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ABSTRACT OF THE THESIS

An Application of Document Embedding Methods with Movie Plots

by

Margaret Burroughs Johnson

Master of Applied Statistics and Data Science

University of California, Los Angeles, 2023

Professor Yingnian Wu, Chair

This thesis will explore and compare Natural Language Processing methods to determine the

similarity between movies based on plot descriptions. Three document embedding methods,

TF-IDF, Doc2Vec, and S-BERT, are implemented. The results are evaluated using spectral

clustering and normalized mutual information. Specific case studies are also presented. The

objective is to identify movies that are most similar in topic or theme based solely on plot

content.
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CHAPTER 1

Introduction

This paper applies natural language processing techniques, including TF-IDF [1], Doc2Vec

[2], and S-BERT [3], to measure the similarity of movie plots. A numerical vector represen-

tation of each movie is generated, which allows for the use of cosine similarity to identify

similar films. The data comes from movie plot descriptions from Wikipedia [4]. It includes

33,416 films released between 1901 and 2017.

Streaming services, including Netflix and Amazon, were early adopters of recommender

systems, investing in machine learning algorithms to recommend new content to viewers to

keep them engaged. When it comes to movies, the most familiar examples of recommender

systems involve collaborative filtering, which recommends content to users based on what

similar users also enjoy [5]. Famously, in 2006 Netflix launched an open competition with a

cash prize for teams to compete in improving their collaborative filtering algorithm based on

user reviews [6]. Since then, the amount of data available to streaming services has grown

exponentially, and recommendations have become increasingly accurate.

The goal of this paper is not to create a model comparable to the sophisticated rec-

ommender systems that streaming providers currently use. These recommendation systems

perform extremely well. However, they tend to recommend well-known movies first, which

limits exposure to other movies the viewer might find interesting. Rather, this paper aims to

explore methods of identifying movies that are most similar in topics or themes based solely

on plot content. In contrast to collaborative filtering, the models described in this paper

do not rely on movie popularity or viewer characteristics. Therefore, the films identified
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will likely be more obscure. All the plot descriptions, including for foreign films, are in En-

glish, allowing for the opportunity to discover films with similar plot points across different

languages.

The three embedding methods are examined in Chapter 4. First, TF-IDF is performed

alongside UMAP for dimension reduction [7]. Second, a Doc2Vec algorithm is implemented

using the PV-DM variation. Third, a pre-trained S-BERT model is applied. Finally, spectral

clustering is performed on all three outputs. The results are presented in Chapters 5 and 6.

To evaluate the models, a normalized mutual information score is calculated to compare the

cluster assignments to the genre labels [8]. The assumption is that, while film genre is only

one piece of information, movies of the same genre tend to be more similar than movies of

different genres. The results of each model are visualized using UMAP to reduce the data

to two dimensions. Finally, cosine similarity is used to return the top 10 closest results for

4 target films.

Based on the normalized mutual information scores, it appears that the models perform

relatively well. S-BERT and Doc2Vec score very similarly, clearly outperforming TF-IDF.

However, an examination of the case studies in Chapter 6 implies that S-BERT may be

superior in generating cohesive movie neighborhoods at a local level.
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CHAPTER 2

Methodology Overview

2.1 Document Embedding

To identify similar documents (movie plots) and perform clustering, numerical representa-

tions of the documents must be generated. This paper will cover three methods: (1) TF-IDF,

which is a simple statistical measure of word frequency; (2) Doc2Vec, which is an unsuper-

vised shallow neural network; and (3) S-BERT, which is a pre-trained transformer-based

neural network. These three approaches are detailed in Chapter 4.

2.2 Evaluation

Evaluation presents a challenge because the models presented in this paper are unsupervised.

The task is not predictive with a clear right or wrong answer. However, the data does include

the genre of each film. Assuming that movies within the same genre are more similar than

movies of different genres, we can use the genre labels as a proxy for movie similarity. This

assumption allows us to perform clustering and evaluate how closely those clusters align with

the genre labels.

2.2.1 Spectral Clustering

This paper uses spectral clustering to cluster the embedded plot data into groups. Based on

graph theory, this method has significant benefits over other popular clustering methods, such
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as k-means. For example, it works well with high-dimensional data because it first computes

an adjacency graph rather than relying on standard distance measures [9]. Also, it performs

much better in cases where clusters wrap around each other and cannot be separated by

drawing a straight line. Spectral clustering was implemented using the scikit-learn Python

library [8].

2.2.1.1 Spectral Clustering Main Equations and Structures

Below is the structure of the spectral clustering algorithm, given the embedded plots, X
n×c

,

where n is the number of plots and c is the number of components.

1. Construct the Weight Matrix W
n×n

, using pairwise Euclidean distances. W
n×n

will be a

symmetric matrix with zeros on the diagonal. For a pair of rows in X, xi and xj,

Wij =
√

(xi · xi)− 2(xi · xj) + (xj · xj)

2. Construct Affinity Matrix A
n×n

, which will be a symmetric matrix with zeros on the

diagonal. In this case, we construct a fully-connected graph using the Gaussian radial basis

kernel, where σ is a free parameter that controls the width of the neighborhoods [10]. For

this implementation, σ is set to 0.7.

Aij = exp

(
−|Wij|2

2σ2

)

3. Construct the Degree Matrix D
n×n

, which is a diagonal matrix whose i-th diagonal

element is the sum of all elements in the i-th row of A

Di =
∑

j
Aij

4



4. Construct the Normalized Laplacian Matrix L
n×n

[11], such that

L = D−1/2(D − A)D−1/2

5. Find the first k eigenvectors of L (u1, ..., uk) corresponding to the smallest k eigenvalues

of L. Form the matrix U
n×k

with these eigenvectors. Create matrix T
n×k

by normalizing the rows

of U to have unit length of 1 [10].

Tij =
Uij

(
∑

k U
2
ik)

1/2

6. Use this matrix T as the input to a k-means algorithm to cluster the data into k

clusters, where each point is represented by a row in T . If the original point xi will be

assigned to cluster q if and only if row i of matrix T is assigned to cluster q [9]. Because the

movie plot data includes 19 distinct genre labels, we set k = 19.

2.2.2 Mutual Information

This paper will use normalized mutual information (NMI) to compare the clustering results

with the actual genre labels for each of the three embedding methods. This enables evaluation

and comparison of the results and performance of each model. NMI will be implemented in

Python using scikit-learn [8].

NMI is built off mutual information (MI), which has no upper bound. NMI normalizes the

metric so that scores range from 0 (no mutual information) to 1 (perfect mutual information).

The equation for MI is as follows, where U and V are two different label assignments of the

same N data points – in this case, the spectral clustering results and the ground-truth genre

labels. Here, P (i) = |Ui|
N

and P ′(j) =
|Uj |
N

.
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MI(U, V ) =

|U |∑
i=1

|V |∑
j=1

P (i, j) log

(
P (i, j)

P (i)P ′(j)

)

NMI is calculated by dividing MI by the mean of the entropy of each U and V . The

entropy of U is calculated as H(U) = −
∑|U |

i=1 P (i) log(P (i)), and likewise for H(V ).

NMI(U, V ) =
MI(U, V )

mean(H(U), H(V ))

2.3 Similarity Measurement

Finally, we will use cosine similarity to measure the difference between a target film and

each other film in the data set. Cosine similarity is often recommended as the best distance

measure for semantic tasks [12]. The cosine similarity between vectors a and b is calculated

as the dot product divided by the product of the norm of each vector. Given a film of

interest, we will return the top 10 most similar films.

Cosine Similarity = cos(θ) =
a · b

∥a∥∥b∥
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CHAPTER 3

Data

3.1 Data Set Information & Preparation

The data used in this paper comes from movie plot descriptions scraped from Wikipedia [4].

The raw data includes information on movie title, release year, genre, country, and director.

This section provides some exploratory analysis and explains the methods used to clean

and prepare the data for use in the models discussed in Chapter 4. The data set originally

included 33,868 unique films, which was reduced to 33,416 after cleaning. All films were

released between 1901 and 2017, and the distribution of release years is shown in Figure 3.1.

Figure 3.1: Distribution of Films by Release Year

Just over half of the films in the final data are from the United States, with the remainder

7



coming from 23 other countries or regions. As noted earlier, all of the plot descriptions, even

for foreign-language films, are in English, so it will be interesting to see if this allows for

finding similarities between films of different languages.

Figure 3.2: Distribution of Films by Region of Origin

3.1.1 Cleaning

The original raw data included some duplicate films. For example, if a movie was released

in multiple countries, sometimes the scraped data had multiple rows for the same film (with

the same plot). Duplicate plots were dropped, leaving 33,868 unique films.

One limitation of this data is that the plot descriptions vary from film to film, ranging

from 1 word to over 6,000 words (Table 3.1). To avoid issues caused by very short plots, 348

plots with fewer than 15 words were removed.
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Table 3.1: Plot Length Statistics

Total Movie Plots 33,868.00

mean word count 338.01

std word count 287.99

min word count 1.00

25% 110.00

50% 257.00

75% 525.00

max word count 6,177.00

In the raw data, the “Genre” column took over 2,000 unique values. Investigation revealed

this was mainly due to variations in formatting or phrasing, and most of these could be

grouped into one of the more general categories in Figure 3.3. Here, the “Unknown” category

includes 5,511 films where the genre was either missing or did not easily fit into one of the

other categories.

Figure 3.3: Number of Films by Genre
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3.1.2 Named Entity Recognition

A main challenge that became apparent when observing preliminary results was the presence

of character and actor names within the text. Including these names as words led to non-

sensical results when looking at a movie’s nearest neighbors. For example, there is nothing

particularly similar about the 2014 thriller Gone Girl and the 2005 romantic comedy The

Wedding Date, aside from both films featuring main characters named Amy and Nick.

To resolve this, all person names were identified and removed using en core web trf from

the spaCy library [13]. This is a transformer pipeline built on the roBERTa model from

HuggingFace. It is publicly available for production use and has multiple applications,

including Named Entity Recognition (NER). The example in Figure 3.4 shows the result of

NER on the first paragraph of the plot description of Casablanca. Here, spaCy accurately

identifies linguistic entities, including people, places, and dates, enabling the removal of all

entities tagged as “PERSON.”

Figure 3.4: NER with spaCy on Casablanca

Something to note is that spaCy does not distinguish between the names of fictional

and non-fictional characters. Therefore, name removal could have unfortunate results for

historical or other non-fiction films but should still benefit the overall results.

10



3.1.3 Data Pre-Processing

Additional steps were taken to process the text. First, all numbers and brackets related

to in-text citations were removed, along with extra empty white space. Then, the final

pre-processing steps were tailored to each of the three modeling approaches.

For TF-IDF, punctuation and stop words were removed. Although TF-IDF would have

automatically discounted the weights of very common words, removing them greatly improves

computation time. Likewise, words appearing in fewer than 20 documents were removed.

These adjustments decreased the size of the embedded results, allowing for faster UMAP

processing in the dimension reduction step.

For Doc2Vec, stop words were retained. However, words appearing less than 5 times in

the corpus were removed to speed up computation, since exceptionally rare words are not

helpful when it comes to training. In addition, punctuation was removed, and the words

were tokenized prior to being fed into the Doc2Vec model.

For S-BERT, punctuation and stop words were retained in order to keep as much context

as possible. S-BERT was trained on text that included punctuation, so removing it could

reduce accuracy [3].

11



CHAPTER 4

Models

4.1 TF-IDF With UMAP

One of the earliest and simplest numerical text representation techniques is TF-IDF (Term

Frequency-Inverse Document Frequency), first introduced in 1972 [1]. At the time, TF-IDF

was an important advancement in the world of NLP. It improved on earlier techniques by

giving more weight to less frequent, more specific words and less weight to very common

words. This paper uses the Scikit-Learn Python implementation of TF-IDF [8].

TF-IDF represents each document as a vector with n dimensions, where n is the number

of words in the corpus. The value of each word in a document is a combination of TF (term

frequency), which measures the importance of the word relative to other words within the

document, and IDF (inverse document frequency), which measures how rare the word is

within the corpus.

TF =
number of times the word appears in the document

total number of words in the document

IDF = log

(
number of documents in the corpus

number of documents in the corpus that contain the word

)

TF − IDF = TF ∗ IDF

The result is a sparse matrix that can be either used in its raw form or fed into another

12



machine learning algorithm. Working with this raw TF-IDF matrix can be computationally

expensive. Identifying similar vectors can be challenging due to the curse of dimensionality

[14], whereby distances between pairs of points tend to lose meaning in high dimensions.

When applying common distance measures such as Cosine Similarity or Euclidean Distance

or attempting to perform clustering, all points in a high dimensional space can appear nearly

equidistant.

Dimensionality reduction techniques can help solve this problem and improve computa-

tion time. This paper focuses on UMAP (Uniform Manifold Approximation and Projection),

a non-parametric dimension reduction algorithm that works effectively on sparse and non-

linear data. It is particularly adept at preserving local structures with minimal distortion,

but it has been shown to preserve more of the global structure than the similar t-SNE method

while being more computationally efficient [7].

UMAP works by first computing a fuzzy topological representation of a data set and then

optimizing a low-dimensional embedding of the graph through stochastic gradient descent

[15]. The intuition is that UMAP attempts to learn a manifold on which the data is uniformly

distributed. The authors of the original UMAP paper created an implementation in Python,

which this paper will use [16].

The algorithm below outlines UMAP, where X is the data to have dimensions reduced,

n neighbors is the selected neighborhood size, n components is the selected dimension of

the target reduced space, min dist is the minimum distance between embedded points, and

n epochs is the number of epochs to perform at optimization. The output data is Y.

13



Algorithm 1: UMAP

Result: Optimized Embedding Y

1. Construct the relevant weight graph;

for all x ∈ X do

Generate local fuzzy simplicial sets using n neighbors

Union together all fuzzy simplicial sets

end

2. Generate low-dimensional embedding Y ;

Spectral Embedding: Initialize Y with n components

Optimize Embedding: if epoch < n epochs then

minimize fuzzy set cross-entropy;

use stochastic gradient descent with negative sampling to optimize Y ;

else

end embedding optimization;

end

Words appearing in less than 20 documents were removed to speed up computation. The

result of the TF-IDF step is a 33,520×15,297 matrix, which was then reduced to 33,520×200

using UMAP. One weakness of TF-IDF is that it does not preserve any information about

word order or context. It is a simple statistical measure drawing on the frequency of word

usage. The other models discussed in this paper have developed more sophisticated ap-

proaches.

4.2 Doc2Vec

The Doc2Vec algorithm was first introduced by Le and Mikolov in 2014 [2]. Originally known

as “Paragraph Vector,” the approach uses neural networks to generate numerical vector

representations of documents. Documents similar to one another will be closer together in

14



the vector space, allowing the use of clustering methods to identify groups of similar texts.

Doc2Vec is an extension of Word2Vec, which produces vector representations of words.

There are two main versions of Doc2Vec: Paragraph Vector Distributed Memory (PV-DM)

and Paragraph Vector Distributed Bag of Words (PV-DBOW). PV-DM is based on the

Continuous-Bag-of-Words (CBOW) version of Word2Vec, which uses surrounding words to

predict a missing word. PV-DBOW is based on the Skip-Gram version of Word2Vec, in

which a word is used to predict the surrounding context [17].

In practice, researchers have found that PV-DBOW performs well when applied to short

texts, such as tweets [18]. Although PV-DM can be more computationally expensive than

PV-DBOW because it stores the word embeddings in addition to the document embeddings,

an advantage is that it preserves word order. This paper will focus exclusively on the

Distributed Memory version of Paragraph Vector (PV-DM), which uses the CBOW model

to produce word embeddings.

In the CBOW variation of Word2Vec, context words are represented as one-hot vectors

and passed through a weight matrix (W) to the hidden layer (h). The network uses the

hierarchical softmax function to predict the missing word in the output layer. Hierarchical

softmax uses binary trees to approximate the softmax activation function at a much lower

computational cost [19]. The prediction is then compared to the target word, and the error

is used to update the weight matrix through backpropagation. PV-DM operates in the same

way, with the addition of a document ID vector that is passed in conjunction with the context

word vectors. Both the word weight matrix (W) and the document weight matrix (D) are

trained simultaneously. Figure 4.1 [20] shows a visual representation of the algorithm flow,

where the vocabulary size is M, the number of documents in the corpus is N, and each word

and document are mapped onto a vector of p dimensions.

15



Figure 4.1: Doc2Vec PV-DM Algorithm

This paper implements Doc2Vec through the Gensim library in Python [21]. The window

size determines how many of the context words surrounding the missing word will be passed

to the model at each step. The plots tend to be relatively long, and we are focused on the

broad content of each plot, so a window size of 15 was selected [22]. The training ran for 30

epochs. The initial learning rate is 0.025 and decreases at each epoch until reaching 0.0001.

The resulting weight matrices, D and W, are the resulting document and word embed-

dings. In this case, there are 33,520 document vectors in D (one for each plot) and 33,283

word vectors (one for each word included). At training, the vector length was set to p=200,

which applies to both sets of vectors. An example of the word embeddings is shown in Figure

4.2, where cosine similarity was used to return the top 10 words with vectors closest to that

of “Princess.”
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Figure 4.2: Doc2Vec: 10 Words Most Similar to “Princess”

Finally, the document vectors in D are normalized to be of unit length. This is achieved

by dividing each element of the vector by its length.

4.3 S-BERT

A limitation of the previous two methods is that they depend entirely on the data fed to them

for training. The final model discussed in this paper is S-BERT (Sentence Bidirectional En-

coder Representations from Transformers), which is implemented using the all-distilroberta-

v1 model [3] from Hugging Face. One key advantage of this model is that it is pre-trained

on over 1 billion sentence pairs and triplets – far more text than is in the movies data set.

The S-BERT model takes input text and maps each document to a 768-dimensional dense

vector space.

The S-BERTmodel used in this paper was trained by fine-tuning the pre-trained RoBERTa

model, an improvement on the original BERT model [23]. Like BERT, RoBERTa uses the

encoder part of a transformer architecture to process all the words in a text at once rather

than sequentially. The model features a self-attention mechanism, allowing it to understand

the meaning of a word based on its context and relationships with other words. While

RoBERTa works very well for a variety of tasks, including word embeddings, next-word pre-

diction, and text generation, it is not well designed for document embedding or semantic

17



similarity calculations. Researchers have found that feeding pairs of text to the model to

find the most similar combination is very computationally expensive, and other methods,

such as averaging the output layer or using the CLS token, do not yield reliably good results

[3].

S-BERT solves these problems by providing an efficient way to produce embeddings,

which may be compared using similarity calculations or used as input to clustering analyses.

The researchers who developed S-BERT used contrastive learning through siamese and triplet

networks to fine-tune the weights in the underlying RoBERTa model. In both cases, a mean

pooling function is added as a head to the RoBERTa model to produce a sentence embedding.

For the siamese network (Figure 4.3a), a batch of sentence pairs is passed through the

model, and cosine similarity is used to calculate the similarity of each resulting set of vectors.

The goal is for actual sentence pairs to be closer in the vector space than to non-pairs. Cross-

entropy loss is then applied to update the weights in RoBERTa. The triplet network (Figure

4.3b) is designed to process sentence triplets, where one sentence is an anchor, one sentence

is in agreement (positive), and one sentence contradicts (negative). The goal is for the

embedded vectors of the anchor and the positive sentences, a and p, to be closer together

than the embeddings of the anchor and negative sentences, a and n. In the original paper,

the authors aim to minimize the triplet loss function below, with ϵ = 1 [3].

Triplet Loss = max(∥a− p∥−∥a− n∥+ϵ, 0)
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(a) Siamese Network Training (b) Triplet Network Training

Figure 4.3: S-BERT Training Structures

After the RoBERTa piece of the model is sufficiently tuned, it can be used for inference.

New sentences are passed through the RoBERTa model, mean pooling is applied, and the

resulting vectors are the embeddings. One drawback of this pre-trained model is that it is

intended for sentences and short paragraphs, so each input is automatically truncated to

512 tokens, which includes words and punctuation. Although 34% of the plot descriptions

will be at least somewhat truncated, this paper examines whether the pre-trained S-BERT

model will still yield good results.
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CHAPTER 5

Results

This chapter explores the normalized mutual information scores between the 19 true genres

and the 19 cluster labels generated via spectral clustering for each method. Spectral clus-

tering is only performed on the 27,667 plots where genre is known. We find that NMI is

highest for Doc2Vec, followed very closely by S-BERT. As expected, TF-IDF with UMAP

scores lowest. As outlined in Chapter 2, NMI ranges from 0 to 1, where a score of 0 indicates

no mutual information and a score of 1 indicates perfectly matching information.

We could expect these NMI scores to be much higher if the goal of this paper was to

build a genre classification model. However, scores greater than zero still demonstrate value

since the task examined is unsupervised and self-supervised document embedding. When

the clusters are assigned at random, NMI is essentially zero.

Table 5.1: Normalized Mutual Information

Model Normalized Mutual Information

TF-IDF with UMAP 0.0869

Doc2Vec 0.1233

S-BERT 0.1226

NMI is also helpful in evaluating the similarity of results between the three methods, as

shown in Figure 5.1. Among the three methods, S-BERT and Doc2Vec produced the most

similar results. It is worth noting that the results of each method are more similar to the

results of the two other methods than to the original genre labels. This is not necessarily
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a surprise, as the models were each fed identical data (plots) without any information on

genre.

Figure 5.1: Normalized Mutual Information Between Methods

The rest of this chapter will explore the results of each method. The plot embeddings

are visualized using UMAP (as described in Chapter 4.1), using 2 components.

5.1 TF-IDF Results

The visualization in 5.2 is generated by using UMAP with 2 components on the original

TF-IDF embeddings. The colors in Figure 5.2a represent the 19 true genres, while the colors

shown in Fgure 5.2b are assigned by performing spectral clustering on the 200-component

UMAP generation.

While a few areas of homogeneous genre appear in 5.2a, there is a lot of overlap through-

out the space. Also, 5.2b shows that the sizes of the clusters are far from uniform, with one

very large cluster (shown in bright orange) making up 31% of the points. There are also

many groups of outliers around the perimeter – the 10 smallest clusters make up less than

15% of the points. These findings suggest that the overall TF-IDF and UMAP embedding

is not ideal for this task and that spectral clustering is not performing as well as expected.
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(a) Colored by Genre (b) Colored by Cluster

Figure 5.2: TF-IDF Results

5.2 Doc2Vec Results

Compared to TF-IDF, the Doc2Vec results have more areas where plots of the same genre are

grouped close together in the vector space (Figure 5.3a). These areas also correspond better

to the assigned clusters shown in Figure 5.3b. This illustrates that the Doc2Vec results are

superior to TF-IDF, confirming what the NMI score indicated.
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(a) Colored by Genre (b) Colored by Cluster

Figure 5.3: Doc2Vec Results

5.3 S-BERT Results

Like the Doc2Vec results, the S-BERT results shown in Figure 5.4 indicate performance

superior to TF-IDF. Compared to TF-IDF, there are more areas where plots of the same

genre are close together, which enables better spectral clustering results.

One interesting point is that the S-BERT results show more empty space and a less

smooth perimeter compared to Doc2Vec, implying greater separation of neighborhoods. The

NMI scores of Doc2Vec and S-BERT are quite similar, but it is possible that the S-BERT

results are more useful for finding films most similar to a given film of interest. This is

a subjective task without a clear way to evaluate performance using the data at hand.

Nevertheless, the next chapter presents some case studies to help explore this question.
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(a) Colored by Genre (b) Colored by Cluster

Figure 5.4: S-BERT Results

5.4 Experiment: Combining Doc2Vec and S-BERT

Because Doc2Vec and S-BERT have similar NMI scores (Table 5.1) but still contain different

information (based on their mutual NMI of 0.2489), combining the results of these two meth-

ods could be interesting. The embeddings were concatenated to create a 968-dimensional

vector for each film. Spectral clustering was then applied in the same way as described

above. Despite the additional information, the NMI between the clusters and the true gen-

res was 0.1351, only a slight improvement. More improvement may have been achieved by

using another method of combining the embeddings and selecting features, such as PCA.

However, predicting genre is not the main goal of this paper and is only a proxy for model

performance.
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(a) Colored by Genre (b) Colored by Cluster

Figure 5.5: Doc2Vec & S-BERT Combined Results
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CHAPTER 6

Case Studies

This section will finally put the models into action and discuss specific results. For each

model, we return the 10 embedded vectors closest to the vector (movie plot) of interest.

The distance between vectors is calculated using cosine similarity, as described in Chapter

2.3. Evaluating performance or accuracy on this task is quite subjective, but it is still an

interesting exercise.

The first movie selected as a target is Casablanca, the renowned 1942 romantic drama set

during World War II. The models return a number of films that are also from the mid-1900s,

as well as films set during wartime. This is more true of Doc2Vec and S-BERT, confirm-

ing that these embeddings likely better represent the films. The second recommendation

from S-BERT, Before Sunset, is also interesting as it involves a couple who meets again

after spending years apart, similar to Humphrey Bogart and Ingrid Bergman’s characters in

Casablanca.
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Table 6.1: Top 10 Most Similar to Casablanca

Target: Casablanca (1942)

TF-IDF w/ UMAP Doc2Vec S-BERT

1 Love Letters (1945) A Song to Remember (1945) Cornered (1945)

2 Suite Française (2015) The Rich Are Always with Us
(1932)

Before Sunset (2004)

3 Sherlock Holmes (1916) The Iron Duke (1934) An American in Paris (1951)

4 Stronger Than Desire (1939) Orders to Kill (1958) Play It Again, Sam (1972)

5 Poison Pen (1939) Days of Glory (1944) Head in the Clouds (2004)

6 The W Plan (1930) This Was Paris (1942) Hotel Reserve (1944)

7 The Day Will Dawn (1942) The Right Person (1955) Secret Mission (1942)

8 Neutral Port (1940) Up from the Beach (1965) Midnight in Paris (2011)

9 The Captive Heart (1946) South Sea Woman (1953) The Blood of Others (1984)

10 The Lost Moment (1947) British Agent (1934) The Shopworn Angel (1938)

The second target movie selected is Ferris Bueller’s Day Off, the classic 1980s John

Hughes film in which a high school senior concocts a plan to cut class with two friends.

They borrow a Ferrari and spend the day enjoying the city of Chicago. In the results

below, S-BERT outperforms the other two models. Several high school films from the 1980s

make the list, including Adventures in Babysitting, License to Drive, and Risky Business.

The recommendations from TF-IDF and Doc2Vec do not make quite as much sense. For

example, Another Me is about a teenager in high school, but it is a psychological thriller

where Doppelgänger stalks the main character. American Pastoral is a crime drama that

also has dark themes.

27



Table 6.2: Top 10 Most Similar to Ferris Bueller’s Day Off

Target: Ferris Bueller’s Day Off (1986)

TF-IDF w/ UMAP Doc2Vec S-BERT

1 Another Me (2013) American Pastoral (2016) Adventures in Babysitting
(1987)

2 Over the Edge (1979) Dirty Girl (2010) License to Drive (1988)

3 Bridge to Terabithia (2007) The Happening (2008) Risky Business (1983)

4 Welcome to the Dollhouse
(1995)

Rushmore (1998) Aloha, Bobby and Rose (1975)

5 Stuck (2007) Amreeka (2009) Scent of a Woman (1992)

6 Rita, Sue and Bob Too (1986) Focus (2015) The Final Destination (2009)

7 Planes, Trains and Automo-
biles (1987)

Superstar: The Karen Carpen-
ter Story (1987)

Uncle Buck (1989)

8 Hope Floats (1998) Mr. Peabody & Sherman
(2014)

Hot Rods to Hell (1967)

9 The Whole Nine Yards (2000) Love Finds Andy Hardy (1938) Dead-End Drive In (1986)

10 Youth in Revolt (2010) The Sisterhood of the Traveling
Pants 2 (2008)

Corvette Summer (1978)

The third target selected is Sleepless in Seattle, a romantic comedy that tells the story

of a woman who falls in love with a recently widowed man after hearing him call in to a

radio station. The film follows the two characters and their separate lives until they finally

meet in New York City at the end of the film. Here, the first recommendation from S-BERT

and TF-IDF is An Affair to Remember, which is the film that inspired Sleepless in Seattle.

TF-IDF also includes Love Affair, in which two people meet and fall for each other during

an airplane flight gone wrong. They agree to meet in New York City in a few months to see

if their attraction lasts.

Doc2Vec’s first recommendation, Love on a Diet, is a Chinese comedy that is only similar

in the sense that it involves a romance and the anticipation of a couple meeting at the end of

the film. The second recommendation is the romantic comedy Definitely, Maybe. S-BERT’s

recommendations also include romantic comedies She’s Out of My League and While You

Were Sleeping.
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Table 6.3: Top 10 Most Similar to Sleepless in Seattle

Target: Sleepless in Seattle (1993)

TF-IDF Doc2Vec S-BERT

1 An Affair to Remember (1957) Love on a Diet (2001) An Affair to Remember (1957)

2 Elevator (2012) Definitely, Maybe (2008) She’s Out of My League (2010)

3 Love Affair (1994) Before Sunset (2004) The Second Face (1950)

4 Finding Mr. Right (2013) Everything, Everything (2017) While You Were Sleeping
(1995)

5 London, Paris, New York
(2012)

Where the Spies Are (1965) The Break-Up (2006)

6 The Death of Poe (2006) Night Moves (1975) Dear Heart (1964)

7 Elevated (1997) Can a Song Save Your Life?
(2013)

Unfaithful (2002)

8 Chico and Rita (2010) Dostana (2008) White Palace (1990)

9 The Weather Man (2005) Yasmin (2004) Cross Country Cruise (1934)

10 Left Behind: The Movie (2000) The Bourne Ultimatum (2007) My Reputation (1946)

The final target film is Get Out, the acclaimed horror film that follows an African-

American man who visits the family of his white girlfriend. The film touches on themes of

racism and interracial relationships entwined in a gripping horror story. Interestingly, TF-

IDF does not return any films in the horror/thriller genre. The Doc2Vec results include a

few thrillers, including House at the End of the Street, Contracted, and Paranormal Activity

2. However, aside from genre, these films do not have many similarities with Get Out.

Looking at the S-BERT results, there are a few recommendations that do have similar

themes. Lakeview Terrace is a thriller that involves an interracial couple that moves to a

suburban neighborhood, where their next-door neighbor is a menacing cop. On the surface,

it does seem to have some similarities to elements of Get Out. Other films on the list also

explore racial themes, including Freedomland, Devil in a Blue Dress, Watermelon Man, and

Far from Heaven. The Telugu horror film Kshanam is an interesting recommendation and

one of only two foreign-language films listed, but it does not appear to have much in common

with the target.

29



Table 6.4: Top 10 Most Similar to Get Out

Target: Get Out (2017)

TF-IDF Doc2Vec S-BERT

1 Sapphire (1959) House at the End of the Street (2012) Freedomland (2006)

2 Rosewood (1997) Get on Up (2014) Lakeview Terrace (2008)

3 Pressure (1976) The Watermelon Woman (1996) Kshanam (2016)

4 Nothing But a Man (1964) Contracted (2013) Devil in a Blue Dress (1995)

5 Crash (2004) Agatha (1979) No Way Out (1950)

6 Black Like Me (1964) I Saw What You Did (1965) Watermelon Man (1970)

7 Murder in Harlem (1935) Back from the Dead (1957) Hysteria (1965)

8 Higher Learning (1995) Bahar (1951) Stir of Echoes (1999)

9 The Watermelon Woman
(1996)

Paranormal Activity 2 (2010) Far from Heaven (2002)

10 The Black Stallion (1979) One Mile from Heaven (1937) Amos & Andrew (1993)
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CHAPTER 7

Conclusion

It is clear that both the Doc2Vec and S-BERT models outperform TF-IDF based on the

case studies and the NMI scores when comparing clusters with the true genres. Also, upon

examining the case studies, it appears that the S-BERT embeddings make the most sense

when it comes to plot similarity within a small neighborhood. Even though Doc2Vec scored

similarly to S-BERT on NMI, the specific S-BERT recommendations discussed appear more

related to the target film. It is possible that, although the overall structure of the two

embeddings is comparable, S-BERT generates more accurate information at a local level,

resulting in better recommendations.

In summary, the models discussed in this paper, particularly S-BERT, do a relatively

good job of generating numerical representations of the movie plot descriptions. Obviously,

the results cannot compare to the recommendations offered by companies like Netflix or

Amazon, which harness an incredible amount of information, from viewing and rating data

across users to movie popularity and individual preferences. However, the goal of this paper

was to explore methods of identifying films that are similar based solely on their plot content.

Although the resulting recommendations are less accurate, this opens the door for discovering

lesser-known films that may be of interest to the viewer.
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7.1 Future Analysis

Evaluating the quality of the numeric plot embeddings is a challenge, and the case studies

discussed here are clearly subjective. This paper aims to use the genre labels, spectral

clustering, and NMI to create a measure of quality. However, other methods of model

comparison may be more effective, and future research could explore more sophisticated

techniques. For example, the embeddings could be compared in their performance on a

downstream task, such as a neural network classifier designed to predict genre.

In evaluating word-level embeddings, researchers have found that crowdsourcing word-

relatedness tasks to gather data on model performance is superior to other methods, such

as comparing effectiveness on downstream tasks [24]. In the case of movie plots, designing

an analogous task for crowdsourcing poses a challenge, as nobody has seen every movie and

may not be able to make a quick judgment of plot relatedness. However, data containing

film ratings from many users could be utilized in a similar way. This data could help shed

light on which model generates local neighborhoods most consistent with user preferences.

It is also worth noting that the quality of the embedded vectors depends on the quality

of the plot descriptions used as input. The Wikipedia plot descriptions vary widely in terms

of length and detail – more popular movies tend to have better plot summaries. This leads

to poorer vector representation of lesser-known films. In addition, the films included only

represent a small slice of the films in existence released through 2017. Obtaining higher-

quality data would improve the results.

Additional research could also focus on creating a pre-trained model based on the trans-

former architecture that is intended for longer documents. The S-BERT model used in this

paper was designed for sentences and short paragraphs, and it still performs relatively well

compared to the other two models. But creating a similar model specifically for longer doc-

uments could greatly improve the results and would have many additional use cases beyond

the scope of this project.
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