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Development of a machine learning algorithm 
to predict the residual cognitive reserve index

Brandon E. Gavett,1 Sarah Tomaszewski Farias,1 Evan Fletcher,1 Keith Widaman,2

Rachel A. Whitmer,1,3and Dan Mungas1 the Alzheimer’s Disease Neuroimaging Initiative†

† Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or 
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be 
found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.

Elucidating the mechanisms by which late-life neurodegeneration causes cognitive decline requires understanding why some indivi
duals are more resilient than others to the effects of brain change on cognition (cognitive reserve). Currently, there is no way of meas
uring cognitive reserve that is valid (e.g. capable of moderating brain-cognition associations), widely accessible (e.g. does not require 
neuroimaging and large sample sizes), and able to provide insight into resilience-promoting mechanisms. To address these limitations, 
this study sought to determine whether a machine learning approach to combining standard clinical variables could (i) predict a re
sidual-based cognitive reserve criterion standard and (ii) prospectively moderate brain-cognition associations. In a training sample 
combining data from the University of California (UC) Davis and the Alzheimer’s Disease Neuroimaging Initiative-2 (ADNI-2) cohort 
(N = 1665), we operationalized cognitive reserve using an MRI-based residual approach. An eXtreme Gradient Boosting machine 
learning algorithm was trained to predict this residual reserve index (RRI) using three models: Minimal (basic clinical data, such 
as age, education, anthropometrics, and blood pressure), Extended (Minimal model plus cognitive screening, word reading, and de
pression measures), and Full [Extended model plus Clinical Dementia Rating (CDR) and Everyday Cognition (ECog) scale]. External 
validation was performed in an independent sample of ADNI 1/3/GO participants (N = 1640), which examined whether the effects of 
brain change on cognitive change were moderated by the machine learning models’ cognitive reserve estimates. The three machine 
learning models differed in their accuracy and validity. The Minimal model did not correlate strongly with the criterion standard 
(r = 0.23) and did not moderate the effects of brain change on cognitive change. In contrast, the Extended and Full models were mod
estly correlated with the criterion standard (r = 0.49 and 0.54, respectively) and prospectively moderated longitudinal brain-cognition 
associations, outperforming other cognitive reserve proxies (education, word reading). The primary difference between the Minimal 
model—which did not perform well as a measure of cognitive reserve—and the Extended and Full models—which demonstrated good 
accuracy and validity—is the lack of cognitive performance and informant-report data in the Minimal model. This suggests that basic 
clinical variables like anthropometrics, vital signs, and demographics are not sufficient for estimating cognitive reserve. Rather, the 
most accurate and valid estimates of cognitive reserve were obtained when cognitive performance data—ideally augmented by inform
ant-reported functioning—was used. These results indicate that a dynamic and accessible proxy for cognitive reserve can be generated 
for individuals without neuroimaging data and gives some insight into factors that may promote resilience.
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Graphical Abstract

Introduction
Gaining an improved understanding of the neural mechan
isms underlying cognitive aging and dementia requires 
insight into individual differences in brain-cognition associa
tions. Cognitive reserve is a construct that is intended to ex
plain why some individuals are more resilient to age- or 
neuropathology-associated cognitive decline than others.1

Several methods have been proposed to estimate cognitive 

reserve. Proxy variables, like years of education and word 
reading ability, are the most common methods for estimating 
cognitive reserve, but these may be limited by their (mostly) 
static nature and questionable validity,2 among other limita
tions.3 An alternative approach to quantifying cognitive re
serve was proposed by Reed and colleagues, who defined 
cognitive reserve as a latent variable representing the residual 
variance in episodic memory performance not explained by 
brain and demographic variables.4 This latent residual 
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variance, often referred to as the residual reserve index 
(RRI), has been validated as a measure of cognitive reserve 
in numerous studies.5-9 Importantly, this index has been 
shown to prospectively moderate the effects of brain vari
ables on cognitive outcomes, which has been described as 
an essential feature for establishing the validity of purported 
cognitive reserve markers.10 The RRI can also be estimated 
dynamically, meaning that changes in cognitive reserve 
over time can be captured by changes in the RRI.11

Despite these advantages, there are also several drawbacks 
to using the residual approach to estimate cognitive reserve. 
As discussed above, the RRI is derived by comparing ob
served cognitive performance to that which is expected, usu
ally based on brain integrity and/or neuropathology. 
Therefore, in the absence of brain imaging data (e.g. MRI), 
the RRI cannot be generated, even in large research studies 
that may otherwise be well suited to the study of cognitive 
reserve. Similarly, the use of latent variable methods to 
estimate cognitive reserve requires a large sample of indivi
duals with MRI or other brain imaging data, along with 
data pertaining to demographics and cognition, and requires 
the individual to undergo a neuropsychological assessment 
to obtain an estimate of their episodic memory ability. 
Therefore, use of the RRI is limited to large-scale research 
studies with neuroimaging and neuropsychological assess
ment capabilities and cannot be generated in clinical settings 
and applied to individual patients.

Another limitation of the RRI—although certainly not un
ique to this method for estimating cognitive reserve—is that 
it does not inherently facilitate advancements toward under
standing the mechanisms that promote cognitive reserve. 
Unlike years of education, for example, knowing that an in
dividual’s RRI is high does not offer any insights into why it 
is high. This is because the RRI is, by definition, composed of 
unknown and/or unmeasured sources of variance that con
tribute to episodic memory performance.12 By exploring 
the extent to which previously ‘unmeasured’ variables can 
predict the RRI, we can identify candidate variables that 
may help elucidate the mechanisms underlying cognitive re
silience to neuropathology.

In this study, we use machine learning techniques to pre
dict cognitive reserve as measured by the RRI. Machine 
learning has been previously employed for prediction of cog
nitive reserve but in a cohort of deceased research partici
pants who underwent autopsy.13 We aim to build upon 
this previous research by training our cognitive reserve ma
chine learning models against an in vivo measure of cognitive 
reserve (derived using MRI data) and cross-validating them 
in a sample of active research participants who continued 
to participate in longitudinal follow-up assessments after 
their predicted cognitive reserve scores were generated. 
Such a research design has the advantage of allowing us to 
examine the degree to which the predicted cognitive reserve 
scores interact with prospective brain changes to influence 
longitudinal cognitive trajectories.

The goal of the current study is to develop an algorithm 
capable of predicting the RRI using routine, non-invasive, 

clinical variables that can be collected at almost any out- 
patient setting. There are two motivating factors underlying 
this goal. The first is to promote the accessibility of a valid 
and dynamic measure of cognitive reserve that can be applied 
to almost any patient or research participant. The second is 
to assist with the identification of variables that are most pre
dictive of high cognitive reserve. We pursue this goal by em
ploying machine learning algorithms trained in two large 
cognitive aging cohorts and cross-validating results in other 
non-overlapping cohorts. Three versions of the algorithm 
will be explored: (i) a ‘Minimal’ version, which utilizes pre
dictor variables that can be collected at any primary care 
office visit or similar; (ii) an ‘Extended’ version, which aug
ments the Minimal version with several additional patient- 
oriented tests and questionnaires that may be feasible to ad
minister in most clinical settings; and (iii) a ‘Full’ version, 
which requires more extensive assessment plus the presence 
of an informant.

Materials and methods
Participants
The University of California (UC) Davis Alzheimer’s Disease 
Research Center Longitudinal Diversity cohort was one 
source of data for this study. A second source of data was 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
study (adni.loni.usc.edu). The ADNI was launched in 2003 
as a public-private partnership, led by Principal 
Investigator Michael W. Weiner, MD. The primary goal of 
ADNI has been to test whether serial MRI, positron emission 
tomography, other biological markers, and clinical and 
neuropsychological assessment can be combined to measure 
the progression of mild cognitive impairment and early 
Alzheimer’s disease.

This study had two phases of analysis. The first (‘model 
building’) phase included baseline participant data from 
the UC Davis cohort and the ADNI-2 cohort. In this phase, 
we trained a machine learning model on a randomly-selected 
group containing 75% of the combined UC Davis and 
ADNI-2 participants (training set) and used the remaining 
25% (test set) to perform cross-validation of concurrent ac
curacy and validity. See the Supplementary material for de
scriptive statistics by training versus test set. The second 
(‘external validation’) phase included longitudinal partici
pant data from ADNI-1, ADNI-GO, and ADNI-3. The com
bined external validation cohort was used to determine the 
predictive validity of the model in an independent data set 
(see the External validation subsection below for full details). 
A schematic diagram of the procedures used in the current 
study is provided in Fig. 1.

In the model-building phase, data were obtained from the 
visit corresponding to the first MRI scan. In contrast, the ex
ternal validation phase sought to predict longitudinal cogni
tive outcomes, so we used all available study visits for the 
participants in this phase.
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Details about participant recruitment into ADNI have 
been reported on extensively. The ADNI data used in this 
study were de-identified, but each ADNI site acquired writ
ten informed consent from each participant. All participants 
in the UC Davis cohort provided informed consent, as over
seen by institutional review boards at UC at Davis, the 
Veterans Administration Northern California Health Care 
System, and San Joaquin General Hospital in Stockton, 
California. For more information about participant recruit
ment into the UC Davis cohort, see Hinton and colleagues.14

All human subjects research described in this study was car
ried out in accordance with the Declaration of Helsinki.

Materials and methods
Cognitive data
The primary neuropsychological variables used in this study 
were composite measures of episodic memory and executive 
functioning. In the UC Davis cohort, episodic memory was 
measured using the Spanish and English Neuropsychological 
Assessment System (SENAS) list learning test. In the ADNI 
cohorts, episodic memory was measured using the ADNI- 
Mem composite.15 For external validation in ADNI-1 and 
ADNI-3, longitudinal ADNI-EF16 composite scores were 
used to measure executive functioning, which served as the 

Figure 1 Schematic representation of the study procedures. In the model-building phase, the model is first trained—in a 
randomly-selected 75% of the combined UC Davis/ADNI-2 sample—to predict the criterion standard using XGBoost (with 10-fold 
cross-validation) and the trained model is subsequently validated on the 25% held-out sample. In the external validation phase, the model that was 
trained in the first phase was applied to an independent data set to determine whether baseline APPROX-CR scores were capable of 
prospectively moderating the effects of grey matter (change) on executive functioning (change). The criterion standard was the factor scores saved 
from the model shown in Fig. 2. The steps depicted in this figure were applied three times, once for each set of predictors (Minimal, Extended, and 
Full models). ADNI, Alzheimer’s disease neuroimaging initiative; APPROX-CR, A passable proxy of residual-like outcomes via Xgboost for 
cognitive reserve; RMSE, root mean square error; SHAP, SHapley Additive explanation; UC, University of California.
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primary outcome variable. Because the UC Davis cohort was 
not used for external validation, no measure of executive 
functioning was necessary in that sample. All of the cognitive 
measures used here have been well validated for use in cogni
tive aging research.17-21

Neuroimaging data
MRI data were obtained in each cohort. In the model- 
building phase, we used two neuroimaging variables: (i) a 
voxel-based brain grey matter signature region developed to 
explain as much variance in episodic memory as possible22,23

and (ii) white matter hyperintensity (WMH) volumes.24

For the external validation phase, total grey matter vol
ume, derived using the longitudinal FreeSurfer pipeline,25

was obtained from the ADNI dataset for participants in 
ADNI-1, ADNI-GO, and ADNI-3. In particular, we ex
tracted grey matter volume data to test the hypothesis that 
scores produced by our machine learning algorithm were 
capable of modifying the strength of association between 
grey matter atrophy and rate of change in executive function
ing performance over time. Corrections for skull size were 
applied by regressing grey matter volume on intracranial vol
ume and using the residual to capture grey matter volumes 
not explained by intracranial volumes.

Features used to predict the RRI via machine 
learning
Minimal version

The Minimal version of the machine learning algorithm was 
designed to use a small number of predictor variables that 
could be collected at almost any out-patient healthcare 
clinic. Predictors include age (years), years of education, 
sex (0 = female, 1 = male), diastolic blood pressure, pulse 
pressure (systolic blood pressure minus diastolic blood pres
sure), heart rate, height (m), body mass index (BMI, which 
measures weight independent of height), A Body Shape 
Index (ABSI, which measures waist circumference independ
ent of height and BMI),26 the Hip Index (HI, which measures 
hip circumference independent of height, BMI, and ABSI),27

the Waist-Hip Index (WHI, which measures waist-to-hip ra
tio independent of height and BMI),28 and a single self-report 
question about whether the participant has any concerns 
about their memory (0 = no, 1 = yes) taken from the self- 
report version of the Everyday Cognition (ECog) scale.29

Most of the physical measurements were chosen to charac
terize factors relevant to metabolic disease and vascular 
risk. However, a polygenic risk score related to height was 
shown in a recent genome-wide association study to be cor
related with cognitive reserve.30

Extended version

The Extended version of the machine learning algorithm 
added three additional predictors to the Minimal version: 
Mini-Mental State Examination (MMSE)31 or MoCA32

scores, American National Adult Reading Test 
(AMNART)33 scores, and Geriatric Depression Scale 
(GDS)34 scores. The MMSE and MoCA are both commonly 

used screening measures of global cognitive status and de
mentia severity that sample from domains such as orienta
tion, memory, language, attention, and visuospatial skills, 
and are scored on a 30-point scale, with higher scores asso
ciated with better cognitive skills. In the UC Davis cohort, 
the screening measure of global cognition transitioned 
from the MMSE to the MoCA. To make use of all available 
data, MoCA scores were converted to MMSE score equiva
lents based on a published crosswalk study.35 The 
AMNART is a test of one’s ability to pronounce orthograph
ically irregular words. Word reading tests such as this have 
often been used as proxies for related constructs such as pre
morbid IQ, quality of education, literacy, and cognitive 
reserve.36-38 The published version of the AMNART 
contains 45 items. Because ADNI uses a 50-item version, 
we converted the 50-item AMNART scores to their 
45-item equivalents using the procedures described in the 
Supplementary material for this manuscript. Higher scores 
on the AMNART are reflective of better single-word reading 
ability. The GDS is a 15-item true/false questionnaire about 
symptoms of depression that are common in older adults. 
Higher scores reflect more severe symptoms of depression.

Full version

The Full version of the machine learning algorithm incorpo
rated additional predictors that require more time and the pres
ence of an informant to acquire, yet are still commonly 
available in specialty clinics (e.g. memory clinics) or research 
studies. To the Extended version, the Full version adds two 
scores from the Clinical Dementia Rating (CDR): Sum of 
Boxes and the Memory Box score.39,40 The Full version also 
adds two scores from the informant version of the ECog: the to
tal score (the average score across six domains: memory, lan
guage, visuospatial, planning, organization, and divided 
attention) and the individual ECog memory domain score.

Procedure and data analysis
Residual reserve Index
In the training sample, composed of UC Davis and ADNI-2 
data, we constructed a latent variable model, using Mplus 
version 8, similar to that described by Reed et al.,4 but 
with several important differences. First, instead of regres
sing episodic memory on a formative factor composed of 
brain volume and hippocampus volume (both 
ICV-adjusted), we used a brain signature region that was 
specifically developed to explain as much variance as pos
sible in episodic memory scores.22,23 Second, the original ap
proach used by Reed and colleagues to construct the residual 
used years of education as a demographic predictor, thus 
making their version of the residual independent of educa
tion.4 In the current study, we did not regress episodic mem
ory on education, meaning that our RRI was likely to share 
variance with education. This approach allowed us to treat 
education as a predictor of the residual and thus compare 
it to other potential predictors of the residual for the purpose 
of understanding its relative importance as a contributor to 
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cognitive reserve. Finally, the last deviation from the Reed 
et al. model4 was performed to account for the fact that 
the UC Davis cohort included a small percentage (11.1%) 
of individuals who had previous exposure to neuropsycho
logical assessment, having been enrolled in the study prior 
to their initial MRI scan. Therefore, in addition to regressing 
episodic memory performance on demographic variables 
(sex, race, and ethnicity), predictors of episodic memory 
performance also included a term to account for prior 
test exposure (0 = no, 1 = yes), Spanish language test admin
istration, and a prior exposure by Spanish language inter
action term to account for previous results from the UC 
Davis ADC cohort showing that Spanish-speaking indivi
duals show more pronounced practice effects than 

English-speaking individuals.41 A path diagram depicting 
the full latent variable model used to generate the RRI is 
shown in Fig. 2. The components of the latent variable model 
depicted in solid lines were used to generate factor scores. 
Those saved RRI factor scores were then used as the outcome 
variable in the machine learning methods described next. 
The components of the latent variable model depicted in 
dashed lines were used—in a second step following the gen
eration of factor scores—to examine the construct validity of 
the machine learning models.

Machine learning
The XGBoost (eXtreme Gradient Boosting)42 machine learn
ing algorithm was used to predict the RRI factor scores. This 

Figure 2 The latent variable model used to decompose episodic memory variance and produce the residual reserve index 
(RRI). Solid lines represent the model that was used to construct the RRI (the criterion standard). Dashed lines show how the model was 
modified to examine the concurrent validity of APPROX-CR scores (i.e. their correlation with the latent RRI). AA, African American; 
APPROX-CR, A passable proxy of residual-like outcomes via Xgboost for cognitive reserve; EM, episodic memory; logWMH, log-transformed 
white matter hyperintensity.
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algorithm uses a large number of decision trees, each of which 
is a ‘shallow’ learner. Although any single decision tree will be 
incapable of explaining a large proportion of the variance in 
the RRI, combining all of the decision trees together generates 
a composite prediction that is often more accurate than can be 
achieved using other machine learning approaches.43,44

The XGBoost procedure, including the tuning of model 
hyperparameters, was performed using the tidymodels ver
sion 1.1.045 package in R version 4.3.1,46 with support 
from other packages listed in the Supplementary material
for this article. The Supplementary material also provide 
more details about the tuned hyperparameters.

V-fold cross-validation was implemented as part of the hy
perparameter tuning. A training set (a random selection of 
75% of the combined UC Davis and ADNI-2 cohorts) was 
randomly divided into V = 10 different folds. Nine of these 
folds were combined when implementing a given combination 
of hyperparameters, while the 10th fold was held-out to serve 
as a test of the performance of a given hyperparameter set; this 
was repeated nine additional times so that each held-out fold 
could be used to determine the accuracy of the model when 
trained on the other nine folds. The objective function used 
to evaluate the accuracy with which the model could predict 
the RRI in the held-out folds was the root mean square 
error (RMSE), with the goal of minimizing this value. 
Hyperparameter combinations were systematically tested 
using the tune_bayes function. This function performs a 
search of k-dimensional hyperparameter space—where k is 
the number of hyperparameters to be tuned—using a 
Bayesian algorithm that attempts to predict the optimal com
bination of hyperparameters that will minimize the objective 
function RMSE given what is already known about the accur
acy of prior hyperparameter combinations.47 We allowed the 
tuning algorithm to attempt as many as 200 iterations but ap
plied an early discontinuation rule if no improvement in 
RMSE was found after 100 consecutive trials.

After the hyperparameter tuning was complete, the test set 
(the remaining 25% of the combined UC Davis and ADNI-2 
cohorts that was not selected for training) was used as an add
itional check on the accuracy of the model. Ideally, the RMSE 
in the test set will not differ markedly from the RMSE in the 
training set. A large difference in RMSE would suggest that 
the XGBoost model and its chosen hyperparameters may 
lack generalizability to out-of-sample data. The predicted 
scores generated by the XGBoost algorithm are referred to 
here as APPROX-CR (A Passable Proxy of Residual-like 
Outcomes via Xgboost for Cognitive Reserve) scores.

As another check on the convergent validity of the 
XGBoost model, we re-ran the latent variable model de
scribed in the RRI subsection above, using only data from 
the test set. The model remained exactly the same, with 
one exception. We introduced the APPROX-CR scores 
into the model and requested only one parameter to be esti
mated: the correlation between the latent RRI and the 
APPROX-CR scores. All other parameters were fixed to their 
previously estimated values. A strong correlation between 
the latent RRI and the APPROX-CR scores would provide 

evidence for the convergent validity of the APPROX-CR 
scores. See the dashed lines in Fig. 2 for a depiction of how 
this correlation was estimated.

The steps described above were performed three times to 
develop the Minimal, Extended, and Full APPROX-CR 
algorithms.

External validation
Further validation of the three versions of APPROX-CR was 
pursued in three related cohorts, which were analyzed to
gether: ADNI-1, ADNI-GO, and ADNI-3. The purpose of 
further cross-validation in these cohorts was to establish the 
construct validity of the APPROX-CR scores as a measure 
of cognitive reserve. In other words, a good proxy for cogni
tive reserve should do more than correlate with the criterion 
standard; it should also be capable of concurrently and (espe
cially) prospectively moderating the association between 
brain and cognitive performance. To test this form of validity, 
we generated Minimal, Extended, and Full APPROX-CR 
scores in the ADNI-1, ADNI-GO, and ADNI-3 cohorts by 
submitting the clinical predictor variables to the XGBoost 
models established as described in the Machine Learning sub
section above. We then ran a series of linear multilevel regres
sion models that regressed executive functioning 
performance (i.e. ADNI-EF scores) on covariates [baseline 
age (centered at 70 years), years of education (centered at 
12 years), sex (reference = female), and AMNART scores], 
grey matter volume (standardized baseline volumes and 
change in standardized volumes relative to baseline, mea
sured at each time point), APPROX-CR scores, and 
brain-by-APPROX-CR interaction terms to test for moder
ation. Time was also included as a main effect and interaction 
term so that a test of the moderating influence of 
APPROX-CR scores could be applied to both the intercept 
and slope of executive functioning. Random effects terms 
for time (slope) and participant (intercept) were included in 
the multilevel model. For each APPROX-CR version, we 
used likelihood ratio tests of nested models to examine 
whether model fit improved relative to the baseline (covari
ates only) model when adding terms to examine (i) the 
‘main effects’ of APPROX-CR scores on ADNI-EF, (ii) the 
ability of baseline APPROX-CR scores to moderate the effect 
of baseline brain volume on the ADNI-EF intercept, and (iii) 
the ability of baseline APPROX-CR scores to moderate the ef
fects of baseline brain and brain change on ADNI-EF slopes.

Results
Participant descriptive statistics for both samples (model 
building and external validation) are provided in Table 1.

Predictive accuracy and concurrent 
validity
The predictive accuracy of the models was assessed using the 
RMSE of the APPROX-CR scores when compared to the 
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criterion standard: the RRI factor scores derived from the la
tent variable model shown in Fig. 2. In the training set, the 
RMSE of the Minimal, Extended, and Full APPROX-CR 
scores were 0.941 (SE = 0.025), 0.824 (SE = 0.008), and 
0.802 (SE = 0.008), respectively. When applied to the held- 
out test set (25% of the combined UCD ADC and ADNI-2 
cohort that was not used to train the models), the RMSE va
lues for the Minimal, Extended, and Full versions were 
1.009, 0.906, and 0.877, respectively. These results show 
that the model accuracy was similar in out-of-sample data, 
suggesting that overfitting was not a substantial problem. 
Both in the training and test sets, there was a sizeable im
provement in accuracy between the Minimal and the 
Extended versions of APPROX-CR and a further, but less 
sizeable, improvement in accuracy for the Full version rela
tive to the Extended version.

Concurrent validity was established by examining the de
gree to which the APPROX-CR scores correlated with the 
criterion standard in the held-out test set. Figure 3 shows a 
correlogram48 depicting the correlation matrix of the RRI 
factor scores (top row) with the three versions of 
APPROX-CR, as well as years of education and AMNART 
scores, for comparison purposes. The Minimal version of 
APPROX-CR had a relatively weak correlation with the 
RRI factor scores but was equivalent to the concurrent valid
ity of the AMNART and superior to the concurrent validity 
of years of education (measures that have both been used in
dividually to index cognitive reserve). A substantial improve
ment in concurrent validity was observed for the Extended 
version of APPROX-CR. Further, but less marked, improve
ment was seen in the Full version. These results were paral
leled when using the latent RRI as the criterion standard, 

Table 1 Participant demographics and descriptive statistics for the model-building phase and the external validation 
phase

Model-building sample External validation sample

Variable Overall ADNI-2 UC Davis Overall ADNI-1 ADNI-3 ADNI-GO

n 1665 790 875 1640 819 690 131
Age, years; M (SD) 74.29 (7.47) 72.68 (7.17) 75.75 (7.44) 73.00 (7.48) 75.19 (6.84) 70.68 (7.38) 71.54 (7.88)
Education, years; M (SD) 14.65 (4.14) 16.30 (2.63) 13.16 (4.67) 15.93 (2.77) 15.53 (3.05) 16.42 (2.34) 15.82 (2.65)
Male sex; n (%) 780 (46.8%) 411 (52.0%) 369 (42.2%) 862 (52.6%) 477 (58.2%) 314 (45.5%) 71 (54.2%)
Race/ethnicity; n (%)

Black/AA 238 (14.3%) 34 (4.3%) 204 (23.3%) 146 (8.9%) 39 (4.8%) 103 (14.9%) 4 (3.1%)
Hispanic/Latinx 236 (14.2%) 31 (3.9%) 205 (23.4%) 85 (5.2%) 19 (2.3%) 58 (8.4%) 8 (6.1%)
White/Caucasian 1151 (69.1%) 728 (92.2%) 423 (48.3%) 1414 (86.2%) 762 (93.0%) 534 (77.4%) 118 (90.1%)

Diastolic blood pressure; M (SD) 74.25 (10.38) 75.14 (9.40) 73.41 (11.18) 74.35 (9.60) 73.77 (9.57) 75.20 (9.67) 73.55 (9.22)
Pulse pressure; M (SD) 64.66 (16.99) 61.13 (14.81) 68.01 (18.22) 58.82 (14.85) 59.91 (15.37) 57.40 (14.29) 59.30 (13.89)
Heart rate; M (SD) 66.60 (10.62) 64.66 (10.31) 68.46 (10.58) 65.94 (10.74) 65.86 (10.56) 66.04 (11.05) 65.84 (10.29)
BMI; M (SD) 27.49 (5.13) 27.34 (5.19) 27.87 (4.95) 27.02 (6.20) 26.10 (4.08) 27.85 (8.01) 28.39 (5.32)
ABSI; M (SD) 80.90 (7.62) — 80.90 (7.62) — — — —
Height, m; M (SD) 1.67 (0.10) 1.68 (0.10) 1.65 (0.10) 1.69 (0.10) 1.69 (0.10) 1.68 (0.10) 1.69 (0.11)
HI; M (SD) 104.51 (5.64) — 104.51 (5.64) — — — —
WHI; M (SD) 3.91 (0.43) — 3.91 (0.43) — — — —
RRI factor score; M (SD) 0.00 (1.00) −0.17 (1.12) 0.15 (0.85) — — — —
AMNART; M (SD) 31.72 (10.12) 34.22 (8.25) 28.96 (11.21) 33.79 (9.16) 33.50 (8.97) 33.96 (9.62) 34.77 (7.82)
MMSE/MoCA; M (SD) 26.90 (3.36) 27.43 (2.72) 26.22 (3.94) 27.36 (2.62) 26.74 (2.67) 27.91 (2.54) 28.29 (1.53)
GDS; M (SD) 1.70 (2.03) 1.40 (1.41) 2.11 (2.60) 1.37 (1.46) 1.39 (1.37) 1.26 (1.54) 1.78 (1.54)
CDR-SB; M (SD) 1.53 (2.09) 1.54 (1.85) 1.52 (2.30) 1.42 (1.73) 1.80 (1.84) 1.02 (1.64) 1.24 (0.69)
CDR memory; n (%)

0 664 (41.4%) 296 (37.5%) 368 (45.3%) 617 (37.6%) 230 (28.1%) 387 (56.1%) 0 (0.0%)
0.5 576 (36.0%) 314 (39.7%) 262 (32.3%) 719 (43.8%) 375 (45.8%) 216 (31.3%) 128 (97.7%)
1 322 (20.1%) 165 (20.9%) 157 (19.3%) 279 (17.0%) 199 (24.3%) 77 (11.2%) 3 (2.3%)
2 37 (2.3%) 14 (1.8%) 23 (2.8%) 25 (1.5%) 15 (1.8%) 10 (1.4%) 0 (0.0%)
3 3 (0.2%) 1 (0.1%) 2 (0.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

ECog (informant) memory average score; 
M (SD)

2.10 (0.94) 2.10 (0.94) 2.11 (0.94) 1.86 (0.88) — 1.83 (0.90) 2.00 (0.70)

ECog (informant) total average score; M 
(SD)

1.76 (0.77) 1.73 (0.76) 1.79 (0.78) 1.56 (0.68) — 1.54 (0.70) 1.62 (0.54)

ECog self-reported memory concerns; n (%) 611 (68.4%) 575 (74.9%) 36 (28.8%) 418 (63.7%) — 383 (62.0%) 35 (92.1%)
Clinical diagnosis; n (%)

Unavailable 2 (0.1%) 0 (0.0%) 2 (0.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Dementia 287 (17.3%) 148 (18.9%) 139 (15.9%) 265 (16.3%) 193 (23.6%) 72 (10.6%) 0 (0.0%)
MCI 613 (37.0%) 341 (43.6%) 272 (31.1%) 759 (46.7%) 397 (48.5%) 234 (34.5%) 128 (99.2%)
Normal 755 (45.6%) 293 (37.5%) 462 (52.8%) 602 (37.0%) 229 (28.0%) 372 (54.9%) 1 (0.8%)

AA, African American; ABIS, A body shape index; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AMNART, American National Adult Reading Test; BMI, body mass index; CDR, 
clinical dementia rating; ECog, everyday cognition scale; GDS, geriatric depression scale; HI, hip index; MMSE, mini-mental state examination; MoCA, Montreal cognitive assessment; 
RRI, residual reserve index; SB, sum of boxes; WHI, waist-hip index. — signifies that data are unavailable.
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based on the latent variable model shown in Fig. 2. The cor
relations of the latent residual with the APPROX-CR scores 
were Minimal r = 0.245 (SE = 0.048), Extended r = 0.519 
(SE = 0.037), and Full r = 0.574 (SE = 0.034).

External validation
External validation applied the Minimal, Extended, and Full 
XGBoost models to baseline data from ADNI-1, ADNI-GO, 
and ADNI-3 to generate APPROX-CR scores, and then 
tested whether these scores were capable of moderating the 
effects of grey matter volume on executive functioning, after 
controlling for covariates. Because of differences in data 
availability across studies, the ADNI-1, ADNI-GO, and 
ADNI-3 samples did not have data for a body shape index, 
hip index, and waist-hip index available; these were there
fore treated as missing when deriving APPROX-CR scores 
in the external validation sample. A series of nested model 
comparison tests were run to examine (i) main effects of 
APPROX-CR scores; (ii) the ability of APPROX-CR scores 
to moderate the effects of baseline grey matter volume on 
baseline executive functioning scores; and (iii) the ability of 
APPROX-CR scores to moderate the effects of baseline 
grey matter volume and change in grey matter volume on ex
ecutive functioning performance over time.

The Minimal version of APPROX-CR did not show evi
dence of validity when predicting executive functioning. 
Relative to the covariates-only model, adding the main effects 
of baseline APPROX-CR scores did not lead to an improve
ment in fit, χ2 (df = 2) = 5.88, P = 0.05. Similarly, Minimal 
APPROX-CR scores did not moderate brain-cognition asso
ciations at baseline, χ2 (df = 1) = 0.06, P = 0.8, or over time, 
χ2 (df = 2) = 1.76, P = 0.42. In contrast, the Extended and 

Full versions of APPROX-CR showed strong validity as mod
erators of brain-cognition associations, both cross- 
sectionally and longitudinally, as seen in Table 2.

Figure 4 depicts the moderating influence of Extended and 
Full APPROX-CR scores on executive functioning perform
ance over time, in comparison to two other cognitive reserve 
proxies: years of education and AMNART scores. The re
sults in Fig. 4 are all based on a hypothetical reference group, 
representing a 70-year-old woman with 12 years of educa
tion. The left column is based on sample-derived expecta
tions for a low rate of gray matter atrophy (-0.05 SD per 
year). The center column is based on a moderate gray matter 
atrophy rate (-0.10 SD per year), and the right column is 
based on a high gray matter atrophy rate (-0.15 SD per 
year). The advantage of APPROX-CR scores—in terms of 
prospective moderation of brain effects on cognition—over 
education and AMNART scores can be appreciated visually 
in Fig. 4, as high APPROX-CR scores (i.e. high predicted 
cognitive reserve) are associated with less rapid cognitive de
cline, even when brain atrophy is more pronounced. For 
more detailed results, interested readers can obtain the par
ameter estimates derived from these models in the 
Supplementary material for this manuscript.

Variable importance
Figure 5 provides variable importance plots for the Extended 
(A) and Full (C) versions of APPROX-CR; these plots rank 
the relative importance of each feature used as a predictor 
in the Full XGBoost model. It should be noted that variable 
importance is a statistical phenomenon related to the quality 
of the predictions made, and is not necessarily reflective of 
importance from a mechanistic (i.e. causal) perspective. 
Another approach to understanding the contributions of 
each feature toward making predictions is through the use 
of SHapley Additive exPlanation (SHAP) values,49,50 which 
are shown in panels B (Extended version) and D (Full ver
sion) of Fig. 5, and also in the Supplementary material for 
this manuscript. The ‘beeswarm’ plots in Fig. 5B and D
show the marginal impact of a given feature’s value on the 
predicted APPROX-CR scores. For example, high MMSE/ 
MoCA scores (colored bright yellow) are associated with 
higher predicted APPROX-CR values, whereas low 
MMSE/MoCA scores (colored dark purple) are associated 
with lower predicted APPROX-CR scores. Each dot repre
sents a participant, so thicker ‘swarms’ represent more fre
quent occurrences in the model-building sample.

Discussion
Current conceptualizations of cognitive reserve are import
ant for the study of cognitive aging and dementia because 
they help understand and predict heterogeneity in late-life 
cognitive outcomes. The most easily accessible proxies for 
cognitive reserve, such as years of education and word read
ing ability, have limitations that may make them less useful 

Figure 3 Correlogram depicting the correlations between 
different methods for estimating cognitive reserve. The 
residual reserve index (RRI) factor scores represent the criterion 
standard for evaluating concurrent validity. Numeric values 
represent correlation coefficients (with 95% confidence intervals), 
N (RRI, Minimal, Extended, Full) = 417; N (Education) = 416; N 
(AMNART) = 362. AMNART, American national adult reading test; 
APPROX-CR, A passable proxy of residual-like outcomes via 
Xgboost for cognitive reserve.
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than other more direct measures of cognitive reserve.2,3

However, more direct measures of cognitive reserve—in par
ticular, those that use residual-based operationalizations— 
are less easily accessible and offer little to no insight into 
why some individuals have higher residual scores than other 
individuals. Further, neuroimaging cohorts tend to be lim
ited by selection bias and are costly to acquire.51

Therefore, there is a present need to estimate cognitive re
serve with the validity of residual-based models, but with 
the convenience of proxies.

The current study developed a machine learning algorithm 
to predict residual-based cognitive reserve scores, with two 
primary goals: (i) to provide a more easily accessible estimate 
of cognitive reserve that can function similarly to reserve- 
based methods, but without the need for cost- and time- 
intensive neuroimaging, comprehensive neuropsychological 
assessment, and with the ability to be applied to individual 
examinees; and (ii) to identify the variables that are most im
portant for predicting cognitive reserve, which can facilitate 
future research into potentially modifiable factors that build 
cognitive resilience against neurodegenerative diseases of 
aging.52 Because our model, using a combination of easily 
accessible predictor variables, is well-correlated with the 
less accessible residual-based operationalization, it can be 
viewed as a practical bridge between the accessibility of 
proxy variables and the stronger validity of the residual 
model.

Both of this study’s goals were achieved. We built three ma
chine learning models using the XGBoost algorithm— 
Minimal, Extended, and Full versions—and demonstrated 
that the Extended and Full versions of APPROX-CR moder
ated the effects of grey matter volume on executive function 
intercept and slope. The Extended and Full versions can be ap
plied to individual patient data to obtain an estimate of that in
dividual’s RRI had it been generated using latent variable 
modeling with MRI and neuropsychological performance 
data. Deriving the Extended APPROX-CR scores can be 
achieved with basic demographic, anthropometric, and physio
logical data, plus several brief patient-oriented screening 
measures (i.e. the MMSE/MoCA, AMNART, GDS, and self- 
reported concern about memory changes); the Full version 
adds the CDR and informant-report version of the ECog. 

Even in the presence of incomplete data, APPROX-CR scores 
can be derived using a simple web-based application.

The finding that the Minimal version of APPROX-CR was 
a poor predictor of cognitive outcomes, and was not success
ful in moderating the effects of grey matter volume on execu
tive functioning performance is instructive, especially when 
compared to the Extended and Full versions. These latter 
two versions were capable of predicting cognitive intercepts 
and slopes, and they moderated the impact of grey matter 
on executive functioning, both cross-sectionally and longitu
dinally. In other words, the Extended and Full versions de
monstrated construct validity as measures of cognitive 
reserve, such that high levels of reserve resulted in less rapid 
executive function decline, even in the context of brain atro
phy (Fig. 4). The most obvious difference between the 
Minimal version and the more comprehensive versions was 
the inclusion of direct measurements of cognitive ability in 
the Extended and Full models. This pattern of results pro
vides compelling evidence to suggest that predictions about 
an individual’s current cognitive reserve should account for 
that individual’s current level of cognitive ability. This is con
sistent with recent findings showing that episodic memory is a 
better representation of cognitive reserve compared to prox
ies like education,12 with better-moderating effects of brain- 
cognition associations. Stated another way, proxies that do 
not account for cognitive performance (e.g. years of educa
tion, occupational functioning, other life history variables) 
may not be successful at demonstrating the necessary feature 
of moderating the prospective effects of brain on cognition.10

In addition to possessing prospective moderation capabil
ity, APPROX-CR scores are largely dependent upon dynam
ic inputs; that is, variables—like cognitive performance— 
whose change over time during late life can be captured by 
repeated measurements. By including dynamic variables, 
APPROX-CR is more consistent with the theoretical concep
tualization of cognitive reserve as a dynamic construct that 
could remain stable or be depleted over time, in comparison 
to static proxy variables like years of education.1,9,11

However, the Extended and Full versions of APPROX-CR 
also depend on education and AMNART scores, so the con
tributions of these (mostly) static proxy variables can be in
corporated without being limited by them. Indeed, we see 

Table 2 Model comparisons for external validation of extended and full APPROX-CR scores

Label Model # Parameters AIC BIC logLik Deviance Δχ2 Δdf P Comparison

Extended
E1 Covariates Only 29 7542 7725 −3742 7484 − − − −
E2 No Moderation 31 7301 7497 −3620 7239 244.8a 2 <0.01 E2 versus E1
E3 Intercept Moderation 32 7265 7468 −3601 7201 37.69a 1 <0.01 E3 versus E2
E4 Slope Moderation 34 7248 7463 −3590 7180 21.27a 2 <0.01 E4 versus E3

Full
F1 Covariates Only 29 7542 7725 −3742 7484 NA − − −
F2 No Moderation 31 7208 7404 −3573 7146 337.7a 2 <0.01 F2 versus F1
F3 Intercept Moderation 32 7157 7359 −3546 7093 53.25a 1 <0.01 F3 versus F2
F4 Slope Moderation 34 7126 7341 −3529 7058 35.07a 2 <0.01 F4 versus F3

AIC, Akaike information criterion; BIC, Bayes information criterion. The Comparison column refers to which models (named in the Label column) are being compared with χ2 tests.  
aP < 0.01.
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that in the Extended and Full versions, education and 
AMNART contribute some importance toward predicting 
outcomes, but this is greatly exceeded by dynamic cognitive 
and/or functional measurements (MMSE/MoCA in the 
Extended version and MMSE/MoCA and CDR in the Full 
version). As an aside, it should be noted that, while 
AMNART scores can change dynamically over time, these 
scores are usually interpreted to reflect one’s premorbid 
IQ, which—conceptually—does not change across repeated 
measurements.

Examining the relative importance of each predictor in the 
Extended and Full models (Fig. 5) sheds some light on factors 
that may be most useful for estimating a person’s current 
cognitive reserve. The sizeable improvement in performance 
seen in the Extended model relative to the Minimal model 
suggests that some direct measurement of cognition (i.e. 
the MMSE/MoCA and the AMNART) is highly valuable 
for predicting current cognitive reserve. The more modest, 
but still apparent, improvement in model fit of the Full 
version relative to the Extended version shows that more 
detailed information about current cognitive abilities— 

augmented by informant ratings of independent functioning 
CDR and ECog—provides additional value. When inform
ant ratings of ECog are unavailable, an individual’s 
self-reported memory concerns have more importance for 
predicting the RRI (Extended model). More specifically, in 
the Extended model, a self-reported cognitive concern was 
predictive of lower cognitive reserve (by roughly −0.1 to 
−0.3 standardized units), which may suggest that declining 
cognitive reserve may be a phenomenon capable of being 
subjectively experienced. Whereas previous research has de
monstrated that subjective cognitive decline and associated 
worry about these changes is associated with worse cognitive 
outcomes,53 the current results suggest that such concerns 
may also be a useful predictor of cognitive reserve, especially 
in the absence of an informant report.

Heart rate and diastolic blood pressure had relatively 
greater importance in the Extended model compared to the 
Full model as well. This suggests that, when available, object
ive and informant-based measures of cognition and everyday 
functioning supersede physical health measures in their 
contribution toward predicting the RRI. Of the physical 

Figure 4 Model-predicted trajectories for Executive Functioning performance over time for a hypothetical reference participant 
(female, 70 years old at baseline, 12 years of education, and with sample-average baseline brain volume). The faceted rows compare 
different cognitive reserve proxies: Extended and Full APPROX-CR scores (top two rows of panels, respectively), years of education (third row of 
panels) and AMNART scores (bottom row of panels). The faceted columns show how the moderating influence of the cognitive reserve proxies differ 
by grey matter atrophy rates, ranging from less rapid (left panels) to more rapid (right panels) atrophy. GM, grey matter; MCI, mild cognitive impairment; 
APPROX-CR, A Passable Proxy of Residual-like Outcomes via Xgboost for Cognitive Reserve; AMNART, American National adult reading test.
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measurements, body mass index made the largest contribu
tion to model predictions, but because the association be
tween body mass index and predicted scores was non-linear 
(see the beeswarm plots in Fig. 5 and the SHAP dependence 
plots in the Supplementary material), this relation is likely 
to be nuanced and potentially moderated by other factors. 
Similarly, height, which was expected to show positive as
sociations with reserve as a proxy for neurodevelop
ment,30 also demonstrated a more nuanced pattern that 
differed somewhat depending on the other features avail
able in the model. Aside from height, other anthropomet
ric and physiological measurements were toward the 
bottom of the feature importance scale in both the 
Extended and Full models, suggesting that these markers, 
largely associated with physical health, are less likely to be 
fruitful targets for research investigating the mechanisms 
of cognitive resilience. Notably, years of education was 
relatively low in importance for both the Extended and 

Full models. This is consistent with recent findings that 
static proxy measures have limited utility for characteriz
ing cognitive reserve,7,8,12 especially in settings where bar
riers to access (e.g. educational opportunities) are 
inequitable. Similarly, symptoms of depression were not 
strong contributors toward APPROX-CR scores. It should 
be noted that, because XGBoost is a ‘black box’ algo
rithm, variables higher in importance should not be inter
preted as exerting a causal influence over the outcome. 
However, it may be useful to consider mechanisms by 
which highly important variables may be predictive of 
cognitive reserve as an exercise in hypothesis generation 
for future research.

The external validation analyses directly compared 
APPROX-CR scores to two common cognitive reserve 
proxies—years of education and word reading, as measured 
by the AMNART—by including all three variables as mod
erators in the same regression model. The Extended and 

A B

C D

Figure 5 Variable importance (left) and Beeswarm (right) plots for the extended (top) and full (bottom) versions of 
APPROX-CR. The Variable Importance plots (A and C; left) rank order the features from top to bottom (y-axis) by their relative contribution to 
model predictions (x-axis). Color coding is used to show clusters of variables with higher (blue) versus lower (red) importance. The Beeswarm 
plots (B and D; right) convey how a feature’s value (higher scores are more yellow, lower scores are more purple) are associated with marginal 
differences in predicted APPROX-CR scores (x-axis). When data are missing for a given feature (e.g. ABSI was not available in ADNI), feature 
values are colored grey. Data were derived from the training set in the Model Building sample (N = 1248). AMNART, American National adult 
reading test; CDR, clinical dementia rating; ECog, everyday cognition; MMSE, mini-mental state examination; MoCA, Montreal cognitive 
assessment; SHAP, SHapley additive explanation.

12 | BRAIN COMMUNICATIONS 2024, fcae240                                                                                                                B. E. Gavett et al.

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcae240#supplementary-data


Full APPROX-CR scores had much stronger effect sizes 
when interacting with brain change to predict future rate 
of cognitive decline; these comparisons are depicted graph
ically in Fig. 4. These findings show that, even after ac
counting for education and word reading, having high 
APPROX-CR scores appears to buffer against the negative 
effects of brain volume change on cognitive change. It 
should be noted, however, that many other cognitive re
serve proxies have been used in the extant literature (e.g. oc
cupational functioning, participation in cognitively 
stimulating leisure activities).54 The current study is limited 
by the absence of these alternative proxies, and future re
search may wish to include such variables as features in a 
machine learning model.

Of note, the current approach to defining the criterion 
standard—that is, the latent RRI—used slightly different 
MRI measures compared to the original version described 
by Reed and colleagues.4 In the original definition of the 
cognitive reserve as a residual-based on the decomposition 
of episodic memory variance into components explained by 
brain variables, demographics, and the residual (i.e. what 
was left unexplained), hippocampal volume, total brain 
grey matter volume, and WMH volumes were used for 
the brain component.4 However, that method of operation
alizing cognitive reserve may contain variance explained by 
unmeasured brain variables.1,12,22 To reduce the contribution 
of unmeasured brain to the residual, the signature region ap
proach was used in the current study. This approach employs 
a data-driven search for brain substrates capable of explaining 
the most possible variance in an outcome of interest, and it 
outperforms pre-selected regions like the hippocampus.22,23

Thus, our use of grey matter brain signature regions was 
aimed at reducing the unmeasured brain component, produ
cing a more ‘purified’ version of the residual with the goal 
of more accurately representing cognitive reserve.

In summary, the current results show that a residual-based 
proxy for cognitive reserve can be estimated using standard 
clinical variables that can be collected in most out-patient 
healthcare settings. In comparison to other readily available 
proxies of cognitive reserve (i.e. years of education and 
AMNART), APPROX-CR scores possess greater validity 
and, importantly, the ability to concurrently and prospect
ively moderate brain-cognition associations in the expected 
direction. In comparison to more idealized approaches to es
timating cognitive reserve (i.e. a residual-based model de
rived from latent variable analysis of neuroimaging and 
neuropsychological assessment data), APPROX-CR scores 
are substantially more accessible, ensuring that cognitive re
serve estimates can be made about almost any individual pa
tient or research participant, even when neuroimaging 
facilities are unavailable.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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