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Ligation of HLA class I molecules induces Yes-Associated 
Protein (YAP) activation through Src in human endothelial cells

Tarique Anwar1,2, James Sinnett-Smith2, Yi-Ping Jin1, Elaine F. Reed1, Enrique Rozengurt2

1Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 
90095

2Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 
CA 90095

Abstract

Antibody (Ab) crosslinking of HLA I molecules on the surface of endothelial cells (EC) 

triggers proliferative and pro-survival intracellular signaling, which is implicated in the process 

of chronic allograft rejection, also known as transplant vasculopathy (TV). Despite the importance 

of antibody-mediated rejection (AMR) in transplantation, the mechanisms involved remain 

incompletely understood. Here, we examined the regulation of Yes-Associated Protein (YAP) 

localization, phosphorylation and transcriptional activity in human endothelial cells (ECs) 

challenged with Abs that bind HLA I. In unstimulated ECs, YAP localized mainly in the 

cytoplasm. Stimulation of these cells with Ab W6/32 induced marked translocation of YAP to the 

nucleus. The nuclear import of YAP was associated with a rapid decrease in YAP phosphorylation 

at Ser127 and Ser397, sites targeted by LATS1/2 and with the expression of YAP-regulated genes, 

including Connective Tissue Growth Factor (CTGF), and Cysteine-rich angiogenic inducer 61 

(CYR61). Transfection of siRNAs targeting YAP/TAZ blocked the migration of ECs stimulated by 

ligation of HLA I, indicating that YAP mediates the increase in EC migration induced by HLA 

I ligation. Treatment of intact ECs with Src family inhibitors induced cytoplasmic localization 

of YAP in unstimulated ECs and strikingly blocked the nuclear import of YAP induced by 

Ab-induced HLA I activation in these cells and the increase in the expression of the YAP-regulated 

genes CTGF and CYR61 induced by HLA I stimulation. Our results identify the Src/YAP axis as a 

key player in promoting the proliferation and migration of ECs that are critical in the pathogenesis 

of TV.
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Introduction

Antibody-mediated rejection (AMR) remains as a major subject limiting long-term patient 

and allograft survival. In many cases, AMR is mediated by the binding of human leukocyte 

antigen (HLA) antibody (HLA Ab) to the mismatched donor HLA class I (HLA I) and/or 

class II (HLA II) antigens expressed on the graft endothelial cells (ECs), resulting in 

microvascular inflammation and intravascular activated mononuclear cells, with or without 

complement deposition (1–3). Chronic exposure of heart, kidney and lung allografts to HLA 

Ab can lead to transplant allograft vasculopathy (TAV) resulting in graft dysfunction, loss 

and patient death (4–6). TV-induced graft failure occurs in up to 50% of renal, heart, lung, 

small bowel and liver transplants by 10 years post-transplant. Consequently, the elucidation 

of the pathways that mediate EC responses to Ab-induced ligation of HLA Class I are of 

major importance and a first step in identifying novel targets to prevent graft failure.

Since HLA molecules do not have endogenous protein kinase activity, they are likely to 

associate with co-receptors to elicit endothelial cell signaling. We identified integrin β4 

to form a molecular complex with HLA I to transduce EC proliferation and migration 

(7). Previously, we showed that Ab-induced ligation of HLA Class I on the surface 

of ECs triggers multiple signaling events, including activation of focal adhesion kinase 

(FAK), Src non-receptor tyrosine kinases (8, 9), phosphatidylinositol 3-kinase (PI3K)/AKT, 

mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) and mTORC2, p70 S6 

Kinase (S6K) and stimulation of extracellular-signal-regulated kinases (ERK1/2) (10, 11). 

These signaling pathways, mediated in part by engagement of integrin β4 (7), promote 

cytoskeleton reorganization, stress fiber formation, (11–13), migration and cell proliferation 

in ECs (10, 14–16). Despite the fundamental significance and translational potential, the 

transcriptional programs that operate downstream of these signaling networks remain poorly 

understood.

The highly conserved Hippo pathway, originally identified in Drosophila, is attracting 

intense attention as a key regulator of development, organ-size, tissue regeneration, 

tumorigenesis and a central pathway in Rho, mTORC1/2 and PI3K signaling (17–21). 

Canonical Hippo signals are transduced through a serine/threonine kinase cascade wherein 

Mst1/2 kinases phosphorylate and activate LATS1/2 (22). In turn, LATS1/2 phosphorylates 

the transcriptional co-activators Yes-Associated Protein (YAP) and WW-domain-containing 

Transcriptional co-Activator with PDZ-binding motif (TAZ), two central effectors of the 

Hippo pathway and novel sensors of mechanical cues (23–25) and diffusible growth­

promoting stimuli, including growth factors and G protein-coupled receptor (GPCR) 

agonists (26). The phosphorylation of YAP and TAZ at multiple serine residues by 

LATS1/2 restricts their activity, cellular localization and stability (27). In the absence of 

phosphorylation, YAP localizes to the nucleus where it binds and activates predominantly 

the TEA-domain DNA-binding transcription factors (TEAD 1–4) thereby stimulating the 

expression of multiple genes, including Connective Tissue Growth Factor (CTGF) and 

Cysteine-rich angiogenic inducer 61 (Cyr61). Several recent reports indicate that YAP plays 

a critical role in the regulation of angiogenesis and vascular development (28, 29). Indeed, 

loss of YAP/TAZ in the mouse leads to scarcity of ECs, branching irregularities and junction 

defects (30). Consequently, we hypothesized that the products of YAP/TEAD-regulated 
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genes have a major impact on critical cell processes implicated in chronic AMR, including 

EC signaling and migration. To examine this hypothesis, we determined the impact of 

Ab-mediated crosslinking of HLA I molecules on YAP localization, phosphorylation and 

transcriptional co-activator activity in human ECs and ascertained the role of YAP in the 

proliferation and migration of these cells.

Here, we report that Ab-induced HLA I activation induces robust YAP nuclear 

localization and dephosphorylation at residues targeted by LATS1/2 in human arterial ECs. 

Concomitantly, HLA I activation enhanced YAP co-activator transcriptional activity, leading 

to increase expression of CTGF and CYR61. Mechanistically, we show that Src family 

kinases (SFK) play a critical role in mediating YAP localization and activation in response to 

Ab-induced HLA I signaling in ECs. Our results identify a Src/YAP axis as a putative new 

target in ECs for therapies to prevent cAMR.

Materials and Methods

Antibodies and Chemicals

Cell culture reagents, transfection reagents, Alexa Fluor 488 conjugated goat anti-mouse 

antibody (A-1100) and phospho-FAK Tyr576/577 (PA5–37706) were from Invitrogen Life 

Technologies (Carlsbad, CA). Mouse monoclonal anti–human HLA I Ab (clone W6/32, 

mIgG2a) was purchased from BioXCell, anti-CD105 mouse monoclonal (clone 43A3, 

mIgG1) was from BioLegend (San Diego, CA). Human monoclonal allele-specific Ab 

against HLA-A2 (IgG1, clone SN607D8, was a gift from Dr. Arend Mulder, Leiden 

University Medical Center, Leiden, Netherlands). Mouse and human IgG isotype control, 

PP2 and Dasatinib were purchased from Ab Sigma-Aldrich (St. Louis, MO) and Saracatinib 

(AZD0530) from Selleckchem (Houston, TX). Phospho-YAP Ser127 (D9W2I, 13008), 

phospho-YAP Ser397 (D1E7Y, 13619), YAP/TAZ (D24E4, 8418), phospho LATS Thr1079 

(8654) and LATS2 (5888) were purchased from Cell Signaling Technology (Danvers, MA). 

YAP (63.1, sc-101199) and GAPDH (sc-365062) were from Santa Cruz Biotechnology. 

Horseradish peroxidase–conjugated anti-rabbit IgG and anti-mouse IgG were from GE 

Healthcare Bio-Sciences Corp (Piscataway, NJ). All other reagents were of the highest grade 

available.

Cell Culture

Primary human aortic endothelial cells were isolated from the aortic rings of explanted 

donor hearts, as described previously (31) or commercial ECs (lot no. EC5555) were 

obtained from Lonza/Clonetics (Walkersville, MD). Most experiments were performed using 

ECs from Lonza/Clonetics. Selected experiments were confirmed using primary human 

aortic endothelial cells isolated from the aortic rings, as indicated in Results. The cells 

were cultured in M199 medium (Mediatech, Manassas, VA) supplemented with 20% (v/v) 

FBS (HyClone), 90 mg/ml Heparin (Sigma-Aldrich), 20 mg/ml Endothelial Cell Growth 

Supplement (BD Biosciences), 100 U/mL penicillin, 100 µg/mL streptomycin, sodium 

pyruvate (1 mmol/l) at 37°C with 5% CO2 in a humidified incubator. Cells were cultured 

in flasks or dishes coated with 0.1% Gelatin (Sigma-Aldrich). For experiments, cells from 
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passage 6 to 8 were used at a confluence of 80–90% and were transferred to medium M199 

without serum for 4 h prior to use in experiments, unless otherwise indicated.

Immunofluorescence

Adherent endothelial cells (ECs) were fixed with 4% paraformaldehyde in PBS and then 

permeabilized with 0.4% Triton X-100 in PBS. After washing with PBS, fixed cells were 

incubated in blocking solution (3% BSA in PBS) for one hour at room temperature. Cells 

were then probed with YAP antibody (63.1, sc-101199) (1:200 diluted in 3% BSA in PBS) 

and incubated at 4°C overnight. Subsequently, cells were washed with PBS and incubated 

with Alexa Fluor 488– conjugated goat-anti mouse antibody diluted in blocking solution 

(1:1000 dilution) for one hour at room temperature. The cells were washed with PBS and the 

nuclei were stained using a Hoechst33342 stain (1:10,000).

Image analysis

To determine the nuclear/cytoplasmic ratios for YAP localization, the average fluorescence 

intensity in the nucleus and just outside the nucleus (cytoplasm) was measured in individual 

cells. The Image analysis was performed using Zeiss analysis imaging software. The cells 

displayed in the appropriate figures were representative of 80% of the population.

Western blot analysis

Confluent cultures of endothelial cells, grown on 35-mm tissue culture dishes, were 

incubated in serum-free medium for 4 h and then treated as described in individual 

experiments. The cultures were then washed with ice-cold PBS and directly lysed in 2X 

SDS-PAGE sample buffer [200 mmol/L Tris-HCl (pH 6.8), 2 mmol/L EDTA, 0.1 mol/L 

Na3VO4, 6% SDS, 10% glycerol, and 4% 2-mercaptoethanol]. The proteins were separated 

on 4% to 15% SDS–polyacrylamide and then transferred to Immobilon-P membranes 

(Millipore). For detection of proteins, membranes were blocked in 5% nonfat dried milk 

in PBS and incubated overnight with the respective primary antibodies diluted in PBS 

containing 0.1% Tween. Primary antibodies bound to immunoreactive bands were visualized 

by enhanced chemiluminescence detection system with horseradish peroxidase (HRP)­

conjugated anti-mouse or anti-rabbit antibody, and a FUJI LAS-4000 mini luminescent 

image analyzer. Quantification of the bands was performed using the FUJI Multi Gauge 

V3.0 analysis program.

RNA extraction and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

RNA was isolated from the endothelial cells by using PureLinkTM RNA Mini Kit 

(Invitrogen) according to manufacturer’s protocol. 1 µg of the isolated RNA was taken 

for cDNA preparation using High-Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems). Quantitative RT-PCR was performed using the Applied Biosystems StepOne 

system and the amplifications were done using the TaqMan Fast Advanced Master Mix. 

Relative fold change was calculated using the formula 2−ΔΔCt. Gene-specific Homo 

sapiens oligonucleotide primers for CTGF (assay ID: Hs00170014_m1), CYR61 (assay 

ID: Hs00155479_m1), and 18S (assay ID: Hs03928990_g1) were obtained from Life 

Technologies.
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Knockdown of YAP/TAZ levels via siRNA transfection

Silencer select siRNAs were designed to target human YAP (Life Technologies #4427037, 

siRNA_id: s20367) and TAZ (Santa Cruz, sc-38568). Cells were transfected using the 

reverse transfection method. Either silencer select nontargeting negative control (25 nmol/L) 

or a target siRNA (25 nmol/L) was mixed with Lipofectamine RNAiMAX according to the 

manufacturer’s protocol and added to 35-mm tissue culture plates. Two to three days after 

transfection, cells were used for experiments. Immunoblotting with anti-YAP/TAZ antibody 

(D24E4) was performed to monitor the efficiency of siRNA knockdown.

Cell proliferation assays by BrdU incorporation

DNA synthesis was measured by BrdU incorporation using BD Pharmingen BrdU flow 

kits (BD Biosciences) according to the manufacturer’s protocol. Briefly, ECs grown to 

70% confluence in 35-mm culture dishes coated with 0.1% gelatin were transfected with 

YAP/TAZ siRNA or non-targeted negative control (Non-Targ). Two days after transfection 

10 µM BrdU was added to the cell culture for 2 hours. The cells were then detached with 

Accutase (Innovative Cell Technologies, San Diego, CA), fixed and permeabilized at room 

temperature. DNA was denatured by incubation with DNase for 60 min at 37°C. The cells 

were incubated with FITC–anti-BrdU Ab for 20 min at room temperature, and then total 

DNA was stained with 7-aminoactinomycin D (7-AAD). Thereafter, the cells were analyzed 

for simultaneous green (FL1) and red (FL3) fluorescence emission on a FACSCalibur flow 

cytometer (Becton Dickinson).

Cell migration assays by wound healing

Confluent Non-Targ control and YAP/TAZ siRNA transfected ECs grown in 35-mm culture 

dishes were starved with 5% FBS for 4 hours. Starved cells were then treated with 10 µg/ml 

mitomycin C for 2 hours to inhibit cell proliferation. A scratch wound was created with a 

sterile 200-µl pipette tip and dishes were rinsed twice with M199 to remove detached cells. 

Cells were treated with anti-HLA I mAb W6/32 for 16 h. The cells were then fixed with 4% 

paraformaldehyde, stained with Wright–Giemsa (Sigma-Aldrich) and wound closure was 

monitored by microscopy. The cell number between two initiated front edges was counted 

(10 fields). Migration rate was determined as relative fold of wound healing as compared to 

unstimulated Non-Targ siRNA transfected ECs.

Statistical analysis

Each experiment was repeated three times independently. Unless otherwise noted, data are 

presented as mean ± SEM. Differences in protein phosphorylation, cell proliferation, or cell 

migration were determined using Student’s t-test and were considered significant if p < 0.05.

Results

Growing ECs exhibit YAP localization and require YAP for their proliferation.

Because cell density regulates YAP localization through activation of the Hippo protein 

kinase pathway in a variety of cell types, we initially examined the localization of 

endogenous YAP in human aortic ECs after various times of plating. YAP predominantly 
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localized in the nuclei of ECs growing at low cell density (2 days after plating). In contrast, 

YAP localization shifted to the cytoplasm in dense cultures of ECs, i.e. 6 days after plating 

(Fig. 1A, Left). Quantification of YAP nuclear/cytoplasmic ratio in multiple individual cells 

corroborated that cell density regulates YAP localization in ECs (Fig. 1B).

To determine whether YAP/TAZ plays a role in the proliferation EC cells, low density 

ECs (nuclear YAP) were transfected with non-targeting oligonucleotides or with siRNAs 

targeting YAP and TAZ. We verified that the transfection of siRNAs effectively decreased 

the level of YAP and TAZ proteins in ECs (Fig. 1C). The proportion of ECs engaged in 

DNA synthesis was assessed by flow cytometry after a 2 h pulse with BrdU. Knock down 

of YAP/TAZ caused 80% decrease in the proportion of ECs engaged in DNA synthesis (Fig. 

1D). These results indicate that YAP/TAZ play a critical role in promoting proliferation in 

ECs.

Class I HLA antibody induces YAP nuclear localization and activity in confluent cultures of 
human ECs.

In subsequent experiments, we used confluent ECs to examine whether Ab-mediated cross­

linking of HLA I molecules on the surface of these cells regulates YAP localization, 

phosphorylation and transcriptional co-activator activity. To this end, dense cultures of 

ECs transferred to serum-free medium for 4 h, were stimulated with W6/32, a monoclonal 

antibody against HLA-I, at 0.1 or 1 μg/ml for 60 min, fixed and stained with an Ab that 

detects endogenous YAP. In unstimulated cells ECs and in agreement with the results shown 

in Fig. 1 A, B, YAP localized mainly in the cytoplasm. Stimulation of these cells with Ab 

W6/32 at either 0.1 or 1 μg/ml induced a significant translocation of YAP to the nucleus 

(Fig. 2 A). Similar results were obtained with a different human HLA I Ab (HLA-A2, Fig. 

2 A) and in other experiments using primary human aortic endothelial cells isolated from 

the aortic rings (Results not shown). Image analysis of multiple individual cells corroborated 

that exposure of ECs to W6/32 promoted YAP nuclear localization (Fig. 2 B). The nuclear 

localization of YAP in response to Ab-induced HLA I crosslinking was comparable to that 

induced by thrombin, an agonist that activates PAR1, a protease-activated GPCR known 

to stimulate YAP nuclear import in other cell types (32). In contrast, exposure of ECs to 

IgG (a negative control) or to Ab CD105 directed against endoglin, did not produce any 

significant effect on YAP localization (Fig. 2 A; quantification in panel B). Image analysis 

also demonstrated that the ratio of nuclear to cytoplasmic YAP in the unstimulated cells 

follows a normal distribution (Fig. 2 C, open bars). Treatment of ECs with W6/32 shifted 

the distribution to the right (Fig. 2 C, closed bars), in line with YAP translocation from the 

cytoplasm to the nucleus. These results demonstrate that Ab-mediated crosslinking of HLA I 

induces nuclear import of YAP in confluent cultures of human ECs.

Class I HLA antibody induces YAP dephosphorylation in confluent cultures of human ECs.

The phosphorylation of YAP by LATS1/2 plays a major role in restricting its cellular 

localization to the cytoplasm (Ser127) and in promoting its degradation by the ubiquitin–

proteasome system (Ser397) in many cell types (17, 22) but these modifications have not 

been examined in ECs challenged with Ab that crosslink HLA I. Given that Ab-induced 

ligation of HLA I promotes YAP nuclear localization, we determined whether HLA I 
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ligation regulates YAP phosphorylation at Ser127 and Ser397, highly conserved residues 

located within a consensus sequence phosphorylated by the Hippo kinases LATS1/2 

(HxRxxS). ECs were stimulated with Ab W6/32 at either 0.1 μg/ml or 1 μg/ml for various 

times (15, 30 or 60 min) and lysed. Cell lysates were analyzed by Western blotting with 

antibodies that detect the phosphorylated state of YAP at Ser127 and Ser397. As shown in 

Fig. 3 A, treatment of ECs with Ab W6/32 induced a rapid decrease in YAP phosphorylation 

at Ser127. Engagement of HLA I produced an even more pronounced decrease in YAP 

phosphorylation at Ser397. (Fig 3 B). Stimulation of parallel cultures of ECs with thrombin 

induced a similar decrease in YAP phosphorylation at Ser127 and Ser397. We also detected 

a marked decrease in YAP phosphorylation at Ser397 in primary cultures of human aortic 

endothelial cells challenged with W6/32 (Results not shown). In contrast, exposure of ECs 

to IgG (a negative control) did not produce any detectable effect on YAP phosphorylation at 

either Ser127 or Ser397. Collectively, the findings indicate that crosslinking of HLA I rapidly 

stimulates YAP nuclear localization and concomitantly decreases YAP phosphorylation at 

residues regulated by LATS1/2 in human ECs.

Class I HLA antibody induces YAP activity and YAP-dependent migration in confluent 
cultures of human ECs.

YAP localization may not always be a consistent marker of YAP co-activator activity (33). 

Consequently, we next determined whether the rapid nuclear import and dephosphorylation 

of YAP in response to crosslinking of HLA I promotes its coupling to the transcription 

factors of the TEA domain–containing transcription factors (TEAD1–4) and thereby 

stimulate the expression of YAP/TEAD-regulated genes, including CTGF and CYR61. 

CTGF is one of the best-characterized direct target gene of YAP that contains three putative 

YAP-TEAD binding sites (GGAATG) in its promoter region. As shown in Fig. 4 A, Ab 

W6/32-mediated crosslinking of HLA I in ECs enhanced the level of CTGF and CYR61 
transcripts, as determined by qRT-PCR. The stimulatory effect of Ab W6/32 at 1μg/ml 

was comparable to that induced by a high concentration of thrombin (I U/ml). In contrast, 

exposure of ECs to IgG (a negative control) did not produce any detectable effect on CTGF 
or CYR61 expression (Fig. 4 A). Collectively, these results indicate that YAP activation 

is a novel early point of transcriptional convergence in human aortic ECs stimulated by 

Ab-mediated crosslinking of HLA I.

In previous studies, we demonstrated that HLA I signaling induces migration of ECs into a 

denuded area of the monolayer. Given that the role of YAP/TAZ in cell migration depends 

on cell context (34, 35), we determined whether YAP/TAZ plays a role in mediating HLA I­

stimulated migration in ECs. Because knockdown of YAP/TAZ could reduce the number of 

cells in the denuded area of the wound by inhibiting cell proliferation rather than migration, 

we examined migration of ECs pretreated with mitomycin C, a DNA cross-linking agent, to 

prevent cell proliferation. As shown in Fig. 4 B, transfection of siRNAs targeting YAP/TAZ 

completely blocked the migration of ECs into the denuded area of the monolayer stimulated 

by ligation of HLA I, as shown using a scratch wound assay. These results indicate that 

endogenous YAP mediates the increase in cell migration induced by HLA I ligation in ECs.
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Role of Src family kinases (SFKs) in mediating YAP activation by Ab W6/32-induced 
crosslinking of HLA I in ECs

We next explored the mechanism by which Ab W6/32-mediated crosslinking of HLA I 

induces YAP nuclear localization and stimulates YAP/TEAD activity in ECs. One of earliest 

events elicited by HLA I ligation in ECs is the activation of Src kinases (36, 37). Src 

family kinases (SFK) have been implicated in the regulation of YAP localization and 

function in other cell types (38) but the mechanisms are cell-context dependent and the 

role of SFKs in YAP regulation by HLA I in ECs was not examined before. To determine 

whether Src is required for YAP activation in ECs challenged with HLA I Ab, we treated 

confluent cultures of ECs with or without the potent SFK inhibitor dasatinib (39) prior 

to stimulation with Ab W6/32. Exposure to dasatinib induced cytoplasmic localization 

of YAP in unstimulated ECs and blocked the nuclear import of YAP induced by W6/32 

stimulation in these cells (Fig. 5). Similar to dasatinib, the SFK inhibitors sacaratinib and 

PP2 prevented YAP nuclear localization induced by crosslinking of HLA I. Furthermore, 

dasatinib and PP2 also prevented the increase in CTGF and CYR61 mRNA levels induced 

by W6/32 stimulation. These results indicated that SFKs mediate the nuclear localization 

and transcriptional co-activator activity of YAP induced by HLA I signaling promoted by 

AbW6/32 in ECs.

As Src mediates YAP activation via different mechanisms in different cell types, we next 

determined whether Src mediates YAP activation through inhibition of the Hippo pathway. 

In support of this possibility, treatment with increasing concentrations of dasatinib (0.1–

1μM) produced a striking increase in YAP phosphorylation at Ser397, a site targeted by 

LATS (Fig. 6). We verified that dasatinib, at concentrations that promoted robust YAP 

phosphorylation, completely inhibited SFKs, as judged by the phosphorylation of FAK at 

Tyr577, a residue within the kinase activation loop phosphorylated by SFKs and a useful 

biomarker of SFK inhibition within intact cells (40). Treatment with PP2 (5–10 μM) also 

induced YAP phosphorylation at Ser397 and attenuated FAK phosphorylation at Tyr577 

though less effectively than dasatinib (Fig. 6).

To test further whether the Hippo pathway mediates the increase in YAP phosphorylation, 

we examined the impact of SKF inhibitors on LATS1/2 activity in ECs. As shown in Fig. 6, 

exposure to dasatinib (0.1–1 μM) produced a notable increase in LATS1/2 phosphorylation 

at Thr1079, a site targeted by MST1/2 in the hydrophobic motif of LATS1/2 leading to 

LATS1/2 autophosphorylation and activation. These results suggest that SFK inhibition 

leads to dramatic stimulation of LATS1/2 activity and consequent YAP phosphorylation at 

inhibitory serine sites that regulate its nuclear/cytoplasmic distribution and transcriptional 

co-activator activity.

Discussion

Solid organ transplant recipients exhibiting donor specific antibodies most notably against 

HLA are at a higher risk for graft loss due to chronic antibody-mediated rejection (cAMR) 

and develop a progressive vascular disease known as transplant vasculopathy (6). Despite the 

important problem of donor specific antibodies in poorer graft outcomes, the mechanisms 

mediating antibody-mediated graft injury remain poorly defined. Specifically, a major gap in 
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our current understanding is the identity of the key downstream transcriptional programs in 

HLA signaling that drive EC proliferation and migration.

The Hippo pathway, originally identified in Drosophila, is attracting intense interest as a 

key regulator of organ-size, tissue regeneration, tumorigenesis and GPCR signaling (17). 

Canonical Hippo signals in vertebrate cells proceed through a serine/threonine kinase 

cascade wherein MST1/2 kinases phosphorylate and activate LATS1/2. In turn, LATS1/2 

phosphorylate YAP and TAZ at multiple serine residues. The phosphorylation of YAP by 

LATS1/2 at Ser127 creates binding sites for 14–3–3 proteins, which localize and anchor 

YAP in the cytoplasm. In turn, phosphorylation of YAP by LATS1/2 at Ser397 promotes 

proteolytic degradation. Despite its potential importance in the context of cAMR, the impact 

of Ab-mediated crosslinking of HLA molecules on YAP localization, phosphorylation and 

transcriptional co-activator activity has not been examined and the role of YAP in HLA 

signaling in ECs remained unknown.

Initially, our results demonstrate that growing cultures of ECs display nuclear localization of 

YAP and that knock down of YAP/TAZ strikingly impairs the entry of ECs into the S phase 

of the cell cycle. Subsequently, we show that stimulation of confluent cultures of ECs with 

the monoclonal antibody W6/32 directed against HLA-I induces rapid YAP translocation 

from the cytoplasm to the nucleus and concomitantly decreases YAP phosphorylation at 

Ser397 and Ser127, residues phosphorylated by LATS1/2. In line with the stimulation of YAP 

nuclear import, Ab-induced HLA I activation promotes expression of YAP/TEAD-regulated 

genes, including CTGF and CYR61. The products of these genes (i.e. CTGF and CYR61) 

are matricellular proteins that are involved in cell adhesion and migration (41) and our 

previous studies demonstrated that HLA I signaling induces migration of ECs into a 

denuded area of the monolayer. Here, we found that knock down of YAP/TAZ markedly 

inhibits HLA I-stimulated migration in ECs. Our results indicate that activation of the YAP/

TEAD axis is a novel early point of transcriptional convergence in HLA signaling in human 

endothelial cells leading to migration.

Our previous studies demonstrated that crosslinking of HLA-I molecules at the surface of 

ECs promotes molecular association between HLA-I and the integrin β4 subunit thereby 

triggering the subsequent activation of intracellular signals involving Src kinases (7), one of 

the earliest events in HLA I signaling (36, 37). In agreement with this model, dimerization 

of the cytoplasmic domain of the integrin β4 subunit leads to the activation of SKF signaling 

(42, 43). Here, we used Src family kinases (SFK) inhibitors, including dasatinib, sacaratinib 

and PP2 to determine the role of Src kinases in the regulation of YAP in response to HLA I 

Ab ligation. We found that treatment of intact ECs with SFK inhibitors induced cytoplasmic 

localization of YAP in unstimulated ECs and strikingly blocked the nuclear import of YAP 

induced by Ab-induced HLA I activation in these cells. Furthermore, SKF inhibitors also 

prevented the increase in the expression of the YAP/TEAD-regulated genes CTGF and 

CYR61 induced by HLA I stimulation. These results indicate that SFKs mediate the nuclear 

localization and transcriptional co-activator activity of YAP induced by HLA I signaling in 

ECs.
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Several studies have demonstrated that Src promotes YAP/TAZ activity through multiple 

independent mechanisms in different cell types (44), including repression of LATS1/2 

activity (38, 45). Our results show that treatment of intact ECs with dasatinib produced 

a marked increase in YAP phosphorylation at sites targeted by LATS1/2, including Ser127 

and Ser397, and in LATS1/2 phosphorylation of Thr1079, a site targeted by MST1/2 in the 

hydrophobic motif of LATS1/2 leading to its autophosphorylation and activation. Dasatinib, 

at concentrations that promoted robust YAP phosphorylation and LATS1/2 activation, 

profoundly inhibited SFK activity, as judged by the phosphorylation of FAK at Tyr576/577, 

residues within the activation loop of FAK phosphorylated by SKF, which are recognized 

biomarkers of SFK inhibition within intact cells (40). These results imply that SFKs repress 

LATS1/2 activity in ECs and consequently prevent YAP phosphorylation at inhibitory serine 

sites (Ser397 and Ser127) that regulate its nuclear/cytoplasmic distribution and activity in 

these cells. Additional experimental work will be required to define whether SKF directly 

phosphorylate and inhibit LATS1 (45), repress LATS1/2 activity via phosphorylation of 

proteins that bind to LATS1/2 and regulate their activity (38) or block Hippo kinases through 

PI3K activation (46, 47). These mechanisms are not mutually exclusive and therefore it is 

conceivable that HLA I activation induces YAP activation through multiple Src-dependent 

pathways.

As discussed above, donor specific HLA antibodies are an important problem in poorer 

graft outcomes. Our results identify the Src/YAP axis as a key player in promoting the 

proliferation and migration of ECs that are critical in the pathogenesis of TV. While 

targeting transcriptional co-activators is challenging, a number of FDA-approved inhibitors 

of SKF have been developed for use in oncology but also proposed for non-malignant 

disorders (48). Given the findings presented here, these agents could be repurposed for the 

treatment and prevention of cAMR. To extend further this notion, it will be also important in 

the future to define the role of the Src/YAP axis in EC signaling as a point of convergence 

in the action of HLA Class II as well as non-HLA antibodies (3) that also contribute to 

transplant rejection.
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Key Points.

• HLA Class I signaling induces robust activation of YAP in human endothelial 

cells.

• Src kinases mediate YAP activation in response to HLA I signaling in ECs.

• Src/YAP plays a critical role in HLA I-induced proliferation and migration of 

ECs.
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Fig. 1. Cell density regulates YAP localization in ECs.
A, Human aortic endothelial cells (ECs) were plated at low density (50 x 104), cells were 

fixed with 4% paraformaldehyde either at day 2 (low density) or day 6 (high density) after 

plating. The cultures were then stained with an antibody that detects total YAP and with 

Hoechst 33342 to visualize the cell nuclei. B, Bars represent the ratio of nuclear/cytoplasm 

(200–300 cells) mean ± S.E. with similar results obtained in three independent experiments, 

**p<0.01. Requirement of YAP and TAZ for entry into S phase in growing EC cells. 
C and D, Endothelial cells, plated at low density, were transfected with non-target siRNA 

(Non-Targ.) or siRNAs targeting YAP and TAZ for 48 h. C, ECs were then lysed with 2 

X SDS-PAGE sample buffer and analyzed by immunoblotting with antibodies that detect 

total YAP and TAZ. GAPDH was used as loading control. D, Two days after transfection, 

BrdU was added to the cell culture and ECs proliferation was measured by flow cytometry. 

E, Bars mean ± S.E., represent the percentage of S-phase population in control non-target 

(Non-Targ.) and YAP/TAZ siRNA (YAP/TAZ) transfected EC. Similar results were obtained 

in two independent experiments.
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Fig. 2. Class I HLA antibody induces YAP nuclear localization in confluent cultures of human 
ECs.
A, Confluent ECs were stimulated with mouse IgG (m-IgG, 0.1 µg/ml), human IgG (h-IgG, 

0.1 µg/ml), anti-CD105 mAb (0.1 µg/ml), anti-W6/32 HLA-I mAb (0.1 and 1 µg/ml), human 

mAb anti-HLA A2 (0.1 µg/ml) or thrombin (1U/ml) for 60 min. The cultures were fixed 

with 4% paraformaldehyde and stained for YAP and Hoechst 33342 to visualize the cell 

nuclei. B, Bars represent the ratio of nuclear/cytoplasm of unstimulated and stimulated ECs 

mean ± S.E n = 250− to 300, *p<0.01. Similar results were obtained in three independent 

experiments. C, Histogram represents the distribution of unstimulated (control, open bars) 

and anti-W6/32 HLA-I mAb (0.1 µg/ml) (closed bars) stimulated ECs as a function of 

nuclear/cytoplasmic ratio of YAP immunofluorescence based on the analysis of 300 cells for 

each condition.
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Fig. 3. Class I HLA antibody induces YAP dephosphorylation in confluent cultures of human 
ECs.
A and C, A, Confluent ECs were treated with either mouse IgG (IgG, 1 µg/ml, for 60 

min) or anti-W6/32 HLA-I mAb (W6/32, 0.1 and 1 µg/ml) or thrombin (1U/ml) for the 

indicated times. Cultures were then lysed with 2X SDS-PAGE sample buffer and analyzed 

by immunoblotting with antibodies that detect YAP phosphorylated at Ser127 and Ser397, 

total YAP and GADPH as a loading control were. B and D, Quantification of phosphorylated 

at Ser127 and Ser397 using total YAP to normalize. The results represent the mean ± SE; n=3 

(independent experiments) and are expressed as ratio of YAP phosphorylated at Ser127 or 

Ser397 and total YAP. Anti-W6/32 HLA-I mAb significantly decreased YAP phosphorylation 

at Ser127 and Ser397 as compared with IgG controls (*p<0.05).
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Fig. 4. A, Class I HLA antibody induces YAP activity and YAP-dependent migration in confluent 
cultures of human ECs.
A, Confluent ECs were treated with mouse IgG (IgG, 1 µg/ml), anti-W6/32 HLA-I mAb 

(W6/32, 0.1 and 1 µg/ml) or thrombin (Thr, 1U/ml) for 60 min, as indicated. RNA was 

isolated and relative levels (n=3) of CTGF or CYR61 mRNA compared with 18S mRNA 

were measured by RT-qPCR. Data are presented as mean ± SEM n=3, *p<0.05, compared 

to IgG control. B, Confluent ECs transfected with either non-targeted (Non-Targ.) or with 

siRNAs targeting YAP and TAZ (YAP/TAZ) were pretreated with 10 mg/ml mitomycin 

C for 2 h to inhibit cell proliferation. A scratch wound was then created with a sterile 

200-ml pipette tip. After washing, wounded cells were stimulated with or without 1 µg/ml 

HLA-I mAb W6/32 for 16 h. The cultures were then fixed with 4% paraformaldehyde and 

stained with Giemsa stain. Representative microscopy fields are shown. C, Bars represents 

relative migration (average of 10 fields/per experiment) of ECs transfected with non targeted 
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(Non-Targ.) or with siRNAs targeting YAP and TAZ (YAP/TAZ) with or without W6/32 

stimulation. Data are presented as mean ± S.E of three independent experiments (*p<0.05).
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Fig. 5. Src family kinase (SFK) inhibitors suppresses YAP nuclear localization and YAP/TAZ–
regulated gene expression in ECs.
A, Confluent ECs were treated without (−) or with the SFK inhibitors Dasatinib (Das, 1 

μM), Saracatinib (Sar, 10 μM) or PP2 (5 μM), as indicated for 60 min. ECs were then 

stimulated with W6/32 (0.1 μg/ml) for 60 min. ECs were fixed with 4% paraformaldehyde 

and stained with an antibody that detects total YAP (green) and Hoechst 33342 to visualize 

the cell nuclei. B, Bar graphs represent ratio of nuclear/cytoplasmic ratio of unstimulated 

and stimulated ECs (300 cells) with or without pretreatment of SFK inhibitors. Data are 

presented as mean ± S.E of three independent experiments (*p<0.05). C, Confluent ECs 

were treated without (−) or with SFK inhibitors Dasatinib (Das,1 μM) or PP2 (5 μM) as 

indicated for 60 min. ECs were then stimulated with W6/32 (0.1 μg/ml) for 60 min. RNA 

was isolated and relative levels (n=3) of CTGF and CYR61 mRNAs compared with 18S 

mRNA was measured by RT-qPCR. Data are presented as mean ± SEM; n= 3 (*p<0.05).
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Fig. 6. A, Src inhibition induces phosphorylation of YAP at Ser397.
A to D, Confluent ECs were treated without (−) or with the SFK inhibitors Dasatinib (1, 

0.3 and 0.1 μM) or PP2 (10 and 5 μM) for 2 h and treated without (A, B) or with 0.1 

μg/ml W6/32 (C, D) for an additional 1h. Cultures were then lysed with 2X SDS-PAGE 

sample buffer and analyzed by immunoblotting with antibodies that detect YAP Ser397, total 

YAP, phospho LATS Thr1079, LATS2, P-FAK Tyr576/577and GAPDH. A, C Representative 

western blots in the absence (upper) or presence (lower) of W6/32 stimulation. B, D Bars are 

the relative fold increases compared to control, mean ± n = 3.

Anwar et al. Page 21

J Immunol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Materials and Methods
	Antibodies and Chemicals
	Cell Culture
	Immunofluorescence
	Image analysis
	Western blot analysis
	RNA extraction and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
	Knockdown of YAP/TAZ levels via siRNA transfection
	Cell proliferation assays by BrdU incorporation
	Cell migration assays by wound healing
	Statistical analysis

	Results
	Growing ECs exhibit YAP localization and require YAP for their proliferation.
	Class I HLA antibody induces YAP nuclear localization and activity in confluent cultures of human ECs.
	Class I HLA antibody induces YAP dephosphorylation in confluent cultures of human ECs.
	Class I HLA antibody induces YAP activity and YAP-dependent migration in confluent cultures of human ECs.
	Role of Src family kinases (SFKs) in mediating YAP activation by Ab W6/32-induced crosslinking of HLA I in ECs

	Discussion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.



