:oasis:names:tc:xacml:3.0:data-type

:xpathExpression"/>

</Match>

</AllOf>

</AnyOf>

<AnyOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">
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<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">

prescribe

</AttributeValue>

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:action"

AttributeId="urn:oasis:names:tc:xacml:1.0:action:

action-id"

DataType="http://www.w3.org/2001/XMLSchema#string"

/>

</Match>

</AllOf>

</AnyOf>

</Target>

<Condition>

<Apply FunctionId="urn:oasis:names:tc:xacml:3.0:function:

any-of">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function

:string-one-and-only">

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:1.0:

subject-category:access-subject"

AttributeId="urn:oasis:names:tc:xacml:3.0:example:

attribute:physician-speciality"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

</Apply>
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<Apply FunctionId= urn:oasis:names:tc:xacml:1.0:function

:string-bag>

<AttributeSelector

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource"

Path="//ct:condition[text()=md:record/md:

treatedCondition/text()]/../@ct:name"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

</Apply>

</Apply>

</Condition>

</Rule>

P5: The hospital may limit the access to anonymous medical data only to au-

thorized organizations for research purposes.

<Rule RuleId="urn:oasis:names:tc:xacml:3.0:example:ruleid:P5"

Effect="Permit">

<Description>

The hospital may limit the access to anonymous medical

data only to authorized organizations for research purposes.

</Description>

<Target>

<AnyOf>

<AllOf>
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<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">

<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">

organization

</AttributeValue>

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:1.0:

subject-category:access-subject"

AttributeId="urn:oasis:names:tc:xacml:3.0:example:

attribute:role"

DataType="http://www.w3.org/2001/XMLSchema#string"

/>

</Match>

</AllOf>

</AnyOf>

<AnyOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:3.0:function:

xpath-node-match">

<AttributeValue

DataType="urn:oasis:names:tc:xacml:3.0:data-type:

xpathExpression"

XPathCategory="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource">

md:record/md:medical/*[name() != ’

personallyIdentifiableInformation’]

</AttributeValue>
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<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource"

AttributeId="urn:oasis:names:tc:xacml:3.0:

content-selector"

DataType="urn:oasis:names:tc:xacml:3.0:data-type

:xpathExpression"/>

</Match>

</AllOf>

</AnyOf>

<AnyOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">

<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">

read

</AttributeValue>

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:action"

AttributeId="urn:oasis:names:tc:xacml:1.0:action:

action-id"

DataType="http://www.w3.org/2001/XMLSchema#string"

/>

</Match>

</AllOf>
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</AnyOf>

</Target>

<Condition>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:1.0:

subject-category:access-subject"

AttributeId="urn:oasis:names:tc:xacml:1.0:subject:

subject-id"

DataType="http://www.w3.org/2001/XMLSchema#string"/

<Apply FunctionId= urn:oasis:names:tc:xacml:1.0:function

:string-one-and-only>

<AttributeSelector

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource"

Path="//ao:organization/ao:name/text()"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

</Apply>

</Apply>

</Condition>

</Rule>
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P6: Hospital staff other than physicians may not order lab tests.

<Rule RuleId="urn:oasis:names:tc:xacml:3.0:example:ruleid:P6"

Effect="Permit">

<Description>

Hospital staff other than physicians may not order lab

tests.

</Description>

<Target>

<AnyOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">

<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">

physician

</AttributeValue>

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:1.0:

subject-category:access-subject"

AttributeId="urn:oasis:names:tc:xacml:3.0:example:

attribute:role"

DataType="http://www.w3.org/2001/XMLSchema#string"

/>

</Match>

</AllOf>

</AnyOf>

<AnyOf>
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<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:3.0:function:

xpath-node-match">

<AttributeValue

DataType="urn:oasis:names:tc:xacml:3.0:data-type:

xpathExpression"

XPathCategory="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource">

md:record/md:medical/md:labOrders

</AttributeValue>

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource"

AttributeId="urn:oasis:names:tc:xacml:3.0:

content-selector"

DataType="urn:oasis:names:tc:xacml:3.0:data-type

:xpathExpression"/>

</Match>

</AllOf>

</AnyOf>

<AnyOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">

<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">

order

</AttributeValue>
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<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:action"

AttributeId="urn:oasis:names:tc:xacml:1.0:action:

action-id"

DataType="http://www.w3.org/2001/XMLSchema#string"

/>

</Match>

</AllOf>

</AnyOf>

</Target>

</Rule>

P7: A physician may order a lab test except when he is not part of the patient’s

care team.

<Rule RuleId="urn:oasis:names:tc:xacml:3.0:example:ruleid:P7"

Effect="Permit">

<Description>

A physician may order a lab test except when he is not

part of the patients care team.

</Description>

<Target>

<AnyOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">
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<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">

physician

</AttributeValue>

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:1.0:

subject-category:access-subject"

AttributeId="urn:oasis:names:tc:xacml:3.0:example:

attribute:role"

DataType="http://www.w3.org/2001/XMLSchema#string"

/>

</Match>

</AllOf>

</AnyOf>

<AnyOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:3.0:function:

xpath-node-match">

<AttributeValue

DataType="urn:oasis:names:tc:xacml:3.0:data-type:

xpathExpression"

XPathCategory="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource">

md:record/md:medical/md:labOrders

</AttributeValue>

<AttributeDesignator

MustBePresent="false"
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Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource"

AttributeId="urn:oasis:names:tc:xacml:3.0:

content-selector"

DataType="urn:oasis:names:tc:xacml:3.0:data-type

:xpathExpression"/>

</Match>

</AllOf>

</AnyOf>

<AnyOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">

<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">

order

</AttributeValue>

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:action"

AttributeId="urn:oasis:names:tc:xacml:1.0:action:

action-id"

DataType="http://www.w3.org/2001/XMLSchema#string"

/>

</Match>

</AllOf>

</AnyOf>

</Target>
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<Condition>

<Apply FunctionId="urn:oasis:names:tc:xacml:3.0:function:

any-of">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function

:string-one-and-only">

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:1.0:

subject-category:access-subject"

AttributeId="urn:oasis:names:tc:xacml:3.0:example:

attribute:physician-id"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

</Apply>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function

:string-bag">

<AttributeSelector

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource"

Path="md:record/md:careTeam/md:teamMember/md:

registrationID/text()"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

</Apply>

</Apply>

</Condition>

</Rule>
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P8: A person must be a custodial parent or legal guardian must provide proof

of kinship to request access to the electronic health record of a patient under

the age of 18.

<Rule RuleId="urn:oasis:names:tc:xacml:3.0:example:ruleid:P8"

Effect="Permit">

<Description>

A custodial parent or legal guardian may request access to

the electronic health record of a patient under the age of 18.

</Description>

<Target>

<AnyOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:3.0:function:

xpath-node-match">

<AttributeValue

DataType="urn:oasis:names:tc:xacml:3.0:data-type:

xpathExpression"

XPathCategory="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource">

md:record

</AttributeValue>

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource"

AttributeId="urn:oasis:names:tc:xacml:3.0:

content-selector"
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DataType="urn:oasis:names:tc:xacml:3.0:data-type:

xpathExpression"/>

</Match>

</AllOf>

</AnyOf>

<AnyOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">

<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">

read

</AttributeValue>

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:action"

AttributeId="urn:oasis:names:tc:xacml:1.0:action:

action-id"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

</Match>

</AllOf>

</AnyOf>

</Target>

<Condition>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and

">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">
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<ApplyFunctionId="urn:oasis:names:tc:xacml:1.0:function:

string-one-and-only">

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:1.0:

subject-category:access-subject"

AttributeId="urn:oasis:names:tc:xacml:3.0:example:

attribute:parent-guardian-id"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

</Apply>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function

:string-one-and-only">

<AttributeSelector

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource"

Path="md:record/md:parentGuardian/md:parentGuardianId/

text()"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

</Apply>

</Apply>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

date-less-or-equal">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function

:date-one-and-only">

<AttributeDesignator

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:environment"
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AttributeId="urn:oasis:names:tc:xacml:1.0:

environment:current-date"

DataType="http://www.w3.org/2001/XMLSchema#date"/>

</Apply>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function

:date-add-yearMonthDuration">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:

function:date-one-and-only">

<AttributeSelector

MustBePresent="false"

Category="urn:oasis:names:tc:xacml:3.0:

attribute-category:resource"

Path="md:record/md:patient/md:patientDoB/text()"

DataType="http://www.w3.org/2001/XMLSchema#date"/>

</Apply>

<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#yearMonthDuration">

P18Y

</AttributeValue>

</Apply>

</Apply>

</Apply>

</Condition>

</Rule>

</Policy>
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B.3 Cassandra

P1: Only cardiologists are allowed to access cardiac medical records.

permits(x, accessEHR(y, Cardiac)) ← hasActivated(y, Patient),

hasActivated(x, Physician(Cardiology))

P2: No one shall have the ability to delete clinical information until the appro-

priate time period has expired (6 years).

Cassandra cannot express prohibitions; it assumes everything is prohibited if not otherwise

explicitly allowed. We can rephrase P2 such that “clinical information can be deleted after

the appropriate time period has expired (6 years)”.

permits(x, Delete(ehr)) ← CurrTime() - ModificationDate(ehr) >

Years(6)

P3: A doctor should be granted the permissions assigned to the primary care

physician of a patient (read and modify his/her EHR) only when the patient has

designated him as the primary care physician.

canActivate(x, PrimaryCarePhysician(y)) ← hasActivated(pat,Patient

()), hasActivated(y, ConsentToPCP(y, x))

permits(x, access(EHR(y))) ← canActivate(x, PrimaryCarePhysician(y

)), hasActivated(y, Patient), hasActivated(x, Physician)

P4: A specialist physician may prescribe drugs if the treated illnesses is related

to his/her specialty.

Prescribe-drug(pat, drug) ← hasActivated(x, Physician(speciality))

, Get-patient-info(pat, Illness) \in Get-illnesses-treated-by(
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speciality)

P5: The hospital may limit the access to anonymous medical data only to au-

thorized organizations for research purposes.

permits(x, AnonymousEHR()) ← HospitalAdmin.hasActivated(x,

Authorized(Research))

P6: Hospital staff other than physicians may not order lab tests.

Cassandra cannot express prohibitions; it assumes everything is prohibited if not otherwise

explicitly allowed. We can rephrase P6 such that “physicians may order lab tests”.

permits(x, orderLabTests(y, type)) ← hasActivated(y, Patient),

hasActivated(x, Physician(speciality))

P7: A physician may order a lab test except when he is not part of the patient’s

care team.

permits(x, orderLabTests(y, type)) ← hasActivated(y, Patient),

hasActivated(x, Physician(speciality)), HospitalAdmin.

hasActivated(x, CareTeam(y))

P8: A person must be a custodial parent or legal guardian must provide proof

of kinship to request access to the electronic health record of a patient under

the age of 18.

permits(x, access(EHR(y))) ← Parent(x, y) \vee Guadian(x, y),

Patient(age) < Years(18)
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B.4 PeerTrust

P1: Only cardiologists are allowed to access cardiac medical records.

hospital:

access(ehr, X) ← cardiologist(X) @ "hospital", cardiac(ehr)

P2: No one shall have the ability to delete clinical information until the appro-

priate time period has expired (6 years).

hospital:

delete(X, ehr) \$ X $\leftarrow$ person(X), currentDate() -

modificationDate(ehr) >= 6

P3: A doctor should be granted the permissions assigned to the primary care

physician of a patient (read and modify his/her EHR) only when the patient has

designated him as the primary care physician.

hospital:

access(ehr, X) \$ X $\leftarrow$ physician(X) @ "hospital" @ X,

owner(Y, ehr) @ "hospital" @ Y, patient(Y) @ "hospital" @ Y,

pcp(X, Y) @ "hospital" @ Y

P4: A specialist physician may prescribe drugs if the treated illnesses is related

to his/her specialty.

A specialist physician (e.g., cardiologist) may prescribe drugs if

the treated illnesses is related to his/her specialty (e.g.,
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cardiac-related).

hospital:

prescribe(X, Y, drug) \$ X $\leftarrow$ physician(X) @ "hospital"

@ X, speciality(X, spec) @ "hospital" @ X, patient(Y) @ "

hospital" @ Y, diagnosis(Y, illness), treatment(illness, drug)

@ FDA, area(illness, spec)

P5: The hospital may limit the access to anonymous medical data only to au-

thorized organizations for research purposes.

hospital:

access(ehr, X) ← authorized(X, purpose) @ "hospital", anonymous(

ehr), purpose = "research"

P6: Hospital staff other than physicians may not order lab tests.

hospital:

order(X, Y, labTests) \$ X $\leftarrow$ physician(X) @ "hospital"

@ X, patient(Y) @ "hospital" @ Y

P7: A physician may order a lab test except when he is not part of the patient’s

care team.

hospital:

order(X, Y, labTests) \$ X $\leftarrow$ physician(X) @ "hospital"

@ X, patient(Y) @ "hospital" @ Y, pct(X, Y)
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P8: A person must be a custodial parent or legal guardian must provide proof

of kinship to request access to the electronic health record of a patient under

the age of 18.

hospital:

access(ehr, X) \$ X $\leftarrow$ owner(Y, ehr) @ "hospital",

patient(Y) @ "hospital" @ Y, guardian(X, Y) @ stateAuthority @

X

B.5 Ponder

P1: Only cardiologists are allowed to access cardiac medical records.

inst auth- CardiologistsCEHR{

subject <person> /employee - /physician/cardiologist;

target <ehr_details> /cardiacEHR;

action read(), write(), update();

}

P2: No one shall have the ability to delete clinical information until the appro-

priate time period has expired (6 years).

inst auth- DeleteEHR{

subject /person;

target /EHR;

action delete();

when ehr.hasExpired = false;
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}

P3: A doctor should be granted the permissions assigned to the primary care

physician of a patient (read and modify his/her EHR) only when the patient has

designated him as the primary care physician.

type role PrimaryCarePhysician (PatientEHR patientEHR) {

inst auth+ PCP{

subject <person> s = /physician;

target patientEHR;

action read(), write(), update();

}

}

P4: A specialist physician may prescribe drugs if the treated illnesses is related

to his/her specialty.

Incomplete policy specification—missing “if the treated illnesses is related to his/her spe-

cialty” portion of the policy in the Ponder language.

inst auth+ Prescribe{

subject <employee> s = /physician;

target <person> /patient;

action prescribe(drug);

when s.speciality = ....

}

P5: The hospital may limit the access to anonymous medical data only to au-

thorized organizations for research purposes.
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inst auth+ Researchers{

subject <organization> /university/researcher;

target /EHRs;

action read();

{result ehr.anonymized()}

}

P6: Hospital staff other than physicians may not order lab tests.

inst auth- OrderLabTests{

subject <person> /employee - /physician;

target <person> /patient;

action order(labTest);

}

P7: A physician may order a lab test except when he is not part of the patient’s

care team.

inst auth+ OrderLabTests{

subject <person> s = /physician;

target <person> t = /patient;

action order(labTest);

when s.memberCareTeam(p) = true;

}

P8: A person must be a custodial parent or legal guardian must provide proof

of kinship to request access to the electronic health record of a patient under

the age of 18.

312



inst auth+ ReadEHRGuardian{

subject s = /person;

target t = /patientEHR;

action read();

when t.age <= 18 && (t.parent() = s || t.guardian=s;

}

B.6 Rei

P1: Only cardiologists are allowed to access cardiac medical records.

has(Physician, right(action(access, EHR), (cardiologist(Physician)

)))

or

has(Physician, prohibition(action(access, EHR), (not(cardiologist(

Physician)))))

P2: No one shall have the ability to delete clinical information until the appro-

priate time period has expired (6 years).

has(Person, prohibition(action(delete, EHR, (notExpired(EHR)))))

P3: A doctor should be granted the permissions assigned to the primary care

physician of a patient (read and modify his/her EHR) only when the patient has

designated him as the primary care physician.
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Cannot express the target as a function that returns a specific EHR (EHR of Y).

has(Physician, right(action(read, [EHR of Patient], (

primaryCarePhysician(Physician, Patient)))))

P4: A specialist physician may prescribe drugs if the treated illnesses is related

to his/her specialty.

has(Physician, right(action(prescribeDrug, Patient, (

patientIllness(Patient, Illness), prescribedDrug(Patient, Drug)

, treatment(Drug, Illness), speciality(Physician, Speciality),

area(Illness, Area), Speciality = Area))))

P5: The hospital may limit the access to anonymous medical data only to au-

thorized organizations for research purposes.

has(Organization, right(action(read, anonymousEHR), purpose(

Organization, research)))

P6: Hospital staff other than physicians may not order lab tests.

has(Staff, prohibition(orderLabTests, not(Staff, physician)))

P7: A physician may order a lab test except when he is not part of the patient’s

care team.

has(Physician, right(action(orderLabTests, Patient, inCareTeam(

Physician, Patient))))
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or

has(Variable, prohibition(action(orderLabTests, Patient, not(

inCareTeam(X, Y)))))

P8: A person must be a custodial parent or legal guardian must provide proof

of kinship to request access to the electronic health record of a patient under

the age of 18.

has(Person, right(action(read, [EHR of Patient, age(Patient, N), N

< 18)), presentsProofOfKinship(Person, Patient)))
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Appendix C

PrimaCare’s data model

• Health record management

– Patient demographics

– Patient contact information

– Allergies

– Family history and relationships

– Medical and social history

– Vital signs

– Medications

– Encounters (complaints or reason for encounter)

– Consultation summary

– Diagnosis and desease notification

– Treatment

– Interventions or procedures

– Immunizations
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– Laboratory orders and results

– Doctor’s remarks

– Counseling

– Imaging order and result

– Prescriptions

– Referrals

• Standardized concepts

– Symptom

– Laboratory and clinical observations

– Diagnostic

– Diagnose

– Deseases

– Treatment

– Drugs

• Administrative

– Accounting

– Billing (medical, laboratory, imaging)

– Insurance

– Room booking

– Provider’s assets

– Clinic information and departments

– Medical supply management
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– Supplier management

– Referral centers

– Staff management

– System management
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