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Abstract

The purpose of this paper is to extend an earlier
theory of pleasure associated with harmonic sequences
to melodic sequences. The theory stated that the
sequences that will be pleasurable will be the ones
that allow a coherent transition from one mental state
to the next. This can be measured in a connectionist
model by noting the strength of the activation boost
in a competitive layer categorizing the elements of
the sequence. It is suggested that a similar
mechanism will work for melodic sequences if two
conditions are met. First, the melodic sequences
must be represented such that two sequences judged to
be similar by the ear have an overlapping distributed
representation, Next, a mechanism must be posited
to separate melodic sequences into significant groups.
The results of a network accomplishing these tasks
are presented.

Introduction

This paper will attempt to answer a question which is
fundamental to musical cognition, and, by extension,
to cognition in general. Why is music pleasurable?
By what principles can one derive its power o sir,
and to move, but also to calm? Cognitive science
finds itself in the uncomfortable position of not being
able to make the simplest predictions about musical
pleasure despite the fact that there are no difficulties
in describing the (raw) stimulus. The situation is
comparable to the problem of chess-playing before
the advent of the concept of heuristic search; there
were no hidden variables in the game, yet how to
create a competent player remained a mystery.
Current cognitive theories of music concentrate
primarily on categorization. For example, Leman
(1991) has shown that the cycle of fifths is an
emergent property of applying an unsupervised
learning algorithm to a representation that is rich in
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harmonic overtones. A theory of musical
categorization, in the absence of hedonic principles,
will not yield a theory of musical pleasure, however,
for the simple reason that there is no reason to
suppose that one category is preferred to any other. It
may seem possible to use the results of categorization
to graft the drive toward music onto simpler, innate
drives. The gap that needs to be bridged here is large,
however, and there are few supporting pylons along
the way. The pleasure associated with a Bach fugue
does not translate well into the theoretical vocabulary
of hunger drive reduction, or secondary drive
reduction.

Another possible explanation of musical affect
has been suggested by Jackendoff (1991) who has
shown how a theory of musical parsing may work in
conjunction with Meyer's (1956) theory of musical
affect. Meyer's governing principle is that affect is
generated when a tendency to respond is inhibited.
One immediate difficulty with such a theory is that it
predicts that a well-known piece, which, by
hypothesis, is completely predictable, should not
generate any affect. In fact, as Jackendoff points out,
good music needs many hearings before being fully
appreciated. His solution to this dilemma is to retain
Meyer's framework, but claim that the musical parser
operates independently of musical memory; thus, the
parser continues to have its expectations violated or
confirmed regardless of the familiarity of the
composition.

Jackendoff's extension is problematic, however, as
it rests upon a theory which is weakly predictive of
affect. Consider the cadence in Figure 1. Meyer is
able to show how the composer may generate affect
by evading the cadence, i.e., by postponing the
appearance of the tonic (I), thus violating an
expectation. What he cannot explain is the
ubiquitous presence of this transition in both classical
and modern popular music. Assuming it is not
evaded, as is often the case, it will be completely
expected by anyone familiar with the genre of the
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Figure 1. An authentic cadence.

composition. It does not help to transfer generation
of affect to the parser, as this processor will also
expect the tonic as the most common resolution of
the dominant (V). Moreover, predicting the variety in
cadential forms, and their relative degree of thrust,
places a burden on the expectation theory that it
cannot be bom easily.

In the next section, it will be shown that a simple
connectionist model, in conjunction with an
assumption concerning the relation between
activation and affect, will suffice to predict the power
of the cadence, and variations thereon. This model
will then be extended to melodic sequences.

A model of musical resolution

Katz (1993a) has described a model of musical
resolution based on a model of resolution in humor
(Katz, 1993b). The theory is based on the fact that an
activation boost will result when a concept is
partially maintained for a short time while a
competing concept is triggered. For example, Figure
2 shows a model for the cadential resolution in Figure
1. Panel A illustrates the situation when the network
detects the first chord. The appropriate notes are
triggered, and activation spreads from these notes to
the chord recognition unit via feedforward connections
to the chord layer, which is a competitive, winner-
take-all subnetwork.

This competitive network will make the unit
receiving the most activation fully active (in this case
V) and all other chord units fully inactive (in this
case, I). Panel B shows what happens when the new
chord, I, is detected. The unit for this chord will win
the competition, as it now receives the greatest input.
The V unit, however, will also be maintained,
because of the input from the shared note, g". The
effect will be further enhanced if notes at a semitone
(such as the b" and c") or whole tone distance (such as
the d" and e") are assumed to share an overlapping
distributed representation by virtue of their perceived
similarity (not shown in the diagram). This explains
why notes resolve by step, that is, by falling or
rising a whole tone or less. Eventually, I wins the
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Figure 2, Model of the cadential resolution,

competition, and drives V to a quiescent state, as
shown in Panel C.

When a concept is supported while its
competitive counterpart is triggered, as in Panel B,
the total activation of the competitive layer will be
greater than that of the relaxed state, in which only
one unit can be active. There are two related reasons
why this boost is hypothesized to underlie positive
affect. The first derives from the classical aesthetic
goal of unity in diversity. To the extent that that the
two chords are maintained simultaneously, the
network is uniting two concepts that are ordinarily
found in opposition. Alternatively one can argue that
the perceived coherence of the transitions is
proportional to the boost. That is, if the shift from
one concept to the next is abrupt, there will be little
time when the two are simultaneously active. An
activation boost will only result in those cases where
there is a smooth, coherent transfer between concepts.

The network dynamics are sufficiently complex
such that the theory does not reduce to one of
similarity between successive concepts. For
example, the theory is able to show why the V to I
transition is of greater perceived thrust than the
reverse transition of 1 to V, although the similarity of
I to V is the same as V to I. The g", as the root of V
in C major, strongly supports V, while as the fifth of
I, weakly supports I. Thus, V will receive greater
support during transfer from V to I than the I will
receive during transfer from I to V, resulting in a
larger boost.

Melodic sequences

The goal of this paper is to extend the above model to
the appreciation of melodic sequences. Consider the
three sequences in figure 3. Each sequence is
composed of two phrases, A and B, and in each B
resembles A in key aspects. In sequence 1, the first
five bars in the melody of Beethoven's Fifth
Symphony, the second phrase is identical to the first,
but transposed down (diatonically) by a second. In
sequence 2, chimes, phrase B repeats the same notes
in phrase A but in different order. Sequence 3
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Figure 3. Three melodic sequences.

presents an inexact retrograde, whereby phrase B
returns to the tonic note, c, in approximately the
same way phrase A approaches the fifth of the key, g.

In each of the three cases, phrase B shares features
with A. If a network can be created in which A and B
correspond to a unique category, and if the input to
this network captures the similarity between A and
B, then a larger activation boost will result from the
transfer of category A to B than from A to a category
that does not resemble A. Thus, a similar model to
that described earlier will capture the fact that preferred
melodic sequences are those with phrase similarity.
Three conditions must be met for this model to work.
First, some mechanism must exist to parse the
melodic sequence into groups. Next if two groups are
heard as similar, this must be reflected in the
representation.  Finally, there must exist some
unsupervised learning mechanism which creates
categories corresponding to the groups.

Parsing

A successful parse is necessary for both the
understanding and enjoyment of music. The
alternative, a sort of continuous categorization that
treats all possible groupings on equal footing (as
found in Gjerdingen, 1991, e.g.) misses the essence
of musical communication as much as any
interpretation of verbal utterances that did not have
the concepts of the pause and the full stop.

Parsing an intricate piece of music into groups is
task rivalled in complexity only by the parsing of an
intricate linguistic sentence into parts of speech;
accordingly, this section will not offer a complete
solution to this problem. Rather, the purpose of this
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section is to show that two of the preference rules in
Lehrdal and Jackendoff's (1983) grouping theory can
reduced to a single principle. Their first principle,
proximity, is illustrated in case A of Figure 4. The
rule states that a group boundary will be preferred at
the "*' as the gap between the notes on both sides of
the rest is relatively large.

Their other principle, change, is illustrated by
melody B in Figure 4. A new group will be preferred
when there is a relatively large change in register. If
one assumes that the input layer of a network decays
in a regular fashion, then proximity is a special case
of change. That is, if one compares the current input
to the state of a buffering layer, in which the
activation of past notes falls off as they recede in
time, then a large change will be detected if there is a
significant gap between a note's attack and the
succeeding note. Thus, a simple rule that detects
change (for the purposes of the simulations below, a
euclidian measure is used) will be sufficient to detect
group boundaries, and reset the categorization process.
This parsing mechanism is far from complete, but
adequate for the simple melodies in this paper.

Representation

The representation is crafted such that similarity in
melodic sequences can be recognized. Figure 5 shows
the representation scheme, and the state of the units
after the e has been sounded at the end of the first
phrase in chimes (melody 2 in Figure 3). The
representation is divided into three sets of units.

The first set encodes the pitch and the recency of
attack of the note; the strength of a note decays
exponentially with time. An alternative is to create a
variable window, equal in size to the number of notes
in the group. But this would not capture the
perceived similarity between notes repeated in
different order. In addition, the note fading scheme
helps the parsing mechanism.

The second set of units contain interval
information. The current scheme, which indicates
leap up (a jump of greater than a second), step up, no
movement, step down, and leap down, is a
compromise between representing the exact set of
intervals, and contour information, which would only
indicate up, no change, or down. The intervals are
stored with a reverbatory circuit, such that, upon
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Figure 5. Representational scheme.

receiving the last note of a group of n notes, the
interval units will contain in sequential order the n-1
intervals in the group. No neural mechanism of
extracting intervals will be proposed here, although
there can be no doubt that the auditory cortex
somehow extracts this information. Even the
musically untrained have little trouble recognizing a
transposed (i.e., interval preserved) melody;
conversely, musical sophistication is no guarantee of
absolute pitch.

Finally, the length units encode the duration of
the units, with a similar fade mechanism to the pitch
units. In a full representation, it is probably
necessary to encode the rhythm in a similar manner to
the encoding of the interval information, although the
indicated representation will prove adequate for the
simulations described below.

Categorization

This section describes an unsupervised learning
algorithm such that the strength of the connection
between an input unit and a winning unit in the
category layer is proportional to the mutual activation
between the two units (cf., Rumelhart and Zipser,
1986).

Weights from the input layer to the competitive
cluster of units are initially set to 0. At each detected
group boundary, the winning category is detected in
the following manner. If there is a category unit
such that the cosine between the input vector and the
weight vector to this unit is greater than a parameter
between 0 and 1.0, W, (cf. Grossberg, 1980), than this
is the winner (if there are many such products, the
largest is chosen). Otherwise, an uncommitted unit,
i.e., a unit which has not yet won a competition, is
selected as the winner. Once the winner is found, the
weight vector to this unit is set to be the weighted
average of the existing weight vector and the current
input vector, typically giving greater prominence to
the existing vector. The resulting weight vector is
then normalized to length 1.0.

The above will suffice for a single layer of
recognition, but is deficient if the goal is higher order
categorization. Consider, e.g., the common binary
melodic form ABA'C, where each of the letters stands
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for a group of notes. One would like to apply the
above algorithm hierarchically to recognize the unity
of the first half, AB, with the second, A'C.
Hierarchical categorization can be achieved by adding
two new layers to the network, one buffering the
result of the categorization layer, and one to form
higher-order categories. However, if p is above a
critical value, then A and A' will be placed in a
different categories, and there will be no similarity
between AB and A'C. If p is too low, then A and A'
will be seen as the same, confounding the melody
ABAC with ABA'C. One solution to this problem is
to form a distributed representation by allowing
multiple competitive clusters in each categorization
layer, with p varying from cluster to cluster.

Simulation results

This is the solution adopted for the purposes of this
section. The parameter p ranges from 0.1 to 0.9,
corresponding to each of 9 competitive clusters. Each
cluster consists of eight units with self-connections
set to +0.75, and lateral inhibition to all other units
in the cluster set to -0.5. The total activation to each
layer is normalized to 1.0 to ensure proper operation
of the clusters regardless of the absolute size of the
input. A sigmoid transfer function is used, with
threshold 0.75. The network consists of four layers,
an input layer, a categorization layer, containing the
competitive clusters and classifying the input, a layer
that buffers the result of this categorization layer, so
that the fourth layer can in turn categorize its state.
Testing of all melodies consists of two phases,
first a training phase, in which the categories for the
melody are acquired, and then a testing phase, in
which the mean activation in the second and fourth
layers is measured. Training always begins with a an
empty network (i.e., all feedforward weights are 0.0);
this enables the network to judge the worth of the
melody free from interference of familiarity effects.

Hedonic tone and complexity

Intuitively, good music lies somewhere between
uniformity and chaos. Vitz (1966) confirmed this by
showing that subjects’ hedonic tone was an inverted
U-shaped curve as the function of the complexity of
randomly generated music. Similar results are
obtained with the current model. In the graph in
Figure 6 each data point is the average of 50
melodies. Mean activation, measuring the number
and strength of the activation boosts, is graphed as a
function of the range of randomly chosen notes in a
16-note melody (the length of the note is allowed to
vary randomly between an eighth and half note for all
ranges). Inverted U's are obtained in both the low-
order categories, which categorize the parsed groups of
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Figure 6. Mean activation of low order and higher
order categories as a function of note range.

notes, and high-order categories, which classify the
low-order categories. At low complexity, there is
high unity between successive groups, but there will
be little change in the distributed representation
between these groups. Conversely, at high
complexity, the distributed representation for
successive groups will be almost completely
different, but activation boosts associated with these
changes will be small, because of the low similarity
between the groups. Significantly, the high-order
curve is always below that of the low-order,
consistent with fact that compositions generated by
statistical means tend to lack global unity.

A common melodic form

Melody 3 in Figure 3 was tested in two ways; first in
the normal direction, and then by reversing the
phrases. An additional assumption was made for this
experiment, viz., that notes in the input layer trigger,
to a lesser extent, their relative fifth in addition to
their fundamental frequency. This assumption can be
justified on the basis that all instruments generate
overtones; a note and its fifth share the strongest
overtones, with the exception of a note and its octave
equivalents.

In this experiment, the fifth was given half the
value of the fundamental. This assumption yielded
the a mean activation in the normal direction of 9.64
and 9.44 in the reverse. Both are above any of the
random melodies. The normal direction, however, is
preferred for reasons analogous to the preference for
the dominant to tonic cadence. Because of the fade
mechanism in the representation, the last note of the
melody is the most important. In the normal
direction, the melody ends on a ¢, but supports a key
component of the category for the first phrase because
of the partial triggering of the fifth, or the g. In the
reverse direction, the g does not activate the c, but the
next highest d, resulting in less support for the

615

category for the first phrase.

A typical song
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Figure 7. Some folks do.

Figure 7 shows a typical folk song. The network is
able to parse the melody into five phrases, because of
the relatively long notes that end the phrases. The
network also correctly parses these five phrases into
higher-order categories; the second and third phrase
end up in the same group because of their intervallic
and rhythmic similarity. One method of judging
musicality is to have people judge the worth of good
music that has been altered in some way; they should
prefer the closest to the original. A similar
experiment has been performed here. A fixed number
of notes were altered from their original value to that
of a randomly chosen note in a two octave range.
The graph in Figure 8 shows mean activation for
both the low-order and high-order layers as a function
of the number of notes changed. Note that high-order
values for zero notes changed (the original melody)
are considerably above any of the random melodies;
high-order unity is achieved by the near identities of
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Figure 8. Mean activation for a simple folk song as a
function of the degree of resemblance to the original.



phrases 1 and 4. The low-order activation level falls
off in a near-linear fashion. The high-order measure
is somewhat more sensitive to the disturbance of the
melody, reflecting the greater difficulty in achieving
global unity.

Discussion

Numerous problems arise in moving from simple
folk songs to full-fledged polyphonic music. Here
Just three corresponding to the three aspects of the
model will be mentioned. First, the parsing
mechanism will not work with counterpoint, in
which an imitative phrase may be begin before the
end of the voice it is imitating. Next, the
representation only weakly captures an important type
of unity in a piece, viz., rhythmic repetition.
Finally, the categorization scheme is too efficient to
model familiarity effects; by slowing the leamning
down, it may be possible to show why it takes
repeated hearings before a piece is understood and

None of these problems are trivial; and yet none
fatally detract from the central claim of this paper,
that a network model can measure the coherence of
the transitions between musical categories by noting
the frequency and height of the activation boosts of
these transitions. One aspect of musical cognition
that is not captured in this model is the possible
pleasure associated with affective connotations,
learned or otherwise, of a piece of music. This
objection could be met by claiming that coherence is
a necessary but not sufficient condition for musical
pleasure. Alternatively, it may be possible to show
that these connotations contribute only minimally to
enjoyment, and when present, may be amenable to a
theory of the sort proposed in this paper.
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