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ABSTRACT OF THE DISSERTATION 
 

How language-specific experiences contribute to number concepts development; Evidence from 
multilingual learners 

 

 
by 

 

Elisabeth Marchand 

 

Doctor of Philosophy in Experimental Psychology 

University of California San Diego, 2022 

Professor David Barner, Chair 
 

Unlike other animal species, humans have the ability to represent large exact quantities.  

While different theories in number cognition have attributed this ability to our access to natural 

language, the question of how exactly natural language affords humans this unique ability remains 

unclear. Studying bilinguals provides a valuable approach to investigating the relationship between 

numbers and language, as documenting the similarities and differences across languages can 

inform us about the role of language-specific experiences in the development of numerical 
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representations. In this dissertation, I will argue that language-specific experiences play a 

fundamental role in the earliest steps of number acquisition, drawing on the evidence from 3- to 

7-year-old bilingual children. In Chapter 1, I present evidence that French-English bilinguals 

estimate the numerosity of arrays of dots differently across their two languages. This asymmetry 

in bilinguals’ mappings between number words and non-verbal representations across their two 

languages reveals that these mappings rely on language-specific knowledge of the structure of 

their count lists. In Chapter 2, I investigate some potential methodological issues when testing 

bilingual children and show that bilingual studies should take into account how test-retest 

reliability can contribute to observed differences across languages in bilinguals. However, in the 

case of Give-a-Number, some levels are more affected than others. Finally, in Chapter 3, I explore 

further the role of language-specific experiences in the mappings between number words and non-

verbal representations by showing that children who know how to count do not subitize similarly 

across their two languages. Instead, differences in subitizing skills across languages suggest that 

language-specific experiences play a role from the very beginning of number word acquisition. 

Together, these studies suggest that language-specific experiences play a major role in building 

mappings between number words and non-verbal representations, via the estimation of large and 

small sets. These studies also reveal that some basic numerical abilities don’t transfer across 

languages in bilinguals.  
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INTRODUCTION 
 

Many animal species possess the ability to approximately perceive the numerical properties 

of sets in the world. However, only humans have created external symbolic representations of 

numbers like body counting systems, number words, written numerals, and the abacus, among 

others, that allow us to go beyond our noisy perceptions of magnitudes and capture exact numerical 

information about our environment (Ifrah, 2000; Menninger, 1969). These symbolic systems have 

provided us with the foundation to elaborate sophisticated concepts such as variables, matrices, 

and infinite numbers, which today help us understand the world we inhabit. Hence, the creation 

and transmission of early symbolic numerical systems represent an important tour de force of the 

imagination that changed the way we navigate our environment. What is the source of these 

achievements? Some researchers have suggested that having access to natural language plays an 

important role in affording us those unique abilities (Carey & Barner, 2019; Gordon, 2004; Le 

Corre & Carey, 2007; Pica et al., 2004; Spaepen et al., 2013; Spelke, 2017). However, the question 

of how exactly language comes to drive changes to our numerical representations remains unclear. 

Recently, some investigators have taken the approach of studying bilingual learners to explore the 

role of language in the development of number concepts (Spelke & Tsivkin, 2001; Wagner et al., 

2015). This approach has the advantage of isolating the role of language from nonlinguistic factors 

that also drive changes to our numerical representation (e.g., executive function or maturation of 

nonlinguistic numerical representations), but that are shared across languages in bilinguals. 

Studying bilinguals, therefore, allows us to distinguish between language-specific knowledge and 

knowledge that is not specific to a particular language and can transfer across languages. In this 

thesis, I adopted this approach to investigate the role of language in the development of a basic 
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numerical ability, numerical estimation, that provides a unique window into how we come to 

associate our linguistic and nonlinguistic representations of number.  

Nonlinguistic systems of magnitude representation 

One clue substantiating the role of language in numerical cognition comes from studies of 

non-linguistic number systems. This work reveals that, in absence of symbols like number words, 

pre-verbal humans and non-human animals (e.g., fish, birds and rats) are unable to represent large 

exact numbers but can still apprehend magnitudes – in limited ways – using two nonlinguistic 

systems: the Approximate Number System (ANS; or Analog Magnitude System) and the Object 

Tracking System (OTS) (Dehaene, 2011; Feigenson, Carey, & Hauser, 2002; Feigenson, Dehaene, 

& Spelke, 2004). 

The ANS is an evolutionarily ancient system that enables us to discriminate and compare 

the approximate magnitudes of sets (Barth, Kanwisher, & Spelke, 2003; Dehaene, 2001; Dehaene 

& Changeux, 1993; Meck & Church, 1983; Whalen, Gallistel, & Gelman, 1999). Previous studies 

of this system indicate that it encodes the magnitudes of sets perceived in the world by 

automatically creating analog mental symbols proportional to the number of individuals contained 

in the represented sets. In particular, representations in the ANS are governed by Weber’s law, 

according to which the threshold of discrimination between two sets is a function of their numerical 

ratio. For example, it is easier to tell the difference between 5 vs 10 dots (1:2 ratio) than 40 vs 45 

dots (8:9 ratio), even though in both cases, there is a difference of 5 dots (Lipton & Spelke, 2004; 

Piazza, 2011; Wilkey & Ansari, 2020; Xu, 2003). Previous studies in developmental psychology 

have shown that the acuity of the ANS (Weber’s fraction) increases with age, especially within the 

first year of life. Specifically, 6-month-old infants can discriminate sets that stand in a 1:2 ratio 
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but not 2:3, whereas 10-month-old infants can discriminate both ratios, and adults can discriminate 

ratios of 7:8 or closer (Halberda & Feigenson, 2008; Lipton & Spelke, 2003; Xu & Spelke, 2000).  

The second nonlinguistic system that has been argued to play a role in the perception of 

magnitude is the Object Tracking System (OTS; Feigenson & Carey, 2003, 2005; Feigenson, 

Carey & Hauser, 2002). This system allows us to keep track of small numbers of individual objects, 

in parallel, in working memory by creating mental symbols for each individual object in the sets. 

In one assessment of this system, 10- and 12-month-old children watched an experimenter hide 

crackers into two opaque buckets. The buckets contained different numbers of crackers and 

children spontaneously chose the bucket containing the largest number of crackers when the ratio 

of crackers was 1 vs 2 and 2 vs 3. However, children were at random when they had to choose the 

bucket with the largest number of crackers when the buckets contained 1 vs 4, 2 vs 4 or 3 vs 4 

crackers (Feigenson, Carey & Hauser, 2002). Similarly, in manual search paradigm in which 14-

month-old infants saw objects hidden sequentially in an opaque box, researchers observed that 

children’s pattern of search matched the number of objects hidden but only when the box contained 

3 objects or less. When 4 objects were hidden and 1 was retrieved, infants did not search for more. 

Together, these studies suggest that this system has a representational capacity limit of about 3 

objects (Feigenson & Carey, 2003). However, similar to the ANS, there are individual differences 

in the acuity of this system and evidence of maturation during development (Piazza, 2011).  

The literature reviewed above reveals that humans are endowed with two nonlinguistic 

systems that allow us to apprehend quantities in the world: the ANS and the OTS. However, both 

systems have important limitations; the ANS representations are approximate by nature and the 

OTS is limited to representing only a few individuals. In contrast to these nonlinguistic systems, 

humans have created linguistic number systems like the count list that allows us to represent exact 
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concepts such as “307”. During development, the nonlinguistic and linguistic systems of numerical 

representations become related and from this association, humans can engage in activities such as 

numerical estimation. In the current thesis, I explore the role that language plays in the 

development of numerical estimation. Studying the development of estimation is important for 

two reasons: first, past studies have shown that estimation is not only correlated with basic 

numerical skills such as arithmetic (Booth & Siegler, 2008; Siegler & Ramini, 2008, 2009) but it 

is also correlated with overall academic achievement in school-age children (Duncan et al., 2008; 

Jordan et al., 2009). Second, estimation is important because it is a process that is commonly used 

in everyday life. For example, we often have to estimate distances to travel from place to place 

and we try our best to estimate the time tasks will take us to perform. Estimation is also often used 

in research when precise enumeration is impossible. For example, in biology, when researchers 

are unable to count the exact number of individuals in a population, such as a murmuration of 

starlings, they rely on estimation to keep track of population growth or decline, which in turn can 

inform us of the impact of our actions on the environment. In this dissertation, I investigate 

specifically the role of language in the development of estimation abilities in bilingual children as 

a case study to help elucidate how language contributes to the development of basic numerical 

concepts.   

Numerical Estimation 

The process of estimation is the ability to attribute a numerical symbol, such as a number 

word, to a nonverbal representation of magnitude, such as a set of dots, rapidly and without 

counting. Typically, in an estimation task, participants are presented with flashed arrays of dots 

and are asked to provide a verbal estimate of the numerosity of these sets. The rapid presentation 

of dots is meant to prevent subjects from counting so that they have to rely on their intuitive sense 
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of how number words are represented by nonverbal magnitudes (and vice-versa). Previous studies 

of estimation of large numbers have shown that estimation accuracy decreases as the numerosity 

of arrays increases, unlike the estimation of small sets (sets of 1 to 4 dots), for which the accuracy 

remains constant across numerosity (Burr, Turi, & Anobile, 2010; Indow & Ida, 1977; Revkin et 

al., 2008). Because of this qualitative difference, the estimation of small sets is more commonly 

referred to as subitizing.  

There are three components that underlie the process of estimation: First, subjects need to 

perceive the set. Second, subjects automatically create a mental representation of the magnitude 

of the set in the nonlinguistic systems (either ANS or OTS). Third, subjects need to retrieve and 

attribute a verbal label (i.e., a number word from the count list) to the set based on a mapping 

mechanism between the nonlinguistic and linguistic systems of numerical representations. 

Previous studies have shown that there are two types of mapping mechanisms involved in 

estimation: item-based associative mappings and structure mappings (Sullivan & Barner, 2013, 

2014).  

Associative mapping is a type of mapping in which a number word is connected directly 

on an item-by-item basis to the mental representation of a particular magnitude (Sullivan & Barner, 

2012, 2014). For example, to be able to rapidly and accurately subitize a set of three dots, a 

participant would need to have the number word three associated to a long-term mental 

representation of threeness. Previous studies of estimation suggest that adult participants create 

these types of mappings mainly for small magnitudes (e.g., 1 to 8 dots; Sullivan & Barner, 2013). 

However, this type of mapping is important to the development of numerical concepts because 

dominant accounts of conceptual development have argued that it is by forming associative 

mappings that children learn the meanings of the first number words (Carey, 2004).  
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A large number of studies have now shown that children start making associative mappings 

between number words and cardinalities (numbers of elements in a set) around the age of 2, and 

when they do so, they learn these mappings in a protracted sequence (Sarnecka & Carey, 2008; 

Sarnecka & Lee, 2009; Wynn, 1990, 1992). Most of the findings in early number word acquisition 

come from studies that have used a task called Give-a-Number (Give-N), in which children are 

asked by an experimenter to give specific quantities of objects. Using this task, studies have shown 

that before children create any associative mappings, they are able to recite part of the count list 

(e.g., number words one through five) but without attaching any meaning to the count list. Children 

at this stage are unable to reliably construct sets for any number word and for this reason they are 

often referred to as non-knowers or pre-knowers. Following this stage, children develop an exact 

meaning for the number word one and these children can consistently construct sets of 1 object 

when instructed to do so, which is why they are classified as one-knowers. However, these children 

can’t reliably give the correct sets for other numbers. Then, children learn the meaning of two; 

they can construct sets of one or two objects when asked for one and two, but can’t construct the 

correct sets for other numerals. At this stage, children are called “two-knowers”. Following the 

same pattern, children become “three-knowers” and sometimes “four-knowers”. Then, after going 

through these “subset” stages, children’s pattern of behavior at Give-N changes and they seem to 

be able to use the counting procedures to construct sets of larger cardinality under request. Children 

at that stage are often called Cardinal Principle or Counting Principle knowers (CP-knowers).  

Some studies have investigated this sequence of acquisition in bilingual children and have 

shown that when bilingual children are classified as subset-knowers, they most often have different 

knower levels across their two languages (Sarnecka et al., 2021; Wagner et al., 2015). For example, 

a child could be classified as a two-knower in French and a three-knower in English. However, an 
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issue with those studies comes from the fact that they don’t take into consideration the test-retest 

reliability of Give-N in their interpretation of the data. This is important because without knowing 

what the reliability of the task is, it becomes difficult to attribute the sources of cross-linguistic 

differences to reliability issues or to true differences in children’s mappings between number 

words and cardinalities across languages. In this thesis, in addition to exploring the role of 

language in the development of numerical estimation in bilingual children, I also investigate the 

reliability of the Give-N task, a task commonly used to measure children’s associative mappings 

between number words and cardinalities. 

In contrast to Associative Mapping, Structure Mapping (or Analogical Mapping) is not 

based on a direct association between any specific number label and representation of magnitude 

but is instead based on a global analogy between the linguistic and nonlinguistic systems. 

Proponents of this system argue that the linguistic system (i.e., the count list) and the nonlinguistic 

systems (internal representations of magnitudes in the ANS) become connected as a whole to one 

another based on similarities in their structure (Sullivan & Barner, 2013, 2014). The structures of 

these systems are indeed similar in two important ways. First, both structures are ordered, that is, 

number words further along the counting list refer to larger quantities similar to how our internal 

representations of magnitudes increase as actual quantities perceived in the world increase. 

Second, both structures encode stable distance relations. For example, the number word forty 

comes twice as far along in the count list as twenty does, and eighty comes twice as far along as 

forty. Similarly, past studies have shown that these doubling relations are easily discriminated by 

the ANS (ratio of 1:2) and perceived as doubles, even in infancy (Xu & Spelke, 2000). Evidence 

for Structure Mapping comes from feedback effects (Sullivan & Barner, 2013). Specifically, 

studies have shown that participants’ estimates can shift dramatically based on the feedback (or 
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anchor points) provided to them. For example, subjects adapt all their estimates whether they are 

told that the same set contains 100 dots or 1000 dots, regardless of how many dots the set actually 

contains. This provides evidence for a Structure Mapping between the linguistic and nonlinguistic 

systems because if number words were related to specific cardinalities via associative mapping, 

these feedback effects should not occur, such that estimates would change locally rather than 

globally.  

Current thesis: Using bilingualism to study number concept development 

One way of studying the role of language in the development of numerical concepts is to 

look for the different factors that drive changes in estimation abilities. There are a few potential 

factors that influence the development of estimation that can be inferred from the literature (Lipton 

& Spelke, 2005; Sullivan & Barner, 2013, 2014). One such factor is the maturation, in terms of 

acuity, of our nonlinguistic numerical systems (ANS and OTS). Other potential factors include 

language experience, such as having a strong knowledge of number words and the count list as 

well as education. Studying the relative contribution of these factors in monolingual children is 

limited because all these factors develop in parallel, making it difficult to isolate the relative role 

of each. In contrast, studying bilingual children provides a fruitful approach to investigating the 

role of language in numerical abilities because all the nonlinguistic factors are shared across 

languages within an individual child. For example, a French-German bilingual child may have 

fairly advanced knowledge of the count list in French but much less exposure to their counting 

system in German. Any differences in how this child estimates sets might be explained by 

differences in their linguistic abilities across these languages but would be difficult to explain via 

factors like ANS acuity, since these would not differ across languages. 



9 
 

In this dissertation, I explore how bilingual 3- to 7-year-old children estimate large and 

small cardinalities across their two languages as a case study to elucidate how language-specific 

experiences drive changes in number concepts. Specifically, I rely on verbal numerical estimation 

tasks in which participants are presented with flashed arrays of dots and are asked to estimate their 

numerosities. I will argue that individual differences in how children make numerical estimates 

are not purely due to changes to nonlinguistic factors such as the maturation of the ANS or 

executive function but are also due to changes to the linguistic system itself. I will also argue that 

language-specific experience starts influencing numerical representations across languages as 

soon as children learn their first number words and this effect of language is persistent during 

development.  

In Chapter 1, I explore how French-English bilingual children estimate large sets of dots 

across their two languages and I present evidence that their estimates differ between languages. I 

then ask whether these differences in estimation are explained by differences in children’s ability 

to access number words across languages. I find evidence that this is not the case. Instead, the data 

suggests that the differences in estimation are driven by differences in children’s knowledge of the 

structure of the count lists across languages. In other words, estimation differences are not 

explained by the number words children are able to access across languages but by differences in 

how the number words that they can access are mapped onto nonlinguistic representations of 

magnitude. Overall, this provides evidence that changes in children’s estimates are not only driven 

by maturation of their ANS acuity or access to number words but also by language-specific 

knowledge about the structure of the count list.  

In Chapter 2, I address an important methodological concern when testing the bilingual 

population; the role of test-retest reliability. In particular, most studies conducted with bilinguals 
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assume that any difference observed between languages (e.g., number word understanding) is the 

result of true disparity in knowledge across languages, rather than being an artifact of test-retest 

reliability issues with the tasks used. In Chapter 2, I challenge this assumption and assess the 

reliability of the Give-a-Number task, a task that has been used in the bilingual literature to show 

early differences in the acquisition of number words. Specifically, I show that some of the 

differences found in knowledge of small number words across bilinguals’ languages can be 

explained by reliability issues in the task. However, I replicate the finding that the understanding 

of the counting procedure transfers across languages in bilinguals; that is, children who are 

classified as CP-knowers in one language tend to be classified as CP-knowers in their other 

language as well.  

Finally, whereas in Chapter 1 I tested the estimation of large sets, in Chapter 3, I asked 

when differences first emerge in estimation abilities by testing how children estimate very small 

numbers. Specifically, I use a subitizing task to test whether bilingual children have different 

mappings of small number words to small sets across languages. I present evidence that despite 

being proficient counters in both languages, bilingual children still show differences in their 

knowledge of small number words across languages. This suggests that learning the mappings 

between small number words and their cardinalities relies on language-specific experiences with 

the count list. It also raises the possibility that learning the counting procedure and acquiring 

meanings for small number words might follow different developmental trajectories. Taken 

together, these studies indicate that language-specific knowledge plays a fundamental role in how 

children come to associate the linguistic and nonlinguistic numerical systems and consequently, 

how they interpret the numerical properties of the word around them.  
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Abstract 

We tested 5- to 7-year-old bilingual learners of French and English (N = 91) to investigate 

how language-specific knowledge of verbal numerals affects numerical estimation. Participants 

made verbal estimates for rapidly presented random dot arrays in each of their two languages. 

Estimation accuracy differed across children’s two languages, an effect that remained when 

controlling for children’s familiarity with number words across their two languages. In addition, 

children’s estimates were equivalently well ordered in their two languages, suggesting that 

differences in accuracy were due to how children represented the relative distance between number 

words in each language. Overall, these results suggest that bilingual children have different 

mappings between their verbal and nonverbal counting systems across their two languages and 

that those differences in mappings are likely driven by an asymmetry in their knowledge of the 

structure of the count list across their languages. Implications for bilingual math education are 

discussed.  
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Introduction 

 The human ability to encode number in natural language has important consequences for 

our species, allowing us to perform exact numerical computations, construct models of the physical 

world, and make precise predictions regarding distant places and hypothetical situations. Human 

cultures that lack labels for quantities greater than three or four are generally unable to represent 

larger sets exactly (e.g., Coppola, Spaepen, & Goldin-Meadow, 2013; Dixon, 2004; Epps, 2006; 

Frank, Everett, Fedorenko, & Gibson, 2008; Gordon, 2004; Pica, Lemer, Izard, & Dehaene, 2004; 

Spaepen, Coppola, Flaherty, Spelke, & Goldin-Meadow, 2013; Spaepen, Coppola, Spelke, Carey, 

& Goldin-Meadow, 2011). Similarly, young children who have not yet learned to count are 

restricted to representing and comparing larger sets approximately (e.g., Feigenson, Dehaene, & 

Spelke, 2004; Wynn, 1990, 1992). Although body count systems (Ifrah, 2000; Menninger, 1969), 

ancient counting boards and abaci (Frank & Barner, 2012; Hatano, Miyake, & Binks, 1977) and 

nonverbal cognitive systems like the evolutionarily ancient approximate number system (ANS) 

(Dehaene, 1997) all provide ways for humans to encode and reason about numerosity, language 

affords humans a distinctly flexible and productive format for describing and manipulating number 

and, by some accounts, may be the conceptual basis for the creation of other symbolic 

representations of number (e.g., Chomsky, 2008; Di Sciullo, 2012; Spelke, 2017; Watanabe, 

2017). 

 Like many nonhuman animals, humans are able to represent the approximate magnitudes 

of large sets independent of language using the ANS. For example, human infants, pigeons, rats, 

and even fish can discriminate different quantities of objects on the basis of their numerical ratio, 

consistent with Weber’s law (Agrillo, Dadda, Serena, & Bisazza, 2008; Platt & Johnson, 1971; 

Scarf, Hayne, & Colombo, 2011; Xu & Spelke, 2000). The acuity of these representations 
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improves quickly during infancy (Xu & Spelke, 2000; Xu, Spelke, & Goddard, 2005) and 

continues to change over the first 20 years of life into adulthood (Barth, Kanwisher, & Spelke, 

2003; Halberda & Feigenson, 2008). Still, even in adults, many small exact differences that we 

can represent in language, such as 87 versus 88, cannot be discriminated by the ANS, suggesting 

that this system alone cannot explain the exact nature of linguistic numerical representations. Such 

findings raise the question of how language might allow humans to go beyond the limits of the 

ANS and represent large exact magnitudes. 

 Several recent studies have argued that exact number representations (e.g., number word 

meanings, addition facts, multiplication tables) are both language dependent (meaning that they 

do not occur in the absence of language) and language specific (meaning that, in bilinguals, 

representations in one language are not automatically available to other languages), whereas 

approximate representations and computations are independent of natural language, such that 

training in one language generalizes automatically to a second language (L2). For example, Spelke 

and Tsivkin (2001) trained Russian–English bilingual adults in one of their two languages on four 

types of mathematical problems, two of which required exact numerical responses (e.g., addition 

of multidigit numbers) and two of which required approximate solutions (e.g., computing cube 

roots). After training, participants responded more slowly in their untrained language to questions 

that required precise answers (indicating language specificity), whereas there was no effect of 

language for questions that required approximate answers (for similar results, see Saalbach, 

Eckstein, Andri, Hobi, & Grabner, 2013). Similarly, in a neuroimaging study of bilingual adults, 

Dehaene, Spelke, Pinel, Stanescu, and Tsivkin (1999) found that problems requiring exact 

computations, such as multiplication tables, recruited areas of the brain involved in word 

association processes, whereas approximate number tasks, such as summing rapidly displayed 
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arrays of dots, relied on areas of the brain associated with visuospatial processing rather than 

language, suggesting language dependence (for similar results in monolinguals, see Dagenbach & 

McCloskey, 1992; Dehaene & Cohen, 1997; Dehaene, Molko, Cohen, & Wilson, 2004; Delazer 

& Benke, 1997; Domahs & Delazer, 2005; Ischebeck et al., 2006; Lampl, Eshel, Gilad, & Sarova-

Pinhas, 1994; Lee, 2000; Lemer, Dehaene, Spelke, & Cohen, 2003; Pesenti, Seron, & van der 

Linden, 1994; van Harskamp & Cipolotti, 2001; van Harskamp, Rudge, & Cipolotti, 2002). 

 Although it is clear that approximate and exact linguistic representations of number arise 

from distinct learning processes and rely on different cortical regions of the brain, previous studies 

leave open the mechanisms by which the systems become related, and to what degree mappings 

between systems might differ across a bilingual learner’s languages. In order to estimate the 

number of dots presented on a screen — an ability that emerges during development sometime 

after 4 years of age — children must relate symbolic representations of number (i.e., words in their 

verbal count list) to non-symbolic ANS values (Barth, Starr, & Sullivan, 2009; Gunderson, 

Spaepen, & Levine, 2015; Le Corre & Carey, 2007; Lipton & Spelke, 2005; Mejias & Schiltz, 

2013; Siegler & Booth, 2004; Sullivan & Barner, 2014; Wagner & Johnson, 2011). Whereas much 

is known about changes in children’s estimation abilities over development, less is known about 

the mechanisms that drive change. Changes in estimation ability could be driven by maturation of 

the ANS and/or acquired experience with the count list. Here, we asked how experience with a 

count list influences estimation performance, controlling for ANS ability. We approached this 

question by studying bilingual children who were acquiring two count lists (French and English). 

One possibility is that when children acquire two count lists (e.g., one in French and another in 

English), knowledge of these lists fails to transfer across languages because the words — which 

differ phonologically across languages — are mapped on an item-by-item basis to individual ANS 



19 
 

values, such that knowledge cannot generalize to another language. Another possibility, not 

incompatible with the first one, is that estimation does not depend solely on item-based 

associations between words and ANS values, but also draws on more general knowledge that 

children may glean from experience in estimating, or from the structure of counting itself (Izard 

& Dehaene, 2008; Sullivan & Barner, 2014). This approach allows us to investigate the 

independent effect of language (e.g., familiarity with number words, the structure of the count list) 

on estimation. 

 Although no previous study has tested these questions in the context of estimation, 

evidence from young bilingual children indicates that knowledge of the first number words (i.e., 

meanings for ‘‘one,” ‘‘two,” and ‘‘three”) does not transfer across languages, probably because 

these words are represented as item-based associations between words and cardinal values 

(Wagner, Kimura, Cheung, & Barner, 2015). Critically, however, the same study found that the 

knowledge of counting procedures that allow children to count and accurately give large sets 

(sometimes called ‘‘cardinal principle” knowledge) does transfer across a bilingual child’s two 

languages. This raises the possibility that if early estimation abilities are governed chiefly by item-

based associations between words and ANS values, transfer might not occur between languages. 

However, if estimation is governed in part by more general principles — not specific to particular 

words — transfer might occur. For example, a child who has extensive experience in making 

estimates in English might notice a ‘‘later – greater” principle — that numbers later in the count 

list denote greater quantities (Davidson, Eng, & Barner, 2012; Le Corre, 2014) and that the relative 

distance between two magnitudes corresponds to the distance between their verbal labels in the 

count list. This type of general principle might be learned in one language and extended to an L2, 

thereby facilitating learning in the L2. 
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 Understanding how estimation abilities are mediated by language in bilingual learners not 

only is theoretically important but also has practical implications. First, given the global prevalence 

of exposure to bilingual education, it is important to know whether numerical knowledge acquired 

in one language will readily transfer to a child’s L2 or whether educators should dedicate time to 

conducting training in both languages separately. For example, in the context of a bilingual 

immersion curriculum, children who live in a culture that requires math fluency in one language 

(e.g., English) but who receive their primary training in a different language (e.g., French) may 

benefit from learning certain foundational math skills in both of their languages. Second, previous 

studies have found relationships between estimation abilities and symbolic arithmetic (Booth & 

Siegler, 2008; Desoete, Ceulemans, De Weerdt, & Pieters, 2012; De Smedt, Noël, Gilmore, & 

Ansari, 2013; Fazio, Bailey, Thompson, & Siegler, 2014; Holloway & Ansari, 2009; Sullivan, 

Frank, & Barner, 2016). Bilingual learners provide an interesting test case because individual 

learners make estimates in multiple languages and yet draw on a single non-symbolic ANS to do 

so. Consequently, studying bilingual learners permits the isolation of effects of language 

experience on estimation — separate from, for example, the acuity of ANS representations — and 

which of these components might better explain later mathematics achievement. 

 To explore the role of language in the development of estimation, we presented 5- to 7-

year-old French-English bilinguals with a dot array estimation task in their two languages. We also 

tested how high children could count in each language as a proxy of relative exposure to each 

language’s counting system. We then asked whether children generate different estimates in their 

two languages in terms of (a) accuracy and (b) degree of variability (i.e., uncertainty). We also 

asked whether any such differences might be explained by children’s knowledge of counting 

structure in each language, including factors such as their access to number words in each language 



21 
 

and their knowledge of the later-greater principle — that is, whether on consecutive trials an 

increase or decrease in the size of a presented dot array was reflected by a verbal estimate that was 

earlier or later in the count list. 

Method 

Participants 

In total, 93 French-English bilingual 5- to 7-year-old children participated in the study (M 

= 6.8 years, SD = 0.8, range = 4.9 – 8.0). This sample size represents the maximum number of 

children who could be tested during a 3-week field trip to Comox, British Columbia, Canada (n = 

64), plus a smaller group of children tested at a French immersion school in San Diego, California 

(n = 26), or at a lab at the University of California, San Diego (UCSD) (n = 3), in the southwestern 

United States. Two children were excluded due to failure to complete more than half of the trials, 

leaving a final total sample of 91. 

The field site in British Columbia was chosen because of the availability of both first-

language (L1) English-speaking and L1 French-speaking children who lived in an English-

dominant environment but attended French immersion schools, resulting in high levels of balanced 

bilingual number knowledge. At one school, attendance was restricted to children whose 

caregivers spoke French as an L1 (n = 34), whereas the other school targeted children from 

English-speaking households (n = 30). The school in San Diego (n = 26) served children from a 

variety of linguistic and cultural backgrounds (e.g., French citizens, French Canadians, 

monolingual English families interested in French education). In all three schools, formal 

instruction was given almost exclusively in French, including math curriculum. As part of the 

consent process, parents received a short questionnaire asking whether their children were 
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bilingual. Children who were not identified as bilingual by caregivers did not participate in the 

study. Participants were, in general, from families of medium to high socioeconomic status. The 

study received approval by the ethics committee of UCSD. 

Procedure 

Each participant completed a dot array estimation task and a counting assessment in both 

English and French. Each child received two blocks of tasks — an English block and a French 

block — the order of which varied between participants. Within each block, children were always 

presented with the dot array estimation task before the highest count task. In the English block, 

children were tested by an English-speaking researcher. In the French block, children were tested 

by a French-English bilingual researcher. The majority of participants (n = 75) were tested in both 

languages by the same French-English bilingual researcher, and the remainder (n = 16) were tested 

by two different researchers to maximize data collection in the available time. Testing lasted on 

average 30 min. All participants were tested at their respective schools, with the exception of 3 

children who were tested at the UCSD Language and Development Lab. 

Dot Array Estimation Task 

Participants were presented with dot arrays on a computer screen. Arrays ranged in 

magnitude from 4 to 98. Some items were presented eight times each (4, 16, 32, 60, and 80), and 

to avoid boredom these trials were interspersed with other items that were presented twice each 

(8, 12, 24, 44, 70, and 98). Stimuli were presented to each participant in two blocks of trials, where 

Block A and Block B contained identical items but in different randomized orders. Each participant 

received both blocks in both languages, and the order of the blocks was counterbalanced. Hence, 
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participants were assigned to one of four conditions in a 2 (English first vs. French first) x 2 (Block 

A first vs. Block B first) design. 

Participants were first introduced to an experimenter who explained that they would be 

tested in two languages. This sentence was presented in French for children tested with the French 

block first and in English for children tested with the English block first. Next, children were 

introduced to the task in that block’s language (e.g., in the French block, instructions were in 

French). Children were instructed to look at the dots on the screen and guess how many there were. 

All participants’ responses were elicited verbally in the language of test (French or English 

depending on language block) and were recorded by the experimenter. The experimenter provided 

no information to children about the range of numbers in the task. Noninformative verbal 

encouragement was given to the participants to keep them motivated (e.g., ‘‘You are very 

attentive”, ‘‘You already did half of the game!”). Within each language block, participants were 

tested for 10 min or until the completion of all 52 trials, whichever came first. 

Highest Count Task 

Participants were asked to count as high as they could in English and in French. They were 

stopped at 100 or when they made their first error. 

Results 

Data Management 

Highest count 
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We recorded each child’s highest count in each of the two languages, which was defined 

as the highest number counted to without making an error (with a maximum value of 100), in order 

to describe the counting abilities of our sample. 

Estimation 

Before conducting our primary analyses, we excluded all estimates that were not provided 

in the format of a unique verbal numeral (n = 64/9464) such as expressions of addition or 

multiplication (e.g., ‘‘There are six plus three!”) and other non-numbers (e.g., ‘‘Eleventy 

billions”). We also removed outlier estimates that were 10 times larger or smaller than the 

presented numerosities (n = 247/9464) or that were at least 5 standard deviations from the mean 

estimation for each numerosity presented (n = 35/9153). Except for our ordinality analyses, all 

analyses reported below were performed on the remaining 9118 responses. Ordinality analyses 

cannot be affected by outliers (because they consider only order and not absolute distance between 

estimates); therefore, outliers were not removed for this analysis. 

We computed four main measures of estimation performance: raw estimates, percentage 

absolute error (PAE), coefficient of variation (COV), and ordinality. Raw estimates were 

children’s numerical estimates. Consistent with previous work (Barth et al., 2009; Lipton & 

Spelke, 2005; Sullivan & Barner, 2014), our first set of analyses tested the relation between 

children’s verbal estimates and the number of dots presented. To determine whether language 

affected estimates, analyses reported probed whether language predicted a difference in the slope 

of estimates (i.e., whether there was an interaction between language and numerosity). 

The remaining three analysis types were planned to probe the nature of any effects of 

language on estimation. First, because it is possible for estimates to exhibit a slope approaching 1 
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despite being inaccurate (e.g., in cases where the intercept is not 0, in cases where estimates for a 

particular numerosity were highly variable but averaged out to the ‘‘correct” response), our second 

set of analyses measured accuracy as the PAE of estimates, defined as the absolute distance 

between an estimate and its target numerosity on a particular trial: 

PAE = 	 &
Estimate − Numerosity

Numerosity & × 	100 

PAE values were log transformed to normalize a skewed distribution of residuals (to satisfy 

the assumptions of our linear regression analyses; see below). Second, we also asked how variable 

estimates were by calculating the COV, that is, the standard deviation of estimates relative to the 

mean estimate for a particular target: 

COV! =	
Standard	Deviation	of	Estimate!

Mean	Estimate!
 

 For each participant, this generated one COV per numerosity (N) per language. 

Finally, we calculated the ordinality of participants’ responses (as a measure of later-

greater knowledge). Participants’ raw estimates, COV, and PAE all are sensitive to the relative 

distance between their estimates. For example, if a participant sees a set of 40 dots and estimates 

‘‘forty,” the child’s PAE and raw estimate will be different than if the child had estimated ‘‘forty-

one” (and, in most contexts, so will the child’s COV). However, as noted by Sullivan and Barner 

(2013, 2014), children often make estimates that are wildly inaccurate despite being well ordered; 

for example, if a child estimated ‘‘four” after seeing 4 dots and then saw 44 dots on the next trial, 

the child’s response on this second trial would be considered ordinal whether the child responded 

‘‘five,” ‘‘five million,” or any other number greater than 4. Testing for ordinality is important 
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because the presence of ordinal estimates would indicate that poor estimation accuracy cannot be 

attributed to poor knowledge of how number words are ordered or that numbers later in the count 

list denote greater quantities. Instead, such evidence would implicate other factors such as the 

problem of relating distance between numbers in the count list to corresponding differences 

between ANS values. We return to the significance of this distinction in the Discussion. 

To calculate the ordinality of each numerical estimate, n, we coded whether it differed from 

the previous trial’s estimate in the correct direction. For example, if a child saw 4 dots on trial n - 

1 and then saw 44 dots on trial n, the child’s estimate was coded as ordinal only if the child 

provided a larger estimate on trial n than on trial n - 1. 

Preliminary analyses 

For these and all analyses, models were generalized linear mixed-effects models 

constructed in R using the lme4 package (Bates, Maechler, Bolker, & Walker, 2014; R Core Team, 

2019). All model outputs are available in our Open Science Framework (OSF) repository 

(https://osf.io/f8v7b/?view_only= 01910a3ad63c4fa39071617e24c10ab3). 

Highest Count 

Highest count was used to measure children’s familiarity with the count lists in French and 

in English. As shown in Figure 1.1, participants generally counted higher in English than in French 

(t(90) = 5.59, p < .0001). On average, children counted up to 50.5 in French (SD = 31, range = 3 –

100) and up to 71 in English (SD = 37, range = 8 – 100). In total, 50 children counted to 100 in 

English, whereas 14 children counted to 100 in French. In addition, 49 children counted higher in 

English than in French, and 17 children counted higher in French than in English. A total of 25 
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children were ‘‘balanced counters” in that their highest count differed by less than 10% across 

their two languages. 

 Estimation 

We conducted preliminary analyses to ensure that there were no effects of language order 

(i.e., which language children were tested in first) on estimates. To test this, we predicted each 

measure of estimation performance (raw estimates, ordinality, PAE, and COV) from language 

order and numerosity; for all models, participant and numerosity were treated as random factors1; 

we generated p values by comparing our full model with one that excluded language order. We 

found no effect of language order for any of our measures of estimation (all ps > .10). 

Because there are typically age effects on estimation performance, we also conducted 

preliminary analyses predicting each estimation measure from age (z scored), numerosity, and their 

interaction. For raw estimates, there was a significant interaction of age and numerosity (B = .12, 

SE = .01, t = 14.28, p < .0001). There were significant effects of age for PAE (B = .25, SE = .03, t 

= 8.99, p < .0001) and ordinality (B = .35, SE = .05, z = 7.04, p < .0001). For COV, there were no 

effects of age (B = .02, SE = .01, t = 1.31, p > .10) or numerosity (B = .001, SE = .002, t = 0.93, p 

> .10). 

Because language order had no effect in preliminary analyses, we did not consider it in 

subsequent analyses. However, we included age, numerosity, and their interaction in our raw 

estimate models. We included age and numerosity in our PAE models and ordinality models. We 

 
1 Numerosity was also added as a random factor in our models to account for the fact that some estimation items were 
presented eight times, whereas others were presented only four times (see Method).	 
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did not include age or numerosity in our COV models because it had no effect in preliminary 

analyses. 

 

Figure 1.1: Highest count performance in English and French by age. 

Note. Highest count performance in English (black/solid/closed circles) and French 
(white/dotted/open circles) by age. 

Main Analyses 

All analyses reported below were conducted using mixed-effects models, such that all 

estimates were entered into a single regression, with slopes fitted for each participant. 
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Our primary question was whether language of test affected estimation performance. To 

test this, we first constructed a model predicting raw estimates from age (in months), numerosity, 

language of test, and their interactions. If estimates differ across languages, we should find an 

interaction of numerosity and language of test; this would indicate that there is a difference in the 

slope of estimates for English relative to for French. In our main analyses, we planned to interpret 

the highest order interaction containing language of test. We found a significant three-way 

interaction among age, numerosity, and language of test (B = .11, SE = .01, t = 11.02, p < .0001) 

(see Figure 1.2), which reflected a difference in estimation behavior between French and English 

languages that was greatest among younger children. 

This first finding suggests that fluent bilingual children, who are immersed through 

schooling and their community in a French- and English-speaking environment, exhibited 

significantly different estimation abilities across their two languages. However, this first analysis 

leaves open the precise nature of this difference. A strong interpretation of our finding is that 

children’s estimates differ across their languages because children have made different mappings 

between number words and the ANS in each case. However, although our analysis found a 

difference in estimates across languages, it leaves open the possibility that differences were due to 

the fact that children accessed and used different number words in each of their languages. For 

example, a child who is familiar with numbers up to approximately 80 in one language and up to 

approximately 150 in the other language might make similar use of the numbers up to 80 in each 

language — perhaps with equal accuracy or noise — but perform differently for larger numbers 

that the child can access in only one language (e.g., more or less accurately). 
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Figure 1.2: Relationship between numerosity and estimates in English and French.  

Note. Relationship between numerosity and estimates in English (solid/open circles) and French 
(dashed/closed circles). Panels are grouped by age in years (5-year-olds: n = 20; 6-year-olds: n = 
30; 7-year-olds: n = 41). Data points represent binned means. Bars denote bootstrapped 95% 
confidence intervals.  

To identify whether children made different use of the numbers that overlapped across their 

two languages, we first identified each child’s ‘‘highest common estimate,” which was defined as 

the highest number that the child produced in both languages during the estimation task (e.g., if 
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the child’s highest verbal estimate in English was 80 and in French was 150, that child’s highest 

common estimate was 80). We reasoned that if access to number words limited performance and 

caused cross-linguistic differences in estimation, it should have done so only outside of this 

productive estimation range. Differences within the highest common estimate, however, would 

suggest that children’s estimates differ not only because of their differing abilities to access 

number words, but also because of how the words they can access are mapped to ANS values. In 

a first post hoc analysis2 that included only verbal estimates that were within the child’s highest 

common estimate range, we once again found a three-way interaction among numerosity, language 

of test, and age (B = .03, SE = .01, t = 3.39, p < .0001). Our second post hoc analysis considered 

only trials where the presented numerosity had a value that was within the child’s highest common 

estimate (e.g., considering only those trials on which the target numerosity was 80 or smaller). 

Once more, we found a three-way interaction among numerosity, language of test, and age (B = 

.09, SE = .01, t = 7.56, p < .0001). Thus, even when considering only trials that were within the 

child’s estimation range for both languages, estimates differed as a function of language, 

suggesting that bilingual children appear to have different mappings between ANS values and 

familiar number words across their two languages. Our next analyses addressed the nature of this 

difference. 

As a first step to understanding the nature of children’s different estimates across French 

and English, we considered estimation accuracy, as measured by the PAE of estimates (i.e., log 

PAE). If language affects the accuracy of estimates, we should expect PAE to differ for English 

 
2 All 91 participants were represented in these post hoc analyses, which contained 76.34% to 92.94% of the original 
dataset (depending on the analysis). None of the analyses on raw estimates, PAE, and ordinality was conducted on 
datasets containing fewer than 7400 trials. The dataset used for the main analysis of COV contained 1992 trials because 
a unique COV was calculated for each numerosity in each language per child. The COV post hoc analyses were 
performed on datasets containing 1937 and 1634 trials.  
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versus French. Evidence for this would include either a main effect of language of test or an 

interaction of numerosity and language of test, such that participants are more accurate at 

estimating in one numerical range for one language but in a different numerical range for the other 

language. To test this, we predicted PAE from age, numerosity, language of test, and the interaction 

of numerosity and language of test. This analysis found an effect of age (B = .25, SE = .03, t = 

9.00, p < .0001), reflecting the fact that accuracy was greater among older children (see Figure 

1.3). Importantly, there was also a significant interaction of numerosity and language of test (B = 

.005, SE = .001, t = 7.29, p < .0001), suggesting that, at least in some numerical ranges, there was 

a difference in accuracy across the child’s two languages. Following the method outlined above, 

we next asked whether the effect of language persisted when examining only numbers within the 

child’s highest common estimate. We found that the interaction between numerosity and language 

of test remained even when considering only verbal estimates or magnitudes within the child’s 

highest common estimate (trimmed estimation range: B = .004, SE = .001, t = 5.04, p < .0001; 

trimmed numerosity range: B = .004, SE = .001, t = 4.56, p < .0001) (see Figure 1.3). As shown in 

Figure 1.3, this result was likely driven by the underestimation of larger numbers (60–100 range) 

in French for 5- to 7-year-olds (see Figures 1.2 and 1.3). Thus, children’s estimates in French and 

English differed in accuracy, and this difference remained when considering only numbers used 

in both languages. 

As noted by an anonymous reviewer, although PAE is a standard measure used to capture 

estimation accuracy, it is also sensitive to variability around the mean of a participant’s estimates. 

This is not a problem from the perspective of testing whether children make different estimates 

across their languages, but it may make it more difficult to isolate accuracy as distinct from 

variability. To address this, we reproduced our PAE analyses using a modified measure of 
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accuracy, signed error rate, defined as (estimate - numerosity)/numerosity. Using this measure, we 

again found that the accuracy of children’s estimates differed reliably across their two languages. 

Specifically, we found an interaction between age and numerosity (B = .001, SE = .0002, t = 5.80, 

p < .0001) and a significant interaction of numerosity and language of test (B = .001, SE = .001, t 

= 2.81, p < .001). These effects remained significant when considering only trimmed data (trimmed 

estimation range: B = .001, SE = .0004, t = 2.25, p < .05. When considering trimmed numerosity 

range, the main effect of language of test remained significant (B = .72, SE = .008, t = 5.46, p < 

.0001), although the interaction between language of test and numerosity did not (p = .08). Thus, 

this series of post hoc analyses suggests that when accuracy is isolated from the variability of 

estimates (i.e., using signed error rate as a measure), our results resemble those reported for PAE, 

although in one case (trimmed numerosity range) the effect of language of test does not differ as a 

function of numerosity. 

We next asked whether children’s estimates differed in how variable they were across 

children’s two languages — for example, whether, on average, the standard deviation of estimates 

for a particular numerosity was greater in one language than in the other language. We measured 

this by computing the COV for each target value, for each of children’s two languages, as described 

above. Next, we constructed a model predicting COV from language of test (recall that neither 

numerosity nor age was related to COV in preliminary models and, therefore, was excluded from 

this model). Children’s COV in English (M = .35) was modestly greater than that in French (M = 

.32), a potentially surprising result given that children were overall more accurate in English than 

in French (see Figure 1.4). However, this effect did not reach the alpha threshold of p < .05 (B = 

.023, SE = .0118, t = 1.96, p = .0502). When analyses were restricted to only estimates within 

children’s productive estimation range, or when analyses were restricted to only numerosities 
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within children’s productive estimation range, language of test did not predict COV (all ps > .10). 

This suggests that, to the extent that there was a difference in COV in the first analysis, this was 

likely due to greater variability for numbers that children produced only in English. 
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Figure 1.3: Relationship between numerosity and percentage absolute error in English and French 

Note. Relationship between numerosity and log percentage absolute error (PAE) in English and 
French across age (5-year-olds: n = 20; 6-year-olds: n = 30; 7-year-olds: n = 41). Data points 
represent binned means. Error bars are bootstrapped 95% confidence intervals. 

Our last set of analyses considered ordinality. Recall that the accuracy and variability of 

estimates each may be affected by (a) children’s knowledge that words later in the count list denote 

larger magnitudes (i.e., ordinality/later-greater), (b) children’s knowledge of how relative distance 
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between verbal estimates in the count list corresponds to distance between ANS values (numerical 

distance), or (c) both. To assess whether ordinality differed across languages, we constructed a 

model predicting ordinality from language of test, numerosity, and age. We found a main effect of 

age (B = .35, SE = .05, z = 7.05, p < .0001), such that older children gave more ordinal estimates 

than younger children, and a main effect of language of test (B = .14, SE = .06, z = 2.45, p = .014), 

such that ordinality rates were higher in English (82.8%) than in French (80.9%), although this 

effect was very small (2% difference) (see Figure 1.5). There was no reliable effect of numerosity 

(B = .02, SE = .01, z = 1.76, p = .079). When we considered only estimates that were within the 

child’s highest common estimate, the difference between languages became smaller (English = 

83.8%; French = 82.2%) and the effect of language of test was no longer significant (B = .107, SE 

= .062, z = 1.74, p = .083). Likewise, when we considered only numerosities that were within the 

child’s productive estimation range, we also found no significant effect of language on ordinality 

(English = 83.8%; French = 82.4%; B = .107, SE = .064, z = 1.67, p = .095). These data indicate 

that although children exhibit significant differences in the ordinality across all their estimates in 

French and English, these differences are very small and cannot likely explain the much larger 

differences in accuracy reported above. In addition, when analyses are restricted to numbers that 

are familiar across both of a child’s languages, these already small effects become nonsignificant. 
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Figure 1.4: Average coefficient of variation in English and French.  

Note. Average coefficient of variation (COV) in English (left bars) and French (right bars). Error 
bars represent 95% confidence intervals. 
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Figure 1.5: Average proportion of ordinal responses in English and French  

Note. Average proportion of ordinal responses in English (left bars) and French (right bars) across 
age (5-year-olds: n = 20; 6- year-olds: n = 30; 7-year-olds: n = 41). Error bars represent 95% 
confidence intervals. 

Discussion 
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We tested whether, when children acquire multiple languages, their estimation abilities 

differ across their two languages. In particular, we asked whether children’s mappings between 

number words and magnitudes are language specific (e.g., in French vs. English) or whether 

certain components of these mappings might transfer across languages in bilingual learners. To do 

this, we asked French-English bilingual children to make dot array estimates in each of their two 

languages. By eliciting estimates in both languages, we examined the effect of language 

independent of the acuity of nonlinguistic (ANS-based) numerical representations, which 

remained constant (because language was manipulated within participants). We found that 

estimates differed across children’s two languages and, in particular, that their estimates were less 

accurate in French than in English, especially among younger participants. Interestingly, this 

difference in estimation performance remained even when analyses were restricted to the range of 

numbers that children produced in their weaker language (i.e., their ‘‘highest common estimate”) 

as well as when analyses were restricted to dot array numerosities that fell within this same range. 

These data suggest that the accuracy of mappings between number words and numerical 

magnitudes differs across a child’s two languages and that this difference cannot be explained by 

differences in the precision of the ANS (because children use the same ANS system in both 

languages). These data are most consistent with the view that the structures that support mature 

estimation are, at least in part, specific to particular languages and, therefore, do not readily transfer 

from a highly trained language to a less trained language. 

How might a child’s linguistic representations of number differ, such that estimates differ 

across languages? We addressed this question by asking which types of knowledge differ across 

languages and, therefore, are language specific and not readily transferred from one language to 

the other language. As noted above, we found that accuracy differed significantly across children’s 



40 
 

French and English estimates. However, other aspects of their estimates did not differ across 

languages. For example, although there was a significant difference in ordinality across French 

and English, this difference was very small (2%) and disappeared when analyses were restricted 

to numbers known in both French and English. This suggests that once children exhibit later-

greater knowledge in one language, they show roughly equal competence in deploying it in their 

L2 for familiar numbers — a pattern that is compatible with the use of a language-general principle 

rather than language- and item-specific learning. In addition, we found no difference in the 

variability of estimates for familiar numbers across languages; although children mapped their 

number words to magnitudes less accurately in French than in English, their mis-mappings were 

nevertheless every bit as consistent. 

One hypothesis that may explain this pattern of findings is structure mapping, a mechanism 

discussed in previous studies of number word learning (Carey, 2004, 2009; Gentner, 2010; Wynn, 

1992), dot array estimation (Izard & Dehaene, 2008; Lyons, Ansari, & Beilock, 2012; Sullivan & 

Barner, 2013, 2014), and number line reasoning (Cohen & Sarnecka, 2014; Siegler, Thompson, & 

Schneider, 2011; Thompson & Opfer, 2010; for a review, see Marchand & Barner, 2018). On this 

view, mapping numerical symbols to magnitudes is not merely a process of forming item-based 

associations between individual words and ANS values but instead involves a process of noticing 

— and exploiting — the analogous structures of the count list and ANS values. For example, to 

make an accurate estimate for a dot array containing 20 items, a child who has a robust item-based 

association between 10 and the word ten might first use the later-greater principle to infer that 

because the 20-dot array is greater in number, it merits a label that comes later in the count list — 

thereby exploiting knowledge of the structure of counting (and a principle that might be transferred 

across languages, compatible with our finding that ordinality does not differ across children’s 
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languages). For this estimate to be accurate, however, the child must further exploit the structure 

of counting in a way that is language specific. Using a process similar to anchoring and adjustment 

(Tversky & Kahneman, 1974), a child who knows (or guesses) that a particular dot array contains 

ten items and subsequently sees an array twice as large could make an estimate of twenty, provided 

that the child knows that twenty is twice as far into the count list as ten. Thus, the child must know 

not only the ordering of number words in his or her language but also the relative distance between 

number words in his or her count list — that is, knowledge that depends on language-specific 

mastery of the count list. 

On this structure mapping hypothesis, there are multiple ways in which bilinguals might 

become better estimators in one language than in another language. First, they might acquire better 

knowledge of the relative distance between numbers in a particular language. Although the order 

of the count list makes the distance between numbers implicitly available to children, this 

knowledge is likely difficult to deploy, much as it is difficult for even adults to estimate the relative 

distance between letters of the alphabet (Klahr, Chase, & Lovelace, 1983). Knowledge that, for 

example, 40 is twice 20 likely requires experience beyond reciting the count list and may benefit 

from practice counting with decades or reciting basic multiplication facts. Second, differences in 

estimation across languages may be explained, in part, by differences in calibration. Although it is 

unlikely that all large number words have item-specific associative mappings to ANS values, a 

small number of anchor points for especially frequent numbers may exist (Sullivan & Barner, 

2013, 2014). A child who lacks any anchors might know the later-greater principle and that 40 is 

twice 20 but might still systematically under- or overestimate due to mis-calibration (i.e., not 

having associative mappings to ANS values that act as anchors for larger estimates that rely on 

structural inference). Finally, also compatible with structure mapping, if bilingual children have 
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limited access to number words in their L2, they might stretch their response grid (Izard & 

Dehaene, 2008), thereby changing their estimates for all numbers that do not exhibit a strong 

associative mapping and causing the children to be less accurate for larger numbers even if they 

do not differ in ordinality or COV. Future studies should explore this question by directly probing 

children’s structural knowledge of the count list and by testing the effects of calibration events on 

estimation accuracy across bilingual children’s two languages. 

Note that the ability to use the structure of counting to guide estimates may depend on how 

accessible this structure is in a particular language, which may be relevant to understanding 

differences between French and English estimation. In English, the words seventy, eighty, and 

ninety are relatively regular and are composed of the morphemes ‘‘-ty” and ‘‘seven,” ‘‘eight,” and 

‘‘nine,” respectively. In contrast, in French the word soixante-dix (70) translates as ‘‘sixty-ten”, 

quatre-vingts (80) translates as ‘‘four-twenty”, and quatre-vingt-dix (90) translates as ‘‘four-

twenty-ten”. These structural irregularities may make these numbers harder to learn in French than 

in English, predicting poorer estimation. Conversely, they may make estimation easier by making 

the multiplicative relations between numbers more transparent. Unfortunately, in our dataset this 

question is difficult to test because we did not assess whether children had decomposed these 

words according to rules and also because the irregularities in French happen to arise specifically 

with larger numbers. Consequently, although estimates for these numbers could be poorer due to 

irregularities, less accurate estimates could also result from the fact that, in a weaker language 

larger numbers are simply not as familiar as they are in a child's primary language. Although no 

previous studies have examined the impact of counting regularity on estimation, past work has 

shown that children who are exposed to highly regular counting systems like Cantonese learn to 

count earlier than children learning less regular systems like Hindi and may also be quicker to 



43 
 

learn other numerical skills, although such effects are variable across studies and some attribute 

them to educational practices rather than language (Dowker, Bala, & Lloyd, 2008; Dowker & 

Roberts, 2015; Lefevre, Clarke, & Stringer, 2002; Mark & Dowker, 2015; Miller, Kelly, & Zhou, 

2005; Miller, Smith, Zhu, & Zhang, 1995; Miller & Stigler, 1987; Miura, Kim, Chang, & 

Okamoto, 1988; Miura & Okamoto, 1989, 2013; Schneider et al., 2020).3 However, these findings 

notwithstanding, there is reason to believe that irregularities in how languages represent decade 

terms such as sixty and seventy do not likely contribute to these differences. For example, although 

English- and Cantonese-speaking children readily learn rules to combine decade labels (10–90) 

with unit labels (1–9), children who speak these languages do not appear to know that decade 

labels are generated by rules and instead treat words like sixty as unanalyzed morphemes (as shown 

by the fact that, when asked to count, children frequently count up to decade transitions such as 

29, 39, and 49 but cannot use a rule to generate decade labels; Schneider et al., 2020). Thus, 

evidence from other languages suggests that French-speaking children likely represent words like 

soixante-dix and quatre-vingts as unanalyzed words, such that their relative complexity, therefore, 

does not affect estimation either positively or negatively. Future studies should explore this 

question. 

In summary, this study shows that estimation abilities differ across a bilingual child’s two 

languages and that these differences are not explained by count list knowledge alone given that 

they persist even within numbers used in both languages. These results have potentially important 

consequences for mathematics education given that, although previous studies show associations 

 
3 Note that Lefevre et al. (2002) found that French Canadian children do not count as fluidly as English-speaking 
children but also that they do not receive as much counting input, making it unclear whether linguistic differences in 
the count list play a role.  
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between ANS acuity and mathematics achievement (Halberda, Mazzocco, & Feigenson, 2008; 

Libertus, Feigenson, & Halberda, 2011; Starr, Libertus, & Brannon, 2013), other studies find a 

link between math achievement and estimation abilities, with some studies arguing that this second 

relationship is stronger (Booth & Siegler, 2006, 2008; Gunderson, Ramirez, Beilock, & Levine, 

2012; Kolkman, Kroesbergen, & Leseman, 2013; Moore & Ashcraft, 2015; Sasanguie, De Smedt, 

Defever, & Reynvoet, 2012; Siegler & Booth, 2004; Sullivan et al., 2016). These factors, combined 

with our findings, suggest that if caregivers, preschool teachers, and other educators wish to train 

estimation abilities as a mechanism for promoting later mathematics ability, it may be important 

that this training take place in the expected language of later mathematics instruction. Likewise, 

children who are likely to transition midway through their mathematics training from one modality 

of instruction (e.g., French) to another (e.g., English) may benefit from estimation training in both 

languages. In particular, bilingual children may benefit from being explicitly taught about 

language-specific aspects of estimation in their L2 such as the distance between numerals (e.g., 

counting by 10s, learning that 20 = double 10). Developing bilinguals’ understanding of the 

structure of their counting systems in both languages may improve their estimation abilities and, 

more generally, their mappings between the linguistic and nonlinguistic representations of 

magnitudes. 
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Abstract 

The Give-a-Number task has become a gold standard of children’s number word 

comprehension in developmental psychology. Recently, researchers have begun to use the task as 

a predictor of other developmental milestones. This raises the question of how reliable the task is, 

since test-retest reliability of any measure places an upper bound on the size of reliable correlations 

that can be found between it and other measures. In Experiment 1, we presented 81 2- to 5-year-

old children with Wynn’s (1992) titrated version of the Give-a-Number task twice within a single 

session. We found that the reliability of this version of the task was high overall, but varied 

importantly across different assigned knower levels, and was very low for some knower levels. In 

Experiment 2, we assessed the test-retest reliability of the non-titrated version of the Give-a-

Number task with another group of 81 children and found a similar pattern of results. Finally, in 

Experiment 3, we asked whether the two versions of Give-a-Number generated different knower 

levels within-subjects, by testing 75 children with both tasks. Also, we asked how both tasks relate 

to another commonly used test of number knowledge, the “What’s-On-This-Card” task. We found 

that overall, the titrated and non-titrated versions of Give-a-Number yielded similar knower levels, 

though the non-titrated version was slightly more conservative than the titrated version, which 

produced modestly higher knower levels. Neither was more closely related to “What’s-On-This-

Card” than the other. We discuss the theoretical and practical implications of these results.  
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Introduction 

Over the past 40 years, a large corpus of studies has shown that children acquire the 

meanings of number words in a predictable and protracted stage-like sequence. This 

developmental sequence has been revealed in large part by a single measure of number word 

knowledge, called the Give-a-Number task (Give-N). Though versions of this task were used as 

early as the 1970s to study number word comprehension (Schaeffer et al., 1974), Give-N emerged 

as a type of gold standard after it was used by Wynn (1990, 1992) to describe children’s 

progression through stage-like “knower levels” in both cross-sectional and longitudinal designs. 

In the task, an experimenter provides children with a set of small counters (e.g., 10-15 toy apples), 

and asks them to give specific numbers of things, often starting with 1 – e.g., “Can you put one 

apple in the plate?”. Children who can consistently give 1 when asked for one, but who give 

inconsistent amounts of objects for other requests are typically called 1-knowers. Similarly, 2-

knowers can give 1 and 2 when asked for these quantities but are unable to consistently give 

appropriate quantities for larger numbers like three, four, etc. Following a similar pattern, children 

go through the stages of 3-knower and sometimes 4-knowers, too. Sometime between the ages of 

3;6 and 5, children appear to make a breakthrough, and begin to use counting to correctly give 

larger sets, at which point they are called “Cardinal Principle knowers” or CP-knowers. This basic 

developmental pattern appears to be highly replicable across multiple labs in different countries 

(Almoammer et al., 2013; Barner, Libenson & Yang, 2009; Ceylan & Aslan, 2018; Condry & 

Spelke, 2008; Davidson et al., 2012; Jara-Ettinger et al., 2017; Le Corre & Carey, 2007; Le Corre 

et al., 2006, 2016; Li et al., 2003; Marchand & Barner, 2019; Meyer et al., 2020; Negen & 

Sarnecka, 2012; Nikoloska, 2009; Piantadosi et al., 2014; Sarnecka & Carey, 2008; Sarnecka et 

al., 2007; Sarnecka & Lee, 2009; Sarnecka, et al., 2018; Schneider et al., 2020; Slusser et al., 2013; 
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Spaepen et al., 2018; Wagner et al., 2015; Wynn, 1990, 1992). This is important not only because 

of the theoretical implications of the observed stages (e.g., Carey & Barner, 2019; Le Corre & 

Carey, 2007; Le Corre et al., 2006; Piantadosi et al., 2012; Sarnecka & Carey, 2008; Sella et al., 

2020), but also because the stages provide a framework for comparing data across studies and 

across cultures. Numerous studies have now tested how vocabulary size, grammatical cues, and 

other cultural factors relate to different knower level stages (Almoammer et al., 2013; Barner et 

al., 2009; Le Corre et al., 2016; Marušič et al., 2016; Negen & Sarnecka, 2012; Sarnecka et al., 

2007, 2018), and others have asked how knower levels relate to later mathematics achievement 

(Chu et al., 2016; Geary & vanMarle, 2016; Moore et al., 2016; Purpura & Simms, 2018; Spaepen 

et al., 2018) or the development of other cognitive processes (Abreu-Mendoza et al., 2013; Le 

Corre, 2014; Mussolin et al., 2014; Sarnecka & Wright, 2013; Shusterman et al., 2016). 

Critically, however, the replicability of the overall knower level framework does not itself 

assure the reliability of individual knower level classifications and doesn’t guarantee that testing 

correlations between knower levels and other factors will generate meaningful results. Currently, 

the reliability of the Give-N task is not known. This is important because the strength of a 

correlation between two observations (e.g., knower level and vocabulary size), 

r(ObservedA,ObservedB), is bounded not only by the true correlation between the true value of 

the variables being measured, r(TrueA,TrueB), but also by the test-retest reliability of these 

measures taken individually, reliabilityA, reliabilityB (Nunnally, 1970).  

𝑟(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝐴, 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝐵 = 𝑟(𝑇𝑟𝑢𝑒𝐴, 𝑇𝑟𝑢𝑒𝐵) × N(𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐴	 × 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐵) 

Thus, as noted by Vul et al. (2009), in a scenario in which a true correlation between two 

variables is 100% but the test-retest reliability is .7 for one measure and .8 for the second, the 

highest detectable correlation should be .75 (i.e., 1 x √(.7 x .8)). In the current context, this means 
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that if individual knower levels (e.g., the 1-knower stage) exhibit very low reliability (e.g., .3), 

then the size of expected correlations between this knower level and other variables should also be 

low. Consequently, very low reliability would draw into question the validity of knower levels, 

since the validity of a measure is defined by its ability to make predictions about the outcomes of 

other measures.4 More generally, the interpretation of knower level assignments as correlates of 

other outcomes hinges critically on the reliability of the Give-N task. 

In the present study, we investigated the reliability of the Give-N task in three experiments. 

In Experiment 1, we assessed the test-retest reliability of Wynn’s titrated version of Give-N. In the 

titrated Give-N task, trials are structured such that if a child responds correctly to a request (e.g., 

giving exactly 1 object when asked for one), they are then tested with the next largest number (e.g., 

two), whereas if they fail, they are tested on a smaller number (or again on one). This procedure is 

then repeated until the experimenter can identify the largest number known by the child. In 

Experiment 2, we investigated the test-retest reliability of an alternative version of Give-N that 

uses a non-titrated trial structure in which children are tested on all numbers of interest (e.g., 1, 2, 

3, 4, 5, 6, 8, 10) three times each in pseudo-random order, using the same criteria to identify 

children’s knower levels. We expected that this version might offer stronger reliability than the 

titrated version, because it features more trials and uses the same trial structure on each testing 

occasion, unlike the titrated version.5 In both Experiments 1 and 2, we also considered the role that 

 
4 As explained in Buelow (2020): “A task that is not reliable can not be valid, and lowered reliability can limit 
inferences made from the task to real-world behaviors.” The logic is that an outcome X can’t predict a second outcome 
Y if it can’t predict itself (i.e., if it is unreliable). And if X can not explain properties of the world, then it is not a valid 
measure. 
5 We reasoned that additional trials might increase reliability by providing more information and reducing the 
likelihood of underestimating (or overestimating) knowledge, and that stable trial structure should reduce the 
possibility that low reliability is due to variability introduced by differences in methods across testing sessions. 
Specifically, whereas random performance errors made by children will have no impact on the trial structure of the 
non-titrated version of the task since its trial structure is predetermined, such errors may significantly change the trial 
structure of the titrated version, since an error on a trial forces a retreat to a smaller number. 
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testing environment might play in the reliability of Give-N by evaluating children in two different 

settings – either in the lab or outside of the lab (e.g., in a museum, preschool, etc.) – as some 

studies have reported different outcomes in these different settings (Newman et al., 1978; 

Rasmussen et al., 2017; Yantz & McCaffery, 2009; cf. Pfefferle et al., 1982). Finally, in 

Experiment 3, we compared the titrated and non-titrated Give-N versions within-subjects, to 

determine whether they generated different results, and whether either of the two was more 

conservative (e.g., by ascribing less knowledge). Also, Experiment 3 attempted to probe how the 

two Give-N methods are related to another frequently used measure of number knowledge by 

comparing them to the What’s-on-this-Card task, which assesses how accurately children label 

sets when presented visually. 

Experiment 1: Give-a-Number Titrated 

Method 

Participants 

We tested 106 English-speaking children. A total of 25 children were excluded from 

analysis because of (1) failure to complete all 3 tasks (n = 11), (2) language delay (n = 1), (3) being 

a non-English primary speaker (n = 2), (4) falling outside the targeted age range (n = 4) or (5) 

experimenter error (n = 7). Our final sample included 81 children, aged 2;2 to 4;1-year-old (M = 

3;3 years). We chose to test participants in this age range as previous studies suggest that it features 

the most variability in knower levels. Participants were recruited from a parent database (lab), 

preschools, and museums in San Diego, California, spanning a wide range of socioeconomic 

backgrounds. Informed consent was obtained from parents. The study received approval by the 

institutional ethics committee of UCSD.  

Materials and procedure 
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Children were tested either in the lab or offsite at museums and preschools. The testing 

environment in museums and preschools was similar and consisted of a relatively quiet corner of 

a room made available by staff. The testing environment in the lab was more quiet than off-site 

and possible distractions were limited. Each session lasted approximately 8 minutes and included 

three tasks administered in the same order for all participants: (1) Give-a-Number task 1, (2) 

Highest Count task and (3) Give-a-Number task 2. Children received a small prize for their 

participation at the end of the testing session. 

 Titrated Give-a-Number Task 

This task was based on Wynn (1992). Stimuli included a puppet, a plastic plate, and a pile 

of small plastic toys. Participants were asked to provide a certain number of toys in the following 

way: “Mr. Monkey is very hungry. This is a plate and these are your bananas. I want you to put 

bananas on the plate for Mr. Monkey, ok? Listen carefully! Can you put N banana(s) on the plate? 

(N is the number word). Put N banana(s) on the plate and tell me when you’re all done.” Following 

these instructions, children were asked to count to verify that they had provided N (i.e.,“Is that N? 

Can you count and make sure?”). If they chose to change their answers, only their final responses 

were recorded. Participants were always asked for one first, and then two. If the child succeeded 

on both trials, the experimenter then asked for three. Otherwise, they asked for one. The 

subsequent requests depended on the child’s pattern of response: if the child succeeded in 

providing N items, the experimenter asked for N + 1 and if the child failed, they asked for N - 1. 

The lowest request was one and the highest was six. Children were credited as N-knowers (e.g., 2-

knowers) if they correctly gave N objects at least 67% of the time when asked for N. Furthermore, 

to be credited as N-knowers, children needed to use N 67% of the time only for requests of N and 

not for other requests (in practice, this meant that children could give N only once for requests 
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other than N). Children were credited as CP-knowers if they were able to provide all sets up to six 

based on these criteria, or if they responded to each request (one to six) consecutively without 

error, in accordance with Sarnecka and Wright (2013). Aside from this last instance (of CP-

knowers), participants were tested with a minimum of 2 trials for N, and for numbers tested twice, 

children needed to succeed on both trials to be tested on the next trial or be credited as N-knower. 

Children who correctly gave 1 object when asked for one (but failed for two and larger requests) 

were classified as 1-knowers. Children who answered successfully for one and two were credited 

as 2-knowers and so forth. Although past studies have often classified children who succeed at five 

as CP-knowers, we chose to categorize children as 5-knowers if they succeeded at five but failed 

at six. Although more conservative, this criterion allowed us to test the claim that knower levels 

higher than 4 exist and can be diagnosed (Krajcsi et al., 2018). However, allowing for an additional 

knower level in the classification risks decreasing the reliability of the task and of some knower 

levels in particular. Nevertheless, as we report below, including 5-knowers didn’t impact the 

reliability of the task because the number of 5-knowers was low (3 children at T1 and 4 at T2).6 

 Highest Count (HC) 

This task was used to verify that our sample was representative of previously reported 

samples of the same age and served as a filler task between the two Give-N tests. Participants were 

asked to count as high as they could. The last number reached before stopping or making an error 

was recorded as the child’s highest count.  

Analyses 

 
6 We re-ran all analyses with 5-knowers categorized as CP-knowers and obtained virtually the same results as 
presented below; while the reliability for the task overall remained unchanged (linear weight = 0.88 vs 0.87), there 
was, unsurprisingly, a slight increase of reliability for the CP-knowers (from 0.827 to 0.852), the subset-knowers 
(from 0.681 to 0.700) and the knower-level groups (0.824 to 0.850) analyses. However, in all of these cases, the 
increase was negligible. 
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The choice of a reliability index depends crucially on the scale of the outcome measure of 

interest. Cohen’s Kappa is very commonly used for nominal scales, especially when the outcome 

of interest is binary, such as the presence or absence of some clinical condition (Hallgren, 2012). 

However, the basic computation of Kappa can be modified to weight different disagreements in 

classification differently, allowing the approach to work for ordinal scales as well (in which, say, 

the difference between 4 and 2 is larger than that between 4 and 3). Intra-class correlations (ICC; 

Hallgren, 2012) are designed for use with tasks that produce continuous outcome measures, but 

also produce interpretable results for ordinal scales. Thus to select a measure of reliability for 

knower level classifications, one must first decide how to conceptualize that construct: as a smooth 

continuum of knower levels, or as a discrete set of stages? Is the transition from zero-knower to 

one-knower a similar jump in number knowledge as the transition from two-knower to three-

knower? Because it is not clear whether any single choice of reliability metric is entirely free of 

drawbacks with respect to complexity of the knower level scale, we introduce and report several 

different metrics, so that readers may use their own judgment in assessing the degrees of reliability 

reported here. 

Here we describe the different reliability indexes used throughout Experiments 1, 2 and 3, 

including Kappa (weighted and unweighted), Agreement, Bias Index, Prevalence Index, 

Prevalence-Adjusted Bias-Adjusted Kappa (PABAK) and Intra-class correlation (ICC). The 

Kappa statistic was preferred for our reliability assessment as it is considered a standardized index 

of reliability for categorical variables (Hallgren, 2012), with which the knower level framework is 

more compatible (relative to continuous scales). Across the different measures of reliability for 

categorical data, we also prioritized the Kappa statistic because Kappa, in its weighted version, is 

compatible with both nominal and ordinal data, which we used in our experiments, allowing us 
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therefore to provide a consistent measure across different analyses. However, in addition to the 

weighted Kappa, we provide the reader with Intra-class Correlation when dealing with ordinal data 

as it is a common measure used in this context and may be preferred by researchers who 

conceptualize knower levels as a continuous scale (although we do not endorse this practice). All 

analyses were computed in R (Team R Code, 2018) and Kappa analyses were performed using the 

“vcd” (Meyer et al., 2021) and epiR packages (Stevenson & Sergeant, 2021). In our main analyses, 

reliability was measured using the weighted version of the Kappa statistic (Cohen, 1960; 1968), 

defined in the following way: 

𝐾 =	
𝑃" − 𝑃#
1 − 𝑃#

 

In this expression, K represents the Kappa statistic, Po is the observed (overall) agreement 

and Pe the agreement expected by chance. Overall agreement corresponds to the total number of 

matches between the first and second assessment of a task (i.e., the sum of the values on the 

diagonal of a contingency table) divided by the total number of observations (see Table 2.1 for an 

example of a simplified contingency table). Agreement expected by chance refers to the sum of 

the theoretical frequencies in each cell of the diagonal, which are calculated using the same formula 

as for computing expected frequencies for Pearson's Chi square (i.e., by taking the product of 

observed marginal proportions classified as each knower level across tasks).  

In the modified weighted Kappa formula, Po and Pe are calculated using a matrix of (dis-

)agreement weights, which specify the degree to which each possible pair of classifications from 

the two tasks (dis-)agree. In the case of knower levels, this means that the difference between, for 

example, a 1-knower and a 5-knower can be represented as larger than the difference between a 1-

knower and a 2-knower. That feature enables weighted Kappa to handle ordinal scales, since it can 

attach greater weight to large differences between levels than to small differences (Cohen, 1968). 
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Importantly, it is incumbent on the investigator to decide how much weight to assign each possible 

(dis-)agreement, by carefully designing a weight matrix.  

In principle, a fully custom weight system could be used to describe the severity of 

disagreement for each pairwise combination of classifications across the two tasks. For example, 

disagreements in which a subject is classified once as a CP-knower and once as a non-knower (CP-

0k disagreements) could be weighted as arbitrarily more severe than disagreements in which the 

particular value of subset-knower was different across tasks. Each other combination of 

disagreements, such as CP-3k, 0k-4k, 4k-0k, etc., would have to be specified individually. Any 

choice of weighting, especially a custom weight scheme, therefore reflects a judgement regarding 

the nature of the number word acquisition process and its stages. For that reason, we refrain from 

developing our own customized weight system (with which other researchers could reasonably 

disagree). Instead, we report results using two common weighting systems: linear weights (in 

which the penalty for a disagreement is proportional to the absolute value of the difference in ranks 

across the two levels), and quadratic weights (in which the penalty is proportional to the square of 

that difference); using linear weights, a 4k-2k disagreement is twice as severe as a 4k-3k 

disagreement, while under quadratic weighting, 4k-2k is four times as severe as 4k-3k. Our 

preference is for linear weights, as that approach makes fewer theoretical assumptions about the 

trajectory of number knowledge development.  

In addition to Kappa, in all analyses we reported either the overall agreement or the 

effective agreement depending on the data under study. Effective agreement is defined as the 

number of matches divided by the number of observations that include at least one of the knower 

levels in consideration. Both overall agreement, the total number of matches over total values, and 

effective agreement are inflated indexes of reliability because they don’t consider the agreement 
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that could have occurred by chance (Luck et al., 2012; Viera & Garrett, 2005), which Kappa 

(weighted and unweighted) accounts for, making Kappa more conservative than raw measures of 

agreement. 

Some authors have argued that the magnitude of Kappa can be influenced by factors such 

as prevalence and bias in the data and that consequently, Kappa can be misleading in cases where 

these factors are considerable (Byrt et al., 1993; Cicchetti & Feinstein, 1990; Feinstein & Cicchetti, 

1990). Prevalence refers to the relative difference of agreement between raters or tasks across 

conditions. The prevalence index is calculated in the following way (refer to Table 2.1): 

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒	𝑖𝑛𝑑𝑒𝑥 =
|𝑎 − 𝑑|
𝑛  

Where |a - d| is the absolute value of the difference between the frequencies of cells on the 

diagonal (agreements; a and d in the Table 2.1) and n is the total number of observations.  

Table 2.1: Example of a simplified contingency table used in the reliability computations 

                        Assessment 1 
  1-knower 2-knower 

Assessment 2 1-knower a c 
 2-knower b d 

Note. Example of contingency table with Give-N’s One-Knower (1-knower) and Two-knower (2-
knower) only. 
 

If the prevalence index is high, suggesting that there is a high asymmetry in the frequencies 

in the cells of the diagonal, then Kappa will be reduced. The bias effect on Kappa occurs when 

there is large asymmetry in the frequencies of cells outside the diagonal, in other words, of 

disagreements (b and c). A high bias index can lead to an oversized Kappa. The bias index is 

measured in the following way: 

𝐵𝑖𝑎𝑠	𝑖𝑛𝑑𝑒𝑥 =
|𝑏 − 𝑐|
𝑛  
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In our assessment of reliability, alongside Kappa, we provide the prevalence and bias 

indexes7, as well as the Prevalence-adjusted bias-adjusted Kappa (PABAK) coefficient whenever 

the data allow it. It is important to note, however, that the prevalence and bias indexes are not 

measures of reliability per se, but instead provide an indication of potentially unbalanced data, and 

consequently, whether to rely more on PABAK than Kappa when interpreting the results.8 PABAK 

is an adjustment of Kappa that takes into account the influence of bias and prevalence. It is 

calculated by substituting the actual frequencies of cells a and d by their average to account for 

prevalence, and by replacing the actual frequencies of cells c and b by their average to account for 

bias. Not all studies agree on which Kappa coefficient, the original or the PABAK, should be used 

as the main reference value. Some argue that bias and prevalence are the inevitable result of the 

natural disparities in the population under study and that correction coefficients such as PABAK 

can therefore be misleading. We follow the recommendations of Byrt and colleagues (1993) and 

provide the reader with both values (non-adjusted and PABAK) as well as the prevalence and bias 

indexes, whenever the data allowed, so that the reader can assess reliability based on a holistic 

evaluation of these measures. Finally, for some analyses when it was applicable, we also provided 

the ICC which is another commonly-used statistic for ordinal variables (Hallgren, 2012), based on 

 
7 Note that for tables larger than 2 × 2, we calculated the prevalence index by taking the average difference (in absolute 
value) between all numbers in the diagonal paired together (a-d in Table 2.1). More precisely, we replaced the |a-d| in 
prevalence formula by the average difference between all numbers on the diagonal of the contingency table under 
study. For the bias index, we replaced b in the formula by the sum of all numbers above the diagonale and c by the 
sum of all numbers below the diagonale. However, the literature on how to calculate these measures for tables larger 
than 2 × 2 was very sparse and we could not identify any straightforward way to proceed. Calculating the average 
prevalence and bias seemed like the more reasonable approach but other researchers might disagree. Results for the 
prevalence and bias indexes, as well as PABAK (which relies on these 2 measures) for large tables (>2 × 2) should 
therefore be interpreted with caution. 
8 The criteria to classify a prevalence and bias index as too high are subjective and inconsistent. In our data, we noticed 
that the prevalence index tended to be particularly high in 2 × 2 tables (e.g., 0.78) and in those cases, we favored the 
PABAK instead of Kappa for our interpretation of the data. 
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correlations. Our complete datasets are also available in the following repository: 

https://osf.io/48mke/. 

Results 

Table 2.2 shows the distribution of knower levels in the first and second assessment of the 

titrated Give-N task. On average children could count just above 10 in the Highest Count task (M 

= 12.8), and their counting skills were variable (range = 0 to 100; SD = 13.0). Seventy-four out of 

81 (91%) participants were found to have a highest count greater than their knower level across 

the two Give-N assessments.  

In our first analysis, we included all knower levels (non-knower to CP-knower) in a 7x7 

contingency table (see Figure 2.1) and obtained an overall agreement of 77% and a weighted 

Kappa (Kw-linear) of .87 and .95 (Kw-quadratic; Kappaunweighted = .71; Prevalence index(mean) = .11, range = 0 - .25; 

Bias index = .09; PABAKweighted = .73; ICC = .97). All statistics are summarized in Table 2.3. Some 

researchers attempt to classify reliability scores according to a scale as described in Table 2.4; 

according to this scheme, this level of reliability is considered almost perfect (Landis & Koch, 

1977; Fleiss et al., 2003). However, because there is disagreement regarding these labels and their 

utility (e.g., Sim & Wright, 2005), and because we are mainly interested in quantitative impacts of 

reliability on the size of correlations between measures (rather than qualitative endorsement of 

particular tasks), we sidestep the significance of these labels in our discussion. As shown in Figure 

2.1, the rate of effective agreement (in percentage) across different knower levels was highly 

variable. Effective agreement was relatively high for non-knowers (80%), CP-knowers (76%), 1-

knowers (71%), and 2-knowers (72%), but much lower for 3- (30%), 4- (18%) and 5-knowers 

(40%). Thus, overall, the titrated Give-N task was highly reliable when all knower levels were 
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considered together, although concordance between individual knower levels was lower in some 

cases.  

To further investigate the difference of reliability across individual knower levels, we 

conducted three follow-up analyses for the subset-knower, non-knower, and CP-knower groups 

respectively. For the subset-knower analysis, we created a 6x6 contingency table with the knower 

levels 1 to 5, as well as a new category of non-subset-knowers (binning together non-knowers and 

CP-knowers) for Give-N Test 1 (T1) and Give-N Test 2 (T2). We found an effective agreement of 

63% and an unweighted Kappa of .68 (Prevalence index(mean) = .15, range = 0 - .35; PABAK = .72).9 

We report the effective agreement here as we were interested in the agreement specifically within 

the group of subset-knowers and this index does not include non-knowers and CP-knowers. We 

also report the unweighted Kappa, and not the weighted Kappa, because weighted Kappa assumes 

an ordered category structure, which is violated by binning non-knowers and CP-knowers into a 

common category. Next, for the non-knower analysis, we generated a 2x2 contingency table with 

contrasting non-knowers with all other levels for both Give-N T1 and Give-N T2. We obtained an 

effective agreement of 80% and a Kappa of .88 and (Prevalence index = .78;10 Bias index = 0; 

PABAK = .95). Next, for the CP-knower analysis, we created a 2x2 table (CP vs non-CP at T1 and 

T2) and found an effective agreement of 76% and a Kappa of .80 (Prevalence index = .37; Bias 

index = .04; PABAK = .83). These results suggest that the non-knower and CP-knower 

classifications are highly reliable, and more reliable than classifications within the subset stage 

 
9 Note here that the Bias Index is not valid in this subset-knowers analysis since the “non-subset-knower” category is 
not ordered and we would obtain different indexes based on its position in the contingency table, which can be placed 
arbitrarily either on the right or left of the contingency table. 
10 Note that in this analysis with non-knowers, the prevalence index is notably high and that using the PABAK 
coefficient as the main measure of reliability is recommended. 
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(though as already noted, concordance within the subset stage varies between individual levels, as 

shown in Figure 2.1). 

In some past studies (e.g., Sarnecka & Carey, 2008), researchers have been less interested 

in whether a child is a specific N-knower (e.g., 1-knower), and more interested in whether they are 

CP-knowers or subset-knowers. Relatedly, most studies simply lack the power to analyze 

individual knower levels as predictors. In our next analyses, we therefore asked whether a child 

classified as, for example, a subset-knower in T1, was likely to be a subset-knower again in T2. 

To do this, we divided knower levels into three groups: non-knowers, subset-knowers (1K to 5K) 

and CP-knowers. We then created a 3x3 contingency table with knower level groups at T1 and 

knower level groups at T2. Here, we found an overall agreement of 89%, and a weighted Kappa 

(linear) of .82 and .86 (quadratic; Kappaunweighted = .80; Prevalence index(mean) = .28, range = .17 - .42; 

Bias index = .04; PABAKweighted = .83; ICC = .92), which is similar to the reliability of all knower 

levels taken together. This suggests that children who were classified as subset-knowers in the first 

assessment were very likely to remain subset-knowers in the second assessment, just like non-

knowers and CP-knowers.  

Next, we asked whether knower levels systematically increased or decreased between T1 

and T2. An increase could signal a practice effect while a decrease could suggest a fatigue effect. 

In total, more children exhibited a decrease in their knower level from T1 to T2 (decreased n = 13; 

increased n = 6) but this difference was not significant (Wilcoxon rank test; W = 3368.5; p = .76). 

Furthermore, most of these children had knower levels that differed by one level (difference of 1 

level, n = 11; difference of 2, n = 8). 
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Table 2.2: Distribution of Knower Levels at the First (T1) and second (T2) assessment of titrated 
Give-N 

Knower Levels 0K 1K 2K 3K 4K 5K CP 

Assessment Number of Participants 

Time 1 9 14 16 5 7 3 27 

Time 2 9 15 15 8 6 4 24 

Note. 0K refers to non-knower, 1K to 1-knower, 2K to 2-knower, 3K to 3-knower, etc, and CP to 
Cardinal Principle knower. In task 1, there were 9 children classified as non-knowers, 45 subset-
knowers (1K to 5K) and 27 CP-knowers. In task 2, there were 9 non-knowers, 48 subset-knowers 
and 24 CP-knowers. 
 

 
Figure 2.1: Knower Level Classification in the First and Second Assessments of Titrated Give-N 

Note. The first assessment (T1) appears on the x axis, and the second assessment (T2) appears on 
the y axis. The percentages represent the percent effective agreement – i.e., the agreement 
calculated over not all paired knower levels, but those paired knower levels in which at least one 
belongs to the knower level in consideration. The numbers in parentheses represent the frequency 
of the paired knower level. The color scale is based on the proportion of effective agreement, where 
darker red represents higher agreement.  
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Table 2.3: Summary of Reliability measures and coefficients of the Titrated Give-N at T1 and T2 
across different knower levels analyses 

 
Group Contingency 

table size 
Agreement K PI BI PABAK ICC 

 

All knower 
levels 

7 x 7 77% .87 (w-l)  
95% CI, .81 to 
.93 
.95 (w-q) 
95% CI, .92 to 
.98 
.71 (unw) 
95% CI, .59 to 
.82 

.11 (M)  
range: 0 - .25 

.09  .73 (w-l)  
95% CI, 
.60 to .85 
.73 (w-q)  
95% CI, 
.56 to .89 

 

.97 
95% 
CI, .96 
to .98 

Subset-
knower 
only 

6 x 6 63% 
(effective) 

.68 (unw) 
95% CI, .56 to 
.80 

.15 (M)  
range: 0 - .35 

NA .72 (unw) 
95% CI, 
.61 to .83 

 

NA 

Non-
knower vs 
others 

2 x 2 80% 
(effective) 

.88 (unw) 
95% CI, .66 to 1 

.78 .0 .95 (unw) 
95% CI, 
.83 to .99 

 

NA 

CP-knower 
vs others 

2 x 2 76% 
(effective) 

.80 (unw) 
95% CI, .58 to 1 

.37 .04 .83 (unw) 
95% CI, 
.66 to .93 

 

NA 

Knower-
level 
groups 

3 x 3 89% .82 (w-l)  
95% CI, .71 to 
.94 
.86 (w-q) 
95% CI, .76 to 
.95 
.80 (unw) 
95% CI, .68 to 
.92 

.28 (M)  
range: .17 - .42 

.04  .83 (w-l)  
 95% CI,  
.72 to .94 
 .83 (w-q)  
 95% CI,   
.71 to .96 

.92 
95% 
CI, .88 
to .95 

 
Note. The contingency table size represents the size of the table used to compute the reliability 
indexes. K represents the findings of the Kappa coefficient; (w-q) refers to weighted Kappa using 
quadratic weights, (w-l) refers to weighted Kappa using linear weights and kappa coefficients with 
(unw) are unweighted. 95% confidence intervals are provided for all kappa indexes. PI refers to 
the Prevalence Index; (M) represents the mean PI whenever applicable. BI refers to the Bias Index. 
For the PABAK coefficient, (w-q) and (w-l) refers to quadratic and linear weighted PABAK. ICC 
represents the intra-class correlation statistic and the 95% confidence interval.  
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Table 2.4: Interpretation of Kappa Based on Landis & Koch (1997)’s Scale 

 
     Kappa       Interpretation 

 
< 0        Less than chance agreement  
.01 - .20       Slight agreement  
.21 - .40       Fair agreement  
.41 - .60       Moderate agreement  
.61 - .80       Substantial agreement  
.81 - .99       Almost perfect agreement 

 
Note. A Kappa measure of 0 equates chance while a Kappa of 1 equates a perfect agreement. 
Negative Kappa measures are possible and represent less agreement than chance (i.e., 
disagreement).   
 

Finally, we assessed whether testing location (either in-lab or off-site) was related to 

knower level classification. To do so, we conducted an ordinal logistic regression (“porl” function 

in MASS package in R; Venables & Ripley, 2002) with knower levels as the dependent variable 

and location as the predictor, which revealed no significant effect of location (t = .64; p = .52).11 

We also conducted a Fisher’s exact test to see if there was a difference in agreement (i.e., matches 

vs non-matches) between knower levels at T1 and T2 based on testing location, but this was not 

the case (p = .43). 

Discussion 

In Experiment 1, we found that the titrated Give-N task was highly reliable both when all 

knower levels were considered at once and when considering knower level groups (i.e., subset-

knowers, non-knowers, and CP-knowers). The results using the ICC statistic corroborated these 

findings. However, we noted substantial variation in the concordance of individual knower levels, 

particularly within the group of subset-knowers, with relatively high concordance for non-

 
11 This is the result obtained when knower levels at T1 are used as the dependent variable. We obtained the same 
outcome when using knower levelsat T2 (t = -0.06; p = .95) 
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knowers, 1-knowers, 2-knowers, and CP-knowers, but lower concordance for 3-, 4-, and 5-

knowers.  

 

Experiment 2: Give-a-Number Non-Titrated 

In Experiment 2, we assessed the test-retest reliability of the non-titrated version of Give-

N.  

Method 

Participants 

In total, 101 English-speaking children were tested for this experiment. Twenty children 

were excluded because of (1) failure to complete all 3 tasks (n = 12), (2) language barrier (n = 1), 

(3) not being in the targeted age range (n = 5), and (4) experimenter error (n = 2), leaving a final 

sample of 81 children, aged 2;6 to 4;1-year-old (M = 3;4 years). Children were recruited in the 

same way as in Experiment 1.  

Materials and procedure 

The testing environments were the same as in Experiment 1, except that children were 

presented with a non-titrated version of Give-N, twice, separated by the Highest Count task. 

Because the non-titrated version of Give-N includes a fixed number of trials, each session lasted 

approximately 10 minutes, slightly longer than in Experiment 1. 

 Non-Titrated Give-a-Number Task 

This task was identical to the titrated version used in Experiment 1, except for the trial 

structure. Children were given 15 trials including three for each of the numbers 1, 2, 3, 4, and 6. 

Note that since we did not ask for five, children could not be classified as 5-knowers in this version, 

unlike in the titrated task (though, in Experiment 1, only 5 children were ever classified as 5-
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knowers). We created two lists of trials in a pseudorandom order. All children were presented with 

both lists counterbalanced in order at T1 and T2 across children. The criteria to assign knower 

levels were the same as those used in the titrated version, with an emphasis on the requirement for 

children to succeed at all numbers below N to be credited as N-knowers (i.e., children couldn’t 

skip some numbers). Children were credited as CP-knowers if they could correctly give six on two 

out of three trials.  

 Highest Count (HC) 

The task was identical to Experiment 1. 

Results 

Table 2.5 shows the distribution of knower levels in the first and second assessments of the 

task. As in Experiment 1, most children counted just above 10 in the Highest Count task (M = 

13.6), and their counting skills were variable (range = 1 to 59; SD = 12.2). Seventy-seven children 

out of 81 (95%) had a highest count higher than their knower level across the two Give-N tasks.  

We first calculated the reliability of the non-titrated task, including all knower levels (0 to 

CP) in a 6x6 contingency table.12 All statistics are summarized in Table 2.6. We found an overall 

agreement of 72% and a Kw-linear of .81 and .90 (quadratic; Kappaunweighted = .63; Prevalence index(mean) = 

.12, range = .03 - .28; Bias index = .04; PABAK(weighted) = .66; ICC = .95). Figure 2.2 illustrates the 

contingency table used and the knower levels at T1 and T2 as well as their effective agreement.  

Next, we explored the reliability for subset-knowers, non-knowers and CP-knowers 

separately. All Kappas were unweighted in these analyses. For the subset-knower analysis, we 

created a 5x5 contingency table with knower levels 1 to 4 and a non-subset-knower category at T1 

and T2. We found an effective agreement of 56% and a Kappa of .61 (Prevalence index(mean) = .16, 

 
12 Note that since we did not test for 5, children could not be classified as 5-knower, reducing the knower level 
categories from 7 (0 to CP; as in Exp 1) to 6. 
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range = .04 - .33; PABAK = .65).13 In the non-knower analysis (2x2 contingency table), we 

obtained an effective agreement of 57% and a Kappa of .71 (Prevalence index = .86; Bias index = 

.01; PABAK = .93). In the CP-knower analysis, we found an effective agreement of 76% and a 

Kappa of .79 (Prevalence index = .28; Bias index = .02; PABAK = .80). So far, the results of 

Experiment 2 are similar to those of Experiment 1; the overall reliability of the task was high but 

varied across individual knower levels, especially within the group of subset-knowers. 

Next, we assessed the agreement and reliability of assignment to broader knower level 

groups - i.e., non-knower, subset-knower, or CP-knower. Here, we found an overall agreement of 

86%, and a Kw-linear of .77 and .80 (quadratic; Kappaunweighted = .75; Prevalence index(mean) = .31, range = 

.20 - .46; Bias index = .04; PABAK = .80; ICC = .89). This suggests that children classified as 

subset-knowers in the first assessment were likely to remain subset-knowers in the second 

assessment (as were non-knowers and CP-knowers). The ICC analysis also confirmed these 

results.  

Next, we assessed whether there was an effect of task order. As in Experiment 1, slightly 

more children showed a decrease in knower level from T1 to T2 (decreased n = 13; increased n = 

10) but this difference was not significant (Wilcoxon rank test; W = 3330.5; p = .86). Also, 

whenever there was a difference of knower levels, more children had knower levels that differed 

by only one level (n = 17) compared to 2 (n = 4) or 3 levels (n = 2). We also investigated whether 

there was an effect of trial order across the two tasks (e.g., whether children provided correct 

responses more frequently for trials presented in the first position vs. trials presented in third 

position). However, there was no such effect (z = -1.11, p = .27). 

 

 
13 Note here that, since the “non-subset-knower” category can be placed arbitrarily on either side of the contingency 
table, the Bias Index is not valid in this analysis. 
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Table 2.5: Distribution of Knower Levels at the First and Second Assessments of non-titrated 
Give-N 

Knower Levels 0K 1K 2K 3K 4K CP 

Assessment 

Time 1 6 18 10 7 12 28 

Time 2 5 21 10 11 4 30 

Note. In task 1, there were 6 children classified as non-knowers, 47 subset-knowers (1K to 4K) 
and 28 CP-knowers. In task 2, there were 5 non-knowers, 46 subset-knowers and 30 CP-knowers. 

 

 
Figure 2.2: Knower level Classification in the First and Second Assessments of non-titrated 
Give-N 
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Table 2.6: Summary of Reliability measures and coefficients of the Non-Titrated Give-N at T1 
and T2 across different knower levels analyses 

 
Group Contingency 

table size 
Agreement K PI BI PABAK ICC 

 

All knower 
levels 

6 x 6 72% .81 (w-l)  
95% CI, .73 to 

.89 
.90 (w-q)  

95% CI, .84 to 
.96 

.63 (unw) 
95% CI, .51 to 

.75 

.12 (M)  
range: .03 - .28 

.04 .66 (w-l)  
95% CI, 
.52 to .80 
.66 (w-q)  
95% CI, 
.48 to .84 

.95 
95% 

CI, .92 
to .97 

Subset-
knower 
only 

5 x 5 56% 
(effective) 

.61 (unw) 
95% CI, .48 to 

.74 

.16 (M)  
range: .04 - .33 

NA .65 (unw) 
95% CI, 
.52 to .77 

NA 

Non-
knower vs 
others 

2 x 2 57% 
(effective) 

.71 (unw) 
95% CI, .49 to 

.92 

.86 .01 .93 (unw) 
95% CI, 
.79 to .98 

NA 

CP-knower 
vs others 

2 x 2 76% 
(effective) 

.79 (unw) 
95% CI, .57 to 1 

.28 .02 .80 (unw) 
95% CI, 
.63 to .91 

NA 

Knower-
level 
groups 

3 x 3 86% .77 (w-l)  
95% CI, .64 to 

.90 
.80 (w-q)  

95% CI, .69 to 
.91 

.75 (unw) 
95% CI, .61 to 

.89 

.31 (M)  
range: .20 - .46 

.04 .80 (w-l)  
95% CI, 
.68 to .92 
.80 (w-q)  
95% CI, 
.66 to .94 

.89 
95% 

CI, .83 
to .93 

 
Note. The contingency table size represents the size of the table used to compute the reliability 
indexes. K represents the findings of the Kappa coefficient; (w-q) refers to weighted Kappa using 
quadratic weights, (w-l) refers to weighted Kappa using linear weights and kappa coefficients with 
(unw) are unweighted. 95% confidence intervals are provided for all kappa indexes. PI refers to 
the Prevalence Index; (M) represents the mean PI whenever applicable. BI refers to the Bias Index. 
For the PABAK coefficient, (w-q) and (w-l) refers to quadratic and linear weighted PABAK. ICC 
represents the intra-class correlation statistic and the 95% confidence interval.  
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Finally, we found no difference in the distribution of knower levels (t = -.064; p = .95) or 

agreement (p = .467) depending on testing location (in-lab vs. off-site). 

Discussion 

Against our expectation that the non-titrated Give-N would yield more reliable outcomes, 

the pattern of results of Experiment 2 is similar to that found in Experiment 1. Specifically, we 

found that the reliability of the non-titrated Give-N task was high when considering all knower 

levels at once, but that there was considerable variability when looking at knower levels 

individually. While the reliability for non-knowers was particularly high, the concordance within 

the group of subset-knowers varied considerably and was higher for early subset-knowers (1- and 

2-knowers) than late subset-knowers (3- and 4-knowers). To better understand how the titrated 

and non-titrated Give-N versions compare to each other, in Experiment 3 we asked whether they 

would generate the same knower level within participants. Also, we asked how performance at the 

two versions of Give-N compared to performance on the What’s-On-This-Card task (Gelman, 

1993; Le Corre et al., 2006). 

Experiment 3: Give-a-Number Titrated, Non-Titrated and What’s-On-This-Card 

The results of Experiments 1 and 2 suggest that both versions of Give-N have an overall 

high test-retest reliability. However, this high reliability does not necessarily mean that the two 

versions converge on the same knower levels when tested within-subjects, since a given task can 

be reliable despite exhibiting bias. Given this, it is possible that one version generates higher 

knower levels than the other. For example, because of how knower levels are defined by Wynn’s 

criteria, the inclusion of more trials in the non-titrated version may result in a more conservative – 

and therefore lower – knower level estimate. Specifically, because a child is only considered an 

N-knower if they give N for requests of N but not for larger numbers, the inclusion of a greater 
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number of trials creates greater opportunity for random error, possibly resulting in lower knower 

level estimates. Concretely, if a child correctly gives 3 objects when asked for three on both tasks, 

but then gives 3 objects on ¼ of remaining trials for larger numbers, this will not impact their 

knower level assignment when using the titrated method (which may include as few as 2 trials 

above their knower level). However, the knower level may be impacted when using the non-titrated 

method – e.g., if the child receives 3 trials for each of tested with four, six, and eight, since ¼ of 9 

these trials (i.e., ~2) would constitute 50% of all trials in which 3 is given by the child, ruling out 

the classification of the child as a 3-knower according to the criteria described above. 

While differences between the two Give-N versions can be assessed by directly comparing 

their outputs, another approach is to ask how each task relates to independent measures of number 

knowledge. Although there is no single task that tests exactly the same construct as Give-N, a 

closely related measure is the What’s-On-This-Card task (Gelman, 1993; Le Corre et al., 2006), 

in which children are presented with cards depicting images of sets and are asked to report how 

many objects they see. In Experiment 3 we administered the What’s-On-This-Card task and paired 

it with a within-subjects comparison of performance on the titrated and non-titrated versions of 

Give-N. This allowed us to test whether either version of the Give-N task was more closely related 

to an independent test of number word knowledge.  

Method 

Participants 

In total, 96 English-speaking children were tested in this experiment. Twenty-one children 

were excluded from analysis because of (1) failure to complete all 4 tasks (n = 13), (2) not being 

a native speaker of English (n = 1), (3) not being in the targeted age range (n = 1), (4) experimenter 

error (n = 3) and (5) classifying as a 5-knower in the titrated Give-N (n = 3), leaving a final sample 
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of 75 children, aged 2;1 to 4;0-year-old (M = 3;2 years). Because there was no difference between 

testing sites in Experiments 1 and 2, all children in this experiment were recruited off-site (i.e., 

preschools and museums).  

Materials and procedure 

Each session lasted approximately 15 minutes and included (1) Give-a-Number task 1, (2) 

Highest Count task, (3) Give-a-Number task 2, and (4) What’s-On-This-Card task. All participants 

were administered the tasks in this order, but the order of the titrated and non-titrated Give-N tasks 

was counterbalanced across children. The procedures for the titrated and non-titrated tasks were 

identical to what is reported in Experiments 1 and 2, as were the procedures for the Highest Count 

task. 

 What’s-On-This-Card (WOC) 

This task was modeled after Le Corre et al. (2006). Children were presented with 15 cards 

containing either 1, 2, 3, 4, or 6 items (balloon, car, dog), assessed 3 times each. Children were 

asked to report how many items they saw on each card in the following way: “Now, I’m going to 

show you some pictures. Your job is to tell me what you see in these pictures. How many [item(s)] 

do you see in this picture?”. After this initial question, if children did not spontaneously count the 

items 2 to 6, they were prompted to do so (“Can you count them for me?”). Items were aligned 

and displayed in either one or two rows (depending on the number) and varied in color to maintain 

children’s interest. Two lists of trials in a pseudorandom order were randomly assigned to 

participants. Before the 15 critical trials, children were presented with a practice trial which was 

intended to model the expected response and encourage children to provide a number word. We 

used the same criteria as in Experiments 1 and 2 to assign knower levels; namely that children 

needed to provide correctly N two out of three times when asked for N, and do so only for N and 
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numbers below. Children were credited as CP-knowers if they could correctly give six on two out 

of three trials.  

Results 

We first assessed the relatedness of the titrated and non-titrated Give-N measures. 

Although comparing performance on these two versions of Give-N does not strictly amount to 

assessing reliability - since they are not the same measure - we nevertheless used the statistical 

tools introduced in Experiments 1 and 2 since measures of reliability offer the best way to assess 

how often two tasks exhibit agreement in this context. Table 2.7 shows the distribution of knower 

levels in the titrated and non-titrated Give-N tasks and for the WOC. On average participants could 

count to around 9 in the Highest Count task (M = 9.1) and their counting skills were variable (range 

= 0 to 30; SD = 6.0). Seventy children (93%) reached a knower level higher than their highest 

count across all 3 tasks.  

Table 2.7: Distribution of Knower Levels for titrated Give-N, non-titrated Give-N and What’s-
On-This-Card 

Knower Levels 0K 1K 2K 3K 4K CP 

Assessment Number of Participants 

Titrated Give-N 7 20 17 10 5 16 

Non-Titrated Give-N 10 25 13 8 6 13 

What’s-On-This-Card 5 23 12 5 11 19 

Note. In titrated Give-N, there were 7 children classified as non-knowers, 52 subset-knowers and 
16 CP-knowers. In non-titrated Give-N, there were 10 non-knowers, 52 subset-knowers and 13 
CP-knowers. In What’s-On-This-Card, there were 5 non-knowers, 51 subset-knowers and 19 CP-
knowers. 
 

Comparing titrated versus non-titrated Give-N 

Table 2.8 provides a summary of the various coefficients assessing the relatedness of the 

titrated and non-titrated Give-N tasks. The analysis including all knower levels (0 to CP; Figure 
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2.3) found that the relatedness of the two Give-N versions is high but lower than the relatedness 

of each respective version of the task to itself (in Experiments 1 and 2), suggesting that there are 

some real differences between the two versions above, beyond noise associated with test-retest 

reliability. As shown in Figure 2.3, the degree of concordance between the tasks varies 

substantially across the individual knower levels. In particular, the concordance of 1-knowers and 

CP-knowers is especially high relative to other knower levels, resembling the reliability findings 

for Experiments 1 and 2.   
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Table 2.8: Reliability measures and coefficients between the Titrated and Non-Titrated Give-N 
across different knower levels analyses 

 

Group Contingency 
table size 

Agreement K PI BI PABAK ICC 

 

All knower 
levels 

6 x 6 59% .70 (w-l)  
95% CI, .60 to 

.80 
.84 (w-q)  

95% CI, .76 to 
.92 

.49 (unw) 
95% CI, .35 to 

.62 

.08 (M)  
range: 0 - .16 

.17 .50 (w-l)  
95% CI, 
.34 to .67 
.50 (w-q)  
95% CI, 
.29 to .72 

.91 
95% 

CI, .86 
to .95 

Subset-
knower 
only 

5 x 5 47% 
(effective) 

.46 (unw) 
95% CI, .31 to 

.60 

.10 (M)  
range: .03 - .19 

NA .48 (unw) 
95% CI, 
.34 to .62 

NA 

Non-
knower vs 
others 

2 x 2 31% 
(effective) 

.41 (unw) 
95% CI, .18 to 63 

.77 .04 .76 (unw) 
95% CI, 
.57 to .89 

NA 

CP-knower 
vs others 

2 x 2 71% 
(effective) 

.79 (unw) 
95% CI, .56 to 1 

.61 .04 .87 (unw) 
95% CI, 
.70 to .96 

NA 

Knower-
level 
groups 

3 x 3 81% .64 (w-l)  
95% CI, .47 to 

.81 
.69 (w-q)  

95% CI, .54 to 
.84 

.60 (unw) 
95% CI, .42 to 

.79 

.36 (M)  
range: .11 - .55 

.08 .72 (w-l)  
95% CI, 
.58 to .86 
.72 (w-q)  
95% CI, 
.55 to .89 

.82 
95% 

CI, .71 
to .89 

 
Note. The contingency table size represents the size of the table used to compute the reliability 
indexes. K represents the findings of the Kappa coefficient; (w-q) refers to weighted Kappa using 
quadratic weights, (w-l) refers to weighted Kappa using linear weights and kappa coefficients with 
(unw) are unweighted. 95% confidence intervals are provided for all kappa indexes. PI refers to 
the Prevalence Index; (M) represents the mean PI whenever applicable. BI refers to the Bias Index. 
For the PABAK coefficient, (w-q) and (w-l) refers to quadratic and linear weighted PABAK. ICC 
represents the intra-class correlation statistic and the 95% confidence interval.  
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Figure 2.3: Knower level Classification for Titrated and Non-Titrated Give-N 

 
Note. Titrated Give-N appears on the x axis, and non-titrated Give-N appears on the y axis. The 
percentages represent the percent effective agreement of both knower level assignments. Numbers 
in parentheses represent the frequency of the paired knower level. The color scale is based on the 
proportion of effective agreement.  
 

 
To better understand how the two Give-N versions compared to each other, we next 

examined the differences in their outcomes (see Figure 2.4). In total, there were 44 matches (59%) 

and 31 non-matches (41%). Overall, the non-titrated version generated significantly lower knower 

levels than the titrated version (Wilcoxon test rank test V = 132.5; p = .02). However, the majority 

of non-matches were differences of only one knower level (n = 22) as opposed to 2 knower levels 

(n = 7) or 3 knower levels (n = 2). Furthermore, when taking into account the Kappa statistics 

presented earlier, it appears that most children with non-matches were subset-knowers in both 

Give-N versions.  
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Next, we investigated whether there was an order effect. To do this, we performed a 

Wilcoxon rank test and found no significant effect of task order (W = 2893, p = .76). Regardless 

of Give-N type, from T1 to T2, a similar number of children increased their knower levels (n = 

17) as decreased (n = 14). 

 

Figure 2.4: Differences in Participant Knower Level Across Give-N Versions 

Note. The x-axis refers to the difference in participant knower level assignment between the titrated 
and non-titrated versions of Give-N. The 0 indicates no change in knower level assignment across 
the versions, while a positive number indicates a higher knower level assignment for titrated Give-
N and a negative number indicates a higher knower level assignment for non-titrated Give-N. 
Amongst the 31 children with no matches between knower level assignments, 22 children had a 
higher knower level in the titrated version while 9 children had a higher knower level in the non-
titrated version. 

 
Comparing the Knower Levels of Give-N Titrated and WOC 

Table 2.9 provides a summary of the various coefficients assessing the relatedness between 

the titrated Give-N and WOC. The analysis including all knower levels (0 to CP; Figure 2.5) found 

that the relatedness of the two tasks is acceptable but much lower than the relatedness between the 
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two Give-N versions reported above. The ICC statistics corroborate those results. Figure 2.5 also 

shows that concordance is high for 1-knowers and CP-knowers but very weak for 3- and 4-

knowers. Figure 2.6 shows the distribution of differences in knower levels between WOC and 

titrated Give-N. Overall, slightly more children were credited with a higher knower level in WOC 

(n = 25) compared to titrated Give-N (n = 17), though this difference was not significant (Wilcoxon 

test rank test V = 325.5; p = .10). Also, whenever there was a difference, most children presented 

a difference of 1 knower level (n = 27), as opposed to a difference of 2 (n = 8) or more levels (3 

or 4 levels; n = 7).   
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Table 2.9: Reliability measures and coefficients between the Titrated Give-N and WOC across 
different knower levels analyses 

 
Group Contingency 

table size 
Agreement K PI BI PABAK ICC 

 

All knower 
levels 

6 x 6 44% .55 (w-l)  
95% CI, .43 to 

.67 
.71 (w-q)  

95% CI, .58 to 
.83 

.30 (unw) 
95% CI, .18 to 

.43 

.09 (M)  
range: .01 - .19 

.11 .33 (w-l)  
95% CI, 
.16 to .50 
.33 (w-q)  
95% CI, 
.10 to .56 

.83 
95% 

CI, .73 
to .89 

Subset-
knower 
only 

5 x 5 32% 
(effective) 

.27 (unw) 
95% CI, .14 to 

.40 

.11 (M)  
range: .01 - .19 

NA .30 (unw) 
95% CI, 
.16 to .44 

NA 

Non-
knower vs 
others 

2 x 2 20% 
(effective) 

.28 (unw) 
95% CI, -.08 to 

.64 

.84 .03 .79 (unw) 
95% CI, 
.60 to .91 

NA 

CP-knower 
vs others 

2 x 2 46% 
(effective) 

.52 (unw) 
95% CI, .29 to 

.74 

.53 .04 .65 (unw) 
95% CI, 
.44 to .81 

NA 

Knower-
level 
groups 

3 x 3 72% .45 (w-l)  
95% CI, .25 to 

.64 
.52 (w-q)  

95% CI, .35 to 
.69 

.40 (unw) 
95% CI, .20 to 

.61 

.35 (M)  
range: .12 - .52 

.07 .58 (w-l)  
95% CI, 
.42 to .74 
.58 (w-q)  
95% CI, 
.38 to .78 

.69 
95% 

CI, .50 
to .80 

 
Note. The contingency table size represents the size of the table used to compute the reliability 
indexes. K represents the findings of the Kappa coefficient; (w-q) refers to weighted Kappa using 
quadratic weights, (w-l) refers to weighted Kappa using linear weights and kappa coefficients with 
(unw) are unweighted. 95% confidence intervals are provided for all kappa indexes. PI refers to 
the Prevalence Index; (M) represents the mean PI whenever applicable. BI refers to the Bias Index. 
For the PABAK coefficient, (w-q) and (w-l) refers to quadratic and linear weighted PABAK. ICC 
represents the intra-class correlation statistic and the 95% confidence interval.  
  



86 
 

 

 

Figure 2.5: Knower level Classification for Titrated Give-N and WOC 

Note. Titrated Give-N appears on the x axis, and WOC appears on the y axis. The percentages 
represent the percent effective agreement of both knower level assignments. Numbers in 
parentheses represent the frequency of the paired knower level. The color scale is based on the 
proportion of effective agreement.  
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Figure 2.6: Differences in Participant Knower Level Between Titrated Give-N and What’s-On-
This-Card 

Note. The x-axis refers to the difference in participant knower level assignment between the titrated 
version of Give-N and the What’s-On-This-Card task such that 0 indicates no change in knower 
level assignment across the tasks, a positive number indicates a higher knower level assignment 
for titrated Give-N, and a negative number indicates a higher knower level assignment for What’s-
On-This-Card. There were 33 children with matching knower levels in the two tasks. Amongst the 
42 children with no-matches between knower level assignments, 25 had a higher knower level in 
WOC and 17 in titrated Give-N.  
 
 
Comparing the Knower Levels of Non-Titrated Give-N and WOC 

Table 2.10 summarizes the various coefficients assessing the relatedness between the non-

titrated Give-N and WOC. The analysis including all knower levels (0 to CP; Figure 2.7) found 

that the relatedness of the two tasks is acceptable, similar to the outcome presented above of the 

assessment of WOC and titrated Give-N. This was also the case for the ICC statistic. The results 

are also similar in that the concordance was strongest for 1-knowers and CP-knowers but weaker 

for other knower levels. Figure 2.8 shows that overall, more children were credited with a higher 
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knower level in WOC (n = 27) compared to non-titrated Give-N (n = 11) and this difference was 

significant (Wilcoxon test rank test V = 172; p = .003). Interestingly, unlike in the case of the 

titrated task, the differences in knower levels between WOC and the non-titrated task tended to be 

larger; 21 children had knower levels that differed by one level while 17 participants had knower 

levels that differed by 2 levels (n = 8) or more (3 levels n = 7; 4 or 5 levels n = 2). 
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Table 2.10: Reliability measures and coefficients between the Non-Titrated Give-N and WOC 
across different knower levels analyses 

 

Group Contingency 
table size 

Agreement K PI BI PABAK ICC 

 

All knower 
levels 

6 x 6 49% .54 (w-l)  
95% CI, .41 to 

.67 
.66 (w-q)  

95% CI, .51 to 
.81 

.37 (unw) 
95% CI, .23 to 

.50 

.08 (M)  
range: 0 - .19 

.21 .39 (w-l)  
95% CI, 
.22 to .56 
.39 (w-q)  
95% CI, 
.17 to .62 

.80 
95% 

CI, .65 
to .88 

Subset-
knower 
only 

5 x 5 40% 
(effective) 

.34 (unw) 
95% CI, .20 to 

.49 

.10 (M)  
range: .03 - .19 

NA .38 (unw) 
95% CI, 
.24 to .52 

NA 

Non-
knower vs 
others 

2 x 2 25% 
(effective) 

.34 (unw) 
95% CI, .13 to 

.55 

.80 .07 .76 (unw) 
95% CI, 
.57 to .89 

NA 

CP-knower 
vs others 

2 x 2 39% 
(effective) 

.45 (unw) 
95% CI, .23 to 

.67 

.57 .08 .63 (unw) 
95% CI, 
.41 to .79 

NA 

Knower-
level 
groups 

3 x 3 71% .41 (w-l)  
95% CI, .22 to 

.61 
.46 (w-q)  

95% CI, .25 to 
.66 

.38 (unw) 
95% CI, .18 to 

.59 

.34 (M)  
range: .08 - .51 

.13 .56 (w-l)  
95% CI, 
.39 to .73 
.56 (w-q)  
95% CI, 
.36 to .76 

.63 
95% 

CI, .41 
to .77 

 
Note. The contingency table size represents the size of the table used to compute the reliability 
indexes. K represents the findings of the Kappa coefficient; (w-q) refers to weighted Kappa using 
quadratic weights, (w-l) refers to weighted Kappa using linear weights and kappa coefficients with 
(unw) are unweighted. 95% confidence intervals are provided for all kappa indexes. PI refers to 
the Prevalence Index; (M) represents the mean PI whenever applicable. BI refers to the Bias Index. 
For the PABAK coefficient, (w-q) and (w-l) refers to quadratic and linear weighted PABAK. ICC 
represents the intra-class correlation statistic and the 95% confidence interval.  
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Figure 2.7: Knower level Classification for Non-Titrated Give-N and WOC 

Note. Non-titrated Give-N appears on the x axis, and WOC appears on the y axis. The percentages 
represent the percent effective agreement of both knower level assignments. Numbers in 
parentheses represent the frequency of the paired knower level. The color scale is based on the 
proportion of effective agreement.  
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Figure 2.8: Differences in Participant Knower Level Between Non-titrated Give-N and What’s-
On-This-Card 

Note. The x-axis refers to the difference in participant knower level assignment between the non-
titrated version of Give-N and the What’s-On-This-Card task such that 0 indicates no change in 
knower level assignment across the tasks, a positive number indicates a higher knower level 
assignment for non-titrated Give-N, and a negative number indicates a higher knower level 
assignment for What’s-On-This-Card. There were 37 children who had matching knower levels 
across the two tasks and amongst the 38 who did not match, 27 had a higher knower level at the 
WOC task and 11, in the non-titrated Give-N task.   
 
 
 Discussion 

In Experiment 3, we found that the relatedness of the titrated and non-titrated Give-N tasks 

was substantial, but that the titrated Give-N task generated slightly higher knower levels, typically 

1 level greater than that of the non-titrated task. The comparison of WOC and the two Give-N 

versions found that the relatedness of WOC with either Give-N was acceptable, but not as strong 

as the relatedness of the two Give-N versions to one another. Interestingly, the Give-N versions 

differed in how they related to WOC. Although the titrated Give-N task did not generate 
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systematically higher or lower knower levels than WOC (differences between outcomes were 

random), the non-titrated version produced significantly lower knower levels than WOC. This last 

result is consistent with previous studies in the literature suggesting that WOC attributes more 

knowledge of number words to children than Give-N (Baroody et al., 2017; Mou et al., 2018; 

O’Rear et al., 2020).  

Post Hoc Analyses 

As suggested by a reviewer, we conducted post hoc analyses on the relationship between 

children’s counting abilities, age, and reliability. We conducted the analyses for subset-knowers 

and CP-knowers separately given the qualitatively higher degree of reliability among CP-knowers 

and non-knowers (making linear models difficult to interpret). One possibility is that highest count 

influences reliability (operationalized as concordance) for both groups, if it reflects children’s 

executive functioning, attention, or ability to learn robust representations. An alternative 

possibility is that highest count may predict concordance only for CP-knowers, since only they 

can accurately count. With respect to age, predictions are more complicated, since among subset-

knowers, lower knower levels exhibit higher reliability and children with lower knower levels tend 

to be younger. At the same time, older children should be less variable in how they respond relative 

to younger children. For CP-knowers, we expected that age might be positively related to 

concordance (because older children are better able to regulate their behaviors), or that it might be 

unrelated, given that CP-knowers have uniformly high levels of reliability.  

To test these possibilities, we conducted two logistic regressions predicting Concordance 

in knower levels (yes/no) from Age and Highest Count. To maximize statistical power, we 

combined data from Experiments 1, 2, and 3 (only Give-N tasks). In our first model targeting only 

CP-knowers, Age (β = -.21, SD = .10, z = -2.09, p = .04) and Highest Count (β= .07, SD = .03, z = 
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2.16, p = .03) were significant. Somewhat surprisingly, this effect of age was negative,  suggesting 

that younger CP-knowers were slightly more likely to exhibit concordance than older CP-knowers. 

However, this effect was relatively small, and likely would not be found if substantially older CP-

knowers were also tested. In our second model with subset-knowers (0-, 1-, 2-, 3- and 4-knowers), 

in which we added knower levels as a covariate, neither Age (p= .98) nor Highest Count (p = .15) 

were significant. Although the role of Age was not straightforward in this study, we believe that 

its role in influencing reliability should not be overlooked in developmental studies interested in 

the reliability of different tasks, as we discussed in our General Discussion. The results for Highest 

Count are consistent with our second prediction that counting abilities have an influence on 

concordance but only when children understand the purpose of counting and can use their counting 

skills in a task.  

General Discussion 

In three studies we tested the reliability of the Give-a-Number task, while comparing two 

commonly used versions, the titrated and non-titrated versions. Overall, we found that the Give-N 

task is highly reliable, regardless of which version is used, though notable differences were found 

both between the tasks and across individual knower levels. First, in Experiment 1 we found that 

the titrated version of Give-N was very reliable overall, though the concordance of individual 

knower levels varied considerably, such that non-knowers, 1-knowers, 2-knowers, and CP-

knowers exhibited fairly high concordance, while 3-, 4-, and 5-knowers did not.14 We also found 

that the task could be reliably used to assign children to a less fine-grained tripartite classification 

of non-knower vs. subset-knower (1- through 4-knower) vs. CP-knower. Experiment 2 found 

almost identical results for the non-titrated Give-N task. In both experiments, testing location 

 
14 Although their concordance was indeed low, 5-knowers were too infrequent (only 5 children ever obtain this 
classification) to draw firm conclusions from. 
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(either in-lab or off-site) didn’t impact reliability. Finally, in Experiment 3 we tested the titrated 

and non-titrated versions within-subjects, and found that they exhibited a high degree of 

concordance, overall, although concordance was lowest for 3- and 4-knowers, similar to what was 

found when investigating test-retest reliability in Experiments 1 and 2. We also found that while 

the overall distribution of knower levels was similar across versions, the titrated version produced 

significantly higher knower levels than the non-titrated task, though typically by just one knower 

level. Finally, although both tasks revealed differences from the What’s-on-this-Card task, only 

the non-titrated task produced differences that were systematic (i.e., non-random) in nature. Just 

as it produced lower outcomes relative to the titrated task, the non-titrated task also produced lower 

outcomes than What’s-on-this-Card.  

Overall, these results support the continued use of Give-a-Number as a framework for 

classifying children, organizing findings, and predicting outcomes on other developmental 

measures. Also, our findings have both practical and theoretical implications regarding the use and 

interpretation of Give-a-Number in future studies. These implications relate to (1) the choice of 

task version in different research contexts, (2) how to use number knower levels to predict other 

outcomes in correlational designs, and (3) the validity of the knower level framework, as it relates 

to both the specific knowledge that is ascribed to children at particular levels by the different 

versions of the task, and also the status of higher, less reliable knower levels. 

First, given our finding that both versions of the Give-N task generate relatively high 

degrees of reliability, the choice of which version to use should not hinge on reliability, but instead 

on secondary concerns of experimental design. On one hand, the titrated Give-N task features 

fewer trials, requiring less time, and does not require children who have relatively low knower 

levels to needlessly complete trials for large and unfamiliar numbers. For these reasons, it may be 
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favored when Give-N is one of many tasks being administered, and when children are relatively 

young and unlikely to generate useful data for larger numbers. On the other hand, the titrated 

version of the task is considerably harder for inexperienced experimenters to learn and administer, 

since it requires adaptively changing the trial structure depending on children’s individual 

behaviors, potentially increasing the likelihood of experimenter error. Also, because the titrated 

version does not systematically generate data for large numbers, it is not well suited to studies that 

seek to investigate how children respond to less familiar numbers (e.g., to test for knowledge 

beyond the child’s knower level; Gunderson et al., 2015; O’Rear et al., 2020; Wagner & Johnson, 

2011; Wagner et al., 2019), or that seek to conduct individual differences analyses, which generally 

assume that all participants have received the same measures (Geary, 2018; Geary et al., 2018, 

2019; Shusterman et al. 2016, 2017).  

A second implication of this study concerns the use of Give-N to predict other 

developmental outcomes. Given the relatively high reliability of Give-N, our results suggest that 

it can be used in several different ways to fruitfully predict outcomes of other experimental 

measures, such as later mathematics achievement.15 As noted in the Introduction, the use of a 

measure like Give-N to meaningfully predict other variables depends upon a relatively high test-

retest reliability, since the strength of a correlation between any two variables is limited by the size 

of the correlation between the true value of the variables being measured, and the test-retest 

reliability of these measures taken individually. Therefore, in a study that attempts to correlate 

number knower level with another measure – e.g., a child’s accuracy when making numerical 

estimates of dot arrays – the largest reliable correlation we might find between these measures 

 
15 Note that in our study we have no evidence that the titrated or non-titrated version of Give-N would be more related 
to later learning, though other studies suggest that the non-titrated version may be more sensitive to small differences 
between children (e.g., O’Rear et al., 2020). 
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would be limited by the reliability of Give-N (around .7) and the reliability of estimation accuracy 

(which is somewhat lower, around .57; Inglis & Gilmore, 2014). In this example, if the true 

correlation between these outcomes were 100%, then the highest detectable correlation would be 

.63 (i.e., 1 x √(.7 x .57)). This, in turn, has implications for the power required to detect reliable 

correlations, and thus for the size of the sample required for the study.  

The third main implication of this study relates to the validity of the knower level system, 

and how individual knower level assignments should be interpreted. Across different studies using 

the Give-N task, researchers have often assumed, following Wynn (1992), that there are roughly 

five categories into which children might be classified - i.e., non-knowers, 1-knowers, 2-knowers, 

3-knowers, and CP-knowers. However, some have allowed for the identification of higher levels, 

including 4-knowers and 5-knowers, and in some cases even higher. This approach is 

understandable, since it is possible that by restricting the possible subset categories to just three 

levels, researchers may underestimate the associative meanings that children acquire before they 

learn to accurately count and give large sets (and become CP-knowers). Our study, however, draws 

into question the interpretation of these higher knower levels. As we showed across three studies, 

whereas the non-knower, CP-knower, 1-knower, and 2-knower stages each individually exhibit 

high test-retest concordance, the 3-, 4-, and 5-knower stages are substantially less stable across 

sessions.  

This apparent instability of higher knower levels is compatible with several interpretations. 

One possibility is that children at these higher knower levels are not actually 4- or 5-knowers, but 

instead are CP-knowers who attempt to count and make errors. Compatible with this, when we 

look at the three children from Experiment 3 who were classified as 5-knowers in the titrated Give-

N, two of them were classified as CP-knowers in the non-titrated Give-N and one of them became 
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a 4-knower. Similarly, one recent study by Krajcsi (2021) found that when children were prompted 

to fix Give-N errors by counting, this resulted in significantly more CP-knowers than when 

children were not prompted, or simply asked, “Is that N?” (see Le Corre et al., 2006, for related 

evidence). A second possibility is that children at higher subset levels aren’t misclassified CP-

knowers, but instead have noisy associative mappings between number words and approximate 

magnitudes. While some studies have argued for such a possibility (e.g., Wagner & Johnson, 

2011), others have pointed out that such evidence is not robust once knower levels are assigned in 

keeping with Wynn’s criteria, and when only those numbers clearly beyond the child’s knower 

level are considered (e.g., Knower Level +1; see Barner & Bachrach, 2010; Gunderson et al., 2015; 

Wagner et al., 2019; O’Rear et al., 2020). For these reasons, it is important in future work to not 

only assess whether children respond correctly on initial Give-N trials, but also (1) whether their 

initial response was the result of “grabbing” sets or an erroneous count (see Wynn, 1992), (2) 

whether they are able to fix their responses via counting when prompted, and (3) whether their 

overall pattern of responses for larger numbers is compatible with approximation, counting, or 

randomly guessing. Meanwhile, however, there is strong evidence that many children with higher 

knower levels are simply rare misclassifications of CP-knowers, and that when children are 

guessing noisily, this is restricted to the small number range (i.e., sets of 3-4 or less). Our work 

suggests that if children can be classified into higher subset-knower levels, these classifications 

are not reliable and should therefore be interpreted with caution. Future research should further 

explore this issue, and how the use of Give-N to identify higher subset stages might be validated. 

The current study has several limitations that might be addressed in future studies. First, as 

in many studies of the Give-N task, the inferences permitted by our study is limited by sample 

size, which can impact estimates of reliability (Sim & Wright, 2005; Shoukri et al., 2004). Ideally, 
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in order to perform fine grained analysis of different subset-knower levels, one would want large 

numbers of participants categorized in each knower-level. However, because of their relatively 

low frequency, late subset-knowers can be particularly difficult to identify. For example, to obtain 

just 50 3-knowers, at a liberal rate of 8 per 100 children (based on our sample from Experiment 

1), at least 500 children would need to be tested. Future studies might address this problem by 

combining the data collection efforts of multiple labs. A second potential limitation of this study 

is that sample characteristics (age ranges, cultural groups, socioeconomic groups, etc.) may impact 

reliability, leaving open the possibility that reliability may differ in different groups. For example, 

targeting children who progress through the knower level stages at a later age might result in higher 

reliability, if older children exhibit fewer random errors in performance. Similarly, the reliability 

of the CP- stage may be lower in cultures where children receive less training on counting routines 

than in the US (e.g., see Almoammer et al., 2013). Future studies should not assume that reliability 

will be identical across samples with different characteristics. A third limitation of our study is that 

we did not manipulate the time interval between the two Give-N tasks. For practical reasons, the 

Give-N tasks were administered in the same testing session, with only a brief counting task 

between administrations. Although we didn’t find evidence for significant order effects, it is 

possible that reliability would be even greater with longer delays, given that the evidence for 

fatigue effects was slightly greater than evidence for improvement over the two sessions (in 

Experiment 1 and 2).  

In summary, we found evidence that the Give-N task provides a useful framework for 

classifying children’s number knowledge, and that it can be fruitfully used to explore correlations 

with other robust developmental phenomena. It will be important for future research to explore the 

impact of these findings on previously published work and to systematically examine the reliability 
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of other tasks (e.g., WOC and Highest Count) frequently used in the literature. Given the 

widespread use of Give-N in the literature, future studies should also investigate the status of less 

reliable knower level stages, and their significance to theories of number word learning. 
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Abstract 

What role does language-specific experience play in the development of numerical 

knowledge? Previous studies have probed this question by testing bilingual learners, who have 

different linguistic representations of number across their two languages. Here, we take this 

approach to study the effect of language-specific experience on subitizing, a measure of children’s 

ability to rapidly estimate small sets. Specifically, we tested 66 Spanish-English and German-

English bilinguals, aged 3 to 6, and found that bilinguals made more accurate verbal estimates of 

small sets in their dominant number language (the language in which they could count the highest). 

This was despite the fact that all children in the study were able to accurately count much larger 

sets, and were classified as “cardinal principle knowers” in both of their two languages. These 

results provide evidence for early emerging individual differences in estimation abilities that are 

due to linguistic experience. Also, they suggest that even after children have begun to learn more 

advanced skills (e.g., accurate counting of large sets), individual differences in earlier learned skills 

(e.g., subitizing of small sets) may persist. Different language specific experiences may therefore 

impose persistent effects on numerical development, with implications not only for bilingual 

learners, but also for monolinguals with impoverished exposure to number language.  
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Introduction  

 Although many animals have the capacity to represent approximate numerical 

magnitudes, only humans have symbols for large exact numbers, a fact that is often attributed to 

our species-specific capacity for natural language (Carey & Barner, 2019; Gordon, 2004; Le Corre 

& Carey, 2007; Pica et al., 2004; Spaepen et al., 2013; Spelke, 2017). However, the precise role 

that language plays in the acquisition of exact number remains unclear, in part because linguistic 

and non-linguistic capacities emerge and change together during development, making their 

respective roles difficult to disentangle. In efforts to isolate the role of language from non-linguistic 

factors, recent studies have focused increasingly on cross-linguistic comparison, as well as on 

studies of bilingual learners, who make it possible to distinguish between language-specific 

knowledge and knowledge that is not specific to a particular language. In the present study we 

adopted this logic, and investigated language-specific processes involved in subitization, a 

mechanism that has been argued to play a fundamental role in building exact representations of 

numbers.  

Previous studies of bilinguals have played an important role in revealing how some forms 

of numerical abilities rely on language-specific experiences. For example, in one important study, 

Spelke and Tviskin (2001) trained English-Russian bilinguals in each of their two languages on 

exact and approximate calculations (e.g., additions in base 6, cube root estimation). They found 

that when bilinguals were trained on problems in one language, they were slower and less accurate 

when asked to solve similar problems in their second language, but only when the calculations 

involved exact numbers. In contrast, approximate calculations were solved equally well in their 

two languages. Similar findings have been observed with other forms of exact arithmetic 

calculations (e.g., multiplication and subtraction) and in bilingual speakers of different languages 
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(Saalbach et al., 2013; Van Rinsveld et al., 2015; Venkatraman et al., 2006). Behavioral findings 

have also been corroborated by neuroimaging techniques which show that exact computations, 

unlike approximate calculations, systematically recruit language areas (Grabner et al., 2012; Lin 

et al., 2012; Mondt et al., 2011; Salillas & Wicha, 2012). Overall, these findings suggest that 

numerical skills that draw on stored math facts and exact computations are not only language-

dependent but also language-specific, and don’t readily transfer across languages. 

While previous studies have found evidence for the role of language-specific experiences 

in arithmetic, less is known about how bilinguals represent other forms of numerical knowledge, 

and how these representations emerge in development. For example, considerably less is known 

about earlier learning processes in bilinguals, including how initial exact meanings are learned, 

and how these early linguistic expressions of exact number become associated with approximate 

number representations. In particular, little is known about whether these forms of knowledge 

transfer automatically across languages, or if learning in a child’s two languages is independent. 

In one recent study of this question, Marchand et al. (2020) investigated the estimation abilities of 

5- to 7-year-old bilingual children. Marchand et al. found that bilinguals estimated arrays 

differently across their two languages — making more accurate estimates in their more dominant 

language than in their less dominant one (as determined by how high they could count in each 

language). Although many of these children could count higher in one language than in the other, 

the reported difference in estimation accuracy was found even for numbers that children could 

produce in both languages, indicating that estimation differences weren’t simply due to lacking 

words in one of the two languages.  

These findings regarding estimation in bilinguals support two conclusions. First, they show 

that changes in estimation skills in early childhood do not depend purely on the development of 
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non-verbal number representations. Previous studies of monolingual children have debated 

whether individual differences in the precision of non-verbal approximate number representations 

are related to both later arithmetic abilities (Sullivan et al., 2016) or to verbal estimation abilities 

(Guillaume & Gever, 2016). However, this literature has focused less on how approximate number 

representations become related to language, and whether differences in linguistic knowledge of 

counting structures impacts estimation abilities. Thus, the data from Marchand et al. provide 

important evidence that developmental changes in estimation ability depend not only on the 

maturation of non-verbal number, but also on individual differences in children’s linguistic number 

representations. Second, these results show that linguistically-mediated disparities in numerical 

knowledge — which presumably can explain individual differences between monolinguals too — 

begin to emerge relatively early in development, by at least 5 years of age.  

Critically, however, the results of Marchand et al. leave open when this linguistically-

mediated disparity in estimation ability first begins to emerge. This is important because some 

theories have argued that children begin number word learning by associating individual words 

like “one”, “two”, and “three” with cardinalities (Carey, 2004). However,  Marchand et al. mainly 

tested larger numbers (i.e., 8 and higher), and the youngest children were 5 years of age. Therefore, 

in the current study we investigated the earliest moments of number word acquisition in bilingual 

children to assess when disparities in estimation abilities might first emerge in development, 

focusing on numbers within the subitizing range of 1-3. In this way, we asked when language-

specific experiences begin to impose different learning trajectories on number knowledge.  

Previous studies find that the process of associating number words to cardinalities begins 

by at least the age of 2 (Fuson et al., 1982; Gelman & Gallistel, 1978; Wynn, 1990, 1992), though 

relatively little is known about the relative roles of linguistic and non-linguistic sources of change. 
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Initially, many children go through a phase during which they are able to recite part of the count 

list (e.g., number words one through five) without understanding the meanings of individual words, 

similar to their rote knowledge of songs, or the alphabet. However, not long after, children begin 

to build associate mappings between small number words and cardinalities.  Using Wynn’s (1990, 

1992) Give-a-Number task (Give-N), studies in this literature have found that children begin by 

associating the word one with sets containing exactly one object: when asked to give one object, 

they correctly provide one object, but can’t reliably give correct amounts when asked to give larger 

numbers. For this reason, children at this stage are often called “one-knowers”. Some months later, 

children learn the meaning of two, and respond correctly when asked to give one or two objects, 

but not larger numbers. These children are called “two-knowers.” Following the same pattern, 

children become “three-knowers” and sometimes “four-knowers” over a period of many months. 

Finally, after moving through these “subset” stages, children seem to realize that they can use the 

counting procedure to generate sets of different sizes, and use the counting routine that they learned 

much earlier to accurately give sets larger than 3-4. Because children at this stage seem to 

understand that counting relates to cardinalities, they are called Cardinal Principle or Counting 

Principle knowers (CP-knowers; for discussion, see Cheung et al., 2017; Davidson et al., 2012; 

Schneider et al., 2020; Sella & Lucangeli, 2020). This general pattern of development has been 

found in many studies across many different languages (Almoammer et al., 2013; Barner et al., 

2009; Ceylan & Aslan, 2018; Condry & Spelke, 2008; Davidson et al., 2012; Jara-Ettinger et al., 

2017; Le Corre & Carey, 2007; Le Corre et al., 2006, 2016; Li et al., 2003; Marchand & Barner, 

2019; Meyer et al., 2020; Negen & Sarnecka, 2012; Nikoloska, 2009; Piantadosi et al., 2014; 

Sarnecka & Carey, 2008; Sarnecka et al., 2007; Sarnecka & Lee, 2009; Sarnecka et al., 2018; 

Schneider et al., 2020; Slusser et al., 2013; Spaepen et al., 2018; Wagner et al., 2015; Wynn, 1990, 
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1992). While this process of associating number words with cardinalities has been well 

documented in monolingual children, less is known about this early learning process in bilingual 

learners.  

In one study of this question, Wagner et al. (2015) tested French-English and Spanish-

English bilingual children in their two languages on the Give-N task and found that bilinguals had 

different knower levels in their first (L1) and second (L2) languages. In particular, they found that 

although children classified as CP-knowers in one language were generally CP-knowers in their 

other language too, a different pattern was found for children who could not yet accurately count. 

In particular, children who were identified as 1-, 2- or 3-knowersin one language had a different 

knower level in their second language about 2/3 of the time. For example, most children who were 

classified as, e.g., 2-knowers in the L1 were not classified as 2-knowers in their L2, despite being 

able to count well past two in both of their two languages. Similarly, a more recent study by 

Sarnecka et al. (2021) compared the early number knowledge of Spanish-English bilinguals across 

their two languages and found that children performed significantly better in English (their 

language of instruction) across multiple tasks (i.e., counting to 10, counting 6 objects and the Give-

N task). Together, these studies suggest that knowledge of small number words that is acquired in 

one language does not automatically transfer to a child’s second language. Although bilingual 

children exhibit different knowledge of small number words prior to learning to count, as shown 

by Wagner et al. this difference between languages appears to resolve itself when children learn 

to count, and become CP-knowers. As described above, almost all children in their study who were 

CP-knowers in one language were also accurate counters in their second language, too. Taken in 

isolation, these results might be interpreted as evidence that once bilingual children become CP-

knowers their knowledge of small number words across their two languages equalizes. Compatible 
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with this logic, to be classified as a CP-knower in the Give-N task, children must typically provide 

accurate responses not only to larger numbers, but also to small ones. However, an alternative 

hypothesis is that, while bilingual children may have reached the same minimum standard to be 

classified as CP-knowers in both languages, they may still exhibit language-specific differences in 

how robustly they represent small number words, in ways not detectable by the Give-N task. 

Critically, to be credited with knowledge of a number word like “two” on the Give-N task, a child 

need only respond correctly on 2/3 of requests to give this number. Consequently, a child who has 

very strong associative mappings between small number words and cardinalities in one language 

but relatively weak associations in their second language might still be credited with the same 

knowledge of these words in their two languages, so long as their associations are strong enough 

to respond correctly on 2/3 trials in each case. Further, given the finding that counting abilities 

transfer across a child’s two languages, it's also possible that bilinguals respond successfully to 

requests for smaller numbers in their weaker language without drawing on associative mappings 

at all, and simply count when asked to give smaller sets, thereby masking the differences in 

knowledge across their two languages.  

One way to address this issue is to assess bilingual children’s knowledge of small number 

words in a task that does not permit counting, via tests of “subitizing” (Kaufman et al., 1949; 

Starkey & Cooper, 1995). Typically, in a subitizing task, participants are presented with flashed 

arrays of dots (1 to 4 dots) and are asked to make verbal numerical estimates of the cardinalities. 

Because of the rapid presentation of stimuli, the subitizing task discourages counting such that 

participants must rely instead on associations between words and sets. A subitizing task might also 

be more sensitive to small differences in knowledge than Give-N because it can be used to measure 

not only accuracy on individual trials, but also differences in response time. Finally, beyond the 
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benefit of having a stronger measure of the mappings between number words and cardinality, 

studying knowledge of subitizing skills across languages in bilinguals is on its own important 

because subitizing performance has been shown to be correlated with non-symbolic arithmetic, 

number line estimation, and counting (LeFevre et al., 2010, 2022) and has been argued to play an 

important role in the acquisition of number words (Carey, 2004). 

In the current study, we tested bilingual CP-knowers’ subitizing abilities across their two 

languages to investigate the role of language-specific experiences in the acquisition of number 

words. To assess generalizability across different language and SES groups, we tested two samples 

of bilingual children: Spanish-English children from low SES families, and German-English 

bilinguals from high SES families. If bilinguals, in the process of becoming CP-knowers, build 

equally robust mappings between number words and their cardinality across languages, then we 

should not find differences in subitizing abilities across languages. However, if these mappings 

still remain reliant upon language-specific experiences across languages even after children 

become CP-knowers, then we should see differences in subitizing performances across languages.  

Method 

Participants  

We tested a total of 113 bilingual children. Forty-seven children were excluded from 

analysis because of (1) being a subset-knower (n = 20), (2) reaching the same Highest Count in 

each language (n = 5), (3) language delay (n = 3), (4) failure to complete all 6 tasks (n = 8) and (5) 

experimenter error, parental interference, or technological issues (n = 11). Our final sample 

included 66 children (36 Spanish-English and 30 German-English bilinguals), aged 3.47 to 5.98 

years (M = 4.98 years). Additionally, we tested 73 English monolingual children for comparison. 

Thirty-one children were excluded from analyses because of (1) being a non-knower or subset-
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knower (n = 17), (2) failure to complete all 3 tasks (n = 6), or (3) experimenter error, parental 

interference, or technological issues (n = 8). Our final sample of monolingual children included 

42 participants, aged 2.75 to 5.87 (M = 4.50 years). All monolingual and bilingual participants 

were recruited from either a participant database, via communications with preschools, or using 

online recruitment tools such as Facebook and Children Helping Science. All participants lived in 

the United States with most living in California. The majority of German-English bilingual 

participants were recruited from private German-speaking daycare centers or schools; though we 

did not collect detailed socioeconomic information, most of these participants were living in 

affluent areas in California (e.g., Silicon Valley). The majority of Spanish-English bilingual 

participants were recruited both through word-of-mouth and through primarily hispanic public 

school districts in California; these districts had average median household incomes below the 

average for California according to the 2021 Census Reporter (U.S. Census Bureau, 2021). 

Recruitment was performed by either German-English or Spanish-English bilingual research 

assistants. As part of the sign-up and consent process, parents received a short questionnaire with 

questions about the child’s first language, second language, and whether the child was bilingual. 

Children who were not identified as bilingual by caregivers were excluded from the bilingual 

sample and took part in the study as monolinguals.  

Materials and procedure 

Because this study took place during the COVID-19 pandemic, all participants were tested 

online via Zoom. Bilingual children received two blocks of tasks—an English block and a Spanish 

or German block—the order of which varied between participants. Within each block, children 

were always presented with 3 tasks in the same order: (1) Give-a-Number task, (2) Fast Cards, and 

(3) Highest Count task. Both groups of bilinguals (Spanish-English and German-English) were 
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tested by a native speaker of either German or Spanish who also spoke English. The testing session 

lasted approximately 30 minutes. The procedure for monolingual children was identical to that of 

bilinguals except that they were administered only the English block of tasks and their testing 

session lasted approximately 15 minutes. Monolingual children were tested by a native English 

speaker. All children received a small prize for their participation at the end of the testing session. 

Give-a-Number Task 

This task was adapted from Wynn (1990) and its goal was to determine whether children 

were CP-knowers or not, since only CP-knowers were included in our main analyses. Before the 

testing session, parents were asked to gather a container (usually a plate) and 10 small identical 

objects (e.g., almonds, coins, raisins, etc.). For bilinguals, the task was administered in both of the 

child’s two languages and the experimenter began the task by addressing the child in the language 

to be assessed first (e.g., English, German, or Spanish). The experimenter first asked the child to 

put a certain number of objects into the container (e.g., “Can you put three almonds on the plate?”). 

After this first prompt, children were asked to count to verify that they had provided the right 

number, and if they chose to fix their answers, only final responses were recorded (Gibson et al., 

2019). The trial structure followed a titration procedure. Children were always asked for one first, 

and then two, and if they succeeded on both trials, the experimenter then asked for three. 

Otherwise, they asked for one. The subsequent requests depended on the child’s pattern of 

response: if the child succeeded on a trial requesting N, the experimenter asked for N+1, but if the 

child failed, they asked for N-1. The highest request was six. Participants were credited as CP-

knowers if they correctly gave N objects at least 67% of the time when asked for N (and not other 

requests) for numbers up to 6. Bilingual children were tested by the same experimenter in both 
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languages. Only children classified as CP-knowers in both languages were included in the main 

analyses.  

Fast Cards Task 

This task was adapted from Le Corre and Carey (2007) and was used to assess children’s 

subitizing abilities. Participants were presented with dot arrays ranging in magnitude from 1 to 8. 

Critical trials tested sets of 1 to 4 and additional trials tested 6 and 8. The larger sets were included 

in exploratory analyses to assess children’s mapping to large numbers. For each language that a 

child spoke (e.g., English and Spanish), all magnitudes were presented 4 times each, for a total of 

24 trials. The trials were divided into 4 blocks containing one of each of the 6 magnitudes. Within 

each block, the order of trials was pseudo-randomized such that it differed across blocks. The order 

of blocks was then pseudo-randomized to create 2 orders. For all participants, half of the trials 

controlled for total surface area while the other half controlled for diameter. In the trials controlling 

for total surface area, the total surface of all the dots (i.e., sum of all diameters) was kept constant 

while in the trials controlling for diameter, the diameter of dots was kept constant. In addition to 

the 2 orders of blocks, we created 2 fixed orders for the controlled parameters such that for half of 

the participants, the first trial controlled for diameter (and then alternated with total surface area) 

while for the other half of participants, the first trial controlled for total surface area. Half of the 

children were tested in English first, and for the other half, Spanish/German was assessed first. 

Hence, participants were assigned to one of 16 conditions in a 2 (English vs Spanish/German first) 

x 2 (Order 1 or 2 of blocks) x 2 (Order 1 or 2 of controlled parameters) x 2 (language within-

subject) design. Dots were displayed on the screen for 1 second. All dots were white and displayed 

on a black background.  
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The instructions were provided to the child in the language dictated by the condition in 

which she was in (Spanish/German or English depending on language at test) or in English for 

monolingual participants. Participants were instructed to look at the dots and guess how many 

there were in the following way: “Let’s play a guessing game! Some dots are going to flash on the 

screen for just a second. I want you to guess how many dots there are! Ready? Great! How many 

dots did you see on the screen?”. Two practice trials were modeled by the experimenter (with sets 

of 5 and 7) to ensure that children understood that they needed to guess without counting. 

Noninformative verbal encouragement was given to the children to keep them motivated, 

regardless of response’s accuracy (e.g., “That’s a good guess!”).  

Highest Count Task 

This task had two goals. First, following the logic of Wagner et al. (2015), we used it to 

identify bilingual children’s dominant number language. Second, we used the task as a general 

proxy for counting experience. Children were asked to count a set of 30 cartoon cats presented on 

a Powerpoint slide, in 4 rows of about 8 cats. Children who reached 30 were prompted to count 

further, which in the case of bilingual children served to reduce the possibility of reaching the same 

Highest Count in both languages. Bilingual children’s dominant number language was defined as 

the language in which they could count highest before stopping or making an error. Below we refer 

to the dominant number language (NL) as their NL1, and their non-dominant number language as 

their NL2.  

Results 

For all analyses, we used mixed effects logistic regression models constructed in R using 

the lme4 package version 1.1-27.1 (Bates et al., 2015). All data and model outputs are available 
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here: cite. All planned analyses were preregistered and were conducted as planned unless 

otherwise stated. 

Highest Count 

We first compared bilingual children’s highest counts across their two languages to identify 

their dominant Number Language (NL1; see Figure 1). Their non-dominant language was labeled 

their NL2. Among the Spanish-English bilingual children, 20 counted higher in English and 

therefore their NL1 was identified as English. The NL1 of the remaining 16 Spanish-English 

children was Spanish. Among the German-English bilinguals, English was the NL1 for 18 

children, and German was the NL1 for the remaining 12. On average, both Spanish-English and 

German-English bilinguals counted slightly higher in English than in their other language (for 

Spanish-English: MEnglish = 20.8, range = 5 to 100; MSpanish = 15.8, range = 5 to 59; for German-

English: MEnglish = 22.3, range = 5 to 35; MGerman = 18.8, range = 11 to 32). Children had a mean highest 

count of 24.2 in their NL1 (range = 6 to 100) and 14.4 in their NL2 (range = 5 to 59), which was 

significantly different (V = 2211, p < .0001).  

Children in our monolingual sample had highest counts similar to the NL1 counts of our 

bilingual children (range = 3 to 31; M = 20.5) and the difference between these two datasets was 

not statistically significant (p = .07). However, the highest count of monolinguals did differ 

significantly from the NL2 highest counts of bilinguals (t(90) = -3.80, p < .001). 
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Figure 3.1: Bilingual participants’ Highest Counts by dominant language. 

Note. NL1 stands for children’s dominant language and NL2 is their less dominant language. There 
were 38 English-dominant, 12 German-dominant and 16 Spanish-dominant children.  
 

Subitizing performance of bilinguals across languages 

Before conducting our main analyses comparing the subitizing abilities of bilingual 

children across their two languages, we excluded all responses that were not provided in the format 

of a unique verbal estimate (n = 50/3168), e.g., “too many” or “poquitos”. Responses that were 10 

times larger than the mean estimate for each numerosity presented were also excluded, as pre-

registered (n = 17/3168). All analyses were performed on the remaining 3101 responses.  
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Next, we conducted preliminary analyses to test whether there were any effects of Task 

Order or Bilingual Type (i.e., German-English vs. Spanish-English bilinguals). To do this, in 

separate analyses, we predicted Accuracy of responses (coded as 0 or 1) from Task Order and 

Bilingual Type, and in both cases, Participant was coded as a random factor. Since we found no 

effect of Task Order or Bilingual Type (all ps > .10), these factors were excluded from subsequent 

analyses and all bilingual children were analyzed together.  

Main Analyses 

In our main analyses, we were interested in whether bilingual CP-knowers subitized 

differently across their two languages (see Figure 2). We analyzed responses for numerosities 1 to 

4 using model comparison. In our first model, we predicted Accuracy (coded as 0/1) from Age (in 

years) and Numerosity (1 to 4) with Participant coded as a random factor. In this model, both Age 

(Estimate = 1.32, SE = .30, Z = 4.43, p < .0001) and Numerosity (Estimate = -1.62, SE = .12, Z = 

-13.29, p < .0001) were significant. As expected, Accuracy improved as a function of Age and 

decreased as the Numerosity of sets increased. In our second model, we added the effect of Number 

Language (i.e., NL1 vs. NL2) to a model that otherwise was identical to the first model. In this 

second model, Age (Estimate = 1.34, SE = .30, Z = 4.43, p < .0001) and Numerosity (Estimate = -

1.63, SE = .12, Z = -13.30, p < .0001) remained significant. Importantly, we also found that 

Number Language was significant (Estimate = -.57; SE = .18, Z = -3.16; p = .002). An ANOVA 

comparing these models found that adding Number Language significantly contributed to the 

explanatory power of the model (p < .01), suggesting that bilingual CP-knowers subitize 

differently across their two languages. In particular, as can be seen in Figure 2, bilingual children 

subitized more accurately in their NL1 relative to their NL2. Furthermore, an exploratory analysis 
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found that these effects persisted when Highest Count was added to models (p < .05)16, suggesting 

that the effect of language was not due to different amounts of counting knowledge. Although this 

effect was small, it provides evidence that bilingual children who are classified as CP-knowers in 

both languages still have reliably different mappings between number words and cardinalities 

across languages. 

Next, following our pre-registered plan, we ran a third model in which we added the 

interaction between Number Language and Numerosity to our second model. In this third model, 

while Age, Numerosity, and Number Language remained significant (all ps < .05), the interaction 

was not (p = .07) and an ANOVA comparing this model to the second model revealed that this last 

model did not contribute significantly to the explanatory power of the model (p = .06). This 

suggests that the differences in subitizing’ accuracy between languages was somewhat uniform 

across numerosities, and that if differences existed they were relatively small.  

 

 
16 Here, we deviate from the pre-registered analyses as they were not the best fit for the data we collected. In the 
model reported here, we predicted Accuracy from Age, Numerosity (1-4), Number Language, and the child’s Highest 
Count in their NL1 and in their NL2. As reported, all factors were significant (all ps < .05). The values of Highest 
Count in NL1 and in NL2 were also significantly correlated (r𝜏 = .68, p < .0001).  
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Figure 3.2: Subitizing Accuracy for each Numerosity across Bilinguals’two languages. 

Note. The y axis represents children’s subitizing accuracy out of 4 trials for each numerosity. 
Numerosity is displayed on the x axis. NL1 and NL2 respectively represent children’s most 
dominant Number Language and less dominant Number Language. Bars represent standard errors.  
 

Exploratory Analyses 

 We next conducted a series of exploratory analyses to address: 1) whether the linguistically 

mediated differences in subitizing observed in bilingual children extend to larger numbers (i.e., 6 

and 8) and, 2) how the subitizing skills of monolingual children compared to those of bilingual 

children across their two languages.  

Estimation of larger numbers 
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In our first set of exploratory analyses, we asked whether bilinguals’ estimates for numbers 

outside the subitizing range differed across their two languages. To do this, we analyzed only 

responses provided for arrays of 6 and 8 dots, and used the same model comparison approach 

described in our main analyses section. In a model that predicted Accuracy from Age and 

Numerosity (and Participant as a random factor), both factors were significant (Age: Estimate = 

.59; SE = .18; Z = 3.27; p < .01; and Numerosity: Estimate = -0.58; SE = .09, Z = -6.65; p < .0001). 

In a second model, we added the main effect of Number Language, but this factor was not 

significant, and the model did not improve fit to the data (both ps > .05). Similarly, the interaction 

between Numerosity and Number Language (model 3) did not add explanatory power to the first 

model (p > .05). This suggests that Accuracy improved with Age and decreased with Numerosity 

similarly across languages. However, possibly explaining why no difference was found, as shown 

in Figure 2 the average accuracy for sets of 6 and 8 was overall very low (sets of 6: 33% in NL1 

and 32% in NL2; for sets of 8: 19% in NL1 and 14% in NL2). We return to this issue in the 

Discussion section.  

Comparing monolinguals and bilinguals in their NL1 and NL2  

In our final exploratory analysis, we compared bilinguals’ subitizing skills to those of 

monolingual CP-knowers. We did this for two reasons: first to assess whether bilingual children 

show an overall delay in subitizing compared to monolingual children and second, to assess how 

the mappings in bilinguals’ NL1 and NL2 compared to those of monolingual children who had the 

same knower level.  

We first excluded from the monolingual dataset all responses that were either not in the 

format of a unique verbal estimate (n = 42/1008) or that were 10 times larger than the mean 

estimate for each numerosity (n = 1/1008). The remaining 965 responses were compared to those 
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of bilingual children in their NL1 and NL2. As we did for the main analyses, we restricted the 

dataset to responses for sets within the subitizing range of 1 to 4 dots.  

We compared monolinguals and bilinguals’ responses in NL1 and NL2 in two different 

sets of model comparisons17. Table 1 shows the average response and Accuracy of monolingual 

children. To compare monolinguals and bilinguals’ responses in their NL1, we first predicted 

Accuracy from Age and Numerosity (Participant was also coded as a random factor) and found 

that both factors were significant (Age: Estimate = 1.37; SE = .29, Z = 4.78; p < .0001; Numerosity: 

Estimate = -2.22; SE = .20, Z = -11.37; p < .0001). In our second model, we added the main effect 

of bilingual status (either bilingual or monolingual) and found no significant effect of this factor 

(p = .36). This suggests that in our sample, the subitizing abilities of monolinguals and bilingual 

children in their NL1 did not differ. Next, to compare monolinguals and bilinguals’ NL2 responses, 

we predicted Accuracy from Age (Estimate = 1.45; SE = .31, Z = 4.68; p < .0001) and Numerosity 

(Estimate = -1.85; SE = .15, Z = -12.32; p < .0001) and in a second model, we added the effect of 

bilingual status. In this second model, all factors were significant (Age: Estimate = 1.63; SE = .32, 

Z = 5.11; p < .0001; Numerosity: Estimate = -1.85; SE = .15, Z = -12.32; p < .0001; Bilingual 

Status: Estimate = 1.05; SE = .47, Z = 2.22; p = .026). Because the main effect was significant, we 

added in a third model the interaction between Bilingual status and Numerosity, and this factor 

was also significant (Estimate = -.78; SE = .34, Z = -2.28; p = .023) as were all others (Age: 

Estimate = 1.65, SE = .32, Z = 5.17, p < .0001; Numerosity: Estimate = -1.63, SE = .17, Z = -9.82, 

p < .0001; Bilingual status: Estimate = 3.84, SE = 1.34, Z = 2.88, p < .01). Taken together, these 

 
17 As indicated in the pre-registration, we originally planned to obtain a dataset of monolingual subset-knowers to 
which we could compare the subitizing skills of bilingual children in their NL2. However, due to recruitment difficulty 
during the pandemic and the large sample size needed, we focused our efforts on recruiting monolingual CP-knowers 
only.  



126 
 

findings suggest that bilinguals who have comparable NL1 subitizing abilities to monolingual 

children nevertheless differ from monolinguals when considering their NL2.  

Table 11: Average estimate and accuracy of response per Numerosity and Number Language in 
the Fast Cards Task for Monolingual children. 

Numerosity Responses Accuracy 
M SD M SD 

1 1.07 0.60 0.99 0.11 
2 2.00 0.00 1.00 0.00 
3 3.22 1.51 0.92 0.28 
4 4.29 1.86 0.67 0.47 

Note. M represents the mean and SD the standard deviation.  
 

Discussion 

In this study, we investigated language-specific differences in children’s representations of 

small number words by testing subitizing abilities of bilingual CP-knowers across their two 

languages. Specifically, we presented Spanish-English and German-English CP-knowers with 

flashed arrays of small sets (1 to 4) and asked them to estimate these sets in each of their two 

languages. We found that bilingual children subitize differently across their two languages and 

specifically, that they are more accurate in the language in which they have the most experience 

counting. These findings provide evidence that despite meeting the criteria to be classified as CP-

knowers in both languages, bilingual children still have different mappings between number words 

and small cardinalities across their two languages. This suggests that language-specific experience 

plays an important role in the development of mappings between number words and cardinalities 

across languages, and that these differences persist even after children have progressed to later 

stages of development.  

The results of this study allow us to integrate previous findings regarding number word 

learning and numerical estimation in bilingual children. In particular, our results suggest that the 

disparity in knowledge of number word meanings found in bilingual subset-knowers (Wagner et 
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al., 2015) persists even after children learn to accurately count large sets and become CP-knowers. 

This is compatible with previous findings that older bilingual children show differences in their 

estimation skills across languages (Marchand et al., 2020) and suggests that these differences begin 

to emerge from the early moments of number word learning. It is debated in the literature whether 

the processes of subitizing and the estimation of large numbers rely on the same underlying 

mechanisms; some argue that subitizing taps into a Parallel Individuation system - a system that 

keeps track of ~ 4 individual items in parallel in working memory - while the second relies on the 

Approximate Number System (or Analog Magnitude System) - a system that allows us to 

apprehend approximately the magnitude of large sets (Carey, 2004; Feigenson et al., 2004). While 

our results can’t directly address this issue, they provide evidence that language-specific 

experience impacts both small and large numbers and that language-related disparities emerge at 

an early age in bilingual children. 

This finding has implications for our understanding of number word learning in bilinguals, 

but is also relevant to theoretical debates regarding monolingual learners. Bilinguals’ successful 

application of the counting procedure in both languages, despite having different mappings across 

languages, raises questions about the causal relationship between learning the meanings of small 

number words and becoming a CP-knower. According to bootstrapping accounts (e.g., Carey, 

2004, 2009), learning the meanings of small number words is an essential prerequisite to becoming 

a CP-knower. In particular, on this account children notice that each time they add one object to a 

set, they should count up one word in the count list - a relation, which, when generalized to all 

possible numbers, should allow them to accurately count and build indefinitely large sets. An 

alternative, however, is that learning to count is relatively independent of mapping small number 

words to their meanings, and that these are two distinct, though parallel processes (Barner, 2017). 
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On this account, CP-knowers initially perform the Give-N task using rote procedures, and only 

gradually learn, through experience applying this procedure, how counting is related to iterative 

processes of addition. Although our data are hardly definitive, they are compatible with the idea 

that children can become CP-knowers given relatively different degrees of knowledge of smaller 

number words, as argued by the “parallel process” model of number word learning. Our study also 

suggests that there may be individual differences in the strength of small number word knowledge 

between monolingual children who classify as CP-knowers, and that possibly, some children may 

skip some subset-stages altogether. Future studies should further explore this possibility.  

Our set of exploratory analyses uncovered two results: 1) the cross-linguistic differences 

found for small numerosities did not extend to the two larger sets (i.e., 6 & 8) assessed in our task 

and 2) bilingual children’s subitizing skills in their NL1 were similar to the subitizing skills of 

monolinguals, unlike bilinguals’ subitizing skills in their NL2. With respect to the estimation of 

larger sets, the lack of a significant difference in accuracy is perhaps surprising given that older 

bilinguals show differences in estimation across languages (Marchand et al., 2020). However, one 

possible explanation for this discrepancy is that, because children in the current study were much 

younger than those in Marchand et al. (2020), they had not yet begun to form strong associative 

mappings for larger numbers in either language, and therefore failed to show linguistically 

mediated differences due to floor effects. As evidence for this, children’ accuracy for sets of 6 and 

8 was low, which contrasts with Marchand et al. (2020), in which the performance for these types 

of sets was much more accurate than for larger sets such as 60, 80, 98. With respect to the 

comparison of monolingual and bilingual children, our results suggest that bilinguals are neither 

delayed nor advanced relative to monolingual children. When tested in their dominant number 

language bilinguals resembled monolingual English-speaking children, whereas they performed 
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slightly worse when tested in their non-dominant language. This result corroborates findings from 

other studies with bilingual children that did not find differences between monolingual English 

speakers and Spanish-English children tested in English (i.e., bilinguals who attended preschool 

programs in English; Sarnecka et al., 2021).  

In sum, the current study shows that subitizing skills differ across bilingual children’s two 

languages, such that they have stronger mappings in the language in which they can count the 

highest, despite being able to count beyond the small number range in both languages. These 

results have potentially important implications for mathematics education. In particular, 

researchers should not assume that bilinguals’ numerical skills are identical across their two 

languages. Children may reach a proficient level in math in their language of instruction, but may 

nevertheless be unable to apply this knowledge in their heritage language without additional 

language-specific training. Future studies should investigate optimal methods for training these 

mappings in bilinguals, and whether it is better to explicitly teach children to translate across 

languages, or instead offer separate language-specific training of the mappings between small sets 

and their cardinalities.  
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GENERAL DISCUSSION 

The advancement of mathematical thinking through societies rests on the construction of 

abstract numerical representations that are unique to human cognition. An example of such an 

achievement is the capacity to represent large exact numbers, which transcends the limits of our 

approximate nonlinguistic representations of numerosity grounded in perception. While a growing 

body of studies points to the role of natural language as an important factor in the development of 

human mathematical capacities (Carey & Barner, 2019; Le Corre & Carey, 2007; Pica et al., 2004; 

Spaepen et al., 2013; Spelke, 2017), the question of how exactly language contributes to this 

remains unclear. Over the past decades, a number of studies have used the approach of studying 

bilinguals to investigate the role of language in numerical development (Spelke & Tsivkin, 2001; 

Wagner et al., 2015). In particular, examining the transfer and differences in skills across languages 

can help elucidate the role that language-specific experiences play in the development of numerical 

representations. In this dissertation, I explored the development of a basic numerical skill, namely, 

verbal numerical estimation, as a case study to probe how language-specific experiences drive 

change in number concepts. Specifically, I explored how bilingual 3- to 7-year-old children 

estimate large and small cardinalities across their two languages.  

Exploring the role of language in estimation can enable us to further our understanding of 

how linguistic knowledge shapes the development of number concepts. In a standard estimation 

task, participants are asked to make verbal estimates of the cardinality of flashed arrays of dots. 

Because of the rapid presentation of arrays, participants are prevented from counting and therefore 

need to rely on their intuitive sense of how number words are represented by nonlinguistic 

magnitudes. Studying estimation can thus inform us of how our linguistic representations of 
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number are mapped to nonlinguistic magnitude representations. In this thesis, I presented evidence 

that individual differences in how children make numerical estimates are not purely due to changes 

in the acuity of their nonlinguistic representations of magnitudes but that they are also due to 

changes in language-specific knowledge of their counting system. In particular, language-specific 

experiences affect the nature of mappings between both small and large number words and their 

respective non-linguistic representations. In the case of small numbers, I argued that language-

specific differences in estimation (i.e., subitizing) were due to differences in the strength of item-

based associative mappings between individual words and their respective cardinalities. In the case 

of large numbers, I presented evidence that language-specific differences in estimation were due 

to differences in analogical mappings between the structure of the count list and nonverbal 

representations of magnitudes. In addition, I argued that these effects of language-specific 

experience emerge as soon as children begin number word learning and persist late into 

development. Finally, I provided evidence that studies investigating bilingual children should take 

into consideration reliability issues associated with different tasks in their assessment of 

differences across bilinguals’ languages.   

In Chapter 1, I examined whether bilingual French-English children aged 5 to 7 years of 

age show differences in their verbal numerical estimation of large arrays of dots across their two 

languages. In this study, participants were presented with flashed arrays of dots and were asked to 

estimate the number of dots in each of their two languages. I found that estimation accuracy 

differed across children’s two languages, and I provided several pieces of evidence in post hoc 

analysis indicating that those differences were not due to disparities in bilingual children’s access 

to number words across their two languages (e.g., how high they could count). Given that 

bilinguals had the same nonlinguistic representations across languages, these results support the 
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view that the differences observed in estimation were due to language-specific differences in 

children’s knowledge of how the number words in their count lists are structured. These results 

are in line with the hypothesis that estimation abilities rely in large part on Structure Mapping – a 

global mapping mechanism between the linguistic (i.e., count list) and nonlinguistic (ANS values) 

systems of magnitude representation founded on an analogy between the structure of these two 

systems. We also investigated what type of knowledge about the structure of their count lists 

differed across languages. Specifically, children could either have different knowledge of the order 

or the distances (or both) of number words in their two count lists. Our results suggest that the 

differences in estimation observed across languages were due to how they represent the relative 

distances between number words in their count lists across their two languages, because children 

provided estimates that were well ordered in both languages. Hence, the findings of Chapter 1 

provide novel evidence of differences in language-specific knowledge of the structure of the count 

list across languages. In particular the relative distances between number words induces 

differences in the mappings that children establish between number words and perceived 

magnitudes. 

In Chapter 2, I explored a potential methodological issue that can arise when testing the 

bilingual population, namely, that of test-retest reliability. When testing bilinguals twice across 

their two languages, it can be challenging to distinguish the amount of variability resulting from 

measurement reliability inherent to the tasks used versus true differences in knowledge across 

languages (e.g., in number word knowledge), without knowing what the test-retest reliability of 

the tasks is. In other words, if a task has poor reliability, differences in knowledge, and therefore 

in performances, across languages could be expected even if a child were simply tested in the same 

language twice. To address this question – and thus the interpretation of past work on number word 
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learning in bilinguals – in Chapter 2, I assessed the test-retest reliability of the Give-a-Number 

task, a task viewed as the Gold Standard in the field of number word learning. Across three 

experiments, I presented evidence that although there was an important amount of variability in 

the reliability of different knower levels (particularly within the group of subset-knowers), the 

reliability of the titrated and non-titrated versions of administration of Give-N was overall high. 

This was particularly true for the group of CP-knowers. Overall, the findings of this study allow 

us to put into perspective the data from previous studies on the acquisition of number words in 

bilingual and monolingual children and provide reliability indexes for future studies interested in 

using Give-N in the context of bilingualism or not. These findings also address a growing concern 

in the field of number cognition about the reliability and validity of the tasks employed. For 

example, recent studies have questioned the limits on the types of N-knower a child could be (e.g., 

a 6- or 15-knower) and consequently what it means to be classified as a CP-knower (e.g., Krajcsi 

et al., 2018). However, our finding of a high reliability for CP-knowers suggests that, although it 

remains unclear what the entire set of inferences CP-knowers have access to when they reach this 

stage, at least, they can reliably and successfully deploy counting procedures when constructing 

sets within their counting list.  

In Chapter 3, I investigated when language-specific experiences begin to impose 

differences in number concepts by exploring bilinguals’ ability to perform small number 

estimation – a process referred to as subitizing. To do so, I relied on the findings of Chapter 2 and 

addressed this question in CP-knowers, a group of children that show high test-retest reliability. 

More precisely, in this chapter, I revisited the findings of Wagner et al., (2015) who tested 

bilinguals and found that children classified as CP-knower in one language were likely to be CP-

knower in their second language as well. These results might lead to the conclusion that once 
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children reach the CP-knower stage in one language, the differences in mappings between number 

words and cardinality found across languages (i.e., in the case of subset-knowers) disappears. In 

Chapter 3, I challenge this assumption by testing the subitizing abilities of bilingual CP-knowers 

across their two languages. Specifically, I examined whether bilingual Spanish-English and 

German-English children aged 3- to 6-year-old make different verbal numerical estimates of small 

arrays of dots across their two languages. Against the assumption raised by the findings of Wagner 

et al., in this chapter I presented evidence that bilingual CP-knowers still make more accurate 

verbal estimates of small sets in their dominant number language, that is, the language in which 

they could count the highest. This finding also expanded the results of Chapter 1 by showing that 

the differences in mappings across languages for large numbers is also present for small numbers 

and with a younger population of bilinguals. Finally, the findings of Chapter 3 provide support for 

the view that the counting procedure (i.e., the knowledge CP-knowers have) could be learned in 

parallel to the acquisition of associative mappings between small number words and cardinalities 

rather than the result of it, as proposed by a bootstrapping account of number word learning (Carey, 

2004).  

Taken together, the findings of Chapter 1 and 3 provide evidence that language specific 

experiences influence the mappings between the linguistic and nonlinguistic systems of numerical 

representations, for both small and large numbers. However, the data presented in this thesis raise 

questions about other types of knowledge that might be dependent upon language specific 

experience. For example, past studies have shown that some types of knowledge such as math facts 

(e.g., 2 x 2 = 4) do not transfer across languages. Here, we added to this literature by showing that 

some knowledge about the structure of the count list does not transfer across languages and 

associative mappings even when children learn how to count accurately across languages. This 
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raises a question: do other forms of numerical knowledge transfer across languages? For example, 

intuition about the productivity of a counting system?  Previous studies have shown that the 

morphological structure of a count system can have an impact on children’s ability to extract the 

rules of their counting system (e.g., the rule that to form decade labels in English, one must add 

“ty”) and consequently their ability to keep counting when prompted to (Schneider et al., 2020). 

Bilingual children who are navigating two very different counting systems might be more limited 

in one system compared to the other because of a disparity in their language specific experience 

with each count list.  

One central conceptual component of this thesis concerns the type of knowledge and basic 

numerical skills that transfer across languages when children are classified as CP-knowers. 

Studying bilinguals can inform us of the sources of variability in monolingual children’s 

understanding of numerical concepts. Individual differences in monolinguals could emerge from 

children relying on different types of representations (e.g., ANS values, associative mappings 

between small number words and cardinality, counting) when performing numerical tasks. The 

question of what drives CP-knowers to rely more on one source of knowledge (or representation) 

compared to another is still a matter of debate in the literature. This could be addressed in bilingual 

children who have different knowledge and experience across languages. This direction of research 

has the potential to further elucidate the sources of individual differences in basic math skills in 

children. 

Overall, the findings in this dissertation identify language-specific experiences as an 

important source of change in number conceptual development. While several questions remain to 
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be explored, the work in this dissertation provides an additional piece of evidence on the 

importance of how language and symbolic representations come to explain perception.  
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