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HIGHLIGHTED ARTICLE
INVESTIGATION

How to Infer Relative Fitness from a Sample of
Genomic Sequences
Adel Dayarian* and Boris I. Shraiman*,†,1

*Kavli Institute for Theoretical Physics and †Department of Physics, University of California, Santa Barbara, California 93106

ABSTRACT Mounting evidence suggests that natural populations can harbor extensive fitness diversity with numerous genomic loci
under selection. It is also known that genealogical trees for populations under selection are quantifiably different from those expected
under neutral evolution and described statistically by Kingman’s coalescent. While differences in the statistical structure of genealogies
have long been used as a test for the presence of selection, the full extent of the information that they contain has not been exploited.
Here we demonstrate that the shape of the reconstructed genealogical tree for a moderately large number of random genomic samples
taken from a fitness diverse, but otherwise unstructured, asexual population can be used to predict the relative fitness of individuals within
the sample. To achieve this we define a heuristic algorithm, which we test in silico, using simulations of a Wright–Fisher model for
a realistic range of mutation rates and selection strength. Our inferred fitness ranking is based on a linear discriminator that identifies
rapidly coalescing lineages in the reconstructed tree. Inferred fitness ranking correlates strongly with actual fitness, with a genome in the
top 10% ranked being in the top 20% fittest with false discovery rate of 0.1–0.3, depending on the mutation/selection parameters. The
ranking also enables us to predict the genotypes that future populations inherit from the present one. While the inference accuracy
increases monotonically with sample size, samples of 200 nearly saturate the performance. We propose that our approach can be used for
inferring relative fitness of genomes obtained in single-cell sequencing of tumors and in monitoring viral outbreaks.

MOSTmutations are believed to have minimal effects on
the fitness of the organism and much of the analysis of

the genomic data on populations (see Excoffier and Heckel
2006 for a review of methods) has been based on the neutral
hypothesis, according to which the dynamics of genetic poly-
morphisms and the overall genetic diversity of the population
are governed by the neutral drift, i.e., stochastic fluctuations
in allele frequency arising from the intrinsic stochasticity in
offspring number. The neutral model assumes that deleteri-
ous mutations are eliminated by selection fast enough to not
significantly contribute to population diversity and beneficial
mutations are rare enough to produce only occasional adaptive
sweeps, where the population is taken over by the offspring of
the adaptive genotype, transiently suppressing neutral genetic
diversity. Statistical properties of genealogies generated by
neutral dynamics in asexual populations are understood in

great detail (Hein et al. 2005; Wakeley 2008) in terms of
Kingman’s coalescent process (Kingman 1982), which follows
the ancestors of the present population back in time as far as
the most recent common ancestor (MRCA). The neutral coales-
cent (Hein et al. 2005; Wakeley 2008) forms the basis for esti-
mating mutation and recombination rates and provides the null
hypothesis in tests for the presence of selection (Tajima 1989;
Fu and Li 1993).

Yet, as advances in sequencing have made it possible to
obtain quantitative data on genetic diversity, numerous studies
have reached the conclusion that nonneutral polymorphisms
are ubiquitous in populations across the spectrum of life: from
viruses (Coffin et al. 1995; Novella et al. 1995; Moya et al.
2004; Neher and Leitner 2010; Batorsky et al. 2011) and bac-
teria (Barrick et al. 2009) to flies (Sella et al. 2009) to mito-
chondria (Seger et al. 2010) and cells in cancerous tumors
(Merlo et al. 2006). In addition, laboratory evolution experi-
ments in bacteria (Lenski et al. 1991; Miralles et al. 1999) and
yeast (Kao and Sherlock 2008; Lang et al. 2011) have demon-
strated directly that large asexual populations contain numer-
ous subclones that are continuously generated by mutation
and compete for fixation. Thus, large asexual populations can-
not be assumed selectively neutral.
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The presence of selection affects the shape of genealogical
trees, often giving them an asymmetric and “comb-like” ap-
pearance that is strikingly different from that of the neutral
trees generated by Kingman’s coalescent (Hein et al. 2005;
Wakeley 2008; Seger et al. 2010; Trevor et al. 2011). An
example of such “genealogical anomalies”—i.e., large devia-
tions from neutral genealogical structure (Maia et al. 2004)—
is provided by the recent study (Seger et al. 2010) of mito-
chondrial diversity in three distinct populations of whale lice,
Cyamus ovalis, where the authors demonstrate that the ob-
served genealogies are statistically consistent with a nonneu-
tral model with frequent mutations of small selective effect.

Our analysis is based on a similar model of asexual evo-
lutionary dynamics driven by small deleterious and beneficial
mutations. In Figure 1 we show schematically a sample of
continuous genealogy for a fixed-size population governed
byWright–Fisher dynamics (Hein et al. 2005; Wakeley 2008),
incorporating genetic drift, mutation, and natural selection.
The example in Figure 1 covers the period over which the
offspring of one of the genomes (Figure 1, top) spread over
the whole population (Figure 1, bottom). We ask, given a sam-
ple of genomes from the “present time” population (Figure 1,
red circles), can one predict the genetic future of the popula-
tion? Or, more specifically, can one identify, within the present
sample, the closest relatives of the future population, i.e., indi-
viduals that are on, or closest to, the genealogical backbone of
the future population? Since long-term survival is correlated
with fitness, this task is closely related to the problem of iden-
tifying the fitter fraction of the present-day sample.

Here, we demonstrate that the anomalous structure of
the genealogical tree reconstructed for a sample of genomes
can serve not only as the evidence of selection, but also as
the basis for inferring the relative fitness ranking of sampled
individuals and their proximity in sequence space to the fittest
genomes. Information pertinent to this inference is contained in
the pattern of coalescence for different lineages: in a nutshell,
lineages that undergo several coalescence events much before
others are relatively fit, while the less fit lineages do not merge
with the rest (going backward in time) until later. Below we
provide the simulation-based evidence supporting this scenario.

Our study builds upon considerable recent progress in the
theoretical understanding of natural selection and drift dyna-
mics in fitness-diverse asexual populations (Tsimring et al.
1996; Rouzine et al. 2003, 2008; Desai and Fisher 2007;
O’Fallon et al. 2010; Sniegowski and Gerrish 2010; Good
et al. 2012; Goyal et al. 2012; Walczak et al. 2012) and the
emerging description of corresponding genealogies (Bolthausen
and Sznitman 1998; Brunet et al. 2007; Berestycki 2009;
O’Fallon et al. 2010; Seger et al. 2010; Desai et al. 2013;
Walczak et al. 2012; Neher and Hallatschek 2013; Neher
2013). We focus on the asexual case and address how this
approach might be extended to the analysis of recombining
populations in the Discussion.

We focus on the regime where numerous beneficial or
deleterious mutations segregate simultaneously and the pop-
ulation is formed by many clones with different fitness values.

In this regime, sometimes referred to as clonal interference
(Miralles et al. 1999; Desai and Fisher 2007), competition
between clones and the linkage between mutations play
a key role in evolutionary dynamics. This regime is realized
in large populations with high mutation rates. Precise con-
ditions depend on the distribution of fitness effects of muta-
tions and have been discussed in many recent articles
(Rouzine et al. 2003, 2008; Desai and Fisher 2007; Brunet
et al. 2008; Sniegowski and Gerrish 2010). For example, in
the case where only beneficial mutations are present, the
condition for being in the interference regime is given by
Nmb . 1/log(Ns), where mb is the beneficial mutation rate
(Desai and Fisher 2007; Brunet et al. 2008; Rouzine et al.
2008). This is basically the condition that new beneficial
mutations get established in the population at a rate faster
than they can “sweep” the population (see supporting informa-
tion, File S1, for additional discussion). In the case of purifying
selection where only deleterious mutations are present, it can
be shown (Rouzine et al. 2003, 2008; Walczak et al. 2012) that
the required condition is N expð2md=sÞ, 1

s log ðmd=sÞ; where
md is the deleterious mutation rate, s is the deleterious effect of
mutations, and N is the population size.

Quite generally, when the population is formed by several
clones with different fitness values, the fate of any newmutation
depends not only on its own selective effect, but also on the
fitness of the genotype on which it occurs (Good et al. 2012).
As a result, the MRCA of such a fitness-diverse population is
with high probability among the very fittest of its generation
(O’Fallon et al. 2010). In return, the pattern of genealogical
coalescence is controlled by the time it takes for surviving
lineages to converge, as they are tracked back in time, on
the leading edge of the fitness distribution at previous times.

Figure 1 Schematic example of a genealogical trajectory, from past into the
future, of an asexual population with fixed size (N = 9) and nonoverlapping
generations. Nodes represent individual genomes, each linked to its ancestor in
thepreviousgeneration.Theexample illustratescoalescenceof the lineagesof the
bottompopulation toward itsMRCAwithin the toppopulation. Thegenealogical
tree of a random sample (red) from the “current time” population partially over-
laps the genealogy of the future population (blue). While actual ancestors of the
futurepopulation (showninblue)mayormaynot fall intothecurrent sample,one
can still define sample members that are closest to the surviving lineages. Iden-
tifying close relatives of future populations is the goal of our study.
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This article is organized as follows. After formulating the
model, we provide examples of genealogies, illustrating their
anomalous shape compared to the neutral coalescent, and
demonstrate the correlation between the ancestral weight,
defined as the fraction of the present-day sample constituted
by the descendants of the ancestor, and the mean fitness of
the those descendants. We then define a fitness-ranking score
based on the suitably integrated ancestral weights along the
reconstructed lineage of each individual in the sample. Ap-
plying the ranking to numerous samples (for populations with
the same and with different mutation/selection parameters)
and comparing each realization to the true fitness known
from the forward simulation, we demonstrate the ability of
the proposed algorithm to infer the relative fitness of sampled
genomes and to identify genotypes that are likely to survive
into the future. The Discussion addresses possible applications
and generalizations of the proposed inference method.

Model and Methods

Model of evolutionary dynamics

Consider an asexual population of size N that evolves with
nonoverlapping generations under the influx of deleterious
and beneficial mutations. New mutations arise at the rate
m + m0 (per genome per generation) with a fraction em being
beneficial, (1 2 e)m deleterious, and the remainder m0 being
neutral. For simplicity we assume both beneficial and delete-
rious mutations to have the same effect s � 1 and to change
the fitness of individual i carrying that mutation additively:
Fi/ Fi 6 s. As in the Wright–Fisher model, natural selection
acts by biasing the probability of an individual genome to
appear in the next generation, which is taken to be propor-
tional to exp(fi) with fi ¼ Fi 2 F being the individual fitness
relative to the mean fitness of the population F; which in
general is a function of time.

We carried out 103 simulations of 2 3 105 generations for
several plausible parameter combinations in the range of m =
102421022, s = 102321022, with e taking values 0, 0.1, and
1, and m0 = 10m and N = 64,000. In File S1, we study the
degree of clonal diversity and interference for the set of para-
meters that we have simulated and show that it explores a broad
range in the clonal interference regime.

The genealogical trees were constructed in two ways. We
recorded the genealogies in the course of the forward simula-
tion, providing exact ancestries of any sample in the population.
In addition, an inferred genealogy of random samples (between
30 and 500 genomes) was constructed using standard neighbor-
joining/UPGMA-derived methods (Durbin 1998) is detailed in
File S1. In File S1, we present the performance of the tree
reconstruction method for different parameter values and
show that it satisfactorily reconstructs the genealogical trees.
For higher mutation rates (e.g., m = 53 1023 and m = 1022)
where there are tens to hundreds of differences between
a typical pair of genomes, even setting the neutral mutation
rate equal to m would be sufficient for an accurate recon-
struction of the trees.

Fitness distribution and distortion in the shape of gene-
alogical trees In the parameter range considered, simulated
populations exhibit substantial fitness diversity with fitness

variance in the order of s ¼
�

1
N

XN

j¼1
f 2j

�1=2

� 1023  2  1022

arising from �102103 simultaneously segregating nonneutral
polymorphisms. Figure 2, A and B, shows examples of the
population-wide fitness distribution for two different mutation
rates (see File S1 for additional examples). In general, genetic
diversity in the population is an increasing function of m/s. For
the highest mutation rate and lowest selection coefficients
considered, m = 1022 and s = 1023, the population exhibits
extensive genetic diversity and is formed by many small clones
(Figure 2B), whereas for the lower mutation rates, as in Fig-
ure 2A, the population typically includes larger clones.

Figure 2, D and E, shows typical examples of genealogical
trees constructed for random samples of size n = 30 drawn
from the populations corresponding to Figure 2, A and B,
respectively. The fitness of sampled genomes, which we know
from the forward simulation, is visualized using color. Also
shown are ancestral weights along some of the lineages. This
weight, wi, is defined as the number of genomes in the pres-
ent time sample that are direct descendants of lineage i. For
example, each leaf at the bottom has weight w = 1, while the
lineage at the root has the full weight of the sample n = 30.
For the sake of comparison, we also show a typical genealog-
ical tree for a neutrally evolving population in Figure 2F.

One immediately notes two well-known differences distin-
guishing Figure 2D and 2E from Figure 2F. Genealogies from
fitness-diverse populations (i) have long terminal legs and are
compressed toward the MRCA root of the tree and (ii) exhibit
strong asymmetry of branching. These anomalies are quanti-
fied in Figure 3. Figure 3A presents distributions of pairwise
coalescent times in the population, tij, for {i, j} genome pairs
for several parameter sets. In Kingman’s coalescent, tij has an
exponential distribution (with mean N) (Hein et al. 2005;
Wakeley 2008) and most lineages in a genealogical tree co-
alesce at early times (looking backward). In contrast, the bulk
of coalescence in a population under selection is significantly
delayed compared to the total coalescent time—an effect cor-
responding to the comb-like appearance of the trees.

The asymmetry of branching is quantified in Figure 3B,
which presents the distribution of weights at the level just below
the root, where there are only two ancestral lineages left in the
tree. The strong bias toward extreme values of w in populations
under selection is contrasted with w-independent distribution
predicted and observed in the neutral case (see File S1 for
additional characteristics that quantify differences between the
shapes of trees).

Results

Correlation between ancestral weight and
offspring fitness

Let us consider the whole population and trace the surviving
lineages back in time, identifying all ancestors of the present-day
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population t generations in the past. Figure 4A shows the
distribution of the ancestral fitness (relative to the mean for
that generation) at several time points in the past. This dis-
tribution becomes progressively shifted toward higher fitness
values compared to the distribution for the whole population
(O’Fallon et al. 2010). In the limit of large times, this distri-
bution converges to the nonextinction probability as a func-
tion of the fitness in the ancestral population (Neher et al.
2010; O’Fallon et al. 2010; Neher and Hallatschek 2013).

Let us consider the time in the past when there are still a large
number of ancestors (e.g.,�103 in the population of N=64,000,
which under conditions corresponding to simulations in Figure
4A occurs at t ’ 100). Figure 4B shows the scatter plot of the
weight of ancestors vs. their fitness advantage. Note that, by
collapsing the points on the fitness axis, one gets the histogram
shown in Figure 4A. We observe a strong positive correlation
between the weight and the fitness of an ancestor. Higher-
fitness individuals in the past generations are not only more likely
to survive, but, conditioned on survival, they also leave more
offspring. Thus the weight of the ancestor, which can be de-
termined from a reconstructed genealogical tree, can be used as
a proxy for ancestral fitness: a quantity that one does not expect

to know directly, except in the case of computer simulations. In
File S1 we provide plots of average ancestral fitness conditioned
on its weight for various time points and parameter sets and
confirm that the positive correlation between the weight and
the fitness of ancestors holds quite generally. This correlation
decreases as the time shifts farther into the past.

Next, we examine the correlation between the weight of
an ancestor and the fitness of its surviving progeny. Consider
a sample of genomes with size n and the corresponding
genealogical tree. One expects genomes that are derived
from relatively high-fitness ancestors to belong to higher-
fitness classes at the present time. Since ancestral fitness
correlates with weight, we expect higher-weight ancestors
to produce, on average, higher-fitness descendants. To see
this, let us consider an ancestor i, with weight wi, that
existed some t generations in the past. We examine
the fitness

�
f1; . . . ; fwi

�
of the wi offspring in the sample

descending from that ancestor. In particular, we focus

on the mean, FðwiÞ ¼ ð1=wiÞ
Xwi

j¼1
fj; and the variance,

S
2ðwiÞ ¼ ð1=wiÞ

Xwi

j¼1

�
fj 2 FðwiÞ

�2
; over the wi offspring

(subscript d refers to descendants). Let us denote the

Figure 2 Fitness distributions and examples of genealogical trees. (A) Fitness distribution at one time point for a population with m = 1023, s = 2 3 1023,
and s ’ 2.2 3 1023. Each bin corresponds to a fitness class and each class is composed of multiple clones delineated by horizontal lines within each bar,
with larger clones stacked on the bottom. (Here, clones are defined using only the nonneutral mutations.) Also shown is the color code used in D. (B) Same as
A but for a higher mutation rate m = 1022 and s ’ 53 1023. (C) Same as A but for a neutral population. (D) A typical genealogical tree for a random sample
of size n = 30 from the same population as in A. Each circle corresponds to one sampled genome and the color represents its fitness. Branch lengths are
drawn in linear proportion to the corresponding time interval. Numbers next to internal nodes are the weights of the corresponding ancestors (only weights
.10 are shown). Note the striking asymmetry of branching, i.e., uneven distribution of weight among the two lineages descending from each internal node.
(E) Same as D but for the population shown in B. Note that the colors (gray and plum) corresponding to the extremes of the distribution (B) are absent from
the small sample shown. (F) Same as D but for a neutral population. To focus on the shape of the genealogy, we have normalized the “height” of the trees in
D–F to the time to the MRCA, which makes the neutral tree appear as tall as the trees for the populations under selection (whereas the coalescence time is
really much longer in the neutral case). Note the short terminal legs and more symmetric branching. N = 64,000 and e = 0.1 for A–F.
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average of these quantities over random samples of
genomes and over population replicas by FðwiÞ ¼ hFðwiÞi
and S

2ðwiÞ ¼
D
S
2ðwiÞ

E
: Note that FðwÞ and SðwÞ depend

on the time t, namely, how far back in the genealogy one
is considering.

In Figure 4, C and D, we show FðwÞ=s and SðwÞ=s at two
different time points in the past for samples of size n = 100
(see File S1 for other parameter sets). In both cases, the mean
fitness of the derived genomes is an increasing function of the
weight of their ancestor. Consider a time close to the root of
a tree such that a lineage can have a weight that is a signifi-
cant portion of the sample size (e.g., right plot in Figure 4C).
As expected, the value of FðwÞ for such high-weight ancestors
is close to zero (remember that fi was defined relative to the
population mean, so that the average of fi over the whole
sample is zero). At the same time SðwÞ=s/1 for ancestors
with w approaching n. Interestingly, for the lineages that still
have a small weight late in the coalescence process, the value
of FðwÞ is clearly negative.

High-fitness genomes typically merge first in a tree and
form high-weight ancestors. To make this point clear,
consider the distribution of the pairwise coalescent time,
tij, shown in Figure 3A. Averaging tij over all {i, j} pairs of
genomes in a population gives the mean coalescent time T2.
Now, consider the average of tij conditioned on the fitness of
the two genomes and denote it by t2(fi, fj). Figure 4D shows
a heat map of t2(fi, fj)/T2. For two genomes both with high
fitness, the average coalescent time is ,T2. The reason is
that such genomes are likely to be relatively recent lineages
emanating from the “nose” of the distribution. In other

words, the chance of sampling identical or similar sequences
is greater for fitter samples than for less fit samples, since fitter
samples have shorter average pairwise coalescent time. This
observation is the key to the proposed fitness inference method.

Relative fitness inference based on the
reconstructed genealogy

Above we have reviewed different ways in which the shape
of the genealogical trees for populations under selection
differs from the expectation of neutral theory. We have also
demonstrated the correlation between ancestral weights
and the fitness of the descendants. We showed that sampled
genomes that belong to high-fitness classes typically have
shorter coalescent time compared to unfit genomes. We now
show that this insight can be converted into a method for
inferring relative fitness of genomes within the sample.

Figure 3 Distortion in the shape of genealogies in the presence of se-
lection. (A) Distribution of pairwise coalescent time, scaled with its mean,
T2. (B) Probability of an ancestor to have weight w when there are a = 2
lineages left in the genealogical tree of n = 100 samples. Distributions are
based on 8000 random samples and population replicas. N = 64,000 and
e = 0.1 in both A and B.

Figure 4 Correlation between fitness, weight, and coalescent time. (A)
Fitness distribution of the ancestors of the whole population, for several
time points in the past. (B) Scatter plot of weight vs. ancestral fitness t = 100
generations back. (C) Solid lines show average fitness of offspring as a func-
tion of the ancestral weight in a sample of size n = 100 at two different
time slices in the past. Dashed lines represent the standard deviation,
SðwÞ=s; above and below the mean, FðwÞ=s: The time slices (t15% and
t40%) were chosen to be the first time (looking backward) when genealogy
contained a lineage with weight .15% or 40% of n, respectively. (D) Heat
map of mean pairwise coalescent time as a function of the fitness of the
involved genomes, f1,2, normalized by the mean pairwise coalescent time
for the whole population: t2(f1, f2)/T2. Evolutionary model parameters are
N = 64,000, e = 0.1, and s = 2 3 1023 in A–D; m = 1023 in A, B, and D.
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To that end, let us consider a randomly chosen set of n
genomes from a population and use standard phylogenetic
tree-building methods (see File S1) to approximately recon-
struct the genealogy of the sample. The accuracy of the
reconstructed genealogy compared to the actual genealogy,
known exactly from the forward simulation of population
dynamics, is discussed in File S1. It increases with the neu-
tral mutation rate m0: in the biologically plausible regime of
m0/m � 10 considered here, it proves more than adequate to
enable meaningful inference.

Next, based on the reconstructed tree, we associate with
each leaf i = 1, . . . , n a fitness-proxy score (FPS), fi, defined
by its lineage within the tree. Specifically, we define fi as
a linear discriminator in the form

fi ¼
Xmi

k¼1

Q

�
takðiÞ
T2

�h
wakðiÞ 2wak21ðiÞ

i
; (1)

where {ak(i)} is the lineage of genome i, starting with the
genome itself as a0(i) and running the length, mi, of the
lineage (i.e., the number of nodes) until the root of the tree.
When the ancestral lineage ak21(i) with weight wak21ðiÞ coa-
lesces at internal node k, it forms a new ancestral lineage
ak(i) with weight wakðiÞ (see File S1 for an illustration of this
notation on the example of a particular tree). The time of
formation of the corresponding internal node is denoted by
takðiÞ: The parameter T2 is the estimate of the average pair-
wise coalescent time, obtained from the sampled genomes.
Finally, Q(x) is a “soft step” function (a.k.a. Fermi function):
Q(x) = (1+ exp(b(x/x* 21)))21 parameterized by the po-
sition of the step x* and its characteristic width b. If b � 1,
the function Q(x) changes abruptly from one to zero as x
becomes .x*, so that fi ¼ wa*

2 1; where a* is the oldest
ancestor in the lineage with ta* , x*T2: For b � 1 the FPS is
defined by a weighted sum of ancestral weights (see File S1
for details).

The logic behind our heuristic choice of the specific form
of fi is to exploit the correlation between the offspring fit-
ness and ancestral weights. Note that, at least on the high-
fitness/high-weight end of the distribution, this correlation
decreases as ta becomes large compared to T2. The reason
for this is that for long times in the past, even the lineages
originating from high-fitness ancestors spread all over the
fitness distribution at the present time. Hence, we choose
x* , 1: specifically the results below were obtained with
x* = 0.5 and b = 5, but in File S1 we examine the perfor-
mance of the ranking algorithm as a function of the param-
eters and demonstrate that nearly optimal performance for
the present form of the FPS is achieved for a broad range of
x* and b. Critically, normalization of ta to the characteristic
time of coalescence for the sample, T2, eliminates the need
to know the evolutionary parameters of the population, such
as m or N.

We rank genomes according to their fi score and com-
pare this ranking with the actual fitness of each genome. In
addition to inferring relative fitness, it is useful to know how
genetically close a genome with a given rank is to the fittest
one in the sample. Hence, for each genome we define di as
the average of its Hamming distance to the fittest 10% of
genomes in the sample. Figure 5, A and B, shows the results
of the ranking for two n= 200 samples from the populations
that already appeared in Figure 2, A and B. We observe
a correlation between FPS ranking and the actual fitness in
general and the tendency (quantified below) for the fittest
genomes of the sample to show in the top ranks. In addition,
high-ranked genomes that do not belong to high-fitness
classes still have small di values, indicating that they are
genetically close to the fittest genotypes. In other words,
even if a high-ranked genome is not fit, typically it has only
recently branched off from a fit clone and, compared to
a randomly chosen unfit sequence, shares greater sequence
similarity with fittest genotypes.

Figure 5 Examples of performance of the ranking algo-
rithm. (A) Heat map of rank as a function of fitness and
average distance to the top 10% of fittest genomes. Dis-
tance d is normalized by its mean d: Left and right panels
correspond to two samples of size n = 200 drawn from the
same populations as in Figure 2A (m = 1023) and Figure 2B
(m = 1022), respectively. To avoid overlap of points, a small
random number has been added to the fitness coordinate
of each point. (B) Scatter plot of rank vs. distance to
the top 10% of fittest genomes (color map represents
f/s). The plots correspond to the same trees as in A.
N = 64,000 and e = 0.1 in A and B.
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The above observations are confirmed and quantified by
repeating and averaging the analysis for 8000 independent
population samples and different sets of parameters. Spe-
cifically, Figure 6 shows the fitness distribution of the top-
ranked genomes for the two parameter sets used in Figure 5.
The results clearly indicate that the top-ranked genomes
tend to be among fitter genotypes in the population. In
addition, Figure 7A shows mean fitness conditional on the
FPS ranking and Figure 7B shows the mean rank conditional
on actual fitness (normalized by s) for two different values
of m. Figure 7C shows mean distance from the fittest condi-
tional on the FPS ranking (for four different values of m),
with distance normalized to D10% defined as the average di
among the fittest 10%. Remarkably, we observe that d/D10%

for the highest-ranked genomes approaches one, indicating
good convergence, in the sense of Hamming distance, of the
top-ranked genomes to the fittest set. Further analysis of the
algorithm’s performance, as well as additional parameter
sets including the case of purifying selection (e = 0), can
be found in File S1.

As already mentioned, we are interested in the set of
evolutionary parameters for which many mutations segre-
gate simultaneously and the population is formed by
numerous clones with different fitness values. The opposing
limit, which occurs for small population size, N, or mutation
rate, m, corresponds to the regime of selective sweeps/
successive mutations. In this latter regime, the population
is typically formed by only a few clones and the fitness diver-
sity is relatively low. Moreover, for smaller values of the
parameters N and m, the inference of genealogical trees
becomes less accurate as the genetic diversity between sam-
pled sequences decreases. Therefore, we expect the perfor-
mance of the algorithm to deteriorate for small population
size, N, or mutation rate, m. In File S1, we show that
for smaller values of the quantity u = Nm, particularly for
u , 1, the performance of the fitness inference algorithm
deteriorates. We also show that the performance of the al-
gorithm deteriorates as the fitness diversity in the popula-
tion, represented by s/s, decreases. Note that the quantity
s/s provides a measure for the number of different fitness
classes in the population.

As we see in Figure 5A, high-ranked genomes that do not
belong to fittest classes still tend to have small genetic dis-
tance to fittest individuals (also note in Figure 2, D and E,
the genomes with blue color located close to the mostly
orange/red clusters on the right side of the trees). This is
because the Hamming distance is dominated by neutral
mutations m0 � m and is less susceptible to fluctuations
compared to fitness, which is defined by a much smaller
number of nonneutral mutations. To the extent that genetic
relatedness is defined by the distance, the latter is essential
for identifying within the sample the closest relatives of
future populations. Taking advantage of ready accessibility
of evolutionary future within our simulations, we have di-
rectly tested the ability of our approach to identify, within
the sample, the genotypes that are closer to those of future

populations. For each sampled genome, we define d9i as the
average of its Hamming distance to all of the genomes in the
current population that are ancestors of the population in
a generation about one genetic turnover time in the future
(we know these ancestors from the forward simulation). We
choose this turnover time to be the first time in the future
when ,1% of individuals from the current population have
any descendant left. In each case we normalized the distances
by D910%; defined as the average of the smallest 10% of values
of d 9i: Figure 7D shows d9=D910% conditional on the FPS rank-
ing. We again observe that d9=D910% for the highest-ranked
genomes gets close to one, indicating that the top-ranked
genomes are indeed close to the ancestors of future gen-
erations. This means that the FPS ranking makes it possible
to identify the genetic elements (common among the high-
rank genomes) that future populations inherit from the
present one.

Finally, we examine the fitness of the genomes with the
10% highest rank. Consider the sorted vector F= [f1, . . . , fn]
that contains the actual fitness values for all the sampled
genomes. In Figure 7E, we show that the probability for the
fitness of a genome within the top 10% rank to be above the
median fitness is �0.9, for the broad range of parameters
considered. The probability for the fitness of a top 10% -ranked
genome to belong to the top 20% fitness class is given by the
solid lines in Figure 7F and is .0.7. Note that some of the
sampled genomes can have equal fitness (i.e., F contains du-
plicate values), which is more common for lower mutation
rates where the fitness diversity in the populations is limited.
Hence, to provide a meaningful comparison for this probability,

Figure 6 Fitness distribution of the top 10% ranked genomes (green)
compared to the fitness distribution of the whole population (blue). A and
B correspond, respectively, to m = 1023 and m = 1022; other population
parameters are the same as in Figure 5. The distributions are obtained by
averaging over 8000 population replicas.
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in Figure 7F we show—using dashed lines—the probability for
a random genome to be in the top 20% fittest.

In summary, the above results clearly indicate the power
of the proposed inference method. The performance of the
method improves monotonically with increasing sample size
(see File S1): it degrades significantly, compared to the
results presented above, for n , 100 but approaches satu-
ration for n . 200.

As we discussed earlier, we are interested in the set of
evolutionary parameters for which several mutations segre-
gate simultaneously and the population is formed by several
clones with varying fitness values. In the opposing limit
corresponding to the regime of selective sweeps/successive
mutations, we expect the performance of the algorithm to
deteriorate, as some fundamental aspects of the dynamics
(such as the dependence of the fate of mutations on the
genetic background) are different. To make this point clear,
we calculated the Pearson correlation coefficient between
the rank and the distance d9. Figure 8A shows this correla-
tion as a function of the parameter Nm. As we see, for
smaller values of Nm, particularly for Nm, 1, the correlation
coefficient drops significantly.

Similarly, in Figure 8B, we show the above correlation as
a function of the participation fraction, defined as the prob-
ability that two randomly chosen genomes belong to the same

clone [i.e.,
DXc

i¼1
ðni=NÞ2

E
; where ni is the size of the ith

clone]. Note that the participation fraction gives a measure
for the fitness diversity in the population. Figure 8B shows
again that as the genetic diversity in the population decreases,
the correlation coefficient between the rank and the distance
d9 drops as well.

Discussion

Whereas one often thinks of evolution occurring on geo-
logical timescales, evolutionary dynamics can also unfold
swiftly as they do in bacteria acquiring antibiotic resistance,
in human immunodeficiency virus evading Cytotoxic T-Cell
response in the course of infection, or in the progression of
an aggressive cancer. Recent advances in sequencing (Smith
et al. 2010; Navin et al. 2011) have made it possible to
extensively sample such rapidly evolving populations. The
amount and quality of genomic data on populations will only
continue to increase, accentuating the challenge of extracting
more information from sampled genomes. Here, we have dem-
onstrated that the shape of genealogical trees contains much
more information than merely the evidence for (or against) se-
lection within a population. As a proof-of-principle we have for-
mulated a method for ranking the relative fitness of individual

Figure 7 Performance of the fitness-ranking algorithm.
(A) Solid lines show mean fitness as a function of rank.
Dashed lines show standard deviation above and below
the mean (m = 5 3 1024 and 1022; see inset in C). (B)
Same as A for mean rank as a function of fitness. (C)
Mean Hamming distance to the top 10% fitness set,
normalized by D10% (see text) as a function of rank. (D)
Mean Hamming distance to ancestors of the generation
at one turnover time in the future, normalized by D910%
(see main text) as a function of rank. (E) Probability for
the fitness of a genome within the top 10% ranked to
belong to the top 50% of fitness values of sampled
genomes for a range of mutation rates and selection
coefficients. (F) Probability for the fitness of a genome
within the top 10% ranked to belong to the top 20% of
fitness values shown using solid lines. The dashed lines
show this probability for a randomly chosen genome (see
main text). Sample size n = 200, N = 64,000, and e = 0.1
in all cases; s = 2 3 1023 in A–D.
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genomes sampled from a fitness-diverse but otherwise un-
structured population, in the absence of any information
other than genomic sequence. This provides the possibility
of forecasting the common genotype of the future on the
timescale of genetic turnover.

Our demonstration was based on a vast simplification of
biological and ecological reality. Our model assumed fixed
population size and constant environment; it neglected
epistasis and assumed all nonneutral mutations (both dele-
terious and beneficial) to have the same selective strength.
While we have explored a biologically interesting range of
parameters within the considered model, it would be useful
to extend the study to a broader class of models. Yet, we
expect the proposed method to be quite robust, because it
is based on the very fundamental aspect of evolutionary
dynamics, realized when the population size and the mutation
rate are sufficiently large. Under such a condition, the
population harbors substantial nonneutral diversity, and
fitness differentials between individuals are formed by the
contributions of numerous weakly selected loci rather than
a small number of strong ones. In this multilocus weak
selection regime, surviving lineages in the course of time
move from the nose of the fitness distribution toward the
center, in a biased diffusion fashion. The correlation between
early coalescence and rapid increase of ancestral weight
along the lineages with high relative fitness derives from the
continuous genetic turnover of the population described
above. This turnover occurs in traveling-waves models

corresponding to the continuous adaptation scenario
(Tsimring et al. 1996; Rouzine et al. 2003), in the dynamic
mutation–selection balance (Goyal et al. 2012) that involves
both deleterious and compensating beneficial mutations,
and in the case of purifying selection (e = 0) (Gordo and
Charlesworth 2000; Rouzine et al. 2003, 2008; Walczak
et al. 2012).

A detailed statistical analysis of the way lineages prop-
agate along the fitness axis could allow us to improve FPS by
optimizing the trade-off between gaining more information
about a particular lineage by tracking it farther back in time
and the loss of predictive power due to the fact that beyond
the genetic turnover time even lineages of the fittest
ancestors spread all over the fitness distribution. Presently
we have dealt with the problem heuristically by focusing on
the coalescence sequence for each lineage up to �0.5T2. The
advantage of our simple heuristic approach is that it is more
likely to be model independent than the more fine-tuned
methods. Building on the recent progress in understanding
of genealogies in the presence of multilocus selection (O’Fallon
et al. 2010; Walczak et al. 2012; Neher and Hallatschek 2013),
it should be possible to replace our heuristic approach by
a more systematic one.

It would be interesting to extend the fitness inference
method to recombining populations. This should be rela-
tively straightforward as long as genetic turnover time is fast
compared to the inverse recombination rate. For a chromo-
some with an approximately uniform crossover probability,
this condition defines a characteristic length below which
loci coalesce in essentially recombination-free genealogies
(Neher et al. 2013). Roughly, the asexual coalescent consid-
erations would apply to a 1-cM size locus provided that it
harbors s . 1022. More careful analysis is, however, neces-
sary to deal with the Hill–Robertson effect or genetic draft
(Hill and Robertson 1966; Neher and Shraiman 2011)
caused by the transient linkage of the locus to the rest of
the genome, which effectively adds noise, reducing effec-
tiveness of selection on the individual loci.

The highest priority for the future would be to test the
method on experimental or epidemiological data. Applica-
tions are possible wherever genomic data are available for
fitness-diverse, but otherwise unstructured populations.
Genomic data from single-cell sequencing of tumors (Navin
et al. 2011) or from localized influenza outbreaks (Squires
et al. 2011) are among the interesting possibilities to be
considered. For example, it would be interesting to compare
the proposed method with the clustering-based approach of
Plotkin et al. (2002) to predict antigenic evolution of influ-
enza A. A challenge in applying our approach to the existing
influenza virus data is posed by the possibility of strong geo-
graphical/temporal biases in the sampling patterns. In addition,
there is a bias due to preferential sequencing of antigenically
distinct genomes on the basis of HI assays (Bush et al. 2001).
For certain analyses, such as measuring the average substitu-
tion rate over a long period, such biases are less important
(Russell et al. 2008; Bhatt et al. 2011; Strelkowa and Lässig

Figure 8 As the fitness diversity in the population decreases, the perfor-
mance of the fitness-ranking algorithm deteriorates. (A) Correlation between
the rank and the distance d9 (Hamming distance to the ancestors of the future
generations in the current population) as a function of N 3 m. (B) Same as A
but the x-axis represents the participation fraction, defined as the probability
that two randomly chosen genomes belong to the same clone. e = 0.1.
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2012), but a more principled method of addressing the sam-
pling bias may be necessary to achieve the full potential of our
method of fitness inference.

In addition to predicting which genotypes are more likely
to appear in future generations, the fitness inference method
could be used for QTL mapping (Broman and Sen 2009) with
FPS-based ranking being the quantitative phenotype that could
be used to identify highly adaptive or deleterious alleles.

Acknowledgments

We thank Richard Neher, Daniel Balick, and Sidhartha Goyal
for many useful discussions. A.D. was supported by HFSP grant
RFG0045/2010 and National Science Foundation grant
PHY11-25915 while B.I.S. acknowledges support from National
Institute of General Medical Sciences grant R01 GM086793.

Literature Cited

Barrick, J., D. Yu, S. Yoon, H. Jeong, T. Oh et al., 2009 Genome
evolution and adaptation in a long-term experiment with Es-
cherichia coli. Nature 461: 1243–1247.

Batorsky, R., M. F. Kearney, S. E. Palmer, F. Maldarelli, I. M. Rouzine
et al., 2011 Estimate of effective recombination rate and average
selection coefficient for HIV in chronic infection. Proc. Natl. Acad.
Sci. USA 108: 5661–5666.

Bedford, T., S. Cobey, and M. Pascual, 2011 Strength and tempo of
selection revealed in viral gene genealogies. BMC Evol. Biol. 11: 220.

Berestycki, N., 2009 Recent progress in coalescent theory. Ensaios
Matematicos 16: 1–193.

Bhatt, S., E. Holmes, and O. Pybus, 2011 The genomic rate of
molecular adaptation of the human influenza a virus. Mol. Biol.
Evol. 28: 2443–2451.

Bolthausen, E., and A. Sznitman, 1998 On Ruelle’s probability
cascades and an abstract cavity method. Commun. Math. Phys.
197: 247–276.

Broman, K., and S. Sen, 2009 A Guide to QTL Mapping with R/QTL
(Statistics for Biology and Health). Springer-Verlag, New York.

Brunet, E., B. Derrida, A. Mueller, and S. Munier, 2007 Effect of
selection on ancestry: an exactly soluble case and its phenome-
nological generalization. Phys. Rev. E Stat. Nonlin. Soft Matter
Phys. 76: 041104.

Brunet, É., I. M. Rouzine, and C. O. Wilke, 2008 The stochastic
edge in adaptive evolution. Genetics 179: 603–620.

Bush, R. M., 2001 Predicting adaptive evolution. Nat. Rev. Genet.
2: 387–392.

Coffin, J. M., 1995 HIV population dynamics in vivo: implications
for genetic variation, pathogenesis, and therapy. Science 267:
483–489.

Desai, M., and D. Fisher, 2007 Beneficial mutation–selection bal-
ance and the effect of linkage on positive selection. Genetics
176: 1759–1798.

Desai, M., A. Walczak, and D. Fisher, 2013 Genetic diversity and
the structure of genealogies in rapidly adapting populations.
Genetics 193: 565–85.

Durbin, R., 1998 Biological Sequence Analysis: Probabilistic Models
of Proteins and Nucleic Acids. Cambridge University Press, Cam-
bridge/London/New York.

Excoffier, L., and G. Heckel, 2006 Computer programs for population
genetics data analysis: a survival guide. Nat. Rev. Genet. 7: 745–758.

Fu, Y., and W. Li, 1993 Statistical tests of neutrality of mutations.
Genetics 133: 693–709.

Good, B., I. Rouzine, D. Balick, O. Hallatschek, and M. Desai,
2012 Distribution of fixed beneficial mutations and the rate
of adaptation in asexual populations. Proc. Natl. Acad. Sci.
USA 109: 4950–5.

Gordo, I., and B. Charlesworth, 2000 The degeneration of asexual
haploid populations and the speed of Muller’s ratchet. Genetics
154: 1379–1387.

Goyal, S., D. J. Balick, E. R. Jerison, R. A. Neher, B. I. Shraiman
et al., 2012 Dynamic mutation–selection balance as an evolu-
tionary attractor. Genetics 191: 1309–1319.

Hein, J., M. Schierup, and C. Wiuf, 2005 Gene Genealogies, Vari-
ation and Evolution: A Primer in Coalescent Theory. Oxford Uni-
versity Press, New York.

Hill, W. G., and A. Robertson, 1966 The effect of linkage on limits
to artificial selection. Genet. Res. 8: 269–294.

Kao, K., and G. Sherlock, 2008 Molecular characterization of
clonal interference during adaptive evolution in asexual popu-
lations of Saccharomyces cerevisiae. Nat. Genet. 40: 1499–
1504.

Kingman, J., 1982 The coalescent. Stoch. Proc. Appl. 13: 235–248.
Lang, G., D. Botstein, and M. Desai, 2011 Genetic variation and

the fate of beneficial mutations in asexual populations. Genetics
188: 647–661.

Lenski, R., M. Rose, S. Simpson, and S. Tadler, 1991 Long-term ex-
perimental evolution in Escherichia coli. i. adaptation and diver-
gence during 2,000 generations. Am. Nat. 138: 1315–1341.

Maia, L., A. Colato, and J. Fontanari, 2004 Effect of selection on
the topology of genealogical trees. J. Theor. Biol. 226: 315–320.

Merlo, L., J. Pepper, B. Reid, and C. Maley, 2006 Cancer as an evo-
lutionary and ecological process. Nat. Rev. Cancer 6: 924–935.

Miralles, R., P. Gerrish, A. Moya, and S. Elena, 1999 Clonal interfer-
ence and the evolution of RNA viruses. Science 285: 1745–1747.

Moya, A., E. Holmes, and F. González-Candelas, 2004 The pop-
ulation genetics and evolutionary epidemiology of RNA viruses.
Nat. Rev. Microbiol. 2: 279–288.

Navin, N., J. Kendall, J. Troge, P. Andrews, L. Rodgers et al.,
2011 Tumour evolution inferred by single-cell sequencing. Na-
ture 472: 90–94.

Neher, R., and T. Leitner, 2010 Recombination rate and selection
strength in HIV intra-patient evolution. PLoS Comput. Biol. 6:
e1000660.

Neher, R., and B. Shraiman, 2011 Genetic draft and quasi-
neutrality in large facultatively sexual populations. Genetics 188:
975–996.

Neher, R., B. Shraiman, and D. Fisher, 2010 Rate of adaptation in
large sexual populations. Genetics 184: 467–481.

Neher, R. A., 2013 Genetic draft, selective interference, and pop-
ulation genetics of rapid adaptation. arXiv: 1302.1148.

Neher, R. A., and O. Hallatschek, 2013 Genealogies of rapidly
adapting populations. Proc. Natl. Acad. Sci. USA 110: 437–442.

Neher, R. A., T. A. Kessinger, and B. I. Shraiman, 2013 Coalescence
and genetic diversity in sexual populations under selection. Proc.
Natl. Acad. Sci. USA 110: 15836–15841.

Novella, I. S., D. K. Clarke, J. Quer, E. A. Duarte, C. H. Lee et al.,
1995 Extreme fitness differences in mammalian and insect
hosts after continuous replication of vesicular stomatitis virus
in sandfly cells. J. Virol. 69: 6805–6809.

O’Fallon, B., J. Seger, and F. Adler, 2010 A continuous-state co-
alescent and the impact of weak selection on the structure of
gene genealogies. Mol. Biol. Evol. 27: 1162–1172.

Plotkin, J., J. Dushoff, and S. Levin, 2002 Hemagglutinin se-
quence clusters and the antigenic evolution of influenza A virus.
Proc. Natl. Acad. Sci. USA 99: 6263–6268.

Rouzine, I., J. Wakeley, and J. Coffin, 2003 The solitary wave of
asexual evolution. Proc. Natl. Acad. Sci. USA 100: 587–592.

Rouzine, I., É. Brunet, and C. Wilke, 2008 The traveling-wave
approach to asexual evolution: Muller’s ratchet and speed of

922 A. Dayarian and B. I. Shraiman



adaptation. Theor. Popul. Biol. 73: 24–46.Russell, C., T.
Jones, I. Barr, N. Cox, R. Garten et al., 2008 The global
circulation of seasonal influenza a (h3n2) viruses. Science
320: 340–346.

Seger, J., W. Smith, J. Perry, J. Hunn, Z. Kaliszewska et al.,
2010 Gene genealogies strongly distorted by weakly interfering
mutations in constant environments. Genetics 184: 529–545.

Sella, G., D. Petrov, M. Przeworski, and P. Andolfatto, 2009 Pervasive
natural selection in the Drosophila genome? PLoS Genet. 5:
e1000495.

Smith, A., L. Heisler, R. Onge, E. Farias-Hesson, I. Wallace et al.,
2010 Highly-multiplexed barcode sequencing: an efficient
method for parallel analysis of pooled samples. Nucleic Acids
Res. 38: e142.

Sniegowski, P., and P. Gerrish, 2010 Beneficial mutations and the
dynamics of adaptation in asexual populations. Philos. Trans. R.
Soc. Lond. B Biol. Sci. 365: 1255–1263.

Squires, R., J. Noronha, V. Hunt, A. García-Sastre, C. Macken et al.,
2011 Influenza research database: an integrated bioinfor-
matics resource for influenza research and surveillance. Influ-
enza Other Respir. Viruses 6: 404–416.

Strelkowa, N., and M. Lässig, 2012 Clonal interference in the
evolution of influenza. Genetics 192: 671–682.

Tajima, F., 1989 Statistical method for testing the neutral muta-
tion hypothesis by DNA polymorphism. Genetics 123: 585–595.

Tsimring, L., H. Levine, and D. Kessler, 1996 RNA virus evolution
via a fitness-space model. Phys. Rev. Lett. 76: 4440–4443.

Wakeley, J., 2008 Coalescent Theory. Roberts & Co., Greenwood
Village, CO.

Walczak, A., L. Nicolaisen, J. Plotkin, and M. Desai, 2012 The
structure of genealogies in the presence of purifying selection:
a fitness-class coalescent. Genetics 190: 753–779.

Communicating editor: J. Hermisson

Fitness Inference from Genealogy 923



GENETICS
Supporting Information

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.160986/-/DC1

How to Infer Relative Fitness from a Sample of
Genomic Sequences

Adel Dayarian and Boris I. Shraiman

Copyright © 2014 by the Genetics Society of America
DOI: 10.1534/genetics.113.160986



Supporting Information

Example of a Tree to Describe the Notation

Consider the tree in Figure S1 for a sample of n = 6 individuals. The figure shows the label,

the time of formation and the weight of each ancestor associated with each internal node.

In the main text, we have referred to quantities such as the mean, F (wi), and the variance,

Σ̄2(wi), in the fitness of the offspring of an ancestor existing some t-generations in the past.

As an example, in Figure S1, consider some time t in the past such that t3 < t < t4, where

three lineages exist: 1, l2 and l3. The lineage l3 has weight 2 with descendants 2 and 3 in the

sample, while the lineage l2 hass weight 3 with descendants 4,5,6 in the sample. The mean

and the variance in the fitness of the offspring of lineage l2 is given by F (3) = 1
3
(f4 + f5 + f6)

and Σ2(3) = 1
3
((f4−F (3))2+(f5−F (3))2+(f6−F (3))2), respectively. Similarly, for lineage l3,

the two quantities are given by F (2) = 1
2
(f2 +f3) and Σ2(2) = 1

2
((f2−F (2))2 +(f3−F (2))2).

Finally, for lineage 1 we get F (1) = f1 and Σ2(1) = 0. One can repeat a similar procedure

for any other time point along the tree.

We now clarify the notation used in the formula for the Fitness Proxy Score. First we

need to calculate T2, the estimate of the average pairwise coalescent time, obtained from the

sampled genomes. For the tree in Figure S1, the pairwise coalescent time between lineages

3 and 4 is τ3,4 = t4, or between lineages 1 and 4 is τ1,4 = t5. The average pairwise coalescent

time is given by T2 = 1
15

(t1 + 2 ∗ t2 + t3 + 6 ∗ t4 + 5 ∗ t5). As an example, let us calculate

the score of individual 3, φ3. There are m3 = 4 ancestral lineages to individual 3: i) the

first line starting from the individual 3 itself, ii) l3, iii) l4 and iv) l5. These four lineages

are denoted by a0 to a4, respectively. At time t3, the lineage a0 with weight 1 merges with

1
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Figure S1: Example of a genealogical tree for a sample of size n=6. The starting 6 lineages
carry weight 1 and have fitness values denoted by f1 to f6. Lineage l1 is formed at time t1
by the merger of two lineages 5 and 6, and carries weight 2. Similarly, lineage l2 is formed
at time t2 by the merger of two lineages 4 and l1, and carries weight 3.

another lineage with weight 1 and form a1 with weight 2. The contribution of this coalescent

event to φ3 is equal to Θ(t3/T2) ∗ (2 − 1) = Θ(t3/T2) ∗ 1. Proceeding in a similar fashion,

we obtain φ3 = Θ(t3/T2) ∗ 1 + Θ(t4/T2) ∗ 3 + Θ(t5/T2) ∗ 1. Note that if we ignore the time

dependent coefficients Θ(ti/T2), all the individuals get the same score of n− 1 = 5.

Evolutionary Simulations

The simulations are done using a custom written Python code, available upon request. The

evolution is based on a discrete time Wright-Fisher model with population size N . Each

generation t undergoes separate selection and mutation steps. To implement selection, each

individual i produces a Poisson-distributed number of gametes in the next generation with

parameter exp(fi−α). Here fi = Fi− F̄ is the fitness advantage of individual i relative to the

mean fitness of the population F̄ , and α = N(t)−N
N

ensures an approximately constant popu-

lation size around N . Individual genomes are defined as binary strings, gk with k = 1, ..., L

and the number of loci, L = 105, chosen large enough to exceed the number of segregating

2



polymorphisms in the simulated population. Consistent with infinite site approximation, new

mutations flip the ga binary value from zero to one.

At each generation, the beneficial and deleterious mutations arise with probability εµ and

(1− ε)µ and have a fitness effect of ±s, respectively. We also record the forward genealogies

during the simulations. The above process is repeated for a specified number of generations.

Statistical measurements on the dynamics of the evolution are taken after an equilibration

time to remove transient effects from the initial conditions. In the parameter regimes studied,

we found that a ”burn in” time of 104 generations was generally sufficient.

Given that we perform forward simulations and keep track of the genealogies, the sim-

ulations are computationally intensive. Therefore, the maximum population size that we

simulated was N = 64000. The mutation rate was varied from µ = 10−4 to µ = 10−2 and the

selection coefficient from s = 10−3 to 8 ∗ 10−3. Together this spans a 10−2 < µ/s < 10 range

for the all-important µ/s parameter. For the parameter combination where N = 64000,

ε = 0.1 and µ = 10−4 (beneficial mutation rate 10−5 and deleterious mutation rate 9 ∗ 10−5),

only a couple of clones are segregating in the population (see below). This parameter combi-

nation serves as the boundary between the multisite selection regime and the selective sweep

regime. For smaller mutation rates, given that N = 64000, the population is monoclonal and

enters the regime of selective sweeps.

Below, we present some results on the clonal diversity, as well as the speed of adaptation,

for various parameters that we have simulated. In Fig. 2A and B of the main text, we showed

two examples of fitness distribution. In Figure S2, we show some more examples. Assume

there are c clones in the population, with sizes n1, ..., nc. Note that
c∑

i=1

ni = N . To see how

many clones with significant size are segregating, we can define the participation fraction:

Y =<
c∑

i=1

(ni

N
)2 >. This quantity is equal to the probability that two randomly chosen

genomes belong to the same clone. Figure S3A shows the participation fraction ranging from

values smaller than 0.001 to values around 0.1 for various sets of parameters. For N = 64000

and µ = 10−4, Y ≈ 0.4, which means that for the smallest value considered for µ, there is a
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significant probability that two randomly chosen genomes come from the same clone.

In the regime of our interest, where many mutations simultaneously segregate, it is well

known that the competition between mutations slows down the rate of the adaptation (Hill-

Robertson or Fisher-Muller effect) (Desai and Fisher, 2007; Rouzine et al., 2008). In

Figure S3B, we present the speed of the adaptation, i.e. the rate of change of the mean

fitness, normalized by its expected value in the selective sweep regime. In the later regime,

the beneficial mutations are rare enough that only a single mutation segregates at a time,

and assuming the deleterious mutations are purged, the expected speed of adaptation is

v = 2Nµεs2. As we see in Figure S3B, for the parameter combination N = 64000 and

µ = 10−4, the adaptation rate is only around a quarter of its expected value in the selective

sweep regime. We see that the normalized speed of adaptation varies from 0.01 to 0.25 in

the parameter range that we have considered.

In order to understand the parameter regime in which the interference between mutations

becomes significant, consider the following (see (Desai and Fisher, 2007) for further details).

Let µb denote the beneficial mutation rate, N the population size and s the fitness effect of

beneficial mutations. When the population size or mutation rate is small enough, the time

it takes for a new mutation to reach xation is less than the time it takes for another new

mutation to occur and reach significant size. If a new beneficial mutation reaches the size of

order 1/s individuals, it will escape the drift with high probability and from that point grows

as 1
s

exp(st) with time, t. The mutation reaches the size of order 1/s individuals in roughly

1/s generations and becomes fixated in the order of 1
s

log(Ns) generations. Therefore, the

total time for a mutation to reach fixation from the initial time of its occurrence is in the

order of 1
s

+ 1
s

log(Ns) generations. The probability for a mutation to escape drift is roughly

s. Since the mutations are generated at rate Nµb, the time it takes for a mutation destined

to escape drift to be generated is 1/(Nµbs).

If the parameters are such that Nµbs << s/(1 + log(Ns)), a new mutation that occurs

and sweeps will do so long before the next mutation destined to sweep is occurred. On the
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Figure S2: Fitness distribution at one time slice. The mutation rate and selection coefficient
for each case is written on the top of the corresponding panel. N = 64000 and ε = 0.1 for
all the panels. Each bin corresponds to a fitness class and each class is composed of several
clones. The height of each box within each bin represents the size of a clone. Larger clones
are stacked on the bottom. The dark band on top of each bin correspond to small clones.

other hand, for higher mutation rates or population sizes where the above inequality is not

satisfied, new beneficial mutations arise and reach significant size before earlier ones can

sweep, causing them to interfere with one another. For the case of purifying selection where

only deleterious mutations are present (ε = 0), it can be shown (Walczak et al., 2012) that

the required condition is N exp(−µd/s) <<
1
s

log(µd/s), where µd is the deleterious mutation

rate and s is the deleterious effect of mutations. For example, later we will show results

using the parameter combination N = 32000, µ = 5 ∗ 10−3, s = 10−3 and ε = 0. For this

combination, we have N exp(−µd/s) ' 216 and 1
s

log(µd/s) ' 1609. For smaller µd or higher

s such that the above condition is not satisfied, the deleterious mutations are purged out

of the population fast enough such that the effect of selection can be captured by a simple

effective population-size approximation.

Tree Reconstruction

In the first step, we use the neighbor-joining algorithm (Durbin, 1998; Felsenstein, 2004)

to reconstruct the tree topology. The input distance matrix for this algorithm is simply

given by the pairwise difference of sequences (Hamming distance) including both neutral and

non-neutral mutations. The time to the common ancestor of two individuals is proportional

to the number of neutral genetic differences between them. For a real data set, one may use a
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Figure S3: Clonal structure and adaptation rate. (A) The participation fraction, Y , for
different parameter values. Y is the probability that two randomly chosen genomes belong
to the same clone. For all the curves, N = 64000 and ε = 0.1. When µ = 10−4 (beneficial
mutation rate 10−5 and deleterious mutation rate 9∗10−5), the values of Y become significant
(> 0.1). This implies that the dynamics is at the boundary between the multisite selection
regime and the selective sweep regime. (B) Speed of adaptation, normalized by its expectation
value in the limit of selective sweep 2Nµεs2.

Figure S4: Examples of tree reconstruction for sample size of n = 100. N = 64000, ε = 0.1
and s = 2 ∗ 10−3 in all cases. (A) Scatter plot of the Hamming distance between sequences
versus the real divergence time for all the pairs in the sample. The non-neutral mutation rate
for each case is shown in the associated plot. The neutral mutation rate was set to 10 times
the value of the non-neutral mutation rate. (B) Scatter plot of the reconstructed divergence
time between sequences versus the real divergence time for all the pairs in the sample. Each
plot is associated to the same tree as in panel (A) for the same mutation rate.
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more realistic substitution model to infer the divergence time between pairs of genomes. We

have considered the values of the non-neutral mutation rate over a few orders of magnitude.

The neutral mutation rate was always set to 10 times the value of the non-neutral mutation

rate. We use the neighbor-joining algorithm only to infer the topology of the tree. We do

not use the length of the edges that are calculated in this algorithm. The reason is that we

want all the leaves of the tree to be located at the current time and have the same distance

to the root.

In the next step we find the root of the tree based on the parsimony method. Each point

on the tree divides the sample into two groups. The root should be located at a point where

the similarity between the two groups is minimal. We count the number of mutations which

exist in both groups and assign the root to a point where this number is minimal.

In the last step, we assign the height (time interval to the present time) of each node in

the tree. The lengths are calculated as in the UPGMA algorithm (Felsenstein, 2004). In

this algorithm, the total branch length from a tip down to any node is half of the average

of the distance between all the pairs of genomes whose most recent common ancestor is that

node. We consider a node only after all the nodes below it have their heights assigned. We

start from the bottom, namely, the nodes which are connected to two leaves. The height of

these nodes are calculated similar to the UPGMA algorithm: the height is equal to the half of

the mutational distance between the pair of the genomes below that node. For other internal

nodes, we also calculate the putative height as half of the distance between all the pairs

whose most recent common ancestor is that node. The height of the node is the maximum

between this putative distance and the height of all the internal nodes below the considered

node.

We evaluated the performance of the above tree reconstruction algorithm in all different

parameter ranges by comparing the reconstructed tree with the actual genealogy. In all the

cases, the performance was satisfactory. In Figure S4, we show examples of the performance

of the above algorithm for four different mutation rates. For each rate, a sample of size
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Figure S5: Examples of tree reconstruction for sample size of n = 100. N = 64000, ε = 0.1 ,
s = 2∗10−3 and µ = 10−2 in both plots. The neutral mutation rate was set equal to its value
for the non-neutral mutation rate, µ. (A) Scatter plot of the Hamming distance between
sequences versus the real divergence time for all the pairs in the sample. (B) Scatter plot of
the reconstructed divergence time between sequences versus the real divergence time for all
the pairs in the sample.

n = 100 is selected. In Figure S4A, we show the sequence distance for all the (n − 1)n/2

pairs in the sample versus the real divergence time. These distances are the input of the

above algorithm. In Figure S4B, we show the reconstructed divergence time (inferred from

the reconstructed tree) for all the pairs. The validity of the above algorithm is reflected in

the fact that the relation between these two times is close to being linear. The slope of the

line is irrelevant, since, it only reflects an scaling factor, i.e. the estimation of the mutation

rate. As we see in Figure S4, for higher mutation rates (e.g. µ = 10−2) where a typical pair

of genomes are polymorphic at hundreds of loci, neutral mutation rate need not be 10 time

that of µ for the tree reconstruction to be accurate. In these cases, there is enough diversity

that even setting the neutral mutation rate equal to µ would be sufficient (see Figure S5).

Weight Distribution

Consider a sample of size n and the corresponding phylogenetic tree. Assume looking at the

tree at the stage where there are a lineages left. The ancestor i will carry a weight wi where

i = 1, ..., a and
a∑

i=1

wi = n. The values that wi can take is anything between 1 and n− a+ 1.

For example, when there are only 2 ancestral lineages, wi can be between 1 and n− 1. The

statistics of the phylogenetic trees for neutral evolution are given by the Kingman’s coalescent

(Kingman, 1982a,b). In particular, the probability distribution of wi is given by (Derrida
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and Peliti, 1991):

Pneu(wi|a, n) =

(
n− wi − 1

a− 2

) / (n− 1

a− 1

)
(1)

For example, when there is only a = 2 ancestors left in the tree, we get Pneu(w|2, n) = 1
n−1 ,

which is independent of w. The above formula can be derived solely based on the fact that,

as one goes up in the tree, at each stage, any lineage is equally likely to coalesce with any

other lineage regardless of the weight they are carrying or any other previous events in the

tree.

Distortion in Shape of Genealogical Trees

Here, we consider some quantities which reflect the differences between the shape of trees from

non-neutral and neutral evolution. While inspecting trees in Fig. 2D and E, we notice that

in the presence of selection it is more common for a leaf (sampled genome) to be connected

to a long edge. In other words, it takes a relatively long time for some leaves to merge to

other lineages in the tree. Moreover, such leaves are more likely to belong to lower fitness

classes, represented by blue and grey colors. In addition, number of lineages left in a tree as

a function of time seems to be different. Here, we explore such points in more details.

At each instant of the time in a tree, one can consider what fraction of the remaining

lineages are singletons. Singletons are defined as lineages with weight w=1. In Figure S6A

shows the average value of this fraction as a function of time. These curves are obtained

by averaging over random samples and over population replicas. The time for each tree is

linearly rescaled so that the current time is at 0 and the root is at 1. At time 0, all the

lineages in a tree are singletons and the fraction is, therefore, one. At time 1, all the lineages

have merged together and therefore no singleton lineage is left. As we see, the curve for the

neutral case falls below the rest of the curves. In the neutral case, the statistic of length

of singleton edges was studied in (Fu and Li, 1993) and is used in the Fu and Li’s test for
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Figure S6: Statistics on the time dependence of number of lineages in phylogenetic trees.
For all the panels, the sample size is n = 100, N = 64000 and ε = 0.1. (A) Average fraction
of singleton lineages left in a tree as a function of time. The time for each tree has been
linearly rescaled so that the root is at t = 1 and the current time is 0. (B) Average number
of lineages left in a tree as a function of time. The time has been linearly rescaled as in part
(A). (C) Coalescent rate between two random lineages as a function of time. The rate is
normalized by its value at time t = 0. The ‘effective population size’, Ne, would be defined
to be inversely proportional to coalescent rate.

detecting departures from the Kingman’s coalescent.

One can also study the fitness of the singleton lineage that is the latest to join the rest

of the tree. Figure S7 shows the fitness distribution using the same simulation parameters

as in Fig. 2D. As we see, these lineages tend to belong to the unfit classes. This is a general

pattern observed for all of the simulation parameters.

We have also considered the average number of lineages left in a tree as a function of time,

< a >t. The result is presented in Figure S6B. In the presence of selection, the number of

lineages drops slower at early times compared to the neutral case. Under neutral evolution,

since the coalescent events happen at rate
(
a
2

)
/N , when there are a lineages left, one has:

d<a>t

dt
∝ − <

(
a
2

)
/N >. Therefore, the ratio −d<a>t

dt
/ <

(
a
2

)
/N > which is the coalescent

rate between two random lineages remains constant. Figure S6C shows the coalescent rate

normalized by its value at time t = 0. For the neutral case, this rate remain constant, as

expected. However, in the presence of selection, the rate increases for further time back in the

tree. The reason for this is that, for times further back in the tree, the ancestral lineages are

more likely to have belonged to the leading edge of the fitness distribution at the time they

existed (see Fig. 4A of the main text). Therefore, they coalesce at a faster rate compared
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to the bottom of the tree where lineages are spread over the fitness distribution (O’Fallon

et al., 2010).

Increase in the coalescent rate is sometimes interpreted as a reduction in the effective

population size (denoted by Ne). However, not all aspect of the coalescent process under

selection, such as the weight distribution or fraction of singleton lineages, can be accounted

for simply by introducing an effective population size. This fact also manifests itself in the

distribution of polymorphisms in a sample of genomes. Under neutrality (in the limit of

infinite-site model), the probability that a derived allele appears in w individuals out of n

sampled genomes is proportional to 1/w. This behavior is a consequence of both the weight

distribution and the length of coalescent intervals. To see this, note that in order to appear

in w genomes in the sample, a mutation must have occurred on an ancestor with weight

w. Assume this ancestor existed when there was a lineages in the tree. The probability

that 1 of the a ancestors carried weight w is a ∗ Pneu(w|a, n). The average time a tree

spends having a lineages is proportional to 1/
(
a
2

)
. Summing over all possible a’s gives:∑n

a=2 aPneu(w|a, n) 1

(a
2)

= 2
w

, which is the usual one over frequency dependence. In Figure S8

we show the frequency distribution of neutral polymorphisms in the presence of selection.

The distribution first drops more like 1/w2 for small frequencies and then bends upward for

higher frequencies where w > n/2 (Neher and Shraiman, 2011; Neher, 2013).
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Figure S7: Fitness distribution of the singleton lineage which connects to the tree the latest is
shown in cyan color. The black curve presents the fitness distribution of the whole population
which is the same as fitness distribution of the sampled genomes. The distributions are
obtained by averaging over random samples and over population replicas. N = 64000,
µ = 10−3, s = 2 ∗ 10−3 and ε = 0.1.

Figure S8: Distribution of neutral polymorphism in a sample of size n = 100. The dashed
red line shows the probability distribution which dependents on 1/w2, as opposed to 1/w
(neutral case). N = 64000, ε = 0.1.
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Figure S9: Distribution of σ2
n, a measure of asymmetry based on the topology, for three

samples sizes of n = 50, n = 100 and n = 150. In all cases, N = 64000 and ε = 0.1.

Test of neutrality based on the shape of trees

We discuss some measures for distinguishing between neutral and non-neutral trees. Let

us use the term topology to refer solely to the branching pattern of a tree. On the other

hand, the term shape will refer to the information about both the branching pattern and

the branch lengths. In Kirkpatrick and Slatkin (1993), authors reviewed six measures of

tree asymmetry based solely on the tree topology. They studied the power of these measures

to be used as a test for deviation of trees from neutral predictions. A similar analysis was

carried out in Maia et al. (2004). One of the measures denoted by σ2
n was identified as the

relatively more powerful in both studies. Below, we show the result of applying this measure

to the trees obtained in simulations.
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Figure S10: (A) The average number of singleton lineages left in a tree as a function of time,
for three samples sizes of n = 50, n = 100 and n = 150. The time has been linearly rescaled
so that the root is at t = 1 and the current time is 0. (B) The upper (for the neutral curve)
and lower (for the non-neutral curves) %95 confidence intervals for the curves in part A. In
all cases, N = 64000, ε = 0.1.

To each leaf i in a tree, a number Ni is assigned. This is the number of internal

nodes between leaf i and the root. The variance of this number in a tree is given by

σ2
n = 1

n

∑n
i=1(Ni − N̄)2. In a completely symmetric tree σ2

n = 0. Figure S9A presents the

distribution of σ2
n for both neutral and non-neutral trees for three sample sizes. As expected,

the results indicates that the coalescent trees in the presence of selection are, on the average,

more asymmetric compared to neutral trees. In addition, as the sample size increases, the

distribution of σ2
n differs more between the neutral and non-neutral cases. However, even

for sample size n = 200, there is a significant overlap between the neutral and non-neutral

distributions. Therefore, this measure is not a useful test to detect a tree signicantly distinct

from the neutral expectation. Similar conclusion was reached in Maia et al. (2004) where

authors have analyzed three more measures than the one presented here.

The above measure does not take into account the information about the branch-length in

a tree. We have looked at two quantities which use this additional information. Figure S10A
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Figure S11: (A) The average number of lineages left in a tree as a function of time, for three
samples sizes of n = 50, n = 100 and n = 150. The time has been linearly rescaled so that
the root is at t = 1 and the current time is 0. (B) The upper (for the neutral curve) and
lower (for the non-neutral curves) %95 confidence intervals for the curves in part (A). In all
cases, N = 64000, ε = 0.1

shows the expected number of singleton lineages left in a tree as a function of time for

three sample sizes. These curves are obtained by averaging over random samples and over

population replicas. The curve for the neutral case falls clearly below the rest of the curves.

To see if the separation between the neutral and non-neutral curves is large enough that one

can differentiate whether or not a single tree is neutral, we also show the confidence intervals

in Figure S10B. The upper 95% confidence interval for the neutral case falls below the lower

%95 confidence for almost all the cases with selection. The separation becomes larger as

the sample size increases. Even for the parameter combination where the dynamics falls at

the boundary between the multisite selection and the selective sweep regime (N = 64000,

µ = 10−4, s = 10−3 and ε = 0.1), the lower confidence interval is very close to the upper

confidence interval for the neutral curve. Figure S11A shows the average number of lineages

left in a tree as a function of time. The confidence intervals are also shown in Figure S11B.

Again, for n = 100 or n = 200, the upper confidence interval curve for the neutral case falls

15



below the lower confidence interval curves for all the cases with selection.

Correlation between Weight and Fitness of Ancestors

In Fig. 4A of the main text, we showed the distribution of the fitness of the ancestors for

certain time intervals in the past for a set of parameters. Let us denote this distribution by

Dt(f). In the limit of large times, this distribution is equal to the fitness distribution for the

common ancestor of the whole population, D∞(f). In Fig. 4B, we also showed the scatter

plot between the weight of ancestors and their fitness advantage for t = 100 generations in

the past. The scatter plot represents the joint distribution of weight and fitness of ancestors,

Dt(f, w).

One can consider the expected fitness of an ancestor given its weight, f̄anc(w, t) =
∑
f

f ∗

Dt(f |w). Figure S12A shows f̄anc(w, t)/σ as a function of w/N for t = 100 and t = 500 in

log-log scale. The dependence seems to be linear, namely, f̄anc(w, t) ∝ wm(t), where m(t) is

the slope of the lines in Figure S12A. This slope depends on the time, and of course, other

parameters such as N,µ, etc. Figure S12B shows m(t) as a function of time for different sets

of parameters. For each set of parameters, the time axis has been rescaled with the fitness

variance for the corresponding parameter set, σ(N,µ, ε, s). As we see, the slope m(t) drops

as a function of time. In other words, the correlation between the weight and the fitness of

ancestors reduces as one goes further back in time.

In the main text, we also presented some results on the relation between the weight of an

ancestor in a tree, wi, and the fitness of the wi’s genomes in the sample which are derived from

that ancestor. In particular, we focused on the mean, F (wi) = 1
wi

wi∑
j=1

fj, and the variance,

Σ2(wi) = 1
wi

wi∑
j=1

(fj − F (wi))
2 (see below for an example of a tree explaining the notation).

The average of these quantities over random samples of genomes and over population replicas

are denoted by F̄ (wi) =< 1
wi

wi∑
j=1

fj > and Σ̄2(wi) =< 1
wi

wi∑
j=1

(fj − F (wi))
2 >.

In the main text, we only presented these quantities for two parameter sets. In Fig-

ure S13A and B, we show F̄ (w)/σ and Σ̄2(w)/σ for more parameter sets. The sample size is
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Figure S12: Correlation between the weight and fitness of ancestors. (A) Average fitness of an
ancestor conditional on its weight for two time intervals. Note the log-log scale. N = 64000,
ε = 0.1, µ = 10−3 and s = 8 ∗ 10−3. (B) Fitting a line to the curve in part (A) gives a time
dependent slope m(t) = log(f̄anc(w, t))/ log(w). The slope m(t) is plotted as a function of
time for a few different parameter values. Note the log scale on the y-axis. The time for each
parameter set has been rescaled by the corresponding σ. Sample size n = 100, N = 64000
and ε = 0.1.

Figure S13: Correlation between the weight and fitness of offspring. (A) Average fitness of
genomes as a function of the ancestral weight for two different time slices in the past. (B)
Variance in the fitness of genomes as a function of the ancestral weight for two different time
slices in the past. N = 64000, ε = 0.1 in all cases.
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n = 100 and the results are shown for two different time points. One of the time points is

chosen to be the first time that the tree carries a lineage with weight greater than 15% of the

sample size. The other time point corresponds to the first time the weight of a single lineage

becomes greater than 40% of the sample size.

Fitness Proxy Score and its Performance

Consider a sample of n genomes and the corresponding reconstructed phylogenetic tree. Al-

though there is always a positive correlation between the weight of an ancestor and its fitness

and the fitness of its derived genomes, both of these correlations drop as one goes further

back in time. When most of the lineages have condensed into high-weight ancestors, the

average fitness of the offspring of such ancestors is close to zero and there is little correlation

between the weight and the fitness of the offspring (see right plot in Fig. 4C of the main

text). The variance in the fitness of the offspring also becomes close to the population fitness

variance σ. In other terms, all of the derived genomes of such high-weight ancestors are,

more or less, evenly distributed across the fitness distribution.

This is consistent with our observations in Fig. 4D of the main text. As the coalescent

time for a pair of genomes increase, the difference in the fitness of the two genomes increases

as well. This means, as τij becomes larger compared to T2 (the region covered in yellow and

red colors in Fig. 4D), there is less information about the fitness of the pair of genomes

involved. For example, one can have high fitness and the other one low fitness, or both can

have average fitness. In other words, when the coalescent time for a pair of genomes becomes

larger compared to the population average T2, there is more uncertainty on the fitness of

that pair of genomes.

Because of the above argument, we do not want the scoring scheme to be affected by the

coalescent events far back in the tree. In addition, as we saw in Fig. 4D of the main text, when

the fitness of two genomes is higher, the coalescent time between them is shorter compared

to the mean pairwise coalescent time for the whole population T2. The correlation between
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Figure S14: The Fermi-Dirac function Θ(t) =
(
1 + exp(5× (t/t∗ − 1))

)−1
.

weights and fitness is also stronger for earlier times. Therefore, the earlier a coalescent event,

the more it should affect the scores. It is important to have a sense of ‘early times’ or

‘late times’ in a tree. We use the empirical value of the mean pairwise coalescent time (i.e.

estimate of T2 from the sample) for this purpose. In the algorithm, the time values appear

only in the form of ratios. So having a correct estimate of the mutation rate is irrelevant.

To incorporate the above ideas, we introduced a threshold time t∗ = x∗×T2 and have the

coalescent events which happen at a time further back compared to t∗ contribute progressively

less to the score. On the other hand, the coalescent events earlier than this stage will be

progressively more important in the scoring scheme. In order to do this, we introduced the

function Θ(t) with a Fermi-Dirac form, shown in Figure S14. In the results shown in this

paper on the performance of the algorithm, we set t∗ = 0.5 ∗ T2, where T2 is the average

pairwise coalescent time. We checked the performance for various values of t∗. We found

that, in general, the results are very robust within a range of 0.4 ∗T2 < t∗ < T2. Outside this

range the performance slightly decreases. For the sake of example, in Figure S15, we show

the probability for the fitness of a genome within the top %10 ranked to belong to the top

50% fitness values as a function of the threshold parameter, x∗, for two different mutation

rates.

We have also evaluated the performance of the algorithm for different sample sizes. In

19



Figure S15: Performance as a function of the threshold x∗. N = 64000, ε = 0.1 and
s = 2 ∗ 10−3.

Figure S16, we present the results for a set of parameters. We see that for samples smaller

than n = 100. the performance decreases, whereas for higher samples sizes, the performance

is similar to the results shown above for n = 200. For example, for a sample of size n = 30,

and for parameters µ = 5 ∗ 10−3 and s = 2 ∗ 10−3, the probability for the fitness of the top

ranked genome to belong to the top 50% values turns out to be around 0.84, compared to

0.9 for sample size of n = 200.

Another point is that, as sample size becomes smaller, the right tail of the fitness distribu-

tion (see Fig. 2A and B) becomes under sampled. It has been shown that in similar models as

the one we have considered here, the bulk of the fitness distribution can be approximated by

a Gaussian profile (Desai and Fisher, 2007). For a Gaussian distribution, the probability

of sampling a point with value of at least one (two) σ above the mean is around 0.15 (0.3).

By inspecting the fitness profiles in Fig. 2A and B of the main text, as well as profiles shown

in Figure S2 of SI, we see that the frequency of clones with fitness more than one σ above

the population average is around 0.1. This frequency for clones with fitness more than 2σ

above the population average is less than p = 0.05. In Figure S16C, we see the ratio of the

maximum fitness value in a sample of size n to the maximum fitness value that exist in the

population. As expected, the larger the sample size, this ratio gets closer to one.

We have tested the performance of the algorithm for the case of high mutation rates with

20



Figure S16: Performance as a function of the sample size. N = 64000, ε = 0.1, µ = 5 ∗ 10−3

and s = 2 ∗ 10−3.

Figure S17: Performance of the fitness ranking algorithm for high beneficial mutation rates.
Sample size n = 200, N = 64000, ε = 1 and s = 2 ∗ 10−3 in all plots. (A) Mean fitness as a
function of the rank for µ = 5 ∗ 10−3 and µ = 5 ∗ 10−2. (B) Mean rank as a function of the
fitness for µ = 5 ∗ 10−3 and µ = 5 ∗ 10−2.

only beneficial mutations present (i.e. ε = 1). The results shown in Figure S17 indicate that

the algorithm performs well in this regime. We have also studied the performance of the

algorithm in the presence of purifying selection. i.e. when ε = 0. The results presented in

Figure S18 show that the algorithm performs well in this case, similar to the case where both

beneficial and deleterious mutations are present.
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Figure S18: Performance of the fitness ranking algorithm in the case of purifying selection.
Sample size n = 200, N = 32000 and µ = 5 ∗ 10−3 in all plots. (A) Probability for the
fitness of a genome within the top 10% ranked to belong to the top 50% fitness values. (B)
Probability for the fitness of a genome within the top 10% ranked to belong to the top 20%
fitness values. The dashed line shows this probability for a randomly chosen genome. (C)
Probability for the fitness of a genome within the top 10% ranked to belong to the top 10%
fitness values. (D) Mean fitness as a function of the rank. Selection coefficient s = 10−3. (E)
Mean rank as a function of the fitness. Selection coefficient s = 10−3.
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