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EPIGRAPH

我想：希望本是无所谓有，无所谓无的。这正如地上的路；
其实地上本没有路，走的人多了，也便成了路。

— 鲁迅

I think: one cannot say that hope exists, or does not exist.

It is like the roads that mark the earth;
For though there were none at first,

where footsteps have fallen, roads emerge.

— Lu Xun
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In interactive machine learning, learners utilize data collected from interacting with

the environment or with humans to better achieve their goals. Real-world applications

often involve heterogeneous data sources, such as a large pool of human users with diverse

interests or preferences, or non-stationary environments with distribution shifts. In this

dissertation, we investigate interactive machine learning in the presence of heterogeneous

data. In particular, we study when and how provably efficient learning can be achieved

when the heterogeneous data exhibit structure.

In the first part, we study transfer learning in sequential decision-making. We

consider a setting where learners are deployed to perform tasks in similar yet nonidentical
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multi-armed bandit environments. We study when and how knowledge acquired from

one environment can be robustly transferred to others so as to improve the collective

performance of the learners. We present two provably efficient algorithms that properly

manage data collected across heterogeneous environments: one uses upper confidence

bounds and the other is based on Thompson sampling. We then generalize the setting and

certain results to multi-task reinforcement learning in tabular Markov decision processes.

In the second part, we study metric learning from crowdsourced preference com-

parisons. In particular, we consider the ideal point model in preference learning, where

a user prefers an item over another if it is closer to their latent ideal point. While users

may have individual preferences and distinct ideal points, our goal is to learn a common

Mahalanobis distance, which provides a more accurate measure of “closeness” that aligns

with human values, perception and preferences. We study when and how such a metric

can be learned if we can query each user a few times, asking questions in the form of “Do

you prefer item A or B?”
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Chapter 1

Introduction

In many real-world artificial intelligence (AI) applications, machine learners use

data collected from interacting with the environment or humans to better achieve their

goals. We refer to these problems as interactive machine learning problems. In this

dissertation, we consider two types of interactive machine learning problems. One is

sequential decision-making (e.g., [90]), in which a learner adaptively interacts with the

environment over time. The other is AI alignment (e.g., [114]), wherein a learner refines its

model parameters using interaction data to better align with human values and preferences.

In practical scenarios, interaction data often comes from heterogeneous sources. For

example, learners may interact with a group of humans with diverse values or preferences;

and, interaction data could also be collected from a non-stationary environment where the

underlying model shifts over time. An important challenge involving heterogeneous data

is that it is often unclear whether a learner can robustly aggregate and make use of such

data to achieve their goals, if at all.

Fortunately, real-world heterogeneous data commonly exhibit structure. For exam-

ple, the group of humans may share similar preferences or hold common perceptions and

values towards certain subjects; in a non-stationary environment, the underlying model at

different times may be different but still related. In this dissertation, we study when and

how provably efficient interactive machine learning can be achieved with heterogeneous
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data, and what structural assumptions are needed.

In the first part of this dissertation, we study robust transfer learning in multi-task

bandits and reinforcement learning. We consider settings in which a group of learners

are deployed to perform tasks in similar but not necessarily identical environments. For

example, these environments may have similar reward distributions. We characterize when

and how auxiliary data collected from other environments can be leveraged to improve the

performance of each learner.

In Chapter 2, we formulate the ϵ-multi-player multi-armed bandit (ϵ-MPMAB)

problem, in which a set of M players concurrently interact with multi-armed bandit

instances with bounded pairwise dissimilarities between their reward distributions (Sec-

tion 2.2). When the dissimilarities are known, we provide nearly-matching upper and

lower bounds on the collective regret of the players, which show that information sharing

is only amenable on subpar arms, a notion we introduce in Section 2.3.2 that captures

the intrinsic complexity of the ϵ-MPMAB problem. We present an upper confidence

bound (UCB)-based algorithm (Section 2.3.1) that achieves the regret upper bounds. In

comparison with a baseline that does not utilize any knowledge transfer, the collective

regret bound on subpar arms can be improved by nearly a factor of M (Theorem 2.5). In

Section 2.4, we present results for the more challenging setting where the dissimilarities

are unknown.

In Chapter 3, we first generalize the learning protocol of the ϵ-MPMAB problem so

that the players do not necessarily interact with their respective environments concurrently;

this setting can also capture, for example, sequential transfer and lifelong learning (Sec-

tion 3.2). We then present a Thompson sampling-style randomized exploration algorithm

(Section 3.3), which is proved (also) near-optimal and shows stronger empirical performance

on synthetic data in comparison with the UCB-based algorithm in Chapter 2.

In Chapter 4, we study multi-task reinforcement learning in similar tabular, episodic

Markov decision processes, a generalization of the ϵ-MPMAB problem in Chapter 2. In this
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setting, we show that the notion of subpar state-action pairs, which generalizes the notion

of subpar arms, now captures the intrinsic complexity of the problem (Section 4.4). We

present a model-based algorithm, and provide nearly-matching upper and lower bounds.

In the second part of this dissertation, we study AI alignment from crowdsourced

data, where it is imperative to overcome latent variation in feedback across individuals.

In Chapter 5, we consider a setting where we are given representations of a set

of items in Rd, and we aim to learn a metric that aligns with human values, perception,

and preferences, in that it more accurately captures how humans perceive the semantic

relations among the items. In particular, we seek to learn this metric using human

preference comparisons. We consider the ideal point model in preference learning [38],

where a user prefers an item over another if it is closer to their latent ideal item in Rd.

Given users with diverse preferences, we study when and how we can recover an unknown

Mahalanobis distances when each user provides o(d) preference comparisons. We show

that additional structural assumptions may be needed, and we provide algorithms with

recovery guarantees.
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Chapter 2

Multi-Task Bandits through Heteroge-
neous Feedback Aggregation

2.1 Introduction

Online multi-armed bandit learning has many important real-world applications

[e.g., 154, 131, 94]. In practice, a group of online bandit learning agents are often

deployed for similar tasks, and they learn to perform these tasks in similar yet nonidentical

environments. For example, a group of assistive healthcare robots may be deployed to

provide personalized cognitive training to people with dementia (PwD), e.g., by playing

cognitive training games with people [82]. Each robot seeks to learn the preferences of

its paired PwD so as to recommend tailored health intervention based on how the PwD

reacts to and is engaged with the activities (as captured by sensors on the robots) [82].

As PwD may have similar preferences and may therefore exhibit similar reactions, one

natural question arises—can the robots as a multi-agent system learn to perform their

respective tasks faster through collaboration? In Chapter 2 and Chapter 3, we develop

multi-agent bandit learning algorithms where each agent can robustly aggregate data from

other agents to better perform its respective task.

We generalize the multi-armed bandit problem [8] and formulate the ϵ-Multi-Player

Multi-Armed Bandit (ϵ-MPMAB) problem, which models heterogeneous multi-task learning

in a multi-agent bandit learning setting. In an ϵ-MPMAB problem instance, a set of M
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players are deployed to perform similar tasks—simultaneously they interact with a set of

actions/arms, and for each arm, different players receive feedback from similar but not

necessarily identical reward distributions. In the above assistive robotics example, each

player corresponds to a robot; each arm corresponds to one of the cognitive activities

to choose from; for each player and each arm, there is a separate reward distribution

which reflects a PwD’s personal preferences. Informally, ϵ ≥ 0 is a dissimilarity parameter

that upper bounds the pairwise distances between different reward distributions for

different players on the same arm (see Definition 2.1 in the next section). The players can

communicate and share information among each other, with a goal of maximizing their

collective reward.

Multi-player bandit learning has been studied extensively in the literature [e.g.,

87, 31, 57], warm-starting bandit learning using different feedback sources has been

investigated [174], and sequential transfer between similar tasks in a bandit learning

setting has also been studied [11, 138]. In contrast, we model multi-task learning in a

multi-player bandit learning perspective with a focus on adaptive and robust aggregation of

player-dependent heterogeneous feedback. In Section 2.5, we further discuss and compare

our problem formulation with related papers.

It is worth noting that naively utilizing data collected by other players may sub-

stantially hurt a player’s regret [174], if there are large disparities between the sources of

feedback. This is also well-known as negative transfer in transfer learning [123, 24].

Therefore, the main challenge of the ϵ-MPMAB problem is for the players to

properly manage when and how to utilize auxiliary data shared by others—while auxiliary

data can be useful to maintain more accurate estimates of the rewards for each player

and each arm, they can also easily be inefficacious or even misleading. While transfer

learning in the offline setting has been well studied, in this chapter we seek to characterize

the difficulty of the more challenging problem of learning through heterogeneous feedback

aggregation in a multi-player online setting.
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We will first study the ϵ-MPMAB problem when the dissimilarity parameter ϵ is

known, and then move on to the harder setting in which ϵ is unknown. Here is a summary

of our main contributions:

• We model online multi-task bandit learning from heterogeneous data sources as the

ϵ-MPMAB problem, with a goal of studying how to adaptively and robustly aggregate

data to improve the collective performance of the players.

• In the setting where ϵ is known, we propose an upper confidence bound (UCB)-based

algorithm, RobustAgg(ϵ), that adaptively aggregates rewards collected by different

players.

We provide (suboptimality)-gap-dependent and gap-independent upper bounds on the

collective regret of RobustAgg(ϵ). Our regret bounds depend on the set of arms that

admit information sharing among the players. When this set is large, RobustAgg(ϵ)

can potentially improve the gap-dependent regret bound by nearly a factor of M

compared to the baseline of players acting individually using UCB-1 [8].

We complement these upper bounds with nearly matching gap-dependent and gap-

independent lower bounds.

• In the setting where ϵ is unknown, we first establish a lower bound, showing that if an

algorithm guarantees sublinear minimax regret with respect to all MPMAB instances,

then it must be unable to significantly utilize inter-player similarity in a large collection

of instances. To complement the above result, we use the framework of Corral [2, 115, 6]

and present an algorithm that trades off minimax regret guarantee for adaptivity to

“easy” MPMAB problem instances.

2.2 The ϵ-MPMAB Problem

We formulate the ϵ-MPMAB problem, building on the standard model of stochastic

multi-armed bandits [86, 8].
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Throughout, we denote by [n] = {1, . . . , n}. An MPMAB problem instance consists

of a set of M players, labeled as elements in [M ], and a set of K arms, labeled as elements

in [K]. In addition, each player p ∈ [M ] and each arm i ∈ [K] is associated with an

unknown reward distribution Dpi with support [0, 1] and mean µpi . If all Dpi ’s are Bernoulli

distributions, we call this instance a Bernoulli MPMAB problem instance; under the

Bernoulli reward assumption, µ = (µpi )i∈[K],p∈[M ] completely specifies the instance.

The reward distributions of the same arm are not necessarily identical for different

players—we consider the following notion of dissimilarity between the reward distributions

of the players. Related conditions have been considered in works on multi-task bandit

learning [e.g., 11, 138].

Definition 2.1. An MPMAB problem instance is said to be an ϵ-MPMAB problem

instance, if for every pair of players p, q ∈ [M ], maxi∈[K] |µpi − µ
q
i | ≤ ϵ, where ϵ ∈ [0, 1].

We call ϵ the dissimilarity parameter.

Interaction protocol.

Let T > max(M,K) be the horizon of an MPMAB (ϵ-MPMAB) problem instance.

In each round t ∈ [T ], every player p ∈ [M ] pulls an arm ipt , and observes an independently-

drawn reward rpt ∼ D
p
ipt
. Once all the M players finish pulling arms in round t, each

decision, ipt , together with the corresponding reward received, rpt , is immediately shared

with all players.

Arm pulls, gaps, and performance measure.

Let µp∗ = maxi∈[K] µ
p
i be the optimal mean reward for every player p ∈ [M ].

Denote by npi (t) the number of pulls of arm i by player p after t rounds, and ∆p
i =

µp∗ − µpi ≥ 0 the suboptimality gap (abbrev. gap) between the means of the reward

distributions associated with some optimal arm ip∗ and arm i for player p. For any arm

i ∈ [K], define ∆min
i = minp∈[M ] ∆

p
i . To measure the performance of MPMAB algorithms,

we use the following notion of regret. The expected regret of player p is defined as
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E[Rp(T )] =
∑

i∈[K]∆
p
i · E[n

p
i (T )], and the players’ expected collective regret is defined as

E[R(T )] =
∑

p∈[M ] E[Rp(T )].

Bandit learning algorithms.

A multi-player bandit learning algorithm A with horizon T is defined as a sequence

of conditional probability distributions {πt}Tt=1, where for every t in [T ], πt is the policy used

in round t; specifically, πt(· | (ips, rps)s∈[t−1],p∈[M ]) is a conditional probability distribution

of actions taken by all M players in round t, given historical data. A bandit learning

algorithm is said to have sublinear regret for the ϵ-MPMAB (resp. MPMAB) problem, if

there exists some C > 0 and α > 0 such that E[R(T )] ≤ CT 1−α for all ϵ-MPMAB (resp.

MPMAB) problem instances.

Miscellaneous notations.

Throughout, we use Õ notation to hide logarithmic factors. Given a universe set

H and any J ⊆ H, we use J C to denote the set H \ J .

Baseline: Individual UCB.

We now consider a baseline algorithm that runs the UCB-1 algorithm individually

for each player without communication—hereafter, we refer to it as Ind-UCB. By [8,

Theorem 1], and summing over the individual regret guarantees of all players, the expected

collective regret of Ind-UCB satisfies

E[R(T )] ≤ O
(∑
i∈[K]

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

)
.

In addition, Ind-UCB has a gap-independent regret bound of Õ
(
M
√
KT

)
[e.g., 90,

Theorem 7.2].
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2.2.1 Can auxiliary data always help?

Since the interaction protocol allows information sharing among players, in any

round t > 1, each player has access to more data than they would have without communi-

cation. Can the players always expect benefits from such auxiliary data and collectively

perform better than Ind-UCB?

Below we provide an example that illustrates that the role of auxiliary data depends

on the dissimilarities between the player-dependent reward distributions, as indicated by

ϵ, as well as the intrinsic difficulty of each multi-armed bandit problem each player faces

individually, as indicated by the gaps ∆p
i ’s. Specifically, we show in the example that when

ϵ is much larger than the gaps ∆p
i ’s, any sublinear-regret bandit learning algorithm for the

ϵ-MPMAB problem cannot significantly take advantage of auxiliary data.

Example 2.2. For a fixed ϵ ∈ (0, 1
8
) and δ ≤ ϵ/4, consider the following Bernoulli

MPMAB problem instance: for each p ∈ [M ], µp1 =
1
2
+ δ, µp2 =

1
2
. This is a 0-MPMAB

instance, hence an ϵ-MPMAB problem instance. Also, note that ϵ is at least four times

larger than the gaps ∆p
2 = δ.

Claim 2.3. For the above example, any sublinear regret algorithm for the ϵ-MPMAB

problem must have Ω(M lnT
δ

) regret on this instance, matching the Ind-UCB regret upper

bound.

The claim follows from Theorem 2.9 in Section 2.3.3; see Appendix A.2 for details.

The intuition is that any sublinear regret ϵ-MPMAB algorithm must have Ω
(

lnT
δ2

)
pulls

of arm 2 from every player; otherwise, as δ is small compared to ϵ, we can create a

new ϵ-MPMAB instance such that arm 2 is optimal for some player and is sufficiently

indistinguishable from the original MPMAB problem, causing the algorithm to fail its

sublinear regret guarantee.

Complementary to the above negative result, in the next section, we establish
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algorithms and sufficient conditions for the players to take advantage of the auxiliary data

to achieve better regret guarantees.

2.3 ϵ-MPMAB with Known ϵ

In this section, we study the ϵ-MPMAB problem with the dissimilarity parameter ϵ

known to the players. We first present our main algorithm RobustAgg(ϵ) in Section 2.3.1;

Section 2.3.2 shows its regret guarantees; Finally, Section 2.3.3 provides nearly matching

regret lower bounds. Our proofs are deferred to Appendices A.3, A.4 and A.5.

2.3.1 Algorithm: RobustAgg(ϵ)

We present RobustAgg(ϵ), an algorithm that adaptively and robustly aggregates

rewards collected by different players in ϵ-MPMAB problem instances, given dissimilarity

ϵ as an input parameter.

Intuitively, in any round, a player may decide to take advantage of data from other

players who have similar reward distributions. Deciding how to use auxiliary data is

tricky—on the one hand, they can help reduce variance and get a better mean reward

estimate, but on the other hand, if the dissimilarity between players’ reward distributions

is large, auxiliary data can substantially bias the estimate. Our algorithm is built upon

this insight of balancing bias and variance. A similar tradeoff in offline transfer learning

for classification is studied in the work of Ben-David et al. [19]; we discuss the connection

and differences between our work and theirs in Section 2.5.3.

Algorithm 1 provides a pseudocode of RobustAgg(ϵ). Specifically, it builds on

the classic UCB-1 algorithm [8]: for each player p and arm i, it maintains an upper

confidence bound UCBpi (t) for mean reward µpi over time (lines 5 to 10), such that with

high probability, µpi ≤ UCBpi (t), for all t.

To achieve the best regret guarantees, we would like our confidence bounds on µpi

to be as tight as possible. To this end, we consider a family of confidence intervals for µpi ,
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Algorithm 1: RobustAgg(ϵ): Robust learning in ϵ-MPMAB
Input :Distribution dissimilarity parameter ϵ ∈ [0, 1];

1 Initialization: Set npi = 0 for all p ∈ [M ] and all i ∈ [K].
2 for t = 1, 2 . . . , T do
3 for p ∈ [M ] do
4 for i ∈ [K] do
5 Let mp

i =
∑

q∈[M ]:q ̸=p n
q
i ;

6 Let npi = max(1, npi ) and mp
i = max(1,mp

i );
7 Let

ζpi (t) =
1

npi

∑
s<t
ips=i

rps , ηpi (t) =
1

mp
i

∑
q∈[M ]
q ̸=p

∑
s<t
iqs=i

rqs,

and κpi (t, λ) = λζpi (t) + (1− λ)ηpi (t);

8 Let F (npi ,m
p
i , λ, ϵ) = 8

√
13 lnT

[
λ2

np
i

+ (1−λ)2

mp
i

]
+ (1− λ)ϵ;

9 Compute λ∗ = argminλ∈[0,1] F (n
p
i ,m

p
i , λ, ϵ);

10 Compute an upper confidence bound of the reward of arm i for
player p:

UCBpi (t) = κpi (t, λ
∗) + F (npi ,m

p
i , λ

∗, ϵ).

11 Let ipt = argmaxi∈[K]UCBp
i (t);

12 Player p pulls arm ipt and observes reward rpt ;
13 for p ∈ [M ] do
14 Let i = ipt and set npi = npi + 1.

parameterized by a weighting factor λ ∈ [0, 1]: [κpi (t, λ)± F (n
p
i ,m

p
i , λ, ϵ)].

In the above confidence interval formula, κpi (t, λ) estimates µpi by taking a convex

combination of ξpi (t) and ηpi (t), the empirical mean reward of arm i based on the player’s

own samples and the auxiliary samples, respectively (line 7). The width F (npi ,m
p
i , λ, ϵ)

is a high-probability upper bound on
∣∣κpi (t, λ)− µpi ∣∣ (line 8). Varying λ reveals the

aforementioned bias-variance tradeoff: the first term, 8
√

13 lnT [λ
2

np
i

+ (1−λ)2

mp
i

], is a high

probability upper bound on the deviation of κpi (t, λ) from its expectation E[κpi (t, λ)]; the

second term, (1− λ)ϵ, is an upper bound on the difference between E[κpi (t, λ)] and µpi . We
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choose λ∗ ∈ [0, 1] to minimize the width of our confidence interval for µpi (line 9), similar

to the calculation in [19, Section 6].1

2.3.2 Regret analysis

Subpar arms.

We first define the notion of subpar arms ; we will show that this notion captures

the complexity of the ϵ-MPMAB problem. Let

Iα =
{
i : ∃p ∈ [M ], µp∗ − µ

p
i > α

}
be the set of α-subpar arms. In particular, we consider O(ϵ)-subpar arms, and specifically,

I5ϵ. Intuitively, I5ϵ contains the set of “easier” arms for which data aggregation between

players can be effective. For each arm i ∈ I5ϵ, the following fact shows that the gap

∆p
i = µp∗ − µpi is sufficiently larger than the dissimilarity parameter ϵ for all players

p ∈ [M ]. This allows RobustAgg(ϵ) to exploit the “easiness” of these arms through data

aggregation across players, thereby reducing avoidable individual explorations.

Fact 2.4. |I5ϵ| ≤ K − 1. In addition, for each arm i ∈ I5ϵ, ∆min
i > 3ϵ; in other words, for

all players p in [M ], ∆p
i = µp∗ − µ

p
i > 3ϵ; consequently, arm i is suboptimal for all players

p in [M ].

We now present regret guarantees of RobustAgg(ϵ).

Theorem 2.5. Let RobustAgg(ϵ) run on an ϵ-MPMAB problem instance for T rounds.

Then, its expected collective regret satisfies

E[R(T )] ≤ O

(∑
i∈I5ϵ

(
lnT

∆min
i

+M∆min
i

)
+
∑
i∈IC

5ϵ

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

)
.

1See Appendix A.8 for an analytical solution to the optimal weighting factor λ∗.
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The first term in the above bound shows that the collective regret incurred by the

players for the subpar arms I5ϵ and the second term for arms in IC5ϵ = [K] \ I5ϵ. Observe

that for each subpar arm, the regret of the players as a group can be upper-bounded

by O
(

lnT
∆min

i
+M∆min

i

)
, whereas for each arm in IC5ϵ, the regret on each player is O( lnT

∆p
i
)

unless ∆p
i = 0.

Fact 2.6. For any i ∈ I5ϵ, 1
∆min

i
≤ 2

M

∑
p∈[M ]

1
∆p

i
.

Fallback guarantee.

The regret guarantee of RobustAgg(ϵ) by Theorem 2.5 is always no worse than

that of Ind-UCB by a constant factor, as from Fact 2.6, for all i in I5ϵ, lnT
∆min

i
+M∆min

i =

O
(∑

p∈[M ]
lnT
∆p

i

)
.

Two extreme cases of |I5ϵ|.

If I5ϵ = ∅, in which case we do not expect data aggregation across players to be

beneficial, the above bound can be simplified to:

E[R(T )] ≤ O

∑
i∈[K]

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

 .

In contrast, when I5ϵ has a larger size, namely, more arms admit data aggregation

across players, RobustAgg(ϵ) has an improved regret bound. The following corollary

gives regret bounds in the most favorable case when I5ϵ has size K − 1. It is not hard to

see that, in this case, IC5ϵ is equal to a singleton set {i∗}, where arm i∗ is optimal for all

players p.

Corollary 2.7. Let RobustAgg(ϵ) run on an ϵ-MPMAB problem instance with |I5ϵ| =

K − 1 for T rounds. Then, its expected collective regret satisfies

E[R(T )] ≤ O

∑
i ̸=i∗

lnT

∆min
i

+M
∑
i ̸=i∗

∆min
i

 .
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It can be observed that, compared to the Ind-UCB baseline, under the assumption

that |I5ϵ| = K − 1, RobustAgg(ϵ) improves the regret bound by nearly a factor of M :

if we set aside the O
(
M
∑

i ̸=i∗ ∆
min
i

)
term, which is of lower order than the rest under

the mild assumption that M = O
(
mini ̸=i∗

lnT
(∆min

i )2

)
, then the expected collective regret in

Corollary 2.7 is a factor of O( 1
M
) times that of Ind-UCB, in light of Fact 2.6.

Gap-independent upper bound.

We now provide an upper bound on the expected collective regret that is independent

of the gaps ∆p
i ’s.

Theorem 2.8. Let RobustAgg(ϵ) run on an ϵ-MPMAB problem instance for T rounds.

Then its expected collective regret satisfies

E[R(T )] ≤ Õ
(√
|I5ϵ|MT +M

√
(
∣∣IC5ϵ∣∣− 1)T +M |I5ϵ|

)
.

Recall that Ind-UCB has a gap-independent bound of Õ
(
M
√
KT

)
. By algebraic

calculations, we can see that when T = Ω(KM), the regret bound of RobustAgg(ϵ)

is a factor of O

max

(√
|IC

5ϵ|−1

K
,
√

1
M

) times Ind-UCB’s regret bound. Therefore,

when M = ω(1) and
∣∣IC5ϵ∣∣ = o(K), i.e., when there is a large number of players, and an

overwhelming portion of subpar arms, RobustAgg has a gap-independent regret bound

of strictly lower order than Ind-UCB.

Observe that the above bound has a term M
√
(
∣∣IC5ϵ∣∣− 1)T with a peculiar depen-

dence on
∣∣IC5ϵ∣∣ − 1; this is due to the fact that in the special case of |I5ϵ| = K − 1, i.e.,∣∣IC5ϵ∣∣ = 1, the contribution to the regret from arms in IC5ϵ is zero. Indeed, in this case, IC5ϵ

is a singleton set {i∗}, where arm i∗ is optimal for all players.
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2.3.3 Lower bounds

Gap-dependent lower bound.

To complement our gap-dependent upper bound in Theorem 2.5, we now present a

gap-dependent lower bound. We show that, for any fixed ϵ, any sublinear regret algorithm

for the ϵ-MPMAB problem must have regret guarantees not much better than that of

RobustAgg(ϵ) for a large family of ϵ
2
-MPMAB problem instances.

Theorem 2.9. Fix ϵ ≥ 0. Let A be an algorithm and C > 0, α > 0 be constants, such that

A has CT 1−α regret in all ϵ-MPMAB environments. Then, for any Bernoulli ϵ
2
-MPMAB

instance µ = (µpi )i∈[K],p∈[M ] such that µpi ∈ [15
32
, 17
32
] for all i and p, we have:

Eµ[R(T )] ≥ Ω

∑
i∈IC

ϵ/4

∑
p∈[M ]:∆p

i>0

ln(∆p
iT

α/C)

∆p
i

+
∑

i∈Iϵ/4:∆min
i >0

ln(∆min
i Tα/C)

∆min
i

 .

Theorem 2.9 is nearly tight compared with the upper bound presented in Theo-

rem 2.5 with two differences. First, the upper bound is in terms of I5ϵ, while the lower

bound is in terms of Iϵ/4; we leave the possibility of exploiting data aggregation for arms

in I5ϵ \ Iϵ/4 as an open question. Second, the upper bound has an extra O(
∑

i∈I5ϵ M∆min
i )

term, caused by the players issuing arm pulls in parallel in each round; we conjecture

that it may be possible to remove this term by developing more efficient multi-player

exploration strategies.

Gap-independent lower bound.

The following theorem shows that, there exists a value of ϵ (that depends on T and

|I5ϵ|), such that any algorithm must have a minimax collective regret not much lower than

the upper bound shown in Theorem 2.8 in the family of all ϵ-MPMAB problems.

Theorem 2.10. For any K ≥ 2,M, T ∈ N, and l, lC in N such that l ≤ K− 1, l+ lC = K,

there exists some ϵ > 0, such that for any algorithm A, there exists an ϵ-MPMAB problem

instance, in which |I5ϵ| ≥ l, and A has a collective regret at least Ω(M
√

(lC − 1)T+
√
MlT ).
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The above lower bound is nearly tight in light of the upper bound in Theorem 2.8:

as long as T = Ω(KM), the upper and lower bounds match within a constant.

2.4 ϵ-MPMAB with Unknown ϵ

We now turn to the setting when ϵ is unknown to the learner. Unlike the

RobustAgg(ϵ) algorithm developed in the last section, which only has nontrivial regret

guarantees for all ϵ-MPMAB instances, in this section, we aim to design algorithms that

have nontrivial regret guarantees for all MPMAB instances.

2.4.1 Gap-dependent lower bound

Recall that, for all MPMAB problems, Ind-UCB achieves a gap-dependent regret

bound of O
(∑

i∈[K]

∑
p∈[M ]:∆p

i>0
lnT
∆p

i

)
without knowing ϵ. Interestingly, we show in the

following theorem that any sublinear regret algorithm for the MPMAB problem must have

gap-dependent lower bound not much better than Ind-UCB for a large family of MPMAB

problem instances, regardless of the value of ϵ and the size of I5ϵ of that instance.

Theorem 2.11. Let A be an algorithm and C > 0, α > 0 be constants such that A has

CT 1−α regret in all MPMAB problem instances. Then, for any Bernoulli MPMAB instance

µ = (µpi )i∈[K],p∈[M ] such that µpi ∈ [15
32
, 17
32
] for all i ∈ [K], p ∈ [M ],

Eµ[R(T )] ≥ Ω

∑
i∈[K]

∑
p∈[M ]:∆p

i>0

ln(Tα∆p
i /C)

∆p
i

 .

2.4.2 Gap-independent upper bound

While we have shown gap-dependent lower bounds that nearly matches the upper

bounds for Ind-UCB for sublinear regret MPMAB algorithms in Theorem 2.11, this does

not rule out the possibility of achieving regret that improves upon Ind-UCB in small-gap

instances. To see this, note that if ∆p
i is of order O(T−α) for all i in [K] and p in [M ], the
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above lower bound becomes vacuous. Therefore, it is still possible to get gap-independent

upper bounds that improve over the Õ(M
√
KT ) upper bound by Ind-UCB.

We present RobustAgg-Agnostic in Appendix A.6, an algorithm that achieves

such guarantee: specifically, it achieves a gap-independent regret upper bound adaptive to

|I10ϵ|. In a nutshell, the algorithm aggregates over a set of RobustAgg(ϵ) base learners

with different values of ϵ, using the strategy of Corral [2]. We have the following theorem:

Theorem 2.12. Let RobustAgg-Agnostic run on an ϵ-MPMAB problem instance

with any ϵ ∈ [0, 1]. Its expected collective regret in a horizon of T rounds satisfies

E[R(T )] ≤ Õ

((
|I10ϵ|+M

∣∣∣IC10ϵ∣∣∣)√T +M |I5ϵ|

)
.

Under the mild assumption that T = Ω(min(K2,M2)), the above regret bound

becomes Õ

((
|I10ϵ|+M

∣∣IC10ϵ∣∣ )√T
)

. If furthermore|I10ϵ| = K−o(
√
K) and M = ω(

√
K),

the regret bound of RobustAgg-Agnostic is of lower order than Ind-UCB’s Õ(M
√
KT )

regret guarantee. In the most favorable case when |I10ϵ| = K−1, RobustAgg-Agnostic

has expected collective regret Õ
(
(M +K)

√
T
)
.

Such adaptivity of RobustAgg-Agnostic to unknown similarity structure comes

at a price of higher minimax regret guarantee: when I5ϵ = ∅, RobustAgg-Agnostic

has a regret of Õ
(
MK
√
T
)
, a factor of

√
K higher than Õ(M

√
KT ), the worst-case

regret of Ind-UCB. We conjecture that this may be unavoidable due to lack of knowledge

of ϵ, similar to results in adaptive Lipschitz bandits [101, 81, 61].

2.5 Related Work

2.5.1 Multi-agent bandits

We first compare existing multi-agent bandit learning problems with the ϵ-MPMAB

problem. We provide a more detailed review of the literature in Appendix A.1.
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A large portion of prior studies [75, 141, 87, 32, 78, 127, 160, 46, 34, 157] focuses

on the setting where a set of players collaboratively work on one bandit learning problem

instance, i.e., the reward distributions of an arm are identical across all players. In contrast,

we study multi-agent bandit learning where the reward distributions across players can be

different.

Multi-agent bandit learning with heterogeneous feedback has also been covered by

previous studies. In [129], a group of players seek to find the arm with the largest average

reward over all players; however, in each round, the players have to reach a consensus

and choose the same arm. Cesa-Bianchi et al. [31] study a network of linear contextual

bandit players with heterogeneous rewards, where the players can take advantage of reward

similarities hinted by a graph. They use a Laplacian-based regularization, whereas we study

when and how to use information from other players based on a dissimilarity parameter.

Gentile et al. [57], Li et al. [95] assume that the players’ reward distributions have a

cluster structure; in addition, players that belong to one cluster share a common reward

distribution; our setting does not assume such cluster structure. Dubey and Pentland [47]

assume access to some side information for every player, and learns a reward predictor

that takes both player’s side information models and action as input. In comparison, our

work do not assume access to such side information.

Similarities in reward distributions are explored in [133, 174] to warm start bandit

learning agents. Azar et al. [11], Soare et al. [138] investigate multitask learning in

bandits through sequential transfer between tasks that have similar reward distributions.

In contrast, we study the multi-player setting, where all players learn continually and

concurrently.

There are other practical formulations of multi-player bandits with player-dependent

reward distributions [20, 110], where the existence of collision is assumed; i.e., two players

pulling the same arm in the same round receive zero reward. In comparison, collision is

not modeled in this chapter.
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2.5.2 Bandits in metric spaces

Our setting and results are also related to the work of Slivkins [137] on contextual

bandits in metrics spaces. Specifically, if one considers player indices as contexts, then

ϵ-dissimilarity may be modeled using a metric ρ :
(
[M ]× [K]

)2 → [0, 1] such that for any

p, q ∈ [M ] and i, j ∈ [K], ∣∣∣µpi − µqj∣∣∣ ≤ ρ
(
(p, i), (q, j)

)
,

where

ρ
(
(p, i), (q, j)

)
=


0, if i = j, p = q;

ϵ, else if i = j, p ̸= q;

1, otherwise.

While we obtain an O(log T ) upper bound (Theorem 2.5) by making more direct use of the

ϵ-dissimilarity structure, it is unclear whether such bounds can be achieved by applying

the ideas and analyses in [137] for general metrics ρ’s. It is also worth mentioning that

Slivkins [137] considers a setting where in each round, one context/player is revealed,

whereas our focus lies in a multi-task setting, where the players concurrently interact with

their respective environments. We leave further exploring the connections of these settings

as future work.

2.5.3 Learning using weighted data aggregation

Our design of confidence interval in Section 2.3.1 has resemblance to the weighted

empirical risk minimization algorithm proposed for domain adaptation by Ben-David et al.

[19], but our purposes are different from theirs. Specifically, our choice of λ minimizes

the length of the confidence intervals, whereas [19] find λ that minimizes classification

error in the target domain. Furthermore, our setting in Section 2.4 is more challenging: in

offline domain adaptation, one may use a validation set drawn from the target domain to
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fine-tune the optimal weight λ∗, to adapt to unknown dissimilarity between the source and

the target; however, in our setting (and online bandit learning in general), such tuning

does not result in sample efficiency improvement.

The idea of assigning weights to different sources of samples has also been studied by

Zhang et al. [174] for warm starting contextual bandit learning from misaligned distributions

and by Russac et al. [125] for online learning in non-stationary environments. Zhu et al.

[180] use a weighted compound of player-based estimator and cluster-based estimator for

collaborative Thompson sampling, where the weights are given by a hyper-parameter; in

contrast, we adaptively compute our weighting factor based on the numbers of samples

collected by the players as well as the dissimilarity parameter ϵ.

2.6 Empirical Validation

We now validate our theoretical results with some empirical simulations using

synthetic data. Specifically, we seek to answer the following questions:

1. In practice, how does our proposed algorithm compare with algorithms that either do

not take advantage of adaptive data aggregation or do not execute aggregation in a

robust fashion?

2. How does the performance of our algorithm change with different numbers of subpar

arms?

We note that these questions are considered in the setting where the dissimilarity parameter

ϵ is known to the algorithms.

2.6.1 Experimental setup

We first describe the algorithms compared in the simulations. We then discuss the

procedure we used for generating synthetic data.
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RobustAgg-Adapted(ϵ).

Since standard concentration bounds are loose in practice, we performed sim-

ulations on a more practical and aggressive variant of RobustAgg(ϵ), which we call

RobustAgg-Adapted(ϵ). Specifically, we changed the constant coefficient 8
√
13 to

√
2

in the UCBs; this constant was taken from the original UCB-1 algorithm [8], which is an

ingredient of the baseline Ind-UCB, and we simply kept the default value.

Baselines.

We evaluate the following two algorithms as baselines: (a) Ind-UCB, described in

Section 2.2; and (b) Naive-Agg, in which the players naively aggregate data assuming

that their reward distributions are identical—in other words, Naive-Agg is equivalent to

RobustAgg-Adapted(0).

Instance generation.

We generated problem instances using the following randomized procedure. We

first set ϵ = 0.15. Then, given the number of players M , the number of arms K, and the

number of subpar arms |I5ϵ| ∈ {0, 1, . . . , K − 1}, we first sampled the means of the reward

distributions for player 1:

Let c = K − |I5ϵ|. For i ∈ {1, 2, . . . , c}, we sampled µ1
i

i.i.d.∼ U [0.8, 0.8 + ϵ), where

U [a, b) is the uniform distribution with support [a, b]. Let d = maxi∈[c] µ
1
i . Then, for

i ∈ {c+ 1, . . . , K}, we sampled µ1
i

i.i.d.∼ U [0, d− 5ϵ).

We then sampled the means of the reward distributions for players p ∈ {2, . . . ,M}:

For each i ∈ [K], we sampled µpi
i.i.d.∼ U

[
max(0, µ1

i − ϵ
2
),min(µ1

i +
ϵ
2
, 1)
)
.

Fact 2.13. The above construction gives a Bernoulli 0.15-MPMAB problem instance that

has exactly (K − c) subpar arms, namely, I5ϵ = {i : c+ 1 ≤ i ≤ K}.
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(a) |I5ϵ| = 8 (b) |I5ϵ| = 6 (c) |I5ϵ| = 0

Figure 2.1. Compares the average performance of RobustAgg-Adapted(0.15),
Ind-UCB, and Naive-Agg on randomly generated Bernoulli 0.15-MPMAB problem
instances with K = 10 and M = 20. The x-axis shows a horizon of T = 100, 000 rounds,
and the y-axis shows the cumulative collective regret of the players.

(a) |I5ϵ| = 9 (b) |I5ϵ| = 5 (c) |I5ϵ| = 0

Figure 2.2. Compares the average performance of RobustAgg-Adapted(0.15) and
Ind-UCB on randomly generated Bernoulli 0.15-MPMAB problem instances with K = 10.
The x-axis shows different values of M , and the y-axis shows the cumulative collective
regret of the players after 100, 000 rounds.

2.6.2 Simulations and results

We ran two sets of simulations, and the results are shown in Figure 2.1 and

Figure 2.2. More detailed results are deferred to Appendix A.7.

Experiment 1.

We compare the cumulative collective regrets of the three algorithms in problem

instances with different numbers of subpar arms. We set M = 20, K = 10 and ϵ = 0.15.

For each v ∈ {0, 1, 2, . . . , 9}, we generated 30 Bernoulli 0.15-MPMAB problem instances,
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each of which has exactly v subpar arms, i.e., we generated instances with |I5ϵ| = v.

Figures 2.1a, 2.1b and 2.1c show the average regrets in a horizon of 100, 000 rounds over

these generated instances, in which |I5ϵ| = 8, 6 and 0, respectively. In the interest of space,

figures in which |I5ϵ| takes other values are deferred to Appendix A.7.2.

Notice that RobustAgg-Adapted(0.15) outperforms both baseline algorithms

in Figures 2.1a and 2.1b when |I5ϵ| = 8 and 6. Figure 2.1c demonstrates that when

|I5ϵ| = 0, i.e., when there is no arm that is amenable to data aggregation, the performance

of RobustAgg-Adapted(0.15) is still on par with that of Ind-UCB. Also, as shown in

Figure 2.1a, even when |IC5ϵ| = 2, i.e., when there are only two “competitive” (not subpar)

arms, the collective regret of Naive-Agg can still easily be nearly linear in the number of

rounds.

Experiment 2.

We study how the collective regrets of RobustAgg-Adapted(0.15) and Ind-UCB

scale with the number of players in problem instances with different numbers of subpar

arms. We set K = 10 and ϵ = 0.15. For each combination of M ∈ {5, 10, 20} and

v ∈ {0, 1, 2, . . . , 9}, we generated 30 Bernoulli 0.15-MPMAB problem instances with M

players and exactly v subpar arms, that is, for each instance, |I5ϵ| = v. Figures 2.2a, 2.2b

and 2.2c compare the average regrets after 100, 000 rounds in instances with different

numbers of players M , in which |I5ϵ| are set to be 9, 5 and 0, respectively. Again, figures

in which |I5ϵ| takes other values are deferred to Appendix A.7.2.

Note that when |I5ϵ| is large, the collective regret of RobustAgg-Adapted(0.15)

is less sensitive to the number of players. In the extreme case when |I5ϵ| = 9, all

suboptimal arms are subpar arms, and Figure 2.2a shows that the collective regret of

RobustAgg-Adapted(0.15) has negligible dependence on the number of players M .
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2.6.3 Discussion

Back to the earlier questions, our simulations show that RobustAgg-Adapted(ϵ),

in general, outperforms the baseline algorithms Ind-UCB and Naive-Agg. When the set

of subpar arms I5ϵ is large, we showed that properly managing data aggregation can substan-

tially improve the players’ collective performance in an ϵ-MPMAB problem instance. When

there is no subpar arm, we demonstrated the robustness of RobustAgg-Adapted(ϵ),

that is, its performance is comparable with Ind-UCB, in which the players do not share

information. These empirical results validate our theoretical analyses in Section 2.3.

2.7 Conclusion and Future Work

In this chapter, we studied multitask bandit learning from heterogeneous feedback.

We formulated the ϵ-MPMAB problem and showed that whether inter-player information

sharing can boost the players’ performance depends on the dissimilarity parameter ϵ as

well as the intrinsic difficulty of each individual bandit problem that the players face. In

particular, in the setting where ϵ is known, we presented a UCB-based data aggregation

algorithm which has near-optimal instance-dependent regret guarantees. We also provided

upper and lower bounds in the setting where ϵ is unknown.

There are many avenues for future work. For example, we are interested in extending

our results to contextual bandits and Markov decision processes. Another direction is

to study multitask bandit learning under other interaction protocols (e.g., only a subset

of players take actions in each round). In the future, we would also like to evaluate our

algorithms in real-world applications such as healthcare robotics [122].
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Chapter 3

Thompson Sampling for Robust Trans-
fer in Multi-Task Bandits

3.1 Introduction

In this chapter, we study an alternative approach to the ϵ-multi-player multi-armed

bandit (ϵ-MPMAB) problem formulated in Chapter 2, which can be used to model multi-

task bandits. We now also consider a generalized interaction protocol, where a set of

players sequentially and potentially concurrently interact with a common set of arms

that have player-dependent reward distributions. Each player and its associated reward

distributions (data sources) are thereby regarded as a task. Again, we consider the reward

distributions that the players face for each arm to be similar but not necessarily identical,

and the level of (dis)similarity is specified by a parameter ϵ ∈ [0, 1].

As discussed in Chapter 2, the ϵ-MPMAB problem can be used to model important

real-world applications. For example, in healthcare robotics, a set of robots, which

correspond to players, can be paired with people with dementia to provide personalized

cognitive training and wellness activities [83]. Each training/wellness activity corresponds

to an arm in the ϵ-MPMAB problem, and people with similar preferences or symptoms may

exhibit similar interests or needs—this is modeled via similarity in reward distributions

of each arm. Another example can be seen in recommendation systems where learning

agents are assigned to people within a social network, who may have similar interests due
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to inter-network influence [120].

Despite the similarity in its reward distributions, the ϵ-MPMAB problem is still

challenging for two reasons: on the one hand, misusing auxiliary data can lead to negative

transfer and substantially impair a player’s performance [123]; on the other hand, while

auxiliary data are often immediately accessible in their entirety in offline transfer learning

settings, in the ϵ-MPMAB problem, the available auxiliary data grow in time and depend

on the interactions between the players and the environments.

In Chapter 2, we proposed an upper confidence bound (UCB)-based algorithm,

RobustAgg(ϵ), for the ϵ-MPMAB problem. It achieves strong, near-optimal theoretical

guarantees through robust data aggregation. Nevertheless, RobustAgg(ϵ)’s empirical

performance can, unfortunately, be underwhelming.

Meanwhile, Thompson sampling (TS) algorithms [148], another family of bandit

algorithms, have been shown superior empirically in comparison with UCB-based algorithms

in standard single-task settings [e.g., 33]. In fact, we show in Section 3.7 that, for the

ϵ-MPMAB problem, a baseline algorithm which employs TS for each task individually

without transfer learning can outperform RobustAgg(ϵ) in many cases.

In spite of the encouraging signs from the empirical evaluations, the theoretical

study of TS have lagged behind, especially in terms of frequentist analyses [4, 76] for data

aggregation and transfer learning in the multi-task setting1. It is therefore imperative to

design multi-task TS-type algorithms that have superior empirical performance and strong

theoretical guarantees. Our contributions in this chapter are:

1. Inspired by prior works [31, 57, 63], we generalize the ϵ-MPMAB problem to model

a wider class of multi-task bandit learning scenarios so that it covers sequential and

concurrent multi-task learning as special cases.

2. We design a TS-type algorithm, RobustAgg-TS(ϵ), for the ϵ-MPMAB problem and
1See Section 3.6 for a discussion on related work.
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provide a frequentist analysis with near-optimal performance guarantees.

3. We empirically evaluate RobustAgg-TS(ϵ) on synthetic data and show that it out-

performs the UCB-based RobustAgg(ϵ) and a baseline algorithm that runs TS for

each individual task without data sharing.

4. Technical highlight: frequentist analyses of Thompson sampling can be much harder

to conduct than those of UCB-based algorithms (see Remark 3.4); a concentration

inequality loose in logarithmic factors can result in a polynomial increase in regret

guarantee (see Remark 3.9). To cope with this challenge, we prove a novel concentration

inequality for multi-task data aggregation at random stopping times (Lemma 3.8), which

leads to tight performance guarantees for RobustAgg-TS(ϵ). Our technique may be

of independent interest for analyzing other multi-task sequential learning problems.

3.2 Preliminaries

In this section, we first revisit and generalize the problem formulation. We then

briefly review the results in Chapter 2, and then introduce a new baseline algorithm based

on TS.

Notations.

Throughout, we use [n] to denote the set {1, 2, . . . , n}. Let N (µ, σ2) denote the

Gaussian distribution with mean µ and variance σ2. Let a ∨ b = max(a, b). For a set

A ⊆ U , denote by AC = U \ A the complement of A in the universe U . We use Õ to hide

logarithmic factors.

3.2.1 ϵ-MPMAB with generalized interaction protocol

We consider and generalize the ϵ-MPMAB problem introduced in Chapter 2. An

ϵ-MPMAB problem instance comprises M players, K arms, and a dissimilarity parameter

ϵ ∈ [0, 1]. Let [M ] denote the set of players and [K] the set of arms. For each player
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p ∈ [M ] and each arm i ∈ [K], there is an initially-unknown reward distribution Dpi , which

has support [0, 1] and has mean µpi .

Reward dissimilarity.

The reward distributions for each arm are assumed to be similar but not necessarily

identical for different players; specifically,

∀i ∈ [K], p, q ∈ [M ],
∣∣µpi − µqi ∣∣ ≤ ϵ. (3.1)

Protocol.

In Chapter 2, the players interact with the arms in rounds, and within each round,

all players take an action concurrently. In this chapter, inspired by the problem setup

of Hong et al. [63], we generalize the interaction protocol such that it allows any subset

of the players to take an action. In each round t ∈ [T ], where T > max(K,M) is the

time horizon of learning, a subset of players Pt ⊆ [M ] is chosen (called the active player

set at round t) by an oblivious adversary; each active player p ∈ Pt then pulls an arm

ipt ∈ [K] and observes an independently-drawn reward rpt ∼ D
p
ipt
. At the end of round t,

the active players communicate their decisions,
{
ipt : p ∈ Pt

}
, as well as their observed

rewards,
{
rpt : p ∈ Pt

}
, to all players. Note that, when |Pt| = 1 for all t, the problem

setting resembles the one in [31] and captures a sequential transfer bandit learning setting

[e.g., 10]; when Pt = [M ] for all t, we recover the setting in Chapter 2.

Performance metric.

The goal of the players is to minimize their expected collective regret, which we

define shortly. For each player p ∈ [M ], let µp∗ = maxj∈[K] µ
p
j denote the mean reward

of an optimal arm for p; then, for each arm i ∈ [K], let ∆p
i = µp∗ − µ

p
i ≥ 0 denote the

(suboptimality) gap of arm i for player p. In addition, let npi (t) =
∑

s≤t 1 {p ∈ Ps, ips = i}

denote the number of pulls of arm i by player p after t rounds. Then, the individual
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expected regret of any player p is defined as

Regp(T ) = E

[ ∑
t∈[T ]:
p∈Pt

µp∗ − µ
p
ipt

]
=
∑
i∈[K]

E
[
npi (T )

]
∆p
i .

Finally, the expected collective regret is defined as the sum of individual expected regret

over all the players, i.e.,

Reg(T ) =
∑
p∈[M ]

Regp(T ) =
∑
i∈[K]

∑
p∈[M ]

E
[
npi (T )

]
∆p
i . (3.2)

Does one need to know ϵ?

In this chapter, we focus on the case where ϵ is known to the players in the ϵ-

MPMAB problem. This is because in Chapter 2, we have shown that, unfortunately, not

much can be done when ϵ is unknown to the players—a lower bound (Theorem 11 therein)

shows that no sublinear-regret algorithms can effectively take advantage of inter-task data

aggregation for every ϵ ∈ [0, 1] to achieve improved regret upper bounds.

3.2.2 Existing results

In the concurrent setting (Pt = [M ] for all t), we showed in Chapter 2 that, whether

data aggregation can be provably beneficial for an arm i depends on how its associated sub-

optimality gaps, ∆p
i ’s, compare with the dissimilarity parameter, ϵ. Specifically, the problem

complexity is captured by the notion subpar arms, Iα =
{
i : ∃p ∈ [M ], µp∗ − µ

p
i > α

}
; see

Section 2.3.2.

Upper and lower bounds are provided in Chapter 2. They characterize that,

informally, the collective performance of the players can be improved by a factor of M

(resp.
√
M) for each O(ϵ)-subpar arm in the (suboptimality) gap-dependent (resp. gap-

independent) bounds, where we recall that M is the number of players. This improvement

is in comparison with baseline algorithms in which each player runs their own instance of
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a bandit algorithm individually, Ind-UCB.

In Appendix B.4, we briefly recap the algorithm in Chapter 2, RobustAgg(ϵ).

We show that with a few small modifications, it can be extended to work in the generalized

ϵ-MPMAB setting, and achieve generalized regret guarantees (see Theorem B.76).

3.2.3 Baseline: Ind-TS

In this chapter, we consider another baseline algorithm, Ind-TS, in which each

player runs the standard TS algorithm with Gaussian priors. We now describe the TS

algorithm. At a high level, every learner (player) p begins with some prior belief on the

mean reward of each arm, and through interactions with the environment, the learner

updates its posterior belief. Specifically, we consider TS with Gaussian product priors—

a learner maintains one Gaussian posterior distribution for each arm, beginning with

N (0, 1). In each round t, the learner draws an independent sample θpi (t) for each arm i

from its corresponding posterior distribution, which is of form N
(
µ̄pi ,

1
np
i (t−1)∨1

)
, where

µ̄pi =
1

np
i (t−1)∨1

∑
s<t:p∈Ps,i

p
s=i

rps is the empirical mean reward of player p pulling arm i. The

learner then pulls the arm ipt = argmaxi θ
p
i (t), receives a reward rpt ∼ D

p
ipt

, and updates the

posterior distribution for arm i.

Based on the results of Agrawal and Goyal [4], we obtain the regret guaran-

tees of Ind-TS by summing over individual bounds: O
(∑

p∈[M ]

∑
i∈[K]:∆p

i>0
lnT
∆p

i

)
and

Õ
(
M
√
KT

)
.

In Appendix B.4, we briefly recap the guarantees of Ind-UCB and Ind-TS in the

generalized ϵ-MPMAB setting, where Pt’s are not necessarily [M ] in every round.

3.3 Algorithm: RobustAgg-TS(ϵ)

We now present a TS-type randomized exploration algorithm, RobustAgg-TS(ϵ)

(Algorithm 2), which can robustly leverage data collected by all the players.

In each round t, for each active player p ∈ Pt and arm i, RobustAgg-TS(ϵ)
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Algorithm 2: RobustAgg-TS (ϵ)

Input :Dissimilarity parameter ϵ ∈ [0, 1], universal constants c1, c2 > 0;
1 Initialization: For every i ∈ [K] and p ∈ [M ], set npi = 0, ind-µ̂pi = 0,

ind-varpi = c2, agg-µ̂pi = 0, and agg-varpi = c2; for every i ∈ [K], set ni = 0.
2 for round t ∈ [T ] do
3 Receive active set of players Pt.
4 for active player p ∈ Pt do
5 for arm i ∈ [K] do
6 if npi ≥ c1 lnT

ϵ2
+ 2M then

7 µ̂pi ← ind-µ̂pi , var
p
i ← ind-varpi ; // Use the individual posterior

8 else
9 µ̂pi ← agg-µ̂pi , var

p
i ← agg-varpi ; // Use the aggregate posterior

10 θpi (t) ∼ N (µ̂pi , var
p
i )

11 Player p pulls arm ipt = argmaxi∈[K] θ
p
i (t) and observes reward rpt .

12 for active player p ∈ Pt do
13 Let i = ipt . Update npi ← npi + 1 and ni ← ni + 1.
14 for active player p ∈ Pt do
15 Let i = ipt .

// Only update posteriors associated with p and ipt
16 Update

ind-µ̂pi ←
1

npi ∨ 1

∑
s≤t

1 {p ∈ Ps, ips = i} rps , ind-varpi ←
c2

npi ∨ 1
;

17

agg-µ̂pi ←
1

ni ∨ 1

∑
s≤t

∑
q∈Ps

1 {iqs = i} rqs + ϵ, agg-varpi ←
c2

(ni −M) ∨ 1
.

maintains two Gaussian “posterior” distributions. As a standard single-task TS algorithm

with Gaussian priors would normally maintain [e.g. 4], N
(
ind-µ̂pi , ind-varpi

)
, the individual

posterior is solely based on player p’s own interactions with arm i, with ind-µ̂pi and ind-varpi

defined in line 16. In contrast, the aggregate posterior, N
(
agg-µ̂pi , agg-var

p
i

)
, is unique to

the multi-task setting—its mean, agg-µ̂pi , is the sum of the empirical mean of all players’

observed rewards for arm i and a bonus term ϵ, and its variance, agg-varpi , is based on the

total number of pulls of arm i by all players (line 17).

The algorithm chooses one of the posterior distributions (lines 6 to 9), i.e., decides

whether to utilize data shared by other players, by balancing a bias-variance trade-off
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[19, 138, see also Chapter 2]: while an inclusion of ni reward samples collected by all players

leads to a variance, agg-varpi , which can be much smaller than ind-varpi , it may also cause

agg-µ̂pi to be biased as the reward distributions for different players may be different. The

algorithm then independently draws a sample, θpi (t), from the chosen posterior distribution

(line 10) and pulls the arm with the largest θpi (t) for player p (line 11).

Specifically, in round t, for player p ∈ Pt and arm i ∈ [K], the algorithm chooses a

posterior distribution by comparing npi , the number of pulls of i by p at the beginning of

round t, to a threshold in terms of the dissimilarity parameter, i.e., c1 lnT
ϵ2

+ 2M (line 6),

where c1 > 0 is some numerical constant. Intuitively, when ϵ is smaller, each player stays

longer on using the aggregate posterior to perform randomized exploration, which indicates

a higher degree of trust on data from other tasks.

After all players in Pt obtain rewards for their arm pulls, they compute and update

their posteriors with new data. In principle, data from one player can affect the aggregate

posteriors of all players. We make the design choice that this effect gets delayed: the

algorithm only updates the posteriors for player p and arm i in round t, if p ∈ Pt and

i = ipt (line 15). Although our current analysis (see Sections 3.4 and 3.5 below) relies

on this property to establish sharp regret guarantees, we conjecture that similar regret

guarantees can be shown even if the algorithm updates the posteriors of all players and all

arms in every round2.

3.4 Main Results

We now present gap-dependent and gap-independent regret upper bounds of

RobustAgg-TS(ϵ).

Recall that Iα = {i ∈ [K] : ∃p, ∆p
i > α} is the set of α-subpar arms.

2In Section B.5.1 of the appendix, we show that this variation induces little effect on the empirical
performance of the algorithm.
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Theorem 3.1 (Gap-dependent bound). There exists a setting of c1, c2 > 0, such that, the

expected collective regret of RobustAgg-TS(ϵ) after T > max(K,M) rounds satisfies:

Reg(T ) ≤ O

 1

M

∑
i∈I10ϵ

∑
p∈[M ]
∆p

i>0

lnT

∆p
i

+
∑
i∈IC

10ϵ

∑
p∈[M ]
∆p

i>0

lnT

∆p
i

+M2K

.

Theorem 3.2 (Gap-independent bound). There exists a setting of c1, c2 > 0, such that,

the expected collective regret of RobustAgg-TS(ϵ) after T > max(K,M) rounds satisfies:

Reg(T ) ≤Õ
(√
|I10ϵ|P +

√
M
(
|IC10ϵ| − 1

)
P +M2K

)
,

where P =
∑T

t=1 |Pt|.

The proofs of Theorems 3.1 and 3.2 can be found in Appendix B.3; in Section 3.5,

we also highlight several technical challenges and proof ingredients in our analysis.

Guarantees in the generalized ϵ-MPMAB setting.

Our guarantees for RobustAgg-TS(ϵ) hold under the generalized ϵ-MPMAB

setting, in that Pt’s at each round can change over time. Observe that the regret bound

given by Theorem 3.1 does not depend on Pt’s, and the regret bound given by Theorem 3.2

has the highest value when P =MT . In addition, recall that near-matching gap-dependent

and gap-independent lower bounds have been shown in Chapter 2 for the Pt ≡ [M ] setting

(Section 3.2.2). These lower bounds indicate the near-optimality of RobustAgg-TS(ϵ)’s

guarantees, modulo an additive lower-order term O(M2K) which does not depend on T .

Furthermore, the gap-independent guarantee in Theorem 3.2 adapts to the value of

P . This shows the flexibility of RobustAgg-TS(ϵ). Specifically, if |Pt| = 1 (similar to

the settings of [31, 57]), we have P = T , and

Reg(T ) ≤ Õ
(√
|I10ϵ|T +

√
M
(
|IC10ϵ| − 1

)
T +M2K

)
.
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Similarly, if Pt = [M ] for all t (Chapter 2), then P =MT , and

Reg(T ) ≤ Õ
(√

M |I10ϵ|T +M
√(
|IC10ϵ| − 1

)
T +M2K

)
.

Comparison with baselines.

In comparison with the guarantees of the UCB-based algorithm RobustAgg(ϵ) in

Appendix B.4.2, we see that RobustAgg-TS(ϵ) has competitive guarantees, except that

the set of arms which benefits from data aggregation changes from I5ϵ to I10ϵ.

In comparison with the guarantees of Ind-UCB and Ind-TS, the regret guarantees

of RobustAgg-TS(ϵ) are never worse (modulo lower-order terms), and save factors of 1
M

and 1√
M

in I10ϵ’s contribution in the gap-dependent and gap-independent regret guarantees,

respectively.

3.5 Proof Ingredients

In this section, we highlight some of the novel proof ingredients used in our analysis

of Algorithm 2, which are unique to the multi-task setting3.

We begin by decomposing the regret in terms of subpar arms and non-subpar arms.

It follows from Eq. (3.2) that

Reg(T ) = O

 ∑
i∈I10ϵ

E
[
ni(T )

]
∆min
i +

∑
i∈IC

10ϵ

∑
p∈[M ]

E
[
npi (T )

]
∆p
i

,
where we let ni(T ) =

∑M
p=1 n

p
i (T ) be the number of pulls of arm i by all players after T

rounds; we recall that ∆min
i = minp∈[M ]∆

p
i ; and we use the fact that for any subpar arm

i ∈ I10ϵ and any player p ∈ [M ], ∆p
i ≤ 2∆min

i (Fact B.24).

In the interest of space, we focus on the analysis for subpar arms and defer the
3Our analysis involves various proofs by cases. Figure B.1 in the appendix provides an overview

illustrating the case division rules used in our proofs.
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discussion on non-subpar arms to the appendix. The following lemma provides an upper

bound on E
[
ni(T )

]
for i ∈ I10ϵ, which can be subsequently used to derive the upper

bounds on the expected collective regret incurred by the 10ϵ-subpar arms in Section 3.4.

Lemma 3.3. For any arm i ∈ I10ϵ,

E
[
ni(T )

]
≤ O

(
lnT

(∆min
i )2

+M

)
.

While a similar lemma can be found for the UCB-based algorithm (see Lemma A.7),

RobustAgg(ϵ), proving Lemma 3.3 requires new ingredients that we present in the rest

of this section.

Let us fix an arm i ∈ I10ϵ. To control E
[
ni(T )

]
= E

[∑
t∈[T ]

∑
p∈Pt

1
{
ipt = i

}]
, we

begin by generalizing a technique introduced by Agrawal and Goyal [4] for standard TS to

the multi-task setting. In each round t and for each active player p, we consider two cases:

(1) player p pulls arm i (namely, ipt = i), and θpi (t) (line 10 in Algorithm 2) is greater than

some threshold ypi ∈ (µpi , µ
p
∗) to be defined shortly, and (2) ipt = i and θpi (t) ≤ ypi . We have

E
[
ni(T )

]
=E

∑
t∈[T ]

∑
p∈Pt

1
{
ipt = i, θpi (t) > ypi , Et

}
︸ ︷︷ ︸

(A)

+ E

∑
t∈[T ]

∑
p∈Pt

1
{
ipt = i, θpi (t) ≤ ypi , Et

}
︸ ︷︷ ︸

(B)

+O (1) ,

where Et, informally, is a high-probability “clean” event in which µ̂pi ’s maintained by

Algorithm 2 in round t for each i and p concentrate towards their respective expected

values.

Term (A) can be controlled because, as more pulls of arm i are made,
{
θpi (t) > ypi

}
is

unlikely to happen, as µ̂pi concentrates towards a value smaller than ypi , and varpi decreases.
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See Lemma B.40 in the appendix for a detailed proof.

In what follows, we focus on bounding term (B). Observe that
{
ipt = i, θpi (t) ≤ ypi

}
in (B) happens only if ∀j ∈ [K], θpj (t) ≤ ypi , including the optimal arm(s) for player p.

Since in an ϵ-MPMAB problem instance, different players may have different optimal arms,

we consider a common near-optimal arm † ∈ IC2ϵ—see Fact B.24 in the appendix for the

existence of such an arm. It can be easily verified that, for any arm i ∈ I10ϵ and player

p ∈ [M ], δpi := µp† − µ
p
i > 0 (see Fact B.38). In other words, while † may not necessarily

be an optimal arm for every player, it has a larger mean reward than any i ∈ I10ϵ. We

can now define ypi := µpi +
1
2
δpi ∈ (µpi , µ

p
†) ⊂ (µpi , µ

p
∗).

Using a technique first introduced in [4], we will show that θp†(t) converges to a

value greater than ypi fast enough so that
{
∀j ∈ [K], θpj (t) ≤ ypi

}
will unlikely happen soon

enough and thus (B) can be controlled.

Remark 3.4 (Comparison with UCB-based analyses). We note that controlling term (B)

is often not required in the analyses of UCB-based algorithms. Colloquially, this term

concerns the event in which arm i is pulled even when its sample/index value is smaller

than ypi ; such an event would unlikely happen for UCB-based algorithms as the optimism

in the face of uncertainty principle ensures that, with high probability, the UCB index of

an optimal arm for player p is greater than or equal to µp∗ ≥ µp† > ypi .

Before we formalize the above-mentioned intuition for bounding term (B) in

Lemma 3.5, we first lay out a few helpful definitions. We define {Ft}Tt=0 to be a filtration

such that Ft = σ
(
{iqs, rqs : s ≤ t, q ∈ Ps}

)
is the σ-algebra generated by interactions of all

players up until round t. Then, let ϕpi,t = Pr
(
θp†(t) > ypi | Ft−1

)
. Observe that if ϕpi,t is

large, the event
{
ipt = i, θpi (t) ≤ ypi

}
will unlikely happen.
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Lemma 3.5.

(B) ≤
∑
t∈[T ]

∑
p∈Pt

E

( 1

ϕpi,t
− 1

)
1
{
ipt = †, Et

}
︸ ︷︷ ︸

(B∗)

.

See Lemma B.45 and its proof in the appendix for details. We now consider the

following two cases: in any round t and for any active player p that pulls arm †, i.e., ipt = †,

p uses either the individual or the aggregate posterior distribution associated with arm †

(lines 6 to 9 in Algorithm 2). Let Hp
† (t) be the event that p uses the individual posterior

distribution and Hp
† (t) be the event that p uses the aggregate posterior (see Definition B.13

in the appendix for the formal definitions). We can then decompose (B∗) as follows:

(B∗) =
∑
t∈[T ]

∑
p∈Pt

E

( 1

ϕpi,t
− 1

)
1
{
ipt = †, Et, H

p
† (t)

}
︸ ︷︷ ︸

(b1)

+
∑
t∈[T ]

∑
p∈Pt

E

( 1

ϕpi,t
− 1

)
1
{
ipt = †, Et, H

p
† (t)

}
︸ ︷︷ ︸

(b2)

.

Let mp
†(t) denote the aggregate number of pulls of arm † maintained by player

p after t rounds (see Definition B.9 in the appendix). Note that, by the design choice

of Algorithm 2 (line 15), mp
†(t) is not necessarily the same as n†(t). With foresight, let
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L = Θ
(

lnT
(∆min

i )2
+M

)
, and let Gp

t =
{
ipt = †, Et, H

p
† (t)

}
. We have

(b2) =
∑
t∈[T ]

∑
p∈Pt

E

( 1

ϕpi,t
− 1

)
1
{
Gp
t ,m

p
†(t− 1) < L

}
︸ ︷︷ ︸

(b2.1)

+
∑
t∈[T ]

∑
p∈Pt

E

( 1

ϕpi,t
− 1

)
1
{
Gp
t ,m

p
†(t− 1) ≥ L

}
︸ ︷︷ ︸

(b2.2)

.

Both (b1) and (b2.2) can be bounded by O (M), because, informally speaking,

either player p has pulled arm † many times when the individual posterior is used (term

(b1)) or the players collectively have pulled † many times when the aggregate posterior is

used (term (b2.2)), and 1
ϕpi,t
− 1 can therefore be upper bounded by 1

T
. See Lemma B.47

and Lemma B.52 and their proofs for details.

The main challenge in bounding E
[
ni(T )

]
lies in term (b2.1), for which we show

the following lemma.

Lemma 3.6 (Bounding term (b2.1)).

(b2.1) ≤ O (L) ≤ O
(

lnT

(∆min
i )2

+M

)
.

Proving Lemma 3.6 is central to our analysis and as we will see, requires special

care. We begin by introducing the following notion. For any arm j ∈ [K] and k ∈ [TM ],

let

τk(j) = min
{
T + 1,min

{
t : nj(t) ≥ k

}}
be the round in which arm j is pulled the k-th time by any player. Furthermore, let

τ0(j) = 0 by convention. For any j ∈ [K] and k ∈ [TM ], it is easy to verify that τk(j) is a

stopping time with respect to {Ft}Tt=0. In what follows, when circumstances permit, we
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abuse the notation and denote τk(†) by τk.

Invariant property.

By the construction of Algorithm 2, in any round t, a player only updates the

posteriors associated with an arm if the player pulls the arm in the round t (line 15).

This design choice induces an invariant property: for any arm and player, certain random

variables associated with them stay invariant between consecutive pulls of the arm by the

player (see Definition B.20 and a few examples in the appendix).

The invariant property allows us to bound (b2.1) as follows in terms of the stopping

times τk’s (See Lemma B.48 and Lemma B.72 in the appendix):

(b2.1) ≤
M∑
p=1

E

( 1

ϕpi,1
− 1

)
1
{
Hp

† (1)
}+

L−1∑
k=1

E

( 1

ϕpki,τk+1

− 1

)
1
{
τk ≤ T,Hp

† (τk + 1)
} ,

where pk := pk(†) is the player that makes the k-th pull of arm † (Definition B.17).

Using basic Gaussian tail bounds, we can show that E

[(
1
ϕpi,1
− 1

)
1
{
Hp

† (1)
}]
≤

O (1) for any player p. Then, the following lemma suffices to prove Lemma 3.6.

Lemma 3.7. For any k ∈ [TM ],

E

( 1

ϕpki,τk+1

− 1

)
1
{
τk ≤ T,Hp

† (τk + 1)
} ≤ O (1) .

Technical highlight.

Lemma 3.7 generalizes Agrawal and Goyal [4, Lemma 2.13] for standard TS to

the multi-task setting. A complete proof can be found in the appendix, which uses anti-

concentration bounds of Gaussian random variables [59] as well as a novel concentration

inequality for multi-task data aggregation at random stopping times τk(†)’s, which we
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highlight here4. For any arm j, let

agg-µ̂j(t) =
1

nj(t) ∨ 1

∑
s≤t

∑
q∈Ps

1 {iqs = j} rqs + ϵ

be the aggregate mean reward estimate of j constructed using data by all players after t

rounds, offset by ϵ.

Lemma 3.8. For any arm j ∈ [K] and k ∈ [TM ] ∪ {0}, denote by τk = τk(j). Then, for

any δ ∈ (0, 1], with probability at least 1− δ, one of the following events happens:

1. τk = T + 1;

2. ∀p ∈ [M ], µpj − agg-µ̂j(τk) ≤
√

2 ln( 2
δ )

(nj(τk)−M)∨1
.

Remark 3.9. We note that Lemma 3.8 is critical to the tight performance guarantee in

Lemma 3.7 and subsequently the near-optimal regret guarantees. This result is non-trivial,

as it is a concentration bound for a sequence of random variables whose length, nj(τk(j)), is

also a random variable. Furthermore, since τk(j) is the round in which arm j is pulled the

k-th time by any player, nj(τk(j)) can potentially take any integer value in [k, k +M − 1]

because there can be up to M pulls of arm j in round τk(j). We note that using the

Azuma-Hoeffding inequality together with a union bound or Freedman’s inequality (similar

to Lemma A.4) can lead to extra O (M) or O (lnT ) terms for Lemma 3.7, respectively

(see Remark B.51 in the appendix for details).

To our best knowledge, we are not aware of any similar tight concentration bounds

for data aggregation in multi-task bandits, and our technique may be of independent

interest for analyzing other multi-task sequential learning problems.
4In the single-task case (M = 1), our proof technique (Lemma B.70) also simplifies the proof of the

first case of Agrawal and Goyal [4, Lemma 2.13].
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3.6 Related Work

There exist many prior works that study multi-player or multi-task bandits with

heterogeneous reward distributions. For example, Cesa-Bianchi et al. [31] use Laplacian-

based regularization to learn a network of bandit problem instances such that connected

problems have similar parameters; Gentile et al. [57], among others, study clustering

of bandit problem instances. The ϵ-MPMAB problem is introduced in Chapter 2; see

Appendix A.1 for a detailed comparison with related work. In Chapter 4, we generalize the

ϵ-MPMAB problem to episodic, tabular Markov decision processes. We note that while

the methods in the above-mentioned works are UCB-based, we study TS-type algorithms

in this chapter.

TS is initially proposed by Thompson [148] decades ago, but its frequentist analysis

has not emerged until recent years [e.g., 3, 76]. Jin et al. [73] present the first minimax

optimal TS-type algorithm. Our proof techniques in this chapter are mostly inspired by

the work of Agrawal and Goyal [4].

TS algorithms have been studied in multi-task Bayesian bandits. For example,

several recent works study the setting of interacting with a sequence of M bandit problem

instances (tasks) sampled from a common, unknown prior distribution, with a goal of

minimizing the M -instance Bayesian regret [16, 85, 119, 17]. The recent work of Hong et al.

[63] proposes a hierarchical Bayesian bandit problem that generalizes many multi-task

bandit settings, and analyzes the Bayes regret. In contrast, we use frequentist regret as

our performance metric, and we do not assume a shared prior distribution over the players’

problem instances/tasks. Wan et al. [155] study multi-task TS in a hierarchical Bayesian

model and assume knowledge of metadata of each task; while they provide a frequentist

regret bound, we study the ϵ-MPMAB problem which models task relations differently.

Similar models on sequential transfer between problem instances have also been

studied by Azar et al. [10] and Soare et al. [138]. Zhang and Bareinboim [175], Zhang
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(a) |I5ϵ| = 8

(b) |I5ϵ| = 5

Figure 3.1. Compares the average performance of the algorithms on 30 randomly
generated problem instances with |I5ϵ| = 8 and |I5ϵ| = 5 in a horizon of T = 50000 rounds.
Figures in the left column plot the cumulative collective regret over time; figures in the
middle column demonstrate the percentages of pulls of optimal arms, non-subpar yet
non-optimal arms (referred to as near-optimal arms), and subpar arms; figures in the right
column then show the incurred cumulative regret by arm optimality.

et al. [174], Sharma et al. [130] investigate warm-starting bandits from misaligned data.

In this chapter, we focus on a more general interaction protocol, under which the players

may interact with the environment concurrently.

3.7 Empirical Evaluation

In this section, we present an empirical evaluation of RobustAgg-TS(ϵ) on

synthetic data. We focus on the concurrent setting (Pt = [M ] for all t), which is the

setting studied in Chapter 2. Our goal is to address the following two questions:

1. How does RobustAgg-TS(ϵ) perform in comparison with the UCB-based algorithm,

RobustAgg(ϵ), and the baseline algorithms without transfer learning?

2. Does the notion of subpar arms characterize the performance of the algorithms in
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practice?

Experimental Setup.

We compared the performance of 4 algorithms: (1) RobustAgg-TS(ϵ) with

constants c1 = 1
2

and c2 = 1; (2) RobustAgg(ϵ) (Section 2.6); (3) Ind-TS, the baseline

algorithm that runs TS with Gaussian priors for each player individually; and (4) Ind-UCB,

the baseline algorithm that runs UCB-1 for each player individually.

The algorithms were evaluated on randomly generated 0.15-MPMAB problem

instances with different numbers of subpar arms. To stay consistent with Chapter 2, we

followed the same instance generation procedure and considered I5ϵ to be the set of subpar

arms—we set the number of players M = 20 and the number of arms K = 10; then,

for each integer value v ∈ [0, 9], we generated 30 0.15-MPMAB problem instances with

Bernoulli reward distributions and |I5ϵ| = v. We ran the algorithms on each instance for a

horizon of T = 50, 000 rounds.

Results and Discussion.

Figure 3.1 compares the average performance of the algorithms on instances with

|I5ϵ| = 8 and 5. We defer the rest of the results to Appendix B.5.

From the left column, we first observe that, while the UCB-based algorithm,

RobustAgg(ϵ), outperforms its counterpart, Ind-UCB, in the cumulative collective

regret (
∑

t∈[T ]
∑

p∈Pt
µp∗ − µ

p
ipt

), its empirical performance is underwhelming in comparison

with TS algorithms. In particular, even on instances with half of the arms subpar

(|I5ϵ| = 5), RobustAgg(ϵ) is outperformed by the Ind-TS baseline without transfer

learning. Importantly, we note that RobustAgg-TS(ϵ) shows a superior performance

than the other algorithms.

The figures in the middle and right columns illustrate the arm selection of each

algorithm. We categorize all arms into three groups: optimal arms, subpar arms, and near-

optimal arms which are neither subpar nor optimal. Comparing the TS-type algorithms
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with the UCB-based algorithms, we observe that the former algorithms perform better

mainly because they pull near-optimal arms a smaller number of times and incur less

regret on these arms.

Furthermore, we observe that RobustAgg(ϵ) and RobustAgg-TS(ϵ), when

compared with their counterparts (Ind-UCB and Ind-TS, respectively), incur a similar

amount of regret from near-optimal arms. Meanwhile, they make fewer pulls on subpar

arms. This may be less obvious from the plots on the percentage of total pulls because

none of the algorithms pull subpar arms extensively over the horizon. However, since the

suboptimality gaps of subpar arms are large, we see from the figures in the right column

that RobustAgg(ϵ) and RobustAgg-TS(ϵ) incur far less regret on subpar arms. These

results thereby demonstrate that the notion of subpar arms can capture the amenability

of transfer learning in subpar arms but not near-optimal arms.

In addition, the results show that, empirically, RobustAgg-TS(ϵ) can robustly

leverage transfer for arms in I5ϵ ⊇ I10ϵ—this suggests that our upper bounds may be

improved; we leave this as future work.

3.8 Conclusion

In this chapter, we studied transfer learning in multi-task bandits under the

framework of a generalized version of the ϵ-MPMAB problem. We proposed a TS-type

algorithm, RobustAgg-TS(ϵ), which can robustly leverage auxiliary data collected for

other tasks. We showed that RobustAgg-TS(ϵ) is empirically superior when evaluated

on synthetic data, and also near-optimal in gap-dependent and gap-independent frequentist

guarantees. In our analysis, we also proved a novel concentration inequality for multi-task

data aggregation, which can be of independent interest in the analysis of other multi-task

online learning problems. For future work, we are interested in improving the lower-order

terms in our regret bounds and evaluating our algorithm in real-world applications.
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Chapter 4

Multi-Task Reinforcement Learning
with Model Transfer

4.1 Introduction

In many real-world applications, reinforcement learning (RL) agents can be deployed

as a group to complete similar tasks at the same time. For example, in healthcare robotics,

robots are paired with people with dementia to perform personalized cognitive training

activities by learning their preferences [150, 83]; in autonomous driving, a set of autonomous

vehicles learn how to navigate and avoid obstacles in various environments [97]. In these

settings, each learning agent alone may only be able to acquire a limited amount of data,

while the agents as a group have the potential to collectively learn faster through sharing

knowledge among themselves. Multi-task learning [30] is a practical framework that can

be used to model such settings, where a set of learning agents share/transfer knowledge to

improve their collective performance.

Despite many empirical successes of multi-task RL [e.g., 182, 98, 97] and transfer

learning for RL [e.g., 93, 146], a theoretical understanding of when and how information

sharing or knowledge transfer can provide benefits remains limited. Exceptions include [e.g.,

60, 24, 42, 65, 117, 92], which study multi-task learning from parameter or representation

transfer perspectives. However, these works still do not provide a completely satisfying

answer: for example, in many application scenarios, the reward structures and the
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environment dynamics are only slightly different for each task—this is, however, not

captured by representation transfer [42, 65] or existing works on clustering-based parameter

transfer [60, 24]. In such settings, is it possible to design provably efficient multi-task

RL algorithms that have guarantees never worse than agents learning individually, while

outperforming the individual agents in favorable situations?

In this work, we formulate a multi-task RL problem that is applicable to the

aforementioned settings. Specifically, we generalize the results on multi-task multi-armed

bandits (Chapter 2) and formulate the ϵ-Multi-Player Episodic Reinforcement Learning

(abbreviated as ϵ-MPERL) problem, in which all tasks share the same state and action

spaces, and the tasks are assumed to be similar—i.e., the dissimilarities between the

environments of different tasks (specifically, the reward distributions and transition dynam-

ics associated with the players/tasks) are bounded in terms of a dissimilarity parameter

ϵ ≥ 0. This problem not only models concurrent RL [134, 60] as a special case by taking

ϵ = 0, but also captures richer multi-task RL settings when ϵ is nonzero. We study regret

minimization for the ϵ-MPERL problem, specifically:

1. We identify a problem complexity notion named subpar state-action pairs, which

captures the amenability of information sharing among tasks in ϵ-MPERL problem

instances. As shown in the multi-task bandits literature (see Chapter 2), information

sharing is not always helpful. Subpar state-action pairs, intuitively speaking, are clearly

suboptimal for all tasks, for which we can robustly take advantage of (possibly biased)

data collected for other tasks.

2. In the setting where the dissimilarity parameter ϵ is known, we design a model-based

algorithm Multi-task-Euler (Algorithm 3), which is built upon state-of-the-art

algorithms for learning single-task Markov decision processes (MDPs) [172, 136], as

well as model transfer ideas in RL [146]. Multi-task-Euler crucially utilizes the

dissimilarity assumption to robustly take advantage of information sharing among
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tasks, and achieves regret upper bounds in terms of subpar state-action pairs, in both

(suboptimality) gap-dependent and gap-independent fashions. Specifically, compared

with a baseline algorithm that does not utilize information sharing, Multi-task-Euler

has a regret guarantee that: (1) is never worse, i.e., it avoids negative transfer [123]; (2)

can be much superior when there are a large number of subpar state-action pairs.

3. We also present gap-dependent and gap-independent regret lower bounds for the ϵ-

MPERL problem in terms of subpar state-action pairs. Together, the upper and lower

bounds characterize the intrinsic complexity of the ϵ-MPERL problem.

4.2 Preliminaries

Throughout this chapter, we denote by [n] := {1, . . . , n}. For a set A, we use AC to

denote its complement. Denote by ∆(X ) the set of probability distributions over X . For

functions f, g, we use f ≲ g (resp. f ≳ g) to denote that there exists some constant c > 0,

such that f ≤ cg (resp. f ≥ cg), and use f ≂ g to denote f ≲ g and f ≳ g simultaneously.

Define a ∨ b := max(a, b), and a ∧ b := min(a, b). We use E to denote the expectation

operator, and use var to denote the variance operator. Throughout, we use Õ(·) notation

to hide logarithmic factors.

Multi-task RL in episodic MDPs.

We have a set of M MDPs
{
Mp = (H,S,A, p0,Pp, rp)

}M
p=1

, each associated with

a player p ∈ [M ]. Each MDP Mp is regarded as a task. The MDPs share the same

episode length H ∈ N+, finite state space S, finite action space A, and initial state

distribution p0 ∈ ∆(S). The transition probabilities Pp : S × A → ∆(S) and reward

distributions rp : S ×A → ∆([0, 1]) of the players are not necessarily identical. We assume

that the MDPs are layered1, in that the state space S can be partitioned into disjoint
1This is a standard assumption [see, e.g., 168]. It is worth noting that any episodic MDP (with possibly

nonstationary transition and reward) can be converted to a layered MDP with stationary transition and
reward, with the state space size being H times the size of the original state space.
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subsets (Sh)Hh=1, where p0 is supported on S1, and for every p ∈ [M ], h ∈ [H], and every

s ∈ Sh, a ∈ A, Pp(· | s, a) is supported on Sh+1; here, we define SH+1 = {⊥} so that it

contains a default terminal state ⊥ (note that ⊥ /∈ S). We denote by S := |S| the size of

the state space, and A := |A| the size of the action space.

Interaction process.

The interaction process between the players and the environment is as follows: at

the beginning, both (rp)
M
p=1 and (Pp)Mp=1 are unknown to the players. For each episode

k ∈ [K], each player p ∈ [M ] interacts with its respective MDPMp; specifically, player p

starts with state sk1,p ∼ p0, and at every step h ∈ [H], it chooses action akh,p, transitions

to next state skh+1,p ∼ Pp(· | skh,p, akh,p) and receives a stochastic immediate reward rkh,p ∼

rp(· | skh,p, akh,p); after all players have finished their k-th episode, they can communicate

and share information. The goal of the players is to maximize their expected collective

reward E
[∑K

k=1

∑M
p=1

∑H
h=1 r

k
h,p

]
.

Policy and value functions.

A deterministic policy π is a mapping from S to A, which can be used by a player

to make decisions in its respective MDP. For player p and step h, we define the value

function V π
h,p : Sh → [0, H] and the action value function Qπ

h,p : Sh × A → [0, H] as the

expected return of player p conditioned on its being at a state at step h, and its being at

a state and taking an action at step h, respectively. They satisfy the following recursive

formula known as the Bellman equation:

∀h ∈ [H] : V π
h,p(s) = Qπ

h,p(s, π(s)), Qπ
h,p(s, a) = Rp(s, a) + (PpV π

h+1,p)(s, a),

where we use the convention that V π
H+1,p(⊥) = 0, and for f : Sh+1 → R, (Ppf)(s, a) :=∑

s′∈Sh+1
Pp(s′ | s, a)f(s′), and Rp(s, a) = Er̂∼rp(·|s,a) [r̂] is the expected immediate reward

of player p. For player p and policy π, denote by V π
0,p = Es1∼p0

[
V π
1,p(s1)

]
its expected
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reward.

For player p, we also define its optimal value function V ⋆
h,p : Sh → [0, H] and

the optimal action value function Q⋆
h,p : Sh × A → [0, H] using the Bellman optimality

equation:

∀h ∈ [H] : V ⋆
h,p(s) = max

a∈A
Q⋆
h,p(s, a), Q⋆

h,p(s, a) = Rp(s, a) + (PpV ⋆
h+1,p)(s, a), (4.1)

where we again use the convention that V ⋆
H+1,p(⊥) = 0. For player p, denote by V ⋆

0,p =

Es1∼p0
[
V ⋆
1,p(s1)

]
its optimal expected reward.

Given a policy π, as V π
h,p for different h’s are only defined in the respective layer Sh,

we “collate” the value functions (V π
h,p)

H
h=1 and obtain a single value function V π

p : S → R.

Formally, for every h ∈ [H] and s ∈ Sh,

V π
p (s) := V π

h,p(s).

We define Qπ
p , V

⋆
p , Q

⋆
p similarly. For player p, given its optimal action value functions

Q⋆
p, its optimal policy π⋆p : S → A is greedy with respect to Q⋆

p, that is, π⋆p(s) =

argmaxa∈AQ
⋆
p(s, a).

Suboptimality gap.

We define the suboptimality gap of state-action pair (s, a) for player p as gapp(s, a) =

V ⋆
p (s) − Q⋆

p(s, a). We define the mininum suboptimality gap of player p as gapp,min =

min(s,a):gapp(s,a)>0 gapp(s, a), and the minimum suboptimailty gap over all players as

gapmin = minp∈[M ] gapp,min. For player p ∈ [M ], define Zp,opt :=
{
(s, a) : gapp(s, a) = 0

}
as the set of optimal state-action pairs with respect to p.

Performance metric.

The performance metric of the players studied in this chapter is their collective

regret, i.e., over a total of K episodes, how much extra reward they would have collected
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in expectation if they were executing their respective optimal policies from the beginning.

Formally, suppose for each episode k, player p executes policy πk(p), then the collective

regret of the players is defined as:

Reg(K) =
M∑
p=1

K∑
k=1

(
V ⋆
0,p − V

πk(p)
0,p

)
.

Baseline: individual Strong-Euler.

A naive baseline for multi-player RL is to let each player run a separate RL

algorithm without communication. For concreteness, we choose to let each player run

the state of the art Strong-Euler algorithm [136] (see also its precursor Euler [172]),

which enjoys minimax gap-independent [12, 39] and gap-dependent regret guarantees,

and refer to this strategy as individual Strong-Euler. Specifically, as it is known

that Strong-Euler has a regret of Õ(
√
H2SAK), individual Strong-Euler has a

collective regret of Õ(M
√
H2SAK). In addition, by summing up the gap-dependent regret

guarantee of Strong-Euler for the M MDPs altogether, it can be easily checked that

with probability 1− δ, individual Strong-Euler has a collective regret of

Reg(K) ≲ ln

(
MSAK

δ

) ∑
p∈[M ]

 ∑
(s,a)∈Zp,opt

H3

gapp,min

+
∑

(s,a)∈ZC
p,opt

H3

gapp(s, a)



+MH3S2A ln
MH

gapmin

.
Our goal is to design multi-task RL algorithms that can achieve collective regret strictly

lower than this baseline in both gap-dependent and gap-independent fashions when the

tasks are similar.
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Notion of similarity.

Throughout this chapter, we will consider the following notion of similarity between

MDPs in the multi-task episodic RL setting.

Definition 4.1. A collection of MDPs (Mp)
M
p=1 is said to be ϵ-dissimilar, if for all

p, q ∈ [M ], and (s, a) ∈ S ×A,

∣∣Rp(s, a)−Rq(s, a)
∣∣ ≤ ϵ, ∥Pp(· | s, a)− Pq(· | s, a)∥1 ≤

ϵ

H
.

If this happens, we call (Mp)
M
p=1 an ϵ-Multi-Player Episodic Reinforcement Learning

(abbrev. ϵ-MPERL) problem instance.

If the MDPs in (Mp)
M
p=1 are 0-dissimilar, then they are identical by definition, and

our interaction protocol degenerates to the concurrent RL protocol [134]. Our dissimilarity

notion is complementary to those of [24, 60], in that they require the MDPs to be either

identical, or have well-separated parameters for at least one state-action pair; in contrast,

our dissimilarity notion allows the MDPs to be nonidentical and arbitrarily close.

We have the following intuitive lemma that shows the closeness of optimal value

functions of different MDPs, in terms of the dissimilarity parameter ϵ:

Lemma 4.2. If (Mp)
M
p=1 are ϵ-dissimilar, then for every p, q ∈ [M ], and (s, a) ∈ S ×A,∣∣∣Q⋆

p(s, a)−Q⋆
q(s, a)

∣∣∣ ≤ 2Hϵ; consequently,
∣∣∣gapp(s, a)− gapq(s, a)

∣∣∣ ≤ 4Hϵ.

4.3 Algorithm: Multi-task-Euler

We now describe our main algorithm, Multi-task-Euler (Algorithm 3). Our

model-based algorithm is built upon recent works on episodic RL that provide algorithms

with sharp instance-dependent guarantees in the single task setting [172, 136]. In a nutshell,

for each episode k and each player p, the algorithm performs optimistic value iteration to

construct high-probability upper and lower bounds for the optimal value and action value

functions V ⋆
p and Q⋆

p, and uses them to guide its exploration and decision making process.
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Algorithm 3: Multi-task-Euler
Input :Failure probability δ ∈ (0, 1).
Initialize: Set Vp(⊥) = 0 for all p in [M ], where ⊥ is the only state in SH+1 ;

1 for k = 1, 2, . . . , K do
2 for p = 1, 2, . . . ,M do

// Construct optimal value estimates for player p
3 for h = H,H − 1, . . . , 1 do
4 for (s, a) ∈ Sh ×A do
5 Compute:
6 ind-Qp(s, a) = R̂p(s, a) + (P̂pV p)(s, a) + ind-bp(s, a);
7 ind-Q

p
(s, a) = R̂p(s, a) + (P̂pV p)(s, a)− ind-bp(s, a);

8 agg-Qp(s, a) = R̂(s, a) + (P̂V p)(s, a) + agg-bp(s, a);
9 agg-Q

p
(s, a) = R̂(s, a) + (P̂V p)(s, a)− agg-bp(s, a);

10 Update optimal action value function upper and lower bound
estimates:

11 Qp(s, a) = min
{
H − h+ 1, ind-Qp(s, a), ind-Q

p
(s, a)

}
;

12 Q
p
(s, a) = max

{
0, ind-Q

p
(s, a), agg-Q

p
(s, a)

}
;

13 for s ∈ Sh do
14 Define πk(p)(s) = argmaxa∈AQp(s, a);
15 Update V p(s) = Qp(s, π

k(p)(s)), V p(s) = Q
p
(s, πk(p)(s)).

// All players p interact with their respective environments, and update
reward and transition estimates

16 for p = 1, 2, . . . ,M do
17 Player p executes policy πk(p) onMp and obtains trajectory

(skh,p, a
k
h,p, r

k
h,p)

H
h=1.

18 Update individual estimates of transition probability P̂p, reward R̂p

and count np(·, ·).
19 Update aggregate estimates of transition probability P̂, reward R̂ and

count n(·, ·).
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Empirical estimates of model parameters.

For each player p, the construction of its value function bound estimates relies on

empirical estimates on its transition probability and expected reward function. For both

estimands, we use two estimators with complementary roles, which are at two different

points of the bias-variance tradeoff spectrum: one estimator uses only the player’s own

data (termed individual estimate), which is unbiased but has large variance, the other

estimator uses the data collected by all players (termed aggregate estimate), which is

biased but has lower variance. Specifically, at the end of episode k, for every h ∈ [H] and

(s, a) ∈ Sh ×A, the algorithm maintains its empirical count of encountering (s, a) for each

player p, along with its total empirical count across all players, respectively:

np(s, a) :=
k∑
l=1

1
(
(slh,p, a

l
h,p) = (s, a)

)
, n(s, a) :=

k∑
l=1

M∑
p=1

1
(
(slh,p, a

l
h,p) = (s, a)

)
. (4.2)

The individual and aggregate estimates of immediate reward R(s, a) are defined as:

R̂p(s, a) :=

∑k
l=1 1

(
(slh,p, a

l
h,p) = (s, a)

)
rlh,p

np(s, a)
,

R̂(s, a) :=

∑k
l=1

∑M
p=1 1

(
(slh,p, a

l
h,p) = (s, a)

)
rlh,p

n(s, a)
.

(4.3)

Similarly, for every h ∈ [H] and (s, a, s′) ∈ Sh ×A× Sh+1, we also define the individual

and aggregate estimates of transition probability as:

P̂p(s′ | s, a) :=

∑k
l=1 1

(
(slh,p, a

l
h,p, s

l
h+1,p) = (s, a, s′)

)
np(s, a)

,

P̂(s′ | s, a) :=

∑k
l=1

∑M
p=1 1

(
(slh,p, a

l
h,p, s

l
h+1,p) = (s, a, s′)

)
n(s, a)

.

(4.4)
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If n(s, a) = 0, we define R̂(s, a) := 0 and P̂(s′ | s, a) := 1

|Sh+1| ; and if np(s, a) = 0, we

define R̂p(s, a) := 0 and P̂p(s′ | s, a) := 1

|Sh+1| . The counts and reward estimates can be

maintained by Multi-task-Euler efficiently in an incremental manner.

Constructing value function estimates via optimistic value iteration.

For each player p, based on these model parameter estimates, Multi-task-Euler

performs optimistic value iteration to compute the value function estimates for states at

all layers (lines 3 to 15). For the terminal layer H + 1, V ⋆
H+1(⊥) = 0 trivially, so nothing

needs to be done. For earlier layers h ∈ [H], Multi-task-Euler iteratively builds its

value function estimates in a backward fashion. At the time of estimating values for layer

h, the algorithm has already obtained optimal value estimates for layer h+ 1. Based on

the Bellman optimality equation (4.1), Multi-task-Euler estimates (Q⋆
p(s, a))s∈Sh,a∈A

using model parameter estimates and its estimates of (V ⋆
p (s))s∈Sh+1

, i.e., (V p(s))s∈Sh+1
and

(V p(s))s∈Sh+1
(lines 5 to 12).

Specifically, Multi-task-Euler constructs estimates of (Q⋆
p(s, a)) for all s ∈

Sh, a ∈ A in two different ways. First, it uses the individual estimates of model of player

p to construct ind-Q
p

and ind-Qp, upper and lower bound estimates of Q⋆
p (lines 8 and 9);

this construction is reminiscent of Euler and Strong-Euler [172, 136], in that if we

were only to use ind-Q
p

and ind-Qp as our optimal action value function estimate Qp and

Q
p
, our algorithm becomes individual Strong-Euler. The individual value function

estimates are crucial to establishing Multi-task-Euler’s fall-back guarantees, ensuring

that it never performs worse than the individual Strong-Euler baseline. Second, it uses

the aggregate estimate of model to construct agg-Q
p

and agg-Qp, also upper and lower

bound estimates of Q⋆
p (lines 6 and 7); this construction is unique to the multitask learning

setting, and is our new algorithmic contribution.

To ensure that agg-Qp and ind-Qp (resp. agg-Q
p

and ind-Q
p
) are valid upper

bounds (resp. lower bounds) of Q⋆
p, Multi-task-Euler adds bonus terms ind-bp(s, a)
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and agg-bp(s, a), respectively, in the optimistic value iteration process, to account for

estimation error of the model estimates against the true models. Specifically, both bonus

terms comprise three parts:

ind-bp(s, a) := brw
(
np(s, a), 0

)
+ bprob

(
P̂p(· | s, a), np(s, a), V p, V p, 0

)
+ bstr

(
P̂p(· | s, a), np(s, a), V p, V p, 0

)
,

agg-bp(s, a) := brw
(
n(s, a), ϵ

)
+ bprob

(
P̂(· | s, a), n(s, a), V p, V p, ϵ

)
+ bstr

(
P̂(· | s, a), n(s, a), V p, V p, ϵ

)
,

where

brw (n, κ) := 1 ∧ κ+Θ

(√
L(n)

n

)
,

bprob

(
q, n, V , V , κ

)
:= H ∧ 2κ+

Θ


√√√√vars′∼q

[
V (s′)

]
L(n)

n
+

√√√√Es′∼q
[
(V (s′)− V (s′))2

]
L(n)

n
+
HL(n)

n

 ,

bstr

(
q, n, V , V , κ

)
:= κ+Θ


√√√√S Es′∼q

[
(V (s′)− V (s′))2

]
L(n)

n
+
HSL(n)

n

 ,

and L(n) ≂ ln(MSAn
δ

).

The three components in the bonus terms serve for different purposes:

1. The first component accounts for the uncertainty in the reward estimation: with

probability 1−O(δ),
∣∣∣R̂p(s, a)−Rp(s, a)

∣∣∣ ≤ brw(np(s, a), 0), and
∣∣∣R̂(s, a)−Rp(s, a)

∣∣∣ ≤
brw(n(s, a), ϵ).

2. The second component accounts for the uncertainty in estimating (PpV ⋆
p )(s, a): with
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probability 1−O(δ),
∣∣∣(P̂pV ⋆

p )(s, a)− (PpV ⋆
p )(s, a)

∣∣∣ ≤ bprob(P̂p(· | s, a), np(s, a), V p, V p, 0)

and
∣∣∣(P̂V ⋆

p )(s, a)− (PpV ⋆
p )(s, a)

∣∣∣ ≤ bprob(P̂(· | s, a), n(s, a), V p, V p, ϵ).

3. The third component accounts for the lower order terms to ensure strong optimism [136]:

with probability 1−O(δ),∣∣∣(P̂p − Pp)(V p − V ⋆
p )(s, a)

∣∣∣ ≤ bstr(P̂p(· | s, a), np(s, a), V p, V p, 0), and∣∣∣(P̂− Pp)(V p − V ⋆
p )(s, a)

∣∣∣ ≤ bprob(P̂(· | s, a), n(s, a), V p, V p, ϵ).

Based on the above concentration inequalities and the definitions of bonus terms, it

can be shown inductively that, with probability 1−O(δ), both agg-Qp and ind-Qp (resp.

agg-Q
p

and ind-Q
p
) are valid upper bounds (resp. lower bounds) of Q⋆

p.

Finally, observe that for any (s, a) ∈ Sh ×A, Q⋆
p(s, a) has range [0, H − h+ 1]. By

taking intersections of all confidence bounds of Q⋆
p it has obtained, Multi-task-Euler

constructs its final upper and lower bound estimates for Q⋆
p(s, a), Qp(s, a) and Q

p
(s, a)

respectively, for (s, a) ∈ Sh ×A (line 11 to 12). Similar ideas on using data from multiple

sources to construct confidence intervals and guide explorations was proposed by Soare et al.

[138] for multi-task linear contextual bandits. Using the relationship between the optimal

value V ⋆
p (s) and and optimal action values

{
Q⋆
p(s, a) : a ∈ A

}
, Multi-task-Euler also

constructs upper and lower bound estimates for V ⋆
p (s), V p(s) and V p(s), respectively for

s ∈ Sh (line 15).

Executing optimistic policies.

At each episode k, for each player p, its optimal action-value function upper bound

estimate Qp induces a greedy policy πk(p) : s 7→ argmaxa∈AQp(s, a) (line 14); the player

then executes this policy at this episode to collect a new trajectory and use this to update

its individual model parameter estimates. After all players finish their episode k, the

algorithm also updates its aggregate model parameter estimates (lines 16 to 19) using

Equations (4.2), (4.3) and (4.4), and continues to the next episode.
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4.4 Performance Guarantees

Before stating the guarantees of Algorithm 3, we define an instance-dependent

complexity measure that characterizes the amenability of information sharing.

Definition 4.3. The set of subpar state-action pairs is defined as:

Iϵ :=
{
(s, a) ∈ S ×A : ∃p ∈ [M ], gapp(s, a) ≥ 96Hϵ

}
,

where we recall that gapp(s, a) = V ⋆
p (s)−Q⋆

p(s, a).

Definition 4.3 generalizes the notion of subpar arms defined for multi-task multi-

armed bandit learning (chapter 2) in two ways: first, it is with regards to state-action pairs

as opposed to actions only; second, in RL, suboptimality gaps depend on both immediate

reward and subsequent long-term return.

To ease our later presentation, we also present the following lemma.

Lemma 4.4. For any (s, a) ∈ Iϵ, we have that: (1) for all p ∈ [M ], (s, a) /∈ Zp,opt, where

we recall that Zp,opt =
{
(s, a) : gapp(s, a) = 0

}
is the set of optimal state-action pairs with

respect to p; (2) for all p, q ∈ [M ], gapp(s, a) ≥ 1
2
gapq(s, a).

The lemma follows directly from Lemma 4.2; its proof can be found in the Appendix

along with proofs of the following theorems. Item 1 implies that any subpar state action

pair is suboptimal for all players. In other words, for every player p, the state-action space

S × A can be partitioned to three disjoint sets: Iϵ, Zp,opt, (Iϵ ∪ Zp,opt)C . Item 2 implies

that for any subpar (s, a), its suboptimal gaps with respect to all players are within a

constant of each other.

4.4.1 Upper bounds

Equipped with the above definitions, we are now ready to present the performance

guarantees of Algorithm 3. We first present a gap-independent collective regret bound.
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Theorem 4.5 (Gap-independent upper bound). If
{
Mp

}M
p=1

are ϵ-dissimilar, then running

Multi-task-Euler, we have with probability 1− δ,

Reg(K) ≤ Õ
(
M
√
H2|ICϵ |K +

√
MH2|Iϵ|K +MH3S2A

)
.

We again compare this regret upper bound with individual Strong-Euler’s gap

independent regret bound. Recall that individual Strong-Euler guarantees that with

probability 1− δ,

Reg(K) ≤ Õ
(
M
√
H2SAK +MH3S2A

)
.

We focus on the comparison on the leading terms, i.e., the
√
K terms. As

M
√
H2SAK ≂ M

√
H2|Iϵ|K +M

√
H2|ICϵ |K, we see that an improvement in the col-

lective regret bound comes from the contributions from the subpar state-action pairs:

the M
√
H2|Iϵ|K term is reduced to

√
MH2|Iϵ|K, a factor of Õ(

√
1
M
) improvement.

Moreover, if
∣∣ICϵ ∣∣ ≪ SA and M ≫ 1, Multi-task-Euler provides a regret bound of

lower order than individual Strong-Euler.

We next present a gap-dependent upper bound on its collective regret.

Theorem 4.6 (Gap-dependent upper bound). If
{
Mp

}M
p=1

are ϵ-dissimilar, then running

Multi-task-Euler, we have with probability 1− δ,

Reg(K) ≲ ln(
MSAK

δ
)

 ∑
p∈[M ]

 ∑
(s,a)∈Zp,opt

H3

gapp,min

+
∑

(s,a)∈(Iϵ∪Zp,opt)C

H3

gapp(s, a)

+

∑
(s,a)∈Iϵ

H3

minp gapp(s, a)

+ ln(
MSAK

δ
) ·MH3S2A ln

MHSA

gapmin

,

where we recall that gapp,min = min(s,a):gapp(s,a)>0 gapp(s, a), and gapmin = minp gapp,min.

Comparing this regret bound with the regret bound obtained by the individ-
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ual Strong-Euler baseline, recall that by summing over the regret guarantees of

Strong-Euler for all players p ∈ [M ], and taking a union bound over all p, individual

Strong-Euler guarantees a collective regret bound of

Reg(K) ≲ ln(
MSAK

δ
)

 ∑
p∈[M ]

 ∑
(s,a)∈Zp,opt

H3

gapp,min

+
∑

(s,a)∈(Iϵ∪Zp,opt)C

H3

gapp(s, a)

+

∑
(s,a)∈Iϵ

∑
p∈[M ]

H3

gapp(s, a)

+ ln(
MSAK

δ
) ·MH3S2A ln

MHSA

gapmin

,

that holds with probability 1− δ. We again focus on comparing the leading terms, i.e.,

the terms that have polynomial dependences on the suboptimality gaps in the above two

bounds. It can be seen that an improvement in the regret bound by Multi-task-Euler

comes from the contributions from the subpar state-action pairs: for each (s, a) ∈ Iϵ, the

regret bound is reduced from
∑

p∈[M ]
H3

gapp(s,a)
to H3

minp gapp(s,a)
, a factor of O( 1

M
) improvement.

Recent work of Xu et al. [168] has shown that in the single-task setting, it is possible

to replace
∑

(s,a)∈Zp,opt

H3

gapp,min
with a sharper problem-dependent complexity term that

depends on the multiplicity of optimal state-action pairs. We leave improving the guarantee

of Theorem 4.6 in a similar manner as an interesting open problem.

4.4.2 Lower bounds

To complement the above upper bounds, we now present gap-dependent and gap-

independent regret lower bounds that also depends on our subpar state-action pair notion.

Our lower bounds are inspired by regret bounds for episodic RL [136, 39] and multi-task

bandits (Chapter 2).

Theorem 4.7 (Gap-independent lower bound). For any A ≥ 2, H ≥ 2, S ≥ 4H, K ≥ SA,

M ∈ N, and l, lC ∈ N such that l+ lC = SA and l ≤ SA− 4(S +HA), there exists some ϵ
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such that for any algorithm Alg, there exists an ϵ-MPERL problem instance with S states,

A actions, M players and an episode length of H such that
∣∣∣I ϵ

192H

∣∣∣ ≥ l, and

E
[
RegAlg(K)

]
≥ Ω

(
M
√
H2lCK +

√
MH2lK

)
.

We also present a gap-dependent lower bound. Before that, we first formally define

the notion of sublinear regret algorithms: for any fixed ϵ, we say that an algorithm Alg is

a sublinear regret algorithm for the ϵ-MPERL problem if there exists some C > 0 and

α < 1 such that E
[
RegAlg(K)

]
≤ CKα.

Theorem 4.8 (Gap-dependent lower bound). Fix ϵ ≥ 0. For any S ∈ N, A ≥ 2, H ≥ 2,

M ∈ N, such that S ≥ 2(H−1), let S1 = S−2(H−1); and let
{
∆s,a,p

}
(s,a,p)∈[S1]×[A]×[M ]

be

any set of values such that (1) each ∆s,a,p ∈ [0, H/48], (2) for every (s, p) ∈ [S1]×[M ], there

exists at least one action a ∈ [A] such that ∆s,a,p = 0, and (3) for every (s, a) ∈ [S1]× [A]

and p, q ∈ [M ],
∣∣∆s,a,p −∆s,a,q

∣∣ ≤ ϵ/4. There exists an ϵ-MPERL problem instance with S

states, A actions, M players and an episode length of H, such that S1 = [S1], |Sh| = 2 for

all h ≥ 2, and

gapp(s, a) = ∆s,a,p, ∀(s, a, p) ∈ [S1]× [A]× [M ];

for this problem instance, any sublinear regret algorithm Alg for the ϵ-MPERL problem

must have regret at least

E
[
RegAlg(K)

]
≥

Ω

lnK


∑
p∈[M ]

∑
(s,a)∈IC

(ϵ/192H)
:

gapp(s,a)>0

H2

gapp(s, a)
+

∑
(s,a)∈I(ϵ/192H)

H2

minp gapp(s, a)



 .

Comparing the lower bounds with Multi-task-Euler’s regret upper bounds in

62



Theorems 4.5 and 4.6, we can see that the upper and lower bounds nearly match for any

constant H. When H is large, the key difference between the upper and lower bounds is

that the former are in terms of Iϵ, while the latter are in terms of IΘ( ϵ
H
). We conjecture

that our upper bounds can be improved by replacing Iϵ with IΘ( ϵ
H
)—our analysis uses a

clipping trick similar to [136], which may be the reason for a suboptimal dependence on

H. We leave closing this gap as an open question.

4.5 Related Work

Regret minimization for MDPs.

Our work belongs to the literature of regret minimization for MDPs [e.g., 15, 68,

39, 12, 40, 71, 41, 172, 136, 179, 170, 168]. In the episodic setting, [12, 41, 172, 136, 179]

achieve minimax
√
H2SAK regret bounds for general stationary MDPs. Furthermore,

the Euler algorithm [172] achieves adaptive problem-dependent regret guarantees when

the total reward within an episode is small or when the environmental norm of the

MDP is small. Simchowitz and Jamieson [136] refine Euler, proposing Strong-Euler

that provides more fine-grained gap-dependent O(logK) regret guarantees. Yang et al.

[170], Xu et al. [168] show that the optimistic Q-learning algorithm [71] and its variants

can also achieve gap-dependent logarithmic regret guarantees. Remarkably, Xu et al. [168]

achieve a regret bound that improves over that of [136], in that it replaces the dependence

on the number of optimal state-action pairs with the number of non-unique state-action

pairs.

Transfer and lifelong learning for RL.

A considerable portion of related works concerns transfer learning for RL tasks

[see 145, 91, 181, for surveys from different angles], and many studies investigate a batch

setting: given some source tasks and target tasks, transfer learning agents have access

to batch data collected for the source tasks (and sometimes for the target tasks as well).
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In this setting, model-based approaches have been explored in [e.g., 146]; theoretical

guarantees for transfer of samples across tasks have been established in [e.g., 92, 149].

Similarly, sequential transfer has been studied under the framework of lifelong RL in

[e.g., 143, 1, 56, 89]—in this setting, an agent faces a sequence of RL tasks and aims to

take advantage of knowledge gained from previous tasks for better performance in future

tasks; in particular, analyses on the sample complexity of transfer learning algorithms are

presented in [24, 100] under the assumption that an upper bound on the total number

of unique (and well-separated) RL tasks is known. We note that, in contrast, we study

an online setting in which no prior data are available and multiple RL tasks are learned

concurrently by RL agents.

Concurrent RL.

Data sharing between multiple RL agents that learn concurrently has also been

investigated. In [e.g., 80, 135, 60, 44], a group of agents interact in parallel with identical

environments. Another setting is studied in [60], in which agents solve different RL tasks

(MDPs); however, similar to [24, 100], it is assumed that there is a finite number of

unique tasks, and different tasks are well-separated, i.e., there is a minimum gap. In this

work, we assume that players face similar but not necessarily identical MDPs, and we

do not assume a minimum gap. Hu et al. [65] study multi-task RL with linear function

approximation with representation transfer, where it is assumed that the optimal value

functions of all tasks are from a low dimensional linear subspace. Our setting and results

are the most similar to [117] and [48]. Pazis and Parr [117] study concurrent exploration

in similar MDPs with continuous states in the PAC setting; however, their PAC guarantee

does not hold for target error rate arbitrarily close to zero; in contrast, our algorithm

has a fall-back guarantee, in that it always has a sublinear regret. Concurrent RL from

similar linear MDPs has also been recently studied in [48]: under the assumption of small

heterogeneity between different MDPs (a setting very similar to ours), the provided regret
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guarantee involves a term that is linear in the number of episodes, whereas our algorithm

in this chapter always has a sublinear regret; concurrent RL under the assumption of

large heterogeneity is also studied in that work, but additional contextual information is

assumed to be available for the players to ensure a sublinear regret.

Other related topics and models.

In many multi-agent RL models [177, 113], a set of learning agents interact with a

common environment and have shared global states; in particular, Zhang et al. [176] study

the setting with heterogeneous reward distributions, and provides convergence guarantees

for two policy gradient-based algorithms. In contrast, in our setting, our learning agents

interact with separate environments. Multi-agent bandits with similar, heterogeneous

reward distributions are investigated in Chapter 2; herein, we generalize the multi-armed

bandit setting to tabular, episodic MDPs.

4.6 Conclusion and Future Work

In this chapter, we generalize the multi-task bandit learning framework in Chapter 2

and formulate a multi-task concurrent RL problem, in which tasks are similar but not

necessarily identical. We provide a provably efficient model-based algorithm that takes

advantage of knowledge transfer between different tasks. Our instance-dependent regret

upper and lower bounds formalize the intuition that subpar state-action pairs are amenable

of information sharing among tasks.

There still remain gaps between our upper and lower bounds which can be closed by

either a finer analysis or a better algorithm: first, the dependence on Iϵ in the upper bound

does not match the dependence of IΘ(ϵ/H) in the lower bound when H is large; second,

the gap-dependent upper bound has O(H3) dependence, whereas the gap-dependent lower

bound only has Ω(H2) dependence; third, the additive dependence on the number of

optimal state-action pairs can potentially be removed by new algorithmic ideas [168].
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Another interesting future direction is to consider more general parameter transfer for

online RL, for example, in the context of function approximation.
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Chapter 5

Metric Learning from Crowdsourced
Preference Comparisons

5.1 Introduction

Metric learning is commonly used to discover measures of similarity for downstream

applications [e.g., 84]. In this chapter, we study metric learning from pairwise preference

comparisons. In particular, we consider the ideal point model [38], in which a set of items

are embedded into Rd, and a user prefers an item x over another x′ if it is closer to the

user’s latent ideal point u ∈ Rd, that is,

ρ(x, u) < ρ(x′, u),

for some underlying metric ρ : Rd × Rd → R≥0. While high-quality item embeddings

have become increasingly available, for example from foundation models pre-trained on

internet-scale data [e.g., 121], naively equipping these representations with the Euclidean

distance may not accurately capture the semantic relations between items as perceived

by humans, and therefore may not align with human values or preferences [171, 28].

Meanwhile, people often agree on their perception of item (dis)similarities [37]. In this

chapter, we study when and how a shared Mahalanobis distance can be learned from a

large crowd, with each user answering a few queries in the form of “Do you prefer x or x′?”
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The line of work on simultaneous metric and preference learning was recently

introduced by [167], who studied it under the ideal point model for a single user. They

proposed an alternating minimization algorithm to recover both the Mahalanobis distance

and user ideal point. After, [28] introduced a convex formulation of the problem, providing

the first theoretical guarantees while extending the results to crowdsourced data. They

showed that the cost of learning a Mahalanobis distance can be amortized among users; it

is possible to jointly learn the metric and ideal points in Rd so long as sufficiently many

users each provides Θ(d) preference comparisons.

However, when the representations of data are very high-dimensional, obtaining Ω(d)

preference comparisons from each user can be practically infeasible. It can be expensive to

ask a user more than a few queries [36] both in terms of cost and cognitive overload, and

users may have concerns over their privacy [70]. Fortunately, through crowdsourcing, we

often have access to preference comparisons from a large pool of users. In this chapter, we

ask the fundamental question:

Can we learn an unknown Mahalanobis distance metric in Rd from o(d) preference

comparisons per user?

We provide a twofold answer to this question. First, we show a negative result:

even with infinitely many users, it is generally impossible to learn anything at all about

the underlying metric when each user provides fewer than d preference comparisons. In

general, there is no hope for recovering the unknown metric from preference comparisons

without learning individual preference points as well.

Second, we show that the negative result does not rule out the possibility of learning

the metric when the set of items are subspace-clusterable (Definition 5.12); that is, when

they lie in a union of low-dimensional subspaces [116, 103, 50]. These subspaces may

capture, for instance, different categories or classes of items; such structure has also
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Figure 5.1. In our divide-and-conquer approach, users help us recover the metric Qλ

restricted to subspaces Vλ. We stitch these together to recover the metric M on Rd. The
ellipses visualize the low-dimensional unit spheres, which are ‘slices’ of the full metric.

been studied extensively in compressed sensing [102, 49] and computer vision [62], among

others. Given items with subspace-clusterable structure, we show that we can learn the

Mahalanobis distance using a divide-and-conquer approach (Figure 5.1). This involves

learning the metric restricted to each subspace, which is feasible using very few comparisons

per user, and then reconstructing the full metric from these subspace metrics.

Contributions.

We study the fundamental problem of learning an unknown metric with limited

pairwise comparison queries, i.e, whether it is possible to learn a shared unknown metric

without learning the individual preference points. Our main contributions are as follows:

1. We provide an impossibility result: nothing can be learned if the items are in general

position (Section 5.3);

2. We define the notion of subspace-clusterable items and propose a divide-and-conquer

approach, such that:

• Given noiseless, unquantized comparisons that indicate how much a user prefers one

item over another, we show that subspace-clusterability is necessary and sufficient

for identifying the unknown metric (Section 5.4);

• Given noisy, quantized comparisons in the form of binary responses over subspace-
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clusterable items, we present recovery guarantees in terms of identification errors for

our approach (Section 5.5);

3. We implement our proposed algorithm and validate our findings using synthetic data

(Section 5.6).

Related work.

Metric learning from triplet comparisons or ordinal constraints has been studied

extensively [84]. A line of metric learning from human feedback focuses on learning

Mahalanobis distances from triplet comparisons [128, 152, 106], in which users are asked

“is u closer to x or x′?” However, triplet comparisons are a specific type of feedback

that is not always practical to obtain. And so, an important extension of these works is

metric learning from preference comparisons, which can be seen as a variant of triplet

comparisons with an unknown latent comparator u. Even though preference comparisons

are a weaker form of feedback, they are also much more prevalent. For example, they can

be inferred from user behavior, assuming users tend to engage more with items perceived

to be more ideal. As we build directly on this line of work by [167] and [28], we now

present background and existing results in greater detail. See Appendix D.1 for further

discussion of related work.

5.2 Preliminaries

The ideal point model.

Let X be a set of items embedded into Rd with an unknown Mahalanobis distance ρ.

Let M be its matrix representation in Rd×d. That is, M is a positive-definite (symmetric)

matrix and for all x, x′ ∈ Rd,

ρ(x, x′) :=
√

(x− x′)⊤M(x− x′) = ∥x− x′∥M .
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Suppose there is a large pool of users, and each user is associated with an unknown ideal

point in Rd. A user with ideal point u prefers an item x over another x′ if and only if

ρ(x, u) < ρ(x′, u); or whenever ψ(x, x′;u) < 0, where:

ψM(x, x′;u) := ∥x− u∥2M − ∥x′ − u∥2M . (5.1)

Each user’s ideal point may be distinct, but we assume that the metric ρ is a shared. We

aim to recover ρ when each user provides very few preference comparisons.

We consider two types of user preference comparisons for learning the metric:

unquantized and quantized measurements. From a user with ideal point u, these are of the

form:

(x, x′, ψ)︸ ︷︷ ︸
unquantized

and (x, x′, y)︸ ︷︷ ︸
quantized

,

where ψ = ψ(x, x′;u) is a real number that indicates the difference between the squared

distances, and y is binary, taking values in {−1,+1}. When y = −1, x is preferred over

x′, and y = +1 indicates otherwise.

Metric learning from preference measurements.

We now review the existing algorithmic ideas for recovering the metric from

preference feedback under the ideal point model. Suppose that we are given unquantized

measurements from a single user with an ideal point u ∈ Rd. With a little algebra [28],

the measurement in Eq. (5.1) becomes:

ψM(x, x′;u) =
〈
xx⊤ − x′x′⊤, M

〉
+
〈
x− x′, v

〉
, (5.2)

where v := −2Mu. The first inner product is the trace inner product for matrices, while

the second inner product is the usual inner product on Rd. The re-parametrization v of u
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is sometimes called the pseudo-ideal point. Thus, unquantized measurements are linear

over the joint variables (M, v). Given a set of unquantized measurements from a user, one

can just solve a linear system of equations to recover the matrix representation M of ρ, as

described in Algorithm 7 of Appendix D.3. Since M has full rank and therefore invertible,

we can then recover u from M and v [28].

As there are d(d+1)
2

+d degrees of freedom in (M, v), to recover the metric in this way

requires at least that many measurements from a single user; the first term corresponds to

the dimension of symmetric d× d matrices representing Mahalanobis distances, the second

for the user ideal point.

When d2 is very large, we may want to amortize learning the metric over many

users. [28] show that this is possible. Let the users be indexed by elements in [K]. We

can construct a larger linear regression problem, where each user has a separate covariate

corresponding to their ideal point. Now, the joint variable is (M, v1, v2, . . . , vK), which has
d(d+1)

2
+ dK degrees of freedom. When the population is large, it suffices to ask each user

Θ(d+ d2/K) preference queries, which can be much closer to d than d2. This procedure is

given in Algorithm 8 of Appendix D.3.

However, modern representations of data may be extremely high-dimensional, and

it would be too onerous for any single user to provide d measurements. In this chapter, we

tackle this question: If we have access to many users but can only ask each user a much

more limited number m≪ d of preferences queries, can we still recover ρ? We note that

with o(d) pairwise queries, it is impossible to localize the ideal preference point of a user

even with a known metric [69, 107]. So, our goal here is to address the open question of

whether it is possible to learn an unknown metric with such limited queries per users given

a sufficiently large pool of users.

72



Notation.

Let Sym(Rd) denote the symmetric d× d matrices equipped with the trace inner

product, and let Sym+(Rd) be the positive-definite matrices. For readability, we often

make abbreviations of the form ∆ ∈ Sym(Rd) and δ ∈ Rd:

∆ ≡ xx
⊤ − x′x′⊤ and δ ≡ x− x′.

Then, ∆⊕ δ is an element of Sym(Rd)⊕ Rd, the direct sum of inner product spaces, and

we can shorten Eq. (5.2) to:

ψM(x, x′;u) =
〈
∆⊕ δ,M ⊕ v

〉
.

Following the experimental design literature, let us call a collection of such elements a

design matrix :

Definition 5.1. Let {(xi0 , xi1)}i∈[m] be a collection of item pairs. It induces the linear

map D : Sym(Rd)× Rd → Rm,

D(A,w)i =
〈
∆i ⊕ δi, A⊕ w

〉
,

where ∆i = xi0x
⊤
i0
− xi1x

⊤
i1

and δi = xi0 − xi1 for i ∈ [m]. As a slight abuse of language,

we call D the induced design matrix. If item pairs are drawn from a distribution Pm

over (Rd × Rd)m, we say that D is a random design and write D ∼ Pm. We also define

σ2
min(Pm) = 1

m
· σmin

(
E[D∗D]

)
.

For additional background and notation, see Appendix D.3.
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5.3 An Impossibility Result

Consider the mathematically simplified setting in which users provide unquantized

responses. We show a negative result stating that when users provide fewer than d

comparisons, we fundamentally cannot learn anything about M if the items are in general

position in the following sense:

Definition 5.2. A set X ⊂ Rd has generic pairwise relations if for any acyclic graph

G = (X , E) with at most d edges, the set {x− x′ : (x, x′) ∈ E} is linearly independent.

The geometric meaning of having generic pairwise relations is simple: if any d pairs

of points are connected by lines, then those lines are linearly independent (unless they

form cycles; see Figure D.1 in Appendix D.4). Proposition D.8 shows that almost all finite

subsets of Euclidean space have generic pairwise relations with respect to the Lebesgue

measure.

The following theorem shows that if items have generic pairwise relations, then

sets of m ≤ d unquantized measurements from a single user provide no information about

the underlying metric. In particular, suppose that M and v are the underlying matrix

representation and user’s pseudo-ideal point, both unknown to us. Then, for any other

Mahalanobis matrix M ′, we can find a pseudo-ideal point v′ that is also consistent with

the data. In fact, the negative result holds even with infintely many users:

Theorem 5.3. Fix M ∈ Sym+(Rd) and vk ∈ Rd for each k ∈ N. Let (Dk)k∈N be a

collection of design matrices, each for a set of m ≤ d pairwise comparisons. If each set of

compared items has generic pairwise relations, then for all M ′ ∈ Sym+(Rd), there exists

(v′k)k∈N ⊂ Rd such that:

Dk(M, vk) = Dk(M
′, v′k), ∀k ∈ N.

See Appendix D.4 for a proof of Theorem 5.3. This theorem shows that when items
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have generic pairwise relations it is not just that we cannot recover ρ, but that we cannot

glean anything at all about ρ when users each provide d or fewer comparisons, for every

matrix in Sym+(Rd) is consistent with D. While each user provides us with more data,

each also introduces new degrees of freedom—the unknown ideal points. When learning

from crowds, more data does not necessarily lead to more usable information.

5.4 Exact Recovery with Low-Rank Subspace Struc-
ture

The above negative result applies to almost all finite sets of items. It seems to tell

a pessimistic story for metric learning when data is embedded into high dimensions and

when it is infeasible to obtain Ω(d) preference comparisons per user.

However, the story is not closed and shut yet. Real-world data often exhibit

additional structure that could help us recover the metric, such as low intrinsic dimension

[51]. In particular, we assume that many items of X lie on a union of subspaces. The

approximate validity of this assumption is also the basis of work in manifold learning

[124, 147, 18], compressed sensing [45], and sparse coding [112], among others.

In this case, we can take a divide-and-conquer approach to metric learning by

identifying the metric restricted to those subspaces, before stitching them back together

to recover the full metric. Let’s define subspace Mahalanobis distances:

Definition 5.4. Let V be a subspace of Rd. A metric on V is a subspace Mahalanobis

distance if it is a subspace metric of some Mahalanobis distance ρ on Rd. In that case, we

denote the subspace metric by ρ
∣∣
V
, where for all x, x′ ∈ V ,

ρ
∣∣
V
(x, x′) = ρ(x, x′).

In general, we cannot hope to identify an arbitrary metric from a finite number

of its subspace metrics. However, Mahalanobis distances have much more structure than
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arbitrary metrics on Rd. A Mahalanobis distance on Rd can be fully specified using

d(d + 1)/2 numbers. By recovering its subspace metrics, we can hope to chip away at

the degrees of freedom of Mahalanobis distances. As another way of intuition, each

Mahalanobis distance may be identified with its unit sphere—points that are unit distance

away from the origin. These points form a (d−1)-dimensional ellipsoid in Rd. To recover a

subspace Mahalanobis distance on V means that we are able to determine which points of

V intersect this ellipsoid (see Figure 5.1). If we do this for sufficiently many subspaces, we

can determine the whole ellipsoid. To formalize this intuition, we now linear-algebraically

relate a Mahalanobis distance with its subspace metrics.

5.4.1 A linear parametrization of Mahalanobis distances

To describe the linear relationship between a Mahalanobis distance and its subspace

metrics, we need to parametrize the subspace metrics. To do so, we first need to fix a

choice of coordinates on each V ⊂ Rd. In the following, let V be an r-dimensional subspace

of Rd and let B ∈ Rd×r be an orthonormal basis of V , where r ≪ d.

Definition 5.5. We say V has a canonical representation if it is equipped with an

orthonormal basis B, where the canonical representation of a vector x ∈ V is given by

B⊤x ∈ Rr.1

Definition 5.6. Let Sym(V ) and Sym+(V ) respectively denote the pairs (Sym(Rr), B)

and (Sym+(Rr), B), where V has a canonical representation given by B.

We write Q ∈ Sym(V ) to mean that Q ∈ Sym(Rr), and that it carries the basis

information B along with it.

Just as Mahalanobis distances on Rd are in one-to-one correspondence with positive-

definite matrices, so too are Mahalanobis distances on V in correspondence with Sym+(V ).
1We shall always equip Rd with the standard basis, so that a vector is its own canonical representation

in Rd.
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Furthermore, Proposition D.12 shows that the matrix representations of a Mahalanobis

distance and its restriction to a subspace is given by the following linear map.

Definition 5.7. Let V and B be as before. Define the linear map ΠV : Sym(Rd)→ Sym(V )

by:

ΠV (A) = B⊤AB. (5.3)

Thus, if a Mahalanobis distance ρ on Rd and its restriction ρ
∣∣
V

to a subspace V

have representations M ∈ Sym+(Rd) and Q ∈ Sym+(V ), respectively, then:

Q = ΠV (M) = B⊤MB.

5.4.2 Learning with low-rank subspaces

To see how low-dimensional structure can help us make progress in learning the

metric, consider a simple setting where all items lie in some low-dimensional subspace V .

Instead of learning the full metric ρ, we could aim for a more modest goal of learning the

subspace metric ρ
∣∣
V
.

As before, let V be an r-dimensional subspace of Rd with a canonical representation.

If all items and ideal points lie in V , then learning ρ
∣∣
V

immediately reduces to the usual

setting of learning a Mahalanobis distance, since we can simply ignore the remaining

dimensions and reparametrize the problem. But when the ideal points are not assumed to

lie on V , it is not evident a priori that we can ignore the dimensions extending beyond

the set of items. However, it turns out that for Mahalanobis distances, we may.

The next lemma shows that even if a user’s ideal point u ∈ Rd falls outside of V ,

for items in V , there is a phantom ideal point uV ∈ V such that preference comparisons

for items in V generated by u and uV are equivalent.

Lemma 5.8. Let V be an r-dimensional subspace of Rd with a canonical representation

given by B ∈ Rd×r. Fix any Mahalanobis distance M ∈ Sym+(Rd), any pair of items
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x, x′ ∈ Rd, and ideal point u ∈ Rd. Suppose that x and x′ are contained in V with canonical

representation xV = B⊤x and x′V = B⊤x′ in Rr. Then:

ψM
(
x, x′;u

)
= ψQ

(
xV , x

′
V ;uV

)
,

where the phantom ideal point uV of u on V satisfies (B⊤MB)uV = B⊤Mu, and Q =

ΠV (M) is the matrix representation in Sym+(V ) of the subspace metric ρ
∣∣
V
.

Consequently, learning a subspace metric ρ
∣∣
V

turns into a problem of metric learning

from preference comparisons in Rr. From here, we can simply use existing algorithms to

recover the matrix representation of the subspace metric. By [28], it is possible to identify

the subspace metric so long as users can each provide m ≥ Ω(r) preference comparisons.

For this easier problem of learning ρ
∣∣
V
, when r ≪ d, we can do with o(d) responses per

user.

In the remainder of this section, we give a simple characterization for when a

Mahalanobis distance on V can be learned from preference comparisons of items on V .

The set of items needs to be sufficiently rich so that all degrees of freedom of Sym(V )⊕ V

can be captured. We define:

Definition 5.9. Let V be a subspace of Rd with canonical representation given by B. A

subset XV ⊂ V quadratically spans V if Sym(V )⊕ V is linearly spanned by the set:

{
(xV x

⊤
V − x′V x′⊤V )⊕ (x− x′) : x, x′ ∈ XV

}
,

where xV = B⊤x and x′V = B⊤x′ denote the canonical representations of x and x′ in V .

If we have no restriction on how many queries we can ask a user, then it is

straightforward to see that quadratic spanning is a sufficient condition for recovering the

underlying metric. For simplicity, let V = Rd. If X quadratically spans Rd, then we can
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detect all dimensions of M ⊕ v corresponding to the Mahalanobis matrix and a user’s

pseudo-ideal point. To do so, choose any design matrix D : Sym(Rd)⊕ Rd → Rm whose

rows {∆i ⊕ δi : i ∈ [m]} span Sym(Rd)⊕ Rd.

When the number of queries is limited per user, the following result shows that

the quadratic spanning condition is still sufficient for recovering ρ
∣∣
V
, provided we can ask

many users m ≥ dim(V ) + 1 unquantized preference queries.

Proposition 5.10. Let X quadratically span a subspace V of dimension r. There exists

a collection D1, . . . , DK of design matrices, each over m pairs of items in X , such that

given a (distinct) user’s response to each design, ρ
∣∣
V

can be identified when m ≥ r+1 and

K ≥ r(r + 1)/2.

To complement this sufficient condition, the next result shows that if X does

not quadratically span V , then the subspace metric ρ
∣∣
V

cannot be recovered from only

preference comparisons of items in X ∩ V .

Proposition 5.11. Let (Dk)k∈N be a set of design matrices over items in X ⊂ V . If

X does not quadratically span V , then infinitely many Mahalanobis distances on V are

consistent with any set of user responses to the design matrices.

Proofs for the above results are deferred to Appendix D.5.2.

5.4.3 Learning with subspace-clusters

We’ve seen how to partially learn a Mahalanobis distance given many items within

a subspace. We now consider how to fully recover the metric when many items lie in a

union of subspaces (Vλ)λ∈Λ. In this case, a divide-and-conquer approach is intuitive: (i)

recover each subspace metric, then (ii) reconstruct ρ from the learned subspace metrics.

Recall that each subspace metric ρ
∣∣
V

is related to the full metric ρ by the linear map ΠV

from Definition 5.7. Therefore, we can reconstruct ρ from its subspace metrics by solving

a system of linear equations. Algorithm 4 summarizes this approach.
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Algorithm 4: Metric learning from subspace clusters
Input: Unquantized measurements over items that lie in a union of subspaces

Vλ, λ ∈ Λ
// Stage 1: learning subspace metrics

1 for each subspace λ ∈ Λ do
2 Recover Q̂λ ∈ Sym(Rrλ) with respect to Bλ via reduction to Algorithm 8

[28]
// Stage 2: reconstruction

3 Solve the linear equations over A ∈ Sym(Rd):

B⊤
λ ABλ = Q̂λ, λ ∈ Λ

Output: Â, the solution to the above linear equations.

In order to characterize when a Mahalanobis distance can be reconstructed from its

subspace metrics, we introduce the notion of subspace-clusterability. A set of items X is

subspace-clusterable when many of its items lie on sufficiently many item-rich subspaces.

Formally:

Definition 5.12. A set X ⊂ Rd is subspace-clusterable over subspaces Vλ ⊂ Rd indexed

by λ ∈ Λ whenever:

1. each subset X ∩ Vλ quadratically spans Vλ.

2.
{
xx⊤ : x ∈ Vλ, λ ∈ Λ

}
linearly spans Sym(Rd).

By Propositions 5.10 and 5.11, the first condition is necessary and sufficient for

recovering each subspace metric ρ
∣∣
Vλ

. Proposition 5.13 shows that the second condition is

necessary and sufficient for recovering the ρ from subspace metrics.

Proposition 5.13. Let ρ be a Mahalanobis distance on Rd. Let (Vλ)λ∈Λ be a collection

of subspaces with canonical representations given by the orthonormal bases (Bλ)λ∈Λ. The

following are equivalent:

1.
{
xx⊤ : x ∈ Vλ, λ ∈ Λ

}
spans Sym(Rd).
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2. Let ΠVλ be given by Equation (5.3). The linear map Π : Sym(Rd) →
⊕
λ∈Λ

Sym(Vλ) is

injective, where:

Π(A) =
⊕
λ∈Λ

ΠVλ(A).

3. If ρ̂ is a Mahalanobis distance such that ρ̂
∣∣
Vλ

= ρ
∣∣
Vλ

for all λ ∈ Λ, then ρ̂ = ρ.

See Appendix D.5.3 for the proof. This proposition verifies the correctness of

Algorithm 4. Let Qλ ∈ Sym+(V ) represent ρ
∣∣
Vλ

. Then, step 3 of the algorithm specifies

that ΠVλ(A) = Qλ. If Π is injective, then the only matrix A ∈ Sym(Rd) consistent with

the system of linear equations is the one that represents ρ.

Remark 5.14. We can compute the number of subspaces required to identify ρ using

Proposition 5.13. For example, when dim(Vλ) = 1 for each λ ∈ Λ, each subspace captures

one degree of freedom of ρ, so |Λ| ≥ d(d+1)
2

is necessary. See Figure D.2 in Appendix D.5

for geometric intuition.

5.5 Approximate Recovery from Binary Responses

Previously, we studied metric learning from unquantized preference comparisons

of the form (x, x′, ψ). We now consider a more realistic setting where we obtain binary

responses of the form (x, x′, y), where y ∈ {−1,+1}. Furthermore, we assume that

responses are quantized and noisy, where noise can depend on the user and items, as in

[106, 167, 28].

For our divide-and-conquer approach, due to the inexactness of the responses,

we can no longer expect to exactly identify each subspace metric. However, we show

that as long as each subspace metric can be recovered approximately, then they can be

stitched together to approximately recover the full metric (Theorem 5.15). And indeed,

approximate recovery in each subspace is known to be possible. In Proposition 5.18, we

present a version of Theorem 4.1 of [28] adapted to subspaces; this gaurantee is provided

under a probabilistic noise model that we describe shortly.
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Algorithm 5: Metric learning from binary responses
Input: Quantized measurements over items that lie in a union of subspaces

Vλ, λ ∈ Λ

// Stage 1: learning subspace metrics

1 for each λ ∈ Λ do

2 Recover Q̂λ ∈ Sym(Rrλ) with respect to Bλ via reduction to Algorithm 9

[28]

// Stage 2: reconstruction

3 Use ordinary least squares to solve the linear regression problem over

A ∈ Sym(Rd):

M̂LS ← argmin
A∈Sym(Rd)

∑
λ∈Λ

∥∥∥Q̂λ −B⊤
λ ABλ

∥∥∥2
F

(5.4)

4 Project M̂LS onto the set of positive semidefinite d× d matrices by solving the

convex optimization problem:

M̂ ← argmin
A⪰0

∥∥A− M̂LS

∥∥2
F

(5.5)

Output: M̂ .

Divide-and-conquer algorithm.

Algorithm 5 generalizes our earlier algorithm for unquantized measurements. As

before, say we’ve obtained measurements for a set of items subspace-clusterable over (Vλ)λ.

In the first stage, we recover the subspace metrics on each Vλ. Lemma 5.8 reduces metric

learning on subspaces to metric learning on Rr, where r is the dimension of the subspace,

so we can call existing methods for metric learning from binary responses across users

([28] or Algorithm 9). Thus, we obtain an estimator Q̂λ for each subspace metric Qλ.

In the second stage, we approximately reconstruct the Mahalanobis matrix M from

the estimators Q̂λ. When each Q̂λ was exact, we could just solve the linear system of
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equations ΠVλ(M̂) = Q̂λ. As this is no longer the case, we instead compute the ordinary

least squares estimator M̂LS, which minimizes
∑

λ ∥Q̂λ − ΠVλ(A)∥2 over A ∈ Sym(Rd) in

Eq. (5.4) of Algorithm 5. Finally, we ensure that the reconstructed matrix corresponds

to a pseudo-metric by solving a linear program to project M̂LS onto the cone of positive

semi-definite matrices [22].

5.5.1 Recovery guarantees

Reconstruction guarantee.

The following theorem gives a recovery guarantee on the full metric, given ap-

proximate recovery for each subspace metric, ∥Q̂λ − Qλ∥F ≤ ε for some ε > 0. See

Appendix D.6.1 for its proof.

Theorem 5.15. Let Rd have a Mahalanobis distance with matrix representation M ∈

Sym+(Rd). Let X ⊂ Rd be subspace-clusterable over subspaces Vλ indexed by λ ∈ Λ,

where |Λ| = n. Let M̂ be the estimator of M and let Q̂λ be the estimator of the subspace

metric Qλ for each λ learned from Algorithm 5. Suppose there exist γ ≤ ε such that∥∥E[Q̂λ

]
− Qλ

∥∥
F
≤ γ and

∥∥Q̂λ − Qλ

∥∥
F
≤ ε for each λ. Fix p ∈ (0, 1]. Then, there is a

universal constant c > 0 such that with probability at least 1− p,

∥∥M̂ −M∥∥
F
≤ c · 1

σmin(Π)

γ√n+ εd

√
log

2d

p

,
where σmin > 0 is the least singular value of Π.

Remark 5.16. This recovery guarantee depends on three parameters: (1) σmin(Π) captures

how well-spread the set {xx⊤ : x ∈ Vλ, λ ∈ Λ} is across Sym(Rd). (2) ε bounds the

recovery error for each subspace metric; it decreases as the number of pairwise comparisons

per user increases (Remark 5.19). (3) γ bounds the bias of the estimator Q̂λ. It can be

the dominating term in the recovery bound, for example when σmin(Π) ≫ d. While this
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bias term γ ≤ ε can be made arbitrarily small with enough comparisons per user, for

data-starved regimes, bias reduction can also be applied in practice (e.g. [53]).

Recovery guarantee for subspace metrics.

For completeness, we adapt the setting and results of [28] to provide a recovery

guarantee for learning each subspace metric. We assume the same probabilistic model:

Assumption 5.17 (Probabilistic model). Let M ∈ Sym+(Rd) be the matrix representation

of the Mahalanobis distance, let v1, . . . , vK ∈ Rd be the pseudo-ideal points for a collection

of users, and let X ⊂ Rd be a set of items. We assume:

∥M∥F ≤ ζM , ∥vk∥ ≤ ζv, sup
x∈X
∥x∥ ≤ 1,

for some ζM , ζv > 0. When asked to compare two items x and x′, the kth user provides a

binary response Y with:

Pr[Y = y] = f
(
y · ψM(x, x′;uk)

)
,

where f : R→ [0, 1] is a strictly increasing link function such that f(z) = 1− f(−z), and

where uk is the corresponding ideal point. On the domain |z| ≤ 2(ζM + ζv), let f have lower

bounded derivative f ′(z) ≥ cf and let the map z 7→ − log f(z) have Lipschitz constant L.

Algorithm 9 estimates (M, v1, . . . , vK) by using the users’ measurements to construct

an optimization program over the parameters; when the loss function supplied to the

algorithm is ℓ(z) = − log f(z), the procedure is equivalent to maximum likehlihood

estimation. As noted above, it suffices to consider learning Mahalanobis distances on Rr.

The following proposition proves correctness of Algorithm 9.

Proposition 5.18 (Theorem 4.1, [28]). Suppose that Rr has a Mahalanobis distance with

representation Q ∈ Sym+(Rr) where ∥Q∥F ≤ ζM . Let each user k ∈ [K] have pseudo-ideal
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point vk ∈ Rr where vk ≤ ζv. Let Pm be a distribution over designs of size m over

Rr (Definition 5.1). For each user, let Dk ∼ Pm be an i.i.d. random design, and let

Dk = {(xi0 , xi1 , yi;k)}i∈[m] be the user’s responses under Assumption 5.17. Fix p ∈ (0, 1].

Given loss function ℓ(z) = − log f(z), Algorithm 9 returns Q̂ ∈ Sym+(Rr), where with

probability at least 1− p,

∥Q̂−Q∥2F ≤
16L

c2f · σ2
min(Pm)

√
(ζ2M +Kζ2v ) log

4
p

mK
.

The proof of Proposition 5.18 is deferred to Appendix D.6.2

Remark 5.19. We can simplify the bound if we assume that M has bounded entries, say

∥M∥∞ ≤ 1. Let’s also assume that user ideal points are contained in the unit ball, so that

∥uk∥2 ≤ 1 for each user. Then, we can set ζM ≤ r and ζv ≤ 2
√
r since vk = −2Muk.

Remark D.14 shows that given access to a subspace-clusterable set of items, we can

construct a sequence of random designs (Pm)m over those items such that σ2
min(Pm) = Ω(1).

Suppressing the confidence parameter p, we obtain the recovery guarantee:

∥Q̂−Q∥2F = O

(√
r2 +Kr

mK

)
.

5.6 Empirical Validation

In this section, we empirically validate our findings using synthetic data. We aim

to address the following questions:

1. Given limited noisy, quantized preference comparisons on subspace-clusterable items,

can our proposed divide-and-conquer algorithm recover an unknown metric M?

2. Does the performance of our algorithm improve if we have access to more subspace-

clusters, users or preference comparisons per user?
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(a) (b) (c)

Figure 5.2. (a) Shows the average relative errors for varying numbers of users per subspace
and preference comparisons per user, where items lie in a union of 80 1-dimensional
subspaces of R10. (b) shows the average relative errors given increasing numbers of 1-
dimensional subspaces to reconstruct M̂ ; for each subspace, 60 users each provides 4
preference comparisons. The dotted red curve illustrates the dimension-counting argument
in Remark 5.14. (c) shows the average relative errors for varying subspace noise levels,
where items lie approximately in a union of 80 1-dimensional subspaces of R10; each user
provides 8 preference comparisons. The error bars in (a) and (c) represent one standard
deviation from the mean.

3. When items in X lie approximately in a union of subspaces, can we still recover M?

Experimental setup.

For each run, we generate a random ground-truth metric M ∈ Sym+(Rd) from the

standard Wishart distribution W (Id, d), a collection of uniform-at-random r-dimensional

subspaces [140], and a set of user ideal points drawn i.i.d. from the Gaussian N (0, 1
d
Id).

Within each subspace, items are drawn i.i.d. from N (0, 1
r
BB⊤), where B ∈ Rd×r is an

orthonormal basis of that subspace. Given a user and a pair of items, a binary response is

sampled according to the probabilistic model in Assumption 5.17, where the link function

is chosen to be the logistic sigmoid, f(x; β) = 1/
(
1 + exp(−βx)

)
.

To evaluate the learned metric M̂ , we compute its relative error, ∥M̂ −M∥F/∥M∥F.

We observed that Huber regression [66, 118] generally leads to better performance over

least squares regression within Algorithm 5 (Stage 2, line 3). In the following, we report

results obtained using this robust variant of linear regression.

We ran three experiments each for 30 runs, where we set the subspace dimension
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to r = 1, and we set β = 4 which corresponds to “medium” response noise in [28]. See

Appendix D.7 for experiments for r = 2.

Relative error vs number of comparisons.

In the first experiment, we set the ambient dimension to d = 10 and generated

data that lie in a union of 80 subspaces (by Remark 5.14, at least dim(Sym(R10)) = 55

subspaces are needed for recovery). We ran Algorithm 5 for different combinations of K

and m, where K is the number of users per subspace and m is the number of preference

comparisons per user. Figure 5.2a compares the average relative errors for varying K

and m. This experiment shows that with more preference comparisons, recovery within

each subspace improves and we achieve better recovery of the full metric; this supports

Theorem 5.15 and Proposition 5.18. This experiment also suggests that given 1-dimensional

subspaces, even asking for only two measurements per user is sufficient to achieve good

empirical performance for metric recovery.

Relative error vs number of subspaces.

In the second experiment, we set K = 60 and m = 4. For ambient dimensions

d = 3, 4, . . . , 10, we consider the relative error for reconstructing M̂ using an increasing

number of subspaces, n = 5, 6, . . . , 80. Figure 5.2b shows the average relative errors.

For each d, average relative error decreases as n increases. Furthermore, even in this

non-idealized setting where users provide noisy, binary responses, we can obtain non-trivial

relative error when the number of subspaces n exceeds the information-theoretic bound

d(d+ 1)/2. This corroborates the dimension-counting argument in Remark 5.14 beyond

unquantized measurements.

Recovery when items approximately lie in subspaces.

In the third experiment, we empirically study how our approach works when the

subspace clusterable assumption only approximately holds. For a subspace V , we sample

items near V from N (0, 1
r
BB⊤ + σ2

d−rB⊥B
⊤
⊥), where σ > 0 is a given noise level, B ∈ Rd×r
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and B⊥ ∈ Rd×(d−r) are orthonormal bases of V and its orthogonal complement V ⊥,

respectively. The way user preference responses are generated remains the same as before.

For each subspace V , we preprocess the items by running singular value decomposition

on the nearby items to recover an r-dimensional subspace V̂ . We project these items to

V̂ , before running Algorithm 5 with these approximate representations. We set d = 10

and m = 8. For each subspace noise level σ, we ran our approach on items that lie

approximately in 80 subspaces for varying K; Figure 5.2c shows the average relative errors.

When the noise level σ is low, we can still recover the metric well. As expected, this breaks

down as σ increases; indeed, when σ = 1, there is no subspace structure at all.

5.7 Conclusion and Future Work

We studied crowd-based metric learning from very few preference comparisons per

user. In general, we showed nothing can be learned. However, when the items exhibit

low-rank subspace-clusterable structure, we proposed a divide-and-conquer approach and

provided recovery guarantees. Interestingly, this chapter suggests that when training of

foundation models, there is reason to favor learning general-purpose representations with

low-rank structures, as this may reduce the cost of downstream fine-tuning and alignment.

Our experiments show that even when the items do not exactly lie on the subspaces,

but instead only exhibit approximate subspace structure, our method can still recover the

metric. We leave establishing theoretical gurantees for this setting for future work. Our

results has implications for alignment of representations from foundation models to human

preferences and we defer building an algorithmic framework that finds subspace clusters

before learning metrics, and evaluating it with real-world item embeddings and human

preference feedback for future work.
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Appendix A

Supplementary Material for Chapter 2

A.1 Related Work and Comparisons

We review the literature on multi-player bandit problems (see also Landgren [88, Sec-

tion 1.3.2] for a survey), and we comment on how existing problem formulations/approaches

compare with ours studied in this chapter.

Identical reward distributions.

A large portion of prior studies focuses on the setting where a group of players

collaboratively work on one bandit learning problem instance, i.e., for each arm/action,

the reward distribution is identical for every player.

For example, Kar et al. [75] study a networked bandit problem, in which only one

agent observes rewards, and the other agents only have access to its sampling pattern.

Peer-to-peer networks are explored by Szörényi et al. [141], in which limited communication

is allowed based on an overlay network. Landgren et al. [87] apply running consensus

algorithms to study a distributed cooperative multi-armed bandit problem. Kolla et al.

[78] study collaborative stochastic bandits over different structures of social networks that

connect a group of agents. Wang et al. [160] study communication cost minimization in

multi-agent multi-armed bandits. Multi-agent bandit with a gossip-style protocol that has

a communication budget is investigated in [127, 34]. Dubey and Pentland [46] investigate

multi-agent bandits with heavy-tailed rewards. Wang et al. [157] present an approach with
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a “parsimonious exploration principle” to minimize regret and communication cost. We

note that, in contrast, we study multi-player bandit learning where the reward distributions

can be different across players .

Player-dependent reward distributions.

Multi-agent bandit learning with heterogeneous feedback has also been covered by

previous studies.

• Cesa-Bianchi et al. [31] study a network of linear contextual bandit players with hetero-

geneous rewards, where the players can take advantage of reward similarities hinted by

a graph. In [165, 156, 159], reward distributions of each player are generated based on

social influence, which is modeled using preferences of the player’s neighbors in a graph.

These papers use regularization-based methods that take advantage of graph structures;

in contrast, we study when and how to use information from other players based on a

dissimilarity parameter.

• Gentile et al. [57], Bresler et al. [23], Song et al. [139], Li et al. [95], Korda et al. [79], Li

et al. [96], among others, assume that the players’ reward distributions have a cluster

structure and players that belong to one cluster share a common reward distribution;

we do not assume such cluster structure.

• Nguyen and Lauw [111] investigate dynamic clustering of players with independent

reward distributions and provides an empirical validation of their algorithm; Zhu et al.

[180] present an algorithm that combines dynamic clustering and Thompson sampling.

In contrast, in this chapter, we develop a UCB-based approach that has a fallback

guarantee1.

• In the work of Shahrampour et al. [129], a group of players seek to find the arm with
1In Zhu et al. [180], it is unclear how to tune the hyper-parameter β apriori to ensure a sublinear

fall-back regret guarantee, even if the “similarity” parameter γ is known.
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the largest average reward over all players; and, in each round, the players have to reach

a consensus and choose the same arm.

• Dubey and Pentland [47] assume access to some side information for every player, and

learns a reward predictor that takes both player’s side information models and action as

input. In comparison, our work do not assume access to such side information.

• Further, similarities in reward distributions are explored in the work of Zhang et al.

[174], which studies a warm-start scenario, in which data are provided as history [133]

for an learning agent to explore faster. Azar et al. [11], Soare et al. [138] investigate

multitask learning in bandits through sequential transfer between tasks that have similar

reward distributions. In contrast, we study the multi-player setting, where all players

learn continually and concurrently.

Collisions in multi-player bandits.

Multi-player bandit problems with collisions [e.g., 99, 74, 21, 25, 132, 26, 157]

are also well-studied. In such models, two players pulling the same arm in the same

round collide and receive zero reward. These models have a wide range of practical

applications (e.g., cognitive radio), and some assume player-dependent heterogeneous

reward distributions [20, 110]; in comparison, collision is not modeled in this work.

Side information.

Models in which learning agents observe side information have also been studied in

prior works—one can consider data collected by other players in multi-player bandits as

side observations [88]. In some models, a player observes side information for some arms

that are not chosen in the current round: stochastic models with such side information are

studied in [29, 27, 166], and adversarial models in [105, 5]; Similarities/closeness among

arms in one bandit problem are studied in [43, 169, 158]. We note that our problem

formulation is different, because in these models, auxiliary data are from arms in the same

bandit problem instance instead of from other players.
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Upper and lower bounds on the means of reward distributions are used as side

information in [130]. Loss predictors [164] can also be considered as side information. In

contrast, we do not leverage such information.

Side information can also be encoded using a distance metric; see Section 2.5.2 for

a discussion on contextual bandits in similarity spaces [137].

Other multi-player bandit learning topics.

Many other multi-player bandit learning topics have also been explored. For

example, Awerbuch and Kleinberg [9], Vial et al. [153] study multi-player models in which

some of the players are malicious. Christakopoulou and Banerjee [35] study collaborative

bandits with applications such as top-K recommendations. Nonstochastic multi-armed

bandit models with communicating agents are studied in [13, 32]. Privacy protection in

decentralized exploration is investigated in [52]. We note that, in this chapter, our goal

does not align closely with these topics.

A.2 Proof of Claim 2.3

We first restate Example 2.2 and Claim 2.3.

Example 2.2. For a fixed ϵ ∈ (0, 1
8
) and δ ≤ ϵ/4, consider the following Bernoulli

MPMAB problem instance: for each p ∈ [M ], µp1 =
1
2
+ δ, µp2 =

1
2
. This is a 0-MPMAB

instance, hence an ϵ-MPMAB problem instance. Also, note that ϵ is at least four times

larger than the gaps ∆p
2 = δ.

Claim 2.3. For the above example, any sublinear regret algorithm for the ϵ-MPMAB

problem must have Ω(M lnT
δ

) regret on this instance, matching the Ind-UCB regret upper

bound.

Proof of Claim 2.3. Suppose A is a sublinear-regret algorithm for the ϵ-MPMAB problem;

i.e., there exist C > 0 and α > 0 such that A has CT 1−α regret in all ϵ-MPMAB instances.
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Recall that we consider the Bernoulli ϵ-MPMAB instance µ = (µpi )i∈[2],p∈[M ] such

that µp1 =
1
2
+ δ and µp2 =

1
2

for all p. As ϵ ∈ (0, 1
8
) and δ ≤ ϵ

4
, it can be directly verified

that all µpi ’s are in [15
32
, 17
32
]. In addition, since for all p, ∆p

2 = δ ≤ ϵ
4
= 5 · ϵ

20
, we have

I5ϵ/4 = ∅, i.e., IC5ϵ/4 = {1, 2}.

From Theorem 2.9, we conclude that for this MPMAB instance µ, A has regret

lower bounded as follows:

Eµ
[
R(T )

]
≥ Ω

(
M ln(Tα∆p

2/C)

∆p
2

)
= Ω

(
M ln(Tαδ/C)

δ

)
= Ω

(
M lnT

δ

)
,

for sufficiently large T .

A.3 Basic Properties of I5ϵ for ϵ-MPMAB Instances

In Section 2.3, we presented the following two facts about properties of I5ϵ for

ϵ-MPMAB problem instances:

Fact 2.4. |I5ϵ| ≤ K − 1. In addition, for each arm i ∈ I5ϵ, ∆min
i > 3ϵ; in other words, for

all players p in [M ], ∆p
i = µp∗ − µ

p
i > 3ϵ; consequently, arm i is suboptimal for all players

p in [M ].

Fact 2.6. For any i ∈ I5ϵ, 1
∆min

i
≤ 2

M

∑
p∈[M ]

1
∆p

i
.

Here, we will present and prove a more complete collection of facts about the

properties of I5ϵ which covers every statement in Fact 2.4 and Fact 2.6. Before that, we

first prove the following fact.

Fact A.1. For an ϵ-MPMAB problem instance, for any i ∈ [K], and p, q ∈ [M ], |∆p
i−∆

q
i | ≤

2ϵ.

Proof. Fix any player p ∈ [M ], let j ∈ [K] be an optimal arm for p such that µpj = µp∗. We

first show that, for any player q ∈ [M ], |µq∗ − µ
p
j | ≤ ϵ.
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• µq∗ ≥ µpj − ϵ is trivially true because µqj ≥ µpj − ϵ by Definition 2.1 and µq∗ ≥ µqj by the

definition of µq∗;

• µq∗ ≤ µpj + ϵ is true because if there exists an arm k ∈ [K] such that µqk > µpj + ϵ, then

by Definition 2.1 we must have µpk ≥ µqk − ϵ > µpj which contradicts with the premise

that j is an optimal arm for player p.

We have shown that |µq∗ − µp∗| ≤ ϵ. Since |µqi − µ
p
i | ≤ ϵ by Definition 2.1, it follows

from the triangle inequality that |∆p
i −∆q

i | ≤ 2ϵ.

We now present a set of basic properties of I5ϵ.

Fact A.2 (Basic properties of I5ϵ). Let ∆max
i = maxp∈[M ] ∆

p
i . For an ϵ-MPMAB problem

instance, for each arm i ∈ I5ϵ,

(a) ∆p
i > 3ϵ for all players p ∈ [M ]; in other words, ∆min

i > 3ϵ;

(b) arm i is suboptimal for all players p ∈ [M ], i.e., for any player p ∈ [M ], µpi < µp∗;

(c) ∆p
i

∆q
i
< 2 for any pair of players p, q ∈ [M ]; consequently, ∆max

i

∆min
i

< 2;

(d) 1
∆min

i
≤ 2

M

∑
p∈[M ]

1
∆p

i
;

(e) |I5ϵ| ≤ K − 1.

Proof. We prove each item one by one.

(a) For each arm i ∈ I5ϵ, by definition, there exists p ∈ [M ], ∆p
i > 5ϵ. It follows

from Fact A.1 that for any q ∈ [M ], ∆q
i ≥ ∆p

i − 2ϵ > 3ϵ. ∆min
i > 3ϵ then follows

straightforwardly.

(b) For each arm i ∈ I5ϵ, it follows from item (a) that for any p ∈ [M ], ∆p
i > 3ϵ ≥ 0.

Therefore, i is suboptimal for all player p ∈ [M ].
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(c) By Fact A.1, for any i ∈ I5ϵ ⊆ [K] and any p, q ∈ [M ], ∆p
i ≤ ∆q

i + 2ϵ, which implies
∆p

i

∆q
i
≤ 1 + 2ϵ

∆q
i
. Since by item (a), ∆q

i > 3ϵ, it follows that ∆p
i

∆q
i
≤ 1 + 2ϵ

∆q
i
< 2. ∆max

i

∆min
i

< 2

then follows straightforwardly.

(d) For each arm i ∈ I5ϵ, it follows from item (c) that for any p ∈ [M ], ∆p
i ∈ [∆min

i , 2∆min
i ].

Therefore, we have 1
∆p

i
∈ [ 1

2∆min
i
, 1
∆min

i
], as ∆p

i > 0 for all p. It then follows that

2
M

∑
p∈[M ]

1
∆p

i
≥ 2

M

∑
p∈[M ]

1
2∆min

i
= 1

∆min
i
.

(e) Pick an arm i that is optimal with respect to player 1; i cannot be in I5ϵ because of

item (b). Therefore, I5ϵ ⊆ [K] \ {i}, which implies that it has size at most K − 1.

A.4 Proof of Upper Bounds in Section 2.3

A.4.1 Proof overview

In Appendix A.4.2 and A.4.3, we focus on showing that in a “clean” event E (defined

in A.4.3), the upper confidence bound UCBp
i (t) = κpi (t, λ) + F (npi ,m

p
i , λ, ϵ) (line 10 of

Algorithm 1)2 holds for every t ∈ [T ], i ∈ [K], p ∈ [M ] and λ ∈ [0, 1]; and the “clean” event

E occurs with 1− 4MK/T 4 probability.

Then, in Appendix A.4.4, we provide a proof of the gap-dependent upper bound in

Theorem 2.5. In Appendix A.4.5, we provide a proof of the gap-independent upper bound

in Theorem 2.8.

A.4.2 Event Qi(t)

Recall that npi (t − 1) is the number of pulls of arm i by player p after the first

(t− 1) rounds. Let mp
i (t− 1) =

∑
q∈[M ]:q ̸=p n

q
i (t− 1).

We now define the following event.

2Recall that z = max{z, 1}.
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Definition A.3. Let

Qi(t) =

∀p, ∣∣ζpi (t)− µpi ∣∣ ≤ 8

√
3 lnT

npi (t− 1)
,

∣∣∣∣∣∣ηpi (t)−
∑
q ̸=p

nqi (t− 1)

mp
i (t− 1)

µqi

∣∣∣∣∣∣ ≤ 4

√
14 lnT

mp
i (t− 1)

 ,

where

ζpi (t) =

∑t−1
s=1 1{i

p
t = i}rpt

npi (t− 1)
,

and

ηpi (t) =

∑t−1
s=1

∑M
q=1 1{q ̸= p, iqt = i}rqt
mp
i (t− 1)

.

Lemma A.4.

Pr(Qi(t)) ≥ 1− 4MT−5.

Proof. For any fixed player p, we discuss the two inequalities separately. Lemma A.4 then

follows by a union bound over the two inequalities and over all p ∈ [M ].

We first discuss the concentration of ζpi (t). We define a filtration {Bt}Tt=1, where

Bt = σ(
{
ip

′

s , r
p′

s : s ∈ [t], p′ ∈ [M ]
}
∪
{
ip

′

t+1 : p
′ ∈ [M ]

}
)

is the σ-algebra generated by the historical interactions up to round t and the arm selection

of all players at round t+ 1.

Let random variable Xt = 1{ipt = i}
(
rpt − µ

p
i

)
. We have E

[
Xt | Bt−1

]
= 0; in

addition, var
[
Xt | Bt−1

]
= E

[
(Xt − E[Xt | Bt−1])

2 | Bt−1

]
≤ E

[
(1{ipt = i}rpt )2 | Bt−1

]
≤

1{ipt = i} and |Xt| ≤ 1.

Applying Freedman’s inequality [14, Lemma 2] with σ =
√∑t−1

s=1 var
[
Xs | Bs−1

]
and b = 1, and using σ ≤

√∑t−1
s=1 1{i

p
s = i}, we have that with probability at least

1− 2T−5, ∣∣∣∣∣∣
t−1∑
s=1

Xs

∣∣∣∣∣∣ ≤ 4

√√√√ t−1∑
s=1

1{ips = i} · ln(T 5 log2 T ) + 2 ln(T 5 log2 T ). (A.1)
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We consider two cases:

1. If npi (t− 1) =
∑t−1

s=1 1{ips = i} = 0, we have npi (t− 1) = 1 and ζpi (t) = 0. In this case,

we trivially have ∣∣ζpi (t)− µpi ∣∣ ≤ 1 ≤ 8

√
3 lnT

npi (t− 1)
.

2. Otherwise, npi (t− 1) ≥ 1. In this case, we have npi (t− 1) = npi (t− 1). Divide both sides

of Eq. (A.1) by npi (t− 1), and use the fact that log T ≤ T , we have

∣∣∣∣∣
∑t−1

s=1 1{ips = i}rps
npi (t− 1)

− µpi

∣∣∣∣∣ ≤ 4

√
6 lnT

npi (t− 1)
+

12 lnT

npi (t− 1)
.

If 12 lnT
np
i (t−1)

≥ 1,
∣∣∣∑t−1

s=1 1{i
p
s=i}rps

np
i (t−1)

− µpi
∣∣∣ ≤ 8

√
3 lnT
np
i (t−1)

is trivially true. Otherwise, 12 lnT
np
i (t−1)

≤

2
√

3 lnT
np
i (t−1)

, which implies that
∣∣∣∑t−1

s=1 1{i
p
s=i}rps

np
i (t−1)

− µpi
∣∣∣ ≤ (4

√
6+2
√
3)
√

lnT
np
i (t−1)

≤ 8
√

3 lnT
np
i (t−1)

.

In summary, in both cases, with probability at least 1− 2T−5, we have

∣∣ζpi (t− 1)− µpi
∣∣ ≤ 8

√
3 lnT

npi (t− 1)
.

A similar application of Freedman’s inequality also shows the concentration of ηpi (t).

Similarly, we define a filtration {Gt,q}t∈[T ],q∈[M ], where

Gt,q =



σ

({
ip

′
s , r

p′
s : s ∈ [t− 1], p′ ∈ [M ]

}⋃{
ip

′

t , r
p′

t : p′ ∈ [M ], p′ ≤ q
}⋃{

iq+1
t

})
,

q < M ;

σ

({
ip

′
s , r

p′
s : s ∈ [t], p′ ∈ [M ]

}⋃{
i1t+1

})
,

q =M.

is the σ-algebra generated by (1) the historical interactions up until round t− 1, (2) the

arm selections and observed rewards of players up until player q in round t, and (3) the
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arm selection of the next player. We have

G1,1 ⊂ G1,2 ⊂ . . . ⊂ G1,M ⊂ G2,1 ⊂ . . . ⊂ G2,M ⊂ . . . ⊂ GT,M .

By convention, let Gt,0 = Gt−1,M .

Now, let Yt,q = 1{q ̸= p, iqt = i}
(
rqt − µ

q
i

)
. We have E

[
Yt,q | Gt,q−1

]
= 0; in

addition, var
[
Yt,q | Gt,q−1

]
= E

[
Y 2
t,q | Gt,q−1

]
≤ 1{q ̸= p, iqt = i}, and

∣∣Yt,q∣∣ ≤ 1.

Similarly, applying Freedman’s inequality [14, Lemma 2] with

σ =
√∑t−1

s=1

∑M
q=1 var

[
Ys,q | Gs,q−1

]
and b = 1, and using

σ ≤
√∑t−1

s=1

∑M
q=1 1{q ̸= p, iqs = i}, we have that with probability at least 1− 2T−5,

∣∣∣∣∣∣
t−1∑
s=1

M∑
q=1

Ys,q

∣∣∣∣∣∣ ≤ 4

√√√√ t−1∑
s=1

M∑
q=1

1{q ̸= p, iqs = i} · ln(T 5 log2(TM))+2 ln(T 5 log2(TM)). (A.2)

Again, we consider two cases. If mp
i (t− 1) = 0, then we have ηpi (t− 1) = 0 and

∣∣∣∣∣∣ηpi (t− 1)−
∑
q ̸=p

nqi (t− 1)

mp
i (t− 1)

µqi

∣∣∣∣∣∣ = 0 ≤ 4

√
14 lnT

mp
i (t− 1)

.

Otherwise, we have mp
i (t − 1) = mp

i (t − 1). Divide both sides of Eq. (A.2) by

mp
i (t− 1), and use the fact that log2(TM) ≤ T 2, we have

∣∣∣∣∣∣
∑t−1

s=1

∑M
q=1 1{q ̸= p, iqs = i}rqs
mp
i (t− 1)

−
∑
q ̸=p

nqi (t− 1)

mp
i (t− 1)

µqi

∣∣∣∣∣∣ ≤ 4

√
7 lnT

mp
i (t− 1)

+
14 lnT

mp
i (t− 1)

.

If 14 lnT
mp

i (t−1)
≥ 1,

∣∣∣∣∑t−1
s=1

∑M
q=1 1{q ̸=p, i

q
s=i}rqs

mp
i (t−1)

−
∑

q ̸=p
nq
i (t−1)

mp
i (t−1)

µqi

∣∣∣∣ ≤ 4
√

14 lnT
mp

i (t−1)
is trivially true.
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Otherwise, 14 lnT
mp

i (t−1)
≤
√

14 lnT
mp

i (t−1)
, which implies that

∣∣∣∣∣∣
∑t−1

s=1

∑M
q=1 1{q ̸= p, iqs = i}rqs
mp
i (t− 1)

−
∑
q ̸=p

nqi (t− 1)

mp
i (t− 1)

µqi

∣∣∣∣∣∣ ≤ (4
√
7 +
√
14)

√
lnT

mp
i (t− 1)

≤ 4

√
14 lnT

mp
i (t− 1)

.

In summary, in both cases, with probability at least 1− 2T−5, we have

∣∣∣∣∣∣ηpi (t− 1)−
∑
q ̸=p

nqi (t− 1)

mp
i (t− 1)

µqi

∣∣∣∣∣∣ ≤ 4

√
14 lnT

mp
i (t− 1)

.

The lemma follows by taking a union bound over these two inequalities for each

fixed p, and over all p ∈ [M ].

A.4.3 Event E

Let E = ∩Tt=1 ∩Ki=1 Qi(t). We present the following corollary and lemma regarding

event E .

Corollary A.5. It follows from Lemma A.4 that Pr[E ] ≥ 1− 4MK
T 4 .

Lemma A.6. If E occurs, we have that for every t ∈ [T ], i ∈ [K], p ∈ [M ], for all

λ ∈ [0, 1],

∣∣κpi (t, λ)− µpi ∣∣ ≤ 8

√√√√13 lnT

(
λ2

npi (t− 1)
+

(1− λ)2

mp
i (t− 1)

)
+ (1− λ)ϵ,

where κpi (t, λ) = λζpi (t) + (1− λ)ηpi (t).

Proof. If E occurs, for every t ∈ [T ] and i ∈ [K], by the definition of event Qi(t), we have

∣∣ζpi (t)− µpi ∣∣ < 8

√
3 lnT

npi (t− 1)
, and

∣∣∣∣∣∣ηpi (t)−
∑
q ̸=p

nqi (t− 1)

mp
i (t− 1)

µqi

∣∣∣∣∣∣ ≤ 4

√
14 lnT

mp
i (t− 1)

.
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As κpi (t, λ) = λζpi (t) + (1− λ)ηpi (t), we have:

∣∣∣∣∣∣κpi (t, λ)−
[
λµpi + (1− λ)

∑
q ̸=p

nqi (t− 1)

mp
i (t− 1)

µqi

]∣∣∣∣∣∣ ≤8λ
√

3 lnT

npi (t− 1)
+ 4(1− λ)

√
14 lnT

mp
i (t− 1)

≤8

√√√√13 lnT

(
λ2

npi (t− 1)
+

(1− λ)2

mp
i (t− 1)

)
,

(A.3)

where the second inequality uses the elementary facts that
√
A+
√
B ≤

√
2(A+B).

Furthermore, from Definition 2.1, we have

∣∣∣∣∣∣
∑
q ̸=p

nqi (t− 1)

mp
i (t− 1)

µqi − µ
p
i

∣∣∣∣∣∣ ≤
∑
q ̸=p

nqi (t− 1)

mp
i (t− 1)

∣∣µqi − µpi ∣∣ ≤ ϵ.

This shows that ∣∣∣∣∣∣µpi − (λµpi + (1− λ)
∑
q ̸=p

nqi (t− 1)

mp
i (t− 1)

µqi )

∣∣∣∣∣∣ ≤ (1− λ)ϵ.

Combining the above inequality with Eq. (A.3), we get

∣∣κpi (t, λ)− µpi ∣∣ ≤ 8

√√√√13 lnT

(
λ2

npi (t− 1)
+

(1− λ)2

mp
i (t− 1)

)
+ (1− λ)ϵ.

This completes the proof.

A.4.4 Proof of Theorem 2.5

We first restate Theorem 2.5.

Theorem 2.5. Let RobustAgg(ϵ) run on an ϵ-MPMAB problem instance for T rounds.
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Then, its expected collective regret satisfies

E[R(T )] ≤ O

(∑
i∈I5ϵ

(
lnT

∆min
i

+M∆min
i

)
+
∑
i∈IC

5ϵ

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

)
.

Recall that the expected collective regret is defined as E[R(T )] =
∑

i∈[K]

∑
p∈[M ] ∆

p
i ·

E[npi (T )]. Before we prove Theorem 2.5, we first present the following two lemmas, which

provides an upper bound for (1) the total number of arm pulls for arm i, for i in I5ϵ and

(2) the individual number of arm pulls for arm i and player p, for i in IC5ϵ, conditioned on

E happening.

Lemma A.7. Denote ni(T ) =
∑

p∈[M ] n
p
i (T ) as the total number of pulls of arm i by all

the players after T rounds. Let RobustAgg(ϵ) run on an ϵ-MPMAB problem instance

for T rounds. Then, for each i ∈ I5ϵ, we have

E[ni(T )|E ] ≤ O
(

lnT

(∆min
i )2

+M

)
.

Lemma A.8. Let RobustAgg(ϵ) run on an ϵ-MPMAB problem instance for T rounds.

Then, for each i ∈ IC5ϵ and player p ∈ [M ] such that ∆p
i > 0, we have

E[npi (T )|E ] ≤ O
(

lnT

(∆p
i )

2

)
.

Proof of Lemma A.7. We first note that it follows from item (b) of Fact A.2 that every

arm i ∈ I5ϵ is suboptimal for all players p ∈ [M ].

We have

ni(T ) =
T∑
t=1

M∑
p=1

1
{
ipt = i

}
≤M + τ +

T∑
t=1

M∑
p=1

1
{
ipt = i, ni(t− 1) > τ

}
. (A.4)
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Here, τ ≥ 1 is an arbitrary integer. The term M is due to parallel arm pulls in the

ϵ-MPMAB problem: Let s be the first round such that after round s, the total number of

pulls ni(s) > τ . This implies that ni(s− 1) ≤ τ . Then in round s, there can be up to M

pulls of arm i by all the players, which means that in round (s+1) when the third term in

Eq. (A.4) can first start counting, there could have been up to τ +M pulls of the arm i.

It then follows that

ni(T ) ≤M + τ +
T∑
t=1

M∑
p=1

1
{
UCBp

ip∗
(t) ≤ UCBp

i (t), ni(t− 1) > τ
}
. (A.5)

Recall that ∆min
i = minp∆

p
i , and for each i ∈ I5ϵ, we have ∆p

i ≥ ∆min
i > 3ϵ by

item (a) of Fact A.2.

With foresight, we choose τ = ⌈ 3328 lnT
(∆min

i −2ϵ)2
⌉. Conditional on E , we show that, for

any arm i ∈ I5ϵ, the event
{
UCBp

ip∗
(t) ≤ UCBp

i (t), ni(t− 1) > τ
}

never happens. It suffices

to show that if ni(t− 1) > τ ,

UCBp
ip∗
(t) ≥ µp∗, (A.6)

and

UCBpi (t) < µp∗ (A.7)

happen simultaneously.

Eq. (A.6) follows straightforwardly from the definition of E along with Lemma A.6.
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For Eq. (A.7), we have the following upper bound on UCBpi (t):

UCBpi (t) = κpi (t, λ
∗) + F (npi ,m

p
i , λ

∗, ϵ)

≤ µpi + 2F (npi ,m
p
i , λ

∗, ϵ)

= µpi + 2
[
min
λ∈[0,1]

8

√
13 lnT [

λ2

npi (t− 1)
+

(1− λ)2

mp
i (t− 1)

] + (1− λ)ϵ
]

≤ µpi + 2
[
8

√
13 lnT

npi (t− 1) +mp
i (t− 1)

+ ϵ
]

≤ µpi + 2
[
8

√
13 lnT

ni(t− 1)
+ ϵ
]

< µpi + 2
[
8

√
13 lnT (∆p

i − 2ϵ)2

3328 lnT
+ ϵ
]
= µpi +∆p

i = µp∗,

where the first inequality is from the definition of E and Lemma A.6; the second inequality

is from choosing λ =
np
i (t−1)

np
i (t−1)+mp

i (t−1)
; the third inequality is from the simple facts that

npi (t− 1) ≤ npi (t− 1), mp
i (t− 1) ≤ mp

i (t− 1), and ni(t− 1) = npi (t− 1) +mp
i (t− 1); the

last inequality is from the premise that ni(t− 1) > τ ≥ 3328 lnT
(∆min

i −2ϵ)2
≥ 3328 lnT

(∆p
i−2ϵ)2

.

Continuing Eq. (A.5), it then follows that, for each i ∈ I5ϵ,

E[ni(T )|E ] ≤ ⌈
3328 lnT

(∆min
i − 2ϵ)2

⌉+M ≤ 3328 lnT

(∆min
i − 2ϵ)2

+ (M + 1). (A.8)

Now, by item (a) of Fact A.2, for each i ∈ I5ϵ, ∆min
i > 3ϵ. We then have

∆min
i

∆min
i −2ϵ

=
∆min

i −2ϵ+2ϵ

∆min
i −2ϵ

= 1 + 2ϵ
∆min

i −2ϵ
< 3. It follows that

3328 lnT

(∆min
i − 2ϵ)2

=
3328 lnT

(∆min
i )2

·

(
∆min
i

∆min
i − 2ϵ

)2

<
29952 lnT

(∆min
i )2

.
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Therefore, continuing Eq. (A.8), for each i ∈ I5ϵ, we have

E[ni(T )|E ] <
29952 lnT

(∆min
i )2

+ (M + 1) ≤ 29952 lnT

(∆min
i )2

+ 2M.

where the second inequality follows from the fact that M ≥ 1.

It then follows that

E[ni(T )|E ] ≤ O
(

lnT

(∆min
i )2

+M

)
.

This completes the proof of Lemma A.7.

Proof of Lemma A.8. Let’s now turn our attention to arms in IC5ϵ = [K] \ I5ϵ. For each

arm i ∈ IC5ϵ and for each player p ∈ [M ] such that µpi < µp∗, we seek to bound the expected

number of pulls of arm i by p in T rounds, under the assumption that the event E occurs.

Since the optimal arm(s) may be different for different players, we treat each player

separately.

Fix a player p ∈ [M ] and a suboptimal arm i ∈ IC5ϵ such that ∆p
i > 0. Recall that

npi (t− 1) is the number of pulls of arm i by player p after (t− 1) rounds. We have

npi (T ) =
T∑
t=1

1
{
ipt = i

}
≤ τ +

T∑
t=τ+1

1
{
ipt = i, npi (t− 1) > τ

}
, (A.9)

where τ ≥ 1 is an arbitrary integer. It then follows that

npi (T ) ≤ τ +
T∑

t=τ+1

1
{
UCBp

ip∗
(t) ≤ UCBp

i (t), n
p
i (t− 1) > τ

}
.

With foresight, let τ = ⌈3328 lnT
(∆p

i )
2 ⌉. Conditional on E , we show that, for any i ∈ IC5ϵ

such that ∆p
i > 0, the event

{
UCBp

ip∗
(t) ≤ UCBp

i (t), n
p
i (t − 1) > τ

}
never happens. It
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suffices to show that if npi (t− 1) > τ ,

UCBp
ip∗
(t) ≥ µp∗, (A.10)

and

UCBpi (t) < µp∗ (A.11)

happen simultaneously.

Eq. (A.10) follows straightforwardly from the definition of E along with Lemma A.6.

For Eq. (A.11), we have the following upper bound on UCBpi (t):

UCBpi (t) = κpi (t, λ
∗) + F (npi ,m

p
i , λ

∗, ϵ)

≤ µpi + 2F (npi ,m
p
i , λ

∗, ϵ)

= µpi + 2
[
min
λ∈[0,1]

8

√
13 lnT [

λ2

npi (t− 1)
+

(1− λ)2

mp
i (t− 1)

] + (1− λ)ϵ
]

≤ µpi + 2
[
8

√
13 lnT

npi (t− 1)

]
≤ µpi + 2

[
8

√
13 lnT

npi (t− 1)

]
< µpi + 2

[
8

√
13 lnT (∆p

i )
2

3328 lnT

]
= µpi +∆p

i = µp∗,

where the first inequality is from the definition of event E and Lemma A.6; the second

inequality is from choosing λ = 1; the third inequality uses the basic fact that npi (t− 1) ≤

npi (t− 1); the fourth inequality is by our premise that npi (t− 1) > τ ≥ 3328 lnT
(∆p

i )
2 .

It follows that conditional on E , the second term in Eq. (A.9) is always zero, i.e.,

player p would not pull arm i again. Therefore, for any i ∈ IC5ϵ such that ∆p
i > 0, we have

E[npi (T )|E ] ≤ ⌈
3328 lnT

(∆p
i )

2
⌉ ≤ 3328 lnT

(∆p
i )

2
+ 1 ≤ 3328 lnT

(∆p
i )

2
· 2 =

6656 lnT

(∆p
i )

2
. (A.12)
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It then follows that

E[npi (T )|E ] ≤ O
(

lnT

(∆p
i )

2

)
.

This completes the proof of Lemma A.8.

Proof of Theorem 2.5.

We now prove Theorem 2.5.

Proof. We have

E[R(T )] ≤ E[R(T )|E ] + E[R(T )|E ] Pr[E ]

≤ E[R(T )|E ] + (TM)
4MK

T 4

≤ E[R(T )|E ] +O(1) (A.13)

where the second inequality uses the fact that E[R(T )|E ] ≤ TM , as the instantaneous

regret for each player in each round is bounded by 1; and the last inequality follows under

the premise that T > max(M,K).

Let ∆max
i = maxp∆

p
i . We have

E[R(T )|E ] =
∑
i∈[K]

∑
p∈[M ]

E[npi (T )|E ] ·∆
p
i

≤
∑
i∈I5ϵ

E[ni(T )|E ] ·∆max
i +

∑
i∈IC

5ϵ

∑
p∈[M ]:∆p

i>0

E[npi (T )|E ] ·∆
p
i , (A.14)

where the inequality holds because the instantaneous regret for any arm i and any player

p is bounded by ∆max
i .

Now, it follows from Lemma A.7 that there exists some constant C1 > 0 such that

for each i ∈ I5ϵ,

E[ni(T )|E ] ≤ C1

(
lnT

(∆min
i )2

+M

)
,
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and it follows from Lemma A.8 that there exists some constant C2 > 0 such that for each

i ∈ IC5ϵ and p ∈ [M ] with ∆p
i > 0,

E[npi (T )|E ] ≤ C2

(
lnT

(∆p
i )

2

)
.

Then, continuing Eq. (A.14), we have

E[R(T )|E ] ≤
∑
i∈I5ϵ

C1

(
lnT

(∆min
i )2

+M

)
·∆max

i +
∑
i∈IC

5ϵ

∑
p∈[M ]:∆p

i>0

C2

(
lnT

(∆p
i )

2

)
·∆p

i

≤ 2C1

∑
i∈I5ϵ

(
lnT

∆min
i

+M∆min
i

)
+ C2

∑
i∈IC

5ϵ

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

,

where the second inequality follows from item (c) of Fact A.2 which states that ∀i ∈

I5ϵ,∆max
i < 2∆min

i .

It then follows from Eq. (A.13) that

E[R(T )] ≤ E[R(T )|E ] +O(1)

≤ O

∑
i∈I5ϵ

(
lnT

∆min
i

+M∆min
i

)
+
∑
i∈IC

5ϵ

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

 ,

This completes the proof of Theorem 2.5.

A.4.5 Proof of Theorem 2.8

We first restate Theorem 2.8.

Theorem 2.8. Let RobustAgg(ϵ) run on an ϵ-MPMAB problem instance for T rounds.

Then its expected collective regret satisfies

E[R(T )] ≤ Õ
(√
|I5ϵ|MT +M

√
(
∣∣IC5ϵ∣∣− 1)T +M |I5ϵ|

)
.
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Proof. From the earlier proof of Theorem 2.5, we have

E[R(T )] ≤ E[R(T )|E ] +O(1). (A.15)

Recall that ∆max
i = maxp∆

p
i . We also have

E[R(T )|E ] =
∑
i∈[K]

∑
p∈[M ]

E[npi (T )|E ] ·∆
p
i

≤
∑
i∈I5ϵ

E[ni(T )|E ] ·∆max
i +

∑
i∈IC

5ϵ

∑
p∈[M ]:∆p

i>0

E[npi (T )|E ] ·∆
p
i (A.16)

Again, it follows from Lemma A.7 that there exists some constant C1 > 0 such that

for each i ∈ I5ϵ,

E[ni(T )|E ] ≤ C1

(
lnT

(∆min
i )2

+M

)
, (A.17)

and it follows from Lemma A.8 that there exists some constant C2 > 0 such that for each

i ∈ IC5ϵ and p ∈ [M ] with ∆p
i > 0,

E[npi (T )|E ] ≤ C2

(
lnT

(∆p
i )

2

)
. (A.18)

Now let us bound the two terms in Eq. (A.16) separately, using the technique from

[90, Theorem 7.2].

For the first term, with foresight, let us set δ1 =
√

C1|I5ϵ| lnT
MT

. If |I5ϵ| = 0, we have∑
i∈I5ϵ E[ni(T )|E ] ·∆

max
i = 0 trivially. Otherwise, δ1 > 0 because T > max(M,K) ≥ 1.
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Then, we have

∑
i∈I5ϵ

E[ni(T )|E ] ·∆max
i

≤ 2
∑
i∈I5ϵ

E[ni(T )|E ] ·∆min
i

≤ 2

 ∑
i∈I5ϵ:∆min

i ∈(0,δ1)

E[ni(T )|E ] ·∆min
i +

∑
i∈I5ϵ:∆min

i ∈[δ1,1]

E[ni(T )|E ] ·∆min
i


≤ 2

MTδ1 +
∑

i∈I5ϵ:∆min
i ∈[δ1,1]

C1

(
lnT

(∆min
i )2

+M

)
∆min
i


≤ 2

MTδ1 +
∑

i∈I5ϵ:∆min
i ∈[δ1,1]

C1 lnT

∆min
i

+ C1

∑
i∈I5ϵ:∆min

i ∈[δ1,1]

M∆min
i


≤ 2

MTδ1 +
C1|I5ϵ| lnT

δ1
+ C1

∑
i∈I5ϵ

M∆min
i


≤ 4

√
C1|I5ϵ|MT lnT + 2C1M |I5ϵ|, (A.19)

where the first inequality follows from item (c) of Fact A.2; the third inequality follows from

Eq. (A.17) and the fact that
∑

i∈I5ϵ E[ni(T )|E ] ≤MT as M players each pulls one arm in

each of T rounds; and the last inequality follows from our premise that δ1 =
√

C1|I5ϵ| lnT
MT

.

For the second term, we consider two cases:

Case 1: |IC5ϵ| = 1.

In this case, as we have discussed in the paper, IC5ϵ is a singleton set {i∗} where

arm i∗ is optimal for all players p; that is, ∆p
i∗ = 0 for all p ∈ [M ]. We therefore have

∑
i∈IC

5ϵ

∑
p∈[M ]:∆p

i>0

E[npi (T )|E ] ·∆
p
i = 0 = 4M

√
C2(
∣∣IC5ϵ∣∣− 1)T lnT . (A.20)
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Case 2: |IC5ϵ| ≥ 2.

With foresight, let us set δ2 =
√

C2|IC
5ϵ| lnT
T

.

∑
i∈IC

5ϵ

∑
p∈[M ]:∆p

i>0

E[npi (T )|E ] ·∆
p
i

≤
∑
i∈IC

5ϵ

∑
p∈[M ]:∆p

i∈(0,δ2)

E[npi (T )|E ] ·∆
p
i +

∑
i∈IC

5ϵ

∑
p∈[M ]:∆p

i∈[δ2,1]

E[npi (T )|E ] ·∆
p
i

≤MTδ2 +
∑
i∈IC

5ϵ

∑
p∈[M ]:∆p

i∈[δ2,1]

C2

(
lnT

(∆p
i )

2

)
∆p
i

≤MTδ2 +
∑
i∈IC

5ϵ

∑
p∈[M ]:∆p

i∈[δ2,1]

(
C2 lnT

∆p
i

)

≤MTδ2 +
C2M |IC5ϵ| lnT

δ2

≤4M
√
C2(|IC5ϵ| − 1)T lnT , (A.21)

where the second inequality follows from Eq. (A.18) and the fact that
∑

i∈IC
5ϵ
E[ni(T )|E ] ≤

MT as M players each pulls one arm in each of T rounds; and the last inequality follows

from our premise that δ2 =
√

C2|IC
5ϵ| lnT
T

and |IC5ϵ| ≤ 2(|IC5ϵ| − 1).

In summary, from Eqs. (A.20) and (A.21), we have in both cases,

∑
i∈IC

5ϵ

∑
p∈[M ]:∆p

i>0

E[npi (T )|E ] ·∆
p
i ≤ 4M

√
C2(|IC5ϵ| − 1)T lnT . (A.22)

Combining Eq. (A.19) and Eq. (A.22), we have

E[R(T )|E ] ≤ 4
√
C1|I5ϵ|MT lnT + 2C1M |I5ϵ|+ 4M

√
C2(|IC5ϵ| − 1)T lnT
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It then follows from Eq. (A.15) that

E[R(T )] ≤ 4
√
C1|I5ϵ|MT lnT + 4M

√
C2(|IC5ϵ| − 1)T lnT + 2C1M |I5ϵ|+O(1)

≤ O
(√
|I5ϵ|MT lnT +M

√
(|IC5ϵ| − 1)T lnT +M |I5ϵ|

)
≤ Õ

(√
|I5ϵ|MT +M

√
(|IC5ϵ| − 1)T +M |I5ϵ|

)
.

This completes the proof of Theorem 2.8.

A.5 Proof of the Lower Bounds

A.5.1 Gap-independent lower bound with known ϵ

We first restate Theorem 2.10.

Theorem 2.10. For any K ≥ 2,M, T ∈ N such that T ≥ K, and l, lC in N such that

l ≤ K − 1, l+ lC = K, there exists some ϵ > 0, such that for any algorithm A, there exists

an ϵ-MPMAB problem instance, in which |I5ϵ| ≥ l, and A has a collective regret at least

Ω(M
√

(lC − 1)T +
√
MlT ).

Proof. Fix algorithm A. We consider two cases regarding the comparison between l and

M(lC − 1).

Case 1: l > M(lC − 1).

To simplify notations, define ∆ =
√

l+1
24MT

. Observe that ∆ ≤ 1
4

as T ≥ K ≥ l + 1.

We will set ϵ = 0.

We will now define l different Bernoulli ϵ-MPMAB instances, and show that under

at least one of them, A will have a collective regret at least 1
96

√
MlT ≥ 1

192
(M
√

(lC − 1)T+
√
MlT ).
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For j in [l + 1], define a Bernoulli MPMAB instance Ej to be such that for all

players p in [M ], the expected reward of arm i,

µpi =



1
2
+∆ i = j

1
2

i ∈ [l + 1] \ {j}

0 i /∈ [l + 1]

.

We first verify that for every instance Ej, it (1) is an ϵ-MPMAB instance, and (2)

[l + 1] \ {j} ⊆ I5ϵ and therefore I5ϵ has size ≥ l:

1. For item (1), observe that for any fixed i, we have µpi share the same value across all

player p’s. Therefore, the is trivially ϵ-dissimilar.

2. For item (2), for all i in [l + 1] \ {j}, we have ∆p
i = ∆ > 5ϵ = 0 for all p; this implies

that [l + 1] \ {j} is a subset of I5ϵ.

We will now argue that

Ej∼Unif([l+1])EEj

[
R(T )

]
≥ 1

96

√
MlT . (A.23)

To this end, it suffices to show

Ej∼Unif([l+1])EEj

[
MT − nj(T )

]
≥ MT

4
. (A.24)

To see why Eq. (A.24) implies Eq. (A.23), recall that under instance Ej, j is the

optimal arm for all players. In this instance, R(T ) =
∑

i ̸=j ni(T )∆
1
i . As under Ej, for

all i ̸= j and all p, ∆1
i ≥ ∆

4
, we have R(T ) ≥ ∆

4
· (MT − nj(T )). Eq. (A.23) follows from

combining this inequality with Eq. (A.24), along with some algebra.

We now come back to the proof of Eq. (A.24). First, we define a helper instance
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E0, such that for all players p in [M ], the expected reward of arm i is defined as:

µpi =


1
2

i ∈ [l + 1]

0 i /∈ [l + 1]

In addition, for all i in {0} ∪ [l + 1], define Pi as the joint distribution of the

interaction logs (arm pulls and rewards) for all M players over a horizon of T ; furthermore,

denote by Ei expectation with respect to Pi.

For every i in [l + 1], we have

dTV(P0,Pi) =
1

2
∥P0 − Pi∥1

≤ 1

2

√
2KL(P0,Pi)

≤ 1

2

√
2KL(Ber(0.5, 0.5 + ∆))E0[ni(T )]

≤
√

3

2
E0[ni(T )]∆2

=
1

4

√
l + 1

MT
E0[ni(T )]

where the first equality is from dTV(P,Q) = 1
2
∥P − Q∥1 for any two distributions P,

Q; the first inequality uses Pinsker’s inequality; the second inequality is from the well-

known divergence decomposition lemma (e.g. [90], Lemma 15.1); the third inequality uses

Lemma A.12; and the last equality is by recalling that ∆ ∈ [0, 1
4
] and algebra.

Now, applying Lemma A.11 with m = l + 1 ≥ 2, Ni = ni(T ) for all i in [l + 1], and

B =MT , Eq. (A.24) is proved. This in turn finishes the proof of the regret lower bound.

Case 2: M(lC − 1) ≥ l.

To simplify notations, define ∆ =
√

lC

24T
. Observe that ∆ < 1

4
as T ≥ K ≥ lC . In

addition, we must have lC ≥ 2 in this case, as if lC = 1, M(lC − 1) = 0 < K = l. We set

ϵ = ∆
2
.
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We will now define [lC ]M different Bernoulli ϵ-MPMAB instances, and show

that under at least one of them, A will have a collective regret at least 1
24
M
√
lCT ≥

1
192

(M
√
(lC − 1)T +

√
MlT ).

For i1, . . . , iM ∈ [lC ]M , define Bernoulli MPMAB instance Ei1,...,iM to be such that

for p in [M ] and i in [K], the expected reward of player p on pulling arm i is

µpi =



1
2
+∆ i = ip

1
2

i ∈ [lC ] \
{
ip
}

0 i /∈ [lC ]

We first verify that for every i1, . . . , iM , instance Ei1,...,iM (1) is an ϵ-MPMAB

instance, and (2) [K] \ [lC ] ⊂ I5ϵ, and therefore, I5ϵ has size ≥ l:

1. For item (1), observe that for all i in [lC ] and all p in [M ], µpi ∈
{

1
2
, 1
2
+∆

}
; therefore,

for every p, q,
∣∣µpi − µqi ∣∣ ≤ ∆ = ϵ. Meanwhile, for all i in [K] \ [lC ] and all p in [M ],

µpi = 0, implying that for every p, q,
∣∣µpi − µqi ∣∣ = 0 ≤ ϵ. Therefore Ei1,...,iM is ϵ-dissimilar.

2. For item (2), for all i in [K] \ [lC ] and all p, ∆p
i =

1
2
+∆ > 5

2
∆ = 5ϵ. This implies that

all elements of [K] \ [lC ] are in I5ϵ.

We will now argue that

E(i1,...,iM )∼Unif([lC ]M )EEi1,...,iM

[
R(T )

]
≥ M

√
lCT

24
.

As the roles of all M players are the same, by symmetry, it suffices to show that the

expected regret of player 1 satisfies

E(i1,...,iM )∼Unif([lC ]M )EEi1,...,iM

[
R1(T )

]
≥
√
lCT

24
. (A.25)
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It therefore suffices to show,

E(i1,...,iM )∼Unif([lC ]M )EEi1,...,iM

[
T − n1

i1
(T )
]
≥ T

4
. (A.26)

This is because, recall that when i1 is the optimal arm for player 1,R(T ) =
∑K

i=1 n
1
i (T )∆

1
i =∑

i ̸=i1 n
1
i (T )∆

1
i ; in addition, for all i ̸= i1, ∆1

i ≥ ∆. This implies that R1(T ) ≥ ∆(T −

n1
i1
(T )). Eq. (A.25) follows from the above inequality, Eq. (A.26), and the definition of ∆.

We now come back to the proof of Eq. (A.26). To this end, we define the following

set of “helper” instances to facilitate our reasoning. Given i2, . . . , iM ∈ [K]M−1, define

instance E0,i2,...,iM such that its reward distribution is identical to Ei1,i2,...,iM except for

player 1 on arm i1. Formally, it has the following expected reward profile:

for p = 1, µ1
i =


1
2

i ∈ [lC ]

0 i /∈ [lC ]

for p ̸= 1, µpi =



1
2
+∆ i = ip

1
2

i ∈ [lC ] \
{
ip
}

0 i /∈ [lC ]

In addition, for all i1, . . . , iM in ({0} ∪ [lC ])× [lC ]M−1, define Pi1,...,iM as the joint

distribution of the interaction logs (arm pulls and rewards) for all M players over a horizon

of T ; furthermore, for i in ({0} ∪ [lC ]), define Pi = 1

(lC)M−1

∑
i2,...,iM∈[lC ]M−1 Pi,i2,...,iM , and

denote by Ei expectation with respect to Pi. In this notation, Eq. (A.26) can be rewritten

as
1

lC

lC∑
i=1

Ei[T − n1
i (T )] ≥

T

2
.
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For every i in [lC ],

dTV(P0,Pi) =
1

2
∥P0 − Pi∥1

=
1

2

∥∥∥∥∥∥ 1

lCM−1

∑
i2,...,iM∈[lC ]M−1

(P0,i2,...,iM − Pi,i2,...,iM )

∥∥∥∥∥∥
1

≤ 1

(lC)M−1
·

∑
i2,...,iM∈[lC ]M−1

1

2
∥P0,i2,...,iM − Pi,i2,...,iM∥1

≤ 1

(lC)M−1
·

∑
i2,...,iM∈[lC ]M−1

√
1

2
KL(Ber(0.5, 0.5 + ∆)) · E0,i2,...,iM [N1

i (T )]

≤ 1

(lC)M−1
·

∑
i2,...,iM∈[lC ]M−1

√
3

2
∆2 · E0,i2,...,iM [N1

i (T )]

≤
√

3

2
∆2 · E0[N1

i (T )]

where the first equality is from dTV(P,Q) = 1
2
∥P − Q∥1 for any two distributions P, Q;

the second equality is from the definition of Pi, i ∈ {0} ∪ [lC ]; the first inequality is from

triangle inequality of ℓ1 norm; the second inequality is from Pinsker’s inequality, and

the divergence decomposition lemma ([90], Lemma 15.1); the third inequality is from

Lemma A.12 and recalling that ∆ ∈ [0, 1
4
]; the last inequality is from Jensen’s inequality,

and the definition of P0.

Applying Lemma A.11 with m = lC ≥ 2, Ni = n1
i (T ) for all i in [lC ] and B = T ,

Eq. (A.26) is proved. This in turn finishes the proof of the regret lower bound.

A.5.2 Gap-dependent lower bounds with known ϵ

We restate Theorem 2.9 here with specifications of exact constants in the lower

bound.

Theorem A.9 (Restatement of Theorem 2.9). Fix ϵ ≥ 0 and α,C > 0. Let A be an

algorithm such that A has at most CT 1−α regret in all ϵ-MPMAB problem instances. Then,
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for any Bernoulli ϵ
2
-MPMAB instance µ = (µpi )i∈[K],p∈[M ] such that µpi ∈ [15

32
, 17
32
] for all i

and p, we have:

Eµ[R(T )] ≥
∑
i∈IC

5ϵ/4

∑
p∈[M ]:∆p

i>0

ln
(
∆p
iT

α/8C
)

12∆p
i

+
∑

i∈I5ϵ/4:∆min
i >0

ln
(
∆min
i Tα/8C

)
12∆min

i

.

Proof. We will first prove the following two claims:

1. For any i0 in [K] such that ∆min
i0

> 0, Eµ
[
ni0(T )

]
≥

ln
(
∆min

i0
Tα/8C

)
12(∆min

i0
)2

.

2. For any i0 in IC5ϵ/4 and any p0 in [M ] such that ∆p0
i0
> 0, Eµ

[
np0i0 (T )

]
≥

ln
(
∆

p0
i0
Tα/8C

)
12(∆

p0
i0

)2
.

The proof of these two claims are as follows:

1. Fix i0 in [K] such that ∆min
i0

> 0, i.e., ∆p
i0
> 0 for all p in [M ]. Define p0 =

argminp∈[M ] ∆
p
i0
.

We consider a new Bernoulli MPMAB instance, with mean reward defined as follows:

∀p ∈ [M ], νpi =


µpi + 2∆p0

i0
, i = i0,

µpi otherwise

We have the following key observations:

(a) ν is an ϵ-MPMAB instance; this is because νpi − ν
q
i = µpi − µ

q
i for any p, q in [M ]

and i in [K], and µ is an ϵ
2
-MPMAB instance. By our assumption that A has

CT 1−α regret on all ϵ-MPMAB environments, we have

Eµ
[
R(T )

]
≤ CT 1−α, Eν

[
R(T )

]
≤ CT 1−α. (A.27)
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(b) By the divergence decomposition lemma ([90], Lemma 15.1),

KL(Pµ,Pν) =
M∑
p=1

Eµ
[
npi0(T )

]
KL
(
Ber(µpi0),Ber(µ

p
i0
+ 2∆p0

i0
)
)
, (A.28)

As for all p, µpi0 ∈ [15
32
, 17
32
], and ∆p

i0
≤ 1

16
, using Lemma A.12, we have that for all p,

KL
(
Ber(µpi ),Ber(µ

p
i + 2∆p0

i0
)
)
≤ 3 · (2∆p0

i0
)2 = 12(∆p0

i0
)2.

Plugging into Eq. (A.28), we get

KL(Pµ,Pν) ≤
M∑
p=1

(Eµ
[
npi0(T )

]
· 12(∆p0

i0
)2) = 12Eµ

[
ni0(T )

]
(∆p0

i0
)2. (A.29)

(c) Under MPMAB instance µ, R(T ) ≥ Rp0(T ) ≥ ∆p0
i0
np0i0 (T ) ≥

∆
p0
i0
T

2
1{np0i0 (T ) ≥

T
2
}.

Taking expectations, we get,

Eµ
[
R(T )

]
≥

∆p0
i0
T

2
Pµ(np0i0 (T ) ≥

T

2
). (A.30)

Likewise, under MPMAB instance ν, for player p0, R(T ) ≥ Rp0(T ) ≥ ∆p0
i0
(T −

np0i0 (T )) ≥
∆

p0
i0
T

2
1{np0i0 (T ) <

T
2
}. Taking expectations, we get,

Eν
[
R(T )

]
≥

∆p0
i0
T

2
Pν(np0i0 (T ) <

T

2
). (A.31)

Adding up Eq. (A.30) and Eq. (A.31), we have

Eν
[
R(T )

]
+ Eµ

[
R(T )

]
≥

∆p0
i0
T

2

(
Pν(np0i0 (T ) <

T

2
) + Pµ(np0i0 (T ) ≥

T

2
)

)
. (A.32)

From Eq. (A.27), we have the left hand side is at most 2CT 1−α. By Bretagnolle-

Huber inequality (see Lemma A.13) and Eq. (A.29), we have that Pν(np0i0 (T ) <
T
2
) +
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Pµ(np0i0 (T ) ≥
T
2
) ≥ 1

2
exp(−KL(Pµ,Pµ)) ≥ 1

2
exp(−12Eµ

[
ni0(T )

]
(∆p0

i0
)2). Plugging

these to Eq. (A.32), we get

2CT 1−α ≥
∆p0
i0
T

4
exp(−12Eµ

[
ni0(T )

]
(∆p0

i0
)2).

Solving for Eµ
[
ni0(T )

]
, we conclude that

Eµ
[
ni0(T )

]
≥ 1

12(∆p0
i0
)2
· ln

(
∆p0
i0
Tα

8C

)
=

1

12(∆min
i0

)2
· ln

(
∆min
i0
Tα

8C

)
.

2. Fix i0 in IC5ϵ/4 and p0 ∈ [M ] such that ∆p0
i0
> 0. By definition of IC5ϵ/4, we also have

∆p0
i0

= µp0∗ − µ
p0
i0
≤ ϵ/4.

We consider a new MPMAB environment ν, with mean reward defined as follows:

νpi =


µpi + 2∆p0

i0
i = i0, p = p0

µpi otherwise

Same as before, we have the following three key observations:

(a) ν is an ϵ-MPMAB instance; this is because (νpi − ν
q
i )− (µpi − µ

q
i ) ∈

{
− ϵ

2
, 0, ϵ

2

}
for

any p, q in [M ] and i in [K], and µ is an ϵ
2
-MPMAB instance. By our assumption

that A has CT 1−α regret on all ϵ-MPMAB problem instances, we have

Eµ
[
R(T )

]
≤ CT 1−α, Eν

[
R(T )

]
≤ CT 1−α. (A.33)

(b) By the divergence decomposition lemma ([90], Lemma 15.1),

KL(Pµ,Pν) = Eµ
[
np0i0 (T )

]
KL
(
Ber(µp0i0 ),Ber(µ

p0
i0
+ 2∆p0

i0
)
)

≤ 12Eµ
[
np0i0 (T )

]
(∆p0

i0
)2, (A.34)
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where the second equality uses the following observation: µp0i0 ∈ [15
32
, 17
32
], and ∆p0

i0
≤

1
16

, using Lemma A.12, KL
(
Ber(µp0i0 ),Ber(µ

p0
i0
+ 2∆p0

i0
)
)
≤ 3 · (2∆p0

i0
)2 = 12(∆p0

i0
)2.

(c) Under MPMAB instance µ, R(T ) ≥ Rp0(T ) ≥ ∆p0
i0
np0i0 (T ) ≥

∆
p0
i0
T

2
1{np0i0 (T ) ≥

T
2
}.

Taking expectations, we get,

Eµ
[
R(T )

]
≥

∆p0
i0
T

2
Pµ(np0i0 (T ) ≥

T

2
). (A.35)

Likewise, under MPMAB instance ν, for player p0, R(T ) ≥ Rp0(T ) ≥ ∆p0
i0
(T −

np0i0 (T )) ≥
∆

p0
i0
T

2
1{np0i0 (T ) <

T
2
}. Taking expectations, we get,

Eν
[
R(T )

]
≥

∆p0
i0
T

2
Pν(np0i0 (T ) <

T

2
). (A.36)

Same as the proof of item 1, combining Equations (A.33), (A.34), (A.35), (A.36), and

using Bretagnolle-Huber inequality, we get

Eµ
[
np0i0 (T )

]
≥ 1

12(∆p0
i0
)2
· ln

(
∆p0
i0
Tα

8C

)
.

We now use the above two claims to conclude the proof. Recall that Eµ
[
R(T )

]
=∑

i∈[K]

∑
p∈[M ] ∆

p
iEµ

[
npi (T )

]
. For i in I5ϵ/4 such that ∆min

i > 0, item 1 implies:

∑
p∈[M ]

∆p
iEµ

[
npi (T )

]
≥ ∆min

i

∑
p∈[M ]

Eµ
[
npi (T )

]
≥ 1

12∆min
i

· ln

(
∆min
i Tα

8C

)
.

For i in IC5ϵ/4, item 2 implies:

∑
p∈[M ]

∆p
iEµ

[
npi (T )

]
≥

∑
p∈[M ]:∆p

i>0

1

12∆p
i

· ln
(
∆p
iT

α

8C

)
.

121



Summing over all i in [K] on the above two inequalities, we have

Eµ
[
R(T )

]
=
∑
i∈[K]

∑
p∈[M ]

∆p
iEµ

[
npi (T )

]
≥
∑
i∈IC

5ϵ/4

∑
p∈[M ]:∆p

i>0

1

12∆p
i

· ln
(
∆p
iT

α

8C

)
+

∑
i∈I5ϵ/4:∆min

i >0

1

12∆min
i

· ln

(
∆min
i Tα

8C

)
.

Remark.

The above lower bound argument aligns with our intuition that arms that are

near-optimal with respect to some players (i.e., those in IC5ϵ/4) are harder for information

sharing: in addition to a lower bound on the collective number of pulls to it across all

players (item 1 of the claim), we are able to show a stronger lower bound on the number

of pulls to it from each player (item 2 of the claim).

A.5.3 Gap-dependent lower bounds with unknown ϵ

We restate Theorem 2.11 here with specifications of exact constants in the lower

bound.

Theorem A.10 (Restatement of Theorem 2.11). Fix α,C > 0. Let A be an algorithm

such that A has at most CT 1−α regret in all MPMAB problem instances. Then, for any

Bernoulli MPMAB instance µ = (µpi )i∈[K],p∈[M ] such that µpi ∈ [15
32
, 17
32
] for all i and p, we

have:

Eµ[R(T )] ≥
∑
i∈[K]

∑
p∈[M ]:∆p

i>0

ln
(
∆p
iT

α/8C
)

12∆p
i

.

Proof. Recall that Eµ
[
R(T )

]
=
∑K

i=1

∑M
p=1 ∆

p
iEµ

[
Np
i (T )

]
; it suffices to show that for any

i0 in [K] and any p0 in [M ] such that ∆p0
i0
> 0, Eµ

[
np0i0 (T )

]
≥

ln
(
∆

p0
i0
Tα/8C

)
12(∆

p0
i0

)2
.
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The proof of this claim is almost identical to the proof of the the second claim

in the previous theorem, except that we have more flexibility to choose the “alternative

instances” ν’s, because A is assumed to have sublinear regret in all MPMAB instances;

specifically, ν no longer needs to be an ϵ-MPMAB instance. We include the argument

here for completeness. Fix i0 in [K] and p0 ∈ [M ] such that ∆p0
i0
> 0. We consider a new

Bernoulli MPMAB instance ν, with mean reward defined as follows:

νpi =


µpi + 2∆p0

i0
i = i0, p = p0

µpi otherwise

We have the following three key observations:

(a) ν is still a valid Bernoulli MPMAB instance; this is because for all p in [M ] and

i in [K], (νpi − µpi ) ∈ [−1
8
, 1
8
], and µpi ∈ [15

32
, 17
32
], implying that νpi ∈ [0, 1]. By our

assumption that A has CT 1−α regret on all Bernoulli MPMAB instances, we have

Eµ
[
R(T )

]
≤ CT 1−α, Eν

[
R(T )

]
≤ CT 1−α. (A.37)

(b) By the divergence decomposition lemma ([90], Lemma 15.1),

KL(Pµ,Pν) = Eµ
[
np0i0 (T )

]
KL
(
Ber(µp0i0 ),Ber(µ

p0
i0
+ 2∆p0

i0
)
)
≤ 12Eµ

[
np0i0 (T )

]
(∆p0

i0
)2,

(A.38)

where the second equality uses the following observation: µp0i0 ∈ [15
32
, 17
32
], and ∆p0

i0
≤ 1

16
,

using Lemma A.12, KL
(
Ber(µp0i0 ),Ber(µ

p0
i0
+ 2∆p0

i0
)
)
≤ 3 · (2∆p0

i0
)2 = 12(∆p0

i0
)2.

(c) Under MPMAB instance µ, R(T ) ≥ Rp0(T ) ≥ ∆p0
i0
np0i0 (T ) ≥

∆
p0
i0
T

2
1{np0i0 (T ) ≥

T
2
}.

Taking expectations, we get,

Eµ
[
R(T )

]
≥

∆p0
i0
T

2
Pµ(np0i0 (T ) ≥

T

2
). (A.39)
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Likewise, under MPMAB instance ν, for player p0, R(T ) ≥ Rp0(T ) ≥ ∆p0
i0
(T −

np0i0 (T )) ≥
∆

p0
i0
T

2
1{np0i0 (T ) <

T
2
}. Taking expectations, we get,

Eν
[
R(T )

]
≥

∆p0
i0
T

2
Pν(np0i0 (T ) <

T

2
). (A.40)

Combining Equations (A.37), (A.38), (A.39), (A.40), and using Bretagnolle-Huber inequal-

ity, we get

Eµ
[
np0i0 (T )

]
≥ 1

12(∆p0
i0
)2
· ln

(
∆p0
i0
Tα

8C

)
.

This concludes the proof of the claim, and in turn concludes the proof of the theorem.

A.5.4 Auxiliary lemmas

The following lemma is well known for proving gap-independent lower bounds in

single player K-armed bandits. We will be using the following convention: for probability

distribution Pi, denote by Ei its induced expectation operator.

Lemma A.11. Suppose m,B are positive integers and m ≥ 2; there are m+ 1 probability

distributions P0,P1, . . . ,Pm, and m random variables N1, . . . , Nm, such that: (1) Under

any of the Pi’s, N1, . . . , Nm are non-negative and
∑m

i=1Ni ≤ B with probability 1; (2) for

all i in [m], dTV(P0,Pi) ≤ 1
4

√
m
B
· E0[Ni]. Then,

1

m

m∑
i=1

Ei[B −Ni] ≥
B

4
.

Proof. For every i in [m], as Ni is a random variable that takes values in [0, B], we have,

∣∣Ei[Ni]− E0[Ni]
∣∣ ≤ B · dTV(P0,Pi).
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By item (2) and algebra, this implies that

Ei[Ni] ≤ E0[Ni] +
1

4

√
mBE0[Ni].

Averaging over i in [m] and using Jensen’s inequality, we have

1

m

m∑
i=1

Ei[Ni] ≤
1

m

m∑
i=1

E0[Ni] +
1

4m

m∑
i=1

√
mBE0[Ni]

≤ 1

m

m∑
i=1

E0[Ni] +
1

4

√√√√√mB ·

 1

m

m∑
i=1

E0[Ni]


Noting that item (2) implies 1

m

∑m
i=1 E0[Ni] ≤ B

m
; plugging this into the above inequality,

we have
1

m

m∑
i=1

Ei[Ni] ≤
B

m
+

1

4

√
mB · B

m
≤ B

2
+
B

4
=

3B

4
,

where the second inequality uses the assumption that m ≥ 2. The lemma is concluded by

negating and adding B on both sides.

Lemma A.12. Suppose a, b are both in [1
4
, 3
4
]. Then, KL(Ber(a),Ber(b)) ≤ 3(b− a)2.

Proof. Define h(x) = x ln 1
x
+(1−x) ln 1

1−x . One can easily verify that KL(Ber(a),Ber(b)) =

a ln a
b
+(1− a) ln 1−a

1−b , which in turn equals h(a)−h(b)−h′(b)(a− b). By Taylor’s theorem,

there exists some ξ ∈ [a, b] ⊆ [1
4
, 3
4
] such that

h(a)− h(b)− h′(b)(a− b) = h′′(ξ)

2
(b− a)2 = 1

2ξ(1− ξ)
(b− a)2.

The lemma is concluded by verifying that 1
2ξ(1−ξ) ≤ 3 for ξ in [1

4
, 3
4
].

Lemma A.13 (Bretagnolle-Huber). For any two distributions P and Q and an event A,

P(A) +Q(AC) ≥ 1

2
exp(−KL(P,Q)).
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A.6 Upper Bounds with Unknown ϵ

In this section, we provide a description of RobustAgg-Agnostic, an algorithm

that has regret adaptive to I5ϵ in all MPMAB environments with unknown ϵ.

To ensure sublinear regret in all MPMAB environments, RobustAgg uses the

aggregation-based framework named Corral [2, see also Lemma A.16 below], which

we now briefly review. The Corral meta-algorithm allows one to combine multiple

online bandit learning algorithms (called base learners) into one master algorithm that

has performance competitive with all base learners’. For different environments, different

base learners may stand out as the best, and therefore the master algorithm exhibits some

degree of adaptivity. We refer readers to [2] for the full description of Corral.

In the context of MPMAB problems, recall that we have developed RobustAgg(ϵ)

that has good regret guarantees for all ϵ-MPMAB instances. The central idea of

RobustAgg-Agnostic is to apply the Corral algorithm over a series of baser learners,

i.e.,
{
RobustAgg(ϵb)

}B
b=1

, where E = {ϵb}Bb=1 is a covering of the [0, 1] interval. With

an appropriate setting of E, for any ϵ-MPMAB instance, there exists some b0 in [B]

such that ϵb0 is not much larger than ϵ, and running RobustAgg(ϵb0) would achieve

regret guarantee competitive to RobustAgg(ϵ). As Corral achieves online performance

competitive with all RobustAgg(ϵb)’s [2], it must be competitive with RobustAgg(ϵb0),

and therefore can inherit the adaptive regret guarantee of RobustAgg(ϵb0).

We now provide important technical details of RobustAgg-Agnostic:

1. B = ⌈log(MT )⌉+ 1 is the number of base learners, and E =
{
ϵb = 2−b+1 : b ∈ [B]

}
is

the grid of ϵ to be aggregated. Corral uses master learning rate η = 1
M

√
T
.

2. For each base learner that runs RobustAgg(ϵ) for some ϵ, we require them to take a

new parameter ρ ≥ 1 as input, to accommodate for the fact that it may not be selected

by the Corral master all the time. Specifically, it performs bandit learning interaction
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with an environment whose returned rewards are unbiased but importance weighted : at

time step t, when player p pulls arm i, instead of directly receiving reward drawn from

r ∼ Dpi , it receives r̂ = Wt

wt
r, where wt ∈ [1, 1

ρ
] is a random number, and conditioned on

wt, Wt ∼ Ber(wt) is an independently-drawn Bernoulli random variable. Observe that

r̂ has conditional mean µpi , lies in the interval [0, ρ], and has conditional variance at

most ρ.

We call an environment that has the above analytical form a ρ-importance weighted

environment; in the special case of ρ = 1, wt = 1 and Wt = 1 with probability 1 for

all t, and therefore a 1-importance weighted environment is the same as the original

bandit learning environment.

Under an ρ-importance weighted environment, the rewards are no longer bounded in

[0, 1], therefore, the constructions of the UCB’s of the mean rewards in the original

RobustAgg(ϵ) becomes invalid. Instead, we will rely on the following lemma (analogue

of Lemma A.4) for constructing valid UCB’s:

Lemma A.14. With probability at least 1− 4MT−5, we have

∣∣ζpi (t− 1)− µpi
∣∣ ≤ 8

√
3ρ lnT

npi (t− 1)
,

∣∣∣∣∣∣ηpi (t− 1)−
∑
q ̸=p

nqi (t− 1)

mp
i (t− 1)

µqi

∣∣∣∣∣∣ ≤ 4

√
14ρ lnT

mp
i (t− 1)

holding for all p in [M ], where ζpi (t) =
∑t−1

s=1 1{i
p
t=i}r̂

p
t

np
i (t−1)

, and ηpi (t) =
∑t−1

s=1

∑M
q=1 1{q ̸=p, i

q
t=i}r̂

q
t

mp
i (t−1)

.

According to the above concentration bounds, changing the definition of confidence

interval width to F (npi ,m
p
i , λ, ϵ) = 8

√
13ρ lnT

[
λ2

np
i

+ (1−λ)2

mp
i

]
+ (1− λ)ϵ would maintain

the validity of the UCB’s in ρ-importance weighted environments; henceforth, we

incorporate this modification in RobustAgg(ϵ).
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We have the following important analogue of Theorem 2.8, which establishes a gap-

independent regret upper bound when RobustAgg(ϵ) is run in a ρ-importance weighted

ϵ-MPMAB environment. This shows RobustAgg(ϵ) enjoys stability: the regret of the

algorithm degrades gracefully with increasing ρ.3

Lemma A.15. Let RobustAgg(ϵ) run on a ρ-importance weighted ϵ-MPMAB problem

instance for T rounds. Then its expected collective regret satisfies

E[R(T )] ≤ Õ

(√
ρ |I5ϵ|MT +M |I5ϵ|+min

(
M
√
ρ
∣∣IC5ϵ∣∣T , ϵMT

))
.

The proof of Lemmas A.14 and A.15 can be found at the end of this section.

3. Corral maintains a probability distribution on base learners qt = (qt,b : b ∈ [B])

over time. At time step t, each base learner b proposes their own arm pull decisions

(ipt (b) : p ∈ [M ]); the Corral master chooses a base learner with probability according

to qt, that is, ipt = ipt (bt) for all p, where bt ∼ qt. After the arm pulls, learner b receives

feedback r̂pt (b) = 1{bt=b}
qt,b

rpt , which is equivalent to interacting with an importance

weighted environment discussed before—qt,b and 1 {bt = b} correspond to wt and Wt,

respectively; when bt = b, rpt is drawn from Dp
ipt

for all p in [M ].

Corral also uses the above feedback to update qt+1, its weighting of the base learners:

define ℓt,b = 1{bt=b}
qt,b

1{bt = b}(
∑M

p=1(1− r
p
t )) to be the importance weighted loss of base

learner b at time step t; qt is updated to qt+1 using (ℓt,b : b ∈ [B]), with online mirror

descent with the log-barrier regularizer and learning rate η > 0. A small complication

of directly applying the existing results of Corral is that Corral originally assumes

that the losses suffered by the base learner from each round have range [0, 1]. In the
3See an elegant definition of (R(T ), α)-(weak) stability for bandit algorithms in [2].

Our guarantee on RobustAgg(ϵ) in Lemma A.15 is slightly stronger than the

(Õ

(√
|I5ϵ|MT +M |I5ϵ|+min

(
M
√∣∣IC5ϵ∣∣T , ϵMT

))
, 1
2 )-weak stability, in that the regret bound has

terms that are unaffected by ρ.
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multi-player setting, the losses suffered by the base learner is the sum of the losses of

all players, which has range [0,M ]. Nevertheless, we can obtain a similar guarantee.

Denote by ρb be the final value of ρ of base learner b (see also the next item). A slight

modification of Agarwal et al. [2, Lemma 13] shows that for all base learner b,

T∑
t=1

B∑
b′=1

qt,b′ℓt,b′ −
T∑
t=1

ℓt,b ≤ O
(
B

η
+ ηM2T

)
− ρb

40η lnT
.

Taking expectation on both sides, and observing that

E

 T∑
t=1

B∑
b′=1

qt,b′ℓt,b′

 = E

 T∑
t=1

M∑
p=1

(1− µp
ipt
)

 ,
and E

[∑T
t=1 ℓt,b

]
= E

[∑T
t=1

∑M
p=1(1− µ

p
ipt (b)

)
]
, along with some algebra, we get the

following lemma.

Lemma A.16. Suppose RobustAgg-Agnostic is run for T rounds. Then, for every

b in [B], we have that the regret of the master algorithm with respect to base learner b

is bounded by

E

 T∑
t=1

M∑
p=1

µp
ipt (b)
−

T∑
t=1

M∑
p=1

µp
ipt

 ≤ O(B
η
+ ηM2T

)
− E [ρb]

40η lnT
.

4. Following [2], a doubling trick is used for maintaining the value of ρ’s for all base

learners over time. Specifically, each base learner b maintains a separate guess of ρ,

an upper bound of maxts=1
1
qs,b

; if the upper bound is violated, its ρ gets doubled and

the base learner restarts. As Corral initializes ρ as 2B for each base learner, and

maintains the invariant that ρ ≤ BT , the number of doublings/restarts for each base

learner is at most ⌈log T ⌉. For a fixed b, summing over the regret guarantees between

different restarts of base learner b, we have the following regret guarantee.
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Lemma A.17. Suppose ϵb ≥ ϵ, and RobustAgg(ϵb) is run as a base learner of

RobustAgg-Agnostic, on an ϵ-MPMAB problem instance for T rounds. Denote by

ρb the final value of ρ. Then its expected collective regret satisfies

E

T M∑
p=1

µp∗ −
T∑
t=1

M∑
p=1

µp
ipt (b)

 ≤
Õ

√E [ρb]
∣∣I5ϵb∣∣MT +min

(
M

√
E [ρb]

∣∣∣IC5ϵb∣∣∣T , ϵMT

)
+M

∣∣I5ϵb∣∣
 .

The proof of this lemma can be found at the end of this section; we also refer the reader

to [2, Appendix D] for details.

Combining all the lemmas above, we are now ready to prove Theorem 2.12, restated

below for convenience.

Theorem 2.12. Let RobustAgg-Agnostic run on an ϵ-MPMAB problem instance

with any ϵ ∈ [0, 1]. Its expected collective regret in a horizon of T rounds satisfies

E[R(T )] ≤ Õ

((
|I10ϵ|+M

∣∣∣IC10ϵ∣∣∣)√T +M |I5ϵ|

)
.

Proof of Theorem 2.12. Suppose RobustAgg-Agnostic interacts with an ϵ-MPMAB

problem instance. Let b0 = max
{
b ∈ [B] : ϵb ≥ ϵ

}
. From the definition of

E =
{
1, 2−1, . . . , 2−B+1

}
and ϵ ∈ [0, 1], b0 is well-defined.

We present the following technical claim that elucidates the guarantee provided by

learner b0 based on Lemma A.17; we defer its proof after the proof of the theorem.

Claim A.18. Let b0 be defined above. RobustAgg(ϵb0) is run as a base learner of

RobustAgg-Agnostic, on a ϵ-MPMAB problem instance for T rounds. Denote by ρb0
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the final value of ρ. Then its expected collective regret satisfies

E

T M∑
p=1

µp∗ −
T∑
t=1

M∑
p=1

µp
ipt (b0)

 ≤ Õ(√E [ρb0 ]MT (|I10ϵ|+M
∣∣IC10ϵ∣∣) +M |I5ϵ|

)
.

Combining Claim A.18 and Lemma A.16 with b = b0, we have the following regret

guarantee for RobustAgg-Agnostic:

E
[
R(T )

]
= E

T M∑
p=1

µp∗ −
T∑
t=1

M∑
p=1

µp
ipt


= E

T M∑
p=1

µp∗ −
T∑
t=1

M∑
p=1

µp
ipt (b0)

+ E

 T∑
t=1

M∑
p=1

µp
ipt (b0)

−
T∑
t=1

M∑
p=1

µp
ipt


≤ Õ

(√
E [ρb0 ]MT (|I10ϵ|+M

∣∣IC10ϵ∣∣) +M |I5ϵ|+
B

η
+ ηM2T

)
− E [ρb0 ]

40η lnT

≤ Õ
(
ηMT (|I10ϵ|+M

∣∣∣IC10ϵ∣∣∣) +M |I5ϵ|+
B

η
+ ηM2T

)
,

where the first inequality is from Claim A.18 and Lemma A.16; the second inequality

is from the AM-GM inequality that
√
E [ρb0 ]MT (|I10ϵ|+M

∣∣IC10ϵ∣∣) ≤ O(ηMT (|I10ϵ| +

M
∣∣IC10ϵ∣∣) + E[ρb0 ]

η lnT
) and algebra (canceling out the second term in the last expression with

− E[ρb0 ]
40η lnT

). As RobustAgg-Agnostic chooses Corral’s master learning rate η = 1
M

√
T
,

and B = Õ(1), we have that

E
[
R(T )

]
≤ Õ

(
(M + |I10ϵ|+M

∣∣∣IC10ϵ∣∣∣)√T +M |I5ϵ|
)

≤ Õ
(
(|I10ϵ|+M

∣∣∣IC10ϵ∣∣∣)√T +M |I5ϵ|
)
,

where the second inequality uses the fact that
∣∣IC10ϵ∣∣ ≥ 1.

Proof of Claim A.18. As ϵb ≥ ϵ always holds, M
∣∣∣I5ϵb0 ∣∣∣ ≤M |I5ϵ|. It remains to check by
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algebra that

√
E [ρb0 ]

∣∣∣I5ϵb0 ∣∣∣MT +min

(
M

√
E [ρb0 ]

∣∣∣IC5ϵb0 ∣∣∣T ,MTϵb0

)

= Õ
(√

E [ρb0 ]MT (|I10ϵ|+M
∣∣IC10ϵ∣∣)) . (A.41)

We consider two cases:

1. ϵb0 ≤ 2ϵ. In this case, we have I5ϵb0 ⊂ I10ϵ. We have the following derivation:

√
E [ρb0 ]

∣∣∣I5ϵb0 ∣∣∣MT +M

√
E [ρb0 ]

∣∣∣IC5ϵb0 ∣∣∣T ≤ 2

√
E [ρb0 ]MT · (

∣∣I5ϵb∣∣+M
∣∣∣IC5ϵb∣∣∣)

≤ 2
√

E [ρb0 ]MT (|I10ϵ|+M
∣∣IC10ϵ∣∣)

where the first inequality is from the basic fact that
√
A+
√
B ≤ 2

√
A+B for positive

A, B; the second inequality is from the fact that
∣∣I5ϵb∣∣+M

∣∣∣IC5ϵb∣∣∣ ≤ |I10ϵ|+M
∣∣IC10ϵ∣∣,

as
∣∣I5ϵb∣∣ ≥|I10ϵ|, M ≥ 1, and |Iα|+

∣∣ICα ∣∣ = K for any α. This verifies Eq. (A.41).

2. ϵb0 > 2ϵ. In this case, b0 = B = 1 + ⌈log(MT )⌉ and ϵb0 ≤ 1
MT

. Although we no longer

have I5ϵb0 ⊂ I10ϵ, we can still upper bound the left hand side as follows.

First, the second term, min

(
M

√
E [ρb0 ]

∣∣∣IC5ϵb0 ∣∣∣T ,MTϵb0

)
≤MT · 1

MT
= 1.

Moreover, the first term,
√

E [ρb0 ]
∣∣∣I5ϵb0 ∣∣∣MT ≤

√
E [ρb0 ]KMT . As |I10ϵ|+M

∣∣IC10ϵ∣∣ ≥
K, we have

√
E [ρb0 ]

∣∣∣I5ϵb0 ∣∣∣MT ≤
√

E [ρb0 ] (|I10ϵ|+M
∣∣IC10ϵ∣∣)MT . Combining the

above two, Eq. (A.41) is proved.

Proof sketch of Lemma A.14. Since the proof of Lemma A.4 can be almost directly carried

over here, we only sketch the proof by pointing out the major differences. We also refer

the reader to [6, Appendix C.3] for a similar reasoning.
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We first consider the concentration of ζpi (j, t). We define a filtration {Bt}Tt=1, where

Bt = σ({ws, ip
′

s , r̂
p′

s : s ∈ [t], p′ ∈ [M ]} ∪
{
ip

′

t+1 : p
′ ∈ [M ]

}
)

is the σ-algebra generated by the history (including that of ws’s) up to round t and the

arm selection of all players at time step t+ 1

Let Xt = 1{ipt = i}
(
r̂pt − µ

p
i

)
. We have E

[
Xt | Bt−1

]
= 0. In addition,

var
[
Xt | Bt−1

]
= E

[
(Xt − E[Xt | Bt−1])

2 | Bt−1

]
= E

[
X2
t | Bt−1

]
≤ 1{ipt = i}E

[
wt

(
rpt
wt
− µpi

)2

+ (1− wt)0 | Bt−1

]

≤ 1{ipt = i}E

[
wt

(
rpt
wt

)2

| Bt−1

]

≤ 1{ipt = i}ρ.

Also, |Xt| ≤ ρ with probability 1. Applying Freedman’s inequality [14, Lemma 2] with

σ =
√∑t−1

s=1 var
[
Xs | Bs−1

]
and b = ρ, and using σ ≤

√∑t−1
s=1 1{i

p
s = i}ρ, we have that

with probability at least 1− 2T−5,

∣∣∣∣∣∣
t−1∑
s=1

Xs

∣∣∣∣∣∣ ≤ 4

√√√√ t−1∑
s=1

1{ips = i}ρ · ln(T 5 log2 T ) + 2ρ ln(T 5 log2 T ). (A.42)

We can then show that

∣∣∣∣∣
∑t−1

s=1 1{ips = i}r̂ps
npi (t− 1)

− µpi

∣∣∣∣∣ ≤ 8

√
3ρ lnT

npi (t− 1)
.

following the same strategy in the proof for Lemma A.4.

Similarly, we show the concentration of ηpi (t). We define a filtration {Gt,q}t∈[T ],q∈[M ],
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where

Gt,q = σ(
{
ws, i

p′

s , r̂
p′

s : s ∈ [t], p′ ∈ [M ], i ∈ [K]
}
∪
{
ip

′

t+1 : p
′ ∈ [M ], p′ ≤ q

}
)

is the σ-algebra generated by the history (including that of ws’s) up to round t and the

arm selection of players 1, 2, . . . , q at round t+ 1. By convention, let Gt,0 = Gt−1,M .

Let random variable Yt,q = 1{q ̸= p, iqt = i}
(
r̂qs − µ

q
i

)
. We have E

[
Yt,q | Gt,q−1

]
= 0;

in addition, var
[
Yt | Gt,q−1

]
= E

[
Y 2
t,q | Gt,q−1

]
≤ 1{q ̸= p, iqt = i}ρ and

∣∣Yt,q∣∣ ≤ ρ.

Again, applying Freedman’s inequality [14, Lemma 2], we have that with probability

at least 1− 2T−5,

∣∣∣∣∣∣
t−1∑
s=1

M∑
q=1

Ys,q

∣∣∣∣∣∣ ≤ 4

√√√√ t−1∑
s=1

M∑
q=1

1{q ̸= p, iqs = i}ρ · ln(T 5 log2(TM)) + 2ρ ln(T 5 log2(TM)).

(A.43)

Using the same strategy from the proof for Lemma A.4, we can show that

∣∣∣∣∣∣ηpi (t− 1)−
∑
q ̸=p

nqi (t− 1)

mp
i (t− 1)

µqi

∣∣∣∣∣∣ ≤ 4

√
14ρ lnT

mp
i (t− 1)

.

The lemma then follows by applying the union bound.

Proof sketch of Lemma A.15. Similar to the proof of Theorem 2.8, we define E = ∩Tt=1∩Ki=1

Qi(t), where

Qi(t) =

∀p, ∣∣ζpi (t)− µpi ∣∣ ≤ 8

√
3ρ lnT

npi (t− 1)
,

∣∣∣∣∣∣ηpi (t)−
∑
q ̸=p

nqi (t− 1)

mp
i (t− 1)

µqi

∣∣∣∣∣∣ ≤ 4

√
14ρ lnT

mp
i (t− 1)

 ;

note that the new definition of Qi(t) has a dependence on ρ.
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Similar to the proof of Theorem 2.5, we have,

E[R(T )] ≤ E[R(T )|E ] +O(1),

and

E[R(T )|E ] =
∑
i∈[K]

∑
p∈[M ]

E[npi (T )|E ] ·∆
p
i

≤
∑
i∈I5ϵ

E[ni(T )|E ] ·∆max
i +

∑
i∈IC

5ϵ

∑
p∈[M ]:∆p

i>0

E[npi (T )|E ] ·∆
p
i

We bound these two terms respectively, applying the technique from [90, Theorem

7.2].

1. We can show the following analogue of Lemma A.7: there exists some constant C1 > 0

such that for each i ∈ I5ϵ,

E[ni(T )|E ] ≤ C1

(
ρ lnT

(∆min
i )2

+M

)
.

Using the above fact, and from a similar calculation of Equation (A.19) in the proof of

Theorem 2.8, we get

∑
i∈I5ϵ

E[ni(T )|E ] ·∆max
i ≤ 4

√
C1ρ|I5ϵ|MT lnT + 2C1M |I5ϵ|.

2. We can show the following analogue of Lemma A.8: there exists some constant C2 > 0

such that for each i ∈ IC5ϵ and p ∈ [M ] with ∆p
i > 0,

E[npi (T )|E ] ≤ C2

(
lnT

(∆p
i )

2

)
.

Using the above fact, and from a similar calculation of Equation (A.22) in the proof of
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Theorem 2.8, we get

∑
i∈IC

5ϵ

∑
p∈[M ]:∆p

i>0

E[npi (T )|E ] ·∆
p
i ≤ 2M

√
C2ρ|IC5ϵ|T lnT .

On the other hand, we trivially have that for all i in IC5ϵ, ∆
p
i ≤ 5ϵ; therefore,

∑
i∈IC

5ϵ

∑
p∈[M ]:∆p

i>0

E[npi (T )] ·∆
p
i ≤ 5ϵMT.

Therefore,

E[R(T )]

≤
(
4
√
C1ρ|I5ϵ|MT lnT + 2C1M |I5ϵ|

)
+min

(
2M
√
C2ρ|IC5ϵ|T lnT , 5ϵMT

)
+O(1)

≤Õ

(√
ρ |I5ϵ|MT +M |I5ϵ|+min

(
M
√
ρ
∣∣IC5ϵ∣∣T , ϵMT

))
.

Proof of Lemma A.17. The proof closely follows [2, Theorem 15]; we cannot directly repeat

that proof here, because Lemma A.15 is not precisely a weak stability statement (see

footnote 3).

For base learner b, suppose that its ρ gets doubled nb times throughout the process,

where nb is a random number in [⌈log T ⌉]. For every i ∈ [nb], denote by random variable

ti the i-th time step where the value of ρ gets doubled. In addition, denote by t0 = 0 and

tnb+1 = T . In this notation, for all t ∈ {ti + 1, ti + 2, . . . , ti+1}, the value of ρ is equal to

ρi = 2B · 2i; in addition, ρb = 2B · 2nb .
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Therefore, we have:

E
[
R(T ) | nb = n

]
=

n∑
i=0

E

 ti+1∑
t=ti+1

 M∑
p=1

µp∗ −
M∑
p=1

µp
ipt (b)

 | nb = n


=

n∑
i=0

Õ

√ρi
∣∣I5ϵb∣∣MT +M

∣∣I5ϵb∣∣+min

(
M

√
ρi
∣∣∣IC5ϵb∣∣∣T , ϵbMT

)
= Õ

√ρn
∣∣I5ϵb∣∣MT +M

∣∣I5ϵb∣∣+min

(
M

√
ρn
∣∣∣IC5ϵb∣∣∣T , ϵbMT

) ,

where the first equality of by the definition ofR(T ), and [T ] = ∪ni=1 {ti + 1, ti + 2, . . . , ti+1};

the second equality is from Lemma A.17’s guarantee in each time interval

{ti + 1, ti + 2, . . . , ti+1} and ϵb ≥ ϵ; and the third equality is by algebra.

As nb = n is equivalent to ρn = ρb, this implies that

E
[
R(T ) | ρb

]
= Õ

√ρb
∣∣I5ϵb∣∣MT +M

∣∣I5ϵb∣∣+min

(
M

√
ρb

∣∣∣IC5ϵb∣∣∣T , ϵbMT

) ;

observe that the expression inside Õ in the last line is a concave function of ρb.

Now, by the law of total expectation,

E
[
R(T )

]
= E

[
E
[
R(T ) | ρb

]]
= E

Õ(√ρb
∣∣I5ϵb∣∣MT

)
+M

∣∣I5ϵb∣∣+min

(
M

√
ρb

∣∣∣IC5ϵb∣∣∣T , ϵbMT

)
= Õ

E

√ρb
∣∣I5ϵb∣∣MT +M

∣∣I5ϵb∣∣+min

(
M

√
ρb

∣∣∣IC5ϵb∣∣∣T , ϵbMT

)


= Õ

√E [ρb]
∣∣I5ϵb∣∣MT +M

∣∣I5ϵb∣∣+min

(
M

√
E [ρb]

∣∣∣IC5ϵb∣∣∣T , ϵbMT

) ,

where the third equality is by algebra, and the last equality uses Jensen’s inequality.
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A.7 Experimental Details

In Appendix A.7.1, we provide a proof of Fact 2.13 which is about the instance

generation procedure. Then, in Appendix A.7.2, we present comprehensive results from

the simulations we performed.

A.7.1 Proof of Fact 2.13

Proof of Fact 2.13. For every i, as µpi ∈ [µ1
i − ϵ

2
, µ1

i +
ϵ
2
] for all p in [M ], we have that for

all p, q in [M ],
∣∣µpi − µqi ∣∣ ≤ ϵ. This proves that µ = (µpi )i∈[K],p∈[M ] is indeed a Bernoulli

ϵ-MPMAB instance.

Recall that d = maxi∈[c] µ
1
i = maxi∈[K] µ

1
i is the optimal mean reward for player 1.

We now show that I5ϵ = {c+ 1, . . . , K} by a case analysis:

1. First, we show that for all i in {c+ 1, . . . , K}, i is in I5ϵ. This is because µ1
i is chosen

from [0, d− 5ϵ), which implies that ∆1
i > 5ϵ.

2. Second, for all i in {1, . . . , c}, we claim that i /∈ I5ϵ. To this end, we show that for all

p, ∆p
i ≤ 5ϵ.

We start with the observation that µ1
i ∈ (d− ϵ, d], which implies that ∆1

i = d− µ1
i ≤ ϵ.

Now, it follows from Fact A.1 in Appendix A.3 that for any i ∈ [K] and p ∈ [M ],

|∆p
i −∆1

i | ≤ 2ϵ. Therefore, we have ∆p
i ≤ 3ϵ for all p, which implies that any i ∈ [c]

cannot be in I5ϵ.

A.7.2 Extended results

Here, we present comprehensive results from the simulations we performed.
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(a) |I5ϵ| = 9 (b) |I5ϵ| = 8 (c) |I5ϵ| = 7

(d) |I5ϵ| = 6 (e) |I5ϵ| = 5 (f) |I5ϵ| = 4

(g) |I5ϵ| = 3 (h) |I5ϵ| = 2 (i) |I5ϵ| = 1

(j) |I5ϵ| = 0

Figure A.1. Compares the average performance of RobustAgg-Adapted(0.15),
Ind-UCB, and Naive-Agg on randomly generated Bernoulli 0.15-MPMAB problem
instances with K = 10 and M = 20. The x-axis shows a horizon of T = 100, 000 rounds,
and the y-axis shows the cumulative collective regret of the players.

139



(a) |I5ϵ| = 9 (b) |I5ϵ| = 8 (c) |I5ϵ| = 7

(d) |I5ϵ| = 6 (e) |I5ϵ| = 5 (f) |I5ϵ| = 4

(g) |I5ϵ| = 3 (h) |I5ϵ| = 2 (i) |I5ϵ| = 1

(j) |I5ϵ| = 0

Figure A.2. Compares the average performance of RobustAgg-Adapted(0.15) and
Ind-UCB on randomly generated Bernoulli 0.15-MPMAB problem instances with K = 10
and M ∈ {5, 10, 20}. The x-axis shows different values of M , and the y-axis shows the
cumulative collective regret of the players after 100, 000 rounds.
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Experiment 1.

Recall that for each v ∈ {0, 1, 2, . . . , 9}, we generated 30 Bernoulli 0.15-MPMAB

problem instances such that |I5ϵ| = v. Figure A.1 compares the average cumulative

collective regrets of the three algorithms in a horizon of 100, 000 rounds over instances

with different values of |I5ϵ|:

• Notice that RobustAgg-Adapted(0.15) outperforms both baseline algorithms when

|I5ϵ| ∈ [2, 8], as shown in Figures A.1b, A.1c, . . ., A.1h, especially when |I5ϵ| is large.

• Figure A.1a shows that when |I5ϵ| = 9—i.e., when one arm is optimal for all players and

the other arms are all subpar arms—Naive-Agg and RobustAgg-Adapted(0.15)

perform much better than Ind-UCB with little difference between themselves. However,

note that as long as there are more than one “competitive” arms—e.g., in Figure A.1b

when |IC5ϵ| = 2—the collective regret of Naive-Agg can easily be nearly linear in the

number of rounds.

• Figure A.1i and Figure A.1j demonstrate that when there are very few arms or even

no arm that is amenable to data aggregation, RobustAgg-Adapted(0.15) has perfor-

mance that is still on par with that of Ind-UCB.

Experiment 2.

Recall that for each M ∈ {5, 10, 20} and v ∈ {0, 1, 2, . . . , 9}, we generated 30

Bernoulli 0.15-MPMAB problem instances with M players such that |I5ϵ| = v. Figure A.2

shows and compares the average collective regrets of RobustAgg-Adapted(0.15) and

Ind-UCB after 100, 000 rounds in problem instances with M = 5, 10, and 20, and in each

subfigure, |I5ϵ| takes a different value.

Observe that when |I5ϵ| is large (e.g., in Figures A.2a, A.2b,. . ., A.2e), the collective

regret of RobustAgg-Adapted(0.15) is less sensitive to the number of players M ,

in comparison with Ind-UCB. Especially, in the extreme case when |I5ϵ| = 9—i.e.,
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all suboptimal arms are subpar arms—Figure A.2a shows that the collective regret of

RobustAgg-Adapted(0.15) has negligible dependence on M .

In conclusion, our empirical evaluation validate our theoretical results in Section 2.3.

A.8 Analytical Solution to λ∗

We first present the following proposition simliar to the results in [19, Section 6

thereof]. The original solution in [19] has a min(1, ·) operation in the second case; we

slightly simplify that result by showing that this operation is unnecessary.4

Proposition A.19. Suppose β ∈ (0, 1). Define function

f(α) = 2B

√(
α2

β
+

(1− α)2
1− β

)
+ 2(1− α)A,

Then, α∗ = argminα∈[0,1] f(α) has the following form:

α∗ =


1 β ≥ B2

A2 ,

β

(
1 + 1−β√

B2

A2 −β(1−β)

)
β < B2

A2 .

Observe that when β < B2

A2 , B2

A2 − β(1− β) > 0, so the expression in the second case

is well defined.

Proof. First, observe that f is a strictly convex function, and therefore has at most one

stationary point in R; and if it exists, it must be f ’s global minimum.

Second, we study the monotonicity property of f in R. To this end, we calculate
4In [19]’s notation, this can also be seen directly by observing that when mT ≥ D2, v = mT

mT+mS
·(

1 + mS√
D2(mS+mT )−mSmT

)
≤ mT

mT+mS
· (1 + mS

mT
) = 1.

142



α0, the stationary point of f . We have

f ′(α) = 2B

α
β
− 1−α

1−β√
α2

β
+ (1−α)2

1−β

− 2A

By algebraic calculations, f ′(α) = 0 is equivalent to

α− β
β(1− β)

=
A

B

√
α2 − 2βα + 1

β(1− β)
.

This yields the following quadratic equation:

(
B2

A2
− β(1− β)

)
α2 − 2β

(
B2

A2
− β(1− β)

)
α + β2

(
B2

A2
− (1− β)

)
= 0,

with the constraint that α > β. The discriminant of the above quadratic equation is

∆ = 4β2(1− β)2(B2

A2 − β(1− β)). If ∆ ≥ 0, the stationary point is

α0 =
2β(B

2

A2 − β(1− β)) +
√
∆

2(B
2

A2 − β(1− β))
= β

1 +
1− β√

B2

A2 − β(1− β)


We now consider two cases:

1. If β(1 − β) > B2

A2 , it can be checked that ∆ < 0, and consequently f ′(α) < 0 for all

α ∈ R, i.e., f is monotonically decreasing in R.

2. β(1− β) ≤ B2

A2 , we have that f is monotonically decreasing in (−∞, α0], and monotoni-

cally increasing in [α0,+∞).

We are now ready to calculate α∗ = argminα∈[0,1] f(α).

1. If β(1− β) > B2

A2 , as f is monotonically decreasing in R, α∗ = 1.

2. If β(1 − β) ≤ B2

A2 and β > B2

A2 , it can be checked that α0 ≥ 1. As f is monotonically

decreasing in (−∞, α0] ⊃ [0, 1], we also have α∗ = 1.
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3. If β ≤ B2

A2 , α0 ∈ [0, 1]. Therefore, α∗ = α0 = β

(
1 + 1−β√

B2

A2 −β(1−β)

)
.

In summary, we have the expression of α∗ as desired.

Algorithm 1’s line 9 computes

λ∗ = argmin
λ∈[0,1]

8

√
13(lnT )[

λ2

npi (t− 1)
+

(1− λ)2

mp
i (t− 1)

] + (1− λ)ϵ;

we now use Proposition A.19 to give its analytical form. For notational simplicity, let

n = npi (t− 1) and m = mp
i (t− 1). Applying Proposition A.19 with A = ϵ

2
, B = 4

√
13(lnT )
n+m

,

and β = n
n+m

, we have

λ∗ =


1 ϵ > 0 and n ≥ 832(lnT )

ϵ2
,

n
n+m

(
1 + ϵm

√
1

832(lnT )(n+m)−ϵ2nm

)
otherwise.
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Appendix B

Supplementary Material for Chapter 3

B.1 Basic Definitions and Facts

In this section, we revisit and introduce a few basic definitions, facts and additional

notations that are useful in our proofs.

Definition B.1 (Constants used in the analysis). In the analysis, we set

c1 = 40, c2 = 4

to be the constants used in Algorithm 2.1

Definition B.2 (Number of pulls). Recall that

npi (t) =
∑
s≤t

1 {p ∈ Ps, ips = i}

is the number of pulls of arm i by player p after t rounds. We define

ni(t) =
∑
p∈[M ]

npi (t)

1If we choose c1 to some other positive number, we can still show guarantees similar to Theorems 3.1
and 3.2, except that I10ϵ needs to be changed to I

O
(√

1
c1

ϵ

)—the analysis of case (A1) needs to be changed

accordingly. On the other hand, it is also possible to change c2 to any constant > 1 and establish similar
regret guarantees, by tightening the exponents of the concentration inequalities (Corollaries B.28 and B.30)
and Lemma B.70. We leave the details to interested readers.
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to be the total of number of pulls of arm i by all the players after t rounds.

Definition B.3 (Individual mean estimate). For any i ∈ [K], p ∈ [M ], and t ∈ [T ] ∪ {0},

let

ind-µ̂pi (t) =
1

npi (t) ∨ 1

∑
s≤t

1 {p ∈ Ps, ips = i} rps

be the empirical mean computed for arm i using player p’s own data from the first t rounds.

Definition B.4. Define

ind-varpi (t) =
4

npi (t) ∨ 1
.

Remark B.5 (mean and variance of the individual posteriors). By the construction of

Algorithm 2, we have that, in any round t ∈ [T ], for any active player p ∈ Pt and arm i,

ind-µ̂pi (t − 1) and ind-varpi (t − 1) are the mean and variance of the individual posterior

associated with arm i and player p in round t, respectively.

Definition B.6 (Aggregate mean estimate). For any i ∈ [K] and t ∈ [T ] ∪ {0}, let

agg-µ̂i(t) =
1

ni(t) ∨ 1

∑
s≤t

∑
q:q∈Ps

1 {iqs = i} rqs + ϵ

be the empirical mean computed for arm i using all players’ data from the first t rounds,

offset by the dissimilarity parameter ϵ. Note that the definition of agg-µ̂i(t) does not depend

on the identity of a specific player p.

Definition B.7 (Most recent pull). In any round t ∈ [T ] ∪ {0}, for any player p ∈ [M ]

and arm i ∈ [K], we define

upi (t) =


max {s ≤ t : p ∈ Ps, ips = i} , npi (t) > 0

0, npi (t) = 0

to be the round in which player p most recently pulled arm i (including round t); we let
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upi (t) = 0 by convention if player p has not yet pulled arm i.

Definition B.8 (Aggregate mean estimate maintained by player p). For any t ∈ [T ]∪{0},

p ∈ [M ], and i ∈ [K], define

agg-µ̂pi (t) = agg-µ̂i(upi (t)).

Note that the superscript p differentiates this player-dependent aggregate mean estimate

from agg-µ̂i(t) in Definition B.6, which does not depend on any individual player.

Definition B.9 (Aggregate number of pulls maintained by player p). For any t ∈ [T ]∪{0},

p ∈ [M ], and i ∈ [K], define

mp
i (t) = ni(u

p
i (t))

to be the total number of pulls of arm i by all the players until the round in which player p

last pulled arm i.

Definition B.10. Define

agg-varpi (t) =
4

(mp
i (t)−M) ∨ 1

.

Remark B.11 (mean and variance of the aggregate posteriors). By the construction of

Algorithm 2, in any round t ∈ [T ], for any active player p ∈ Pt and arm i, we have that

agg-µ̂pi (t − 1) and agg-varpi (t − 1) are the mean and variance of the aggregate posterior

associated with arm i and player p in round t, respectively.

Definition B.12 (Filtration). Let {Ft}Tt=0 be a filtration such that

Ft = σ
(
{iqs, rqs : s ≤ t, q ∈ Ps}

)
is the σ-algebra generated by interactions of all players up until and including round t.
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Definition B.13. Let

Hp
i (t) =

{
npi (t− 1) ≥ 40 lnT

ϵ2
+ 2M

}

be the event that in round t, for arm i, player p uses the individual posterior distribution;

correspondingly, let

Hp
i (t) =

{
npi (t− 1) <

40 lnT

ϵ2
+ 2M

}
be the event that in round t, for arm i, player p uses the aggregate posterior distribution.

See lines 6 to 9 in Algorithm 2.

Remark B.14. With the above notations,

µ̂pi (t− 1) = agg-µ̂pi (t− 1) · 1(Hp
i (t)) + ind-µ̂pi (t− 1) · 1(Hp

i (t)),

and

varpi (t− 1) = agg-varpi (t− 1) · 1(Hp
i (t)) + ind-varpi (t− 1) · 1(Hp

i (t)).

Stopping times.

In our analysis, we will frequently use the following notions of stopping times:

Definition B.15. For any arm i ∈ [K] and k ∈ [TM ], let

τk(i) = min
{
T + 1,min

{
t : ni(t) ≥ k

}}

be the round in which arm i is pulled the k-th time by any player. Furthermore, as a

convention, let τ0(i) = 0.

Remark B.16. For any i ∈ [K] and k ∈ [TM ], τk(i) is a stopping time with respect to
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{Ft}Tt=0. Indeed, for any t ≤ T ,

{
τk(i) ≤ t

}
=

∑
s∈[t]

∑
p:p∈Ps

1 {ips = i} ≥ k

 ∈ Ft.
Definition B.17. For any arm i ∈ [K] and k ∈ [TM ], such that τk(i) ≤ T , let pk(i) be

the unique p ∈ [M ] such that ipτk(i) = i and

τk(i)−1∑
s=1

∑
q∈Ps

1 {iqs = i}+
∑

q∈Pτk(i):q≤p

1 {iqs = i} = k.

In words, pk(i) is the player that makes the k-th pull of arm i, where arm pulls within a

round are ordered by the indices of active players in that round.

Definition B.18. For any arm i ∈ [K], player p ∈ [M ], and k ∈ [T ], let

πk(i, p) = min
{
T + 1,min

{
t : npi (t) ≥ k

}}

be the round in which arm i is pulled the k-th time by player p. In addition, let π0(i, p) = 0

by convention.

Remark B.19. For any i ∈ [K] and k ∈ [T ], πk(i, p) is a stopping time with respect to

{Ft}Tt=0. Indeed, for any t ≤ T ,

{
πk(i, p) ≤ t

}
=

 ∑
s∈[t]:p∈Ps

1 {ips = i} ≥ k

 ∈ Ft.
The following property, namely, the invariant property, will also be useful for our

analysis.

Definition B.20 (Invariant property). We say that:
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1. a set of random variables
{
gt : t ∈ [T ]

}
satisfies the invariant property with respect to

arm i ∈ [K] and player p ∈ [M ], if gt stays constant/invariant between two consecutive

pulls of arm i by player p, i.e., for any s ∈ [T ] such that πs(i, p) ≤ T , gt is constant for

all t ∈ [πs−1(i, p) + 1, πs(i, p)]. In other words, for any s ∈ [T ] such that πs(i, p) ≤ T ,

gπs−1(i,p)+1 = gπs−1(i,p)+2 = . . . = gπs(i,p).

2. a set of random variables
{
fpt : t ∈ [T ], p ∈ [M ]

}
satisfies the invariant property with

respect to arm i ∈ [K], if for every player p ∈ [M ],
{
fpt : t ∈ [T ]

}
satisfy the invariant

property with respect to (i, p).

Example B.21. By the construction of Algorithm 2, in any round t, a player only updates

the posteriors associated with an arm if the player pulls the arm in round t (line 15). It

is easy to verify that for any arm i ∈ [K] and p ∈ [M ],
{
Hp
i (t) : t ∈ [T ]

}
satisfies the

invariant property with respect to (i, p). Specifically, for any s ∈ [T ] such that πs(i, p) ≤ T ,

Hp
i (πs−1(i, p) + 1) = Hp

i (πs−1(i, p) + 2) = . . . = Hp
i (πs(i, p)).

Consequently,
{
Hp
i (t) : t ∈ [T ], p ∈ [M ]

}
satisfies the invariant property with respect to i.

Example B.22. For any arm i ∈ [K] and any player p ∈ [M ],
{
npi (t− 1) : t ∈ [T ]

}
and

{
mp
i (t− 1) : t ∈ [T ]

}
both satisfy the invariant property with respect to (i, p) (see

Definition B.2 and Definition B.9, respectively). Specifically, for any player p and any

s ∈ [T ] such that πs(i, p) ≤ T ,

npi (πs−1(i, p)) = npi (πs−1(i, p) + 1) = . . . = npi (πs(i, p)− 1) = s− 1,

mp
i (πs−1(i, p)) = mp

i (πs−1(i, p) + 1) = . . . = mp
i (πs(i, p)− 1) = ni(πs−1(i, p))

However,
{
npi (t) : t ∈ [T ]

}
and

{
mp
i (t) : t ∈ [T ]

}
do not necessarily satisfy the
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invariant property with respect to i.

Similarly, the sets
{
ind-µ̂pi (t− 1) : t ∈ [T ]

}
,
{
ind-varpi (t− 1) : t ∈ [T ]

}
,{

agg-µ̂pi (t− 1) : t ∈ [T ]
}
,
{
agg-varpi (t− 1) : t ∈ [T ]

}
all satisfy the invariant property with

respect to (i, p).

Example B.23. For any arm i ∈ [K] and any player p ∈ [M ],
{
µ̂pi (t− 1) : t ∈ [T ]

}
satisfy the invariant property with respect to (i, p). This follows from Eq. (B.14) and the

above two examples that

{
ind-µ̂pi (t− 1) : t ∈ [T ]

}
,
{
agg-µ̂pi (t− 1) : t ∈ [T ]

}
, and

{
Hp
i (t) : t ∈ [T ]

}
all satisfy the invariant property with respect to (i, p).

Following a similar reasoning,
{
varpi (t− 1) : t ∈ [T ]

}
satisfy the invariant property

with respect to (i, p).

Facts about Subpar Arms.

We now present some facts about subpar arms.

Fact B.24 (Properties of subpar arms, see also Fact A.2). The following are true:

1. for any i ∈ [K] and p, q ∈ [M ],
∣∣∆p

i −∆q
i

∣∣ ≤ 2ϵ (see Fact A.1);

2. For any i ∈ I10ϵ and p ∈ [M ], ∆p
i > 8ϵ, which means that ∆min

i > 8ϵ.

3.
∣∣IC2ϵ∣∣ ≥ 1;

4. Let ∆max
i = maxp∈[M ]∆

p
i . For any i ∈ I10ϵ ⊆ I5ϵ, ∆max

i ≤ 2∆min
i ; furthermore,

1
∆min

i
≤ 2

M

∑
p∈[M ]

1
∆p

i
(see Fact A.2).

Proof. For item 2, by the definition of I10ϵ, there exists p such that ∆p
i > 10ϵ. Then, for

all q ∈ [M ], we have ∆q
i > 8ϵ by item 1.

For item 3, using a similar argument, we have, for each i ∈ I2ϵ and p ∈ [M ], ∆p
i > 0.

Let j be an optimal for player 1 such that ∆p
j = 0. Then j /∈ I2ϵ.
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Additional notations.

• Denote by Φ(x) =
∫ x
−∞

1√
2π
e−

z2

2 dz the cumulative distribution function (CDF) of the

standard Gaussian distribution.

• Let Φ(x) = 1− Φ(x) =
∫∞
x

1√
2π
e−

z2

2 dz denote the complementary CDF of the standard

Gaussian distribution.

• Denote by (z)+ = z ∨ 0.

• For any arm i ∈ [K], player p ∈ [M ] and t ∈ [T ] ∪ {0}, let

npi (t) := npi (t) ∨ 1,

and

mp
i (t) := (mp

i (t)−M) ∨ 1.

B.2 Concentration Bounds

B.2.1 Novel concentration inequality for multi-task data aggre-
gation at random stopping time τk’s

We begin by introducing the following definition.

Definition B.25 (Mixture expected reward at t). For any arm i ∈ [K] and t ∈ [T ], define

µ̃i(t) =
1

ni(t) ∨ 1

∑
s≤t

∑
q∈Ps

1 {iqs = i}µqi + ϵ

to be the ϵ-offset mixture expected reward of arm i up to round t.

In what follows, we will consider µ̃i(τk(i)) for any i ∈ [K] and k ∈ [TM ], where the

definition of τk(i) can be found in Definition B.15.
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Lemma B.26. For any arm i ∈ [K] and k ∈ [TM ], denote by τk = τk(i). If τk ≤ T , then

for every player p ∈ [M ], we have

agg-µ̂i(τk)− µpi ≤ agg-µ̂i(τk)− µ̃i(τk) + 2ϵ; and

µpi − agg-µ̂i(τk) ≤ µ̃i(τk)− agg-µ̂i(τk).

Proof. For every t ∈ [T ], observe that

µ̃i(t) =
1

ni(t) ∨ 1

∑
s≤t

∑
q∈Ps:
iqs=i

µqi + ϵ =
∑
q∈[M ]

nqi (t) · µ
q
i

ni(t) ∨ 1
+ ϵ.

It can be easily verified that, if ni(t) > 0, for every player p ∈ [M ],

µ̃i(t)− µpi ≤ 2ϵ and µpi − µ̃i(t) ≤ 0,

where we note that the asymmetry comes from the additive term ϵ in µ̃i(t). Therefore, for

k ∈ [TM ], if τk ≤ T , then ni(τk) ≥ k > 0 and we have

µ̃i(τk)− µpi ≤ 2ϵ and µpi − µ̃i(τk) ≤ 0.

It then follows that, for every player p ∈ [M ],

agg-µ̂i(τk)− µpi ≤ agg-µ̂i(τk)− µ̃i(τk) + 2ϵ, and

µpi − agg-µ̂i(τk) ≤ µ̃i(τk)− agg-µ̂i(τk).

We are now ready to present Lemma B.27, our novel concentration bound (see also

Lemma 3.8).
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Lemma B.27. For any arm i ∈ [K] and k ∈ [TM ] ∪ {0}, denote by τk = τk(i); for

δ ∈ (0, 1], we have

Pr

 {τk = T + 1}∪

{τk ≤ T} ∩

∀p ∈ [M ], agg-µ̂i(τk)− µpi ≤

√
2 ln

(
2
δ

)(
ni(τk)−M

)
∨ 1

+ 2ϵ



 > 1− δ;

(B.1)

Pr

 {τk = T + 1}∪

{τk ≤ T} ∩

∀p ∈ [M ], µpi − agg-µ̂i(τk) ≤

√
2 ln

(
2
δ

)(
ni(τk)−M

)
∨ 1



 > 1− δ.

(B.2)

The following corollary is an equivalent form of Equation (B.2):

Corollary B.28. For any arm i ∈ [K] and k ∈ [TM ] ∪ {0}, denote by τk = τk(i).

Equivalently, for any z ≥ 0, we have

Pr

(τk ≤ T ) ∧

∃p ∈ [M ], µpi − agg-µ̂i(τk) ≥ z

√
4

(ni(τk)−M) ∨ 1


 ≤ 2e−2z2 .

(B.3)

Proof of Corollary B.28. If z ≤
√

1
2
ln 2, Equation (B.3) holds trivially as 2e−2z2 ≥ 1.

Otherwise z >
√

1
2
ln 2. In this case, let δ = 2e−2z2 ∈ (0, 1] in Equation (B.2), and using

De Morgan’s law, we also obtain Equation (B.3).
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Proof of Lemma B.27. Fix any arm i ∈ [K]. For k = 0, we have τ0 = 0; both Eq. (B.1)

and Eq. (B.2) hold trivially because for all p ∈ [M ] and δ ∈ (0, 1],
∣∣agg-µ̂i(τ0)− µpi ∣∣ ≤ 1 ≤

√
2 ln 2 ≤

√
2 ln(2

δ
).

We now focus on k ∈ [TM ]. By Lemma B.26, it suffices to show that

Pr

 {τk = T + 1}∪

{τk ≤ T} ∩

agg-µ̂i(τk)− µ̃i(τk) ≤

√
2 ln

(
2
δ

)(
ni(τk)−M

)
∨ 1



 > 1− δ; and,

(B.4)

Pr

 {τk = T + 1}∪

{τk ≤ T} ∩

µ̃i(τk)− agg-µ̂i(τk) ≤

√
2 ln

(
2
δ

)(
ni(τk)−M

)
∨ 1



 > 1− δ.

To avoid redundancy, we only prove Eq. (B.4); the other inequality follows by

symmetry.

Now, for t ∈ [T ]∪{0}, consider Zt =
∑t

s=1

∑
p∈Ps

1 {ips = i} (rps−µ
p
i ). Furthermore,

for t ∈ [T ] ∪ {0} and λ > 0, let

wt(λ) = exp

(
λZt − ni(t)

λ2

8

)
.

We now show that
{
wt(λ)

}T
t=0

is a nonnegative supermartingale with respect to {Ft}Tt=0

for all λ > 0. Since E
[∣∣wt(λ)∣∣] <∞ and wt(λ) ≥ 0 for all t ∈ [T ]∪{0}, it suffices to show
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that, for all t ∈ [T ],

E
[
wt(λ) | Ft−1

]
=E

exp
∑
s∈[t]

∑
p∈Ps

1 {ips = i}

(
λ(rps − µ

p
i )−

λ2

8

) | Ft−1



=E

 exp

 ∑
s∈[t−1]

∑
p∈Ps

1 {ips = i}

(
λ(rps − µ

p
i )−

λ2

8

) ·

exp

∑
p∈Pt

1
{
ipt = i

}(
λ(rpt − µ

p
i )−

λ2

8

) | Ft−1


=exp

 ∑
s∈[t−1]

∑
p∈Ps

1 {ips = i}

(
λ(rps − µ

p
i )−

λ2

8

) ·
E

exp
∑
p∈Pt

1
{
ipt = i

}(
λ(rpt − µ

p
i )−

λ2

8

) | Ft−1


=wt−1(λ) · E

exp
λ∑

p∈Pt

1
{
ipt = i

}
(rpt − µ

p
i )

 exp

−∑
p∈Pt

1
{
ipt = i

} λ2
8

 | Ft−1


≤wt−1(λ),

where the last inequality uses the law of iterated expectation along with Hoeffding’s lemma,
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i.e.,

E

exp
λ∑

p∈Pt

1
{
ipt = i

}
(rpt − µ

p
i )

 · exp
−∑

p∈Pt

1
{
ipt = i

} λ2
8

 | Ft−1



≤E

E
exp

λ∑
p∈Pt

1
{
ipt = i

}
(rpt − µ

p
i )

 | Ft−1, (i
p
t )p∈Pt

 ·

exp

−∑
p∈Pt

1
{
ipt = i

} λ2
8

 | Ft−1



≤E

∏
p∈Pt

exp

λ2 ·
(
1
{
ipt = i

})2
8

 · exp
−∑

p∈Pt

1
{
ipt = i

} λ2
8

 | Ft−1

 ≤ 1

Recall from Remark B.16 that τk is a stopping time with respect to {Ft}Tt=0 and

τk ≤ T + 1 <∞ almost surely, it follows that, by the optional sampling theorem, for all

λ > 0,

E
[
1 {τk ≤ T} · wτk(λ)

]
≤ E

[
w0(λ)

]
= 1. (B.5)

Rewriting Eq. (B.5), we have

E

1 {τk ≤ T} · exp

(
λZτk − ni(τk)

λ2

8

) ≤ 1.
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It then follows that, by Markov’s inequality, for any δ > 0,

Pr

1 {τk ≤ T} · exp

(
λZτk − ni(τk)

λ2

8

)
≥ 1

δ



≤
E
[
1 {τk ≤ T} · exp

(
λZτk − ni(τk)λ

2

8

)]
1
δ

≤ δ;

therefore,

Pr

{τk ≤ T} ∩

exp

(
λZτk − ni(τk)

λ2

8

)
≥ 1

δ


 ≤ δ.

Rearranging the terms in the above inequality, we have, for any λ > 0,

Pr

{τk = T + 1} ∪

{τk ≤ T} ∩

{
1

ni(τk)
Zτk −

λ

8
<

ln
(
1
δ

)
ni(τk) · λ

}
 > 1− δ,

where we use the elementary fact that for sets A and B, ¬(A ∩B) = ¬A ∪ (A ∩ ¬B).

Choosing λ =

√
ln( 1

δ
)

k
and using the fact that ni(τk) ≥ k, we have

Pr

{τk = T + 1} ∪

{τk ≤ T} ∩

 1

ni(τk)
Zτk <

√
2 ln(1

δ
)

k



 > 1− δ;

it then follows that

Pr

{τk = T + 1} ∪

{τk ≤ T} ∩

 1

ni(τk)
Zτk <

√
2 ln(2

δ
)

k



 > 1− δ. (B.6)

We now consider two cases:
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1. ni(τk) ≤M . We have 1
ni(τk)

Zτk ≤ 1 <
√

2 ln( 2
δ
)

(ni(τk)−M)∨1 =
√

2 ln(2
δ
) trivially for δ ∈ (0, 1].

2. ni(τk) ≥M + 1. Since k ≥ ni(τk)−M , we have
√

2 ln( 2
δ
)

k
≤
√

2 ln( 2
δ
)

ni(τk)−M
=
√

2 ln( 2
δ
)

(ni(τk)−M)∨1 .

Eq. (B.4) then follows from Eq. (B.6) and the elementary fact that A ⊆ B if

(A ∩ C) ⊆ B and (A ∩ ¬C) ⊆ B. This completes the proof.

B.2.2 Other concentration bounds

Recall the definition of stopping times πk(i, p) for any arm i and player p (see

Definition B.18).

Lemma B.29. For any i ∈ [K], p ∈ [M ], k ∈ [T ] ∪ {0}, and δ ∈ (0, 1], we have

Pr

{πk(i, p) = T + 1
}
∪

{πk(i, p) ≤ T
}
∩


∣∣∣∣ind-µ̂pi (πk(i, p))− µpi ∣∣∣∣ ≤

√
2 ln

(
4
δ

)
npi (πk(i, p)) ∨ 1



 > 1− δ.

(B.7)

Corollary B.30. For any i ∈ [K], p ∈ [M ], k ∈ [T ] ∪ {0}, and z ≥ 0, we have

Pr

(πk(i, p) ≤ T
)
∧

∣∣∣∣µpi − ind-µ̂pi (πk(i, p))
∣∣∣∣ ≥ z

√
4

npi (πk(i, p)) ∨ 1


 ≤ 4e−2z2 . (B.8)

Proof of Corollary B.30. If z ≤
√

1
2
ln 4, Equation (B.8) holds trivially as 4e−2z2 ≥ 1.

Otherwise z >
√

1
2
ln 4. In this case, let δ = 4e−2z2 ∈ (0, 1] in Equation (B.7), and using

De Morgan’s law, we also obtain Equation (B.8).
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Proof of Lemma B.29. This proof is largely similar to the one for Lemma B.27. Therefore,

we omit some details here to avoid redundancy. See the proof of Lemma B.27 for full

details.

Let us fix any arm i ∈ [K] and player p ∈ [M ]. Throughout this proof, to ease the

exposition, we use πk to denote πk(i, p).

We first observe that when k = 0, we have πk = 0, ind-µ̂pi (0) = 0, and npi (0) = 0. It

follows that
∣∣∣∣ind-µ̂pi (πk)− µ

p
i

∣∣∣∣ ≤ 1 ≤
√

2 ln
(
4
δ

)
trivially.

It then suffices to only consider the case when k ∈ [T ]. Note that npi (πk) = k ≥ 1.

We will show that

Pr

{πk = T + 1} ∪

{πk ≤ T} ∩

ind-µ̂pi (πk)− µ
p
i ≤

√
2 ln

(
2
δ

)
npi (πk)



 > 1− δ. (B.9)

For t ∈ [T ]∪{0}, let Xt =
∑

s∈[t] 1 {p ∈ Ps, ips = i} (rps −µ
p
i ); and for λ > 0, further

define ξt(λ) = exp
(
λXt − npi (t)λ

2

8

)
. It can be verified that

{
ξt(λ)

}T
t=0

is a nonnegative

supermartingale with respect to {Ft}Tt=0 for all λ > 0:

1. E
[∣∣ξt(λ)∣∣] <∞ for all t ∈ [T ] ∪ {0};

2. ξt(λ) ≥ 0 for all t ∈ [T ] ∪ {0};

3. E
[
ξt(λ) | Ft−1

]
≤ ξt−1(λ) for all t ∈ [T ].

160



Item 3 is true because

E
[
ξt(λ) | Ft−1

]
= exp

 t−1∑
s=1

1 {p ∈ Ps, ips = i}

(
λ(rps − µ

p
i )−

λ2

8

) ·
E

exp
1{p ∈ Pt, ipt = i

}(
λ(rpt − µ

p
i )−

λ2

8

) | Ft−1


= ξt−1(λ) · E

 exp
(
λ · 1

{
p ∈ Pt, ipt = i

}
(rpt − µ

p
i )
)
·

exp

(
−1
{
p ∈ Pt, ipt = i

} λ2
8

)
| Ft−1


= ξt−1(λ) · E

E [exp(λ · 1{p ∈ Pt, ipt = i
}
(rpt − µ

p
i )
)
| Ft−1, i

p
t

]
·

exp

(
−1
{
p ∈ Pt, ipt = i

} λ2
8

)
| Ft−1


≤ ξt−1(λ),

where we use the law of total expectation, the observation that ξt−1(λ) is Ft−1-measurable,

and Hoeffding’s Lemma.

Recall from Remark B.19 that πk is a stopping time with respect to {Ft}Tt=0 and

πk ≤ T + 1 <∞ almost surely. Then, by the optional sampling theorem, for all λ > 0,

E
[
1 {πk ≤ T} · ξπk(λ)

]
≤ E

[
ξ0(λ)

]
= 1. (B.10)
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In other words,

E

1 {πk ≤ T} · exp

(
λXπk − n

p
i (πk)

λ2

8

) ≤ 1.

By Markov’s inequality, we have

Pr

1 {πk ≤ T} · exp

(
λXπk − n

p
i (πk)

λ2

8

)
≥ 1

δ

 ≤ δ;

and thus,

Pr

{πk ≤ T} ∩

exp

(
λXπk − n

p
i (πk)

λ2

8

)
≥ 1

δ


 ≤ δ.

Using the elementary fact that for sets A and B, ¬(A ∩B) = ¬A ∪ (A ∩ ¬B), we

have, for any λ > 0,

Pr

{πk = T + 1} ∪

{πk ≤ T} ∩

{
1

npi (πk)
Xπk −

λ

8
<

ln
(
1
δ

)
npi (πk) · λ

}
 > 1− δ,

where we slightly rearrange the terms.

Choose λ =

√
ln( 1

δ
)

k
and observe that npi (πk) = k. It follows that

Pr

{πk = T + 1} ∪

{πk ≤ T} ∩

 1

npi (πk)
Xπk <

√
2 ln(1

δ
)

npi (πk)



 > 1− δ.

Eq. (B.9) follows trivially by the observation that ln(2
δ
) > ln(1

δ
). By symmetry, it
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can also be shown that the following inequality is true:

Pr

{πk = T + 1} ∪

{πk ≤ T} ∩

µpi − ind-µ̂pi (πk) ≤

√
2 ln

(
2
δ

)
npi (πk)



 > 1− δ.

The proof is then completed by applying the union bound.

Definition B.31. For any δ ∈ (0, 1], let

Eagg(δ) =

∀i ∈ [K],∀k ∈ [TM ] ∪ {0} ,
(
τk(i) = T + 1

)
∨

(τk(i) ≤ T
)
∧

∀p ∈ [M ], agg-µ̂i(τk(i))− µpi ≤

√
2 ln

(
2
δ

)(
ni(τk(i))−M

)
∨ 1

+ 2ϵ,

µpi − agg-µ̂i(τk(i)) ≤

√
2 ln

(
2
δ

)(
ni(τk(i))−M

)
∨ 1



,

and

Eind(δ) =

∀i ∈ [K],∀p ∈ [M ],∀k ∈ [T ] ∪ {0} ,
(
πk(i, p) = T + 1

)
∨

(πk(i, p) ≤ T
)
∧

∣∣∣∣ind-µ̂pi (πk(i, p))− µpi ∣∣∣∣ ≤
√

2 ln(4
δ
)

npi (πk(i, p)) ∨ 1



.

Furthermore, let

E(δ) = Eagg(δ) ∩ Eind(δ).
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Corollary B.32. For δ ∈ (0, 1],

Pr(E(δ)) ≥ 1− 6T 3δ.

Proof. By the union bound, Lemma B.27, Lemma B.29, and the assumption that T ≥

max(K,M), we have

Pr(Eagg(δ)) ≥ 1−K(TM + 1)(2δ) ≥ 1− 4T 3δ.

Pr(Eind(δ)) ≥ 1−KM(T + 1)δ ≥ 1− 2T 3δ.

The corollary then follows by the union bound.

B.2.3 Clean event

We now define our notion of “clean” event for each t.

Definition B.33. For any t ∈ [T + 1], let

Et =

∀p ∈ [M ],∀i ∈ [K],
∣∣∣ind-µ̂pi (t− 1)− µpi

∣∣∣ ≤√ 10 lnT

npi (t− 1)
,

agg-µ̂pi (t− 1)− µpi ≤
√

10 lnT

mp
i (t− 1)

+ 2ϵ,

µpi − agg-µ̂pi (t− 1) ≤
√

10 lnT

mp
i (t− 1)

,

where we recall that npi (t−1) = npi (t−1)∨1, mp
i (t−1) = (mp

i (t−1)−M)∨1. Furthermore,

let Et denote the complement of Et.

The following lemma shows that the clean event happens with high probability.
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Lemma B.34.

Pr(Et) > 1− 24

T 2
.

Proof. The proof of Lemma B.34 follows from Corollary B.32. It suffices to show that, for

any t, E( 4
T 5 ) ⊆ Et. To this end, we will show that if E( 4

T 5 ) happens, then Et must happen.

For any t ∈ [T + 1], i ∈ [K], p ∈ [M ], let u = upi (t − 1) be the round in which

player p last pulls arm i (see Definition B.7). In addition, let s = npi (u) ∈ ([T ] ∪ {0}) and

k = ni(u) ∈ ([TM ] ∪ {0}). Note that πs(i, p) = u ≤ T and τk(i) = u ≤ T .

It then follows by definition that,

ind-µ̂pi (t− 1) = ind-µ̂pi (πs(i, p)), npi (t− 1) = npi (πs(i, p));

agg-µ̂pi (t− 1) = agg-µ̂i(τk(i)), mp
i (t− 1) = ni(τk(p)).

The proof is then completed straightforwardly by the definition of E( 4
T 5 ), which indicates

that for all s ∈ [T ] ∪ {0} and k ∈ [TM ] ∪ {0},

∣∣∣ind-µ̂pi (πs(i, p))− µ
p
i

∣∣∣ ≤√ 10 lnT

npi (πs(i, p)) ∨ 1
,

agg-µ̂i(τk(i))− µpi ≤
√

10 lnT(
ni(τk(p))−M

)
∨ 1

+ 2ϵ, and

µpi − agg-µ̂i(τk(i)) ≤
√

10 lnT(
ni(τk(p))−M

)
∨ 1

.

B.3 Proofs of Theorem 3.1 and Theorem 3.2

The following lemmas are central to our proofs of Theorem 3.1 and Theorem 3.2.

In Section B.3.1, we prove Lemma B.35. In Section B.3.2, we prove Lemma B.36. We then

conclude our proofs in Section B.3.3.
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(a) Subpar arms (Section B.3.1) (b) Non-subpar arms (Section B.3.2)

Figure B.1. Illustrates the case division rules used in the proofs of Theorem 3.1 and
Theorem 3.2, respectively. Formal definitions of the notions used in the figure can be
found in Section B.1, Section B.3.1 and Section B.3.2.

Lemma B.35 (Subpar arms). For any arm i ∈ I10ϵ,

E
[
ni(T )

]
≤ O

(
lnT

(∆min
i )2

+M

)
,

where we recall that ∆min
i = minp∈[M ] ∆

p
i .

Lemma B.36 (Non-subpar arms). For any arm i ∈ IC10ϵ and player p ∈ [M ],

E
[
npi (T )

]
≤ O

(
lnT

(∆p
i )

2
+M

)
.

Our analysis in the following Section B.3.1 and Section B.3.2 involve various proofs

by cases. Figure B.1 provides an overview of the case division rules used in our analysis.

B.3.1 Subpar arms

In this section, we prove Lemma B.35.

Fix any subpar arm i ∈ I10ϵ and an arm † ∈ IC2ϵ. See Fact B.24 for the existence of

such an arm. We first consider the following definitions.
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Definition B.37. For any arm i ∈ I10ϵ and any player p, let

δpi = µp† − µ
p
i > 0.

Fact B.38. For any i ∈ I10ϵ and player p ∈ [M ],

3

4
∆p
i < δpi ≤ ∆p

i .

Proof. For any player p ∈ [M ], since † ∈ IC2ϵ, we have ∆p
† = µp∗ − µ

p
† ≤ 2ϵ by the definition

of IC2ϵ. Furthermore, for any i ∈ I10ϵ, ∆p
i = µp∗ − µ

p
i > 8ϵ. Therefore, we have

1. δpi = µp† − µ
p
i ≤ µp∗ − µ

p
i = ∆p

i ;

2. Note that
µp∗−µp†
µp∗−µpi

≤ 2ϵ
8ϵ
≤ 1

4
. This implies that δpi

∆p
i
= 1− µp∗−µp†

µp∗−µpi
≥ 3

4
.

Definition B.39. For any player p, let ypi = µpi +
1
2
δpi be a threshold; in any round t,

further define

Qp
i (t) =

{
θpi (t) > ypi

}
to be the event that the sample θpi (t) from the posterior distribution associated with arm i and

player p in round t is greater than the threshold ypi . In addition, let Qp
i (t) =

{
θpi (t) ≤ ypi

}
.

Subpar Arms—Decomposition

We can then decompose E
[
ni(T )

]
as follows.
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E
[
ni(T )

]
= E

∑
t∈[T ]

∑
p∈Pt

1
{
ipt = i

}
≤ E

∑
t∈[T ]

∑
p∈Pt

1
{
ipt = i, Qp

i (t), Et
}+ E

∑
t∈[T ]

∑
p∈Pt

1
{
ipt = i, Qp

i (t), Et
}+

E

∑
t∈[T ]

∑
p∈Pt

1
{
Et
}

≤ E

∑
t∈[T ]

∑
p∈Pt

1
{
ipt = i, Qp

i (t), Et
}

︸ ︷︷ ︸
(A)

+E

∑
t∈[T ]

∑
p∈Pt

1
{
ipt = i, Qp

i (t), Et
}

︸ ︷︷ ︸
(B)

+O (1) , (B.11)

where the second inequality follows from Lemma B.34. In the following two subsections,

we bound term (A) and (B), respectively.

Bounding Term (A)

The following lemma provides an upper bound on term (A).

Lemma B.40.

(A) ≤ O
(

lnT

(∆min
i )2

+M

)
, (B.12)

where we recall that ∆min
i = minp∈[M ] ∆

p
i .

Proof of Lemma B.40. Recall the definition of Et in Definition B.33 and the definition of

Hp
i (t) in Definition B.13, we have

(A) =
∑
t∈[T ]

∑
p∈Pt

E
[
1
{
ipt = i, Qp

i (t), Et, H
p
i (t)

}]
︸ ︷︷ ︸

(A1)

+
∑
t∈[T ]

∑
p∈Pt

E
[
1
{
ipt = i, Qp

i (t), Et, H
p
i (t)

}]
︸ ︷︷ ︸

(A2)

.
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We first consider term (A1). Recall that, for simplicity, we let npi (t − 1) denote

npi (t− 1) ∨ 1; also recall that Φ(·) is the complementary CDF of the standard Gaussian

distribution, and (z)+ = z ∨ 0. We have

(A1) ≤
∑
t∈[T ]

∑
p∈Pt

E
[
1
{
Qp
i (t), Et, H

p
i (t)

}]
=
∑
t∈[T ]

∑
p∈Pt

E
[
E
[
1
{
Qp
i (t), Et, H

p
i (t)

}
| Ft−1

]]

=
∑
t∈[T ]

∑
p∈Pt

E
[
1
{
Et, Hp

i (t)
}
· E
[
1
{
θpi (t) > ypi

}
| Ft−1

]]

=
∑
t∈[T ]

∑
p∈Pt

E

[
1
{
Et, Hp

i (t)
}
· Φ
(√

npi (t− 1)/4
(
ypi − ind-µ̂pi (t− 1)

))]

≤
∑
t∈[T ]

∑
p∈Pt

E

1{Et, Hp
i (t)

}
· exp

(
−
npi (t− 1)(ypi − ind-µ̂pi (t− 1))2+

8

)
≤
∑
t∈[T ]

∑
p∈Pt

E

1{Et, Hp
i (t)

}
· exp

(
−
npi (t− 1)(µpi +

3
8
∆p
i − µ

p
i − 1

16
∆p
i )

2
+

8

)
≤
∑
t∈[T ]

∑
p∈Pt

E

1{Et, Hp
i (t)

}
· exp

(
−n

p
i (t− 1)(∆p

i )
2

8(16)

)
≤
∑
t∈[T ]

∑
p∈Pt

1

T 2
= O (1) .

where the first inequality drops the indicator 1
{
ipt = i

}
; the first equality uses the law of

total expectation; the second equality follows from the observation that Et and Hp
i (t) are

Ft−1-measurable; the third equality follows from the observation that when Hp
i (t) hap-

pens, E
[
1
{
θpi (t) > ypi

}
| Ft−1

]
= P

(
θpi (t) > ypi | Ft−1

)
= Φ

(
ypi −ind-µ̂pi (t−1)√

4/np
i (t−1)

)
; the second

inequality is from Lemma B.69 and that npi (t− 1) ≥ npi (t− 1); the third inequality follows

from the facts that when Et and Hp
i (t) happen,

1. npi (t− 1) ≥ npi (t− 1) ≥ 40 lnT
ϵ2
≥ 2560 lnT

(∆p
i )

2 (see Fact B.24),
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2. ind-µ̂pi (t− 1) ≤ µpi +
√

10 lnT

np
i (t−1)

≤ µpi +
1
16
∆p
i (see Definition B.33), and

3. ypi = µpi +
1
2
δpi > µpi +

3
8
∆p
i (see Fact B.38);

the fourth inequality is by algebra; and the fifth inequality again uses the observation that

when Hp
i (t) happens, npi (t− 1) ≥ 2560 lnT

(∆p
i )

2 .

We now turn our attention to term (A2). With foresight, let l = 10240 lnT

(∆min
i )

2 +M . We

have

(A2) =
∑
t∈[T ]

∑
p∈Pt

E
[
1
{
ipt = i, Qp

i (t), Et, H
p
i (t)

}]

≤
∑
t∈[T ]

∑
p∈Pt

E
[
1
{
ipt = i, Qp

i (t), Et, H
p
i (t),m

p
i (t− 1) < l

}]

+
∑
t∈[T ]

∑
p∈Pt

E
[
1
{
ipt = i, Qp

i (t), Et, H
p
i (t),m

p
i (t− 1) ≥ l

}]

≤ (l +M) +
∑
t∈[T ]

∑
p∈Pt

E
[
1
{
ipt = i, Qp

i (t), Et, H
p
i (t),m

p
i (t− 1) ≥ l

}]
. (B.13)

To see why Eq. (B.13) is true, it suffices to show that, with probability 1,

∑
t∈[T ]

∑
p∈Pt

1
{
ipt = i,mp

i (t− 1) < l
}
≤ l +M.

Indeed, let us define ι = min
{
t : ni(t) =

∑
s∈[t]

∑
p∈Ps

1 {ips = i} ≥ l
}

. The above summa-
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tion can be simplified as

T∑
t=1

∑
p∈Pt

1
{
ipt = i,mp

i (t− 1) < l
}

=
ι−1∑
t=1

∑
p∈Pt

1
{
ipt = i,mp

i (t− 1) < l
}
+

T∑
t=ι

∑
p∈Pt

1
{
ipt = i,mp

i (t− 1) < l
}

≤
ι−1∑
t=1

∑
p∈Pt

1
{
ipt = i

}
+
∑
p∈[M ]

∑
t≥ι:p∈Pt

1
{
ipt = i,mp

i (t− 1) < l
}

≤(l − 1) +M,

where the
∑

p∈[M ]

∑
t≥ι:p∈Pt

1
{
ipt = i,mp

i (t− 1) < l
}
≤M follows from the obser-

vation that, once the total number of pulls of arm i by all players has reached l, any player

p cannot pull arm i more than once before the aggregate number of pulls of i maintained

by p is updated to a value ≥ l (see Definition B.9).

Remark B.41. Eq. (B.13) can also be deducted from the more general Lemma B.72 in

Section B.3.4, by taking fpt = 1 for all t, p.

Now, recall that we denote
(
mp
i (t− 1)−M

)
∨1 by mp

i (t−1). And again, recall that

Φ(·) is the complementary CDF of the standard Gaussian distribution, and (z)+ = z ∨ 0.
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It follows from Eq. (B.13) that

(A2) ≤ (l +M) +
∑
t∈[T ]

∑
p∈Pt

E

[
E
[
1
{
Qp
i (t), Et, H

p
i (t),m

p
i (t− 1) ≥ l

}
| Ft−1

]]

= (l +M) +
∑
t∈[T ]

∑
p∈Pt

E
[
1
{
Et, Hp

i (t),m
p
i (t− 1) ≥ l

}
E
[
1
{
θpi (t) > ypi

}
| Ft−1

]]

= (l +M) +
∑
t∈[T ]

∑
p∈Pt

E

[
1
{
Et, Hp

i (t),m
p
i (t− 1) ≥ l

}
·

Φ

(√
mp
i (t− 1)/4

(
ypi − agg-µ̂pi (t− 1)

))]

≤ (l +M) +
∑
t∈[T ]

∑
p∈Pt

E

1{Et, Hp
i (t),m

p
i (t− 1) ≥ l

}
·

exp

−mp
i (t− 1)

(
ypi − agg-µ̂pi (t− 1)

)2
+

8


≤ (l +M) +

∑
t∈[T ]

∑
p∈Pt

E

1{Et, Hp
i (t),m

p
i (t− 1) ≥ l

}
·

exp

−mp
i (t− 1)

(
µpi +

3
8
∆p
i − µ

p
i − 9

32
∆p
i

)2
+

8


≤ (l +M) +

∑
t∈[T ]

∑
p∈Pt

E

1{Et, Hp
i (t),m

p
i (t− 1) ≥ l

}
·

exp

−mp
i (t− 1)

(
∆min
i

)2
(8)(256)


≤ (l +M) +

∑
t∈[T ]

∑
p∈Pt

1

T 2

= O

 lnT(
∆min
i

)2 +M

 ,

where the first inequality is from Eq. (B.13), dropping the indicator 1
{
ipt = i

}
and using

the law of total expectation; the first equality follows from the observation that Et,
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Hp
i (t), and

{
mp
i (t− 1) ≥ l

}
are Ft−1-measurable; the second equality follows from the

observation that when Hp
i (t) happens, E

[
1
{
θpi (t) > ypi

}
| Ft−1

]
= P

(
θpi (t) > ypi | Ft−1

)
=

Φ

(
ypi −agg-µ̂pi (t−1)√

4/mp
i (t−1)

)
; the second inequality follows from Lemma B.69; the third inequality

uses the facts that

1. when
{
mp
i (t− 1) ≥ l

}
happens, mp

i (t− 1) ≥ mp
i (t− 1)−M ≥ l −M = 10240 lnT

(∆min
i )

2 ,

2. ypi = µpi +
1
2
δpi > µpi +

3
8
∆min
i (see Fact B.38), and

3. when Et happens, agg-µ̂pi (t−1) ≤ µpi+
√

10 lnT

mp
i (t−1)

+2ϵ < µpi+
1
32
∆min
i + 1

4
∆min
i = µpi+

9
32
∆min
i

(see Definition B.33 and Fact B.24);

the fourth inequality is by algebra; and the fifth inequality again uses the fact that when{
mp
i (t− 1) ≥ l

}
happens, mp

i (t− 1) ≥ mp
i (t− 1)−M ≥ 10240 lnT

(∆min
i )

2 .

In summary, we have

(A) ≤ (A1) + (A2) +O(1) ≤ O

 lnT(
∆min
i

)2 +M

 .

Bounding Term (B)

We now bound term (B) in Eq. (B.11).

Lemma B.42.

(B) ≤ O
(

lnT

(∆min
i )2

+M

)
.

Proof. Lemma B.42 follows from Lemmas B.45 and B.46, which we present shortly.

Consider the following definition.

Definition B.43. In any round t ∈ [T ], for any active player p ∈ Pt, define

ϕpi,t = Pr
(
θp†(t) > ypi | Ft−1

)
.
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Remark B.44. Recall that Φ(·) denotes the complementary CDF of the standard Gaussian

distribution; and recall npi (t− 1) = npi (t− 1) ∨ 1, and mp
i (t− 1) = (mp

i (t− 1)−M) ∨ 1.

ϕpi,t can be explicitly written as:

ϕpi,t =Φ

ypi − µ̂p†(t− 1)√
varp†(t− 1)

 (B.14)

=Φ

(
(ypi − ind-µ̂p†(t− 1))

√
np†(t− 1)/4

)
· 1
{
Hp

† (t)
}
+

Φ

(
(ypi − agg-µ̂p†(t− 1))

√
mp

†(t− 1)/4

)
· 1
{
Hp

† (t)
}
.

(B.15)

Proof of Remark B.44. We have

ϕpi,t =Pr
(
θp†(t) > ypi | µ̂

p
†(t− 1), varp†(t− 1)

)
=1− Pr

(
θp†(t) ≤ ypi | µ̂

p
†(t− 1), varp†(t− 1)

)
=1− Φ

ypi − µ̂p†(t− 1)√
varp†(t− 1)

 = Φ

ypi − µ̂p†(t− 1)√
varp†(t− 1)

 .

Eq. (B.15) now follows by observing that:

1. if Hp
† (t) happens, then µ̂p†(t− 1) = ind-µ̂p†(t− 1) and varp†(t− 1) = 4

np
†(t−1)∨1 ;

2. if Hp
† (t) happens, then µ̂p†(t− 1) = agg-µ̂p†(t− 1) and varp†(t− 1) = 4

(mp
†(t−1)−M)∨1 .

We now present the following lemma, which is inspired by a technique introduced

in the work of [4].
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Lemma B.45.

(B) ≤
∑
t∈[T ]

∑
p∈Pt

E

(1− ϕpi,t
ϕpi,t

)
1
{
ipt = †, Et

}
︸ ︷︷ ︸

(B∗)

.

Proof. In any round t and for any active player p ∈ Pt, consider

Pr
(
ipt = i, Qp

i (t), Et | Ft−1

)
=Pr

(
ipt = i, θpi (t) ≤ ypi | Ft−1

)
· 1 {Et}

≤Pr
(
ipt = † | Ft−1

)
·
Pr
(
θp†(t) ≤ ypi | Ft−1

)
Pr
(
θp†(t) > ypi | Ft−1

) · 1 {Et}
=

(
1− ϕpi,t
ϕpi,t

)
· Pr

(
ipt = † | Ft−1

)
· 1 {Et}

=

(
1− ϕpi,t
ϕpi,t

)
Pr
(
ipt = †, Et | Ft−1

)
, (B.16)

where the first equality follows from the definition of Qp
i (t) and that Et is Ft−1-

measurable; the first inequality uses Lemma B.74 with l = † and z = ypi ; the second

equality inequality is from the definition of ϕpi,t; and the last equality is again because Et is

Ft−1-measurable.
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Finally, we have

E
[
1
{
ipt = i, Qp

i (t), Et
}]

= E
[
Pr
(
ipt = i, Qp

i (t), Et | Ft−1

)]

≤ E

(1− ϕpi,t
ϕpi,t

)
Pr
(
ipt = †, Et | Ft−1

)
= E

E
(1− ϕpi,t

ϕpi,t

)
1
{
ipt = †, Et

}
| Ft−1




= E

(1− ϕpi,t
ϕpi,t

)
1
{
ipt = †, Et

} ,
where we use the law of total expectation and Eq. (B.16). The lemma follows by summing

over all t, p’s.

With foresight, let L = 2560 lnT

(∆min
i )

2 +M . We further decompose term (B∗) as follows.
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(B∗)

=
∑
t∈[T ]

∑
p∈Pt

E

(1− ϕpi,t
ϕpi,t

)
1
{
ipt = †, Et

}
=
∑
t∈[T ]

∑
p∈Pt

E

(1− ϕpi,t
ϕpi,t

)
1
{
ipt = †, Et, H

p
† (t)

}
︸ ︷︷ ︸

(b1)

+

∑
t∈[T ]

∑
p∈Pt

E

(1− ϕpi,t
ϕpi,t

)
1
{
ipt = †, Et, H

p
† (t)

}
︸ ︷︷ ︸

(b2)

,

=(b1) +
∑
t∈[T ]

∑
p∈Pt

E

(1− ϕpi,t
ϕpi,t

)
1
{
ipt = †, Et, H

p
† (t),m

p
†(t− 1) < L

}
︸ ︷︷ ︸

(b2.1)

+

∑
t∈[T ]

∑
p∈Pt

E

(1− ϕpi,t
ϕpi,t

)
1
{
ipt = †, Et, H

p
† (t),m

p
†(t− 1) ≥ L

}
︸ ︷︷ ︸

(b2.2)

.

(B.17)

where the inequality uses Lemma B.45.

Lemma B.46.

(B∗) ≤ O

 lnT(
∆min
i

)2 +M

 .

Proof. Lemma B.46 follows directly from Eq. (B.17) and the following Lemma B.47,

Lemma B.48 and Lemma B.52, which provide upper bounds on terms (b1), (b2.1) and

(b2.2), respectively.
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Lemma B.47 (Bounding term (b1)).

(b1) ≤ O (M) .

Proof of Lemma B.47. For any player p ∈ [M ] and t ∈ [T ], recall that np†(t − 1) =

np†(t− 1) ∨ 1 and (z)+ = z ∨ 0. When Et and Hp
† (t) happen, np†(t− 1) ≥ 40 lnT

ϵ2
=: Y ; we

have:

1− ϕpi,t

=Pr
(
θp†(t) ≤ ypi | Ft−1

)
=Φ

(
(ypi − ind-µ̂p†(t− 1))

√
np†(t− 1)/4

)

≤ exp

−np†(t− 1)(ind-µ̂p†(t− 1)− ypi )2+
8


≤ exp

(
−
np†(t− 1)(µp† − 1

4
∆p
i − µ

p
† +

3
8
∆p
i )

2
+

8

)

≤ exp

(
−
np†(t− 1)(∆p

i )
2

8(64)

)

≤ 1

T + 1
,

where the second equality uses Remark B.44; the first inequality uses Lemma B.69; the

second inequality follows from the observations that, when Et and Hp
† (t) happen:

1. np†(t− 1) ≥ np†(t− 1) ≥ Y = 40 lnT
ϵ2
≥ 2560 lnT

(∆p
i )

2 (see Fact B.38),

2. ind-µ̂p†(t− 1) ≥ µp† −
√

10 lnT

np
†(t−1)

≥ µp† − 1
4
∆p
i (see Definition B.33), and

3. ypi = µp† − 1
2
δpi < µp† − 3

8
∆p
i ;

the third inequality is by algebra; and the last inequality follows because, again, when

Hp
† (t) happens, np†(t− 1) ≥ Y = 40 lnT

ϵ2
≥ 2560 lnT

(∆p
i )

2 ≥ 1280 ln(T+1)
(∆p

i )
2 for T > 1.
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It follows that, when Et and Hp
† (t) happen, ϕpi,t ≥ T

T+1
and 1−ϕpi,t

ϕpi,t
≤ 1

T
. Hence,

(b1) ≤
∑
p∈[M ]

∑
t:p∈Pt

E

(1− ϕpi,t
ϕpi,t

)
1
{
Et, Hp

† (t)
} ≤M.

Lemma B.48 (Bounding term (b2.1)).

(b2.1) ≤ O

 lnT(
∆min
i

)2 +M

 .

The remark below is useful for proving Lemma B.48.

Remark B.49 (Invariant property). Recall from Example B.21 that

{
Hp

† (t) : t ∈ [T ], p ∈ [M ]
}

satisfies the invariant property with respect to †.

Moreover, the construction of Algorithm 2 enforces that
{
ϕpi,t : t ∈ [T ], p ∈ [M ]

}
satisfies the invariant property with respect to † (note that it does not necessarily satisfy

the invariant property with respect to i). Indeed, this follows from Eq. (B.14), along with

Example B.23 which shows that the posterior parameters,

{
(µ̂p†(t− 1), varp†(t− 1)) : t ∈ [T ], p ∈ [M ]

}
,

satisfy the invariant property with respect to †.

Combining the two observations above,

{(
1
ϕpi,t
− 1

)
1
{
Hp

† (t)
}
: t ∈ [T ], p ∈ [M ]

}
also satisfies the invariant property with respect to arm †.
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Proof of Lemma B.48. Proving Lemma B.48 requires more special care. Recall that

(b2.1) =
∑
t∈[T ]

∑
p∈Pt

E

(1− ϕpi,t
ϕpi,t

)
1
{
ipt = †, Et, H

p
† (t),m

p
†(t− 1) < L

}
≤
∑
t∈[T ]

∑
p∈Pt

E

(1− ϕpi,t
ϕpi,t

)
1
{
ipt = †, H

p
† (t),m

p
†(t− 1) < L

} .
Also recall the definition of stopping time τk(†) (Definition B.15), the round in which † is

pulled the k-th time by any player. To ease exposition, we abuse the notation and denote

τk(†) by τk. Similarly, let pk := pk(†) denote the player that issues the k-th pull of arm †

(recall Definition B.17).

Since

{(
1
ϕpi,t
− 1

)
1
{
Hp

† (t)
}
: t ∈ [T ], p ∈ [M ]

}
satisfies the invariant property

with respect to arm †, by Lemma B.72, we have

(b2.1)

≤
M∑
p=1

E

( 1

ϕpi,1
− 1

)
1
{
Hp

† (1)
}+

L−1∑
k=1

E

( 1

ϕpki,τk+1

− 1

)
1
{
τk ≤ T,Hp

† (τk + 1)
} ,
(B.18)

where we also use the linearity of expectations.

Since the variance of the aggregate posteriors are initialized as the constant c2 = 4

in RobustAgg-TS(ϵ), we have that
(

1
ϕpi,1
− 1

)
1
{
Hp

† (1)
}
≤ O (1) with probability 1.

Therefore,

M∑
p=1

E

( 1

ϕpi,1
− 1

)
1
{
Hp

† (1)
} ≤ O (M) . (B.19)

It then suffices to bound the second term in Eq. (B.18)—it follows straightforwardly from

Lemma B.50, which we present shortly, that the second term is bounded by O (L). It then
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follows from Eq. (B.18), Eq. (B.19), and Lemma B.50 that (b2.1) ≤ O
(

lnT

(∆min
i )

2 +M

)
.

Lemma B.50. For any k ∈ [TM ],

E

( 1

ϕpki,τk+1

− 1

)
1
{
τk ≤ T,Hp

† (τk + 1)
} ≤ O (1) ,

where we recall that τk = τk(†) and pk = pk(†) is the player that issues the k-th pull of arm

†.

Proof. Using Remark B.44, we observe that

ϕpki,τk+1 =

Φ(ypi − ind-µ̂p†(τk)
2

√(
np†(τk)

)
∨ 1

) · 1{Hp
† (τk + 1)

}

+

Φ(ypi − agg-µ̂p†(τk)
2

√(
mp

†(τk)−M
)
∨ 1

) · 1{Hp
† (τk + 1)

}
. (B.20)
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We have

E

( 1

ϕpki,τk+1

− 1

)
1
{
τk ≤ T,Hpk

† (τk + 1)
}

=E




1

Φ

(ypki − agg-µ̂pk† (τk)
)√((

mpk
† (τk)−M

)
∨ 1

)
/4

 − 1


·

1
{
τk ≤ T,Hpk

† (τk + 1)
}


≤E


1

Φ

((
µpk† − agg-µ̂†(τk)

)√((
n†(τk)−M

)
∨ 1
)
/4

)1 {τk ≤ T}

 , (B.21)

where the last inequality uses the observations that ypki ≤ µpk† , agg-µ̂pk† (τk) = agg-µ̂†(τk)

and mpk
† (τk) = n†(τk), as well as the monotonic increasing property of z 7→ 1

Φ(z)
.

Observe that, from Corollary B.28, for any z ≥ 1,

Pr

(τk ≤ T ) ∧

µpk† − agg-µ̂†(τk) ≥ z

√
4

(n†(τk)−M) ∨ 1




≤Pr

(τk ≤ T ) ∧

∃p ∈ [M ], µp† − agg-µ̂†(τk) ≥ z

√
4

(n†(τk)−M) ∨ 1




≤2e−2z2 ,
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Applying Lemma B.70 with X =
(
agg-µ̂†(τk)− µpk†

)√((
n†(τk)−M

)
∨ 1
)
/4 and

E = {τk ≤ T}, we conclude the proof.

Remark B.51. Note that it follows from our novel concentration inequality (Corol-

lary B.28) that

Pr

τk ≤ T, µp† − agg-µ̂†(τk) >

√
2 ln

(
2
δ

)(
n†(τk)−M

)
∨ 1

 < δ;

this tight bound enables us to bound Eq. (B.21) by O (1), which is essential to our proof of

Lemma B.50.

Since ni(τk) ≤ [k, k +M − 1], using the Azuma-Hoeffding inequality and the union

bound, one can obtain

Pr

τk ≤ T, µp† − agg-µ̂†(τk) > O

√ ln
(
M
δ

)(
n†(τk)−M

)
∨ 1


 < δ;

and using Freedman’s inequality (see, e.g., Lemma A.4), one can obtain

Pr

τk ≤ T, µp† − agg-µ̂†(τk) > O


√√√√ ln

(
lnT
δ

)
(
n†(τk)−M

)
∨ 1


 < δ.

However, naively combining the above bounds with Lemma B.70, one needs to set C1 in

Lemma B.70 to be O (M) or O (lnT ), which incurs extra (undesirable) O (M) or O (lnT )

factors for bounding Eq. (B.21).

Lemma B.52 (Bounding term (b2.2)).

(b2.2) ≤ O (M) .
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Proof of Lemma B.52. For any player p ∈ [M ] and t ∈ [T ], recall that mp
†(t − 1) =

(mp
†(t− 1)−M) ∨ 1 and (z)+ = z ∨ 0. When Et,

{
mp

†(t− 1) ≥ L
}

and Hp
† (t) happen,

1− ϕpi,t

=Pr
(
θp†(t) ≤ ypi | Ft−1

)
=Φ

(
(ypi − agg-µ̂p†(t− 1))

√
mp

†(t− 1)/4

)

≤ exp

−mp
†(t− 1)(agg-µ̂p†(t− 1)− ypi )2+

8


≤ exp

−mp
†(t− 1)(µp† − 1

4
∆p
i − µ

p
† +

3
8
∆p
i )

2
+

8


≤ exp

−mp
†(t− 1)(∆p

i )
2

8(64)


≤ 1

T + 1
,

where the second equality uses Remark B.44; the first inequality uses Lemma B.69; the

second inequality follows from the observations that, when Et,
{
mp

†(t− 1) ≥ L
}

and Hp
† (t)

happen:

1. mp
†(t− 1) ≥ mp

†(t− 1)−M ≥ L−M ≥ 2560 lnT
(∆p

i )
2 ,

2. agg-µ̂p†(t− 1) ≥ µp† −
√

10 lnT

mp
†(t−1)

≥ µp† − 1
4
∆p
i (see Definition B.33), and

3. ypi = µp† − 1
2
δpi < µp† − 3

8
∆p
i ;

the third inequality is by algebra; and the last inequality follows from the observation that

mp
†(t− 1) ≥ mp

†(t− 1)−M ≥ L−M ≥ 2560 lnT
(∆p

i )
2 ≥ 1280 ln(T+1)

(∆p
i )

2 for T > 1.

It follows that, when Et,
{
mp

†(t− 1) ≥ L
}

and Hp
† (t) happen, ϕpi,t ≥ T

T+1
and
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1−ϕpi,t
ϕpi,t
≤ 1

T
. Hence,

(b2.2) ≤
∑
p∈[M ]

∑
t:p∈Pt

E

(1− ϕpi,t
ϕpi,t

)
1
{
Et, Hp

† (t),m
p
†(t− 1) ≥ L

} ≤M.

B.3.2 Non-subpar arms

In this section, we provide a proof for Lemma B.36.

Let us fix any player p ∈ [M ] and any suboptimal arm i ∈ IC10ϵ for player p such

that ∆p
i > 0. In the rest of this section, let us also fix an optimal arm for player p, ⋄p, and

we abbreviate it by ⋄. We have µp⋄ = µp∗ = maxj∈[K] µ
p
j .

Definition B.53. Let zpi = µpi +
1
2
∆p
i be a threshold. In any round t, define

W p
i (t) =

{
θpi (t) > zpi

}
to be the event that the sample θpi (t) from the posterior distribution associated with arm i

and player p in round t is greater than the threshold zpi . Therefore, W p
i (t) =

{
θpi (t) ≤ zpi

}
.
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Non-subpar Arms—Decomposition

We consider the following decomposition.

E
[
npi (T )

]
=E

∑
t:p∈Pt

1
{
ipt = i

}
=E

∑
t:p∈Pt

1
{
ipt = i,W p

i (t), Et
}+ E

∑
t:p∈Pt

1
{
ipt = i,W p

i (t), Et
}+

∑
t:p∈Pt

E
[
1
{
ipt = i, Et

}]

≤E

∑
t:p∈Pt

1
{
ipt = i,W p

i (t), Et
}

︸ ︷︷ ︸
(D)

+E

∑
t:p∈Pt

1
{
ipt = i,W p

i (t), Et
}

︸ ︷︷ ︸
(E)

+O(1), (B.22)

where the last inequality follows from the observation that E
[
1
{
ipt = i, Et

}]
≤ E

[
1
{
Et
}]

and Lemma B.34.

Following this decomposition, Lemma B.36 is proved straightforwardly given

Lemma B.54 and Lemma B.55 which we present in what follows.

Bounding Term (D)

We first bound term (D) in Eq. (B.22).

Lemma B.54.

(D) ≤ O
(

lnT

(∆p
i )

2
+M

)
.

Proof of Lemma B.54. With foresight, let h = 4000 lnT
(∆p

i )
2 + 2M . Recall that Hp

i (t) is the

event that the individual posterior is used in round t by active player p for arm i (see
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Definition B.13). We have

(D) = E

∑
t:p∈Pt

1
{
ipt = i,W p

i (t), Et
}

≤ h+
∑
t:p∈Pt

E
[
1
{
ipt = i,W p

i (t), Et, n
p
i (t− 1) ≥ h

}]
= h+

∑
t:p∈Pt

E
[
1
{
ipt = i,W p

i (t), Et, H
p
i (t), n

p
i (t− 1) ≥ h

}]
︸ ︷︷ ︸

(d)

,

where the last equality follows from the observation that
{
npi (t− 1) ≥ h

}
implies that Hp

i (t)

happening. To see why this is true, recall that Hp
i (t) =

{
npi (t− 1) ≥ 40 lnT

ϵ2
+ 2M

}
; and

observe that for non-subpar arm i ∈ IC10ϵ and player p,
{
npi (t− 1) ≥ h = 4000 lnT

(∆p
i )

2 + 2M
}

implies
{
npi (t− 1) ≥ 40 lnT

ϵ2
+ 2M

}
because ∆p

i ≤ 10ϵ.

It therefore suffices to bound term (d). We have

(d) ≤
∑
t:p∈Pt

E
[
1
{
W p
i (t), Et, H

p
i (t), n

p
i (t− 1) ≥ h

}]
=
∑
t:p∈Pt

E
[
1
{
Et, Hp

i (t), n
p
i (t− 1) ≥ h

}
E
[
1
{
W p
i (t)

}
| Ft−1

]]

=
∑
t:p∈Pt

E

[
1
{
Et, Hp

i (t), n
p
i (t− 1) ≥ h

}
Φ

(
(zpi − ind-µ̂pi (t− 1))

√
npi (t− 1)/4

)]

≤
∑
t:p∈Pt

E

1{Et, Hp
i (t), n

p
i (t− 1) ≥ h

}
exp

(
−
npi (t− 1)(zpi − ind-µ̂pi (t− 1))2+

8

)
≤
∑
t:p∈Pt

E

1{Et, Hp
i (t), n

p
i (t− 1) ≥ h

}
exp

(
−
npi (t− 1)(µpi +

1
2
∆p
i − µ

p
i − 1

16
∆p
i )

2
+

8

)
≤
∑
t:p∈Pt

E

1{Et, Hp
i (t), n

p
i (t− 1) ≥ h

}
exp

(
−n

p
i (t− 1)(∆p

i )
2

8(16)

)
≤O (1) .
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where the first inequality drops the indicator 1
{
ipt = i

}
; the first equality uses the law

of total expectation and the observation that Et, Hp
i (t) and

{
npi (t− 1) ≥ h

}
are Ft−1-

measurable; the second inequality follows from Lemma B.69; the third inequality is from

the observations that when Et and Hp
i (t) happen:

1. npi (t− 1) ≥ npi (t− 1) ≥ h = 4000 lnT
(∆p

i )
2 + 2M ,

2. ind-µ̂pi (t− 1) ≤ µpi +
√

10 lnT

np
i (t−1)

≤ µpi +
1
16
∆p
i (see Definition B.33), and

3. zpi = µpi +
1
2
∆p
i ;

the fourth inequality is by algebra; and the last inequality is from the observation that

when npi (t− 1) ≥ h, exp
(
−np

i (t−1)(∆p
i )

2

8(16)

)
≤ 1

T
.

In summary, (D) ≤ h+ (d) ≤ O
(

lnT
(∆p

i )
2 +M

)
.

Bounding Term (E)

We now bound (E) in Eq. (B.22):

Lemma B.55.

(E) ≤ O
(

lnT

(∆p
i )

2
+M

)
.

Proof. Lemma B.55 follows from Lemma B.58, Eq. (B.25), Lemma B.59, and Lemma B.64

which we present shortly.

We begin with the following definition, similar to the notion of ϕpi,t used for subpar

arms.

Definition B.56. Recall that p is a fixed player, i is a fixed suboptimal arm for p, and ⋄

is a fixed optimal arm for p. In any round t, define

ψpi,t = Pr
(
θp⋄(t) > zpi | Ft−1

)
.
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Remark B.57. Recall that np⋄(t− 1) = np⋄(t− 1)∨ 1 and mp
⋄(t− 1) =

(
mp

⋄(t− 1)−M
)
∨ 1.

ψpi,t can be explicitly written as:

ψpi,t =Φ

(
zpi − µ̂p⋄(t− 1)√

varp⋄(t− 1)

)
(B.23)

=Φ

(
(zpi − ind-µ̂p⋄(t− 1))

√
np⋄(t− 1)/4

)
· 1
{
Hp

⋄ (t)
}

+ Φ

(
(zpi − agg-µ̂p⋄(t− 1))

√
mp

⋄(t− 1)/4

)
· 1
{
Hp

⋄ (t)
}
.

The proof for the above remark is omitted, as it is very similar to that of Re-

mark B.44.

We now present the following lemma.

Lemma B.58.

(E) = E

∑
t:p∈Pt

1
{
ipt = i,W p

i (t), Et
} ≤ ∑

t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = ⋄, Et

}
︸ ︷︷ ︸

(E∗)

Proof. The proof largely follows the same outline as that of Lemma B.45.

In any round t and such that p ∈ Pt, consider

Pr
(
ipt = i, Qp

i (t), Et | Ft−1

)
=Pr

(
ipt = i, θpi (t) ≤ zpi | Ft−1

)
· 1 {Et}

≤Pr
(
ipt = ⋄ | Ft−1

)
·
Pr
(
θp⋄(t) ≤ zpi | Ft−1

)
Pr
(
θp⋄(t) > zpi | Ft−1

) · 1 {Et}
=

(
1− ψpi,t
ψpi,t

)
· Pr

(
ipt = ⋄ | Ft−1

)
· 1 {Et}

=

(
1− ψpi,t
ψpi,t

)
Pr
(
ipt = ⋄, Et | Ft−1

)
, (B.24)
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where the first equality follows from the definition of Qp
i (t) and that Et is Ft−1-measurable;

the first inequality uses Lemma B.74 with l = ⋄ and z = zpi ; and the second equality

inequality is from the definition of ψpi,t; the last equality is again because Et is Ft−1-

measurable.

Finally, we have

E
[
1
{
ipt = i, Qp

i (t), Et
}]

= E
[
Pr
(
ipt = i, Qp

i (t), Et | Ft−1

)]

≤ E

(1− ψpi,t
ψpi,t

)
Pr
(
ipt = ⋄, Et | Ft−1

)
= E

E
(1− ψpi,t

ψpi,t

)
1
{
ipt = ⋄, Et

}
| Ft−1




= E

(1− ψpi,t
ψpi,t

)
1
{
ipt = ⋄, Et

} ,
where we use the law of total expectation and Eq. (B.24). The lemma follows by summing

over all t’s.

Let us further decompose (E∗) as follows.

(E∗) =
∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = ⋄, Et, Hp

⋄ (t)
}

︸ ︷︷ ︸
(e1)

+

∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = ⋄, Et, H

p
⋄ (t)

}
︸ ︷︷ ︸

(e2)

.

(B.25)

We first consider term (e1).
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Lemma B.59.

(e1) ≤ O
(

lnT

(∆p
i )

2

)
.

Proof of Lemma B.59. With foresight, let J = 640 lnT
(∆p

i )
2 . We have

(e1) =
∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = ⋄, Et, Hp

⋄ (t), n
p
⋄(t− 1) < J

}
︸ ︷︷ ︸

(e1.1)

+

∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = ⋄, Et, Hp

⋄ (t), n
p
⋄(t− 1) ≥ J

}
︸ ︷︷ ︸

(e1.2)

.

Lemma B.59 follows straightforwardly from Lemma B.60 and Lemma B.63, which bound

(e1.1) and (e1.2), respectively.

Lemma B.60.

(e1.1) ≤ O
(

lnT

(∆p
i )

2

)
.

To prove Lemma B.60, we first present the following Remark B.49.

Remark B.61 (Invariant Property). Similar to Remark B.49, by the construction of

Algorithm 2, we have that for any arm i ∈ [K], and player p ∈ [M ],
{
ψpi,t : t ∈ [T ]

}
and{

Hp
⋄ (t) : t ∈ [T ]

}
satisfy the invariant property with respect to (⋄, p) (Definition B.20).

Indeed, the former follows from Eq. (B.23), along with Example B.23 that shows that

the posterior parameters,
{
(µ̂p⋄(t− 1), varp⋄(t− 1)) : t ∈ [T ]

}
, satisfy the invariant property

with respect to (⋄, p); and the latter is from Example B.21.

Proof of Lemma B.60. We start by rewriting (e1.1) as follows, where we drop Et.
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(e1.1) ≤E

∑
t:p∈Pt

(
1− ψpi,t
ψpi,t

)
1
{
ipt = ⋄, Hp

⋄ (t), n
p
⋄(t− 1) < J

}
=E

∑
t:p∈Pt

gt1
{
ipt = ⋄, np⋄(t− 1) < J

} ,

where in the second line, we introduce the notation gt :=
(

1−ψp
i,t

ψp
i,t

)
1
{
Hp

⋄ (t)
}
;

We now focus on the sum inside the expectation. Recall that πs(⋄, p) is the round

in which player p pulls arm ⋄ the s-th time. Here, we abuse the notation and denote

πs(⋄, p) by πs. By Remark B.61,
{
gt : t ∈ [T ]

}
satisfies the invariant property with respect

to (⋄, p). Applying Lemma B.71 on
{
gt : t ∈ [T ]

}
’s, we have that the term inside the above

expectation is at most:

J−1∑
s=1

(
1

ψpi,πs+1

− 1

)
1
{
πs ≤ T,Hp

⋄ (πs + 1)
}
,

where we also use the observation that
(

1
ψp
i,1
− 1

)
1
{
Hp

⋄ (1)
}
= 0.

Therefore, by the linearity of expectation, we have

(e1.1) ≤
J−1∑
s=1

E

( 1

ψpi,πs+1

− 1

)
1
{
πs ≤ T,Hp

⋄ (πs + 1)
} .

Therefore, the following Lemma B.62 suffices to prove Lemma B.60, which we prove

next.

Lemma B.62. For any s ∈ [T ],

E

( 1

ψpi,πs+1

− 1

)
1
{
πs ≤ T,Hp

⋄ (πs + 1)
} ≤ O(1),
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where we recall that πs = πs(⋄, p) is the round in which player p pulls arm ⋄ the s-th time.

Proof of Lemma B.62. We note that this proof is similar to that of Lemma B.50. We have

E

( 1

ψpi,πs+1

− 1

)
1
{
πs ≤ T,Hp

⋄ (πs + 1)
}

=E


 1

Φ

((
zpi − ind-µ̂p⋄(πs)

)√
np⋄(πs)/4

) − 1

1
{
πs ≤ T,Hp

⋄ (πs + 1)
}


≤E

 1

Φ

((
µp⋄ − ind-µ̂p⋄(πs)

)√
np⋄(πs)/4

)1 {πs ≤ T}

 ,

where the inequality drops Hp
⋄ (τs + 1) and uses the observation that zpi ≤ µp⋄, and the

monotonic increasing property of z 7→ 1
Φ(z)

. Now, using Lemma B.70 and Corollary B.30,

we conclude that this is at most O(1).

Lemma B.63.

(e1.2) ≤ O (1) .

Proof. Recall that

(e1.2) =
∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = ⋄, Et, Hp

⋄ (t), n
p
⋄(t− 1) ≥ J

} .
Dropping 1

{
ipt = ip⋄

}
, we have

(e1.2) ≤
∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
Et, Hp

⋄ (t), n
p
⋄(t− 1) ≥ J

} ,
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When Et, Hp
⋄ (t), and

{
np⋄(t− 1) ≥ J

}
happen, we have

1− ψpi,t

=Pr
(
θp⋄(t) ≤ zpi | Ft−1

)
=Φ

(
(zpi − ind-µ̂p⋄(t− 1))

√
np⋄(t− 1)/4

)

≤ exp

−np⋄(t− 1)
(
ind-µ̂p⋄(t− 1)− zpi

)2
+

8


≤ exp

−np⋄(t− 1)
(
µp⋄ − 1

4
∆p
i − µp⋄ + 1

2
∆p
i

)2
+

8


≤ exp

(
−n

p
⋄(t− 1)(∆p

i )
2

8(16)

)

≤ 1

T + 1
,

where the first inequality uses Lemma B.69; the second inequality uses the observations

that, when Et and
{
np⋄(t− 1) ≥ J

}
happen:

1. np⋄(t− 1) ≥ np⋄(t− 1) ≥ J = 640 lnT
(∆p

i )
2 ,

2. ind-µ̂p⋄(t− 1) ≥ µp⋄ −
√

10 lnT

np
⋄(t−1)

≥ µp⋄ − 1
4
∆p
i (see Definition B.33), and

3. zpi = µp⋄ − 1
2
∆p
i ;

the third inequality is by algebra; and the last inequality follows as when
{
np⋄(t− 1) ≥ J

}
happens, np⋄(t− 1) ≥ 640 lnT

(∆p
i )

2 ≥ 320 ln(T+1)
(∆p

i )
2 for T > 1.

It follows that, when Et and
{
np⋄(t− 1) ≥ J

}
happen, ψpi,t ≥ T

T+1
and 1−ψp

i,t

ψp
i,t
≤ 1

T
.

Hence, (e1.2) ≤ 1.

We now consider term (e2). Recall that

(e2) =
∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = ⋄, Et, H

p
⋄ (t)

}
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Lemma B.64.

(e2) ≤ O
(

lnT

(∆p
i )

2
+M

)
.

Proof of Lemma B.64. With foresight, let Z = 640 lnT
(∆p

i )
2 +M . We have

(e2) =
∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = ⋄, Et, H

p
⋄ (t),m

p
⋄(t− 1) < Z

}
︸ ︷︷ ︸

(e2.1)

+

∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = ⋄, Et, H

p
⋄ (t),m

p
⋄(t− 1) ≥ Z

}
︸ ︷︷ ︸

(e2.2)

.

The proof follows straightforwardly from Lemma B.65 and Lemma B.67 which we

present subsequently.

Lemma B.65.

(e2.1) ≤ O
(

lnT

(∆p
i )

2
+M

)
.

Proof of Lemma B.65. We have

(e2.1) ≤ E

∑
t:p∈Pt

(
1

ψpi,t
− 1

)
1
{
ipt = ⋄, H

p
⋄ (t),m

p
⋄(t− 1) < Z

}
≤ E

∑
t:p∈Pt

1

ψpi,t
1
{
ipt = ⋄, H

p
⋄ (t),m

p
⋄(t− 1) < Z

} ,
where we drop Et and use the observation that 1

ψp
i,t
− 1 ≤ 1

ψp
i,t

.

We now focus on sum inside the expectation. We denote τk(⋄) by τk and the player

that makes the k’s pull of ⋄ by pk := pk(⋄). Recall that we use mp
⋄(t − 1) to denote
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(
mp

⋄(t− 1)−M
)
∨ 1. We have

∑
t:p∈Pt

1

ψpi,t
1
{
ipt = ⋄, H

p
⋄ (t),m

p
⋄(t− 1) < Z

}
=
∑
t:p∈Pt

1

Φ

((
zpi − agg-µ̂p⋄(t− 1)

)√
mp

⋄(t− 1)/4

)1{ipt = ⋄, Hp
⋄ (t),m

p
⋄(t− 1) < Z

}

≤
∑
t:p∈Pt

1

Φ

((
µp⋄ − agg-µ̂p⋄(t− 1)

)√
mp

⋄(t− 1)/4

)1{ipt = ⋄,mp
⋄(t− 1) < Z

}
(B.26)

≤
∑
t∈[T ]

∑
q∈Pt

1

Φ

((
µq⋄ − agg-µ̂q⋄(t− 1)

)√
mq

⋄(t− 1)/4

)1{iqt = ⋄,mq
⋄(t− 1) < Z

}
, (B.27)

where the first equality uses Remark B.57; the first inequality drops Hp
⋄ (t) and uses

the observation that zpi ≤ µp⋄ (see Definition B.53), along with the monotonic increasing

property of z 7→ 1
Φ(z)

.; the second inequality adds similar terms for other players q ̸= p.

Now, define
{
f qt : t ∈ [T ], q ∈ [M ]

}
where f qt = 1

Φ

(
(µq⋄−agg-µ̂q⋄(t−1))

√
mq

⋄(t−1)/4

) ; recall

from Example B.22 that
{
agg-µ̂q⋄(t− 1) : t ∈ [T ]

}
and

{
mq

⋄(t− 1) : t ∈ [T ]
}

both satisfy

the invariant property with respect to (⋄, q); therefore,
{
f qt : t ∈ [T ], q ∈ [M ]

}
satisfies the

invariant property with respect to ⋄. Applying Lemma B.72 to it, we have that

(B.27) ≤
∑
q∈[M ]

1

Φ (0)
+

Z−1∑
k=1

1

Φ

((
µpk⋄ − agg-µ̂pk⋄ (τk)

√
mpk

⋄ (τk)/4

))1 {τk ≤ T} .

Since
∑

q∈[M ]
1

Φ(0)
≤ O (M), it then suffices to show that for every k ∈ N,

E

 1

Φ

(
(µpk⋄ − agg-µ̂pk⋄ (τk))

√
mpk

⋄ (τk)/4

)1 {τk ≤ T}

 ≤ O (1) . (B.28)
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Note that mpk
⋄ (τk) =

(
n⋄(τk)−M

)
∨ 1. Directly applying Corollary B.28 and

Lemma B.70 with X = (agg-µ̂pk⋄ (τk) − µpk⋄ )

√
mpk

⋄ (τk)/4 and E = {τk ≤ T} proves

Eq. (B.28).

Remark B.66. In the above proof, we relaxed Eq. (B.26) to Eq. (B.27) by adding the

corresponding terms for all other players q ̸= p. Alternatively, we could use the observation

that np⋄(t− 1) ≤ mp
⋄(t− 1) to bound Eq. (B.26) by

∑
t:p∈Pt

1

Φ

((
µp⋄ − agg-µ̂p⋄(t− 1)

)√
mp

⋄(t− 1)/4

)1{ipt = ⋄, np⋄(t− 1) < Z
}
,

and apply Lemma B.71 and subsequently Lemma B.70. However, right now, we do not have

tight-enough concentration inequalities for agg-µ̂p⋄(πk(⋄, p))—the best known inequality here

is Freedman’s inequality, which incurs an undesirable extra O (lnT ) factor in the bound

for (e2.1).

Lemma B.67.

(e2.2) ≤ O (1) .

Proof of Lemma B.67. Recall that

(e2.2) =
∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = ⋄, Et, H

p
⋄ (t),m

p
⋄(t− 1) ≥ Z

} .
Recall that mp

⋄(t−1) =
(
mp

⋄(t− 1)−M
)
∨1. When Et, Hp

⋄ (t) and
{
mp

⋄(t− 1) ≥ Z
}
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happen simultaneously,

1− ψpi,t

=Pr
(
θp⋄(t) ≤ zpi | Ft−1

)
=Φ

((
zpi − agg-µ̂p⋄(t− 1)

)√
mp

⋄(t− 1)/4

)

≤ exp

−mp
⋄(t− 1)

(
agg-µ̂p⋄(t− 1)− zpi

)2
+

8


≤ exp

−mp
⋄(t− 1)

(
µp⋄ − 1

4
∆p
i − µp⋄ + 1

2
∆p
i

)2
+

8


≤ exp

(
−m

p
⋄(t− 1)(∆p

i )
2

8(16)

)

≤ 1

T + 1
,

where the first inequality uses Lemma B.69; the second inequality uses the observations

that when Et, Hp
⋄ (t) and

{
mp

⋄(t− 1) ≥ Z
}

happen:

1. mp
⋄(t− 1) ≥ mp

⋄(t− 1)−M ≥ Z −M ≥ 640 lnT
(∆p

i )
2 ,

2. agg-µ̂p⋄(t− 1) ≥ µp⋄ −
√

10 lnT

mp
⋄(t−1)

≥ µp⋄ − 1
4
∆p
i (see Definition B.33), and

3. zpi = µp⋄ − 1
2
∆p
i (see Definition B.53);

the third inequality is by algebra; and the fourth inequality is by the fact that when

mp
⋄(t− 1) ≥ Z, mp

⋄(t− 1) ≥ Z −M = 640 lnT
(∆p

i )
2 ≥ 320 ln(T+1)

(∆p
i )

2 for T > 1.

It follows that, when Et, Hp
⋄ (t) and

{
mp

⋄(t− 1) ≥ Z
}

happen, ψpi,t ≥ T
T+1

and
1−ψp

i,t

ψp
i,t
≤ 1

T
. As a result, (e2.2) ≤ O(1).

B.3.3 Concluding the proofs of Theorems 3.1 and 3.2

Lemma B.68. Let a generalized ϵ-MPMAB problem instance and α > 0 be such that for

all i ∈ Iα and all p ∈ [M ], ∆p
i ≤ 2∆min

i . If algorithm A guarantees that when interacting
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with this problem instance:

1. For any arm i ∈ Iα,

E
[
ni(T )

]
≤ O

(
lnT

(∆min
i )2

+M

)
; (B.29)

2. For any arm i ∈ ICα and player p ∈ [M ],

E
[
npi (T )

]
≤ O

(
lnT

(∆p
i )

2
+ C

)
, (B.30)

for some C ≥ 0, then it has the following regret bounds simultaneously:

1. gap-dependent regret bound:

Reg(T ) ≤ O

 1

M

∑
i∈Iα

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

+
∑
i∈IC

α

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

+MK(1 + C)

, (B.31)

2. gap-independent regret bound:

Reg(T ) ≤ Õ

√|Iα|P +
√
M
(
|ICα | − 1

)
P +MK(1 + C)

, (B.32)

where we recall that P =
∑T

t=1 |Pt|.

Proof. We prove the two items respectively. Recall that ∆min
i = minp∈[M ] ∆

p
i .

1. Note that for all i ∈ Iα and all p ∈ [M ], ∆p
i ≤ 2∆min

i , and
∑M

p=1 E
[
npi (T )

]
= E

[
ni(T )

]
;

as a consequence,

Reg(T ) =
M∑
p=1

K∑
i=1

E
[
npi (T )

]
∆p
i = O

∑
i∈Iα

E
[
ni(T )

]
∆min
i +

∑
i∈IC

α

∑
p∈[M ]:
∆p

i>0

E
[
npi (T )

]
∆p
i

 .

(B.33)
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Using Eq. (B.29), the first term can be bounded by:

∑
i∈Iα

E
[
ni(T )

]
∆min
i ≤ O

∑
i∈Iα

lnT

∆min
i

+MK

 ≤ O
 1

M

∑
i∈Iα

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

+MK

 ,

where the second inequality follows from the assumption that for all i ∈ Iα and p ∈ [M ],

∆p
i ≤ 2∆min

i .

Using Eq. (B.30), the second term can be bounded by:

∑
i∈IC

α

∑
p∈[M ]:∆p

i>0

E
[
npi (T )

]
∆p
i ≤ O

∑
i∈IC

α

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

+MKC

 .

Combining the above two bounds yields Eq. (B.31).

2. As with the proof of Eq. (B.32), we continue from Eq. (B.33), but look at the two terms

respectively. For the first term,

∑
i∈Iα

E
[
ni(T )

]
∆min
i ≤O

∑
i∈Iα

min

(
E
[
ni(T )

]
,

lnT

(∆min
i )2

+M

)
∆min
i


≤O

∑
i∈Iα

min

(
E
[
ni(T )

]
∆min
i ,

lnT

∆min
i

)
+MK


≤O

∑
i∈Iα

√
E
[
ni(T )

]
lnT +MK


≤O

(√
|Iα|P lnT +MK

)
(B.34)

where the first inequality is from Eq. (B.29); the second inequality is by algebra; the

third inequality is from the elementary fact that min(A,B) ≤
√
AB; the last inequality

is from Jensen’s inequality and the concavity of function x 7→
√
x, which implies that∑

i∈Iα

√
E
[
ni(T )

]
≤
√
|Iα|

(∑
i∈Iα E

[
ni(T )

])
, and the fact that

∑
i∈Iα E

[
ni(T )

]
≤
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∑M
i=1 E

[
ni(T )

]
≤ P .

For the second term in Eq. (B.32), first observe that if
∣∣ICα ∣∣ = 1, then let i∗ be the only

element in ICα ; it must be the case that for all p ∈ [M ], i∗ is the optimal arm for player

p. As a consequence,
∑

i∈IC
α

∑M
p=1 E

[
npi (T )

]
∆p
i = 0 = O(

√
M(|ICα | − 1)P ).

Otherwise,
∣∣ICα ∣∣ ≥ 2. In this case,

∑
p∈[M ]

∑
i∈IC

α

E
[
npi (T )

]
∆p
i ≤O

∑
p∈[M ]

∑
i∈IC

α

min

(
E
[
npi (T )

]
,
lnT

(∆p
i )

2

)
∆p
i +MKC


≤O

∑
p∈[M ]

∑
i∈IC

α

min

(
E
[
npi (T )

]
∆p
i ,
lnT

∆p
i

)
+MKC


≤O

∑
p∈[M ]

∑
i∈IC

α

√
E
[
npi (T )

]
lnT +MKC


≤O

(√
M |ICα |P lnT +MKC

)
≤O

(√
M
(
|ICα | − 1

)
P lnT +MKC

)
.

where the first inequality is by Eq. (B.30) and algebra; the second inequality is by

algebra; the third inequality is from the elementary fact that min(A,B) ≤
√
AB;

the fourth inequality is from Jensen’s inequality and the concavity of function x 7→
√
x, which implies that

∑
i∈Iα

√
E
[
ni(T )

]
≤
√
|Iα|

(∑
i∈Iα E

[
ni(T )

])
, and the fact

that
∑

i∈Iα E
[
ni(T )

]
≤
∑M

i=1 E
[
ni(T )

]
≤ P ; the last inequality is from the simple

observation that
∣∣ICα ∣∣ ≤ 2(

∣∣ICα ∣∣− 1) when
∣∣ICα ∣∣ ≥ 2.

In summary,
∑M

p=1

∑
i∈IC

α
E
[
npi (T )

]
∆p
i ≤ O

(√
M
(
|ICα | − 1

)
P lnT

)
+MKC. Com-

bining this with Eq. (B.34), this concludes the proof of Eq. (B.32).

Proofs of Theorems 3.1 and 3.2. Combining Lemmas B.35, B.36, B.68 with C =M and

α = 10ϵ, Theorems 3.1 and 3.2 follow immediately.
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B.3.4 Auxiliary lemmas

Recall that we denote by Φ(x) =
∫∞
x

1√
2π
e−

z2

2 dz the complementary CDF of the

standard normal distribution.

Lemma B.69. Φ is monotonically decreasing. In addition, for z ≥ 0,

1√
2π

z

z2 + 1
exp

(
−z

2

2

)
≤ Φ(z) ≤ exp

(
−z

2

2

)
,

where the first inequality (anti-concentration) is from [59]. In addition, for any z ∈ R,

Φ(z) ≤ exp

(
−
(z)2+
2

)
, Φ(z) ≤ exp

(
−
(−z)2+

2

)
,

where we recall that (z)+ = max(z, 0).

The following lemma is useful in bounding (b2.1), (e1.1), (e2.1); it can also be

used to provide a simplified proof of the first case of Agrawal and Goyal [4, Lemma

2.13]. Roughly speaking, the lemma shows that a random variable X with a light lower

probability tail must have a small value of E
[

1
Φ(−X)

]
; it crucially uses the lower bound on

Φ (Gaussian anti-concentration) given in Lemma B.69.

Lemma B.70. There exists some absolute constants c1, c2 > 0 such that the following

holds. Given a random variable X, an event E and some C1 > 0; if, for every z ≥ 1,

P(X ≤ −z, E) ≤ C1 exp(−2z2), such that

E

[
1

Φ(−X)
1 {E}

]
≤ c1C1 + c2.
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Proof. Define Y = −X; we have P(Y ≥ z, E) ≤ C1 exp(−2z2) for all z ≥ 1.

E

[
1

Φ(−X)
1 {E}

]

=E

[
1

Φ(−X)
1 {E,X ≤ −1}

]
+ E

[
1

Φ(−X)
1 {E,X ≥ −1}

]

≤E

[
1

Φ(Y )
1 {E, Y ≥ 1}

]
+

1

Φ(1)

≤8
√
2π · E

[
eY

2

1 {E, Y ≥ 1}
]
+

1

Φ(1)
.

where the first inequality follows due to the fact that 1
Φ(z)

increases monotonically as z

increases; and the second inequality is based on the observation that for y ≥ 1, 1
Φ(y)
≤

√
2π y

2+1
y

exp(y
2

2
) ≤ 8

√
2πey

2 (see Lemma B.69).

It suffices to show that E
[
eY

2
1 {E, Y ≥ 1}

]
is bounded by some constant, given

the assumption on Y . Define W = eY
2
1 {E, Y ≥ 1}. We have that for any w ≥ e,

P(W ≥ w) = P(E, Y ≥
√
lnw) ≤ C1

w2
.

As a result,

E [W ] =

∫ ∞

0

P(W ≥ w) dw

=

∫ e

0

P(W ≥ w) dw +

∫ ∞

e

P(W ≥ w) dw

≤e+
∫ ∞

e

C1

w2
dw

≤e+ C1

e
,

Therefore, the lemma holds by taking c1 = 8
√
2π
e

and c2 = 8
√
2πe+ 1

Φ(1)
.

The following two lemmas are useful in bounding (e1.1) (Lemma B.71), as well as
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(b2.1) and (e2.1) (Lemma B.72), respectively.

Lemma B.71. Fix any arm i ∈ [K] and player p ∈ [M ]. Let N ∈ N+. Suppose{
gt : t ∈ [T ]

}
satisfies the invariant property with respect to (i, p) (Definition B.20). Then,

∑
t:p∈Pt

gt1
{
ipt = i, npi (t− 1) < N

}
≤ g1 +

N−1∑
k=1

gπk+11 {πk ≤ T} ,

where πk = πk(i, p) denotes the round associated with the k-th pull of arm i by player p.

Proof. Let ht = gt1
{
npi (t− 1) < N

}
. As seen in Example B.22,

{
npi (t− 1) : t ∈ [T ]

}
satisfies the invariant property with respect to (i, p). This, combined with the assumption

that
{
gt : t ∈ [T ]

}
satisfies the invariant property with respect to (i, p), implies that{

ht : t ∈ [T ]
}

is also invariant with respect to (i, p). Applying Lemma B.73 to the above{
ht : t ∈ [T ]

}
, we have

∑
t:p∈Pt

gt1
{
ipt = i, npi (t− 1) < N

}
=
∑
t:p∈Pt

ht1
{
ipt = i

}
≤ h1 +

T∑
k=1

hπk+11 {πk ≤ T}

= g11
{
npi (0) < N

}
+

T∑
k=1

gπk+11
{
npi (πk) < N

}
1 {πk ≤ T}

= g1 +
T∑
k=1

gπk+11 {k < N}1 {πk ≤ T}

= g1 +
N−1∑
k=1

gπk+11 {πk ≤ T} ,

where the first inequality is by Equation (B.36) in Lemma B.73; the second equality is by

expanding the definition of ht’s; the third equality is from that npi (0) = 0 and npi (πk) = k;

and the last eqaulity is by algebra.

204



Lemma B.72. Fix any arm i ∈ [K] and let N ∈ N+. Suppose
{
fpt : t ∈ [T ], p ∈ [M ]

}
satisfies the invariant property with respect to arm i (Definition B.20), then,

∑
t∈[T ]

∑
p∈Pt

fpt 1
{
ipt = i,mp

i (t− 1) < N
}
≤
∑
p∈[M ]

fp1 +
N−1∑
k=1

fpkτk+11 {τk ≤ T} ,

where (τk, pk) = (τk(i), pk(i)) denote the round and player associated with the k-th pull of

arm i by all players.

Proof of Lemma B.72. First, consider any fixed player p; let ht = fpt 1
{
mp
i (t− 1) < N

}
.

As seen in Example B.22,
{
mp
i (t− 1) : t ∈ [T ]

}
satisfies the invariant property with respect

to (i, p). This, combined with the assumption that
{
fpt : t ∈ [T ]

}
satisfies the invariant

property with respect to (i, p), implies that
{
ht : t ∈ [T ]

}
is also invariant with respect to

(i, p). Applying Lemma B.73 to the above
{
ht : t ∈ [T ]

}
, we have

∑
t:p∈Pt

fpt 1
{
ipt = i,mp

i (t− 1) < N
}
=
∑
t:p∈Pt

ht1
{
ipt = i

}
≤h1 +

∑
t:p∈Pt

ht+11
{
ipt = i

}
=fp1 +

∑
t:p∈Pt

fpt+11
{
ipt = i,mp

i (t) < N
}

=fp1 +
∑
t:p∈Pt

fpt+11
{
ipt = i, ni(t) < N

}
(B.35)

where the first inequality is from Equation (B.37) of Lemma B.73; the second equality is by

expanding the definition of ht and noting that h1 = 1
{
mp
i (0) < N

}
fp1 = 1 {0 < N} fp1 =

fp1 ; the third equality is from the observation that, if ipt = i and upi (t) = t, then mp
i (t) =

ni(u
p
i (t)) = ni(t).
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Now, summing Equation (B.35) over all players p ∈ [M ], we have

∑
t∈[T ]

∑
p∈Pt

fpt 1
{
ipt = i,mp

i (t− 1) < N
}

≤
∑
p∈[M ]

fp1 +
∑
p∈[M ]

∑
t:p∈Pt

fpt+11
{
ipt = i, ni(t) < N

}
≤
∑
p∈[M ]

fp1 +
N−1∑
k=1

fpkτk+11 {τk ≤ T} ,

where the second inequality is from the observation that for every t ∈ [T ], p ∈ Pt such

that ipt = i and ni(t) < N , there must exists some unique k ∈ [N − 1] such that τk = t

and pk = p.

The following auxiliary lemma facilitates the proofs of Lemmas B.71 and B.72.

Lemma B.73. Fix any arm i ∈ [K] and player p ∈ [M ]. Suppose
{
ht : t ∈ [T ]

}
satisfies

the invariant property with respect to (i, p) (Definition B.20). Then,

∑
t∈[T ]:p∈Pt

ht1
{
ipt = i

}
≤h1 +

T∑
k=1

hπk+11 {πk ≤ T} (B.36)

=h1 +
∑

t∈[T ]:p∈Pt

ht+11
{
ipt = i

}
, (B.37)

where πk = πk(i, p) denotes the round associated with the k-th pull of arm i by player p.
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Proof.

∑
t∈[T ]:p∈Pt

ht1
{
ipt = i

}
=

T∑
k=1

hπk1 {πk ≤ T}

=
T∑
k=1

hπk−1+11 {πk ≤ T}

≤h1 +
T∑
k=2

hπk−1+11 {πk ≤ T}

=h1 +
T−1∑
k=1

hπk+11 {πk+1 ≤ T}

≤h1 +
T−1∑
k=1

hπk+11 {πk ≤ T}

=h1 +
∑

t∈[T ]:p∈Pt

ht+11
{
ipt = i

}
,

where the first equality uses the definition of πk; the second equality uses the invariant

property, specifically, hπk = hπk−1+1; the first inequality uses the observation that the first

term hπ0+11 {π1 ≤ T} = h11 {π1 ≤ T} ≤ h1; the third equality shifts the indices in the

sum by 1; the second inequality uses the observation that πk+1 ≤ T =⇒ πk ≤ T ; and the

last equality is again by the definition of πk.

The following lemma is largely inspired by Agrawal and Goyal [4, Lemma 2.8]; here

we generalize it to the multi-task setting, for reducing bounding (B) and (E) to bounding

(B∗) and (E∗) respectively.

Lemma B.74. For any player p ∈ [M ], time step t ∈ [T ], and arm i ∈ [K], we have for

any arm l ∈ [K] and any threshold z ∈ R:

Pr
(
ipt = i, θpi (t) ≤ z | Ft−1

)
≤

Pr
(
θpl (t) ≤ z | Ft−1

)
Pr
(
θpl (t) > z | Ft−1

) · Pr (ipt = l | Ft−1

)
.
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Proof. First,

Pr
(
ipt = i, Qp

i (t) | Ft−1

)
≤Pr

(
∀j ∈ [K], θpj (t) ≤ z | Ft−1

)
=Pr

(
θpl (t) ≤ z | Ft−1

)
· Pr

(
∀j ̸= l, θpj (t) ≤ z | Ft−1

)
,

where the first inequality follows because the event
{
ipt = i, Qp

i (t)
}

happens only if ∀j ∈

[K], θpj (t) ≤ z; and the second equality follows because conditional on Ft−1, the draws

θpj (t)’s and θpl (t) are independent.

Now, observe that

Pr
(
∀j ̸= l, θpj (t) ≤ z | Ft−1

)
=
Pr
(
θpl (t) > z, and ∀j ̸= l, θpj (t) ≤ z | Ft−1

)
Pr
(
θpl (t) > z | Ft−1

)
≤

Pr
(
ipt = l | Ft−1

)
Pr
(
θpl (t) > z | Ft−1

)
where the equality follows, again, by the conditional independence of

{
θpj (t) : j ̸= l

}
and

θpl (t); and the inequality follows because the event
{
θpl (t) > z, ∀j ̸= l, θpj (t) ≤ ypi

}
implies

that
{
ipt = l

}
happens. The lemma follows from combining the above two inequalities.

208



B.4 Theoretical Guarantees of Baselines

B.4.1 Ind-UCB and Ind-TS in the generalized ϵ-MPMAB
setting

Theorem B.75. The expected collective regret of Ind-UCB and Ind-TS after T rounds

satisfies the following two upper bounds simultaneously:

Reg(T ) ≤O

∑
p∈[M ]

∑
i∈[K]:∆p

i>0

lnT

∆p
i

 (B.38)

Reg(T ) ≤Õ
(√

MKP
)
, (B.39)

where we recall that P =
∑T

t=1 |Pt|.

Proof sketch. For Eq. (B.38), we note that both Ind-UCB and Ind-TS guarantees that

for every p ∈ [M ],

Regp(T ) ≤ O

 ∑
i∈[K]:∆p

i>0

lnT

∆p
i

 ;

summing over p yields Eq. (B.38). For Eq. (B.39), we note that for every p ∈ [M ],

Regp(T ) ≤ Õ
(√

K
∣∣{t : p ∈ Pt}∣∣) .

Summing over all p ∈ [M ], we have

Reg(T ) =
M∑
p=1

Regp(T ) ≤ Õ

 M∑
p=1

√
K
∣∣{t : p ∈ Pt}∣∣


≤ Õ


√√√√MK

M∑
p=1

∣∣{t : p ∈ Pt}∣∣
 = Õ

(√
MKP

)
.
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Algorithm 6: RobustAgg(ϵ) for the generalized ϵ-MPMAB setting
Input :Dissimilarity parameter ϵ ∈ [0, 1];

1 Initialization: Set npi = 0 for all p ∈ [M ] and all i ∈ [K].
2 for t = 1, 2 . . . , T do
3 Receive active set of players Pt;
4 for p ∈ Pt do
5 for i ∈ [K] do
6 Let mp

i =
∑

q∈[M ]:q ̸=p n
q
i ;

7 Let npi = max(1, npi ) and mp
i = max(1,mp

i );
8 Let

ζpi (t) =
1

npi

∑
s<t
ips=i

rps , ηpi (t) =
1

mp
i

∑
q∈[M ]
q ̸=p

∑
s<t
iqs=i

rqs,

and κpi (t, λ) = λζpi (t) + (1− λ)ηpi (t);

9 Let F (npi ,m
p
i , λ, ϵ) = 8

√
13 lnT

[
λ2

np
i

+ (1−λ)2

mp
i

]
+ (1− λ)ϵ;

10 Compute λ∗ = argminλ∈[0,1] F (n
p
i ,m

p
i , λ, ϵ);

11 Compute an upper confidence bound of the reward of arm i for
player p:

UCBpi (t) = κpi (t, λ
∗) + F (npi ,m

p
i , λ

∗, ϵ).

12 Let ipt = argmaxi∈[K]UCBp
i (t);

13 Player p pulls arm ipt and observes reward rpt ;
14 for active players p ∈ Pt do
15 Let i = ipt and set npi = npi + 1.

B.4.2 RobustAgg(ϵ) and its regret analysis in the generalized
ϵ-MPMAB setting

In Chapter 2, we studied a special case of ϵ-MPMAB problem, which can be viewed

as ϵ-MPMAB problem defined in Section 3.2, with active sets of players Pt ≡ [M ]. In this

specialized setting, they propose RobustAgg(ϵ), a UCB-based algorithm that achieves a
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gap-dependent and gap-independent regret of

O

 1

M

∑
i∈I5ϵ

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

+
∑
i∈IC

5ϵ

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

+MK

 , (B.40)

and

Õ
(√

M |I5ϵ|T +M
√
|IC5ϵ|T +MK

)
, (B.41)

respectively. In this section, we show that, with a few small modifications, their algorithm

and analysis can be used in our (more general) ϵ-MPMAB setting, where the active sets

Pt can change over time.

Specifically, Algorithm 6 is our modified version of RobustAgg(ϵ). Recall that

RobustAgg(ϵ) performs an UCB-based exploration [8]: for every player and every arm,

it constructs high-probability UCBs on the expected rewards (line 6 to 11); to this end,

it makes careful use of both the player and other players’ data, and construct a series of

UCBs parameterized by λ (line 9), and selects the tightest one (line 10 and 11). Compared

to RobustAgg(ϵ), for every round t, Algorithm 6 only computes expected reward UCBs

for active players p ∈ Pt (line 4), and updates arm pull counts on active players (line 14).

We show that Algorithm 6, when applied to our ϵ-MPMAB setting, has regret

guarantees that recover and generalize RobustAgg(ϵ)’s original guarantees. Specifically,

in the specialized ϵ-MPMAB setting where Pt ≡ [M ], we recover the regret guarantees of

RobustAgg(ϵ) (Equations (B.40) and (B.41)).

Theorem B.76. The expected collective regret of RobustAgg(ϵ) after T rounds satisfies
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the following two upper bounds simultaneously:

Reg(T ) ≤O

 1

M

∑
i∈I5ϵ

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

+
∑
i∈IC

5ϵ

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

+MK

, (B.42)

Reg(T ) ≤Õ

√|I5ϵ|P +
√
M
(
|IC5ϵ| − 1

)
P +MK

, (B.43)

where we recall that P =
∑T

t=1 |Pt|.

Proof sketch. Even in the general setting where Pt is not necessarily [M ], Freedman’s

inquality can still be applied to establish the high-probability concentration of the empir-

ically averaged rewards ζpi (t) and ηpi (t); therefore, Lemma A.4 still holds in the general

setting. As a result, Lemmas A.7 and A.8 carry over; hence, for all i ∈ I5ϵ, Algorithm 6

still satisfies that

E[ni(T )] ≤ O
(

lnT

(∆min
i )2

+M

)
, (B.44)

and for all i ∈ IC5ϵ and all p ∈ [M ],

E[npi (T )] ≤ O
(

lnT

(∆p
i )

2

)
. (B.45)

Equations (B.42) and (B.43) now follows directly from applying Lemma B.68 with C = 0

and α = 5ϵ.

B.5 Additional Experimental Results

In this section, we present the rest of the experimental results. Figures B.2, B.3,

and B.4 compare the average performance of RobustAgg-TS(0.15), RobustAgg(0.15),

Ind-UCB, and Ind-TS in randomly generated 0.15-MPMAB problem instances with

different numbers of subpar arms.
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Note that, when |I5ϵ| = 9, we have
∣∣IC5ϵ∣∣ = 1 which means that there exists one

arm that is optimal to all the players and the other arms are all subpar. In this favorable

special case, RobustAgg-TS(0.15) and RobustAgg(0.15) perform significantly better

than the baseline algorithms without transfer, as expected.

Furthermore, when |I5ϵ| = 0, i.e., there is no subpar arm and all the arms have rela-

tively small suboptimality gaps. In this unfavorable special case, RobustAgg-TS(0.15)’s

performance is still very competitive in comparison with Ind-TS, which demonstrates the

robustness of our proposed algorithm.

B.5.1 Empirical comparison with RobustAgg-TS-V(ϵ)

We empirically evaluated a variant of Algorithm 2, named RobustAgg-TS-V(ϵ).

RobustAgg-TS-V(ϵ) differs from RobustAgg-TS(ϵ) (Algorithm 2) in one way: in each

round, instead of only updating the posteriors associated with each active player and its

pulled arm (i.e., delayed update, line 15 of Algorithm 2), RobustAgg-TS-V(ϵ) updates

the posteriors associated with every arm and player. Note that this change only affects

the aggregate posteriors, as the individual posteriors associated with a player and an arm

remains the same if the player does not pull the arm in this round.

Figure B.5 compares the average cumulative regret of RobustAgg-TS(0.15),

RobustAgg-TS-V(0.15), RobustAgg(0.15), Ind-UCB, and Ind-TS in randomly gen-

erated 0.15-MPMAB problem instances with different numbers of subpar arms. The

instances were generated following the same procedure as the other experiments. Ob-

serve that RobustAgg-TS-V(0.15)’s empirical performance is on par with that of

RobustAgg-TS(0.15). However, our analysis in this chapter takes advantages of the

design choice made for RobustAgg-TS(ϵ), i.e., delayed update which leads to the invari-

ant property (Definition B.20 and Examples B.21, B.22 and B.23). It is unclear whether

RobustAgg-TS-V(ϵ) enjoys similar near-optimal guarantees.
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(a) |I5ϵ| = 9 (b) |I5ϵ| = 8 (c) |I5ϵ| = 7

(d) |I5ϵ| = 6 (e) |I5ϵ| = 5 (f) |I5ϵ| = 4

(g) |I5ϵ| = 3 (h) |I5ϵ| = 2 (i) |I5ϵ| = 1

(j) |I5ϵ| = 0

Figure B.2. Compares the cumulative collective regret of the 4 algorithms over a horizon
of T = 50, 000 rounds.
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(a) |I5ϵ| = 9 (b) |I5ϵ| = 8 (c) |I5ϵ| = 7

(d) |I5ϵ| = 6 (e) |I5ϵ| = 5 (f) |I5ϵ| = 4

(g) |I5ϵ| = 3 (h) |I5ϵ| = 2 (i) |I5ϵ| = 1

(j) |I5ϵ| = 0

Figure B.3. Compares the percentage of arm pulls by arm optimality for the 4 algorithms
in T = 50, 000 rounds.
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(a) |I5ϵ| = 9 (b) |I5ϵ| = 8 (c) |I5ϵ| = 7

(d) |I5ϵ| = 6 (e) |I5ϵ| = 5 (f) |I5ϵ| = 4

(g) |I5ϵ| = 3 (h) |I5ϵ| = 2 (i) |I5ϵ| = 1

(j) |I5ϵ| = 0

Figure B.4. Compares the cumulative collective regret incurred by arm optimality for
the 4 algorithms in T = 50, 000 rounds.
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(a) |I5ϵ| = 9 (b) |I5ϵ| = 8 (c) |I5ϵ| = 7

(d) |I5ϵ| = 6 (e) |I5ϵ| = 5 (f) |I5ϵ| = 4

(g) |I5ϵ| = 3 (h) |I5ϵ| = 2 (i) |I5ϵ| = 1

(j) |I5ϵ| = 0

Figure B.5. Compares the cumulative collective regret of the 5 algorithms over a horizon
of T = 50, 000 rounds.
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Appendix C

Supplementary Material for Chapter 4

C.1 Proofs of Lemmas 4.2 and 4.4

C.1.1 Proof of Lemma 4.2

Lemma 4.2. If (Mp)
M
p=1 is ϵ-dissimilar, then for every p, q ∈ [M ], and (s, a) ∈ S ×A,

∣∣∣Q⋆
p(s, a)−Q⋆

q(s, a)
∣∣∣ ≤ 2Hϵ,

consequently,
∣∣∣gapp(s, a)− gapq(s, a)

∣∣∣ ≤ 4Hϵ.

Proof. For the first claim, we prove a stronger statement by backward induction on h,

namely, for every p, q ∈ [M ], every h ∈ [1, H], and (s, a) ∈ Sh ×A,

∣∣∣Q⋆
p(s, a)−Q⋆

q(s, a)
∣∣∣ ≤ 2(H − h+ 1)ϵ.

Base case:

For h = H + 1, we have Q⋆
p(s, a) = 0 for every (s, a) ∈ Sh × A, and p ∈ [M ]. It

follows trivially that
∣∣∣Q⋆

p(s, a)−Q⋆
q(s, a)

∣∣∣ = 0 ≤ 2(H − h+ 1)ϵ.

Inductive case:

Suppose by inductive hypothesis that for some h ∈ [1, H] and, for every (s, a) ∈

Sh+1 ×A and p, q ∈ [M ],
∣∣∣Q⋆

p(s, a)−Q⋆
q(s, a)

∣∣∣ ≤ 2(H − h)ϵ.
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We first prove the following auxiliary statement: for every s ∈ Sh+1 and p, q ∈ [M ],

∣∣∣V ⋆
p (s)− V ⋆

q (s)
∣∣∣ ≤ 2(H − h)ϵ. (C.1)

Let ap = argmaxa∈AQ
⋆
p(s, a) and aq = argmaxa∈AQ

⋆
q(s, a). The above auxiliary statement

can be easily proven by contradiction: without loss of generality, suppose that V ⋆
p (s)−

V ⋆
q (s) = Q⋆

p(s, ap) − Q⋆
q(s, aq) > 2(H − h)ϵ. Since Q⋆

q(s, ap) ≥ Q⋆
p(s, ap) − 2(H − h)ϵ, it

follows that Q⋆
q(s, ap) > Q⋆

q(s, aq), which contradicts the fact that aq = argmaxa∈AQ
⋆
q(s, a).

We now return to the inductive proof, and we show that given the inductive

hypothesis, for every (s, a) ∈ Sh ×A and p, q ∈ [M ],

∣∣∣Q⋆
p(s, a)−Q⋆

q(s, a)
∣∣∣

≤
∣∣Rp(s, a)−Rq(s, a)

∣∣+
∣∣∣∣∣∣
∑

s′∈Sh+1

[
Pp(s′ | s, a)V ⋆

p (s
′)− Pq(s′ | s, a)V ⋆

q (s
′)
]∣∣∣∣∣∣

≤ϵ+

∣∣∣∣∣∣
∑

s′∈Sh+1

[
Pp(s′ | s, a)V ⋆

p (s
′)− Pq(s′ | s, a)V ⋆

p (s
′)
]∣∣∣∣∣∣+∣∣∣∣∣∣

∑
s′∈Sh+1

Pq(s′ | s, a)
(
V ⋆
p (s

′)− V ⋆
q (s

′)
)∣∣∣∣∣∣

≤ϵ+ ∥Pp(· | s, a)− Pq(· | s, a))∥1
(

max
s′∈Sh+1

∣∣∣V ⋆
p (s

′)
∣∣∣)+

∥Pq(· | s, a)∥1
(

max
s′∈Sh+1

∣∣∣V ⋆
p (s

′)− V ⋆
q (s

′)
∣∣∣)

≤ϵ+ ϵ

H
·H + 2(H − h)ϵ

=2(H − h+ 1)ϵ,

where the first inequality follows from Eq. (4.1) and the triangle inequality; the second

inequality follows from Definition 4.1 and the triangle inequality; the third inequality

follows from Hölder’s inequality; and the fourth inequality uses Definition 4.1 and Eq. (C.1).

219



For the second claim, we note that from the first claim, we have for any p, q, s,

∣∣∣V ⋆
p (s)− V ⋆

q (s)
∣∣∣ = ∣∣∣∣max

a∈A
Q⋆
p(s, a)−max

a∈A
Q⋆
p(s, a)

∣∣∣∣ ≤ 2Hϵ,

therefore, for any p, q, s, a,

∣∣∣gapp(s, a)− gapq(s, a)
∣∣∣ ≤ ∣∣∣V ⋆

p (s)− V ⋆
q (s)

∣∣∣+ ∣∣∣Q⋆
p(s, a)−Q⋆

p(s, a)
∣∣∣ ≤ 4Hϵ.

C.1.2 Proof of Lemma 4.4

Lemma 4.4. For any (s, a) ∈ Iϵ, we have that: (1) for all p ∈ [M ], (s, a) /∈ Zp,opt, where

we recall that Zp,opt =
{
(s, a) : gapp(s, a) = 0

}
is the set of optimal state-action pairs with

respect to p; (2) for all p, q ∈ [M ], gapp(s, a) ≥ 1
2
gapq(s, a).

Proof. For any (s, a) ∈ Iϵ, there exists some p0 such that gapp0(s, a) ≥ 96Hϵ. Therefore,

for every p ∈ [M ],

gapp(s, a) ≥ gapp0(s, a),

From Lemma 4.2 we know that
∣∣∣gapp(s, a)− gapp0(s, a)

∣∣∣ ≤ 4Hϵ. Therefore, for all p,

gapp(s, a) ≥ gapp0(s, a)− 4Hϵ ≥ 92Hϵ > 0.

This proves the first item.

For the second item, for all p, q ∈ [M ],

gapp(s, a)

gapq(s, a)
=

gapq(s, a)− 4Hϵ

gapq(s, a)
≥ 1− 4Hϵ

gapq(s, a)
≥ 1− 4

92
≥ 1

2
.
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C.2 Additional Definitions Used in the Proofs

In this section, we define a few useful notations that will be used in our proofs. For

state-action pair (s, a) ∈ S ×A, player p ∈ [M ], episode k ∈ [K]:

1. Define nk(s, a) (resp. nkp(s, a), P̂k, P̂kp, R̂k, R̂k
p) to be the value of n(s, a) (resp. np(s, a),

P̂, P̂p, R̂, R̂p) at the beginning of episode k of Multi-task-Euler.

2. Denote by Q
k

p (resp. Qk

p
, V

k

p, V
k
p, ind-bkp(s, a), agg-bkp(s, a)) the values of Qp (resp.

Q
p
, V p, V p, ind-bp(s, a), agg-bp(s, a)) right after Multi-task-Euler finishes its opti-

mistic value iteration (line 15) at episode k.

3. Define the surplus [136] (also known as the Bellman error) of (s, a) at episode k and

player p as:

Ek
p (s, a) := Q

k

p(s, a)−Rp(s, a)− (PpV
k

p)(s, a).

4. Define wkp(s, a) :=
nk
p(s,a)

nk(s,a)
be the proportion of player p on (s, a) at the beginning of

episode k; this induces (s, a)’s mixture expected reward:

R̄k(s, a) :=
M∑
q=1

wkq (s, a)Rq(s, a),

and mixture transition probability:

P̄k(· | s, a) :=
M∑
q=1

wkq (s, a)Pq(· | s, a).

5. Define ρkp(s, a) := P((sh, ah) = (s, a) | πk(p),Mp) to be the occupancy measure of πk(p)

over Mp on (s, a), where h ∈ [H] is the layer s is in (so that s ∈ Sh). It can be seen

that ρkp, when restricted to Sh ×A, is a probability distribution on this set.

Define ρk(s, a) :=
∑M

p=1 ρ
k
p(s, a); it can be seen that ρ̄k(s, a) ∈ [0,M ]. Define n̄kp(s, a) :=
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∑k
j=1 ρ

j
p(s, a), and n̄k(s, a) :=

∑k
j=1 ρ

j(s, a).1

6. Define Nk(s) :=
∑

a∈A n
k(s, a) and Nk

p (s) :=
∑

a∈A n
k
p(s, a) to be the total number of

encounters of state s by all players, and by player p only, respectively, at the beginning

of episode k.

7. Define N1 ≂M ln(SAK
δ

), and N2 ≂ ln(MSAK
δ

); define τ(s, a) := min
{
k : n̄k(s, a) ≥ N1

}
,

and τp(s, a) := min
{
k : n̄kp(s, a) ≥ N2

}
; With high probability, so long as k ≥ τ(s, a)

(resp. k ≥ τp(s, a)), nk(s, a) and n̄k(s, a) (resp. nkp(s, a) and n̄kp(s, a)) are within a

constant factor of each other; see Lemma C.3.

8. Define ˇgapp(s, a) :=
gapp(s,a)

4H
∨ gapp,min

4H
; recall the definitions of gapp(s, a) and gapp,min

in Section 4.2.

Define Reg(K, p) :=
∑K

k=1

(
V ⋆
0,p − V

πk(p)
0,p

)
as player p’s contribution to the collective

regret; in this notation, Reg(K) =
∑M

p=1 Reg(K, p).

Define the clipping function clip(α,∆) := α1(α ≥ ∆).

We also adopt the following conventions in our proofs:

1. As ϵ-dissimilarity with ϵ > 2H does not impose any constraints on
{
Mp

}M
p=1

, throughout

the proof, we only focus on the regime that ϵ ≤ 2H.

2. We will use πk(p) and πkp interchangeably. To avoid notational clutter, we will also

sometimes slightly abuse notation, using V πk

p,h , V πk

p to denote V πk(p)
p,h , V πk(p)

p respectively.

C.3 Proof of the Upper Bounds

This section establishes the regret guarantees in Theorems 4.5 and 4.6. The proof

follows a similar outline as Strong-Euler’s analysis [136], with important modifications

tailored to the multitask setting. The proof has the following roadmap:
1These are the cumulative occupancy measures up to episode k, inclusively; this is in contrast with the

definition of nk(s, a) and nk
p(s, a), which do not count the trajectories observed at episode k.
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1. Subsection C.3.1 defines a clean event E that we show happens with probability 1− δ.

When E happens, the observed samples are typical enough so that standard concentra-

tion inequalities apply. This will serve as the basis of our subsequent arguments.

2. Subsection C.3.2 shows that when E happens, the value function upper and lower

bounds are valid; furthermore, Multi-task-Euler enjoys strong optimism [136], in

that all players’ surpluses are always nonnegative for all state-action pairs at all time

steps.

3. Subsection C.3.3 establishes a distribution-dependent upper bound on the surpluses

of Multi-task-Euler when E happens, which is key to our regret theorems. In

comparison with Strong-Euler [136] in the single task setting, Multi-task-Euler

exploits inter-task similarity, so that its surpluses on state-action pair (s, a) for player

p are further controlled by a new term that depends on the dissimilarity parameter ϵ,

along with nk(s, a), the total visitation counts of (s, a) by all players.

4. Subsection C.3.4 uses the strong optimism property and the surplus bounds established

in the previous two subsections to conclude our final gap-independent and gap-dependent

regret guarantees, via the clipping lemma [136] (see also Lemma C.12).

5. Finally, Subsection C.3.5 collects miscellaneous technical lemmas used in the proofs.

C.3.1 A clean event

Below we will define a “clean” event E in which all concentration bounds used in

the analysis hold, which we will show happens with high probability. Specifically, we will

define E = Eind ∩ Eagg ∩ Esample, where Eind, Eagg, Esample are defined respectively below.

In subsequent definitions of events, we will abbreviate ∀k ∈ [K], h ∈ [H], p ∈

[M ], s ∈ Sh, a ∈ A, s′ ∈ Sh+1 as ∀k, h, p, s, a, s′. Also, recall that L(n) ≂ ln(MSAn
δ

).
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Define event Eind as:

Eind = Eind,rw ∩ Eind,val ∩ Eind,prob ∩ Eind,var, (C.2)

Eind,rw =

∀k, h, p, s, a �∣∣∣R̂k
p(s, a)−Rp(s, a)

∣∣∣ ≤√L(nk(s, a))

2nk(s, a)

 , (C.3)

Eind,val =

{
∀k, h, p, s, a �

∣∣∣(P̂kpV ⋆
p − PpV ⋆

p )(s, a)
∣∣∣

≤ 4

√
varPp(·|s,a)[V

⋆
p ]L(n

k
p(s, a))

nkp(s, a)
+

2HL(nkp(s, a))

nkp(s, a)

}
,

(C.4)

Eind,prob =

{
∀k, h, p, s, a, s′ �

∣∣∣(P̂kp − Pp)(s′ | s, a)
∣∣∣

≤ 4

√
L(nkp(s, a)) · Pp(s′ | s, a)

nkp(s, a)
+

2L(nkp(s, a))

nkp(s, a)

}
,

(C.5)

Eind,var =

{
∀k, h, p, s, a �

∣∣∣∣∣∣∣
1

nkp(s, a)

nk
p(s,a)∑
i=1

(V ⋆
p (s

′
i)− (PpV ⋆

p )(s, a))
2 − varPp(·|s,a)[V

⋆
p ]

∣∣∣∣∣∣∣ ,
≤ 4

√
H2varPp(·|s,a)[V

⋆
p ]L(n

k
p(s, a))

nkp(s, a)
+

2H2L(nkp(s, a))

nkp(s, a)

}
,

(C.6)

where in Equation (C.6), s′i denotes the next state player p transitions to, for the i-th time

it experiences (s, a). Eind captures the concentration behavior of each player’s individual

model estimates.

Lemma C.1. P(Eind) ≥ 1− δ
3
.

Proof. The proof follows a similar reasoning as the proof of [e.g., 136, Proposition F.9] using

Freedman’s Inequality. We would like to show that each of Eind,rw, Eind,val, Eind,prob, Eind,var

happens with probability 1− δ
12

, which would give the lemma statement by a union bound.

For brevity, we only show that P(Eind,var) ≥ 1− δ
12

, and the other probability statements

follow from a similar reasoning.
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Fix h ∈ [H], (s, a) ∈ Sh ×A, and p ∈ [M ]. We will show

P

∃k ∈ [K]�

∣∣∣∣∣∣∣
1

nkp(s, a)

nk
p(s,a)∑
i=1

(V ⋆
p (s

′
i)− (PpV ⋆

p )(s, a))
2 − varPp(·|s,a)[V

⋆
p ]

∣∣∣∣∣∣∣
≥ 4

√
H2varPp(·|s,a)[V

⋆
p ]L(n

k
p(s, a))

nkp(s, a)
+

2H2L(nkp(s, a))

nkp(s, a)

 ≤ δ

12MSA
.

(C.7)

For every j ∈ N+, define stopping time kj as the j-th episode when (s, a) is

experienced by player p, if such episode exists; otherwise, kj is defined as ∞. it suffices to

show that

P

∃j ∈ N+�kj <∞∧
1

j

∣∣∣∣∣∣
j∑
i=1

(V ⋆
p (s

′
i)− (PpV ⋆

p )(s, a))
2 − varPp(·|s,a)[V

⋆
p ]

∣∣∣∣∣∣
≥ 4

√
H2varPp(·|s,a)[V

⋆
p ]L(j)

j
+

2H2L(j)

j

 ≤ δ

12MSA
.

(C.8)

Define Gj as the σ-algebra generated by all observations up to time step kj. We

have that
{
Gj
}∞
j=0

is a filtration. It can be seen that the sequence

{
Xj := (V ⋆

p (s
′
j)− (PpV ⋆

p )(s, a))
2 − varPp(·|s,a)[V

⋆
p ]
}∞

j=1

is a martingale difference sequence adapted to
{
Gj
}∞
j=0

; in addition, for every j,
∣∣Xj

∣∣ ≤ H2,

and E
[
X2
j | Gj−1

]
≤ E

[
(V ⋆

p (s
′
j)− (PpV ⋆

p )(s, a))
4 | Gj−1

]
≤ H2varPp(·|s,a)[V

⋆
p ]. Therefore,

for any λ ≥ 0,

{
Yj(λ) = exp

(
λ 1
H2 (
∑j

i=1Xi)−
(
(eλ − λ− 1) j

H2varPp(·|s,a)[V
⋆
p ]
))}∞

j=0

is

a nonnegative supermartingale [54]; by optional sampling theorem, E
[
Yj(λ)1(kj <∞)

]
≤
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E
[
Y0(λ)

]
= 1. As a result, for any fixed thresholds a, v ≥ 0 [see 54, Theorem 1.6],

P

 j∑
i=1

Xi ≥ a ∧
j∑
i=1

H2varPp(·|s,a)[V
⋆
p ] ≤ v ∧ kj <∞

 ≤ exp

(
− a2

2v + 2aH2/3

)

Now, by the doubling argument of [14, Lemma 2] (observe that
∑j

i=1 E
[
X2
i | Gi−1

]
∈

[0, H4j]), we have that for all j ∈ N+:

P

kj <∞∧
∣∣∣∣∣∣1j

j∑
i=1

(V ⋆
p (s

′
i)− (PpV ⋆

p )(s, a))
2 − varPp(·|s,a)[V

⋆
p ]

∣∣∣∣∣∣
≥ 4

√
H2varPp(·|s,a)[V

⋆
p ]L(j)

j
+

2H2L(j)

j

 ≤ ln(4j) · δ

48j2MSA
.

A union bound over all j ∈ N+ yields Equation (C.8).
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Define event Eagg as:

Eagg = Eagg,rw ∩ Eagg,val ∩ Eagg,prob ∩ Eagg,var, (C.9)

Eagg,rw =

∀k, h, p, s, a �∣∣∣R̂k(s, a)− R̄k(s, a)
∣∣∣ ≤√L(nk(s, a))

2nk(s, a)

 , (C.10)

Eagg,val =

{
∀k, h, p, s, a �

∣∣∣(P̂P k
V ⋆
p − P̄kV ⋆

p )(s, a)
∣∣∣ ,

≤ 4

√√√√(∑M
q=1w

k
q (s, a)varPq(·|s,a)[V

⋆
p ]
)
L(nk(s, a))

nk(s, a)
+

2HL(nk(s, a))

nk(s, a)

}
,

(C.11)

Eagg,prob =

{
∀k, h, p, s, a, s′ �

∣∣∣(P̂P k
− P̄k)(s′ | s, a)

∣∣∣
≤ 4

√
P̄k(s′ | s, a) · L(nk(s, a))

nk(s, a)
+

2L(nk(s, a))

nk(s, a)

}
,

(C.12)

Eagg,var =

∀k, h, p, s, a�∣∣∣∣∣∣ 1

nk(s, a)

nk(s,a)∑
i=1

(V ⋆
p (s

′
i)− (PpiV ⋆

q )(s, a))
2 −

M∑
q=1

wkq (s, a)varPq(·|s,a)[V
⋆
p ]

∣∣∣∣∣∣ ,
≤ 4

√√√√H2
(∑M

q=1w
k
q (s, a)varPq(·|s,a)[V

⋆
p ]
)
L(nk(s, a))

nk(s, a)
+

2H2L(nk(s, a))

nk(s, a)

,
(C.13)

where in Equation (C.13), s′i denotes the next state for the i-th time some player experiences

(s, a). Eagg captures the concentration behavior of the aggregate model estimates.

Lemma C.2. P(Eagg) ≥ 1− δ
3
.

Proof. The proof follows a similar reasoning as the proof of [e.g., 136, Proposition F.9] using

Freedman’s Inequality. We would like to show that each of Eagg,rw, Eagg,val, Eagg,prob, Eagg,var

happen with probability 1− δ
12

, which would give the lemma statement by a union bound.
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For brevity, we show that P(Eagg,var) ≥ 1− δ
12

, and the other probability statements follow

from a similar reasoning.

Fix h ∈ [H], (s, a) ∈ Sh ×A and p ∈ [M ]; denote by pi the identity of the player

when (s, a) is experienced for the i-th time for some player. It suffices to show that

P

∃k ∈ [K]�

∣∣∣∣∣∣ 1

nk(s, a)

nk(s,a)∑
i=1

(
(V ⋆

p (s
′
i)− (PpiV ⋆

p )(s, a))
2 − varPpi (·|s,a)[V

⋆
p ]
)∣∣∣∣∣∣

≥ 4

√√√√H2
(∑nk(s,a)

i=1 varPpi (·|s,a)[V
⋆
p ]
)
L(nk(s, a))

(nk(s, a))2
+

2H2L(nk(s, a))

nk(s, a)

 ≤ δ

12MSA
,

(C.14)

because 1
nk(s,a)

∑nk(s,a)
i=1 varPpi (·|s,a)[V

⋆
p ] =

∑M
q=1w

k
q (s, a)varPq(·|s,a)[V

⋆
p ].

For every j ∈ N+, define stopping time kj as follows: it is the index of the j-th

micro-episode when (s, a) is experienced by some player, if such micro-episode exists; and

kj is defined to be ∞ otherwise. With this notation, it suffices to show:

P

∃j ∈ N+�kj <∞∧

∣∣∣∣∣∣1j
j∑
i=1

(
(V ⋆

p (s
′
i)− (PpiV ⋆

p )(s, a))
2 − varPpi (·|s,a)[V

⋆
p ]
)∣∣∣∣∣∣

≥ 4

√√√√H2
(∑j

i=1 varPpi (·|s,a)[V
⋆
p ]
)
L(j)

j2
+

2H2L(j)

j

 ≤ δ

12MSA
,

(C.15)

Define Gj as the σ-algebra generated by all observations up to micro-episode kj.

We have that
{
Gj
}∞
j=0

is a filtration. It can be seen that

{
Xj := (V ⋆

p (s
′
j)− (PpjV ⋆

p )(s, a))
2 − varPpj (·|s,a)[V

⋆
p ]
}∞

j=1
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is a martingale difference sequence adapted to
{
Gj
}∞
j=0

; in addition, for every j,
∣∣Xj

∣∣ ≤ H2,

and E
[
X2
j | Gj−1

]
≤ E

[
(V ⋆

p (s
′
j)− (PpjV ⋆

p )(s, a))
4 | Gj−1

]
≤ H2varPpj (·|s,a)[V

⋆
p ]. Using the

same reasoning as in the proof of Lemma C.1 (and observing that
∑j

i=1 E
[
X2
i | Gi−1

]
∈

[0, H4j]), we have that for all j ∈ N+:

P

kj <∞∧
∣∣∣∣∣∣1j

j∑
i=1

(
(V ⋆

p (s
′
i)− (PpiV ⋆

p )(s, a))
2 − varPp(·|s,a)[V

⋆
p ]
)∣∣∣∣∣∣

≥ 4

√
H
∑j

i=1 varPpi (·|s,a)[V
⋆
p ]L(j)

j2
+

2H2L(j)

j

 ≤ ln(4j) · δ

48j2MSA
.

A union bound over all j ∈ N+ implies that Equation (C.15) holds.

Define

Esample = Eind,sample ∩ Eagg,sample,

Eagg,sample =

{
∀s, a, k � n̄k(s, a) ≥ N1 =⇒ nk(s, a) ≥ 1

2
n̄k(s, a)

}
,

Eind,sample =

{
∀s, a, k, p � n̄kp(s, a) ≥ N2 =⇒ nkp(s, a) ≥

1

2
n̄kp(s, a)

}
,

where we recall from Section C.2 that N1 ≂M ln(SAK
δ

), and N2 ≂ ln(MSAK
δ

).

Lemma C.3. P(Esample) ≥ 1− δ
3
.

Proof. We first show P(Eagg,sample) ≥ 1− δ
6
. Specifically, fix h ∈ [H] and (s, a) ∈ Sh ×A,

define random variable Xk =
∑M

p=1

(
1
(
(skh,p, a

k
h,p

)
= (s, a))− ρkp(s, a)

)
. Also, define Gk

as the σ-algebra generated by all observations up to episode k. It can be readily seen that

{Xk}Kk=1 is a martingale difference sequence adapted to filtration {Gk}Kk=0. Freedman’s

inequality (specifically, Lemma 2 of [14]) implies that for every fixed k, with probability

229



1− δ
6K

,

∣∣∣nk(s, a)− n̄k−1(s, a)
∣∣∣ ≤ 4

√
n̄k−1(s, a) ·M ln

(
6SAK2

δ

)
+ 4M ln

(
6SAK2

δ

)
, (C.16)

If Equation (C.16) happens, by AM-GM inequality that
√
n̄k−1(s, a) ·M ln

(
6SAK2

δ

)
≤

1
4
n̄k−1(s, a) + 16M ln

(
6SAK2

δ

)
, we then have

n̄k−1(s, a)− nk(s, a) ≤ 1

4
n̄k−1(s, a) + 20M ln

(
6SAK2

δ

)
,

implying that

nk(s, a) ≥ 3

4
n̄k−1(s, a)− 20M ln

(
6SAK2

δ

)
.

Additionally, as n̄k−1(s, a) ≥ n̄k(s, a)−M always holds, we have

nk(s, a) ≥ 3

4
n̄k(s, a)− 21M ln

(
6SAK2

δ

)
.

In summary, for any fixed k, with probability 1− δ
6K

, if n̄k(s, a) ≥ N1 := 84M ln
(

6SAK2

δ

)
,

nk(s, a) ≥ 1

2
n̄k(s, a).

Taking a union bound over all k ∈ [K], we have P(Eagg,sample) ≥ 1− δ
6
.

It follows similarly that P(Eind,sample) ≥ 1− δ
6
; the only difference in the proof is

that, we need to take an extra union bound over all p ∈ [M ] - hence an additional factor

M within ln(·) in the definition of N2. The lemma statement follows from a union bound

over these two statements.

Lemma C.4. P(E) ≥ 1− δ.

Proof. Follows from Lemmas C.1, C.2, and C.3, along with a union bound.
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C.3.2 Validity of value function bounds

In this section, we show that if the clean event E happens, then for all k and p, the

value function estimates Qk

p, Q
k

p
, V k

p, V
k
p are valid upper and lower bounds of the optimal

value functions Q⋆
p, V ⋆

p (Lemma C.7). As a by-product, we also give a general bound on

the surplus (Lemma C.6) which will be refined and used in the subsequent regret bound

calculations. Before going into the proof of the above two lemmas, we need a technical

lemma below (Lemma C.5) that gives necessary concentration results which motivate the

bonus constructions; its proof can be found at Section C.3.2.

Lemma C.5. Fix p ∈ [M ]. Suppose E happens, and suppose that for episode k and step

h, we have that for all s′ ∈ Sh+1, V k
p(s

′) ≤ V ⋆(s′) ≤ V
k

p(s
′). Then, for all (s, a) ∈ Sh ×A:

1. ∣∣∣R̂k
p(s, a)−Rp(s, a)

∣∣∣ ≤ brw

(
nkp(s, a), 0

)
, (C.17)∣∣∣R̂k(s, a)−Rp(s, a)

∣∣∣ ≤ brw

(
nk(s, a), ϵ

)
. (C.18)

2. ∣∣∣(P̂kp − Pp)(V ⋆
p )(s, a)

∣∣∣ ≤ bprob

(
P̂kp(· | s, a), nkp(s, a), V

k

p, V
k
p, 0
)
, (C.19)∣∣∣(P̂k − Pp)(V ⋆

p )(s, a)
∣∣∣ ≤ bprob

(
P̂k(· | s, a), nk(s, a), V k

p, V
k
p, ϵ
)
. (C.20)

3. For any V1, V2 : Sh+1 → R such that V k

p ≤ V1 ≤ V2 ≤ V k
p,

∣∣∣(P̂kp − Pp)(V2 − V1)(s, a)
∣∣∣ ≤ bstr

(
P̂kp(· | s, a), nkp(s, a), V

k

p, V
k
p, 0
)
, (C.21)

∣∣∣(P̂k − Pp)(V2 − V1)(s, a)
∣∣∣ ≤ bstr

(
P̂k(· | s, a), nk(s, a), V k

p, V
k
p, ϵ
)
. (C.22)

Lemma C.6. If event E happens, and suppose that for episode k and step h, we have
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that for all s′ ∈ Sh+1, V k
p(s

′) ≤ V ⋆
p (s

′) ≤ V
k

p(s
′). Then, for (s, a) ∈ Sh ×A,

Q
k

p(s, a)−
(
Rp(s, a) + (PpV

k

p)(s, a)
)
∈
[
0, (H − h+ 1) ∧ 2ind-bkp(s, a) ∧ 2agg-bkp(s, a)

]
,

(C.23)

and

(
Rp(s, a) + (PpV k

p)(s, a)
)
−Qk

p
(s, a) ∈

[
0, (H − h+ 1) ∧ 2ind-bkp(s, a) ∧ 2agg-bkp(s, a)

]
,

(C.24)

where we recall that

ind-bkp(s, a) = brw

(
nkp(s, a), 0

)
+ bprob

(
P̂kp(· | s, a), nkp(s, a), V

k

p, V
k
p, 0
)

+ bstr

(
P̂kp(· | s, a), nkp(s, a), V

k

p, V
k
p, 0
)
,

agg-bkp(s, a) = brw

(
nk(s, a), ϵ

)
+ bprob

(
P̂k(· | s, a), nk(s, a), V k

p, V
k
p, ϵ
)

+ bstr

(
P̂k(· | s, a), nk(s, a), V k

p, V
k
p, ϵ
)
.

Proof. We only show Equation (C.23) for brevity; Equation (C.24) follows from an exact

symmetrical reasoning.

Recall that Qk

p(s, a) = min
(
ind-Qk

p(s, a), agg-Qk

p(s, a), H
)
. We compare each term

in the min(·) operator with (Rp(s, a) + (PpV
k

p)(s, a)):
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• For ind-Qk

p(s, a), using Lemma C.5 and our assumption on V k

p and V k
p on Sh+1, we have:

ind-Qk

p(s, a)−
(
Rp(s, a) + (PpV

k

p)(s, a)
)

= (R̂k
p −Rp)(s, a) + brw

(
nkp(s, a), 0

)
+ ((P̂kp − Pp)V ⋆

p )(s, a) + bprob

(
P̂kp(· | s, a), nkp(s, a), V

k

p, V
k
p, 0
)

+ (P̂kp − Pp)(V
k

p − V ⋆
p ))(s, a) + bstr

(
P̂kp(· | s, a), nkp(s, a), V

k

p, V
k
p, 0
)

∈ [0, 2ind-bkp(s, a)].

• For agg-Qk

p(s, a), using Lemma C.5 and our assumptions on V k

p and V k
p over Sh+1, we

have:

agg-Qk

p(s, a)−
(
Rp(s, a) + (PpV

k

p)(s, a)
)

= (R̂k
p −Rp)(s, a) + brw

(
nk(s, a), ϵ

)
+ ((P̂k − Pp)V ⋆

p )(s, a) + bprob

(
P̂k(· | s, a), nk(s, a), V k

p, V
k
p, ϵ
)

+ ((P̂k − Pp)(V
k

p − V ⋆
p ))(s, a) + bstr

(
P̂k(· | s, a), nk(s, a), V k

p, V
k
p, ϵ
)

∈ [0, 2agg-bkp(s, a)],

• For H − h+ 1, we have:

(H − h+ 1)− (Rp(s, a) + (PpV
k

p)(s, a)) ∈ [0, H − h+ 1],

where we use the observation that R(s, a) ∈ [0, 1], and (PpV
k

p)(s, a) ∈ [0, H − h], and

their sum is in [0, H].

Combining the above three establishes that

Q
k

p(s, a)− (R(s, a) + (PpV
k

p)(s, a)) ∈
[
0, (H − h+ 1) ∧ 2ind-bkp(s, a) ∧ 2agg-bkp(s, a)

]
.

233



Lemma C.7. Under event E, for every k ∈ [K], and every p ∈ [M ], and for every

h ∈ [H], For all (s, a) ∈ Sh ×A,

Qk

p
(s, a) ≤ Qπk

p (s, a) ≤ Q⋆
p(s, a) ≤ Q

k

p(s, a), (C.25)

and

V k
p(s) ≤ V πk

p (s) ≤ V ⋆
p (s) ≤ V

k

p(s), (C.26)

Proof. The proof of this lemma extends [136, Proposition F.1] to our multitask setting.

For every k and p, we show the above holds for all layers h ∈ [H] and every

(s, a) ∈ Sh ×A; to this end, we do backward induction on layer h.

Base case:

For layer h = H + 1, we have V k
p(⊥) = V πk

p (⊥) = V ⋆
p (⊥) = V

k

p(⊥) = 0.

Inductive case:

By our inductive hypothesis, for layer h+ 1 and every s ∈ Sh+1,

V k
p(s) ≤ V πk

p (s) ≤ V ⋆
p (s) ≤ V

k

p(s).

We will show that Equations (C.25) and (C.26) holds holds for all (s, a) ∈ Sh ×A.

We first show Equation (C.25). First, Qπk

p (s, a) ≤ Q⋆
p(s, a) for all (s, a) ∈ Sh ×A

is trivial.

To show Q⋆
p(s, a) ≤ Q

k

p(s, a) for all (s, a) ∈ Sh ×A, by Lemma C.6 and inductive

hypothesis, we have:

Q⋆
p(s, a) = Rp(s, a) + (PpV ⋆

p )(s, a) ≤ Rp(s, a) + (PpV
k

p)(s, a) ≤ Q
k

p(s, a).
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Likewise, we show Qπk

p (s, a) ≥ Qk

p
(s, a) for all (s, a) ∈ Sh × A, using Lemma C.6 and

inductive hypothesis:

Qπk

p (s, a) = Rp(s, a) + (PpV πk

p )(s, a) ≥ Rp(s, a) + (PpV
k

p)(s, a) ≥ Qk

p
(s, a).

This completes the proof of Equation (C.25) for layer h.

We now show Equation (C.26) for layer h. Again V πk

p (s) ≤ V ⋆
p (s) for all s ∈ Sh is

trivial.

To show V ⋆
p (s) ≤ V

k

p(s) for all s ∈ Sh, observe that

V ⋆
p (s) = max

a∈A
Q⋆
p(s, a) ≤ max

a∈A
Q
k

p(s, a) = V
k

p(s).

To show V πk

p (s) ≥ V k
p(s) for all s ∈ Sh, observe that

V πk

p (s) = Qπk

p (s, πk(p)(s)) ≥ Qk

p
(s, πk(p)(s)) = V k

p(s).

This completes the induction.

Proof of Lemma C.5

Proof of Lemma C.5. Equations (C.17), (C.19), and (C.21) essentially follow the same

reasoning as in [136]; we still include their proofs for completeness.

Equations (C.18), (C.20), and (C.22) are new, and require a more involved analysis.

Our proof also relies on a technical lemma, namely Lemma C.8; we defer its statement

and proof to the end of this subsection.

1. Equation (C.17) follows directly from the definition of Eind,rw. Equation (C.18) follows

from the definition of Eagg,rw, and the fact that
∣∣R̄k(s, a)−Rp(s, a)

∣∣ ≤ ϵ.
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2. We prove Equation (C.19) as follows:

∣∣∣(P̂kpV ⋆ − PpV ⋆
p )(s, a)

∣∣∣
≤O

√varPp(·|s,a)[V
⋆]L(nkp(s, a))

nkp(s, a)
+
HL(nkp(s, a))

nkp(s, a)


≤O

√varP̂k
p(·|s,a)

[V ⋆]L(nkp(s, a))

nkp(s, a)
+
HL(nkp(s, a))

nkp(s, a)



≤O


√√√√varP̂k

p(·|s,a)
[V

k

p] L(n
k
p(s, a))

nkp(s, a)
+

√√√√∥V ⋆
p − V

k

p∥2P̂k
p(·|s,a)

L(nkp(s, a))

nkp(s, a)

+
HL(nkp(s, a))

nkp(s, a)



≤O


√√√√varP̂k

p(·|s,a)
[V

k

p] L(n
k
p(s, a))

nkp(s, a)
+

√√√√∥V k

p − V k
p∥2P̂k

p(·|s,a)
L(nkp(s, a))

nkp(s, a)

+
HL(nkp(s, a))

nkp(s, a)


≤bprob

(
P̂kp(· | s, a), nkp(s, a), V

k

p, V
k
p, 0
)
,

where the first inequality is from the definition of Eind,val; the second inequality is from

Equation (C.27) of Lemma C.8; the third inequality is from Lemma C.15; the fourth

inequality is from our assumption that for all s′ ∈ Sh+1, V k
p(s

′) ≤ V ⋆(s′) ≤ V
k

p(s
′), and

thus
∣∣∣(V ⋆

p − V k
p)(s

′)
∣∣∣ ≤ ∣∣∣(V k

p − V k
p)(s

′)
∣∣∣ for all s′ in the support of P̂kp(· | s, a).
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We prove Equation (C.20) as follows:

∣∣∣(P̂k − Pp)(V ⋆
p )(s, a)

∣∣∣
≤ϵ+

∣∣∣(P̂k − P̄kp)(V ⋆
p )(s, a)

∣∣∣
≤ϵ+O


√√√√(∑M

q=1w
k
q (s, a)varPq(·|s,a)[V

⋆
p ]
)
L(nk(s, a))

nk(s, a)
+
HL(nk(s, a))

nk(s, a)


≤ϵ+O

√varP̂k(·|s,a)[V
⋆
p ] L(n

k(s, a))

nk(s, a)
+

√
L(nk(s, a))

nk(s, a)
· ϵH +

HL(nk(s, a))

nk(s, a)



≤2ϵ+O


√√√√varP̂k(·|s,a)[V

k

p] L(n
k(s, a))

nk(s, a)
+

√√√√∥V k

p − V ⋆
p ∥2P̂k(·|s,a) L(n

k(s, a))

nk(s, a)
+

HL(nk(s, a))

nk(s, a)



≤2ϵ+O


√√√√varP̂k(·|s,a)[V

k

p] L(n
k(s, a))

nk(s, a)
+

√√√√∥V k

p − V k
p∥2P̂k(·|s,a) L(n

k(s, a))

nk(s, a)
+

HL(nk(s, a))

nk(s, a)


≤bprob

(
P̂k(· | s, a), nk(s, a), V k

p, V
k
p, ϵ
)
,

where the first inequality is from the observation that ∥P̄k(· | s, a)−Pp(· | s, a)∥1 ≤ ϵ
H

and

Lemma C.16; the second inequality is from the definition of Eagg,val; the third inequality

is from Equation (C.28) of Lemma C.8; the fourth inequality is from Lemma C.15

and the observation that for constant c > 0, c
√

L(nk(s,a))
nk(s,a)

· ϵH ≤ ϵ + c2

4
L(nk(s,a))
nk(s,a)

by

AM-GM inequality; the fifth inequality is from our assumption that for all s′ ∈ Sh+1,

V k
p(s

′) ≤ V ⋆(s′) ≤ V
k

p(s
′), and thus

∣∣∣(V ⋆
p − V k

p)(s
′)
∣∣∣ ≤ ∣∣∣(V k

p − V k
p)(s

′)
∣∣∣ for all s′ in the
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support of P̂k(· | s, a).

3. We prove Equation (C.21) as follows:

∣∣∣(P̂kp − Pp)(V2 − V1)(s, a)
∣∣∣

≤
∑

s′∈Sh+1

∣∣∣(P̂kp − Pp)(s′ | s, a)
∣∣∣ · (V2 − V1)(s′)

≤O

 ∑
s′∈Sh+1

√L(nkp(s, a)) · Pp(s′ | s, a)
nkp(s, a)

+
L(nkp(s, a))

nkp(s, a)

 · (V2 − V1)(s′)


≤O

 ∑
s′∈Sh+1

√L(nkp(s, a)) · P̂kp(s′ | s, a)
nkp(s, a)

+
L(nkp(s, a))

nkp(s, a)

 · (V2 − V1)(s′)


≤O

 ∑
s′∈Sh+1

√
P̂kp(s′ | s, a)(V

k

p − V k
p)(s

′) ·

√
L(nkp(s, a))

nkp(s, a)
+
∑

s′∈Sh+1

HL(nkp(s, a))

nkp(s, a)



≤O


√√√√S∥V k

p − V k
p∥2P̂k

p(·|s,a)
L(nkp(s, a))

nkp(s, a)
+
SHL(nkp(s, a))

nkp(s, a)


≤bstr

(
P̂kp(· | s, a), n(s, a), V

k

p, V
k
p, 0
)
,

where the first inequality is from the elementary fact that
∣∣∑n

i=1 ai
∣∣ ≤ ∑n

i=1|ai|; the

second inequality is from the definition of Eind,prob; the third inequality is from the

definition of Eind,prob and Lemma C.17; the fourth inequality is by algebra and 0 ≤

(V2 − V1)(s
′) ≤ min(H, (V

k

p − V k
p)(s

′)) for all s′ ∈ Sh+1; the fifth inequality is by

Cauchy-Schwarz.
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We now prove Equation (C.22):

∣∣∣(P̂k − Pp)(V2 − V1)(s, a)
∣∣∣

≤
∣∣∣(P̄k − Pp)(V2 − V1)(s, a)

∣∣∣+∣∣∣(P̂k − P̄k)(V2 − V1)(s, a)
∣∣∣

≤ϵ+
∑

s′∈Sh+1

∣∣∣(P̂k − P̄k)(s′ | s, a)
∣∣∣ · (V2 − V1)(s′)

≤ϵ+O

 ∑
s′∈Sh+1

√L(nk(s, a)) · P̄k(s′ | s, a)
nk(s, a)

+
L(nk(s, a))

nk(s, a)

 · (V2 − V1)(s′)


≤ϵ+O

 ∑
s′∈Sh+1

√L(nk(s, a)) · P̂k(s′ | s, a)
nk(s, a)

+
L(nk(s, a))

nk(s, a)

 · (V2 − V1)(s′)


≤ϵ+O

 ∑
s′∈Sh+1

√
P̂k(s′ | s, a)(V k

p − V k
p)(s

′) ·

√
L(nk(s, a))

nk(s, a)
+
∑

s′∈Sh+1

HL(nk(s, a))

nk(s, a)



≤ϵ+O


√√√√S∥V k

p − V k
p∥2P̂k(·|s,a) L(n

k(s, a))

nk(s, a)
+
SHL(nk(s, a))

nk(s, a)


≤bstr

(
P̂k(· | s, a), n(s, a), V k

p, V
k
p, ϵ
)
,

where the first inequality is triangle inequality; the second inequality is from the

elementary fact that
∣∣∑n

i=1 ai
∣∣ ≤∑n

i=1|ai|, along with ∥P̄k(· | s, a)− Pp(· | s, a)∥1 ≤ ϵ
H

and Lemma C.16; the third inequality is from the definition of Eagg,prob; the fourth

inequality is from the definition of Eagg,prob and Lemma C.17; the fifth inequality is

by algebra and 0 ≤ (V2 − V1)(s′) ≤ min(H, (V
k

p − V k
p)(s

′)) for all s′ ∈ Sh+1; the last

inequality is by Cauchy-Schwarz.

Lemma C.5 relies on the following technical lemma on the concentrations of the

conditional variances. Specifically, Equation (C.27) is well-known [see, e.g., 7, 109];
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Equations (C.28) and (C.29) are new, and allow for heterogeneous data aggregation in

the multi-task RL setting. We still include the proof of Equation (C.27) here, as it helps

illustrate our ideas for proving the two new inequalities.

Lemma C.8. If event E happens, then for any s, a, k, p, we have:

1. ∣∣∣∣∣
√
varP̂k

p(·|s,a)

[
V ⋆
p

]
−
√

varPp(·|s,a)

[
V ⋆
p

]∣∣∣∣∣ ≲ H

√
L(nkp(s, a))

nkp(s, a)
, (C.27)

2. ∣∣∣∣∣∣∣
√

varP̂k(·|s,a)

[
V ⋆
p

]
−

√√√√ M∑
q=1

wkq (s, a)varPq(·|s,a)

[
V ⋆
p

]∣∣∣∣∣∣∣ ≲
√
Hϵ+H

√
L(nk(s, a))

nk(s, a)
, (C.28)

and

∣∣∣∣∣
√
varP̂k(·|s,a)

[
V ⋆
p

]
−
√

varPp(·|s,a)

[
V ⋆
p

]∣∣∣∣∣ ≲ √Hϵ+H

√
L(nk(s, a))

nk(s, a)
, (C.29)

Proof. 1. By the definition of E, we have

∣∣∣∣∣∣∣
1

nkp(s, a)

nk
p(s,a)∑
i=1

(V ⋆
p (s

′
i)− (PpV ⋆

p )(s, a))
2 − varPp(·|s,a)[V

⋆
p ]

∣∣∣∣∣∣∣
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√
H2varPp(·|s,a)[V

⋆
p ]L(n

k
p(s, a))

nkp(s, a)
+
H2L(nkp(s, a))

nkp(s, a)
;

this, when combined with Lemma C.17, implies that

∣∣∣∣∣∣∣
√√√√ 1

nkp(s, a)
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p(s,a)∑
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p (s

′
i)− (PpV ⋆
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p ]
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(C.30)
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Now, observe that

varP̂k
p(·|s,a)

[
V ⋆
p

]
=

1

nkp(s, a)
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p(s,a)∑
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2.

Recall that by the definition of event E, we have

∣∣∣(P̂kpV ⋆
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
≤ 2H

√
L(nkp(s, a))

nkp(s, a)
,

where the second inequality uses Lemma C.18. Using the elementary fact that |A−B| ≤

C ⇒
√
A ≤

√
B +

√
C, we get that

∣∣∣∣∣∣∣
√
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p(·|s,a)

[
V ⋆
p

]
−

√√√√ 1

nk(s, a)
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(V ⋆
p (s

′
i)− (PpV ⋆

p )(s, a))
2

∣∣∣∣∣∣∣
≤
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p )(s, a)

∣∣∣ ≲ H

√
L(nkp(s, a))

nkp(s, a)
.

(C.31)

Combining Equations (C.30) and (C.31), using algebra, we get

∣∣∣∣∣
√
varP̂k

p(·|s,a)

[
V ⋆
p

]
−
√

varPp(·|s,a)

[
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p
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√
L(nkp(s, a))

nkp(s, a)
,

establishing Equation (C.27).
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2. We first show Equation (C.28). By the definition of E, we have

∣∣∣∣∣∣ 1

nk(s, a)

nk(s,a)∑
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(V ⋆
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i)− (PpiV ⋆
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wkp(s, a)varPp(·|s,a)[V
⋆
p ]
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⋆
p ]
)
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+
H2L(nk(s, a))
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,

this, combined with Lemma C.17, implies that

∣∣∣∣∣∣∣
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≲ H
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L(nk(s, a))

nk(s, a)
.

(C.32)

For the first term on the left hand side, observe that for each i, |(PpiV ⋆
p )(s, a) −

(PpV ⋆
p )(s, a)| ≤ H ϵ

H
= ϵ, we therefore have

∣∣∣(V ⋆
p (s

′
i)− (PpiV ⋆

p )(s, a))
2 − (V ⋆

p (s
′
i)− (PpV ⋆

p )(s, a))
2
∣∣∣ ≤ 2Hϵ

by 2H-Lipschitzness of function f(x) = x2 on [−H,H]. By averaging over all i’s and

taking square root, we have

∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣
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√
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(C.33)
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Furthermore,
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V ⋆
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]
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1
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√
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Together with our assumption that ϵ ≤ 2H (which implies that ϵ ≲
√
Hϵ), this gives
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(C.34)

Equation (C.28) is a direct consequence of Equations (C.32), (C.33) and (C.34) along

with algebra.

We now show Equation (C.29) using Equation (C.28). By Lemma C.16, for every q,∣∣∣∣varPq(·|s,a)

[
V ⋆
p

]
− varPp(·|s,a)

[
V ⋆
p

]∣∣∣∣ ≤ 3H2 · ϵ
H

= 3Hϵ. Therefore,
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⋆
p ]−

√
varPp(·|s,a)

[
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]∣∣∣∣∣∣∣ ≲
√
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This, together with Equation (C.28), implies
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[
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,

243



establishing Equation (C.29).

C.3.3 Simplifying the surplus bounds

In this section, we show a distribution-dependent bound on the surplus terms,

namely Lemma C.11, which is key to establishing our regret bound. It can be seen as an ex-

tension of Proposition B.4 of [136] to our multitask setting using the Multi-task-Euler

algorithm, under the ϵ-dissimilarity assumption. Before we present Lemma C.11 (Sec-

tion C.3.3), we first show and prove two auxiliary lemmas, Lemma C.9 and Lemma C.10.

Lemma C.9 (Bounds on V
k

p − V k
p, generalization of [136], Lemma F.8). If E happens,

then for all p ∈ [M ], k ∈ [K], h ∈ [H + 1] and s ∈ Sh,

(V
k

p − V k
p)(s) ≤ 4E

 H∑
t=h

(
H ∧ ind-bkp(st, at) ∧ agg-bkp(st, at)

)
| sh = s, πk(p),Mp

 ;

(C.35)

consequently,

(V
k

p − V k
p)(s) ≲ H

H∑
t=h

E


1 ∧

√
SL(nkp(st, at))

nkp(st, at)

 | sh = s, πk(p),Mp

 . (C.36)

Proof. First, Lemmas C.7 and C.6 together imply that if E holds, Equations (C.23)

and (C.24) holds for all p, k, s, a. Under this premise, we show Equation (C.35) by

backward induction.

Base case:

for h = H + 1, we have that LHS is (V
k

p − V k
p)(⊥) = 0 which is equal to the RHS.
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inductive case:

Suppose Equation (C.35) holds for all s ∈ Sh+1. Now consider s ∈ Sh. By the

definitions of V k

p and V k
p,

(V
k

p − V k
p)(s)

=Q
k

p(s, π
k
p(s))−Qk

p
(s, πkp(s))

≤(Pp(V
k

p − V k
p))(s, π

k
p(s)) + 4(H ∧ ind-bkp(s, π

k
p(s)) ∧ agg-bkp(s, π

k
p(s)))

=E
[
4min(H, ind-bkp(s, a), agg-bkp(s, a)) + (V

k
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p)(sh+1) | sh = s, πkp ,Mp

]

≤E
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E

 H∑
t=h+1

(
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)
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 | sh = s, πkp ,Mp


≤4E

 H∑
t=h

(
H ∧ ind-bkp(st, at) ∧ agg-bkp(st, at)

)
| sh = s, πkp ,Mp

 ,
where the first inequality is from Equations (C.23) and (C.24) for (s, a) and player p at

episode k, and the second inequality is from the inductive hypothesis; the third inequality

is by algebra. This completes the induction.
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We now show Equation (C.36). By the definition of ind-bkp(s, a) and algebra,
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,

where the second inequality uses varP̂k
p(·|s,a)
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V
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]
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p
≤ H2.

As a consequence, using Lemma C.18,
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√
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 .

Lemma C.10. If E happens, we have the following statements holding for all p, k, s, a:

1. For two terms that appear in ind-bkp(s, a), they are bounded respectively as:

∥V k

p − V k
p∥2P̂k

p(·|s,a)
≲ ∥V k

p − V k
p∥2Pp(·|s,a) +
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nkp(s, a)
(C.37)
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√√√√varP̂k
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(C.38)

2. For two terms that appear in agg-bkp(s, a), they are bounded respectively as:

∥V k

p − V k
p∥2P̂k(·|s,a) ≲ 2∥V k

p − V k
p∥2Pp(·|s,a) +

H2SL(nkp(s, a))
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+Hϵ (C.39)
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(C.40)

≲
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(C.41)

Proof. First, Lemmas C.7 and C.6 together imply that if E happens, the value function

upper and lower bounds are valid. Conditioned on E happening, we prove the two items

respectively.

1. For Equation (C.37), using the definition of Eind,prob and AM-GM inequality, when E

happens, we have for all p, k, s, a, s′,

P̂kp(s′ | s, a) ≲ Pp(s′ | s, a) +
L(nkp(s, a))

nkp(s, a)
. (C.42)
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This implies that

∥V k
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p∥2P̂k

p(·|s,a)

=
∑
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where the first inequality is from Equation (C.42), and the fact that V k

p(s
′)− V k

p(s
′) ∈

[0, H] for any s′ ∈ Sh+1; the second inequality is by algebra.

For Equation (C.38), we have:
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where the first inequality is from Lemma C.15 and the observation that when E

happens,
∣∣∣(V k

p − V ⋆
p )(s

′)
∣∣∣ ≤ ∣∣∣(V k

p − V k
p)(s

′)
∣∣∣ for all s′ ∈ Sh+1; the second inequality

is from Equation (C.27) of Lemma C.8 and Equation (C.37); the third inequality

again uses Lemma C.15 and the observation that when E happens,
∣∣∣(V ⋆

p − V πk

p )(s′)
∣∣∣ ≤∣∣∣(V k

p − V k
p)(s

′)
∣∣∣ for all s′ ∈ Sh+1.

2. For Equation (C.39), using the definition of Eagg,prob and AM-GM inequality, when E
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happens, we have for all p, k, s, a, s′,

P̂k(s′ | s, a) ≲ P̄k(s′ | s, a) + L(nk(s, a))

nk(s, a)
. (C.43)

This implies that
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where the first inequality is from Equation (C.43) and the fact that V k

p(s
′)− V k

p(s
′) ∈

[0, H] for any s′ ∈ Sh+1; the second inequality is from the observation that ∥Pp(· |

s, a)− P̄k(· | s, a)∥1 ≤ ϵ
H

; the third inequality is by algebra.
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For Equation (C.41), we have:
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where the first inequality is from Lemma C.15 and the observation that when E hap-

pens,
∣∣∣(V k

p − V ⋆
p )(s

′)
∣∣∣ ≤ ∣∣∣(V k

p − V k
p)(s

′)
∣∣∣ for s′ ∈ Sh+1; the second inequality uses Equa-

tion (C.29) of Lemma C.8 and Equation (C.39); the third inequality is from Lemma C.15

and the observation that when E happens,
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p − V πk

p )(s′)
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p − V k
p)(s

′)
∣∣∣ for

s′ ∈ Sh+1.

Distribution-dependent bound on the surplus terms

Lemma C.11 (Surplus bound). If E happens, then for all p, k, s, a:

Ek
p (s, a) ≲B

k,lead
p (s, a) + E

 H∑
t=h

Bk,fut
p (st, at) | (sh, ah) = (s, a), πk(p),Mp

 ,
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where

Bk,lead
p (s, a) = H ∧

5ϵ+O


√√√√(1 + varPp(·|s,a)[V

πk

p ]
)
L(nk(s, a))

nk(s, a)




∧ O


√√√√(1 + varPp(·|s,a)[V

πk

p ]
)
L(nkp(s, a))

nkp(s, a)

 ,

Bk,fut
p (s, a) = H3 ∧ O

(
H3SL(nkp(s, a))

nkp(s, a)

)
.

Proof of Lemma C.11. First, Lemmas C.7 and C.6 together imply that if E holds, for all

p, k, s, a, Ek
p (s, a) ≤ 2

(
H ∧ ind-bkp(s, a) ∧ agg-bkp(s, a)

)
. We now bound ind-bkp(s, a) and

agg-bkp(s, a) respectively.
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Bounding ind-bkp(s, a):

ind-bkp(s, a)

=O


√√√√varP̂k

p(·|s,a)
[V

k

p] L(n
k
p(s, a))

nkp(s, a)
+

√
L(nkp(s, a))

nkp(s, a)
+

√√√√S∥V k

p − V k
p∥2P̂k

p(·|s,a)
L(nkp(s, a))

nkp(s, a)
+
SHL(nkp(s, a))

nkp(s, a)



≤O


√

varPp(·|s,a)[V
πk

p ] L(nkp(s, a))

nkp(s, a)
+

√
L(nkp(s, a))

nkp(s, a)
+

√√√√S∥V k

p − V k
p∥2Pp(·|s,a) L(n

k
p(s, a))

nkp(s, a)
+
SHL(nkp(s, a))

nkp(s, a)



≤O


√√√√(1 + varPp(·|s,a)[V

πk

p ]
)
L(nkp(s, a))

nkp(s, a)
+

√√√√S∥V k

p − V k
p∥2Pp(·|s,a) L(n

k
p(s, a))

nkp(s, a)
+
SHL(nkp(s, a))

nkp(s, a)



≤O


√√√√(1 + varPp(·|s,a)[V

πk

p ]
)
L(nkp(s, a))

nkp(s, a)
+ ∥V k

p − V k
p∥2Pp(·|s,a) +

SHL(nkp(s, a))

nkp(s, a)


where the first inequality is by expanding the definition of ind-bkp(s, a) and algebra; the

second inequality is from Equations Equation (C.37) and (C.38) of Lemma C.10, along

with algebra; the third inequality is by the basic fact that
√
A +

√
B ≲

√
A+B; the

fourth inequality is by AM-GM inequality.
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Bounding agg-bkp(s, a):

agg-bkp(s, a)

≲4ϵ+O


√√√√varP̂k(·|s,a)[V

k

p] L(n
k(s, a))

nk(s, a)
+

√
L(nk(s, a))

nk(s, a)
+

√√√√S∥V k

p − V k
p∥2P̂k(·|s,a) L(n

k(s, a))

nk(s, a)
+
SHL(nk(s, a))

nk(s, a)



≲5ϵ+O


√

varPp(·|s,a)[V
πk

p ] L(nk(s, a))

nk(s, a)
+

√
L(nk(s, a))

nk(s, a)
+

√√√√S∥V k

p − V k
p∥2Pp(·|s,a) L(n

k(s, a))

nk(s, a)
+
SHL(nk(s, a))

nk(s, a)



≲5ϵ+O


√√√√(1 + varPp(·|s,a)[V

πk

p ]
)
L(nk(s, a))

nk(s, a)
+

√√√√S∥V k

p − V k
p∥2Pp(·|s,a) L(n

k(s, a))

nk(s, a)
+
SHL(nk(s, a))

nk(s, a)



≤5ϵ+O


√√√√(1 + varPp(·|s,a)[V

πk

p ]
)
L(nk(s, a))

nk(s, a)
+ ∥V k

p − V k
p∥2Pp(·|s,a) +

SHL(nk(s, a))

nk(s, a)


where the first inequality is by expanding the definition of agg-bkp(s, a) and algebra; the

second inequality is from Equations (C.41) and Equation (C.39) of Lemma C.10, along

with the observation that
√

SϵHL(nk(s,a))
nk(s,a)

≤ SHL(nk(s,a))
nk(s,a)

+ ϵ by AM-GM inequality; the third

inequality is by the basic fact that
√
A +
√
B ≲

√
A+B; the fourth inequality is from
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AM-GM inequality.

Combining the above upper bounds, and using the observation that L(nk(s,a))
nk(s,a)

≤
L(nk

p(s,a))

nk
p(s,a)

, we get

ind-bkp(s, a) ∧ agg-bkp(s, a) ∧H

≤ O


√√√√(1 + varPp(·|s,a)[V

πk

p ]
)
L(nkp(s, a))

nkp(s, a)

∧
5ϵ+O


√√√√(1 + varPp(·|s,a)[V

πk

p ]
)
L(nk(s, a))

nk(s, a)


 ∧H

+O

∥V k

p − V k
p∥2Pp(·|s,a) +

(
SHL(nkp(s, a))

nkp(s, a)
∧H

)
≤ Bk,lead(s, a) +O

∥V k

p − V k
p∥2Pp(·|s,a) +

(
SHL(nkp(s, a))

nkp(s, a)
∧H

) .

We now show that

∥V k

p − V k
p∥2Pp(·|s,a) +

(
SHL(nkp(s, a))

nkp(s, a)
∧H

)

≲ E

 H∑
t=h

Bk,fut(st, at) | (sh, ah) = (s, a), πk(p),Mp

 , (C.44)

which will conclude the proof. To this end, we simplify the left hand side of Equation (C.44)
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using Lemma C.9:

∥V k

p − V k
p∥2Pp(·|s,a) +

(
SHL(nk(s, a))

nk(s, a)
∧H

)

≲E


H H∑

t=h+1

E


1 ∧

√
SL(nkp(st, at))

nkp(st, at)

 | sh+1




2

| (sh, ah) = (s, a), πk(p),Mp

+

(
SHL(nk(s, a))

nk(s, a)
∧H

)

≲H3E

 H∑
t=h+1

E


1 ∧

√
SL(nkp(st, at))

nkp(st, at)

2

| sh+1

 | (sh, ah) = (s, a), πk(p),Mp

+

(
SHL(nk(s, a))

nk(s, a)
∧H

)

≲E

 H∑
t=h

H3 ∧
H3SL(nkp(st, at))

nkp(st, at)
| (sh, ah) = (s, a), πk(p),Mp


≲E

 H∑
t=h

Bk,fut(st, at) | (sh, ah) = (s, a), πk(p),Mp

 ,
where the first inequality is from Equation (C.36) of Lemma C.9; the second inequality

is by Cauchy-Schwarz and E[X]2 ≤ E[X2] for any random variable X; and the third

inequality is by the law of total expectation and algebra.

C.3.4 Concluding the regret bounds

In this section, we present the proofs of Theorems 4.5 and 4.6. To bound the collec-

tive regret of Multi-task-Euler, we first recall the following general result from [136],

which is useful to establish instance-dependent regret guarantees for episodic RL.

Lemma C.12 (Clipping lemma, [136], Lemma B.6). Fix player p ∈ [M ]; suppose for each

episode k, it follows πk(p), the greedy policy with respect to Qk

p. In addition, there exists
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some event E and a collection of functions
{
Bk,lead
p , Bk,fut

p

}K
k=1
⊂ (S ×A → R) , such that

if E happens, then for all k ∈ [K], h ∈ [H] and (s, a) ∈ Sh×A, the surplus of Qk

p satisfies

that

0 ≤ Ek
p (s, a) ≲ Bk,lead

p (s, a) + E

 H∑
t=h

Bk,fut
p (st, at) | (sh, ah) = (s, a), πk(p),Mp

 ,
then, on E:

Reg(K, p) ≲
∑
s,a

∑
k

ρkp(s, a) clip
(
Bk,lead
p (s, a), ˇgapp(s, a)

)
+

∑
s,a

∑
k

ρkp(s, a) clip

(
Bk,fut
p (s, a),

gapp,min

8SAH2

)
,

here, recall that clip(α,∆) = α1(α ≥ ∆), and ˇgapp(s, a) =
gapp(s,a)

4H
∨ gapp,min

4H
.

Remark C.13. Our presentation of the clipping lemma is slightly different than the

original one [136, Lemma B.6], in that:

1. We consider layered MDPs, while Simchowitz and Jamieson [136] consider general

stationary MDPs where one state may be experienced at multiple different steps in [H].

Specifically, in a layered MDP, the occupancy distributions ωk,h defined in [136] is only

supported over Sh ×A. As a result, in the presentation here, we no longer need to sum

over h – this is already captured in the sum over all s across all layers.

2. Our presentation here is in the context of multitask RL, which is with respect to a

player p ∈ [M ], its corresponding MDPMp, and its policies used throughout the process{
πk(p)

}K
k=1

. As a result, all quantities have p as subscripts.

We are now ready to prove Theorems 4.5 and 4.6, Multi-task-Euler’s main

regret theorems.
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Proof of Theorem 4.5

Proof of Theorem 4.5. From Lemma C.12 and Lemma C.11, we have that when E happens,

Reg(K) =
M∑
p=1

Reg(K, p)

≤
∑
s,a

∑
k,p

ρkp(s, a) clip
(
Bk,lead(s, a), ˇgapp(s, a)

)
︸ ︷︷ ︸

(A)

+

∑
s,a

∑
k,p

ρkp(s, a) clip

(
Bk,fut(s, a),

gapp,min

8SAH2

)
︸ ︷︷ ︸

(B)

,

(C.45)

We bound each term separately. We can directly use Lemma C.14 to bound term

(B) as:

∑
s,a

∑
k,p

ρkp(s, a) clip

(
Bk,fut(s, a),

gapp,min

8SAH2

)
≲MH3S2A

(
ln

(
MSAK

δ

))2

. (C.46)

For term (A), we will group the sum by (s, a) ∈ Iϵ and (s, a) /∈ Iϵ separately.
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Case 1: (s, a) ∈ Iϵ.

In this case, we have that for all p, ˇgapp(s, a) =
gapp(s,a)

4H
≥ 24ϵ. We simplify the

corresponding term as follows:

∑
(s,a)∈Iϵ

∑
k,p

ρkp(s, a) clip
(
Bk,lead(s, a), ˇgapp(s, a)

)
≤
∑

(s,a)∈Iϵ

∑
k,p

ρkp(s, a) ·

clip

H ∧
5ϵ+O

√(1 + varPp(·|s,a)[V
πk

p ])L(nk(s, a))

nk(s, a)


 ,

minp gapp(s, a)

4H


≤
∑

(s,a)∈Iϵ

∑
k,p

ρkp(s, a) ·H ∧ clip

5ϵ+O

√(1 + varPp(·|s,a)[V
πk

p ])L(nk(s, a))

nk(s, a)

 ,
minp gapp(s, a)

4H




≲
∑

(s,a)∈Iϵ

∑
k,p

ρkp(s, a)

H ∧
√

(1 + varPp(·|s,a)[V
πk

p ])L(nk(s, a))

nk(s, a)


where the first inequality is from the definition of Bk,lead; the second inequality is from the

basic fact that clip(A∧B,C) ≤ A∧ clip(B,C); the third inequality uses Lemma C.19 with

a1 = 5ϵ, a2 =

√
(1+varPp(·|s,a)[V

πk
p ])L(nk(s,a))

nk(s,a)
, and ∆ =

minp gapp(s,a)

4H
, along with the observation

that clip(5ϵ,
minp gapp(s,a)

16H
) = 0, since for all (s, a) ∈ Iϵ and all p ∈ [M ], gapp(s, a) ≥ 96ϵH.

We now decompose the inner sum over k,
∑K

k=1, to
∑τ(s,a)−1

k=1 and
∑K

k=τ(s,a). The

first part is bounded by:

∑
(s,a)∈Iϵ

τp(s,a)−1∑
k=1

M∑
p=1

ρkp(s, a)

H ∧
√

(1 + varPp(·|s,a)[V
πk

p ])L(nk(s, a))

nk(s, a)


≤

∑
(s,a)∈Iϵ

τp(s,a)−1∑
k=1

M∑
p=1

ρkp(s, a)H ≤ SAHN1,
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which is ≲MHSA ln
(
SAK
δ

)
.

For the second part,

∑
(s,a)∈Iϵ

K∑
k=τ(s,a)

M∑
p=1

ρkp(s, a)

H ∧
√

(1 + varPp(·|s,a)[V
πk

p ])L(nk(s, a))

nk(s, a)


≲
∑

(s,a)∈Iϵ

K∑
k=τ(s,a)

M∑
p=1

ρkp(s, a)

√
(1 + varPp(·|s,a)[V

πk

p ])L(n̄k(s, a))

n̄k(s, a)

≲

√√√√ ∑
(s,a)∈Iϵ

K∑
k=τ(s,a)

M∑
p=1

ρkp(s, a) ·
L(n̄k(s, a))

n̄k(s, a)

·

√√√√ ∑
(s,a)∈Iϵ

K∑
k=1

M∑
p=1

ρkp(s, a)
(
1 + varPp(·|s,a)[V

πk

p ]
)
,

where the first inequality is by dropping the “H∧” operator; the second inequality is by

Cauchy-Schwarz.

We bound each factor as follows: for the first factor,

∑
(s,a)∈Iϵ

K∑
k=τ(s,a)

M∑
p=1

ρkp(s, a) ·
L(n̄k(s, a))

n̄k(s, a)
=
∑

(s,a)∈Iϵ

K∑
k=τ(s,a)

ρk(s, a) · L(n̄
k(s, a))

n̄k(s, a)

≤L(MK)
∑

(s,a)∈Iϵ

K∑
k=τ(s,a)

ρk(s, a)

n̄k(s, a)

≤
∑

(s,a)∈Iϵ

L(MK) ·
∫ n̄K(s,a)

1

1

u
du

≤|Iϵ|L(MK)2 ≲ |Iϵ|

(
ln

(
MSAK

δ

))2

,

where the first inequality is because L is monotonically increasing, and n̄k(s, a) ≤ MK;

the second inequality is from the observation that ρk(s, a) ∈ [0,M ], n̄k(s, a) ≥ 2M , and

u 7→ 1
u

is monotonically decreasing; the last two inequalities are by algebra.
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For the second factor,

∑
(s,a)∈Iϵ

K∑
k=1

M∑
p=1

ρkp(s, a)
(
1 + varPp(·|s,a)[V

πk

p ]
)

≲ MKH +
M∑
p=1

K∑
k=1

∑
(s,a)∈S×A

ρkp(s, a)varPp(·|s,a)[V
πk

p ]

≲ MKH +
M∑
p=1

K∑
k=1

Var

 H∑
h=1

rkh,p | πk(p)


≲ MKH2.

(C.47)

where the first inequality is by the fact that ρkp are probability distributions over every

layer h ∈ [H]; the last two inequalities are by a law of total variance identity [see, e.g., 12,

Equation (26)]. To summarize, the second part is at most

∑
(s,a)∈Iϵ

K∑
k=τ(s,a)

M∑
p=1

ρkp(s, a)

H ∧
√

(1 + varPp(·|s,a)[V
πk

p ])L(nk(s, a))

nk(s, a)


≲
√
MKH2|Iϵ| ln

(
MSAK

δ

)
.

Combining the bounds for the first and the second parts, we have:

∑
(s,a)∈Iϵ

∑
k,p

ρkp(s, a) clip
(
Bk,lead(s, a), ˇgapp(s, a)

)
≲
(√

MKH2|Iϵ|+MHSA
)
ln

(
MSAK

δ

)
.
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Case 2: (s, a) /∈ Iϵ.

We simplify the corresponding term as follows:

∑
(s,a)/∈Iϵ

∑
k,p

ρkp(s, a) clip
(
Bk,lead(s, a), ˇgapp(s, a)

)

≲
∑

(s,a)/∈Iϵ

∑
k,p

ρkp(s, a) clip

H ∧

√√√√(1 + varPp(·|s,a)[V

πk

p ]
)
L(nkp(s, a))

nkp(s, a)

 ,
ˇgapp(s, a)

4H



≲
∑

(s,a)/∈Iϵ

∑
k,p

H ∧
√√√√(1 + varPp(·|s,a)[V

πk

p ]
)
L(nkp(s, a))

nkp(s, a)


For each p and (s, a), we now decompose the inner sum over k,

∑K
k=1, to

∑τp(s,a)−1
k=1

and
∑K

k=τp(s,a)
. The first part is bounded by:

∑
(s,a)/∈Iϵ

M∑
p=1

τp(s,a)−1∑
k=1

ρkp(s, a)

H ∧√(1 + varPp(·|s,a)[V
πk

p ])L(nkp(s, a))

nkp(s, a)


≤

∑
(s,a)/∈Iϵ

M∑
p=1

τp(s,a)−1∑
k=1

ρkp(s, a)H

≤ MHSAN2,

which is ≲MHSA ln
(
MSAK

δ

)
.
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For the second part,

∑
(s,a)/∈Iϵ

M∑
p=1

K∑
k=τp(s,a)

ρkp(s, a)

H ∧
√√√√(1 + varPp(·|s,a)[V

πk

p ]
)
L(nkp(s, a))

nkp(s, a)


≲
∑

(s,a)/∈Iϵ

M∑
p=1

K∑
k=τp(s,a)

ρkp(s, a)

√√√√(1 + varPp(·|s,a)[V
πk

p ]
)
L(n̄kp(s, a))

n̄kp(s, a)

≤

√√√√ ∑
(s,a)/∈Iϵ

M∑
p=1

K∑
k=τp(s,a)

ρkp(s, a) ·
L(n̄kp(s, a))

n̄kp(s, a)
·

√√√√ ∑
(s,a)/∈Iϵ

K∑
k=1

M∑
p=1

ρkp(s, a)
(
1 + varPp(·|s,a)[V

πk

p ]
)

We bound each factor as follows: for the first factor,

∑
(s,a)/∈Iϵ

M∑
p=1

K∑
k=τp(s,a)

ρkp(s, a) ·
L(n̄k(s, a))

n̄k(s, a)
≤L(K) ·

∑
(s,a)/∈Iϵ

M∑
p=1

K∑
k=τp(s,a)

ρkp(s, a)

n̄k(s, a)

≤L(K) ·
∑

(s,a)/∈Iϵ

M∑
p=1

∫ n̄K
p (s,a)

1

1

u
du

≤
∣∣∣ICϵ ∣∣∣ML(K)2 ≤

∣∣∣ICϵ ∣∣∣M
(
ln

(
MSAK

δ

))2

.

where the first inequality is because L is monotonically increasing, and n̄kp(s, a) ≤ K; the

second inequality is from the observation that ρk(s, a) ∈ [0, 1], n̄k(s, a) ≥ 2, and u 7→ 1
u

is

monotonically decreasing; the last two inequalities are by algebra.

The second factor is again bounded by (C.47). Therefore, the second part of the
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sum is at most

∑
(s,a)/∈Iϵ

M∑
p=1

K∑
k=τp(s,a)

ρkp(s, a)

H ∧
√√√√(1 + varPp(·|s,a)[V

πk

p ]
)
L(nkp(s, a))

nkp(s, a)


≤
(
M
√
KH2|ICϵ |+MHSA

)
ln

(
MSAK

δ

)
.

Combining the bounds for the first and the second parts, we have:

∑
(s,a)/∈Iϵ

∑
k,p

ρkp(s, a) clip
(
Bk,lead(s, a), ˇgapp(s, a)

)
≲
(
M
√
KH2|ICϵ |+MHSA

)
ln

(
MSAK

δ

)
.

Now, combining the bounds for cases 1 and 2, we have that

(A) ≤
(√

MKH2|Iϵ|+M
√
KH2|ICϵ |+MHSA

)
· ln
(
MSAK

δ

)
. (C.48)

In conclusion, by the regret decomposition Equation (C.45), and Equations (C.48)

and (C.46), we have:

Reg(K) ≤

(√
MH2|Iϵ|K +M

√
H2|ICϵ |K +MH3S2A ln

(
MSAK

δ

))
ln

(
MSAK

δ

)
.
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Proof of Theorem 4.6

Proof of Theorem 4.6. From Lemma C.12, we have that when E happens,

Reg(K) =
M∑
p=1

Reg(K, p)

≤
∑
s,a

∑
k,p

ρkp(s, a) clip
(
Bk,lead(s, a), ˇgapp(s, a)

)
︸ ︷︷ ︸

(A)

+

∑
s,a

∑
k,p

ρkp(s, a) clip

(
Bk,fut(s, a),

gapp,min

8SAH2

)
︸ ︷︷ ︸

(B)

,

We focus on each term separately. We directly use Lemma C.14 to bound term (B)

as:

∑
s,a

∑
k,p

ρkp(s, a) clip

(
Bk,fut(s, a),

gapp,min

8SAH2

)
≲MH3S2A ln

(
MSAK

δ

)
· lnMHSA

gapmin

.

(C.49)

For the (s, a)-th term in term (A), we will consider the cases of (s, a) ∈ Iϵ and

(s, a) /∈ Iϵ separately.
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Case 1: (s, a) ∈ Iϵ.

In this case, we have that for all p, ˇgapp(s, a) =
gapp(s,a)

4H
≥ 24ϵ. We simplify the

corresponding term as follows:

∑
k,p

ρkp(s, a) clip
(
Bk,lead(s, a), ˇgapp(s, a)

)
≤

K∑
k=1

M∑
p=1

ρkp(s, a) ·

clip

H ∧
5ϵ+O

√(1 + varPp(·|s,a)[V
πk

p ])L(nk(s, a))

nk(s, a)


 ,

minp gapp(s, a)

4H



≤
K∑
k=1

ρk(s, a) clip

H ∧
5ϵ+O

√H2L(nk(s, a))

nk(s, a)


 ,

minp gapp(s, a)

4H



≤
k∑
k=1

ρk(s, a)

H ∧ clip

5ϵ+O

√H2L(nk(s, a))

nk(s, a)

 ,
minp gapp(s, a)

4H




≲
K∑
k=1

ρk(s, a)

H ∧ clip

√H2L(nk(s, a))

nk(s, a)
,
minp gapp(s, a)

16H




where the first inequality is by the definition of Bk,lead; the second inequality

is from that varPp(·|s,a)[V
πk

p ] ≤ H2; the third inequality is from that clip(A ∧ B,C) ≤

A ∧ clip(B,C); the third inequality uses Lemma C.19 with a1 = 5ϵ, a2 =
√

H2L(nk(s,a))
nk(s,a)

,

and ∆ =
minp gapp(s,a)

4H
, along with the observation that clip(5ϵ,

minp gapp(s,a)

16H
) = 0, since for

all (s, a) ∈ Iϵ and all p ∈ [M ], gapp(s, a) ≥ 96ϵH.

We now decompose the inner sum over k,
∑K

k=1, to
∑τ(s,a)−1

k=1 and
∑K

k=τ(s,a). The

first part’s contribution is at most N1 · H ≲ MH ln
(
SAK
δ

)
. For the second part, its
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contribution is at most:

K∑
k=τ(s,a)

ρk(s, a)

H ∧ clip

√H2L(nk(s, a))

nk(s, a)
,
minp gapp(s, a)

16H




≲MH +

∫ n̄K(s,a)

1

H ∧ clip

(√
H2L(u)

u
,
minp gapp(s, a)

16H

) du

≲MH +
H3

minp gapp(s, a)
ln

(
MSAK

δ

)

where the second inequality is from Lemma C.20 with fmax = H, C = H2, ∆ =
minp gapp(s,a)

16H
,

N =MSA, ξ = δ, Γ = 1, n = n̄K(s, a) ≤ K. In summary, for all (s, a) ∈ Iϵ,

∑
k,p

ρkp(s, a) clip
(
Bk,lead(s, a), ˇgapp(s, a)

)
≤

(
MH +

H3

minp gapp(s, a)

)
ln

(
MSAK

δ

)
.

Case 2: (s, a) /∈ Iϵ.

In this case, for each p ∈ [M ], we simplify the corresponding term as follows:

∑
k

ρkp(s, a) clip
(
Bk,lead(s, a), ˇgapp(s, a)

)

≲
K∑
k=1

ρkp(s, a)

H ∧ clip

√H2L(nkp(s, a))

nkp(s, a)
,

ˇgapp(s, a)

16H




We now decompose the inner sum over k,
∑K

k=1, to
∑τp(s,a)−1

k=1 and
∑K

k=τp(s,a)
. The

first part’s contribution is at most N2 ·H ≲ H ln
(
MSAK

δ

)
.
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For the second part, its contribution is at most:

K∑
k=τp(s,a)

ρkp(s, a)

H ∧ clip

√H2L(nk(s, a))

nk(s, a)
,

ˇgapp(s, a)

16H




≲H +

∫ n̄K
p (s,a)

1

H ∧ clip

(√
H2L(u)

u
,

ˇgapp(s, a)

16H

) du

≲H +
H3

ˇgapp(s, a)
ln

(
MSAK

δ

)

where the second inequality is from Lemma C.20 with fmax = H, C = H2, ∆ =
ˇgapp(s,a)

16H
,

N = MSA, ξ = δ, Γ = 1, n = n̄Kp (s, a) ≤ K. In summary, for any (s, a) ∈ ICϵ and

p ∈ [M ],

∑
k

ρkp(s, a) clip
(
Bk,lead(s, a), ˇgapp(s, a)

)
≲ (H +

H3

ˇgapp(s, a)
) ln

(
MSAK

δ

)
,

summing over p, we get:

∑
k,p

ρkp(s, a) clip
(
Bk,lead(s, a), ˇgapp(s, a)

)
≲

MH +
M∑
p=1

H3

ˇgapp(s, a)

 ln

(
MSAK

δ

)
,

In summary, combining the regret bounds of cases 1 and 2 for term (A), along with

Equation (C.49) for term (B), and observe that ˇgapp(s, a) = gapp,min if (s, a) ∈ Zp,opt, and

ˇgapp(s, a) = gapp(s, a) otherwise, we have that on event E, Multi-task-Euler satisfies:

Reg(K) ≲ ln

(
MSAK

δ

) ∑
p∈[M ]

 ∑
(s,a)∈Zp,opt

H3

gapp,min

+
∑

(s,a)∈(Iϵ∪Zp,opt)C

H3

gapp(s, a)

+

∑
(s,a)∈Iϵ

H3

minp gapp(s, a)

+ ln

(
MSAK

δ

)
·MS2AH3 ln

MHSA

gapmin

.
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Lemma C.14 (Bounding the lower order terms). If E happens, then

∑
s,a

∑
k,p

ρkp(s, a) clip

(
Bk,fut(s, a),

gapp,min

8SAH2

)

≲ MH3S2A ln

(
MSAK

δ

)(
ln

(
MSAK

δ

)
∧ ln

(
MHSA

gapmin

))
.

Proof. We expand the left hand side using the definition of Bk,fut, and the fact that

gapp,min ≥ gapmin:

K∑
k=1

ρkp(s, a) clip

(
Bk,fut(s, a),

gapp,min

8SAH2

)
(C.50)

≲
K∑
k=1

ρkp(s, a)

H3 ∧ clip

(
H3SL(nkp(s, a))

nkp(s, a)
,
gapmin

8SAH2

) (C.51)

We now decompose the sum
∑K

k=1 to
∑τp(s,a)−1

k=1 and
∑K

k=τp(s,a)
. The first part can be

bounded by

τp(s,a)−1∑
k=1

ρkp(s, a)

H3 ∧ clip

(
H3SL(nkp(s, a))

nkp(s, a)
,
gapmin

8SAH2

) ≤ τp(s,a)−1∑
k=1

H3ρkp(s, a) ≤ H3N2,

which is at most O
(
H3 · ln

(
MSAK

δ

))
. For the second part, it can be bounded by:

K∑
k=τp(s,a)

ρkp(s, a)

H3 ∧ clip

(
H3SL(nkp(s, a))

nkp(s, a)
,
gapmin

8SAH2

)
≤H3 · 1 +

∫ n̄K
p (s,a)

1

H3 ∧ clip

(
H3SL(u)

u
,
gapmin

8SAH2

) du

≲H3 +H3 ln

(
MSA

δ

)
+H3S ln

(
MSAK

δ

)(
ln

(
MSAK

δ

)
∧ ln

(
MHSA

gapmin

))
,
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where the second inequality is from Lemma C.20 with fmax = H3, C = H3S, ∆ = gapmin

8SAH2 ,

N =MSA, ξ = δ, Γ = 1, n = n̄Kp (s, a) ≤ K. In summary,

∑
k

ρkp(s, a) clip

(
Bk,lead(s, a),

gapmin

8SAH2

)

≲ H3S ln

(
MSAK

δ

)(
ln

(
MSAK

δ

)
∧ ln

(
MHSA

gapmin

))

Summing over s ∈ S, a ∈ A, and p ∈ [M ], we get

∑
s,a

∑
k,p

ρkp(s, a) clip

(
Bk,lead(s, a),

gapmin

8SAH2

)

≲ MH3S2A ln

(
MSAK

δ

)(
ln

(
MSAK

δ

)
∧ ln

(
MHSA

gapmin

))
.

C.3.5 Miscellaneous lemmas

This subsection collects a few miscellaneous lemmas used throughout the upper

bound proofs.

Lemma C.15 (136, Lemma F.5). For random variables X and Y ,

∣∣∣√var[X]−
√
var[Y ]

∣∣∣ ≤√E
[
(X − Y )2

]
.

Lemma C.16. Suppose distributions P and Q are supported over [0, B], and ∥P −Q∥1 ≤

ϵ ≤ 2. Then: ∣∣EX∼P [X]− EX∼Q[X]
∣∣ ≤ Bϵ,

∣∣varX∼P [X]− varX∼Q[X]
∣∣ ≤ 3B2ϵ.
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Proof. First,

∣∣EX∼P [X]− EX∼Q[X]
∣∣ = ∣∣∣∣∣

∫ B

0

x(pX(x)− qX(x))dx

∣∣∣∣∣
≤
∫ B

0

|x|
∣∣pX(x)− qX(x)∣∣ dx ≤ B∥P −Q∥1 ≤ Bϵ.

Second, observe that

∣∣EX∼P [X
2]− EX∼Q[X

2]
∣∣ ≤ B2ϵ.

Meanwhile,

∣∣(EX∼P [X])2 − (EX∼Q[X])2
∣∣ ≤ ∣∣EX∼P [X]− EX∼Q[X]

∣∣ ·∣∣EX∼P [X] + EX∼Q[X]
∣∣

≤ 2B ·Bϵ

= 2B2ϵ.

Combining the above, we have

∣∣varX∼P [X]− varX∼Q[X]
∣∣ ≤ 3B2ϵ.

Lemma C.17. For A,B,C,D,E, F ≥ 0:

1. If |A−B| ≤
√
BC + C, then we have

∣∣∣√A−√B∣∣∣ ≤ 2
√
C.

2. If D ≤ E + F
√
D, then

√
D ≤

√
E + F .

Proof. 1. First, A − B ≤ |A−B| ≤
√
BC + C; this implies that A ≤ B + 2

√
BC + C,

and therefore
√
A ≤

√
B +

√
C.
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On the other hand, B ≤ A + C +
√
BC; therefore, applying item 1 with D = B,

E = A+ C, and F =
√
C, we have

√
B ≤

√
A+ C +

√
C ≤

√
A+ 2

√
C.

2. The roots of x2 − Fx − E = 0 are F±
√
F 2+4E
2

, and therefore D must satisfy
√
D ≤

F+
√
F 2+4E
2

≤ F+F+2
√
E

2
= F +

√
E.

Lemma C.18. For a ≥ 0, 1 ∧ (a+
√
a) ≤ 1 ∧ 2

√
a.

Proof. We consider the cases of a ≥ 1 and a < 1 respectively. If a ≥ 1, LHS = 1 = RHS.

Otherwise, a ≤ 1; in this case, LHS = 1 ∧ (a+
√
a) ≤ 1 ∧ (

√
a+
√
a) = RHS.

Lemma C.19 (Special case of [136], Lemma B.5). For a1, a2,∆ ≥ 0, clip(a1 + a2,∆) ≤

2 clip(a1,∆/4) + 2 clip(a2,∆/4).

Lemma C.20 (Integral calculation, [136], Lemma B.9 therein). Let

f(u) ≤ min(fmax, clip(g(u),∆)),

where ∆ ∈ [0,Γ], and g(u) is nonincreasing. Let N ≥ 1 and ξ ∈ (0, 1
2
). Then:

1. If g(u) ≲
√

C log Nu
ξ

u
for some C > 0 such that lnC ≲ lnN , then

∫ n

Γ

f(u/4)du ≲

√
Cn ln

Nn

ξ
∧ C
∆

ln

(
Nn

ξ

)
.

2. If g(u) ≲
C ln Nu

ξ

u
for some C > 0 such that lnC ≲ lnN , then

∫ n

Γ

f(u/4)du ≲ fmax ln
N

ξ
+ C ln

Nn

ξ
·
(
ln
Nn

ξ
∧ ln

NΓ

∆

)
.
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C.4 Proof of the Lower Bounds

C.4.1 Auxiliary lemmas

Lemma C.21 (Regret decomposition, [136], Section H.2). For any MPERL problem

instance and any algorithm, we have

E
[
Reg(K)

]
≥

M∑
p=1

∑
(s,a)∈S1×A

E
[
nK+1
p (s, a)

]
gapp(s, a), (C.52)

where we recall that nK+1
p (s, a) is the number of visits of (s, a) by player p at the beginning

of the (K+1)-th episode (after the first K episodes). Furthermore, for any (s, a) ∈ S1×A,

we have

M∑
p=1

E
[
nK+1
p (s, a)

]
gapp(s, a) ≥ E

[
nK+1(s, a)

](
min
p∈[M ]

gapp(s, a)

)
, (C.53)

where we recall that nK+1(s, a) =
∑M

p=1 n
K+1
p (s, a).

Proof. Eq. (C.53) follows straightforwardly from the fact that for every (s, a, p) ∈ S1 ×

A× [M ], minp′∈[M ] gapp′(s, a) ≤ gapp(s, a).
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We now prove Eq. (C.52). Let πkp denote πk(p). We have

E
[
Reg(K)

]
= E

 M∑
p=1

K∑
k=1

∑
s∈S1

p0(s
k
1,p = s)

(
V ⋆
p (s)− V

πk
p

p (s)

)
≥ E

 M∑
p=1

K∑
k=1

∑
s∈S1

p0(s
k
1,p = s)

(
V ⋆
p (s)−Q⋆

p(s, π
k
p(s))

)
= E

 M∑
p=1

K∑
k=1

∑
s∈S1

p0(s)gapp(s, π
k
p(s))


= E

 M∑
p=1

K∑
k=1

∑
s∈S1

1
(
sk1,p = s

)
gapp(s, π

k
p(s))


= E

 M∑
p=1

K∑
k=1

∑
(s,a)∈S1×A

1
(
sk1,p, π

k
p(s) = (s, a)

)
gapp(s, a)


=

M∑
p=1

∑
(s,a)∈S1×A

E
[
nKp (s, a)

]
gapp(s, a)

(C.54)

where the first equality is from the definition of collective regret; the first inequality is

from the simple fact that V π
p (s) = Qπ

p (s, π(s)) ≤ Q⋆
p(s, π(s)) for any policy π; the second

equality is from the definition of suboptimality gaps; and the third equality is from the

basic observation that sk1,p ∼ p0.

Lemma C.22 (Divergence decomposition [90, 168]). For two MPERL problem instances,

M and M′, which only differ in the transition probabilities
{
Pp(· | s, a)

}
p∈[M ],(s,a)∈S×A,

and for a fixed algorithm, let PM and PM′ be the probability measures on the outcomes of

running the algorithm on M and M′, respectively. Then,

KL(PM,PM′) =
M∑
p=1

∑
(s,a)∈S×A

EM

[
nK+1
p (s, a)

]
KL
(
PM
p (· | s, a),PM′

p (· | s, a)
)
,
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where PM
p (· | s, a) and PM′

p (· | s, a) are the transition probabilities of the problem instance

M and M′, respectively.

Lemma C.23 (Bretagnolle-Huber inequality, [90], Theorem 14.2). Let P and Q be two

distributions on the same measurable space, and A be an event. Then,

P(A) +Q(AC) ≥ 1

2
exp

(
−KL(P,Q)

)
.

Lemma C.24 (see Lemma A.12). For any x, y ∈ [1
4
, 3
4
], KL

(
Ber(x),Ber(y)

)
≤ 3(x− y)2.

Lemma C.25. Let X be a Binomial random variable and X ∼ Bin(n, p), where n ≥ 1
p
.

Then,

E
[
X

3
2

]
≤ 2(np)

3
2 .

Proof. Let Y = X2, and f(Y ) = Y
3
4 . We have E [Y ] = E

[
X2
]
= var [X] + E [X]2 =

(np)2 + np(1 − p) ≤ (np)2 + np ≤ 2(np)2, where the last inequality follows from the

assumption that n ≥ 1
p
. By Jensen’s inequality, we have E

[
X

3
2

]
= E

[
f(Y )

]
≤ f

(
E [Y ]

)
≤(

2n2p2
) 3

4 ≤ 2(np)
3
2 .

C.4.2 Gap independent lower bounds

Theorem C.26 (Restatement of Theorem 4.7). For any A ≥ 2, H ≥ 2, S ≥ 4H, K ≥ SA,

M ∈ N, and l, lC ∈ N such that l+ lC = SA and l ≤ SA− 4(S +HA), there exists some ϵ

such that for any algorithm Alg, there exists an ϵ-MPERL problem instance with S states,

A actions, M players and an episode length of H such that
∣∣∣I ϵ

192H

∣∣∣ ≥ l, and

E
[
RegAlg(K)

]
≥ Ω

(
M
√
H2lCK +

√
MH2lK

)
.

Proof. The construction and techniques in this proof are inspired by Appendix A.5 and

[136].
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Fix any algorithm Alg; we consider two cases:

1. l > MlC ;

2. MlC ≥ l.

Case 1: l > MlC.

Let S1 = S − 2(H − 1), and b = ⌈ l
S1
⌉ ≥ 1. Let ∆ =

√
l+1

384MK
, and let ϵ = 1

2
H∆.

We note that under the assumption that K ≥ SA, and the observation that l ≤ SA,

we have ∆ ≤ 1
4
. We define (b + 1)S1 ϵ-MPERL problem instances, each indexed by an

element in [b + 1]S1 . It suffices to show that, on at least one of the problem instances,

E
[
RegAlg(K)

]
≥ Ω

(√
MH2lK

)
.

Construction. For a = (a1, . . . , aS1) ∈ [b + 1]S1 , we define the following ϵ-

MPERL problem instance, M(a) =
{
Mp

}M
p=1

, with S states, A actions, and an episode

length of H, such that for each p ∈ [M ],Mp is constructed as follows:

• S1 = [S1], and p0 is a uniform distribution over the states in S1.

• For h ∈ [2, H], Sh = {S1 + 2h− 3, S1 + 2h− 2}.

• A = [A].

• For each (s, a) ∈ S × A, the reward distribution rp(s, a) is a Bernoulli distribution,

Ber(Rp(s, a)), and we will specify Rp(s, a) subsequently.

• For each state s ∈ [S1],

Pp(S1 + 1 | s, a) =



1
2
+∆, if a = as;

1
2
, if a ∈ [b+ 1] \ as;

0, if a /∈ [b+ 1];

and for each a ∈ A, Pp(S1 + 2 | s, a) = 1− Pp(S1 + 1 | s, a), and Rp(s, a) = 0.
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• For h ∈ [2, H], and a ∈ A, let

– Pp
(
S1 + 2h− 1 | S1 + 2h− 3, a

)
= 1, Pp

(
S1 + 2h | S1 + 2h− 3, a

)
= 0, and Rp(S1 +

2h− 3, a) = 1.

– Pp
(
S1 + 2h | S1 + 2h− 2, a

)
= 0, Pp

(
S1 + 2h− 1 | S1 + 2h− 2, a

)
= 1, and Rp(S1 +

2h− 2, a) = 0.

It can be easily verified that M(a) =
{
Mp

}M
p=1

is a 0-MPERL problem instance,

and hence an ϵ-MPERL problem instance—the reward distributions and the transition

probabilities are the same for all players, i.e., for every p, q ∈ [M ], and every (s, a) ∈ S×A,

∣∣Rp(s, a)−Rq(s, a)
∣∣ = 0 ≤ ϵ,

∣∣Pp(· | s, a)− Pq(· | s, a)
∣∣ = 0 ≤ ϵ

H
.

Suboptimality gaps. We now calculate the suboptimality gaps of the state-

action pairs in the above MDPs. For each p ∈ [M ] and each (s, a) ∈ S ×A,

gapp(s, a) = V ⋆
p (s)−Q⋆

p(s, a) = max
a′

Q⋆
p(s, a

′)−Q⋆
p(s, a).

In M(a), it can be easily observed that for every p ∈ [M ], and every (s, a) ∈
(
S \ S1

)
×A,

gapp(s, a) = 0. Now, for every p ∈ [M ], (s, a) ∈ S1 ×A, we have

gapp(s, a) = max
a′

Q⋆
p(s, a

′)−Q⋆
p(s, a)

= (H − 1)

(
max
a′

Pp(S1 + 1 | s, a′)− Pp(S1 + 1 | s, a)
)
.
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It follows that, for every p ∈ [M ] and every state s ∈ [S1],

gapp(s, a) =


0, if a = as;

(H − 1)∆, if a ∈ [b+ 1] \ as;

(H − 1)
(
1
2
+∆

)
, if a /∈ [b+ 1].

Subpar state-action pairs. It can be verified that in M(a),
∣∣∣I ϵ

192H

∣∣∣ ≥ l. Specifi-

cally, since (H − 1)∆ = (H − 1)2ϵ
H
≥ ϵ ≥ ϵ

2
= 96H ϵ

192H
, we have that the number of subpar

state-action pairs is at least S1b = S1⌈ lS1
⌉ ≥ l.

It suffices to prove that

Ea∼Unif([b+1]S1)EM(a)

[
RegAlg(K)

]
≥ 1

640

√
MH2lK,

where we recall that a = (a1, . . . , aS1); furthermore, it suffices to show that, for any

s′ ∈ [S1],

Ea∼Unif([b+1]S1)EM(a)

[
NK+1(s′)− nK+1(s′, as′)

]
≥ MK

4S1

, (C.55)

where NK+1(s′) =
∑

a∈A n
K+1(s′, a); this is because it follows from Eq. (C.55) that

Ea∼Unif([b+1]S1)EM(a)

[
RegAlg(K)

]
≥
∑
s′∈S1

(H − 1)
∆

4
· Ea∼Unif([b+1]S1)EM(a)

[
NK+1(s′)− nK+1(s′, as′)

]
≥
∑
s′∈S1

H

2
· ∆
4
· MK

4S1

≥ 1

640

√
MH2lK,

where the first inequality uses Lemma C.21 (the regret decomposition lemma).
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Without loss of generality, let us choose s′ = 1. To prove Eq. (C.55), we use a

standard technique and define a set of helper problem instances. Specifically, for any

(a2, a3, . . . , aS1) ∈ [b+ 1]S1−1, we define a problem instance M(0, a2, . . . , as1) such that it

agrees with M(a1, a2, . . . , as1) on everything but Pp(· | 1, a1)’s, i.e., in M(0, a2, . . . , as1),

for every p ∈ [M ],

Pp(S1 + 1 | 1, a1) =
1

2
.

Now, for each (j, a2, . . . , as1) ∈
(
[0] ∪ [b+ 1]

)
× [b + 1]S1−1, let Pj,a2,...,aS1

de-

note the probability measure on the outcomes of running Alg on the problem instance

M(j, a2, . . . , as1). Further, for each j ∈ {0} ∪ [b+ 1], we define

Pj =
1

(b+ 1)S1−1

∑
a2,...,aS1

∈[b+1]S1−1

Pj,a2,...,aS1
;

and we use Ej to denote the expectation with respect to Pj.

In subsequent calculations, for any index m ∈
(
[0] ∪ [b+ 1]

)
× [b + 1]S1−1, we

also denote by Pm
(
· | NK+1(1)

)
and Em

[
· | NK+1(1)

]
the probability and expectation,

respectively, conditional on a realization of NK+1(1) under Pm. Observe that, for any

j ∈ {0} ∪ [b+ 1],

Pj(· | NK+1(1)) =
Pj(·, NK+1(1))

Pj(NK+1(1))

=

1
(b+1)S1−1

∑
a2,...,aS1

∈[b+1]S1−1 Pj,a2,...,aS1
(·, NK+1(1))

Pj(NK+1(1))

=
1

(b+ 1)S1−1

∑
a2,...,aS1

∈[b+1]S1−1

Pj,a2,...,aS1
(·, NK+1(1))

Pj,a2,...,aS1
(NK+1(1))

=
1

(b+ 1)S1−1

∑
a2,...,aS1

∈[b+1]S1−1

Pj,a2,...,aS1
(· | NK+1(1)), (C.56)

where the first equality is from the definition of conditional probability; the second

equality is from the definition of Pj; the third equality uses the fact that Pj(NK+1(1)) =
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Pj,a2,...,aS1
(NK+1(1)) for any a2, . . . , aS1 , which is true because NK+1(1) is independent

of a2, . . . , aS1 conditional on j; and the last equality, again, is from the definition of

conditional probability.

We have, for each j ∈ [b+ 1],

Ej
[
nK+1(1, j) | NK+1(1)

]
− E0

[
nK+1(1, j) | NK+1(1)

]
≤NK+1(1)

∥∥∥∥Pj (· | NK+1(1)
)
− P0

(
· | NK+1(1)

)∥∥∥∥
1

≤NK+1(1) · 1

(b+ 1)S1−1
·∑

a2,...,aS1
∈[b+1]S1−1

∥∥∥∥Pj,a2,...,aS1

(
· | NK+1(1)

)
− P0,a2,...,aS1

(
· | NK+1(1)

)∥∥∥∥
1

≤NK+1(1) · 1

(b+ 1)S1−1
·

∑
a2,...,aS1

∈[b+1]S1−1

√
2KL

(
Ber(

1

2
+ ∆),Ber(

1

2
)

)
E0,a2,...,aS1

[
nK+1(1, j) | NK+1(1)

]
≤NK+1(1) · 1

(b+ 1)S1−1

∑
a2,...,aS1

∈[b+1]S1−1

√
6∆2E0,a2,...,aS1

[
nK+1(1, j) | NK+1(1)

]
≤NK+1(1)

√
(6)

l + 1

384MK
· E0

[
nK+1(1, j) | NK+1(1)

]
=
1

8
NK+1(1)

√
l + 1

MK
· E0

[
nK+1(1, j) | NK+1(1)

]
. (C.57)

where the first inequality is based on Lemma C.16 and the fact that, conditional on

NK+1(1), nK+1(1, j) has distribution supported on [0, NK+1(1)]; the second inequality

follows from Equation (C.56) and the triangle inequality; the third inequality uses Pinsker’s

inequality and Lemma C.22 (the divergence decomposition lemma); the fourth inequality

uses Lemma C.24 and the fact that ∆ ≤ 1
4
; and the last inequality follows from Jensen’s

inequality.

Since NK+1(1) has the same distribution under both P0 and any Pj (which is

279



Bin(K, 1
S1
)), taking expectation with respect to NK+1(1), we have that, for any j ∈ [b+1],

Ej
[
nK+1(1, j)

]
− E0

[
nK+1(1, j)

]
≤E0

[
1

8
NK+1(1)

√
l + 1

MK
· E0

[
nK+1(1, j) | NK+1(1)

]]
.

In subsequent derivations, we can now avoid bounding the conditional expectation.

Specifically, we have

1

b+ 1

∑
j∈[b+1]

Ej
[
nK+1(1, j)

]
≤ 1

b+ 1

∑
j∈[b+1]

E0

[
nK+1(1, j)

]
+

1

b+ 1

∑
j∈[b+1]

E0

[
1

8
NK+1(1)

√
l + 1

MK
· E0

[
nK+1(1, j) | NK+1(1)

]]

≤ 1

b+ 1
E0

 ∑
j∈[b+1]

nK+1(1, j)

+

E0

1
8
NK+1(1)

√√√√ l + 1

MK
· 1

b+ 1

∑
j∈[b+1]

E0

[
nK+1(1, j) | NK+1(1)

]
≤ 1

b+ 1
E0

[
NK+1(1)

]
+ E0

[
1

8

√
l + 1

MK
· 1

b+ 1

(
NK+1(1)

) 3
2

]

≤ 1

b+ 1
E0

[
NK+1(1)

]
+

1

8

√
S1

MK
· E0

[(
NK+1(1)

) 3
2

]
, (C.58)

where the first inequality follows from Eq. (C.57) and algebra; the second inequality uses

linearity of expectation and Jensen’s inequality; the third inequality uses the facts that∑
j∈[b+1] n

K+1(1, j) ≤ NK+1(1) and, for every z ∈ [0] ∪ [b+ 1],

∑
j∈[b+1]

Ez
[
nK+1(1, j) | NK+1(1)

]
≤
∑
j∈A

Ez
[
nK+1(1, j) | NK+1(1)

]
= NK+1(1);

and the last inequality uses the linearity of expectation and the construction that b = ⌈ l
S1
⌉,
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which implies that l ≤ bS1 and therefore l + 1 ≤ bS1 + 1 ≤ bS1 + S1 = (b+ 1)S1.

It follows from Equation (C.58) that

1

b+ 1

∑
j∈[b+1]

Ej
[
nK+1(1, j)

]
≤ 1

b+ 1
· MK

S1

+
1

8

√
S1

MK
· E0

[(
NK+1(1)

) 3
2

]

≤ MK

2S1

+
1

4

√
S1

MK

(
MK

S1

)3

≤ 3MK

4S1

,

where the second inequality uses the fact that 1
b+1
≤ 1

2
and Lemma C.25 under the

assumption that K ≥ S1.

It then follows that

1

b+ 1

∑
j∈[b+1]

Ej
[
NK+1(1)− nK+1(1, j)

]
≥ 1

b+ 1

∑
j∈[b+1]

Ej
[
NK+1(1)

]
− 3MK

4S1

=
MK

4S1

,

and we have

Ea∼Unif([b+1]S1)EM(a)

[
NK+1(1)− nK+1(1, a1)

]
≥ MK

4S1

.

Case 2: MlC ≥ l.

Again, let S1 = S−2(H−1). Let u = ⌈ l
S1
⌉ and v = A−u = A−⌈ l

S1
⌉. Furthermore,

let ∆ =
√

vS1

384K
, and ϵ = 2H∆. We note that under the assumption that K ≥ SA and the

fact that vS1 ≤ SA, we have ∆ ≤ 1
4
. We will define vS1×M ϵ-MPERL problem instances,

each indexed by an element in [v]S1×M . It suffices to show that, on at least one of the

instances, E
[
RegAlg(K)

]
≥ Ω

(
M
√
H2lCK

)
.

Facts about v. There are two helpful facts about v that can be easily verified:

• vS1 ≥ 1
2
lC . This is true because, by definition, vS1 ≥ S1A − l − S1 = S1A − (SA −

lC) − S1 = lC − (SA − S1A) − S1 = lC −
(
2(H − 1)A+ S1

)
; since, by assumption,
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l ≤ SA− 4(S +HA), we have lC ≥ 4(HA+ S) ≥ 2
(
2(H − 1)A+ S1

)
; it then follows

that vS1 ≥ lC −
(
2(H − 1)A+ S1

)
≥ 1

2
lC .

• v ≥ 2. This is true because, as shown above, vS1 ≥ 1
2
lC and lC ≥ 4(HA + S), which

imply that v ≥ 2(HA+S)
S1

≥ 2S1

S1
= 2.

Construction. For a = (a1,1, . . . , a1,M , a2,1, . . . , aS1,M) ∈ [v]S1×M , we define the

following ϵ-MPERL problem instance, M(a) =
{
Mp

}M
p=1

, with S states, A actions, and

an episode length of H, such that for each p ∈ [M ],Mp is constructed in the same way as

it is for case 1, except for the transition probabilities of (s, a) ∈ S1 ×A:

• For each state s ∈ [S1],

Pp(S1 + 1 | s, a) =



1
2
+∆, if a = as,p;

1
2
, if a ∈ [v] \ as,p;

0, if a /∈ [v];

and for each a ∈ A, Pp(S1 + 2 | s, a) = 1− Pp(S1 + 1 | s, a), and Rp(s, a) = 0.

We now verify that M(a) is an ϵ-MPMAB problem instance. It can be easily

observed that the reward distributions are the same for all players, i.e., for every p, q ∈ [M ]

and every (s, a) ∈ S ×A, ∣∣Rp(s, a)−Rq(s, a)
∣∣ = 0 ≤ ϵ.

Regarding the transition probabilities, ∀(s, a) ∈
(
(S1 ×

(
A \ [v]

)
)
)
∪
((
S \ S1

)
×A

)
, we

observe that the transition probabilities are the same for all players. Furthermore, for

every p, q ∈ [M ] and every (s, a) ∈ S1 × [v],

∥∥∥Pp (· | s, a)− Pq
(
· | s, a

)∥∥∥
1
≤ 2∆ =

ϵ

H
.

Therefore, M(a) is an ϵ-MPMAB problem instance.
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Suboptimality gaps. Similar to the arguments in Case 1, it can be shown that

for every p ∈ [M ], and every (s, a) ∈
(
S \ S1

)
×A, gapp(s, a) = 0. And, for every p ∈ [M ],

and every s ∈ S1,

gapp(s, a) =


0, if a = as,p;

(H − 1)∆, if a ∈ [v] \ as,p;

(H − 1)
(
1
2
+∆

)
, if a /∈ [v].

Subpar state-action pairs. Based on the above construction, for every (s, a) ∈

S1×
(
A \ [v]

)
and every p ∈ [M ], gapp(s, a) = (H − 1)

(
1
2
+∆

)
≥ 3(H − 1)∆ = 3(H−1)

2H
ϵ ≥

3
4
ϵ ≥ 96H

(
ϵ

192H

)
, where the first inequality uses the fact that ∆ ≤ 1

4
. Therefore, there are

at least (A− v)S1 = uS1 ≥ l state-action pairs in I ϵ
192H

, i.e.,
∣∣∣I ϵ

192H

∣∣∣ ≥ l.

Now, it suffices to prove that

Ea∼Unif([v]S1×M)EM(a)

[
RegAlg(K)

]
≥ 1

240
M
√
H2lCK,

where we recall that a = (a1,1, . . . , a1,M , a2,1, . . . , aS1,M). It suffices to show, for any

s′ ∈ [S1] and any p′ ∈ [M ],

Ea∼Unif([v]S1×M)EM(a)

[
NK+1
p′ (s′)− nK+1

p′ (s′, as′)
]
≥ K

4S1

, (C.59)
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where NK+1
p′ (s′) =

∑
a∈A n

K+1
p′ (s′, a). To see this, by Lemma C.21, we have

Ea∼Unif([v]S1×M)EM(a)

[
RegAlg(K)

]
≥

M∑
p=1

∑
s′∈S1

(H − 1)∆ · Ea∼Unif([v]S1×M)EM(a)

[
NK+1
p (s′)− nK+1

p (s′, as′)
]

≥ H − 1

4
MK

√
vS1

384K

≥ 1

160
M
√
H2(vS1)K

≥ 1

240
M
√
H2lCK,

where the last inequality uses the fact that vS1 ≥ 1
2
lC .

Without loss of generality, let us choose s′ = 1 and p′ = 1. Similar to case 1, we

define a set of helper problem instances: for any (a1,2, . . . , aS1,M ) ∈ [v]S1×M−1, we define a

problem instance M(0, a1,2, . . . , aS1,M) such that it agrees with M(a1,1, a1,2, . . . , aS1,M) on

everything but P1(· | 1, a1), namely, in M(0, a1,2, . . . , aS1,M), P1(S1 + 1 | 1, a1) = 1
2
.

For each (j, a1,2, . . . , aS1,M) ∈
(
[0] ∪ [v]

)
× [v]S1×M−1, let Pj,a1,2,...,aS1,M

denote the

probability measure on the outcomes of running Alg on the instance M(j, a1,2, . . . , aS1,M ).

Further, for each j ∈ {0} ∪ [v], we define

Pj =
1

vS1×M−1

∑
a1,2,...,aS1,M

∈[v]S1×M−1

Pj,a1,2,...,aS1,M
;

and we use Ej to denote the expectation with respect to Pj . In subsequent calculations, for

any m ∈
(
[0] ∪ [v]

)
× [v]S1×M−1, we also denote by Pm

(
· | NK+1

1 (1)
)

and Em
[
· | NK+1

1 (1)
]

the probability and expectation conditional on a realization of NK+1
1 (1) under Pm. Similar

to case 1, it can be shown that, for any j ∈ {0} ∪ [v],
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Pj(· | NK+1(1)) =
1

vS1×M−1

∑
a1,2,...,aS1,M

∈[v]S1×M−1

Pj,a1,2,...,aS1,M

(
· | NK+1(1)

)
. (C.60)

Now, for each j ∈ [v], we have

Ej
[
nK+1
1 (1, j) | NK+1

1 (1)
]
− E0

[
nK+1
1 (1, j) | NK+1

1 (1)
]

≤NK+1
1 (1)

∥∥∥∥Pj (· | NK+1
1 (1)

)
− P0

(
· | NK+1

1 (1)
)∥∥∥∥

1

≤NK+1
1 (1) · 1

vS1×M−1
· (C.61)∑

a1,2,...,aS1,M
∈[v]S1×M−1

∥∥∥∥Pj,a1,2,...,aS1,M

(
· | NK+1

1 (1)
)
− P0,a1,2,...,aS1,M

(
· | NK+1

1 (1)
)∥∥∥∥

1

≤NK+1
1 (1) · 1

vS1×M−1
· (C.62)

∑
a1,2,...,aS1,M

∈[v]S1×M−1

√
2KL

(
Ber(

1

2
+ ∆),Ber(

1

2
)

)
E0,a2,...,aS1

[
nK+1
1 (1, j) | NK+1

1 (1)
]

≤NK+1
1 (1) · 1

vS1×M−1

∑
a1,2,...,aS1,M

∈[v]S1×M−1

√
6∆2E0,a2,...,aS1

[
nK+1
1 (1, j) | NK+1

1 (1)
]

≤NK+1
1 (1) ·

√
6vS1

384MK
· E0

[
nK+1
1 (1, j) | NK+1

1 (1)
]

=
1

8
NK+1

1 (1)

√
vS1

MK
· E0

[
nK+1
1 (1, j) | NK+1

1 (1)
]
. (C.63)

where the first inequality is based on Lemma C.16 and the fact that, conditional on

NK+1
1 (1), nK+1

1 (1, j) has distribution supported on [0, NK+1
1 (1)]; the second inequality

follows from Equation (C.60) and the triangle inequality; the third inequality uses Pinsker’s

inequality and Lemma C.22 (the divergence decomposition lemma); the fourth inequality

uses Lemma C.24 and the fact that ∆ ≤ 1
4
; and the last inequality follows from Jensen’s

inequality.
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Using arguments similar to the ones shown for case 1, we have that

1

v

∑
j∈[v]

Ej
[
nK+1
1 (1, j)

]

≤1

v
E0

[
nK+1
1 (1, j)

]
+ E0

1
8
NK+1

1 (1)

√√√√vS1

K
· 1
v

∑
j∈[v]

E0

[
nK+1
1 (1, j) | NK+1

1 (1)
]

≤1

v
E0

[
NK+1(1)

]
+

1

8

√
S1

K
· E0

[(
NK+1

1 (1)
) 3

2

]

≤1

v
· K
S1

+
1

4

√
S1

K

(
K

S1

)3

≤3K

4S1

,

where the second to last inequality is from Lemma C.25 under the assumption that K ≥ S1,

and the last inequality uses the fact that v ≥ 2.

It then follows that

1

v

∑
j∈[v]

Ej
[
NK+1

1 (1)− nK+1
1 (1, j)

]
≥ 1

v

∑
j∈[v]

Ej
[
NK+1

1 (1)
]
− K

4S1

=
K

4S1

,

and we thereby have shown that

Ea∼Unif([v]S1×M)EM(a)

[
NK+1

1 (1)− nK+1
1 (1, a1)

]
≥ K

4S1

.

C.4.3 Gap dependent lower bound

Theorem C.27 (Restatement of Theorem 4.8). Fix ϵ ≥ 0. For any S ∈ N, A ≥ 2, H ≥ 2,

M ∈ N, such that S ≥ 2(H − 1), let S1 = S − 2(H − 1); and let
{
∆s,a,p

}
(s,a,p)∈[S1]×[A]×[M ]

be any set of values such that
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• for every (s, a, p) ∈ [S1]× [A]× [M ], ∆s,a,p ∈ [0, H/48];

• for every (s, p) ∈ [S1]× [M ], there exists at least one action a ∈ [A] such that ∆s,a,p = 0;

• and, for every (s, a) ∈ [S1]× [A] and p, q ∈ [M ],
∣∣∆s,a,p −∆s,a,q

∣∣ ≤ ϵ/4.

There exists an ϵ-MPERL problem instance with S states, A actions, M players and an

episode length of H, such that S1 = [S1], |Sh| = 2 for all h ≥ 2, and

gapp(s, a) = ∆s,a,p, ∀(s, a, p) ∈ [S1]× [A]× [M ].

For this problem instance, any sublinear regret algorithm Alg for the ϵ-MPERL problem

must have regret at least

E
[
RegAlg(K)

]

≥ Ω

lnK


∑
p∈[M ]

∑
(s,a)∈IC

(ϵ/192H)
:

gapp(s,a)>0

H2

gapp(s, a)
+

∑
(s,a)∈I(ϵ/192H)

H2

minp gapp(s, a)



 .

Proof. The construction and techniques in this proof are inspired by [136] and Ap-

pendix A.5.

Proof outline.

We will construct an ϵ-MPERL problem instance, M, and show that, for any

sublinear regret algorithm and sufficiently large K, the following two claims are true:

1. for any (s, a) ∈ S ×A such that for all p, gapp(s, a) > 0,

EM

[
nK(s, a)

]
≥ Ω

 H2(
minp gapp(s, a)

)2 lnK
 ; (C.64)
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2. for any (s, a) ∈ IC ϵ
192H

and any p ∈ [M ] such that gapp(s, a) > 0,

EM

[
nKp (s, a)

]
≥ Ω

 H2(
gapp(s, a)

)2 lnK
 . (C.65)

The rest then follows from Lemma C.21 (the regret decomposition lemma).

Construction of M.

Given any set of values
{
∆s,a,p

}
(s,a,p)∈[S1]×[A]×[M ]

that satisfies the assumptions in

the theorem statement, we can construct a collection of MDPs
{
Mp

}M
p=1

, such that for

each p ∈ [M ],Mp is as follows, and M =
{
Mp

}M
p=1

is an ϵ-MPERL problem instance:

• S1 = [S1], and p0 is a uniform distribution over the states in S1.

• For h ∈ [2, H], Sh = {S1 + 2h− 3, S1 + 2h− 2}.

• A = [A].

• For all (s, a) ∈ S × A, the reward distribution rp(s, a) is a Bernoulli distribution,

Ber(Rp(s, a)), and we specify Rp(s, a) subsequently.

• For every (s, a) ∈ S1 × [A], set ∆̄p
s,a =

∆s,a,p

H−1
. Then, let

Pp
(
S1 + 1 | s, a

)
=

1

2
− ∆̄p

s,a, Pp
(
S1 + 2 | s, a

)
=

1

2
+ ∆̄p

s,a,

and Rp(s, a) = 0. Since ∆s,a,p ∈ [0, H/48], ∆̄p
s,a ≤ H

48(H−1)
≤ 1

24
, where the last inequality

follows from the assumption that H ≥ 2. Therefore, Pp
(
S1 + 1 | s, a

)
∈ [0, 1], and

Pp
(
S1 + 2 | s, a

)
∈ [0, 1].

• For h ∈ [2, H], and a ∈ [A], let
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– Pp
(
S1 + 2h− 1 | S1 + 2h− 3, a

)
= 1, Pp

(
S1 + 2h | S1 + 2h− 3, a

)
= 0, and Rp(S1 +

2h− 3, a) = 1.

– Pp
(
S1 + 2h | S1 + 2h− 2, a

)
= 0, Pp

(
S1 + 2h− 1 | S1 + 2h− 2, a

)
= 1, and Rp(S1 +

2h− 2, a) = 0.

By the assumption that for every (s, p) ∈ [S1]× [M ], there exists at least one action

a ∈ [A] such that ∆s,a,p = 0, we have that there is at least one action a such that ∆̄p
s,a = 0.

We verify that for every (s, a, p) ∈ [S1]× [A]× [M ],

gapp(s, a) = V ⋆
p (s)−Q⋆

p(s, a)

= max
a′

Q⋆
p(s, a

′)−Q⋆
p(s, a)

= (H − 1)∆̄p
s,a

= ∆s,a,p.

We now verify that the above MPERL problem instance M =
{
Mp

}M
p=1

is an

ϵ-MPERL problem instance:

1. The reward distributions are the same for all players, namely, for all p, q,

∣∣Rp(s, a)−Rq(s, a)
∣∣ = 0 ≤ ϵ,∀(s, a) ∈ S ×A.

2. Further, by the assumption that for every (s, a) ∈ [S1]× [A] and p, q ∈ [M ],∣∣∆s,a,p −∆s,a,q

∣∣ ≤ ϵ/4, we have that

∣∣∣∆̄p
s,a − ∆̄q

s,a

∣∣∣ = ∣∣∆s,a,p −∆s,a,q

∣∣
H − 1

≤ ϵ

4(H − 1)
≤ ϵ

2H
.
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It then follows that

∥Pp
(
· | s, a

)
− Pq

(
· | s, a

)
∥1 = 2

∣∣∣∆̄p
s,a − ∆̄q

s,a

∣∣∣ ≤ ϵ

H
.

Meanwhile, for every (s, a) ∈
(
S \ S1

)
×A

∥Pp
(
· | s, a

)
− Pq

(
· | s, a

)
∥1 = 0 ≤ ϵ

H
.

In summary, for every (s, a) ∈ S ×A,

∥Pp
(
· | s, a

)
− Pq

(
· | s, a

)
∥1 ≤

ϵ

H
.

We are now ready to prove the two claims.

1. Proving claim 1 (Equation (C.64)):

Fix any (s0, a0) ∈ [S1]× [A] such that ∆̄min
s0,a0

= minp ∆̄
p
s0,a0

> 0. It can be easily observed

that gapp(s0, a0) > 0 for all p. Define p0 = argminp ∆̄
p
s0,a0

. We can construct a new

problem instance, M′, which agrees with M, except that, ∀p ∈ [M ],

Pp
(
S1 + 1 | s0, a0

)
=

1

2
− ∆̄p

s0,a0
+ 2∆̄min

s0,a0
,Pp

(
S1 + 2 | s0, a0

)
=

1

2
+ ∆̄p

s0,a0
− 2∆̄min

s0,a0
.

M′ is an ϵ-MPERL problem instance. To see this, we note that the only change is

in Pp
(
· | s0, a0

)
for all p ∈ [M ]. In this new instance, it is still true that for every

p, q ∈ [M ],

∥Pp
(
· | s0, a0

)
− Pq

(
· | s0, a0

)
∥1 = 2

∣∣∣∆̄p
s0,a0
− ∆̄q

s0,a0

∣∣∣ ≤ ϵ

H
.

Fix any sublinear regret algorithm Alg for the ϵ-MPERL problem. By Lemma C.22
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(the divergence decomposition lemma), we have

KL(PM,PM′) =
M∑
p=1

EM

[
nKp (s0, a0)

]
KL
(
PM
p (· | s0, a0),PM′

p (· | s0, a0)
)
,

where PM and PM′ are the probability measures on the outcomes of running Alg on M

and M′, respectively; PM
p (· | s0, a0), PM′

p (· | s0, a0) are the transition probabilities for

(s0, a0) and player p in M and M′, respectively.

We observe that, for any p ∈ [M ],

KL
(
PM
p (· | s0, a0),PM′

p (· | s0, a0)
)

=KL

(
Ber

(
1

2
− ∆̄p

s0,a0

)
,Ber

(
1

2
− ∆̄p

s0,a0
+ 2∆̄min

s0,a0

))

≤12(∆̄min
s0,a0

)2,

where the last inequality follows from Lemma C.24 and the assumption that ∆s,a,p ≤ H
48

.

In addition,
∑M

p=1 EM

[
nKp (s0, a0)

]
= EM

[
nK(s0, a0)

]
. It then follows that

KL(PM,PM′) ≤12EM

[
nK(s0, a0)

]
(∆̄min

s0,a0
)2. (C.66)

Now, in the original ϵ-MPERL problem instance, M, by Equation (C.52) and Markov’s

Inequality, we have

EM

[
RegAlg(K)

]
≥ K

4S1

(
(H − 1)∆̄min

s0,a0

)
PM

(
nKp0(s0, a0) ≥

K

4S1

)
;

where we note that ∆̄p0
s0,a0

= ∆̄min
s0,a0

. In M′, the new ϵ-MPERL problem instance, we
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have

EM′

[
RegAlg(K)

]
≥
(
(H − 1)∆̄min

s0,a0

)
EM′

∑
a̸=a0

np0(s0, a)


=
(
(H − 1)∆̄min

s0,a0

)
EM′

[
NK
p0
(s0)− np0(s0, a0)

]
≥ K

4S1

(
(H − 1)∆̄min

s0,a0

)
PM′

(
NK
p0
(s0)− np0(s0, a0) ≥

K

4S1

)
≥ K

4S1

(
(H − 1)∆̄min

s0,a0

)
PM′

(
NK
p0
(s0) ≥

K

2S1

, np0(s0, a0) ≤
K

4S1

)
≥ K

4S1

(
(H − 1)∆̄min

s0,a0

)(
PM′

(
np0(s0, a0) ≤

K

4S1

)
− exp(− K

8S1

)

)
,

where the first inequality is by Equation (C.52); the second inequality is by Markov’s

Inequality; the third inequality is by simple algebra; and the last inequality is by

Chernoff bound that PM′

(
NK
p0
(s0) <

K
2S1

)
≤ exp(− K

8S1
), and P(A∩B) ≥ P(B)−P(AC)

for events A,B.

It then follows that

EM

[
RegAlg(K)

]
+ EM′

[
RegAlg(K)

]
=
K

2

(
(H − 1)∆̄min

s0,a0

)
·(

PM

(
nKp0(s0, a0) ≥

K

2

)
+ PM′

(
nKp0(s0, a0) <

K

2

)
− exp(− K

8S1

)

)

≥K
2

(
(H − 1)∆̄min

s0,a0

)(1

2
exp

(
−KL(PM,PM′)

)
− exp(− K

8S1

)

)
≥K

2

(
(H − 1)∆̄min

s0,a0

)(1

2
exp

(
−12EM

[
nK(s0, a0)

]
(∆̄min

s0,a0
)2
)
− exp(− K

8S1

)

)
,

where the first inequality follows from Lemma C.23 (the Bretagnolle-Huber inequality),

and the second inequality follows from Eq. (C.66). Observe that EM

[
nK(s0, a0)

]
≤ K

S1
;

in addition, by our assumption that ∆s,a,p ≤ H
48

for every (s, a, p), we have ∆̄min
s0,a0
≤
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1
24

. These together implies that 1
4
exp

(
−12EM

[
nK(s0, a0)

]
(∆̄min

s0,a0
)2
)
≥ exp(− K

8S1
).

Therefore, we have

EM

[
RegAlg(K)

]
+ EM′

[
RegAlg(K)

]
≥ K

2

(
(H − 1)∆̄min

s0,a0

)
· 1
4
exp

(
−12EM

[
nK(s0, a0)

]
(∆̄min

s0,a0
)2
)
.

Now, under the assumption that Alg is a sublinear regret algorithm, we have

K

8

(
(H − 1)∆̄min

s0,a0

)
exp

(
−12EM

[
nK(s0, a0)

]
(∆̄min

s0,a0
)2
)
≤ 2CKα.

It follows that

EM

[
nK(s0, a0)

]
≥ 1

12
(
∆̄min
s0,a0

)2 ln
(
(H − 1)∆̄min

s0,a0
K1−α

16C

)

=
(H − 1)2

12
(
minp gapp(s0, a0)

)2 ln
(
minp gapp(s0, a0)K

1−α

16C

)

≥ H2

24
(
minp gapp(s0, a0)

)2 ln
(
minp gapp(s0, a0)K

1−α

16C

)
.

We then have

EM

[
nK(s0, a0)

]
≥ Ω

 H2(
minp gapp(s0, a0)

)2 lnK
 .

2. Proving Claim 2 (Equation (C.65)):

Fix any (s0, a0) ∈ IC ϵ
192H

and p0 ∈ [M ] such that ∆̄p0
(s0,a0)

> 0, which means that
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gapp0(s0, a0) > 0. We have that for all p ∈ [M ],

∆̄p
s0,a0

=
∆p
s0,a0

H − 1
=

gapp(s0, a0)

H − 1
≤ 24H(ϵ/(192H))

(H − 1)
≤ ϵ

8(H − 1)
≤ ϵ

4H
. (C.67)

We can construct a new problem instance, M′, which agrees with M except that

Pp0
(
S1 + 1 | s0, a0

)
=

1

2
− ∆̄p0

s0,a0
+ 2∆̄p0

s0,a0
=

1

2
+ ∆̄p0

s0,a0
,

Pp0
(
S1 + 2 | s0, a0

)
=

1

2
+ ∆̄p0

s0,a0
− 2∆̄p0

s0,a0
=

1

2
− ∆̄p0

s0,a0
.

M′ is an ϵ-MPERL problem instance. To see this, we note that the only change is in

Pp0
(
· | s0, a0

)
. In this new instance, it is still true that for any q ̸= p0,

∥Pp0(· | s0, a0)− Pq(· | s0, a0)∥1 ≤ 2
∣∣∣∆̄p0

s0,a0
+ ∆̄q

s0,a0

∣∣∣ ≤ ϵ

H
.

where the last inequality uses Equation (C.67) that ∆̄p
s0,a0
≤ ϵ

4H
for every p ∈ [M ].

Fix any sublinear regret algorithm Alg. By Lemma C.22 (the divergence decomposition

lemma), we have

KL(PM,PM′) = EM

[
nKp0(s0, a0)

]
KL
(
PM
p0
(· | s0, a0),PM′

p0
(· | s0, a0)

)
.

Using a similar reasoning as before, we can show that

KL(PM,PM′) ≤12EM

[
nKp0(s0, a0)

]
(∆̄p0

s0,a0
)2. (C.68)

Similar to case 1, we have the following argument. In the original ϵ-MPERL problem

instance, M, we have EM

[
RegAlg(K)

]
≥ K

4S1

(
(H − 1)∆̄p0

s0,a0

)
PM

(
nKp0(s0, a0) ≥

K
4S1

)
;
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and in M′, the new ϵ-MPERL problem instance, we have

EM′

[
RegAlg(K)

]
≥ K

4S1

(
(H − 1)∆̄p0

s0,a0

)(
PM′

(
nKp0(s0, a0) <

K

4S1

)
− exp(− K

8S1

)

)
.

It then follows that

EM

[
RegAlg(K)

]
+ EM′

[
RegAlg(K)

]
≥K

2

(
(H − 1)∆̄p0

s0,a0

)(1

2
exp

(
−KL(PM,PM′)

)
− exp(− K

8S1

)

)
≥K

8

(
(H − 1)∆̄p0

s0,a0

)
exp

(
−12EM

[
nK(s0, a0)

]
(∆̄p0

s0,a0
)2
)
.

Now, under the assumption that Alg is a sublinear regret algorithm, we have

K

8

(
(H − 1)∆̄p0

s0,a0

)
exp

(
−12EM

[
nKp0(s0, a0)

]
(∆̄p0

s0,a0
)2
)
≤ 2CKα.

It follows that

EM

[
nKp0(s0, a0)

]
≥ 1

12
(
∆̄p0
s0,a0

)2 ln
(
(H − 1)∆̄p0

s0,a0
K1−α

16C

)

≥ H2

24
(
gapp0(s0, a0)

)2 ln
(
gapp0(s0, a0)K

1−α

16C

)
.

We then have that

EM

[
nKp0(s0, a0)

]
≥ Ω

 H2(
gapp0(s0, a0)

)2 lnK
 .
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Combing the two claims:

We note that in M, for any (s, a, p) ∈
(
S \ S1

)
× A × [M ], gapp(s, a) = 0. It then

follows from Lemma C.21 (the regret decomposition lemma) and the fact that for any

(s, a, p) ∈ Iϵ/192H × [M ], gapp(s, a) > 0, that

E
[
RegAlg(K)

]
≥

M∑
p=1

∑
(s,a)∈S1×A

E
[
nKp (s, a)

]
gapp(s, a)

≥ Ω

lnK


∑
p∈[M ]

∑
(s,a)∈IC

ϵ/192H
:

gapp(s,a)>0

H2

gapp(s, a)
+

∑
(s,a)∈Iϵ/192H

H2

minp gapp(s, a)


 .
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Appendix D

Supplementary Material for Chapter 5

D.1 Related Work

There is a rich literature on metric learning; see [84] for a survey. In this chapter,

we focus on learning Mahalanobis distances from relative comparisons that involve triplets

of items, in the form of “is u closer to x or x′?” [128, 152, 106]. In particular, we study

metric learning from preference comparisons in the ideal point model [38]: a preference

comparison is a special type of triplet comparison, where the comparator u is latent and

represents a user’s ideal item. If the ideal points are known beforehand, one can simply

treat this as a problem of metric learning from triplet comparisons. Conversely, if the

metric is known, one can also localize user ideal points using techniques from [69, 107, 144].

This chapter builds upon recent research that studies simultaneous metric and

preference learning [167, 28]. In a single user setting, [167] developed an algorithm that

iteratively alternate between estimating the metric and the user ideal point. [28] generalized

the setting to involve multiple users. They established identifiability guarantees when users

provide unquantized measurements, and presented generalization bounds and recovery

guarantees when users provide binary responses. While [28] showed that it is possible to

jointly recover a metric and user ideal points when each user answers Θ(d) queries, we

address the fundamental question of learning Mahalanobis distances when we have a much

limited budget of o(d) preference comparisons per user. The o(d) budget is more realistic
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especially when items are embedded in higher dimensions, but also poses interesting new

challenges as learning user ideal points is no longer possible.

Several other works in the broader literature are related. For example, learning

ordinal embeddings or kernel functions from triplet comparisons has been well studied.

[142] developed an active multi-dimensional scaling algorithm to learn item embeddings,

with the goal of capturing item similarities perceived by humans. See also [151, 67, 77],

among other works. [64] introduced a collaborative metric learning algorithm, which uses

matrix factorization to learn user and item embeddings such that the Euclidean distance

reflects user preferences and item/user similarities. A divide-and-conquer approach for

deep metric learning has been studied by [126], who use k-means to cluster items and

learn separate metrics for each cluster before concatenating them together; they performed

an extensive empirical study based on image data. In this chapter, we consider the ideal

point model to study the fundamental problem of metric learning from limited preference

comparisons.

D.2 Additional Algorithms from Existing Work

Algorithm 7 and Algorithm 8 describe the procedures for learning an unknown

Mahalanobis distance using unquantized measurements from a single user and a large pool

of users, respectively. See Section 2 of [28].

Algorithm 9 describes the convex optimization problem introduced in Section 3 of

[28] for simultaneous metric and preference learning using quantized measurements from

multiple users. Here, ℓ : R → R0+ can be any convex loss function that is L-Lipschitz-

continuous. In particular, to achieve the recovery guarantee in Proposition 5.18, we assume

the probabilistic model in Assumption 5.17 with link function f and use the loss function

ℓ(z) = − log f(z).
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Algorithm 7: Metric learning using unquantized measurements from a
single user [28]

Input: A set D =
{
(xi0 , xi1 , ψi)

}m
i=1

of unquantized measurements from a
single user.

1 Solve the system of linear equations over symmetric matrices A ∈ Rd×d and
vectors w ∈ Rd: 〈

xi0x
⊤
i0
− xi1x

⊤
i1
, A
〉
+
〈
xi0 − xi1 , w

〉
= ψi.

Output: Â, the solution to the above linear equations.

Algorithm 8: Metric learning using unquantized measurements from multi-
ple users [28]

Input: A family of Dk =
{
(xi0;k, xi1;k, ψi;k)

}mk

i=1
of unquantized measurements

from users k ∈ [K].
1 Solve the system of linear equations over symmetric matrices A ∈ Rd×d and

vectors w1, w2, . . . , wK ∈ Rd:〈
xi0;kx

⊤
i0;k
− xi1;kx⊤i1;k, A

〉
+
〈
xi0;k − xi1;k, wk

〉
= ψi;k.

Output: Â, the solution to the above linear equations.

D.3 Direct Sums of Inner Product Spaces

In the paper, we’ve liberally made use of direct sums of inner product spaces, for

example, Sym(Rd) ⊕ Rd, which we treat as an inner product space. It allows us ready

access to well-established machinery including inner products, norms, singular values, and

pseudoinverses. The direct sum of inner product spaces is defined:

Definition D.1. Let
(
V, ⟨·, ·⟩V

)
and

(
W, ⟨·, ·⟩W

)
be two inner product spaces. Their direct

sum is the vector space V ⊕W equipped with the inner product:

⟨v1 ⊕ w1, v2 ⊕ w2⟩V⊕W = ⟨v1, v2⟩V + ⟨w1, w2⟩W .

In particular, this induces the norm on V ⊕W satisfying ∥v ⊕ w∥2V⊕W = ∥v∥2V + ∥w∥2W .
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Algorithm 9: Metric learning using quantized measurements from multiple
users [28]

Input: A family of Dk =
{
(xi0;k, xi1;k, yi;k)

}mk

i=1
of quantized measurements

from users k ∈ [K]; hyperparameters ζM , ζv > 0.
1 Solve the convex optimization problem over symmetric matrices A ∈ Rd×d and

vectors w1, w2, . . . wK ∈ Rd:

M̂, {v̂k}k ← min
A,{wk}k

∑
k

∑
Dk

ℓ

(
yi;k

(〈
xi0x

⊤
i0
− xi1;kx⊤i1;k, A

〉
+
〈
xi0;k − xi1;k, wk

〉))
(D.1)

s.t. A ⪰ 0, ∥A∥F ≤ ζM , ∥wk∥2 ≤ ζv ∀k

Output: M̂ .

Moore-Penrose pseudoinverse.

The pseudoinverse can be defined for any map between inner product spaces:

Definition D.2. Let A : V → W be a linear map between inner product spaces V and

W . Let K = ker(A) and let K⊥ be its orthogonal complement. Let AK⊥ : K⊥ → Im(A) be

the restriction of A to K⊥ and let ΠIm(A) : W → Im(A) be the orthogonal projection onto

Im(A). The Moore-Penrose pseudoinverse of A is the map A+ : W → V given by:

A+ = A−1
K⊥ ◦ ΠIm(A).

Note that A−1
K⊥ exists by the first isomorphism theorem of algebra.

Universal property.

The following property of direct sum allows us to decompose a linear map A :

V1 ⊕ V2 → V , which we use in the proof of Theorem 5.15, when decomposing Π+ :⊕
λ Sym(Vλ)→ Sym(Rd).

Proposition D.3 (Universal property of the direct sum, [104]). Let A : V1⊕ V2 → V be a
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linear map. Then, there exists Ai : Vi → V for i = 1, 2 such that for all v1 ⊕ v2 ∈ V1 ⊕ V2,

A(v1 ⊕ v2) = A1(v1) + A2(v2).

Schatten norm.

The Frobenius norm over matrices can be generalized to linear maps between inner

product spaces:

Definition D.4. Let A : V → W be a linear map between finite-dimensional inner product

spaces of rank r. Let σ1 ≥ · · · ≥ σr be its nonzero singular values. The 2-Schatten norm

∥A∥2 is given by:

∥A∥22 =
r∑
i=1

σ2
i .

In particular, this implies ∥A∥2 ≤ σmax(A) ·
√
rank(A).

Proposition D.5. Let A : V1 ⊕ V2 → V be a linear map between finite-dimensional inner

product spaces. Let Ai : Vi → V for i = 1, 2 be given as in Proposition D.3. Then:

∥A∥22 = ∥A1∥22 + ∥A2∥22,

where ∥ · ∥2 denotes the 2-Schatten norm.

D.4 Proofs and Additional Results for Section 5.3

For the proof of Theorem 5.3, we will make use of the notion of a comparison graph

over a set of items. Given preference comparisons from a user, the induced comparison

graph is simply the directed graph over items where two items are connected by an edge if

the user has compared them:

Definition D.6. A comparison graph G = (V,E) is a graph whose vertices V =

{x1, . . . , xN} is a set of items and whose edges E = {(xi0 , xi1)}mi=1 is a set of item pairs.
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Its edge-vertex incidence matrix S ∈ {−1, 0,+1}m×N is defined by:

Sij =


1 j = i0

−1 j = i1

0 o.w.

Theorem 5.3. Fix M ∈ Sym+(Rd) and vk ∈ Rd for each k ∈ N. Let (Dk)k∈N be a

collection of design matrices, each for a set of m ≤ d pairwise comparisons. If each set of

compared items has generic pairwise relations, then for all M ′ ∈ Sym+(Rd), there exists

(v′k)k∈N ⊂ Rd such that:

Dk(M, vk) = Dk(M
′, v′k), ∀k ∈ N.

Proof of Theorem 5.3. Fix M ′ ∈ Sym+(Rd). It suffices to prove the result for a single user,

since the covariates vk’s impose no constraints on each other. Fix a pseudo-ideal point

v ∈ Rd. Let D be a design matrix induced by the collection of pairs {(xi0 , xi1)}mi=1 from

a set of items X = {x1, . . . , xN}. We show that when X has generic pairwise relations,

then there exists v′ ∈ Rd such D(M, v) = D(M ′, v′). By expanding and rearranging this

equation, we obtain a linear system of equations Av′ = b, where A ∈ Rm×d and b ∈ Rm,

and where the ith set of equations is given by:

(xi0 − xi1)⊤︸ ︷︷ ︸
ith row of A

v′ =
〈
xi0x

⊤
i0
− xi1x

⊤
i1
,M −M ′〉+ 〈xi0 − xi1 , v〉︸ ︷︷ ︸
ith entry of b

.

The Rouché–Capelli theorem states that the system Aû = b has a solution if the rank of

the augmented matrix [A|b] is equal to the rank of the design matrix A. If this is the case,

then, there is a solution v′ for any choice of M ′ ∈ Sym+(Rd).

To finish the proof, we show that the ranks of A and [A|b] are equal. To this end,
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let S be the edge-vertex incidence matrix induced by {(xi0 , xi1)}mi=1. Define the matrix

X ∈ RN×d and vector b′ ∈ RN so that the jth row of each is:

Xj = x⊤j and b′j =
〈
xjx

⊤
j ,M −M ′〉+ 〈xj − v〉,

so that A = SX and b = Sb′. The items have generic pairwise relations, and so rank(S) =

rank(SX) by Lemma D.7. The augmented matrix [A|b] has the decomposition S[X|b′], so

its rank is upper bounded by rank(S). And because the rank([A|b]) is at least rank(A),

we obtain equality, as claimed.

Lemma D.7. Let V = {x1, . . . , xN} be a set of items in Rd, and let X ∈ RN×d be its

matrix representation, so that the jth row is Xj = x⊤j . Let G = (V,E) be a comparison

graph with |E| ≤ d. Let S be its edge-vertex incidence matrix. If the items have generic

pairwise relations, then:

rank(SX) = rank(S).

Proof. Let G′ = (V,E ′) be a maximal acyclic subgraph G′ ⊂ G, say with m′ edges, and let

S ′ ∈ Rm′×N be its corresponding edge-vertex incidence matrix. On the one hand, we have:

rank(S ′) ≥ rank(S ′X).

On the other, because X has pairwise generic relations and m′ ≤ d, we have:

rank(S ′X) = dim
(
span

(
{x− x′ : (x, x′) ∈ E ′}

))
= m′ ≥ rank(S ′).

The first equality is obtained by the definition of rank applied to S ′X. The second equality

follows from pairwise genericity. Thus, we have rank(S ′) = rank(S ′X) ≤ rank(SX).

Furthermore, we claim that:

rank(S) = rank(S ′).
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It would follow that rank(S) ≤ rank(SX) ≤ rank(S), which implies the result.

We prove the claim by showing that for any e ∈ E \ E ′, the row Se is a linear

combination of rows Se′ where e′ ∈ E ′. Let e = (x, x′). By the maximality of G′, a cycle

containing e is created by including e into G′. Thus, there is an undirected path P from x

to x′ in G′, where P = (x0, . . . , xk) satisfies:

• x0 = x and xk = x′,

• either (xi−1, xi) or its reversal (xi, xi−1) is contained in E ′.

For each i, let ei ∈ E ′ be one of these edges (xi−1, xi) or (xi, xi−1) and let ri ∈ {−1,+1}

indicate whether ei was the reversal of (xi−1, xi). It follows that indeed Se is a linear

combination of the rows of S ′,

Se =
k∑
i=1

riSei .

D.4.1 Generic pairwise relations

In the next proposition, we show that our notion of generic pairwise relations is a

notion of points being in general position [108]; almost all finite subsets of Rd are have

pairwise generic relations. Recall:

Definition 5.2. A set X ⊂ Rd has generic pairwise relations if for any acyclic graph

G = (X , E) with at most d edges, the set {x− x′ : (x, x′) ∈ E} is linearly independent.

Proposition D.8. Fix N ∈ N. We say that X ∈ RN×d has generic pairwise relations if

its rows have generic pairwise relations. The following set has Lesbegue measure zero:

{
X ∈ RN×d : X is not pairwise generic

}
.
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Proof. Let S be the finite collection of all edge-vertex incidence matrices S for acyclic

comparison graphs with at most d edges on N items. Notice that if X ∈ RN×d is not

pairwise generic, then there exists some S ∈ S such that SX ∈ Rm×d is not full rank. It

follows that:

{
X not pairwise generic

}
=
⋃
S∈S

{
det(SXX⊤S⊤) = 0

}
.

The zero set {det(SXX⊤S⊤) = 0} of a non-zero polynomial has Lebesgue measure zero,

by Sard’s theorem. The finite union of measure zero sets also has measure zero.

The concept of general linear position is a standard notion of general position. We

present the definition in a way to highlight its relationship to pairwise genericity. Recall

that a star graph is a tree with a root vertex connected to all other vertices.

Definition D.9. Let X be a subset of Rd. We say that X is in general linear position if

for any star graph G = (V,E) with at most d edges on V ⊂ X , the set {x−x′ : (x, x′) ∈ E}

is linearly independent.

Because star graphs are acyclic graphs, the following is immediate:

Proposition D.10. If X has generic pairwise relations, then X is in general linear

position.

On the other hand, the converse is not necessarily true. As we can see from the

following example, having pairwise generic relations is a strictly stronger condition than

being in general linear position.

Example D.11. Consider the following points in R2:

x1 =

0
0

 x2 =

1
0

 x3 =

1
1

 x4 =

2
1

 .
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(0, 0) (1, 0)

(1, 1) (2, 1)

(a)

(0, 0) (1, 0)

(0, 0.8)
(2, 1)

(b)

Figure D.1. (a) Illustration of Example D.11. The set of four points is in general linear
position, but does not have generic pairwise relations. (b) A set of four points that has
generic pairwise relations; it must also be in general linear position.

This collection of points is in general linear position, since no three points are collinear.

However, these points do not have generic pairwise relations. We have:

x2 − x1 = x4 − x3.

D.5 Proofs and Additional Results for Section 5.4

D.5.1 An additional result for Section 5.4.1

Proposition D.12. There is a one-to-one correspondence between Sym+(V ) and Maha-

lanobis distances on V . In particular, ρV : V × V → R is a Mahalanobis distance if and

only if there exists some Q ∈ Sym+(V ) such that:

ρV (x, x
′) =

√
(x− x′)BQB⊤(x− x′).

Moreover, Q is unique. We say that Q is the matrix representation of the Mahalanobis

distance ρV . If ρV is the subspace metric on V of a Mahalanobis distance ρ on Rd with

representation M ∈ Sym+(Rd), then:

Q = ΠV (M).
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Proof. (=⇒). Suppose that ρV is a Mahalanobis distance on V . We show that it has a

representation in Sym+(V ). By definition, there exists a Mahalanobis distance ρ on Rd

such that:

ρV = ρ
∣∣
V
.

Let M be the matrix representation of ρ and let Q = ΠV (M) ∈ Sym+(V ). Then:

ρV (x, x
′) =

√
(x− x′)⊤M(x− x′)

=
√
(x− x′)⊤BB⊤MBB⊤(x− x′)

=
√

(x− x′)⊤BQB⊤(x− x′),

where the first equality expands the equality ρV (x, x′) = ρ(x, x′), the second uses the fact

that BB⊤x = x for all x ∈ V since B ∈ Rd×r is an orthonormal basis, and the third

equality is uses the definition of ΠV .

To prove uniqueness, suppose that Q,Q′ ∈ Sym+(V ) represent ρV . We claim that

Q = Q′. To show this, it suffices to prove that for all z ∈ Rr,

〈
Q−Q′, zz⊤

〉
= 0.

This is because the collection {zz⊤ : z ∈ Rr} spans all (r × r)-symmetric matrices. To

this end, fix z ∈ Rr. We take x, x′ ∈ V ⊂ by setting x = Bz and x′ = 0. We have:

ρV (x, x
′) =

√
(x− x′)⊤BQB⊤(x− x′) =

√
z⊤Qz.

The same equation holds for Q′ since both represent ρV . Squaring both equations and

taking their difference shows that ⟨Q−Q′, zz⊤⟩ = 0, as desired. Thus, Q = Q′ and the

matrix representation of ρV is unique.

(⇐=). Let Q ∈ Sym+(V ). We can extend the orthonormal basis B of V to an
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orthonormal basis of Rd. In particular, let B⊥ ∈ Rd×(d−r) be an orthonormal basis of the

orthogonal complement of V . Set:

M = B⊥B
⊤
⊥ +BQB⊤,

so that M ∈ Sym+(Rd) is positive-definite. Let ρ be the Mahalanobis distance on Rd

represented by M . Then, the Mahalanobis distance ρ
∣∣
V

on V has representation:

ΠV (M) = B⊤MB = B⊤B⊥B
⊤
⊥B +B⊤BQB⊤B = Q,

which shows that each Q ∈ Sym+(Rd) corresponds to a Mahalanobis distance on V .

D.5.2 Proofs for Section 5.4.2

Lemma 5.8. Let V be an r-dimensional subspace of Rd with a canonical representation

given by B ∈ Rd×r. Fix any Mahalanobis distance M ∈ Sym+(Rd), any pair of items

x, x′ ∈ Rd, and ideal point u ∈ Rd. Suppose that x and x′ are contained in V with canonical

representation xV = B⊤x and x′V = B⊤x′ in Rr. Then:

ψM
(
x, x′;u

)
= ψQ

(
xV , x

′
V ;uV

)
,

where the phantom ideal point uV of u on V satisfies (B⊤MB)uV = B⊤Mu, and Q =

ΠV (M) is the matrix representation in Sym+(V ) of the subspace metric ρ
∣∣
V
.

Proof. Let v = −2Mu and vV = −2QuV be the pseudo-ideal user points for u and uV ,

respectively. The following shows that vV is given by the canonical representation of the

orthogonal projection of v to V ,

vV = −2B⊤MB︸ ︷︷ ︸
Q

(B⊤MB)−1B⊤Mu︸ ︷︷ ︸
uV

= −2B⊤Mu = B⊤v.
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We now expand the definitions of ψM and ψQ,

ψM(x, x′;u)
(i)
=
〈
xx⊤ − x′x′⊤,M

〉
+
〈
x− x′ , v

〉
(ii)
=
〈
BB⊤(xx⊤ − x′x′⊤)BB⊤,M

〉
+
〈
BB⊤(x− x′), v

〉
(iii)
=
〈
B⊤xx⊤B −B⊤x′x′

⊤
B,B⊤MB

〉
+
〈
B⊤x−B⊤x′, B⊤v

〉
(iv)
=
〈
xV xV

⊤ − x′V x′V
⊤
, Q
〉
+
〈
xV − x′V , vV

〉
(v)
= ψQ(xV , x

′
V ;uV ),

where (i) and (v) follow by definition, (ii) uses the fact that as B ∈ Rd×r is an orthonormal

basis, BB⊤v = v for all v ∈ V , (iii) applies the following property for the trace inner

product ⟨BA,C⟩ = tr(C⊤BA) = ⟨A,B⊤C⟩, and (iv) rewrites the equation in terms of the

canonical representations.

Proposition 5.10. Let X quadratically span a subspace V of dimension r. There exists

a collection D1, . . . , DK of design matrices, each over m pairs of items in X , such that

given a (distinct) user’s response to each design, ρ
∣∣
V

can be identified when m ≥ r+1 and

K ≥ r(r + 1)/2.

Proof. By Lemma 5.8, it suffices to prove the result for V = Rd. We show that if X

quadratically spans Rd, then we can construct an (m,K)-experimental design where

m = d+ 1 and K = d(d+ 1)/2 such that there is a unique matrix consistent with all user

responses. Let D = d+ d(d+1)
2

be the dimension of Sym(Rd)⊕ Rd.

Since X quadratically spans V , there exists a collection of pairs {(xi0 , xi1)}Di=1 such

that:

span
({

∆i ⊕ δi : i ∈ [D]
})

= Sym(Rd)⊕ Rd, (D.2)

where we let ∆i = xi0x
⊤
i0
−xi1x⊤i1 and δi = xi0−xi1 . In particular, the collection {∆i⊕δi}i∈[D]

is linearly independent. Without loss of generality, we may select these so that the first d
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pairwise differences δi are also linearly independent:

span
(
{δi : i ∈ [d]}

)
= Rd.

We will ask all users to compare the first d pairs and one additional pair, unique to the

user. In particular, set the kth collection of preference comparison queries by:

Dk =
{
(xi0 , xi1) : i ∈ Ik

}
, where Ik = [d] ∪ {d+ k}.

First, we show that the responses from a single user must reveal at least one

dimension of Sym(Rd). To see this, let’s fix a user k ∈ [K]. From Equation (D.2), we can

define the vector (αi,k : i ∈ Ik) so that:

αd+k;k = 1 and
∑
i∈Ik

αi;kδi = 0.

Therefore, from the preference measurements, we deduce that at least one degree of freedom

of M is revealed:

∑
i∈Ik

αi;kψi;k =
∑
i∈Ik

αi;k
〈
∆i,M

〉
+
∑
i∈Ik

αi;k
〈
δi, vk

〉
︸ ︷︷ ︸

⟨0,vk⟩

=

〈∑
i∈Ik

αi;k∆i,M

〉
. (D.3)

We now claim that each user reveals a different degree of freedom of M . In

particular, it suffices to show that the following collection of matrices spans Sym(Rd),

∑
i∈Ik

αi;k∆i : k ∈ [K]

 .

Suppose otherwise. Since K = d(d+1)
2

, this means that this collection of matrices are

linearly dependent, and that there exists a non-zero vector (µk : k ∈ [K]) such that
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0 ∈ Sym(Rd) is the linear combination:

∑
k∈[K]

µk
∑
i∈Ik

αi;k∆i = 0.

Because we chose αd+k;k = 1 for each user k ∈ [K], this implies that zero in Sym(Rd)⊕Rd

is also a non-trivial linear combination of the collection ∆i ⊕ δi, where:

d∑
i=1

∑
k∈[K]

µkαi;k

∆i ⊕ δi +
D∑

i=d+1

µi−d ·∆i ⊕ δi = 0.

But then this collection is not full rank and cannot span Sym(Rd)⊕ Rd, as assumed in

Equation (D.2). It follows that M is the unique solution to the system of linear equations

corresponding to Equation (D.3).

Proposition 5.11. Let (Dk)k∈N be a set of design matrices over items in X ⊂ V . If

X does not quadratically span V , then infinitely many Mahalanobis distances on V are

consistent with any set of user responses to the design matrices.

Proof. Because XV does not quadratically span V , there exists an element Q⊥ ⊕ v⊥ ∈

Sym(V )⊕ V such that:

〈(
xV x

⊤
V − x′V x′⊤V

)
⊕ (x− x′), Q⊥ ⊕ v⊥

〉
= 0,

for all x, x′ ∈ XV , where xV = B⊤x and x′V = B⊤x′. Let M⊥ = BQB⊤, so that:

〈(
xx⊤ − x′x′⊤

)
⊕ (x− x′),M⊥ ⊕ v⊥

〉
= 0, for all x, x′ ∈ XV .

(D.4)

We claim that if M ∈ Sym+(Rd) is consistent with the kth user’s responses Dk =

{(xi0;k, xi1;k, ψi;k)}mi=1, then the matrix M+λM⊥ is also consistent, provided that M+λM⊥

remains in Sym+(Rd). In particular, if M is consistent, there exists an ideal point uk so
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that for all i ∈ [m]:

ψi;k = ψM(xi0 , xi1 ;uk)
(i)
=
〈(
xi0x

⊤
i0
− xi1x

⊤
i1

)
⊕ (xi0 − xi1),M ⊕ vk

〉
(ii)
=
〈(
xi0x

⊤
i0
− xi1x

⊤
i1

)
⊕ (xi0 − xi1),M ⊕ vk + λM⊥ ⊕ v⊥

〉
(iii)
= ψM+λM⊥(xi0 , xi1 ;λũk),

where (i) expands the definition of ψM while setting the pseudo-ideal point to vk = −2Muk,

(ii) applies Equation (D.4), and (iii) applies the definition of ψM+M⊥ while setting ũk =

−1
2
M−1(vk + v⊥).

Thus, if M is the matrix representation of the underlying Mahalanobis distance,

the following matrices are also consistent:

{
M + λM⊥ : 0 ≤ λ <

σmin(M)

σmax(M⊥)

}
,

where σmax(M⊥) is the maximum singular value of M⊥ while σmin(M) is the minimum

singular value of M ; this implies that M + λM⊥ is positive-definite. Infinitely such λ’s

exist because (a) σmax(M⊥) <∞ is finite and (b) σmin(M) > 0 is bounded away from zero

because M is positive-definite.

D.5.3 Proof of Proposition 5.13 from Section 5.4.3

Proposition 5.13. Let ρ be a Mahalanobis distance on Rd. Let (Vλ)λ∈Λ be a collection

of subspaces with canonical representations given by the orthonormal bases (Bλ)λ∈Λ. The

following are equivalent:

1.
{
xx⊤ : x ∈ Vλ, λ ∈ Λ

}
spans Sym(Rd).

2. Let ΠVλ be given by Equation (5.3). The linear map Π : Sym(Rd) →
⊕
λ∈Λ

Sym(Vλ) is
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(a) (b)

Figure D.2. (a) Illustrates the number of subspaces needed to reconstruct a high-
dimensional ellipsoid from its intersections with low-dimensional subspaces. In R2, we
need 3 points on distinct 1-dimensional subspaces to possibly recover an ellipse centered
at the origin. (b) When we cannot exactly identify where the high-dimensional ellipsoid
intersects with each subspace, we may still fit an ellipsoid from approximate estimations
using least squares [55].

injective, where:

Π(A) =
⊕
λ∈Λ

ΠVλ(A).

3. If ρ̂ is a Mahalanobis distance such that ρ̂
∣∣
Vλ

= ρ
∣∣
Vλ

for all λ ∈ Λ, then ρ̂ = ρ.

Proof. (1 =⇒ 2). Suppose span
{
xx⊤ : x ∈ Vλ, λ ∈ Λ

}
= Sym(Rd). To show that Π is

injective, it suffices to show that its kernel is trivial. Let M ∈ ker(Π). We claim that for

any λ ∈ Λ and x ∈ Vλ , we have:

〈
xx⊤,M

〉
= 0. (D.5)

Assume this for now. Then, M ∈ Sym(Rd) = span
{
xx⊤ : x ∈ Vλ, λ ∈ Λ

}
, so that

⟨M,M⟩ = 0. This implies that M = 0, so the kernel is trivial. We now show Eq. (D.5).

Using the definition of ΠVλ , when M ∈ ker(Π), we have:

ΠVλ(M) = B⊤
λMBλ = 0. (D.6)

Say that dim(Vλ) = rλ and x ∈ Vλ. As Bλ ∈ Rd×rλ is a basis of Vλ, there exists z ∈ Rrλ
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such that x = Bλz. By Eq. (D.6),

〈
xx⊤,M

〉
= z⊤B⊤

λMBλz = 0.

(2 =⇒ 1). We prove the contrapositive. Suppose S = span
{
xx⊤ : x ∈ Vλ, λ ∈ Λ

}
does not span Sym(Rd). Then, there exists some nonzero A ∈ S⊥ in its orthogonal

complement. To show that Π is not injective, we show that A ∈ ker(Π). That is, for all

λ ∈ Λ, that B⊤
λ ABλ = 0. We do this by proving that all eigenvalues of B⊤

λ ABλ are zero.

Let v ∈ Rrλ be any unit eigenvector of B⊤
λ ABλ and α be the corresponding

eigenvalue, so that:

α = v⊤B⊤
λ ABλv =

〈
xx⊤, A

〉
,

where x = Bλv is an element of Vλ. But because A ∈ S⊥, this implies that the eigenvalue

is zero, α = 0.

(2 =⇒ 3). Let M and M̂ be the matrix representations of ρ and ρ̂, respectively. By

assumption, their subspace metrics coincide over (Vλ)λ, so Proposition D.12 implies:

ΠVλ(M) = ΠVλ(M̂).

And as Π is injective, we must have M = M̂ , so that ρ = ρ̂.

(3 =⇒ 2). We prove that Π is injective by showing that its kernel is trivial. Let

A ∈ ker(Π). Then, let c, ĉ > ∥A∥op and define M = c−1A+ I and M̂ = ĉ−1A+ I, which

are positive-definite by construction. Let ρ and ρ̂ be their corresponding Mahalanobis

distances. Their subspace metrics on all Vλ’s coincide, since A ∈ ker(Π),

Π(M) = Π(c−1A+ I) = Π(I) = Π(ĉ−1A+ I) = Π(M̂).

And so, by assumption ρ = ρ̂. But as the matrix representation of a Mahalanobis distance
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is unique (Proposition D.12), this implies that M = M̂ , proving that A = 0.

D.6 Proofs and Additional Results for Section 5.5

D.6.1 Proofs and additional remarks for Theorem 5.15

Theorem 5.15. Let Rd have a Mahalanobis distance with matrix representation M ∈

Sym+(Rd). Let X ⊂ Rd be subspace-clusterable over subspaces Vλ indexed by λ ∈ Λ,

where |Λ| = n. Let M̂ be the estimator of M and let Q̂λ be the estimator of the subspace

metric Qλ for each λ learned from Algorithm 5. Suppose there exist γ ≤ ε such that∥∥E[Q̂λ

]
− Qλ

∥∥
F
≤ γ and

∥∥Q̂λ − Qλ

∥∥
F
≤ ε for each λ. Fix p ∈ (0, 1]. Then, there is a

universal constant c > 0 such that with probability at least 1− p,

∥∥M̂ −M∥∥
F
≤ c · 1

σmin(Π)

γ√n+ εd

√
log

2d

p

,
where σmin > 0 is the least singular value of Π.

Proof of Theorem 5.15. Let c = 2c0 where c0 is a universal constant to be defined later.

Recall from Eq. (5.5) that M̂ minimizes ∥A− M̂LS∥F over all A ∈ Sym+(Rd). Since M is

also contained in Sym+(Rd), we have:

∥∥M̂ − M̂LS

∥∥
F
≤
∥∥M − M̂LS

∥∥
F
.

By the triangle inequality,

∥∥M̂ −M∥∥
F
≤
∥∥M̂ − M̂LS

∥∥
F
+
∥∥M̂LS −M

∥∥
F
≤ 2
∥∥M̂LS −M

∥∥
F
.

Therefore, it suffices to show that, with probability 1− δ,

∥∥M̂LS −M
∥∥
F
≤ c0 ·

1

σmin(Π)

(
γ
√
m+ εd

√
log

2d

δ

)
. (D.7)
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Before proving Eq. (D.7), we introduce some notation.

Notation and facts.

For each subspace Vλ, we denote the recovery error by:

Eλ = Q̂λ −Qλ =
(
E[Q̂λ]−Qλ︸ ︷︷ ︸

Hλ (bias)

)
+
(
Q̂λ − E[Q̂λ]︸ ︷︷ ︸
ξλ (noise)

)
,

which we decompose into a bias term Hλ := E[Q̂λ]−Qλ and a noise term ξλ := Q̂λ−E[Q̂λ].

By assumption,

∥Hλ∥F ≤ γ and E[ξλ] = 0, ∥ξλ∥F ≤ ∥Eλ∥F ≤ ε.

Let H :=
⊕

λ∈ΛHλ, ξ :=
⊕

λ∈Λ ξλ, and E := H + ξ. Thus, E =
⊕

λ∈Λ

(
Q̂λ −Qλ

)
, by

the above bias/noise decomposition. In addition, since ∥Hλ∥F ≤ γ, we have ∥H∥ =√∑
λ∈Λ ∥Hλ∥2F ≤

√
mγ.

We now prove Eq. (D.7). Recall from Eq. (5.4) that M̂LS is the least-squares

solution, so that:

M̂LS −M = Π+(E)

= Π+(H + ξ), (D.8)

where Π+ :
⊕

λ∈Λ Sym(Vλ) → Sym(Rd) denotes the Moore–Penrose inverse of Π (see

Definition D.2). It then follows from Eq. (D.8) and the triangle inequality that

∥∥M̂LS −M
∥∥
F
≤
∥∥Π+(H)

∥∥
F
+
∥∥Π+(ξ)

∥∥
F
. (D.9)

By Proposition 5.13, the map Π is injective since X is subspace-clusterable. Thus,
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σmin(Π) > 0, and:

∥∥Π+(H)
∥∥
F
≤ 1

σmin(Π)
∥H∥F ≤

1

σmin(Π)
γ
√
m. (D.10)

It then follows from Eq. (D.9) and Eq. (D.10) that, to prove Eq. (D.7), it suffices to show

that, with probability at least 1− δ,

∥∥Π+(ξ)
∥∥
F
≤ c0 ·

1

σmin(Π)

(
εd

√
log

2d

δ

)
. (D.11)

By the universal property of the direct sum (see Proposition D.3), there exist

Π+
λ : Sym(Vλ)→ Sym(Rd) for each λ ∈ Λ, such that

Π+(ξ) =
∑
λ∈Λ

Π+
λ (ξλ).

Observe that

1. Each ξλ is from subspace Vλ; and thus, ξλ’s and Π+
λ (ξλ)’s across subspaces are indepen-

dent,

2. E
[
Π+
λ (ξλ)

]
= Π+

λ

(
E [ξλ]

)
= 0; and,

3.
∥∥Π+

λ (ξλ)
∥∥
F
≤
∥∥Π+

λ

∥∥
op
·
∥∥ξλ∥∥F ≤ ∥∥Π+

λ

∥∥
2
· ε,

where ∥ · ∥2 denotes the 2-Schatten norm (see Definition D.4).

Corollary D.16 gives a Hoeffding-style concentration inequality for independent sub-

Gaussian random matrices. Applied here, it states that there exists a universal constant
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c0 such that, with probability 1− δ,

∥∥∥Π+(ξ)
∥∥∥
F
=
∥∥∥∑
λ∈Λ

Π+
λ (ξλ)

∥∥∥
F

(i)

≤ c0 ·
√∑

λ∈Λ

∥∥Π+
λ

∥∥2
2
· ε2 log 2d

δ

(ii)
= c0 ·

∥∥Π+
∥∥
2
· ε
√

log
2d

δ
(iii)

≤ c0 ·
1

σmin(Π)
· εd
√
log

2d

δ
, (D.12)

where (i) applies the third observation from above, (ii) applies Proposition D.5 about

2-Schatten norms, and (iii) uses the following facts:

• ∥Π+∥2 ≤ σmax(Π
+) ·

√
rank (Π+), (see Definition D.4),

• σmax(Π
+) =

1

σmin(Π)
,

• rank(Π+) ≤ d(d+1)
2
≤ d2.

D.6.2 Proofs and additional remarks for Proposition 5.18

Proposition 5.18 (Theorem 4.1, [28]). Suppose that Rr has a Mahalanobis distance with

representation Q ∈ Sym+(Rr) where ∥Q∥F ≤ ζM . Let each user k ∈ [K] have pseudo-ideal

point vk ∈ Rr where vk ≤ ζv. Let Pm be a distribution over designs of size m over

Rr (Definition 5.1). For each user, let Dk ∼ Pm be an i.i.d. random design, and let

Dk = {(xi0 , xi1 , yi;k)}i∈[m] be the user’s responses under Assumption 5.17. Fix p ∈ (0, 1].

Given loss function ℓ(z) = − log f(z), Algorithm 9 returns Q̂ ∈ Sym+(Rr), where with

probability at least 1− p,

∥Q̂−Q∥2F ≤
16L

c2f · σ2
min(Pm)

√
(ζ2M +Kζ2v ) log

4
p

mK
.
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Proof. The objective over which the parameters (A,w1, . . . , wK) is optimized in Eq. (D.1)

of Algorithm 9 can be written as:

R̂(A,w1, . . . , wK) =
∑
k∈[K]

∑
i∈[m]

− log f
(
yi;k ·Di;k(A,wk)

)
.

Let (Q̂, v̂1, . . . , v̂K) be the solution recovered in this step of Algorithm 9. The excess risk

of these parameters is defined to be how much worse in expectation the parameters are at

explaining observed data compared to the true parameters (Q, v1, . . . , vK) that generated

the data. The excess risk leads to a bound on ∥Q̂−Q∥2F,

E
[
R̂(Q̂, v̂1, . . . , v̂K)

]
−E

[
R̂(Q, v1, . . . , vK)

]
(a)
=
∑
k∈[K]

E
Dk∼Pm

∑
i∈[m]

KL
(
f
(
Di;k(Q, vk)

) ∥∥∥ f(Di;k(Q̂, v̂k)
))

(b)

≥ 2c2f
∑
k∈[K]

E
Dk∼Pm

∥∥∥Dk

(
Q̂−Q, v̂k − vk

)∥∥∥2
(c)

≥ 2c2f
∑
k∈[K]

m · σ2
min(Pm) ·

(
∥Q̂−Q∥2F + ∥v̂k − vk∥2

)
≥ 2mKc2f · σ2

min(Pm) · ∥Q̂−Q∥2F, (D.13)

where each inequality is justified below. We just need to show that the excess risk of

Q̂ returned by the algorithm has small excess risk. Lemma D.13 approaches this via a

standard generalization argument, showing that with probability at least 1− δ,

E
[
R̂(Q̂, v̂1, . . . , v̂K)

]
− E

[
R̂(Q, v1, . . . , vK)

]
≤ R̂(Q̂, v̂1, . . . , v̂K)− R̂(Q, v1, . . . , vK)︸ ︷︷ ︸

≤0

+ 32L

√
mK(ζ2M +Kζ2v ) log

4

δ
,

(D.14)
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where the indicated difference is less than zero because (Q̂, v̂1, . . . , v̂k) is the minimizer of

R̂. The result is obtained by combining Eqs. (D.13) and (D.14). To finish the prove, we

justify the above inequalities:

(a) Recall that Pr[Yi;k = +1] = f(Di;k(Q, vk)). Because f(z) = 1 − f(−z), we also have

that:

Pr[Yi;k = −1] = 1− f(Di;k(Q, vk)) = f(−Di;k(Q, vk)).

Therefore, Pr[Yi;k = y] = f(y ·Di;k(Q, vk)). It follows that the excess risk is equal to:

E
[
R̂(Q̂, v̂1, . . . , v̂K)

]
− E

[
R̂(Q, v1, . . . , vK)

]
=
∑
k∈[K]

E
Dk,Y

∑
i∈[m]

− log

(
f(Yi;k ·Di;k(Q, vk))

f(Yi;k ·Di;k(Q̂, v̂k))

)
=
∑
k∈[K]

E
Dk

∑
i∈[m]

∑
y∈{−1,+1}

−f(y ·Di;k(Q, vk)) log

(
f(y ·Di;k(Q, vk))

f(y ·Di;k(Q̂, v̂k))

) ,
where we obtain the equality (a) by applying the definition KL(p∥q),

KL(p∥q) = p log
p

q
+ (1− p) log 1− p

1− q
.

(b) The following is the same argument used in [28, Proposition E.3].

∑
i∈[m]

KL
(
f
(
Di;k(Q, vk)

) ∥∥∥ f(Di;k(Q̂, v̂k)
))
≥ 2

∑
i∈[m]

(
f
(
Di;k(Q, vk)

)
− f

(
Di;k(Q̂, v̂k)

))2
≥ 2c2f

∑
i∈[m]

(
Di;k(Q, vk)−Di;k(Q̂, v̂k)

)2
= 2c2f

∑
i∈[m]

(
Di;k(Q̂−Q, v̂k − vk)

)2
= 2c2f

∥∥∥Dk(Q̂−Q, v̂k − vk)
∥∥∥2 ,
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where the first inequality comes from KL(p∥q) ≥ 2(p− q)2, see [106, Lemma 5.2], the

second uses the monotonicity of f and the lower bound of f ′, the third applies linearity

of Di;k, and the fourth just rewrites the sum in terms of the squared ℓ2-norm over Rm.

(c) Recall that σ2(Pm) = 1
m
· σmin(E[D∗D]) when D ∼ Pm. Let X = (Q̂−Q)⊕ (v̂k − vk)

for short. Then,

E
∥∥∥Dk(Q̂−Q, v̂k − vk)

∥∥∥2 = E
〈
DkX,DkX

〉
= X⊤ E [D∗

kDk]X

≥ σmin(E [D∗
kDk]) · ∥X∥2

= m · σ2
min(Pm) ·

(
∥Q̂−Q∥2F + ∥v̂k − vk∥2

)
,

where the inequality applies the variational characterization of the minimum singular

value.

Lemma D.13. Let δ ∈ (0, 1). Given the assumptions of Proposition 5.18, Eq. (D.14)

holds with probability at least 1− δ.

Proof. Let Θ ⊂ Sym+(Rr)⊕ Rr×K denote the set of parameters θ ≡ (A,w1, . . . , wK) such

that A ∈ Sym+(Rr) with ∥A∥F ≤ ζM and wk ∈ Rr with ∥wk∥ ≤ ζv. We claim that with

probability at least 1− δ, we have uniform convergence:

sup
θ∈Θ

∣∣∣R̂(θ)− E
[
R̂(θ)

]∣∣∣ ≤ 16L

√
mK(ζ2M +Kζ2v ) log

4

δ
. (D.15)

Before proving this, notice that this implies Eq. D.14. In particular, let θ̂ correspond to

the parameters (Q̂, v̂1, . . . , v̂K) and let θ correspond to (Q, v1, . . . , vK). Then we have that

with probability at least 1− δ, both R̂(θ̂) and R̂(θ) are close to their expected values, each
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contributing at most the right-hand side of Eq. (D.15):

E
[
R̂(θ̂)

]
− E

[
R̂(θ)

]
≤ R̂(θ̂)− R̂(θ) + 32L

√
mK(ζ2M +Kζ2v ) log

4

δ
.

In the remainder of the proof, we show Eq. (D.15). For any θ ∈ Θ, consider the

empirical risk R̂(θ). We claim that the risk contribution by the ith comparison by the kth

user is a bounded random variable,

∣∣∣∣− log
(
f
(
Yi;k ·Di;k(A,wk)

))
+ log

1

2

∣∣∣∣ (a)≤ 2L(ζM + ζv).

Let us verify this claim later. For now, the bounded difference inequality (reproduced

below as Lemma D.17) implies that with probability at least 1− δ,

sup
θ∈Θ

∣∣∣R̂(θ)− E
[
R̂(θ)

]∣∣∣ ≤ E

[
sup
θ∈Θ

∣∣∣R̂(θ)− E
[
R̂(θ)

]∣∣∣]+ 4L(ζM + ζv)

√
2mK log

2

δ
. (D.16)

To bound the expectation term, let us combine each user’s random design matrix Dk into

a single (m,K)-experimental design matrix D : Sym(Rr)⊕ Rr×K → Rm×K , so that it is

the following linear map:

D(A,w1, . . . , wK)i;k = Di;k(A,wk).

Let D∗ : Rm×K → Sym(Rr)⊕Rm×K be its adjoint. Let ϵ ∈R {−1,+1}m×K be an array of

independent Rademacher random variables, so that ϵi;k is equal to −1 or +1 uniformly at
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random. Then:

E

[
sup
θ∈Θ

∣∣∣R̂(θ)− E
[
R̂(θ)

]∣∣∣] (b)

≤ 2E

 sup
A,w1,...,wK

∣∣∣∣∣∣
∑
k∈[K]

∑
i∈[m]

ϵi;k

(
− log f

(
Yi;k ·Di;k(A,wk)

))∣∣∣∣∣∣


(c)

≤ 2L · E

 sup
A,w1,...,wK

∣∣∣∣∣∣
∑
k∈[K]

∑
i∈[m]

ϵi;k
(
Yi;k ·Di;k(A,wk)

)∣∣∣∣∣∣


(d)
= 2L · E

[
sup
θ∈Θ

∣∣∣〈ϵ,D(θ)
〉∣∣∣]

(e)

≤ 2L · E
∥∥D∗ϵ

∥∥ · sup
θ∈Θ
∥θ∥

(f)

≤ 4L
√

2mK(ζ2M +Kζ2v ), (D.17)

where we justify each step below. We obtain Eq. (D.15) by combining Eqs. (D.16) and

(D.17),

sup
θ∈Θ

∣∣∣R̂(θ)− E
[
R̂(θ)

]∣∣∣ ≤ 4L
√
2mK(ζ2M +Kζ2v ) + 4L(ζM + ζv)

√
2mK log

2

δ

(i)

≤ 4L

√
2

(
2mK(ζ2M +Kζ2v ) + 2mK(ζm + ζv)2 log

2

δ

)
(ii)

≤ 8L

√
mK · (ζ2m +Kζ2v ) ·

(
1 + 3 log

2

δ

)
(iii)

≤ 16L

√
mK · (ζ2M +Kζ2v ) log

4

δ
,

where (i) applies a variant of the AM-GM inequality
√
a +
√
b ≤

√
2(a+ b), (ii) uses

the following upper bound (ζM + ζv)
2 ≤ 3(ζ2M +Kζ2v ), which holds whenever ζM , ζv ≥ 0

and K ≥ 1, and (iii) uses 1 < 3 log 2 and 8
√
3 < 16. Finally, we prove the remaining

inequalities:

(a) Because we have assumed that items lie in the unit ball and that the parameters satisfy
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∥A∥F ≤ ζM and ∥wi∥ ≤ ζv, the unquantized measurements are bounded:

∣∣∣Di;k(A, vk)
∣∣∣ ≤ sup

x,x′∈B(0,1)

∣∣∣〈xx⊤ − x′x′⊤, A
〉
+
〈
x− x′, vk

〉∣∣∣
≤ 2∥A∥F + 2∥vk∥

≤ 2(ζM + ζv),

where we have used triangle inequality for
∥∥xx⊤ − x′x′⊤

∥∥
F
≤ 2 and ∥x − x′∥ ≤ 2.

Because − log f(·) is L-Lipschitz on this domain, whenever |z| ≤ 2(ζM + ζv), we have:

∣∣∣∣− log f(z) + log
1

2

∣∣∣∣ = ∣∣− log f(z) + log f(0)
∣∣ ≤ L|z|.

(b) This inequality follows from a standard symmetrization argument. Let H be a

set of N -tuples of functions, where h ≡ (h1, . . . , hN). Given a set of i.i.d. ran-

dom variables Z1, . . . , ZN , Z
′
1, . . . , Z

′
N and a set of Rademacher random variables

ϵ1, . . . , ϵN ∈ {−1,+1}, we have:

E

sup
h∈H

∣∣∣∣∣∣
N∑
i=1

hi(Zi)− E

 N∑
i=1

hi(Zi)

∣∣∣∣∣∣


= E

sup
h∈H

∣∣∣∣∣∣
N∑
i=1

ϵihi(Zi)−
N∑
i=1

ϵihi(Z
′
i)

∣∣∣∣∣∣


≤ E

sup
h∈H

∣∣∣∣∣∣
N∑
i=1

ϵih(Zi)

∣∣∣∣∣∣
+ E

sup
h∈H

∣∣∣∣∣∣
N∑
i=1

ϵihi(Z
′
i)

∣∣∣∣∣∣


= 2E

sup
h∈H

∣∣∣∣∣∣
N∑
i=1

ϵihi(Zi)

∣∣∣∣∣∣
 .

In our setting, we have an index set (i, k) ∈ [m] × [K] and hi;k : Z 7→ − log f
(
Z ·
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Di;k(A,wk)
)
.

(c) We use the fact that the function − log f(z) is L-Lipschitz over the domain |z| ≤

2(ζM + ζv). We can move the Lipschitz constant out of the expectation by applying

[178, Theorem 6.28], reproduced below.

(d) This step first makes use of the fact that the random variables ϵi;kYi;k
d
= ϵi;k are equal in

distribution. Then, it consolidates everything using the trace inner product on Rm×K .

(e) This step uses the property of the adjoint ⟨ϵ,D(θ)⟩ = ⟨D∗(ϵ), θ⟩ ≤ ∥D∗(ϵ)∥ · ∥θ∥.

The first inner product is over Rm×K , the second inner product and norm are over

Sym(Rr)⊗ Rr×K .

(f) We apply the bound on the parameters sup
θ∈Θ
∥θ∥ ≤

√
ζ2M +Kζ2v along with the following:

E
∥∥D∗ϵ∥

(i)

≤
√

E
〈
DD∗, ϵϵ⊤

〉
(ii)
=
√〈

E[DD∗],E[ϵϵ⊤]
〉

(iii)
=

√∑
i,k

∥∆i;k ⊕ δi;k
∥∥2 (iv)

≤ 2
√
2mK.

The (i) uses Jensen’s inequality, (ii) uses the independence of the randomness over the

design matrices and the Rademacher random variables, (iii) uses the fact that E[ϵϵ⊤]

is the identity on Rm×K , and (iv) uses the fact that items are contained in the unit

Euclidean ball, so that:

∥∆i;k ⊕ δi;k∥2 = ∥∆i;k∥2 + ∥δi;k∥2 ≤ 22 + 22.

Remark D.14. To show that there exists Pm such that σ2
min(Pm) = Ω(1), assume that the

space Rr is quadratically spanned by X . In particular, there exists a collection of items
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(xi0 , xi1)
n
i=1 such that its design matrix D is full rank. Define Xi ∈ Sym(Rr) ⊕ Rr for

i = 1, . . . , n by Xi = ∆i ⊕ δi. Then, D∗D corresponds to:

D∗D =
n∑
i=1

XiX
⊤
i ,

where σmin(D
∗D) > 0. Let Pm be constructed by drawing m pairs uniformly at random.

Let Dm be the random design matrix. Let Ij ∼ Unif([n]) for j = 1, . . . ,m be the index of

the jth random pair, so that we obtain:

E[D∗
mDm] = E

 m∑
i=1

XIj
X⊤
Ij


=

m∑
j=1

1

n

n∑
i=1

XiX
⊤
i

=
m

n
D∗D.

It follows that for this choice of random design, we have σ2
min(Pm) = σmin(D

∗D), which is

a constant.

D.6.3 Auxiliary lemmas

Lemma D.15 (Hoeffding-style inequality for independent bounded random vectors,

[72], Corollary 7). There exists a universal constant c such that for any random vectors

X1, X2, . . . , Xm ∈ Rd that are independent and satisfy E[Xi] = 0 and ∥Xi∥2 ≤ κi for

i ∈ [m], we have, for any δ ∈ (0, 1], with probability at least 1− δ,

∥∥∥∥ m∑
i=1

Xi

∥∥∥∥
2

≤ c ·

√√√√ m∑
i=1

κ2i log
2d

δ
.

Corollary D.16 (Matrix version, [72], Corollary 7). There exists a universal constant

c such that for any random matrices X1, X2, . . . , Xm ∈ Rd×d that are independent and

326



satisfy E[Xi] = 0 and ∥Xi∥F ≤ κi for i ∈ [m], we have, for any δ ∈ (0, 1], with probability

at least 1− δ, ∥∥∥∥ m∑
i=1

Xi

∥∥∥∥
F

≤ c ·

√√√√ m∑
i=1

κ2i log
2d

δ
.

Proof. Since log
(

2d2

δ

)
≤ 2 log

(
2d
δ

)
for δ ≤ 1, the corollary follows directly from Lemma

D.15.

Lemma D.17 (Bounded difference inequality). Let f : XN → R satisfy the bounded

difference property,

sup
x1,...,xN ,x

′
i

∣∣f(x1, . . . , xN)− f(x1, . . . , x′i, . . . , xN)∣∣ ≤ C, ∀i ∈ [N ].

Let X1, . . . , XN be i.i.d. random variables. Then, with probability at least 1− δ,

∣∣f(X1, . . . , XN)− E[f(X1, . . . , XN)
∣∣ ≤ C

√
2N log

2

δ
.

This theorem is also known as McDiarmid’s inequality; as reference, see for example

[178, Theorem 6.16].

Lemma D.18 (Theorem 6.28, [178]). Let h be an L-Lipschitz function h : R→ R. Let

F be a function class with functions f : Z → R. Let z1, . . . , zN ∈ Z and let ϵ1, . . . , ϵN be

independent Rademacher random variables. Then:

E

sup
f∈F

∣∣∣∣∣∣
N∑
i=1

ϵih
(
f(zi))

∣∣∣∣∣∣
 ≤ L · E

sup
f∈F

∣∣∣∣∣∣
N∑
i=1

ϵif(zi)

∣∣∣∣∣∣
 .

D.7 Details and Additional Results for Section 5.6

Our experimental setup and implementation are inspired by and adapted from [28].

In Section D.7.1, we provide further details to our experimental setup. In Section D.7.2,
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we present additional experimental results.

D.7.1 Experimental details

Each simulation run is defined by several parameters: the ambient dimension d,

the number of subspaces n, the dimension of each subspace r, the number of users per

subspace K, and the number of preference comparisons per user m.

Data generation.

In each simulation run, we generate a symmetric positive definite matrix M from

the Wishart distribution W (d, Id) and normalize it so that ∥M∥F = d, following the

same procedure in [28, Section F.3]. We generate n r-dimensional subspaces uniformly at

random [140]: for each subspace, we independently draw r isotropic random vectors from

the normal distribution N (0, 1
d
Id) and use QR decomposition to find an orthonormal basis.

For each subspace V equipped with orthonormal basis B, we randomly generate K

user ideal points by sampling independently from N (0, 1
d
Id), and for each user, we generate

independently 2m items (m pairs). To generate an item x ∈ V , we first draw a vector z

from N (0, 1
r
Id), and then compute x = Pz, where P is the orthogonoal projection matrix

onto V given by P = BB⊤. Note that

E
[
∥x∥22

]
= E

[
tr
(
xx⊤

)]
= E

[
tr
(
Pzz⊤P⊤)] = tr

(
PE
[
zz⊤

]
P
)
=

1

r
tr(P ) = 1.

Equivalently, we have x ∼ N (0, 1
r
BB⊤).

Given subspace noise level σ > 0, we now describe the procedure for generating items

that that lie near V with dim(V ) = r. Let t = 2Km. We first sample t items in V using

the procedure above. We perturb each item by adding an independent noise ξ: To obtain

ξ, we first draw z ∼ N (0, σ2

d−rId), and then project it onto, V ⊥, the orthogonal complement

of V , ξ =
(
Id −BB⊤) z. Note that E

[
∥ξ∥22

]
= σ2. This is equivalent to independently

drawing t vectors from N (0, 1
r
BB⊤ + σ2

d−rB⊥B
⊤
⊥), where B⊥ is an orthonormal basis of V ⊥.
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Let X ∈ Rd×t be the matrix who columns consist of these perturbed items. We

use singular value decomposition on X to compute the rank-r approximation, X̂, that

minimizes ∥X̂ −X∥F (Eckart–Young–Mirsky theorem, see, e.g., [58]). We then use QR

decomposition to find an orthonormal basis B̂ for the vector space V̂ spanned by columns in

X̂. For each perturbed item x̂, its canonical representation in V̂ is given by x̂V̂ = B̂⊤x̂ ∈ Rr,

and these canonical representations are used in Stage 1 of Algorithm 5.

Binary responses are generated using user ideal points and (possibly perturbed)

item embeddings in Rd under the probabilistic model in Assumption 5.17 with link function

f(x; β) = 1
1+exp(−βx) . Unless otherwise specified, we set β = 4; this is the “medium” noise

setting considered in [28].

Algorithm implementation.

We provide additional details on the implementation of Algorithm 5. In Stage

1 (learning subspace metrics), we use Algorithm 9 and set constraints based on oracle

knowledge of optimal hyperparameters ζM and ζv (also called the best-case hyperparameter

setting in [28]). We use ℓ(x; β) = log(1 + exp(−βx)) as the loss function, where β is

assumed known and given by the logistic link function above. We use the Splitting Conic

Solver (SCS) in CVXPy with hyperparameters eps = 1e4 and max_iters = 1e5 to solve

the convex optimization problem.

In Stage 2 of our practical implementation (reconstruction from subspace metrics),

we note that least squares can be sensitive to outliers, and therefore we use the Huber

loss for robust regression [66]. In particular, we use the HuberRegressor from scikit-learn

[118] with default hyperparameters, except for setting max_iters = 1e4. To reconstruct

a full metric, we use subspace metrics learned in Stage 1. We note that we do not include

a subspace (and the learned subspace metric) into our reconstruction step if CVXPy/SCS

does not solve the corresponding optimization problem in Stage 1 successfully, that is,

prob.status != OPTIMAL. Nevertheless, given n subspaces, if CVXPy/SCS does not
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(a) (b) (c)

Figure D.3. (a) shows the average relative errors over items that lie in a union of 40
2-dimensional subspaces. (b) shows the average relative errors for reconstructing M̂ from
increasing numbers of 2-dimensional subspaces; for each subspace, 80 users each provides
10 preference comparisons. The dotted red curve illustrates the counting argument in
Remark 5.14; here, each 2-dimensional subspace can contribute at most 3 degrees of
freedom. (c) shows the average relative errors for varying subspace noise levels; here, items
lie approximately in a union of 40 2-dimensional subspaces and each user provides 10
preference comparisons.

successfully solve any of them, we use the n-th subspace alone for reconstruction.

D.7.2 Additional experimental results

We ran the same experiments in Section 5.6 for subspace dimension r = 2, with

slightly different parameters. The response noise was again set to β = 4, and each

experiment was run 30 times. Figure D.3a compares the average relative errors for varying

K and m, where items lie in a union of 40 subspaces. Figure D.3b shows the average

errors given increasing numbers of subspaces, where K = 80 and m = 10. Note that by the

dimension-counting argument in Remark 5.14, each 2-dimensional subspace contributes at

most 2(2+1)
2

= 3 degrees of freedom, and therefore a minimum of
⌈
d(d+1)

6

⌉
subspaces are

needed. Figure D.3b shows the average recovery errors for varying subspace noise levels,

σ ∈ {0, 0.1, 0.2, 0.3}, and varying K, where items lie in a union of 40 subspaces and we

set m = 10. The behaviors demonstrated in these experiments are analogous to those

observed for r = 1 discussed in Section 5.6.
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