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Abstract

Low molecular weight, uncharged compounds have been the subject of considerable study at 

advanced treatment plants employed for potable water reuse. However, previously identified 

compounds only account for a small fraction of the total dissolved organic carbon remaining after 

reverse osmosis treatment. Uncharged carbonyl compounds (e.g., aldehydes and ketones) formed 

during oxidation have rarely been monitored in potable water reuse systems. To determine the 

relative importance of these compounds to final product water quality, samples were collected 

from six potable water reuse facilities and one conventional drinking water treatment plant. 

Saturated carbonyl compounds (e.g., formaldehyde, acetone) and α,β-unsaturated aldehydes (e.g., 

acrolein, crotonaldehyde) were quantified with a sensitive new analytical method. Relatively high 

concentrations of carbonyls (i.e., above 7 μM) were observed after ozonation of wastewater 

effluent. Biological filtration reduced concentrations of carbonyls by over 90%. Rejection of the 

carbonyls during reverse osmosis was correlated with molecular weight, with concentrations 

decreasing by 33 to 58%. Transformation of carbonyls resulted in decreases in concentration of 10 

to 90% during advanced oxidation, with observed decreases consistent with rate constants for 

reactions of the compounds with hydroxyl radicals. Overall, carbonyl compounds accounted for 19 

to 38% of the dissolved organic carbon in reverse osmosis-treated water.

Graphical Abstract

*corresponding author: sedlak@berkeley.edu. 
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Introduction

Potable water reuse provides a reliable alternative water supply to communities facing water 

scarcity.1 In many locations, this process involves the passage of municipal wastewater 

effluent through an advanced treatment plant equipped with microfiltration (MF), reverse 

osmosis (RO) and an advanced oxidation process (AOP), which most often employs 

ultraviolet light combined with hydrogen peroxide (i.e., the UV/H2O2 process).2 In some 

cases, additional oxidative treatment processes (e.g., ozonation) are also employed prior to 

microfiltration, with or without subsequent biological filtration.3,4

Uncharged, low molecular weight compounds, including halogenated disinfection 

byproducts (e.g., trihalomethanes, haloacetonitriles), N-nitrosamines, odorous compounds, 

and solvents have been detected after RO treatment in potable water reuse facilities.5–10 Due 

to their potential impacts on human health and the aesthetic quality of drinking water, a 

considerable amount of effort has been directed at identifying and quantifying these 

compounds. Considering available data, we recently determined that these contaminants 

only account for about 5 to 10% of the 20 to 200 μg C L−1 of dissolved organic carbon 

(DOC) typically observed in water produced by advanced treatment plants that employ RO.2

Carbonyl compounds have been detected after oxidants are employed in conventional 

drinking water and wastewater treatment plants.11–15 In full and pilot-scale drinking water 

treatment plants that receive surface water, aldehydes (e.g., formaldehyde and acetaldehyde) 

and dialdehydes (e.g., glyoxal and methyl glyoxal) were produced during ozonation as well 

as during disinfection with chlorine or chlorine dioxide.16 However, formaldehyde 

concentrations in treated water did not exceed 20 μg L−1, which is well below existing 

health-based guidelines (e.g., California has set a notification level of 100 μg L−1 for 

formaldehyde17 and New York has set a maximum contaminant level of 50 μg L−1 for total 

aldehydes18). Higher concentrations of formaldehyde (i.e., up to 95 μg L−1) have been 

measured after ozonation of wastewater effluent.19

Carbonyl compounds are likely to be present in wastewater effluent due to industrial 

discharges, use in consumer products, and formation during effluent disinfection. They also 

may be produced when oxidants, such as ozone, are employed prior to microfiltration to 
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reduce organic fouling, or when chloramines are applied to reduce biological fouling.20 

Although these low molecular weight compounds are poorly rejected during RO treatment,21 

previous research on their occurrence is limited and has focused on only a few, easily 

measured saturated compounds (e.g., formaldehyde, acetaldehyde, and/or acetone).4,10

Laboratory-scale experiments have demonstrated the formation of α,β-unsaturated carbonyls 

from the oxidation of phenolic compounds22–24 and alkylated aromatic compounds.25 

Extending consideration of carbonyl compounds in advanced treatment systems beyond a 

few saturated aldehydes and ketones is important because all members of this chemical 

family elicit toxicity by forming covalent bonds with nucleophilic sites on biological targets.
26,27 The formation of these adducts has been associated with health outcomes such as 

cancer, neurodegenerative and cardiovascular diseases.28–31 Furthermore, the double bond 

between carbons two and three in α,β-unsaturated aldehydes substantially increases the 

electrophilicity, and therefore the toxicity of these compounds, compared to their saturated 

analogs.27,32–34. For example, results from in vivo animal studies indicate that acrolein is 

over 100 times more toxic than its saturated analog, propionaldehyde.35

In addition to their possible human health effects, certain saturated aldehydes can adversely 

impact the aesthetics of drinking water.36,37 For example, hexanal and butyraldehyde were 

detected at concentrations close to or above their organoleptic thresholds (4.5 and 9 μg L−1, 

respectively) when wastewater was ozonated.38–40 The presence of odorous compounds in 

water produced by potable water reuse plants would be problematic because aesthetic issues 

are important to maintaining consumer acceptance of this new type of water source.41

Previous research on carbonyl compounds has focused on a few saturated compounds42,43 in 

part due the lack of sensitivity in previously established analytical techniques, which were 

unable to detect α,β-unsaturated aldehydes at concentrations relevant to advanced water 

treatment systems. Recent advances have made it possible to quantify a broader suite of 

carbonyl compounds, including α,β-unsaturated aldehydes, ketones, and dialdehydes at 

lower limits of detection using p-toluenesulfonylhydrazine (TSH) as a derivatization agent 

with subsequent analysis via liquid chromatography/tandem mass spectrometry (LC-MS/

MS).44 To better understand the occurrence of carbonyl compounds in potable water reuse 

treatment trains, TSH derivatization was employed to study the formation and fate of six 

saturated aldehydes, seven α,β-unsaturated aldehydes, and one ketone in six potable water 

reuse facilities and one conventional drinking water treatment plant. Results provide new 

insight into the formation, fate, and potential water quality impacts of these compounds in 

potable water reuse systems.

Materials and Methods

Solutions were prepared with reagent grade chemicals using either 18.2 MΩ Milli-Q water 

from a Millipore system or LC-MS grade water (Millipore-Sigma). Chemicals and reagents 

were obtained at the highest purity available as detailed in the supplementary information 

(Text S1).
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Triplicate grab samples were collected in 40-mL amber glass volatile organic analysis 

(VOA) vials without headspace. Samples and field blanks were collected from six advanced 

treatment plants (Plants A-F) and one conventional drinking water plant (Plant G). Grab 

samples were collected from the plant influent and after each major treatment process (from 

5 or 6 locations depending on the facility). Samples were stored on ice and shipped to UC 

Berkeley by overnight courier. After receipt, the samples, field blanks, and laboratory blanks 

were stored at 4°C until carbonyl compound analysis, which typically took place within 12 

hours. Each treatment facility was sampled twice, once between September and December 

2018 and once between March and June 2019, with the exception of Plant G, which was 

sampled twice between March and June 2019.

Two of the six advanced treatment plants were full-scale facilities treating at least 2.9 m3 s−1 

(i.e., > 65 millions of gallons per day) of municipal wastewater effluent. The remainder were 

pilot-scale plants (flows <0.05 m3 s−1) used to assess the performance of different types of 

proposed advanced treatment trains. Plant G was a full-scale conventional drinking water 

treatment plant that received surface water and used ozone for taste and odor control. Plants 

A, B, C, and F received wastewater effluent that had not been subject to nitrification, Plant E 

received effluent that had been nitrified (i.e., [NH4
+] <0.07 mg L−1 as N), and Plant D 

received effluent from two separate treatment plants (i.e., one that had been fully nitrified 

and the other non-nitrified; [NH4
+] ~3 mg L−1 as N in the combined effluent). With the 

exception of Plant F, all of the advanced treatment plants employed RO. At Plants C and D, 

sodium hypochlorite (NaOCl) was added prior to microfiltration or ultrafiltration while at 

Plants A, B, and E chloramines and ozone were added prior to microfiltration. Plant F 

applied ozone prior to biological filtration. Additional information on the treatment plants is 

included in Table S1.

Water quality parameters including pH, dissolved organic carbon (DOC), and UV 

absorbance at 254 (UV254) were measured for each sample within two days of collection. 

When available, online total organic carbon (TOC) measurements were also recorded at the 

time of sampling. Details related to the water quality analysis as well as data from Plants A-

G are included in Text S2 and Tables S2A–G.

Samples were derivatized by adding at least a 200-fold excess of p-toluenesulfonylhydrazine 

(TSH), a derivatization agent that reacts selectively with aldehyde and ketone functional 

groups (Figure S1).44 A suite of six saturated aldehydes, seven unsaturated aldehydes and 

one ketone (formaldehyde, acetaldehyde, acetone, acrolein, propionaldehyde, 

crotonaldehyde, butyraldehyde, 3-methylcrotonaldehyde, trans-2-pentenal, pentanal, 2,4-

hexadienal, trans-2-hexenal, hexanal, and trans-2-heptenal) were analyzed via LC-MS/MS 

on an Agilent 1200 series HPLC system coupled to a 6460 triple quadrupole mass 

spectrometer. A Phenomenex Synergi Hydro-RP 4μm column (150 × 3 mm) was used for 

chromatographic separation. Details of derivatization, HPLC and multiple reaction 

monitoring (MRM) MS/MS methods, as well as representative chromatograms are included 

in Text S3, Tables S3–S4, and Figures S2–S3.

A 0.1 M stock solution containing a mixture of the analytes, prepared in methanol and kept 

in a freezer (−20 °C) for a maximum of 3 months, was used to prepare standards. For 
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formaldehyde quantification, a freshly prepared 0.1 M solution was prepared in LC-MS 

grade water immediately prior to each set of samples and equilibrated for at least 12 hours at 

4°C prior to use. A 0.1 M stock solution of TSH was prepared in acetonitrile and stored in 

the freezer (−20 °C) for a maximum of 1 month. TSH working solutions of either 2500 mg L
−1 (for the mixture) or 1000 mg L−1 (for formaldehyde) were prepared in water from the 0.1 

M stock daily.

Carbonyl compounds were quantified using standard addition with at least five points 

(Figure S4), and the highest concentration standard was at least two times higher than the 

detected concentration. Sample concentrations were corrected based on field and laboratory 

blanks processed in an identical manner. Analyte concentrations detected in blanks were 

usually below 10 ng L−1 for all compounds except for formaldehyde, which was usually 

below 0.5 μg L−1 (0.02 μM). For standard addition of the analyte mixture, samples (1 mL) 

were pipetted into HPLC vials, followed by the addition of 20 μL HCl (1 M), 10 μL TSH 

(from the 2500 mg L−1 stock solution), and 20 μL of a known concentration of the analyte 

mixture (prepared in the sample matrix). Standard addition curves for formaldehyde were 

prepared and analyzed separately from all of the other analytes due to the higher likelihood 

of formaldehyde contamination from laboratory air (Figures S5). Formaldehyde samples 

were prepared in the same manner but without the addition of HCl, and with 10 μL of the 

1000 mg L−1 TSH stock solution. Derivatized mixture samples were equilibrated for at least 

2 hours at room temperature and were analyzed by LC-MS/MS within 12 hours (Figure S6). 

Derivatized formaldehyde samples were analyzed within 2 hours to minimize the potential 

for laboratory contamination.

To assess the potential for carbonyl compound formation from the application of free 

chlorine to wastewater effluent, an initial concentration of 0.12 mM of NaOCl (8.5 mg L−1 

as Cl2; standardized by iodometric titration45) was added directly to 40 mL of the influent to 

Plant D to simulate conditions during the sampling event of 2019. The experiment was 

conducted in triplicate. After chlorination, samples were immediately derivatized and 

processed using the standard addition procedure described above.

Results and Discussion

Formation and Fate of Carbonyl Compounds

Total concentrations of the 14 carbonyl compounds detected at the treatment plants ranged 

from 0.18 to 7.4 μM (Figure 1). Similar carbonyl concentrations were observed in samples 

collected on two separate occasions at each treatment facility. Relative standard deviations 

were typically less than 20% between the two sampling events, with the exception of Plant 

A, which was likely a result of different applied ozone doses (i.e., the initial ozone 

concentration was 13 mg L−1 in 2018 and 7 mg L−1 in 2019). Individual compound 

concentrations from each event are included in Tables S5A–G and Figures S7A–G. 

Concentrations of total carbonyl compounds in the wastewater entering the advanced 

treatment plants ranged from 0.35 to 0.80 μM. Formaldehyde, acetaldehyde, and acetone 

together accounted for over 90% of the total carbonyl compounds and the α,β-unsaturated 

aldehydes accounting for approximately 0.3% of the total carbonyl compound concentration 

on a molar basis. After treatment, total carbonyl compound concentrations in final product 
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water ranged from 0.20 to 2.4 μM. Formaldehyde dominated the carbonyl compound 

speciation (i.e., it accounted for an average of 40% of the total carbonyl compound 

concentration) and α,β-unsaturated aldehydes accounting for approximately 2% of the total 

carbonyl compound concentration.

Overall, the highest total carbonyl concentrations (i.e., 1.4–7.4 μM) were observed after 

ozonation, which is consistent with the reaction of ozone with double bonds in organic 

matter to produce aldehydes and carbonyls.14 After ozonation, formaldehyde and 

acetaldehyde accounted for approximately 80% of total carbonyl compound concentrations, 

while α,β-unsaturated aldehydes accounted for approximately 1.5%. Acrolein and 

crotonaldehyde accounted for approximately 90% of the α,β-unsaturated aldehydes on a 

molar basis. The concentrations of formaldehyde and acetaldehyde observed in this study 

were consistent with those reported in prior studies of ozonation of wastewater effluent and 

drinking water.15,16,19

The application of chlorine prior to microfiltration in Plants C and D also resulted in 

carbonyl compound production, but the total concentrations produced were only about 25% 

of those formed by ozonation. Formaldehyde and acetaldehyde were the predominant 

aldehydes produced by chlorination (i.e., they accounted for 70% of the carbonyl 

compounds on a molar basis), while α,β-unsaturated aldehydes accounted for about 1% of 

the total molar yield of carbonyl compounds. Acrolein and crotonaldehyde accounted for an 

average of 95% of the α,β-unsaturated aldehydes on a molar basis. The formation of 

carbonyl compounds when chlorine (i.e., NaOCl) is added to ammonia-containing municipal 

wastewater effluent has not been reported previously. In addition to ammonia, which reacts 

readily with free chlorine (i.e., HOCl) to form chloramines46 (i.e., k1 = 4.2 × 106 M−1 s−1), 

wastewater effluent contains dissolved organic nitrogen species with functional groups (e.g., 

alkylamines) that can also react with free chlorine.47 The reaction between chlorine and 

tertiary alkylamines also occurs quickly (i.e., k2 = 6.1 × 107 M−1 s−1), and the product (i.e., 

chlorinated trimethylamine) decays almost instantaneously to produce formaldehyde and 

dimethylamine.47 Although organic amines are present in wastewater in low concentrations 

(i.e., <5% of the total nitrogen48) relative to ammonia, the overall rate of transformation by 

chlorine should be similar due to the relatively fast reaction kinetics. Therefore, reactions of 

free chlorine with organic nitrogen species, such as tertiary alkylamines, may explain the 

formation of carbonyl compounds observed during the chlorination of ammonia-containing 

wastewater effluent. However, without additional experiments, it is not possible to determine 

if free chlorine or chloramines were responsible for the formation of the carbonyl 

compounds.

Results from laboratory-scale chlorination experiments using wastewater effluent from Plant 

D yielded similar concentrations of formaldehyde (18.5 μg L−1, or 0.62 μM) and 

acetaldehyde (42.9 μg L−1, or 0.98 μM) as those detected in grab samples collected from the 

MF-feed (post-NaOCl application) at the facility (i.e., 19.2 μg L−1 or 0.64 μM 

formaldehyde, 41.6 μg L−1 or 0.95 μM acetaldehyde). Concentrations of other longer-

chained saturated carbonyl compounds and α,β-unsaturated aldehydes in the bench-scale 

experiment were also similar to those observed at the advanced treatment plant (i.e., less 

than 10% difference, Table S6), suggesting that the application of free chlorine to the 
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wastewater effluent was the source of the carbonyl compounds formed upstream of MF in 

Plants C and D.

Total carbonyl compounds concentrations decreased by over 90% when biofiltration was 

employed in Plants E and F (Figure 1). The data were consistent with previous findings from 

conventional drinking water treatment plants where the use of biologically active sand or 

biological activated carbon filters resulted in nearly complete removal of carbonyl 

compounds formed during ozonation of surface water and wastewater.40,49–52 The increase 

in carbonyl compound concentrations in the final effluent (i.e., post-UV) of Plant F could 

have been due to a reaction involving UV light53 or formation when chlorine was added 

immediately prior to the sample collection point. Carbonyl compounds were not removed to 

an appreciable degree during dual media (anthracite/sand) filtration at the conventional 

drinking water treatment plant (Plant G) because the operators of the facility added chlorine 

to control biological growth on the filters. This finding is consistent with data from other 

drinking water treatment plants where sand filtration was employed in a similar manner.16

Total carbonyl compound concentrations decreased by 32 to 58% during reverse osmosis 

treatment (Figure 1), with the concentrations of α,β-unsaturated aldehydes decreasing by an 

average of 50%. Previous research has demonstrated a relationship between molecular 

weight and the rejection of uncharged organic compounds, with approximately 50% 

rejection of compounds with molecular weights of 100 g mol−1 and rejections >90% for 

compounds with molecular weights greater than 200 g mol−1.6,21,54–56 Our data also 

followed this relationship with 35% rejection of formaldehyde (MW 30 g mol−1) and 65% 

rejection of hexanal (MW = 100 g mol−1) (Figure 2). Although molecular weight was well 

correlated with rejection of uncharged species during RO, other physical and chemical 

properties (e.g., molecular volume, hydrophobicity, and polarity) also affect compound 

rejection.57 For example, the significantly higher rejection (Mann-Whitney, p<0.05) of 

propionaldehyde compared to acetone (i.e., both compounds have molecular weights of 58 g 

mol−1) could be explained by the greater hydrophobicity and lower dipole moment of 

propionaldehyde (i.e., prop.) relative to acetone (e.g., log Kow,prop = 0.59, log Kow,acetone = 

−0.24; μprop = 2.72 D, μacetone = 2.91 D).

Total carbonyl compound concentrations decreased by 27–45% when the treated water was 

subject to advanced oxidation processes (i.e., Figure 1; UV/H2O2 for Plants A-D, UV/HOCl 

for Plant E). The transformation of a compound during advanced oxidation depends on the 

rate constant for its reaction with hydroxyl radical (HO•). Advanced oxidation processes for 

the potable water reuse facilities sampled as part of this study were designed to achieve at 

least 0.5-log removal (i.e., 68% removal) for 1,4-dioxane (kHO• = 2.8 × 109 M−1 s−1).58 The 

reactivity of the carbonyl compounds with HO• spans a range of almost two orders of 

magnitude, with greater reactivity observed for the higher molecular-weight compounds and 

those compounds containing unsaturated carbon-carbon bonds (Table S7). Assuming that the 

potable reuse facilities were obtaining 0.5-log removal of 1,4-dioxane at the time of 

sampling and that reaction with HO• was the dominant transformation mechanism, it is 

possible to predict the amount of the compounds remaining after advanced oxidation.2 

Results from samples collected at the five treatment plants equipped with advanced 

oxidation processes were consistent with the expected relationship, with the least reactive 
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compound—acetone—decreasing in concentration by about 10% (Figure 3). Concentrations 

of formaldehyde and acetaldehyde decreased by approximately 35%, while concentrations 

of longer-chained saturated aldehydes (e.g., butyraldehyde, hexanal) decreased by 

approximately 70%. Concentrations of α,β-unsaturated aldehydes, acrolein and 

crotonaldehyde, decreased by over 90% (log kHO• = 9.8 for both acrolein and 

crotonaldehyde; Figure 3).

Implications for Water Quality

Although the presence of carbonyl compounds in drinking water has been known for over 30 

years,11,59 they have not been considered a priority with respect to water quality because 

individual compounds have not been detected at concentrations above thresholds for human 

health concerns or aesthetic impacts. For example, among the 12 measurements of 

formaldehyde in finished drinking water reported by Weinberg et al. (median concentration 

= 5 μg L−1), none exceeded California’s health-based notification level of 100 μg L−1 or 

New York’s maximum contaminant level (MCL) of 50 μg L−1.16 The California health-

based notification level for formaldehyde was derived based on a reference dose for chronic 

oral exposure of 0.2 mg/kg-day, assuming 20% of exposure is from drinking water.17 

Although details on the derivation of New York’s MCL for total aldehydes are not readily 

available, it appears that a risk-based approach similar to the one applied for formaldehyde 

in California was used.18

Health-based guidelines are not available for the any of the other saturated carbonyl 

compounds. Given the similarities in their structures and mode of action, for screening 

purposes, it is reasonable to assume that they would be approximately as toxic as 

formaldehyde and that an additive model could be used to represent their toxicity. If this 

were the case, none of the final product water from Plants A-G in this study would exceed 

California’s notification level, but potable reuse Plants A, B, and F, as well as drinking water 

treatment Plant G would exceed New York’s MCL (Figure 4).

Inclusion of the α,β-unsaturated aldehydes in this analysis would raise additional concerns 

because they tend to be considerably more toxic than their saturated analogs.27,60 This 

assertion is supported by data from in vivo exposure studies indicate that α,β-unsaturated 

aldehydes acrolein and crotonaldehyde are approximately hundred times more potent than 

their saturated analogs, propionaldehyde and butyraldehyde, based on LD50 values for mice 

and rats.35 Based on other animal studies, the reference dose for chronic oral exposure as 

determined for acrolein is 400 times lower than that of formaldehyde.61,62 Even though this 

indicates that α,β-unsaturated aldehydes might be more hazardous than their saturated 

analogues, their occurrence at substantially lower concentrations compared to their saturated 

analogues (Figure 4) might lead to a low overall risk. In addition, α,β-unsaturated aldehydes 

are predicted to be rapidly metabolized to non-hazardous metabolites and/or quenched by 

glutathione.63 Therefore, genotoxic effects detected in in vitro might not translate to in vivo 
toxicity. This is further supported by the fact that α,β-unsaturated aldehydes used as 

flavoring agents, such as trans-2-hexenal, are generally recognized as safe for human 

consumption at low concentrations.63 These findings should be interpreted with caution 

because previous studies have only focused on individual chemicals whereas this study 
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demonstrates that saturated and unsaturated aldehydes occur in mixtures. This emphasizes 

the need for additional toxicological data to fully assess the health-based implications. For 

drinking water, such assessments should be conducted with great care because low 

molecular weight compounds are often not amenable to pre-concentration by solid phase 

extraction and have the potential to volatilize during in vitro assays.64

In addition to impacting the overall safety of drinking water, carbonyl compounds can also 

compromise the aesthetic water quality. After the ozonation of wastewater effluent, 

individual carbonyl compounds (e.g., butyraldehyde and hexanal) were present at 

concentrations above their respective odor thresholds (e.g., 9 and 4.5 μg L−1). Following 

treatment with BAC, butyraldehyde and hexanal concentrations were reduced to levels well 

below at which they would impact aesthetics (e.g., <1 μg L−1). However, in Plants A and B, 

which employed of ozone without BAC, concentrations for hexanal exceeded its odor 

threshold in RO permeate; treatment with UV/H2O2 was needed to lower the concentrations 

to concentrations below the odor threshold.

On the basis of the results of this study, advanced treatment plants that use ozone will 

produce concentrations of carbonyl compounds that could be problematic if biofiltration or 

advanced oxidation is not employed prior to distribution of the water. Although ozone is not 

employed frequently in advanced treatment plants equipped with RO, it is often used in 

potable water reuse systems that do not employ RO.65 For example, two of the ten largest 

full-scale potable water reuse systems in the world (i.e., Upper Occoquan, VA and Gwinnett 

County, GA) employ ozone followed by activated carbon treatment without RO treatment.3 

In these systems, carbonyl compounds remaining after treatment are likely degraded in the 

reservoir or river where the treated water is stored prior to use. However, if this approach 

were to be adopted in systems without an environmental buffer (i.e., direct potable water 

reuse), exposure to carbonyl compounds could be a health concern.

Contributions of Carbonyl Compounds to the Organic Carbon Content of Recycled Water

After RO treatment, recycled water typically contains between 20 and 200 μg C L−1 of 

dissolved organic carbon. Excluding the carbonyl compounds measured in this study, 

compounds detected after RO treatment of municipal wastewater effluent (e.g., halogenated 

disinfection byproducts, N-nitrosamines, 1,4-dioxane) typically account for less than 10% of 

the measured DOC. Our measurements indicate that saturated carbonyl compounds and α,β-

unsaturated aldehydes account for between 19 and 38% of the dissolved organic carbon in 

Plants A-E (median = 33%, Figure 5). Given the mechanisms through which these 

compounds are produced during ozonation and chlorination, it is likely that some of the 

unidentified carbon also consists of other carbonyl compounds.22,23

During precursor ion scans of samples derivatized with TSH (Figures S8–S11) we observed 

approximately 10 peaks corresponding to carbonyl compounds for which analytical 

standards were not available. Peak areas of these unidentified carbonyl compounds prior to 

RO treatment were usually smaller than the areas measured for acetaldehyde and acetone in 

the chromatogram (Table S8). Assuming similar rejection during RO treatment for the 

masses identified (i.e., molecular weights 73–232 g mol−1, approximately 50–95% 

rejection), we estimate that these unidentified compounds accounted for less than 5% of the 
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unidentified dissolved organic carbon. Additional research is needed to identify and quantify 

these and other carbonyl compounds.

The remainder of the organic carbon likely consisted of other uncharged low molecular 

weight, hydrophilic compounds that are difficult to measure at these levels with existing 

analytical methods (e.g., alcohols, ethers). In addition, a fraction of the unidentified 

dissolved organic carbon could consist of compounds that are present at relatively high 

concentrations in wastewater effluent that are not completely removed during RO and 

UV/H2O2 processes. For example, wastewater-derived contaminants like the antiviral 

acyclovir and the artificial sweetener sucralose have been detected in wastewater effluents at 

concentrations up to 0.2 μg C L−1 and 13 μg C L−1, 66,67 respectively. Even if we assume 

high rejection (e.g., >90%) of these compounds during RO treatment due to their relatively 

high molecular weights, their presence could account for between 1 and 5% of the 

unidentified organic carbon assuming a total of 50 μg C L−1 in the RO permeate. Despite our 

best efforts, it is likely that around half of the dissolved organic carbon in water from 

advanced treatment plants will not be amenable to identification with current analytical 

methods. If there are health risks associated with exposure to these additional unknown 

organic contaminants, they would have to be capable of causing adverse effects at 

concentrations in this range (i.e., <20 μg C L−1) assuming that only one compound 

accounted for all of the unknown carbon or if the unknown compounds affected the same 

biological targets.
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Figure 1. 
Concentrations of carbonyl compounds during each major treatment step. Data represent the 

median values from sampling events in 2018 and in 2019 (n=2, Tables S5A–G, Figures 

S7A–G). “WW” = wastewater; “Eff” = effluent; “MF” = microfiltration; “UF” = 

ultrafiltration; “RO” = reverse osmosis; “BAC” = biologically active carbon filtration; 

“BAF” = biological filtration; “GAC” = granular activated carbon filtration. Plants C and D 

applied NaOCl prior to the “MF Feed” point of sample collection.
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Figure 2. 
Apparent rejection ((1 – Cp/Cf) × 100 where Cp = permeate concentration and Cf = feed 

concentration) of compounds during RO treatment in Plants A-E as a function of molecular 

weight. Circles (saturated carbonyls, n=10), triangles (acetone, n=10) and squares (α,β-

unsaturated aldehydes, n=6) represent the geometric mean across all treatment plants, and 

error bars represent 95% confidence intervals. Samples containing compounds at 

concentrations below limits of quantification were excluded from analysis.
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Figure 3. 
Carbonyl compound percent remaining (%) after advanced oxidation as a function of the 

second-order rate constant of the compound with hydroxyl radical. The solid line represents 

predicted transformation assuming 0.5-log removal of 1,4-dioxane (adapted from Marron et 

al., 2019). Box and whisker plots represent observations of carbonyl compounds remaining 

after UV/H2O2 in Plants A-E, which are plotted as a function of log kHO• for each 

compound (the box extends from the 25th to 75th percentile, whiskers from the 10th to 90th 

percentile, and the horizontal line within the box is plotted at the median). Samples 

containing compounds at concentrations below limits of quantification were excluded from 

analysis. See Table S7 for additional calculations.
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Figure 4. 
Concentrations of carbonyl compounds in final product water from Plants A-G. Upper 

dotted line (CA) represents California’s health-based notification level of 100 μg L−1 and 

lower dotted line (NY) represents New York’s MCL for total aldehydes of 50 μg L−1. 

Concentrations of unsaturated compounds are too low to be visible in the figure.
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Figure 5. 
Left, the contribution of carbonyl compounds to the total DOC concentration in RO 

permeate for Plants A–E. Right, a zoomed in distribution of compounds in the RO permeate 

from Plant D. Measurements for DOC and carbonyl compounds are median values from two 

sampling events (n=2). *Values for trace organic contaminants, as well as nitrogenous and 

halogenated disinfection byproducts, were not generated during this work and were taken 

from elsewhere for similar treatment trains.9,66 Pie charts for Plants A-C and E can be found 

in Figure S12.
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