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Abstract

The purpose of our current study is to employ linear discrimi-
nant analysis (LDA; Philiastides & Sajda, 2006) to character-
ize the changes in ERPs over the entire course of a perceptual
learning task. Configural learning is the perceptual learning
process by which participants develop configural processing
strategies or representations characterized by extremely effi-
cient parallel information processing (Blaha & Townsend, Un-
der Revision). Participants performed a perceptual unitization
task in which they learned to categorize novel images. Cor-
rect categorization responses required exhaustive feature iden-
tification, which encouraged unitization of images into unified
object percepts. Linear discriminator accuracy, measured by
Az, increased each day of training, showing significant differ-
ences in neural signals between categories on and after training
day 3 or 4 for all participants. Additionally, the LDA training
window starting time resulting in discriminator performance
of 65% accuracy or better shifted from 450–500ms to 300ms
after stimulus onset at the completion of training. LDA results
are consistent with our earlier report (Blaha & Busey, 2007)
of peak ERP amplitude differences between categories after
training at approximately 170ms and 250ms after stimulus on-
set. Our EEG results are consistent with the hypothesis that
perceptual unitization results in configural perceptual process-
ing mechanisms.
Keywords: Linear Discriminant Analysis; Evoked Response
Potential; Configural Processing; Perceptual Learning; Capac-
ity

Introduction
Configural learning is the process by which configural infor-
mation processing mechanisms develop over the course of ex-
tensive perceptual training. From the perspective of informa-
tion processing, if an object is treated configurally, or as a
Gestalt, all the features are processed simultaneously and sta-
tistically facilitate each others’ processing rates. Through this
facilitation, the decisions made about all features are faster
than features made on any subset of features, indicating a
highly efficient use of information. In the formal terminology
of human information processing models, we define config-
ural mechanisms as a facilitatory parallel system exhibiting
super capacity efficiency under an exhaustive stopping rule
(Wenger & Townsend, 2001). This system provides a well-
defined model by which to examine mechanisms thought to
underlie both face processing and visual expertise.

Blaha and Townsend (Under Revision) proposed that the
result of configural learning is this facilitatory, parallel con-
figural processing model. To characterize the configural
learning process, Blaha and Townsend applied the Capac-
ity Coefficient measure of work-load efficiency Townsend
and Wenger (2004) to data from a perceptual unitization
learning task. Unitization is the perceptual learning mech-
anism whereby people group or ”chunk together” smaller ob-
ject features into fewer, larger perceptual features over train-
ing (Goldstone, 1998, 2000). With the boundary conditions

for the occurrence of unitization already well established
(Goldstone, 2000), Blaha and Townsend (Under Revision)
showed that unitization is characterized by a shift from ex-
treme limited to extreme super capacity processing. The su-
per capacity at the end of training was predicted by Hebbian-
style feedback learning resulting in facilitatory parallel pro-
cessing. Hence, unitization results in the development of
configural processing mechanisms for initially novel visual
objects.

With our behavioral findings that configural learning re-
sults in configural information processing mechanisms, we
would like to find converging evidence of neural configural
processing mechanisms developing during configural learn-
ing. Evidence from studies of both real-life and laboratory-
trained experts demonstrated N170 peak amplitude differ-
ences for the visual response to objects of expertise. Often
these ERPs are similar to the responses to faces. Researchers
proposed that the neurological response of visual expertise
engages configural processing strategies to which the N170 is
sensitive (Busey & Vanderkolk, 2005). The N250 ERP com-
ponent has also demonstrated sensitivity to expertise training
and is sometimes referred to as a marker of visual expertise
(Scott, Tanaka, Sheinberg, & Curran, 2006). Few studies,
however, have closely examined the development of these
neural correlates of configural or expert processing.

We propose that the observed changes in information pro-
cessing over the course of configural learning should be ac-
companied by changes in neurological measures of percep-
tion; in particular, we expect the N170 and N250 peak ampli-
tudes to change as configural object representations are de-
veloped in our unitization learning task. Indeed, our prelimi-
nary ERP analyses exhibited post-training differences in both
the N170 and N250 peak amplitudes for objects processed
with configural mechanisms compared to non-configurally
processed objects (Blaha & Busey, 2007).

However, peak ERP amplitude analyses limit our under-
standing of the configural learning process, because a large
amount of information about both the distribution of EEG re-
sponses within a single training session and the changes in
these distributions across the days of training is lost through
the averaging of signals. Our behavioral model of learning,
namely the Capacity Coefficient, provides a fine-grained in-
dex over the response time (RT) distribution for each day of
configural learning. This enables an examination of process-
ing efficiency both within a single training session and across
the entire configural learning task. An analogous measure of
the EEG signal is needed to more thoroughly investigate the
changes in the scalp potentials over the entire course of con-
figural learning.
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Sajda and colleagues (Parra, Spence, Gerson, & Sajda,
2005; Philiastides & Sajda, 2006) proposed an LDA approach
to EEG analysis that provides a means of investigating the
neural correlates of two-choice discrimination tasks. In a
study of face/car classification Philiastides and Sajda (2006)
identified two training windows for the linear discriminator
resulting in high classification performance. These windows,
centered around 170ms and 300ms after stimulus onset, in-
dicated two time points in the EEG signal that strongly dif-
ferentiated the input image information, providing a sort of
neural discrimination time for each trial.

Our configural learning task is a categorization task in
which participants must learn to categorize a fixed set of novel
visual objects. The individual object features are grouped to-
gether so that correct Category 1 responses require exhaustive
processing of all features; configural learning mechanisms
develop for the objects belonging to this conjunctive category.
We apply the LDA tools of Sajda and colleagues on each day
of training to locate the time windows and electrode loca-
tions in which the EEG signal differentiates the categories.
As learning proceeds, we predict that the training windows
differentiating the categories will shift earlier in time, indi-
cating faster and perhaps more efficient neural responses con-
current with the emergence of the facilitatory, parallel, super
capacity configural processing mechanisms.

Method
Participants
Four members of the Indiana University, Bloomington, com-
munity (2 male, 2 female), ages 20 to 24, volunteered for this
study. All were right-handed with normal or corrected-to-
normal vision. Participants were monetarily compensated for
their participation.

Apparatus
EEG was sampled at 32 channels at 1000Hz and downsam-
pled to 500Hz. It was amplified by a factor of 20,000 (Senso-
rium amps) and band-stop filtered at 58-62Hz. Signal record-
ing sites included a nose reference and a forehead ground. All
channels had below 5kΩ impedance, and recording was done
inside a Faraday cage. Data were analyzed using the EEGLab
toolbox (Delorme & Makeig, 2004).

Images were shown on a 21in (53.34cm) Mitsubishi color
monitor model THZ8155KL running at 120Hz. Images were
approximately 44in (112cm) from the participant. Responses
were collected with two buttons on an 8-button button box.

Stimuli
Novel visual objects were created by connecting five ‘squig-
gle’ line segments into a single ‘squiggly’ line. The five seg-
ments were chosen randomly from sixteen possible segments.
Each segment measured 1cm in length, so the entire line mea-
sured 5cm in length. The ends of this line segment were con-
nected by a semicircle to create a closed object. Sample stim-
uli are pictured in Figure 1, with letters assigned here to each
segment for ease of reader identification.

Figure 1: Example stimuli for both the conjunctive task (top)
and single-feature task (bottom). Each Category 2 object
contains a single segment different from the segments defin-
ing Category 1. Letters, not part of the training stimuli, are
provided here to aid identification of individual squiggle seg-
ments.

Categorization Tasks

Two different category structures were used for the catego-
rization tasks. Different sets of segments were used in the two
tasks, so that the two tasks had no features, or entire objects,
in common. For the conjunctive task, Category 1 contained
a single object, that is, a single set of five connected features
(see Figure 1, upper panel, left-hand side). Five objects be-
longed to Category 2, with each object having a single, unique
variation of the set of features contained in the Category 1 ob-
ject. That is, each Category 2 object had four features identi-
cal to those in Category 1 and one feature that differed from
the Category 1 object. Each variation in Category 2 was made
with a new feature. Thus, Category 2 introduced five new fea-
tures, with each new feature in a different position along the
squiggly line segment. Consequently, no single feature was
diagnostic for the entire categorization task. Hence, a cor-
rect decision on Category 1 was a conjunctive categorization
decision requiring the participant to exhaustively examine all
features prior to making a response.

The single-feature task only required the participant to find
and identify a single diagnostic feature for correct categoriza-
tion. Depicted in Figure 1 (lower panel), the categories for the
single-feature task each contained a single five-feature item,
completely different from any of the objects in the conjunc-
tive task. Here, however, the Category 2 object contained a
single feature different from the Category 1 object, and the
remaining four features were identical. For example, if we
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labeled the five features in the Category 1 object ABCDE and
the single object in Category 2 contained features ABXYE,
then a correct decision could be made by simply identifying
the fourth feature.

Procedure
Participants completed 14 experimental sessions, including 7
training sessions of the conjunctive categorization task and
7 training sessions of the single-feature categorization task.
Each session consisted of 1200 trials broken into 8 blocks of
150 trials, lasting approximately one hour. Participants could
take breaks between any experimental blocks, with a manda-
tory break after completing 4 blocks. Over the 14 training
sessions, participants alternated between the conjunctive and
single-feature tasks. Note that for the single-feature task, par-
ticipants were randomly assigned to a critical feature condi-
tion. EEG recordings were done on every day of conjunctive
categorization training and on only the first and last days of
single-feature categorization training. The remaining training
days of the single-feature task were only behavioral training
sessions.

EEG was recorded from 100ms prior to stimulus onset to
700ms after stimulus onset. Stimuli were centrally presented
for 250ms and were replaced by a blank screen until the ear-
lier of a button-press response or 5000ms. Auditory tone cor-
rective feedback was given on each trial.

For both categorization tasks, participants were instructed
to simply decide the category membership of each object and
to use the auditory feedback to guide their decisions. They
were not told how to determine category membership, nor
were they informed of the number of diagnostic features for
any task.

Capacity Analyses
Workload capacity was measured with the Capacity Coeffi-
cient (Townsend & Wenger, 2004), which is defined by:

C(t) =
Σn

i=1K1
i (t)

Kn(t)

where for j = 1, . . . ,n simultaneously operating processing
channels K j(t) =

R t
0

f j(τ)
F j(τ)dτ = log

(
F j(t)

)
is the conditional

probability that processing finished at time t given that it fin-
ished at or before time t. F(t) = P(T ≤ t) is the empirical RT
cumulative distribution function (CDF). K(t) is analogous to
an integrated hazard function and can be interpreted as the
amount of work completed in t amount of time. Note that
in this study, n = 5, allowing one channel for each of the 5
features in the novel objects.

The capacity coefficient is the ratio of the amount of work
completed in t time during the conjunctive processing of all
features to the summed amount of work completed in the
same time t completed on the processing of each feature in-
dividually. We estimate the numerator from the empirical RT
CDF from the single-feature task. The denominator is esti-
mated from the empirical RT CDF from the conjunctive task.

C(t) = 1 is predicted by an unlimited capacity independent
parallel (UCIP) model, often referred to as standard paral-
lel processing. C(t) < 1 indicates limited capacity process-
ing, wherein processing of features slowed as more features
needed to be processed simultaneously. C(t) > 1 indicates
super capacity processing, meaning that additional features
facilitated faster processing of all features.

LDA

Following Philiastides and Sajda (2006) and Parra et al.
(2005), we trained a linear discriminator by using logistic
regression to identify optimal bases for discrimination be-
tween categories. A series of training windows were defined
for a duration of 10ms starting every 20ms over the 800ms
epoch of EEG recording. A maximally discriminating spatial
weighting vector wτ was estimated for each training window
and used to define ‘discriminating components’ y = wT

τ X
where X is the NxT data matrix (N sensors, T time points).

We can visualize the locus of the discriminating compo-
nents withe the coupling coefficients a = Xy

yT y . Coupling co-
efficients are the projection of the discriminating components
onto the scalp, illustrating the correlation of each electrode
with y. That is, the coupling coefficients tell us the strength
of each electrode’s contribution to the discriminating compo-
nents.

Linear discriminator performance was measured with
Az, the nonparametric area under the receiver operating
characteristic curve. Note that LDA was applied to the
conjunctive task only.

Figure 2: C(t) results over all training days for Participant BS.
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Table 1: Individual Participant Results.

Training Day Conjunctive C(t) Peak Az Peak Az LDA 65% LDA
Mean RT Training Window Training Window

AB

1 366.68ms Super 0.6149 60ms N/A
2 533.00ms Super 0.6356 500ms N/A
3 818.92ms Limited 0.7004 540ms 440ms
4 737.99ms Unlimited 0.7815 440ms 340ms
5 697.13ms Limited 0.7878 440ms 320ms
6 554.87ms Super 0.7621 440ms 240ms
7 481.85ms Super 0.7712 340ms 300ms

BS

1 681.22ms Limited 0.6140 620ms N/A
2 544.64ms Super 0.6416 680ms N/A
3 595.10ms Unlimited 0.6360 540ms N/A
4 510.95ms Super 0.7271 640ms 440ms
5 505.68ms Super 0.7207 540ms 360ms
6 477.68ms Super 0.7620 560ms 300ms
7 472.74ms Super 0.7222 460ms 360ms

DW

1 523.75ms Limited 0.6243 680ms N/A
2 537.13ms Limited 0.6331 520ms N/A
3 547.32ms Limited 0.6720 540ms 520ms
4 514.31ms Unlimited 0.7043 500ms 400ms
5 483.38ms Unlimited 0.7043 520ms 260ms
6 430.03ms Super 0.7408 420ms 260ms
7 401.37ms Super 0.7289 420ms 280ms

PG

1 704.58ms Limited 0.6284 540ms N/A
2 645.69ms Limited 0.6658 560ms 540ms
3 536.18ms Unlimited 0.6980 520ms 460ms
4 492.58ms Super 0.6735 580ms 460ms
5 502.10ms Super 0.7048 540ms 460ms
6 499.91ms Super 0.7006 480ms 440ms
7 450.60ms Super 0.736 520ms 380ms

Results
Individual participants’ C(t) and LDA analyses are summa-
rized in Table 1. All participants exhibited a significant de-
crease in mean RT for both the conjunctive and single-feature
category learning tasks. Accuracy on the single-feature task
was near ceiling for all participants on the first training day,
indicating immediate mastery of the single-feature task. Ac-
curacy in the conjunctive task was initially approximately
70% or better for all participants, improving to near ceiling
accuracy by the end of training.

Capacity
C(t) results are summarized qualitatively in Table 1 and de-
picted for Participant BS in Figure 2. Most participants ex-
hibited limited capacity C(t) < 1 on at least the first two days.
C(t) then shifted to unlimited and super capacity C(t) > 1 on
the third or fourth day of training. All participants exhibited
super capacity configural mechanisms at the end of training.

Note that both AB and BS exhibited some early super ca-
pacity values on training days 1 and/or 2 together with higher
error rates of 15-30%. This speed-accuracy tradeoff inflates

C(t) results. Both participants slowed their responses and
reached ceiling accuracy, showing more limited C(t) values
before shifting to super capacity configural processing.

LDA
Linear discriminator performance was at least Az = 0.61 for
all participants on training days 1 and 2, indicating better-
than-chance discrimination. Peak Az values in Table 1 indi-
cate the optimal performance achieved by the linear discrim-
inator on each training day. All participants reached a peak
Az ≥ 0.74. Maximum discriminator accuracy was reached on
training day 6 or 7 for 3 participants, with Participant AB
reaching maximum Az on training day 5. Improvements in
Az were strongly correlated with the improvements in overall
task accuracy for all participants (AB r = 0.9447, p < 0.01;
BS r = 0.788, p < 0.05; DW r = 0.9394, p < 0.01; PG r =
0.8852, p < 0.01).

As shown in the upper panel of Figure 3, peak discriminat-
ing components form at a late training window over the first
few training days, and over learning the LDA training win-
dow resulting in peak performance shifted earlier in time by
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Figure 3: Top: Stimulus-locked discriminant component activity optimally differentiating Category 1 from Category 2 trials for
Participant BS. Each line represents the component activity for a single Category 1 trial. The trial average difference component
for Category 1 minus Category 2 is plotted below the component map. Empirical RT CDFs are superimposed on the component
maps. Stimulus onset is at 0ms (solid vertical line). The dashed vertical line indicates the LDA training window onset time
defining the optimally performing discriminator on each day. Bottom: Coupling coefficients of the optimal linear discriminator
projected onto the scalp electrode array.

at least 100ms for each participant. Scalp projections of these
peak discriminating components, like those shown in Figure 3
(bottom), indicate that sources strongly correlated with cat-
egory discrimination shift to more posterior electrodes over
training.

We note that in general, participants exhibited C(t) im-
provements when Az ≈ 0.65. If we consider 0.65 to be a
threshold of strong linear discrimination, we can track the
earliest LDA training window on each training day at which
the Az ≥ 0.65. These times are listed in the last column of Ta-
ble 1. Note that N/A values indicate that the discriminator did

not reach Az = 0.65. For all participants, the linear discrimi-
nators reach the 0.65 threshold on the day before or the same
day they began to exhibit reliable unlimited or super capacity
performance. Initially the threshold LDA training windows
were at 440ms to 540ms after stimulus onset, and these onset
times also shift earlier by approximately 100ms or more. For
all participants, day 7 threshold LDA training window onset
times were approximately 250-400ms after stimulus onset.
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Discussion

Our study is the first, to our knowledge, to employ LDA on
single-trial EEG data on every day of a category learning ex-
periment. With the LDA we found multiple neural indicators
of learning, including improvements in discriminator accu-
racy and changes in both the timing of strong neural discrim-
ination and the location of discriminating components scalp
sources.

Capacity Coefficient results replicated our finding that con-
figural learning is characterized by a qualitative shift from
limited to super capacity (Blaha & Townsend, Under Revi-
sion). This confirms that people were not only learning to
categorize these novel objects, but they developed configu-
ral processing mechanisms for the Category 1 object, as pre-
dicted.

LDA results exhibited several parallels to the behavioral
findings. Overall accuracy correlated with human perfor-
mance, showing learning-related improvements over train-
ing. We do note that LDA peak performance was not 100%
like the behavioral data, indicating that both categories likely
share many neural substrates. It may be that more extensive
training, beyond our 3-week laboratory setting, would lead to
even more discriminating neural performance.

Importantly, we find a key parallel to our C(t) improve-
ments in the time of both the peak and threshold LDA train-
ing windows. Both measures showed shifts to earlier times
over training, consistent with improvements in processing ef-
ficiency which result from faster RT distributions. Changes
in the threshold LDA training window in particular mirrored
the shift from limited toward unlimited to super capacity per-
formance. It could be that the Capacity Coefficient, mea-
suring work-load efficiency, is evidence of a more discrim-
inable neural signal associated with similar visual images or
that neural discrimination reflects the efficiency of informa-
tion processing. More work is needed to find a direct way to
relate these two measures.

It is notable that the 0.65 threshold LDA training window
after training occurs in a time frame similar to the N250 ERP
component, which has been associated with the development
of visual expertise indexed by subordinate-level categoriza-
tion (Scott et al., 2006). The threshold discriminating com-
ponents found here may reflect the use of neural mechanisms
of expertise similar to those reflected in the N250 ERP ampli-
tude differences found for this task (Blaha & Busey, 2007),
providing converging evidence for the engagement of config-
ural mechanisms developed by configural learning.
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