UC Berkeley
SEMM Reports Series

Title
On permeable cracks in a piezoelectric ceramic. 1, global energy release rate

Permalink
bttgs:ééescholarshiQ.orgéucgitemg9hc108wg
Authors

Li, Shaofan

Morgan, Elise

Publication Date
2002-04-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/9hc108w9
https://escholarship.org
http://www.cdlib.org/

REPORT
UCB/SEMM-2002/03

STRUCTURAL ENGINEERING
MECHANICS AND MATERIALS

On Permeable Cracks In A Piezoelectric

Ceramic. |. Global Energy Release Rate

by

Shaofan Li

CETHQUAKE EMG RES, CTR USRS
Lniv, of Cailf. - 453 R.FG.
1001 S0. 45th St
Nichmond, CA 24804-4688 USA
(510) 251-9403

SPRING SEMESTER
2002

DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA



On Permeable Cracks in A Piezoelectric
Ceramic. I. Global Energy Release Rate

Shaofan Li

Department of Civil and Environmental Engineering,
University of California, Berkeley, California, USA

Abstract

A permeable crack model is crafted and is used to analyze permeable crack growth
in a piezoelectric ceramic. The permeable crack model takes into account of the
effect of surface charge distribution on crack surfaces of the piezoelectric ceramic,
which may be caused by the discharge of the dielectric medium inside the crack,
or charge separation due to the surface separation of the poled pezoelectric matrix.
In this study, a permeable crack is modeled as a vanishing thin, finite dimension,
rectangular slit with surface charge deposited along the crack surface. A first or-
der approximation theory is developed with respect to slit height, ho, to analyze
electrical and mechanical fields in the vicinity of a permeable crack tip.

A closed form solution is obtained for the permeable crack perpendicular to the
poling direction under both mechanical as well electrical loads. Both local and global
energy release rates are calculated based on the permeable crack solution. It is
found that the global energy release rate for a permeable crack has a remarkable
expression,

7= () (0% + Eow )
which is in broad agreement with the known experimental observations and may
be served as the fracture criterion for piezoelectric materials. This contribution
reconsiles the discrepancy between experimental observation and theoretic analysis
without invoking any nonlinear theory, and it elucidates, via rigorous analysis, how
an applied electric field affects crack growth in piezoelectric ceramic through its
interaction with the permeable environment surrounding the crack.

1 Introduction

During past decades, an impressive amount of literature has been documented
on the subject of fracture mechanics of piezoelectric materials. Early contribu-
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tion can be traced back to Parton [33], Dee [5], Parton and Kudryatvsev [34],
and in addition with Pak and Herrmann [28,29] and McMeeking [21,20,22],
if one considers the closely related topic on elastic dielectrics. Since 1990s,
there has been a flux of research papers published dealing with linear fracture
mechanics of piezoelectric solids in specific, e.g. Pak [26,27], Li et al [13], Sosa
[36-38], Suo et al [41,40], Wang [44], Pak and Tobin [30], Dunn [6], Maugin
[19], Dascalu and Maugin [1994a],[1995), Park and Sun [32,31], Gao and Bar-
nett [11], and Gao et al [12], Lynch et al [18,17], Zhang and Hack [48], Kumar
and Singh [1997ab), Fulton and Gao [8], Ru [1998][1999](2000], Yang and Zhu
[46,47,53], Zhang et al [50,49], McMeeking [23,24], Yang [46,47] and many oth-
ers. A recent review by Zhang et al [51] may provide adequate information on
current status of the research.

The impetus for such intense research activities is largely due to the emerging
technology in smart materials and structures. Another reason for such enthu-
siasm might be, this author privately speculated, because using impermeable
approximation one can easily link a crack problem in a piezoelectric solid to
an available crack solution of a purely elastic solid. Thus, it seems to be math-
ematically trivial to solve a crack problem in a piezoelectric media. The best
part is: one gets credit for solving it! at least for the analogy.

However, a setback, or to certain extent a tragedy for such theoretical move-
ment, is that the analytical results are not supported by experimental obser-
vations ! In a landmark experimental work [32], Park and Sun showed that
the experimental observations contradict some of basic conclusions of linear
piezoelectric fracture mechanics theory.

For instance, the experimental results obtained by Park and Sun [32] show that
there is a decrease in the critical stress of a cracked piezoelectric body if the
electric field is applied along the poling axis, and there is an increase in critical
stress if the electric field is applied to the opposite direction, whereas according
to linear fracture mechanics theory, the electric field does not induce any non-
zero stress intensity factor (e.g. Pak [26,27], Suo et al [41]). In addition, in
high-cycle fatigue test (Tobin and Park [43]) and low-cycle fatigue test (Cao
and Evans [1]; Lynch et al [18,17]), stable crack growths have been observed in
both cases when crack growth is perpendicular to the poling direction under
purely electric loading, for which the linear piezoelectric fracture mechanics
predicts a negative definite energy release rate, which implies that the crack
growth should have never occurred.

Currently, there are three remedies that have been proposed to explain the
discrepancy between linear fracture mechanics theory and experimental ob-
servations.

e Yang and Zhu'’s transformation toughness theory (Yang and Zhu [46,47,53,52,54])



e Gao et al’s strip saturation model (Gao et al [11,12] or equivalently, the
electric dipole model proposed by Fulton and Gao [8]) and
e McMeeking’s discharge-charge separation model (McMeeking [24]).

From micro-mechanics view point, the so-called ferroelectric domain switching
phenomenon is the source of nonlinear piezoelectricity (e.g. Sun and Jiang [39]
and Yang and Zhu [53,46,47]). The explanation is as follows: the concentrated
stress field at a crack tip of piezoelectric ceramic will cause depoling, or fer-
roelectric domain switching and cause a hysteresis loop between the electric
displacement and the electric field, and a butterfly loop between the strain and
electric field. This will in turn induce toughness variations in ferroelectricity,
and alter the constitutive relations at the crack tip region (e.g Pisarenko et al
[1985), Mehta and Vitkar [25], Sun and Jiang [39], Zhu and Yang [53], Yang and
Zhu [46,47]). The overall constitutive relation at the crack tip region becomes
nonlinear. Thus, the fracture toughness of ferroelectric ceramics is controlled
by domain switching.

Zhu and Yang [53] and Yang and Zhu [47] adopted micromechanics based
technique to treat the domain switching induced toughness variation as trans-
formation toughening. At phenomenological level, Gao et al [12] and Fulton
and Gao [8] proposed a strip-saturation model or equivalently an electric dipole
distribution model to estimate the nonlinearity possibly due to the overall ef-
fect of domain switching, or polarization. The piezoelectric saturation model
is the direct analogous of Dugdale crack in cohesive elastic medium of purely
mechanical fracture mechanics. Gao and his co-workers [11,12] showed that
the local energy release rate criterion derived from strip saturation model is
in close agreement with the experimental observation, which has become the
first theoretical result in this research area that is actually useful.

Apparently, the dissipative nature of strip-saturation model seems to be a
nuisance, though the solution of “an electrically yielded crack” provides a sat-
isfactory explanation. Recently, McMeeking [24] proposed a discharge-charge
separation model for a permeable crack in another attempt to provide a pos-
sible reconciliation between the theories and experiments.

Some researchers have been very cautious on adopting impermeable approxi-
mation, suspecting that there may be some fundamental differences between
an impermeable crack and a permeable crack due to the presence of the per-
meable environment surrounding the crack, e.g. McMeeking [20], Sosa [37],
Dunn [6], Li and Mataga [14,15], Gao and his co-workers [9,10], and Yang
and Kao [45] and others. Among them, the permeable crack solution degen-
erated from an elliptic cavity (Zhang et al [50,49]) is the most complete and
detailed. Nevertheless in all these studies, above speculation has never been
substantiated, because there is lacking of rigorous treatment of the permeable
crack.



In the present work, a permeable crack model is carefully crafted to render
an analytical tractable solution while capturing all the major features of a
permeable crack. By using the permeable crack model, we are re-examining the
linear fracture mechanics theory of piezoelectric materials. One of the novelties
of the present treatment is that it combines the discharge-charge separation
model with some essential technical ingredients of the strip-saturation model.

The paper is organized in six sections. In section 2, the simplified opening crack
model proposed by Gao et al [12] is briefly outlined within the framework of
permeable crack. The complete solution procedure is provided in section 3,
and asymptotic fields of electrical and mechanical variables are documented
in section 4. The main results are presented in section 5 focusing on the energy
release rate of a permeable crack. Few remarks are made in section 6.

2 Formulation of the Problem

2.1 Simplified Constitutive Model

The notation of Tiersten [42] is adopted to write the governing equations for
linear piezoelectric materials as follows:

e equations of motion

O’ij’,' =0 N (1)

electrostatic charge conservation
Di,i =0 3 (2)

e strain-displacement relations

1
€ij = 5 (wij + uj4) ; (3)

electric field-electric potential relations

Eir=—¢x ; (4)

linear, piezoelectric constitutive relations

E

0y = Cijuekt — ekijBr (5)
s .

Di=eien + € Ex (6)



where cgk, are the elastic moduli, ex;; are the piezoelectricity coefficients,
and efj are the dielectric permittivities (with the superscript E or S indicat-
ing material constants measured under conditions of constant electric field or
constant strain, respectively).

Using Voigt notation, the constitutive relations (5) and (6) of the type of
piezoelectric materials we are interested in can be put into the following form

on| [EcECE 0 0 0 |[en
022 C'IEZ,C'IEI Cﬁ 00 0 €22
033 _ CﬁCﬁ 33 0 0 0 €33
093 0 0 O Cﬁ 0 0 2623
013 0 0 0 O C4E; 0 2613
loi2] [0 0 0 0 0 (cf —cBh)/2] |2e12]
(0 0 e
0 0 €31
0 0 b
€33
- E, (7)
0 €15 0
E;
€15 0 0
[0 0 0
and
€11
€22
D1 0 0 O 06150 6{1 00 E1
€33
Dy]=[0 0 0e5 00 +]10¢€;, 0 E, (8)
2¢93
D3 €31 €31 €31 0 00 0 0 653 E3
2613
_2612_

Using the precise anisotropic constitutive relation in an analysis often increase
the degree of difficulty in finding the closed form solution, or has the danger
to obscure the essential physical element of problem.

Considering the material constants of PZT-4 piezoelectric ceramics used by
Park and Sun [1995] in their experiment, one may gain a sense of the magni-



tude of primary aspect of the physical problem.

Elastic Constants (N/m?)

cf =139 x 10", £ =778x10" cE =743 x 10
¢k, =113 x10"°, £ =2.56 x 101°

Piezoelectric Constants (C/m?)

€3] = —6.98, €33 = 1384, €15 = 13.44

Dielectric Constants (C/Vm)

€5 =6.0x107°% €5, =5.47x107°

Neglecting anisotropic effect and taking into account the magnitude of each
material constant, Gao, Zhang, and Tong [1997] proposed to use the following
simplified constitutive relations to study Mode-I fracture

N (100000] [ e | (00 —1]
022 010000 €929 00 -1 E
1
o 001000] | e 00 1
Bl _ oy B E, )
O3 000100/ |2 01 0 -
13 000010/ |2 10 0 :
012 1000000 | 265 | 00 0 |
and
€11
€22
D, 0 00010 100| | B
€33
D,|=e€e|l 0 00100 , +elo10] | E, (10)
€23
Ds ~1-11000 001 | Es
2613
261

because they capture the essential part of electrical-mechanical behaviors. In
the rest of the paper, we refer this simplified model as the GZT model.



Fig. 1. Convention for boundary conditions

2.2 Boundary Conditions

The boundary conditions or interface conditions for two different dielectric
media are

e mechanical boundary conditions

n-[le|]=-T on S,; u=u on S, ; (11)
e electrical boundary conditions

n-[|[D]=¢s ad nx[E|]=0 on S . (12)

where S,, S, identify appropriate subsets of the domain boundary. and S =
S, U S,. Note that the notation [|f]] := f* — f~, and the normal vector n is
pointing from medium — to medium + as shown in Fig. 1.

2.3 Crack models

2.8.1 Slit Geometry

In this paper, a planar crack is modeled as a vanishing thin, finite dimension,
rectangular-shaped slit with height 2k and width 2b as shown in Fig. 2

As hy — 0, the permeable crack becomes a conventional mathematical crack.
One may write crack height as the function of abssica,

0, |X|>b



Qs

Fig. 2. Geometrical configuration of the permeable crack.

The interior region of the crack is denoted as the set 2,

Q= {(X,Y) | -b< X <b, and —hy <Y < ho} (14)

For convenience, the adjacent regions to the slit is denoted as ,, the two
semi-infinite strips,

Q,:={(X,Y) |b<|X], and —ho <Y < ho} (15)

Following Gao et al [12], we consider a simplified crack model: a permeable
crack that is perpendicular to the poling direction, which is termed as GZT
crack.

2.8.2 GZT crack

Let X = z,, Y = z3, and Z = z, denote regular Cartesian coordinates, where
the Y-axis orients in the poling direction. Gao et al [12] made the following
simplifications:

uz:=u; =0, u, :=u3 =0, and u, =u3(X,Y) =u(X,Y) (16)
_ . _ O o 09

Consequently, the governing equations simplify considerably. The constitutive
relations (9) and (10) become

., 0u 09
oxy_MéjY—+65-X— (18)



Ou 0¢

=M + e
Oyy Y% te oY (19)
ou 0¢
Dx = ea—){— - Ea—X (20)
Ju 0¢

Dy = 6'6T; el 66—},‘ (21)
The non-trivial equilibrium equation

Gozy | Ooyy _

ax Ty (22)
and electrostatic charge equation

oD, 0D, _

ox Ty 0 (23)
yield the following simplified governing equations

MV*u +eV?¢=0 ‘ (24)

eViu — eVip=0 (25)
2 . . : 9 i 0?

where V< is the two-dimensional Laplacian operator, V* := %2 m;
Since Me + €2 # 0, both u and ¢ are harmonic functions

Viu=0, V¢=0, V(X,Y)eR?*/Q, (26)
In the interior of the crack,

V¢® =0, V(X,Y)eQ, (27)

where ¢, is the electric potential in the dielectric medium inside the permeable
crack.

3 Solution for cracks perpendicular to the poling axis

Consider a permeable crack that is perpendicular to poling direction, and it
is subjected to remote traction and charge distribution at remote boundary

(see Fig. 3).
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Piezoelectric Ceraniic
Poling direction

Dielectric Medium (Air, or Vacuum)

Qoo

+4++ 4+ttt

T T T T T T T T T 0w

Fig. 3. A permeable crack with remote traction and charge distribution and surface
charge distribution at the corner of the crack

Let T = Ox€y and ¢; = —¢oo.

n-[|a|]:—'i‘ — Oy =00, VY — 00 (28)
n-[Dl]=¢g —= Dy=¢o, Vy = © (29)
where ¢; = —¢.

Assume that due to either the discharge of dielectric medium inside the crack,
or charge separation due to the newly formed crack surfaces, there is a charge
distribution at the corner of the crack (see Fig. 3), which can be described as
s = gpH(|X| - a).

The boundary conditions on the crack surfaces,

n-[lo|]=0, VY ==xhy and |X|<Db (30)
n-[|D|]=¢;, VY ==xhy and |X|<b (31)
nx[[E[]=0, VY ==+hy and |X|<b (32)

take the form

Oy (X, £ho) =0, VX <b (33)
Dy (X, tho) — Dy(X, tho) =£qpH(|X| —a), V[X|<b (34)
Ez(X,ﬂ:ho)—E‘;(X,:t)=0, v le < b (35)

10



And symmetry conditions

u(X,0)=0, VIX|>b (36)
#(X,0)=0, VIX|>b (37)

#*(X,0) =0, VO<|X|<b (38)

or E.(X,0)=0, VIX|>b (39)
E2(X,0)=0, VO<|X|<b (40)

In the dielectric medium inside the crack, Df = ¢ Ef and Ef = —¢%, ¢ = X, Y.

Consider the general fields consisting two parts: a uniform part and distur-
bance part due to the presence of the crack.

d=¢o+ ¢ (42)
and choose

Uy = EOOY, ¢0 = _EooY (43)
and

Ooo =MEs — eEqn (44)

o = egoo + 6Eoo (45)

such that &,d;—)OasY—)oo.

It is convenient to write the inverse relationship among key physical variables
on the remote boundary,

£oo= Zl-i(eom + o) (46)
E = —Alf(—eaoo + Mgy) (47)

where A, := Me + €%

Extend the definition domain of ¢® into 2, U 2, and let

q;a: ¢a_¢87 V(XaY)GQh
0, V(X,Y) €

11



where the uniform part of the electric potential is chosen ¢3 := oy
€o

Introduce Fourier cosine transform
F((,Y) = @ / F(X,Y) cos(¢X)d(
J (49)
F(X,Y) = \/§7F*(C Y) cos(¢X)d¢
M 7r 0 M

\

where F(X,Y) = 4(X,Y), §(X,Y), and ¢*(X,Y), and F*((,Y) = @*((,Y),
#*(¢,Y), and ¢**(¢,Y). and then

2
el T =0 (50)

Within the piezoelectric ceramic,
@((,Y) = A(¢) exp(—CY), VY >0 (51)
¢*(¢,Y)=B()exp(—CY), VY >0 (52)

Inside the permeable crack,

¢ ((,Y)=C(¢)sinh(¢Y), VY >0 (53)

which satisfies the symmetry condition ¢%(X,0) = 0.

Consider the boundary condition,

E.(X,+ho) — EX(X, £he) =0, |X|<b (54)

and the symmetry condition

E.(X,00=0, |X|>b (55)

On the other hand, in extended domain

EXX,00=0, |X|>b (56)

Combining Eqgs. (54)—(56), one has
E.(X,£h(X)) — E*(X,£h(X)) =0, V —00< X < 400 (57)

12



where function h(X) is defined in Eq. (14).
In transformed space ({,Y), the condition (57) reads as

E3(¢,£R°(C)) — EZ*(¢,£h°(C)) =0, VO0<(<+00

where

sin(b¢)
o——2L

W(Q) = b=

Considering Egs. (52) and (53), one has

B(Q)=C(O)5 (exp(2¢h"(0)) - 1)
=C(() (ho sin(b¢) + h sin®(b¢) + ;hg sin®(b¢) +

Let

A(¢)=A1(Q) + hoAx(C) + R3A3() + -+ -+
B(¢)=B1(C) + hoBa(¢) + h2Bs(¢) + -+ - -

By virtue of Eq. (60),

After Fourier transform, the boundary condition (34) becomes

\/g [ ¢(1eA©) - eB(O)] exp(~hoC) ~ 4C(C) cosh(Cha)) cos(¢ X)dc

=—gpH(X—-a), VO<X<b

(59)

(67)

Note the subtlety in terms of crack surface position between Eq. (58) and Eq.
(67). For |X| < b the upper crack surface is at Y = hg in the physical plane.

Consider the series expansion

13



[cA() = eB(Q)] = [e41(¢) = eB1(©)] + ho[eA(¢) - eB>(¢)]

+hE[eAs(¢) — eBs(Q)] + -+ (68)
exp(—hol)=1— ho + (hoz!()z - (h;!():’ R aREREER (69)
COSh(hoC) =1+ (h;'C)2 + (hZ'C)4 + ... (70)

Note that the permitivity constant is very small and comparable to hy. It may
be sensible to write €9 = €9(ho) to mark its relation (not dependence !) to the
height of the slit. The following asymptotic series integral equations may then
be derived,

@ /¢ {eAl(o - (B0 + ) ) By (C)} cos(¢X)d¢

0
=—qpH(X —-a), V0<X<b (71)

\/g/ {_@ ([6A1(C) —eB1(¢)] + (led2(¢) — fBz(C)]} cos(¢X)d(¢

=0, VO0<X<b (72)
f / (€ (a0 - e+ 72501 51(0)) = ¢ (ea(c) = eBa(0)

ho sin(b¢) ! 2 2
~¢(eAs(¢) - €By(()) }cos(CX)d( =0, V0<X<b (73)
...... (74)

Considering the symmetry conditions, one may find that

\/g/A"(C) cos(¢X)d(=0, V|X|>b (75)
0
\/g/Bi(C) cos((X)d¢=0, V|X|>b (76)
0
fori=1,2,---

Combining Eqgs. (71)-(73) and Egs. (75)-(76), one may derive a set of recursive
dual integral equations, which may be considered solvable in principle.

14



In the remainder of the paper, only the first order approximation is considered.
Moreover, since hg — 0, sin(b¢) is always bounded, we adopt the following
average approximation to render a tractable solution,

ho sin(b¢) = hosin(b() — 0 (77)

where
sin(b() := \/g / sin(b¢)d(¢ = \/% (78)
0

The identity (78) is in the sense of generalized function (see : Erdélyi et al [7]
or Lighthill [16] page 33 ).

Let

— .20

“Vrhg

Eq. (67) becomes

2 o0
‘/;/C(eAl(C) —(e+ eor)Bl(C)) cos(¢X)d( = —gpH(X —a), VO< X <b
0
(80)
The first order approximation of boundary condition (33) provides the integral
equation

% / ¢(MAL(C) + eBi(()) cos(CX)d( = 00, VO <X <b (81)
0

Considering the symmetry conditions u(X,0) = ¢(X,0) =0, V |X| > b. Two
sets of standard dual integral equations may be derived,

\/2 [ cArQ) cos(cX)de = o(X)  1X] <b
0

[A©Qeos(¢X)dc =0 |X]>b
0

15



and

J

in which
S,
o(X)=
S — po,
T,
q(X)=
T + qo,
where
(et €T)oe
S: A
_
A
e
Po:= KQD
_M

[ Ba(¢) cos(¢x)d¢ = 0

0<|X|<a
a<|X|<b
0<|X|<a
a<|X|<b

and A = M(e + ¢or) + €2

Let

10=% [ sounicoa

b
Bi(O) =3 [ st)t(ctyi
0

where f(t) and g(t) are unknown functions, and

16

\f; [ ¢Bi¢) cos(cX)dc = g(X)  |X|<b

| X|>b

(90)

(91)



\

\

(b

\EO/A‘(C) cos(¢(X)d( =1 *
(b

\EO/BI(O cos(¢X)d¢=4 *

0,

f@)t
\/—-—t;:——_)_){_idt, |X|<b
[X|>0b

g(t)t
%dt IXI(b
| X|>b

(93)

The dual integral equations (82)-(83) are then reduced to a set of Abel integral

equations

/ o(X)
dX g(t) XQ—tQ g(X)

Following the standard procedure (e.g. Sneddon and Lowengrub [35]), one may

find that

(

4

S, O0<t<a

\S—po(é)cos‘l(%) , a<t<b

T7 O<t<a

kT—f-qg(z)cos"l(%) , a<t<b

Consequently, one may find that V | X| < b,

_fwe
u(X,0)= / V- i
g(t)t

HX,0)= /\/t‘z_ﬁ

and V | X| > b,

17
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(95)

(97)

(98)



b

5= T O+ € - gD - X [ A (%9
b /
B = o)~ (B +9(0) - X [ 2t (100)
where
{f(o) =5 (101)
1) = S =po(=) cos™(3)
{9(0) =T (102)

4 Asymptotic fields

Let Y = 0. The general forms of asymptotic fields of both mechanical and
electric variables in front of the crack tip can be found as follows

€yy = 715 {(e + €7)0x — €gp (%) cos™! (%)} %
+

(Eoo - Eﬁgﬁi) + higher order terms (103)

== fer Moo (D)o ()} e

+ (Eoo + _C;Zio_) + higher order terms (104)
= %X | higher ord 105
Oyy = N o + higher order terms (105)
1 2 2 _1/a X
Dy:Z{eeorooo—(Me+e )qD(;) CcOoS (3)}7_-—1);
+(qoo - 6602%0) + higher order terms (106)

The relevant field intensity factors can be found as follows

K{ = Jim, V27 (X = b)eyy (X, 0)

18



= ((e + €7)0 — €qp (%) cos"l(—b-)) x (107)

KP = lim, \/2n(X - b)E,(X,0)

a

=— (eooo + Mqp (%) cos™! (3) (108)
KT = lim /27(X = b)0,,(X,0) = 06oV/7b (109)

X—bt
KP = Jim_\/2m(X — b)Dy(X,0)
2 b
= (exaro — duap(2) cos™ (2)) L2 (110)

A few particular cases are deserved special attention.

4.1 Without surface charge

Assume that there is no surface charge on the crack surfaces. Let gp = 0 The
asymptotic fields become

_(e+er)o X
€yy = A /X2 — 12

+ (500 - EM) + higher order terms (111)

A
_(ea‘,o - Mgy) X

Ey= A JX-F
+ (Eoo + e—aAﬁ) + higher order terms (112)
O X + higher order terms (113)

s

€e€oT 0o X €€0T 0

‘Dy_' A \[)(—2—_—1)—2+(Qw— A

The field intensity factors are

) + higher order terms  (114)

Vb

Ki=(e+ eor)oooT (115)
b

Kf== —eow% (116)

KT =05oV7b (117)

19



D Vb
K =e€roe——

A

(118)

Furthermore, let ¢, = 0, we recover all the results obtained by Zhang and

Hack [48] for a mode III crack.

K?= —Aefooo\/ﬁ
Kf== -—Ze—_ooo\/ﬂ_b
Kszow\/ﬁ
KP=0.

4.1.1 Zero width crack solution (hy =0)

(119)
(120)

(121)
(122)

Let ho = 0 and consequently r — oco. That is: the slit has zero initial width.
The physical interpretation of this limit is that the upper and lower crack
surfaces are constantly in close contact during fracture process, there is no

dielectric medium inside the crack. The asymptotic fields become

1o X Ooo

WM VRT—B M

E, = E + higher order terms

+ higher order terms

X
Oyy = % + higher order terms
€ OuX 1

D, (000 — Mgy ) + higher order terms

TMYXT-p M

(123)
(124)
(125)

(126)

This recovers the solution obtained by Yang and Kao [45] for a zero width

crack in piezoelectric medium.

4.2 Surface charge distribution

4.2.1 Impermeable solution

Let g = 0. A = A; = Me + €2. Assume that the surface charge is uniformly
distributed along the crack surface ( a = 0 ) with the distribution intensity

gp = —(eo, 1.€.

~ao(2) ees™(2) =4

20



We recover the impermeable solution, which has exactly the same structure
as the mode III impermeable crack solution obtained by Pak [26].

(€000 + €Goo) X

€y = A N + higher order terms (127)
oo M 00 .
E,=- (eo = goo) = + higher order terms (128)
X
Opy = \/_;—.;—zbE + higher order terms (129)
o0 X .
D,= J + higher order terms (130)

VXZ- B

This discovery reveals that the so-called impermeable solution is more than
an approximation by just seting ¢g = 0. It is involved a double charge on the
crack surface to shield off the interaction between the dielectric medium inside
crack and the piezoelectric matrix. The discussion on its consequence to the
energy release rate is deferred to the later section.

4.2.2  Surface charge negating the effect of applied electric field

Assume that surface charge distribution on the crack surface accumulates to
a certain level, it negates the effects of applied electric field in a manner such
that

o _ (2) cos™ () (131)

4o

the asymptotic fields are still singular. They become

((6 + 607.)‘700 - eQOo) X

+ (500 _ %((e + €0T) 000 — eqoo))

Cyy = A O
+higher order terms (132)
€000 + Moo X 1
Eyz—( X )m+ (Ew+z(eow+Mqoo))
+higher order terms (133)
Oyy = \/——%_;—ig—_—b; + higher order terms (134)
e€T0 — (Me + ez)qoo) X €or
y':( A \/X2—_-b_2—K(eooo+Mq°o)
+higher order terms (135)
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Fig. 4. J-integral contours for evaluating local and global energy release rates.

5 Energy release rate

Energy release rate during crack growth in a piezoelectric medium have been
discussed by many authors, e.g. Cherepanov [2], Pak [26], Suo et al [41], Zhang
and Hack [48], Dascalu and Maugin [3,4], Park and Sun [32,31], Gao and his
co-workers [11,12], McMeeking [23] among many others.

It is generally believed that energy release rate, or J-integral, is a better
criterion for crack growth than stress intensity factors. The J-integral in a
piezoelectric medium is given by Cherepanov [2],

J= /(an - G',']'TL,'UJ"I - TL,'.Di¢,I)dS (136)
r

where H is the electric enthalpy density.

On the surface of a permeable crack, both the normal component of electric
displacement as well as the electric potential are not zero, consequently, the
contribution in the contour integral, J, along crack surfaces is not zero. There-
fore, for permeable cracks, J-integral has two parts: Local energy release rate,
which is defined as the local energy release rate and global energy release rate.
The so-called local energy release rate is defined as the contour integral, J,
along an infinitesimal circle around the crack tip, I'y; Global energy release
rate, which may be defined as any contour integral, J, starting at the center
of the lower part of the crack surface and ending at the center of upper part
of the crack surface (see Fig. 4). The total energy release rate, or the so-called
global energy release rate, is the sum of the local energy release rate and the
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contour integral contribution along the crack surfaces, i.e.

Jg = Jo + Jes (137)

where J.; denote the energy release rate contribution from crack surfaces.

Arguments have been made by Gao and his colleagues [11,12] about different
roles that local and global energy release rates may play in the process of
piezoelectric fracture.

5.1 Local energy release rate

We first consider the so-called local energy release rate. There are four electro-
mechanical boundary condition combinations used in literature

(1) Case I: 0y =00, Dy=¢o, Yy — 00
(2) Case 2: €y=€x, Ey=Ey, VYy —o0;
(3) Case 3: 0y =00, Ey=FEsx, Yy — o
(4) Case 4: €y =€, Dy=¢u, Vy —o00;

The basic results regarding energy release rate in piezoelectric materials in the
literature are

(1) Pak [26]:

Threol + 2e000G00 — Mg2
In=| J

A;
Jp2 = '7129 [Mggo - 26E°°8°o - 6Ego]
nb[ogo — (eM + eZ)Eé’o]

Trs=5 M
Joi W_b[(fM +€%)E3 — qgo]
P72 M
(2) Zhang and Hack [48]:
_ mhe ,
JZHl - 2A1 Uoo
Tomr= T2 (MEwp — eEw)’
ZH2 = 2Ai 00 oo
mwbe o
JzH3= —2—A—i<7°o
JzHa= Ll (A'goo - CQoo)2 (138)
2€Ai '
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(3) Yang and Kao [45]:

nb ol
Jyk1= ED7
J — EI_) (Mgoo - eEoo)2
YK2= 3 7
b ol
Jyks= M
Foesm b (Me+ez)£3°-eq§°]2
YK4= 500 .
(4) Park and Sun [32]:
Jps3 = 7r_b(02 + €0 E. ) (139)
3 oM 0o oo /00
(5) Gao et al [12]:
Jozrs = 1”—(1+i)(a + eEy)? (140)
GZT3 — oM Me [ )

Corresponding to the first kind boundary conditions, the local energy release
rate of the present permeable crack model is

o= (P { (57 + Gt~ 0= Gt
M(Me + €?) | 2}

Az dp (141)

, 2 a .
where ¢, = qD(;) cos'l(z). The energy release rates in other boundary

conditions may be obtained by simple substitution of Egs. (44)-(47).

Assume that there is no surface charge distribution. Let gp = 0. It may be
found that

INEW1a = (ng)((€ +A€°T) + ezg’) 2, (142)

Furthermore, letting €o = 0 in (142), one recovers the result obtained by Zhang
and Hack [48], i.e.
JNEW1a = (Zr'é)iﬂ2 =Jzm (143)
2770,
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Let hg = 0 or r — 00. in Eq. (142). The result obtained by Yang and Kao [45)
may be recovered,

by o2,

JINEW1a = (?)ﬁ = Jyki (144)

which is basically the purely elastic energy release rate, since there is no di-
electric medium inside the crack.

This again confirms the fact that the intensity factors of a permeable crack
are independent from the remote applied electric fields [50,51].

If there is a surface charge distribution on crack surfaces, the energy release
rate may change significantly depending on the range and the intensity of the
surface charge distribution. Assume that there is a double surface charge, i.e.
a=0and gp = —¢oo,

. 2 -1 (4 —
dp =ap=cos™ (3) = ~do, (145)

and let ¢, = 0. one recovers the energy release rate expression under imper-
meable approximation,

(146)

7rb) €02 + 2€00000 — Mq2,

Inewr = Jp1 = (? Me + &

5.2 Global energy release rate

When a permeable crack grows, energy release is not only consumed in cre-
ating surface energy for newly formed crack surfaces, but also consumed by
supplying the electrostatic energy to the dielectric medium inside the crack.
In fact, if surface charge is absent on the crack surfaces, the normal compo-
nent of electric displacement in piezoelectric medium may equal to the normal
component of electric displacement in the dielectric medium inside the crack.
This suggests that the crack surface contribution to the J-integral is the part
of energy release rate that may go directly into supplying the electrostatic
energy increase in the dielectric medium inside the crack.

If discharge, or additional charge, occurs, surface charge will be present on
crack surfaces, which may either enhance or reverse the direction of energy-
moment flux. Therefore, additional energy release rate will be created that
will influence to crack growth process.

By taking into account the effect of charge distribution on the crack surface,
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the so-called global energy release rate is,

Jy=Jo+ Jes (147)

where J., denote the energy release contribution from crack surfaces, which
can be calculated by

J, = — / n:D; ,dS (148)

In order the evaluate J,,, we first evaluate the normal component of the electric
displacement on the crack surfaces.

Dy(X, ho) = Dy(X,0) = eB_Y + egg_i
= oo - e\/g [ A4 costex)ac + e@ [ B cosicx)ac

~ e ™ dx/f,/_‘—‘m_t2 dX/g —t'~’ Dae

td
= o= (S — eT)-2 [
dX 0/\/X2—t2

a
+(e2+Me) 2 Xtcos™ 1(—)
A dX \/X2—t2
d (e + Me)gp d N
= - - — —_ = - 14
doo — (€S eT)dXX+ A X <X-a> (149)
= Dy, + Dy (150)
eeor e’ + Me

where Dy := oo — —— 0 and Dy, := gpH(X —a).

A

To evaluate the electric potential on permeable crack surface, it may be found
that

b
&(X, ho) ~ ¢(X,0 \/‘ / Bi(¢) cos(¢CX)d¢ = / ——f\/_i(—_t__)—f_;dt (151)

€00 MqD ~1/Q
24 " co “YH(t —a 2
g(t) = + cos (t) (t ), 0<t<b (152)
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Therefore,

P tat Map /27 |
¢(X,0)= Uoo:/m+ Aqu(;)/ N ¢

e
A
=% (eooo + qu(%) cos‘l(%)) V2 — X2
_Mgp {Xln l aVvb? — X2 — XV/b? — a2 I
TA avb? — X2 + X/b? — a?
avh? — a2 - X2 — X2
am+Xm|}

(153)

—aln l

Substituting Eq. (150) and Eq. (153) into Eq. (148) yield

Jcs =DY1(¢(O+, O) - ¢(O—a0)) + DY2(¢(a+’0) - ¢(a—-’ 0))

= %(Qm - ecogooo) {(eaoo + MQD(%)G) - 2A;IrqD cosfIn l 1 :—Ozige I}
2b (€2 + Me)
AN e

qD] { [(eooo + Mgp (—72;)0] sin — 2—;?3 cos @ In(sec 00]}54)

— o1 (2
where 0 := cos (b)
Assume that there is no surface charge distribution on the crack surface, i.e.
gp = 0. In this situation, the energy release rate contribution from the crack
surface becomes

Jes = %b(qoo — 2% eq,, (155)

Let ¢ — 0 in Eq. (155). It yields

2be 2e?  ,  2be
Jeo = S 3 2% = Mate 1 ) = T 20> Fw (156)

On the other hand, letting Ay — 0 in Eq. (155), one has

Jes = ——0ooEoo (157)
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The global energy release rate in the case gp = 0 and ¢y = 0 has the form

4,
b Me + ;6 )
Energy release rate I : J2, = ( 5 M) Merer Ot ;ecrooE00
(158)
In the case gp = 0 and hy — 0, the global energy release rate is
Energy release rate II: J2, = (—Wi) (02 + fl—ecf E. )
cr2 IM 00 T 00 =00 (159)

4
Since - = 1.273238 =~ 1.0, the newly derived results are fairly close to the
empirical result proposed by Park and Sun [32,31].

6 Closure

The analysis presented in this paper shows that the interaction between crack
and ite permeable environment can be crucial to crack growth and fracture
process in a piezoelectric ceramic. The effect of the interaction may be cap-
tured by the J-integral along surfaces of a permeable crack.

Moreover, the surface charge on a permeable crack surfaces due to any possible
charge-discharge mechanisms may either shield or assist energy-moment flux
flow into or flow out the dielectric medium inside crack, which manifests the
important role of the applied electric field in crack growth.

This paper is not intended to discredit the strip-saturation model and the re-
lated local energy release rate criterion. It is this writer’s belief that the nature
of crack growth, or fracture, in a piezoelectric ceramic is a complex physical
phenomenon. It is probably true that several physical mechanisms are playing
important roles in a fracture process simultaneously, such as the interaction
between dielectric medium inside crack and the piezoelectric matrix, domain
switching, discharge due to permeable environment or surface separation, etc.
Which mechanism is the dominant factor that controls the crack growth may
be still unknown, and it needs further study in both experimental as well as
analytical researches, though the current status quo may be in favor of the
so-called strip-saturation model and its associated local energy release rate
criterion [11,12,8].

Some mathematical treatments of the strip-saturation model have been adopted
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in current approach, such as the Dugdale analogy. Nevertheless, the Dugdale
analogy made in present context is not referred to as the so-called “electri-
cally yielding”, but the piecewise distribution of surface charge on the crack
surfaces. A study to incorporate the strip-saturation model with this particu-
lar permeable crack geometry is undertaken, which shall be presented in the
second part of this work.
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