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Abstract

Recent experimental evidence points to the possibility that cell surface-associated caveolae may participate in mechanotrans-
duction. The particular shape of caveolae suggests that these structures serve to prevent exposure of putative mechanosensors
residing within these membrane invaginations to shear stresses at magnitudes associated with initiation of cell signaling.
Accordingly, we numerically analyzed the fluid flow in and around caveolae using the equation of motion for flow of plasma
at low Reynolds numbers and assuming no slip-condition on the membrane. The plasma velocity inside a typical caveola
and the shear stress acting on its membrane are markedly reduced compared to the outside membrane. Computation of the
diffusion field in the vicinity of a caveola under flow, however, revealed a rapid equilibration of agonist concentration in the
fluid inside a caveola with the outside plasma. Western blots and immunocytochemistry support the role of caveolae as shear
stress shelters for putative membrane-bound mechanoreceptors such as flk-1. Our results, therefore, suggest that caveolae
serve to reduce the fluid shear stress acting on receptors in their interior, while allowing rapid diffusion of ligands into the
interior. This mechanism may permit differential control of flow and ligand activation of flk-1 receptor in the presence of
ligands.

Keywords Caveolin - Vascular endothelial growth factor receptor - Membrane mechanics - Flow analysis - Diffusion analysis -
Finite element analysis - Shear stress

1 Introduction tosis system designed to transport macromolecules between

the membrane and selected intracellular organelles (Mineo

Caveolae are 50- to 100-nm invaginations of the plasma
membrane of many cell types (Feron et al. 1996; Chigorno
etal. 2000; Chang et al. 1994; Cohen et al. 2004a). Originally
described with electron microscopy (Yamada 1955; Bruns
and Palade 1968), some investigators proposed that caveolae
are part of a membrane system that enables vesicular and/or
channel-like transport for large molecules, e.g., albumin, in
endothelial cells (Palade and Bruns 1968; Simionescu et al.
2002). Others suggest that caveolae could be part of a potocy-
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and Anderson 2001; Anderson et al. 1992). Discovery of the
caveolin family of membrane proteins involved in regulating
caveolar structure, together with the enriched population of
surface receptors inside caveolae (Shaul and Anderson 1998;
Schnitzer 2001; Lasley and Smart 2001; Feron et al. 1999),
raises the possibility that these membrane invaginations serve
as signaling microdomains (Lisanti et al. 1994) and facili-
tate such diverse functions as lipid metabolism (Cohen et al.
2004Db), receptor stability (Capozza et al. 2005) and organo-
genesis (Park et al. 2002). Finally, there is evidence to suggest
that caveolae are mechanotransduction or sensing centers for
cells (Rizzo et al. 1998a, 2003; Boyd et al. 2003).
Structurally, caveolae can be readily unfolded by ten-
sion in the plasma membrane (Lee and Schmid-Schonbein
1995), and the majority of plasmalemmal “vesicles” inside
the cell cytoplasm that appear to be closed (e.g., on ultra-
thin electron microscopic images) are actually attached to
the plasmalemmal membrane and form part of the caveolar
system (Bundgaard et al. 1983; Frokjaer-Jensen 1991; Chien
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et al. 1981). In spite of electron microscopic evidence for
transcytosis, there is little direct evidence for movement of
these structures across unstimulated cells (Thomsen et al.
2002). Some caveolae that bind low-density lipoproteins
have the ability to accumulate in lysosomes in the peri-
nuclear region (Handley et al. 1981) and thus are able to be
transported inside the cell cytoplasm of endothelial cells. The
available evidence is compatible with an alternative hypoth-
esis for a physical function of caveolae, and this is the focus
of the present report.

One of the initial mechanisms for mechanotransduction
in response to fluid shear stress is the activation/deactivation
of specific receptors (such as G-protein coupled recep-
tors) located in the plasma membrane (Makino et al. 2006;
Chachisvilis et al. 2006). The actions on different mem-
brane receptors may be one of the reasons for the highly
cell-specific responses observed among different cell types
in response to fluid shear stress. Physiological fluid shear
stress (e.g., 12 dyn/cm?) in endothelial cells induces rapid
tyrosine phosphorylation of vascular endothelial growth fac-
tor receptor 2 (VEGFR2 or flkl), followed by clustering
and subsequent Shc association (Chen et al. 1999). Shear
stress also causes rapid activation of «, 83 integrins (Shyy
and Chien 1997, Jalali et al. 2001; Tzima et al. 2001), with
increased binding to extracellular matrix proteins. In addi-
tion, the lipid membrane properties, which determine the
mobility of membrane receptors, directly influence the fluid
shear stress response (Park et al. 1998; Butler et al. 2002).
Thus, receptors may serve as signal sensors and transducers
across the membrane and respond not only to ligand binding,
but also to the mechanical influence of fluid shear. However,
it is unclear how endothelial cells that are constantly exposed
to a vascular flow environment may undergo chemical acti-
vation from ligands if the receptors of these ligands on the
cell surface are shear sensitive and may undergo constant
stimulation by the flow environment.

We hypothesize the existence of a mechanism that distin-
guishes between the receptor activation induced by chemical
agonists and by fluid shear stress. With the use of finite ele-
ment analysis, we show in this report that the specialized
membrane pockets formed by caveolae dramatically reduce
the fluid shear stress in their interior and may therefore serve
as fluid shear stress shelters for receptors in their interior. A
receptor inside a caveola is protected from fluid shear stress
stimulation, while it can remain responsive to an agonist that
can diffuse through the open orifice of a caveola. In contrast, a
receptor that is located in the outer membrane domain outside
a caveola is exposed to fluid shear stress, and the shear acti-
vation or deactivation of the receptor may alter its response to
its agonist. We explore this problem from a fluid mechanics
point of view, by studying receptor activation inside and out-
side of caveolae by fluid shear stress and by receptor agonists.
Furthermore, we provide experimental evidence for flk1 that
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is consistent with predictions from our mathematical analy-
ses, suggesting that caveolae are fluid shear stress shelters.

2 Analysis and methods
2.1 Fluid shear stress and diffusion inside a caveola

The fluid flow in the vicinity of caveolae, which are small
membrane structures (~0.1 pwm in diameter), has a low
Reynolds number (~0.001) with negligible inertial forces.
The dimensions of blood cells are far too large to enter cave-
olae, and therefore, the fluid filling a caveola consists of
plasma with a Newtonian viscosity (u ~ 1.0 cpoise). The flow
of plasma at this scale is determined by the Stokes approxi-
mation of the equation of motion for an incompressible fluid
with constant viscosity:

0=—Vp+uV2T and VT =0, (1

where ? is the pressure gradient, T the fluid velocity vector
and V? the delta operator. The left-hand side of Eq. 1 repre-
sents conservation of momentum and the right-hand side the
incompressibility condition for plasma.

To determine the rate of diffusion in the presence of a
convective/diffusive flow field in the vicinity of a caveola, we
determined the concentration, ¢, of an agonist with diffusion
coefficient, D, in plasma according to the flux, J:

J = —DVc+cb, 2)

where U is the velocity vector computed according to Eq. 1.
In the absence of significant alterations in agonist concentra-
tion (due to either new generation or enzymatic degradation)
in the vicinity of a caveola, conservation of mass requires
that
oc_ gy 3
3= v 3)
We showed previously that the typical shapes of caveolae
can be determined from membrane mechanics (Kosawada
etal. 1999). We assumed membrane properties with bending
and in-plane membrane shear strain energy. The flask-like
shape of caveola readily forms as a result of mechanically
linking an inner spherically curved membrane domain inside
the caveola and an outer membrane domain (see Fig. 1).
We also assumed that the inner membrane has a spheri-
cal (unstressed) resting shape with a spontaneous curvature
(1/r1) produced by caveolin and the outer membrane has a
nearly flat resting shape with only a small curvature (1/rg)
(see Figure 2 in Kosawada et al. 2005). Coupling these
two membrane domains at the neck gives the characteris-
tic flask shapes of caveolae that are virtually identical to
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Fig. 1 Three-dimensional flow domain over a caveolae (shown for the
case of n =100, ry =4.451ry in reference Kosawada et al. 2005). The
number of elements in the flow domain is 90, 80 and 60 in X, Y and Z,
directions, respectively. The inlet mean velocity U is set as 0.051 mm/s

the shapes seen with electron microscopy (Kosawada et al.
2005).

We solved Egs. 1-3 in a cubic domain around the caveola
in accordance with the following boundary conditions: The
plasma velocity is zero (due to no slip) on the plasma mem-
brane surface everywhere inside and outside the caveola. On
the plane upstream of the domain (~4 caveolar diameters
from the neck), we applied a linear velocity field with a typi-
cal wall shear rate in the circulation (~416 s~!). On the plane
above the caveola (parallel to the outer membrane) and the
two planes parallel to the flow direction to the right and left
of the cell, we assumed zero normal velocity to those planes
(Fig. 1).

In the case of agonist diffusion, we assumed that at an
initial time (+ =0) on the plane upstream of the caveola,
there is instantaneously a normalized agonist concentration
co =1, with zero concentrations elsewhere in the flow field.
We assumed the diffusion coefficient D to be 1.26 x 107>
cm?/s. Based on these assumptions, we determined the rate at
which the agonist is transported into the caveola. We assumed
the membrane in and around the caveola is impermeable to
the agonist, so that there is no flux of the agonist across the
plasma membrane. The velocity field (¥") around the caveola
in Eq. 2 was computed according to Eq. 1.

The solutions to these boundary value problems were
obtained numerically with a finite element analysis (FEM,

Phoenics, 3.6 version, CHAM., Ltd., Wimbledon, London,
UK). In this analysis, we set the dimensions of the flow
domain to be 90 x 80 x 60 (length, width, height directions,
respectively) with a total of 432,000 elements. Depending on
each particular membrane model, we adjusted the number
of elements and nodes and set the diameter of the unde-
formed inner membrane domain (a spherical vesicle) at 2r; =
66.7 nm. For the dimensions of the plasma flow domain above
the outer membrane domain, we selected a width, height and
length of 300, 100 and 400 nm, respectively (Fig. 1). We sim-
ulated a flow profile for a complete blood vessel model (inner
diameter 0.006 mm) with amean velocity of 0.35 mm/s. From
these values, we estimated the inlet mean velocity parallel to
the outer membrane to be 0.051 mm/s in the computational
domain (Fig. 1) over the caveola.

The shear stress distribution on the luminal surface was
computed as the wall shear stress based on “log-law wall
functions.” It is friction velocity squared, equivalent to shear
stress divided by plasma density (with dimension cm?/s?).

2.2 Cell culture

Primary cultures of bovine aortic endothelial cells (BAEC)
were harvested from bovine aorta after collagenase diges-
tion as previously described (Shiu et al. 2004). BAEC were
subcultured in Dulbecco’s modified Eagle growth medium
containing 10% fetal bovine serum, 1% sodium pyruvate,
5 U/mL heparin, 100 mM L-glutamine and 1% peni-
cillin—streptomyocin and maintained at 37 °C in a humidified
incubator with 5% C0O,-95% air. In preparation for in vitro
shear experiments, BAEC (passages 5—10) were seeded on
glass slides and cultured for 1 day. At that time, these cell
preparations were assembled into a parallel plate flow sys-
tem. All cell culture reagents were purchased from Gibco
BRL (Carlsbad, CA).

2.3 Fluid flow chamber

We used a parallel plate flow system to expose BAEC to
12 dynes/cm® fluid shear stress as previously described
(Frangos et al. 1985). During the flow experiments, the sys-
tem was maintained at 37 °C in a constant temperature hood,
and the circulating DMEM with 10% FBS was ventilated
with humidified 5% CO;-95% air mixture.

To examine the role of caveolae structures in tyro-
sine phosphorylation of VEGFR-2 by VEGF (VEGF-A or
VEGF165), BAEC were maintained under control conditions
in either the presence or the absence of 25 ng/mL human
VEGFE.
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2.4 Immunoprecipitation and immunoblotting

BAEC lysates were harvested in lysis buffer (containing
25 mM Tris—HCI, pH 7.5, 150 mM NaCl, 0.1% SDS and
1% Triton X-100) and clarified by centrifugation. Aliquots
of BAEC extracts containing equal amounts of protein
were then immunoprecipitated (IP) with a polyclonal anti-
body specific for caveolin-1 at 4 °C for 2 h. The resulting
antibody—protein complexes were separated according to
molecular weight using SDS-PAGE and transferred to a nitro-
cellulose membrane. These membranes were probed with
polyclonal antibodies to either VEGFR-2 (Upstate Biotech,
Charlottesville, VA), pVEGFR-2 (Santa Cruz Biotech, Santa
Cruz, CA) or caveolin-1 (Santa Cruz Biotech, Santa Cruz,
CA) using standard immunoblotting techniques. Proteins of
interest were visualized using the appropriate secondary anti-
body conjugated to horseradish peroxidase (Pierce, Rock-
ford, IL) and an ECL detection system (Amersham, Arlington
Heights, IL). In some cases, the supernatants from immuno-
precipitation procedure were saved and subjected to a second
IP using the polyclonal antibody for VEGFR-2 and analyzed
as described above.

2.5 Immunofluorescence labeling and detection
of caveolae and membrane receptors

BAEC on borosilicate glass substrates were fixed with
2% p-formaldehyde (Fisher Scientific, Pittsburgh, PA) in
phosphate-buffered saline (PBS) and permeabilized with
0.1% triton X-100 (Sigma, St. Louis, MO) in PBS. The
cells were dual-labeled with polyclonal rabbit anti-caveolin-
1/TRITC conjugates (clone N-20, Santa Cruz Biotechnolo-
gies, Santa Cruz, CA) and polyclonal goat antibodies to
phosphorylated VEGFR-2 (Santa Cruz Biotechnologies).
The membrane receptor—antibody complexes on the cell
layers were then fluorescently labeled with donkey anti-
goat IgG-Alexa-488. Stained cell preparations were mounted
using Vectashield (Vector Laboratories, Burlingame, CA)
and visualized using a rotating-disk laser confocal micro-
scope (Olympus, Melville, NY) with either fluorescein
isothiocyanate (490-nm excitation/520-nm emission) or rho-
damine (554-nm excitation/572-nm emission) optics.
Confocal images were stored (as TIFF files) and pro-
cessed digitally (NIH Image, Scion Corporation, Frederick,
Maryland) to examine co-localization of caveolin-1 with the
membrane receptor of interest on the cell surface, but not to
compare protein levels of these molecules between exper-
imental treatments. The average percentage of pVEGFR-2
that co-localized with caveolin-1 was measured from at least
20 discrete membrane regions derived from 2 to 3 optical
fields in each of three or more independent experiments.
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Fig. 2 Velocity vectors and velocity contours around a caveolae with A
typical neck, B partially opened and C a caveolae that has been opened
by membrane tension. Case A corresponds to the spontaneous radius
n =100, r; =4.412ry, case B corresponds to n =10, r; =4.556r1, and
case C to n =10, r; =4.805r1 in Figure 4 of Kosawada et al. (2005).
The color code for the velocities is in units of mm/s. For clarity, the
velocity vectors are displayed only in the midplane of the caveolae. The
membrane of the caveolae is shown by means of the white colored grid
lines. Note the low velocities inside the caveolae (A)

3 Results

3.1 Flow velocities, membrane shear stresses,
but not fluid pressure, are reduced
inside caveolae

The velocities inside a caveola are significantly lower than
those on the outer membrane domain (Fig. 2A). This is a
consequence of the neck region of the caveola with a rapid
transition of the velocity from magnitudes in the range of
0.05 mm/s on the outer domain to much lower values in
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Fig. 3 Fluid pressure distribution in and around a caveolae. The mem-
brane shapes are the same as shown in Fig. 1, with a caveola before
(case A), after partial (case B) and almost complete membrane unfold-
ing (case C). The color code for the pressures is shown (left) in units of
10~2 dyn/cm?

the interior of the caveola. As a caveola is pulled open
by membrane tension (Fig. 2B), the neck region becomes
less effective in reducing the velocity in the vessel lumen,
thus enhancing the convective transport in the caveola. If
the membrane tension is further increased, the membrane
starts to flatten further—now reduced to a membrane inden-
tation—and consequently the fluid shear rate on the inner
membrane of a caveola increases further and assumes the
same value as that on the outer membrane.

In contrast to effects of the caveolar geometry on the veloc-
ity field, the plasma pressure inside the caveola is almost
identical to that present at the same axial location along the
vessel lumen (Fig. 3A). The pressure gradient in the outer
fluid domain over the dimension of the neck of a partially

opened caveola is small (due to the small size of the cave-
ola) even though it increases as the neck region is stretched
(Fig. 3B, C). The intra-caveolar pressure is similar to the
plasma fluid pressure outside the caveola due to the small
pressure gradients across the neck of the caveola and inside
it.

The inner membrane surface of a caveola with a neck
region is subject to a dramatic reduction in the fluid shear
stress (Fig. 4A), falling at the bottom (position f in Fig. 4A)
to about 107> of the fluid shear stress on the outer mem-
brane. In line with the velocity, the shear stress inside a
caveola depends on the degree of membrane narrowing in
the neck region. The fluid shear stress inside the caveola
remains reduced even if the membrane neck region is par-
tially unfolded (Fig. 4B), but increases as the membrane is
stretched and the caveola reduced to an indentation (Fig. 4C).

The caveolar structure permits rapid diffusion of an ago-
nist through its open neck into its interior (Fig. 5) in the
absence of any structure that blocks the opening. An ago-
nist that is carried in the blood stream largely by convection
from an upstream location to the neck region of the caveola
encounters resistance to convective transport into the inte-
rior of the caveola (e.g., see frames between 1 and 24 ms
in Figs. 5, 6). At that instant of time, however, the agonist is
rapidly carried by diffusion across the neck into the interior of
a caveola; within a few milliseconds (frames between 24 and
40 ms of Fig. 5), the agonist concentration inside the caveola
of ~0.013 rises to a value of 1 (the normalized outside con-
centration) due to the relatively small dimensions of caveolae
(Fig. 6). The results in Figs. 5 and 6 were obtained by assum-
ing unimpaired diffusion across the neck. In the presence of
restricted diffusion in the neck or inside the caveolae, the
agonist entry time would be prolonged (see Sect. 4).

3.2 Fluid shear stress increases levels of pVEGFR-2,
but not its co-precipitation with caveolin-1

We examined shear-activated VEGFR-2 (Wang et al. 2002)
and its association with caveolin-1 in BAEC. Cells either
maintained under control condition (no-flow) or exposed to
12 dynes/cm? fluid shear stress for 5 min exhibited sim-
ilar levels of pVEGFR-2 that co-immunoprecipitated with
caveolin-1 (Fig. 7A). In contrast, compared to controls there
was an increased amount of pVEGFR-2 that did not co-
immunoprecipitate with caveolin-1 in BAEC exposed to
shear stress for 5 min (Fig. 7B). These results indicate that
shear stress activates VEGFR-2 located outside the caveolar
domains of the cell surface.
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Shear stress, dyn/cm2

Fig. 4 Topical view (left panels) and distribution profile (right line
graph) of the shear stress on the outside and inside membrane surface
of a caveolae. The color code for the shear stresses (left) is in units of

3.3 VEGF stimulation, but not shear stress exposure,
increases co-localization of VEGFR-2
with caveolin-1 on the endothelial membrane

Confocal analyses reveal a punctate localization of pVEGFR-
2 (green staining in Fig. 8) and caveolin-1 (red staining
in Fig. 8) on BAEC. The fluorescence is associated with
the membrane within the resolution of confocal microscopy
and observed either under no-flow condition (control), after
exposure to 12 dynes/cm? fluid shear stress, or after stimula-
tion with 25 ng/mL VEGF for 5 min (Fig. 8). Compared
to respective controls, stimulation of BAEC with VEGF
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(25 ng/mL), but not with fluid shear stress for 5 min,
resulted in a significant (p <0.05) increase in the co-
localization of pVEGFR-2 with membrane-bound caveolin-1
(Fig. 8).

4 Discussion

The results of the current study suggest that caveolae
may serve as an ideal structure to prevent exposure of
mechanosensitive membrane receptors to fluid shear stress
in the blood stream. The caveolar neck region restricts expo-
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Fig.5 Agonist concentration profile over a caveolae (case A in Figs. 2,
3,4), which is released from the left side into the plasma flow. The color
code for the fractional mass concentration (C1), which is normalized

sure of the plasma membrane inside the caveolae to the fluid
flow on the outer membrane, thereby minimizing the fluid
velocity inside the caveola. At the same time, the small size
of the caveola permits rapid diffusive transport of plasma pro-

24 msec

28 msec

32 msec

36 msec

by the concentration at the time of 40 ms where the concentration at the
bottom of the caveolae reached 1.3% compared to the one at the inlet,
is shown on the left

teins/peptides (i.e., ligands) into the interior, where a variety
of membrane receptors are located (Schnitzer et al. 1995;
Zhu and Smart 2003; Pike 2005; Chini and Parenti 2004).
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Fig.6 Normalized agonist concentration at the bottom of the caveolae
(cr, at point f) with an applied concentration (co = 1) during transport
in the blood stream by convection and diffusion according to Eq. 2 (full
circles) (same as in Fig. 5). For comparison, the concentration cy is
shown in the case of convection only without diffusion (open circles)

The particular flask-like shape of caveolae likely forms as
a consequence of the attachment of two membrane domains
with different resting stress-free membrane shapes, an inner
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Fig.7 Cellular lysates of BAEC either maintained under no-flow
conditions (C) or exposed to 12 dynes/cm? fluid shear stress for
5 min were immunoprecipitated (IP) with a polyclonal antibody for
caveolin-1 (Cav-1, A). The immunoprecipitates were electrophoresed
and immunoblotted (IB) for pVEGFR-2. Similar levels of pVEGFR-
2 were found to be associated with caveolin-1. Both VEGFR-2 and
caveolin-1 were immunoblotted to demonstrate equal lane loading (bot-
tom of A). When the same cell lysates were immunoprecipitated a
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curved membrane with spontaneous curvature (possibly
coated with caveolin) and an outer flat membrane without
caveolin. Assuming such resting shapes for the membrane,
the flask-like shape can arise assuming pure membrane bend-
ing energy or a combination of bending and in-plane shear
deformation energy (Kosawada et al. 2005). Chained vesicles
also assume a similar configuration of membranes with neck
regions and can form on the basis of the same fundamen-
tal assumptions (Kosawada et al. 1999, 2001; Kosawada and
Matsukawa 2003). Thus, a critical issue in the generation of
a caveola is the presence of an inner curved membrane with
an asymmetric lipid bilayer in which one leaflet is expanded,
a function that may well be recognized by the asymmetric
positioning of caveolin in the double lipid layer (Sternberg
and Schmid 1999).

We assumed in the current analysis that transport in the
plasma by diffusion is unrestricted across the neck and
inside the caveola (Figs. 5, 6). Consequently, caveolae may
rapidly fill with any molecule in plasma that is adjacent
to the endothelial membrane. However, the presence of a
diaphragm (Stan et al. 1999a) in form of the protein PV-1 in
the neck of a caveola (Stan et al. 1999b) may act as a molec-
ular sieve to hinder or even block the entry of larger plasma
proteins into the interior of the caveola.
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consecutive second time with VEGFR-2 antibodies (Panel B), lysates
of BAEC exposed to shear stress for 5 min contained increased amounts
of pVEGFR-2 that was not associated with caveolin-1 as demonstrated
by the absence of caveolin-1 in the immunoprecipitates (bottom of B).
Bar graphs are mean & SD band densities of pVEGFR-2/VEGFR-2 and
normalized by the band density of the IgG (n =3). IgG denotes the use
of a negative antibody control for the immunoprecipitations. *p <0.05
compared to control by Student’s 7 test
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Fig. 8 Regions of the plasmalemmal membrane on the apical surfaces
of BAEC either maintained under static no-flow conditions (A, CTL),
exposed to 12 dynes/cm? shear stress (B, SHEAR) or stimulated with
25 ng/mL VEGF (C, VEGF) for 5 min exhibited punctate staining
for caveolin-1 (red) and pVEGFR-2 (green) as visualized by confo-
cal immunofluorescence. Under all conditions tested, a percentage of
pVEGFR-2 co-localized with caveolin-1 (yellow regions in A—C, some
indicated by the arrowheads) as assessed by thresholding analyses of
discrete regions of endothelial surfaces derived from confocal micro-

In addition, the molecular sieve may also serve to further
reduce the velocity in the interior of a caveola, below the val-
ues in the current results derived without such a sieve. Thus,
the particular shape of caveolae may permit selective binding
of agonists to receptors in their interior, while they can effec-
tively shelter the same receptors from the effects of fluid shear
stress. This may be an important mechanism from two points
of view. Since a receptor that has been activated by fluid shear
may become unresponsive to agonist binding, caveolae may
serve as a mechanism to assure that receptors in their interior
can be activated by agonists without pre-activation by fluid
shear. Furthermore, in the presence of continuous free fluid
motion in the blood stream, the encounter and binding of a
soluble agonist and its receptor is under the control of fluid

40
35
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15
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% p-Flk-1 Co-Localized with Caveolin-1

CTL

VEGF

graphs of cells (inset images in D and E, yellow regions indicated by
small arrows). BAEC either maintained under control conditions as
well as cells exposed to fluid shear for 5 min exhibited similar percent-
ages of pVEGR-2 that co-localized with caveolin-1 (D). The percentage
of pVEGFR-2 co-localized to caveolin-1, however, was significantly
increased on VEGF-stimulated BAEC relative to controls (E). White
horizontal bars in confocal micrographs presented in A-E =2 pm.
Vertical bars in D and E are mean & SEM; n = at least 3 separate exper-
iments. *p <0.05 compared to control by Student’s 7 test

shear stress, a process that may reduce the binding times and
may favor dissociation. Caveolae may serve as a reservoir
for agonist-receptor interaction to ensure the signaling. In
addition, caveolae also serve as a membrane reservoir for
shear-sensitive signaling if the plasma membrane is being
stretched (Schmid-Schonbein et al. 1995; Lee 1990). Thus,
caveolae may serve multiple functions in receptor regulation.

The presence of caveolae in many cells—other than just
endothelial cells—indicates that basic physiological func-
tions are being fulfilled by these structures, above and
beyond the transcytotic transport process assumed in the
past. While there is evidence that caveolae have the ability
to transport ligands into peri-nuclear compartments (Han-
dley and Chien 1987; Chien et al. 1982; Anderson 1993),
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there is less evidence that these membrane structures act as
a shuttle mechanism across non-activated endothelium or in
connective tissue cells that also have caveolae. Most cave-
olar/vesicular profiles are attached to the plasma membrane
even if they appear as isolated vesicle membranes in the inte-
rior of the cell cytoplasm, as shown by labeling studies after
cell fixation (Chien et al. 1982). Caveolae made visible under
living conditions with fluorescent proteins show little move-
ment as seen by confocal microscopy (Thomsen et al. 2002).
The current hypothesis of caveolae as shelters for fluid shear
stress is compatible with the fact that many cell types have
caveolae even if located in the interstitial space (Lorenzen-
Schmidt et al. 2006; Garanich et al. 2005; Johnson et al. 1996)
where they are also exposed to fluid shear stress (Tada and
Tarbell 2002; Hillsley and Frangos 1994).

Evidence from studies (Woodman et al. 2003) involving
endothelium from caveolin-1(—/—) mice supports the role of
caveolae as membrane structures that may regulate activa-
tion of angiogenic growth factor receptors (such as flk-1)
under the influence of either ligand binding or shear stress.
The fact that these caveolin-1-deficient mice exhibit reduced
numbers of caveolae in parallel with a reduced ability for cap-
illary angiogenesis (Woodman et al. 2003) is compatible with
loss of their ability to differentiate between an agonist (i.e.,
VEGF) and a shear stress mediated mechanism. Caveolin-1-
deficient mice also have an “over-stimulated” endothelium as
indicated by constitutive e-NOS activation (Schubert et al.
2002), which may be due to the lack of caveolar shelters
that would protect the e-NOS from shear stress exposure.
The loss of caveolae may therefore cause mechanosensitive
receptors to be constantly exposed to shear, leading to recep-
tor pre-activation and overstimulation by fluid shear stress.
Consequently, constant exposure to fluid flow would atten-
uate the ability of endothelial cells to respond to agonist
stimulation.

The significance of caveolae as shear stress shelters is
revealed in studies utilizing mice with caveolin gene dele-
tions without caveolae in specific organs or cells. Besides
overstimulation of signaling pathways without caveolae,
they suggest that deletion of caveolin reduces the ability of
endothelial cells to orient in fluid shear stress (Yang et al.
2011) and attenuation of a fluid shear stress stimulation by
caveolae may be required for development of a normal, well-
oriented heart fiber structure (Park et al. 2002).

One family of receptors thought to play a role in mechan-
otransduction is tyrosine kinase growth factor receptors.
Previous reports demonstrate tyrosine phosphorylation of
flk-1 and tie-2 upon exposure of BAEC to fluid shear stresses
(Wang et al. 2002; Lee and Koh 2003). Moreover, these
receptors are present on the cell surface both inside and out-
side caveolae. In the present study, we provided evidence
(Figs. 7, 8) that, upon either mechanical (shear) or chemical
(VEGF) stimulation, phosphorylated flk-1 receptor is present
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inside caveolae (as indicated by their close association with
caveolin-1) as well as outside these membrane invaginations.
Under shear stimulation, however, phosphorylated flk-1 is
preferentially located outside caveolae consistent with our
mathematical model. Our model predicts the internal sur-
faces of caveolae to be subjected to low shear magnitudes
(Fig. 4) that may be below the threshold levels necessary
to activate flk-1. In contrast, stimulation of cells with VEGF
results in increased amounts of phosphorylated flk-1 receptor
outside as well as inside caveolae (Figs. 7, 8), which agrees
with our predictions for rapid diffusion of ligands into the
caveolar invaginations.

Rizzo and his colleagues designated the caveolae as
mechano-sensor centers (Rizzo et al. 1998b) due to the large
number of receptors inside the caveolae and the observa-
tion of significant e-NOS activation in isolated caveolae.
On the surface, this view appears to contradict the current
hypothesis. However, it is important to point out that those
investigators used a 1-min perfusion of the lung before isola-
tion of the caveolae by the silica coating technique (Jacobson
et al. 1992). They carefully checked that the enhanced e-
NOS activity is not the result of additional e-NOS being
recruited to the plasma membrane during the 1-min perfu-
sion. Perfusion of a living blood vessel in an organ, such
as the lung, is associated with a pressure-dependent disten-
sion of microvessels and their endothelial components (Fung
and Sobin 1972; Yen 1989), thus potentially causing the
unfolding of caveolae (Lee and Schmid-Schonbein 1995) and
exposing membrane receptors (e.g., e-NOS) to fluid shear
stress in the (micro)vascular lumens. In contrast, the current
observations in intact endothelial cells on a glass slide with-
out significant cell distension show low levels of receptor
activation under fluid shear if the receptors are located inside
the caveolae. The role of caveolae in signaling under con-
ditions that can cause cells to be stretched or relaxed and
caveolae to be unfolded or folded requires further investiga-
tions with careful control of the caveola density and shapes
during fluid flow, since the details of their shapes determine
the fluid shear stress on the plasma membrane.

An interesting question arises from the current proposal
of shear stress shelter whether activation of a receptor, like
VEGFR2, by fluid shear stress is different from its activa-
tion by VEGF. Whereas there may be distinct differences in
the time course of these two stimulants, the conformational
changes in the receptor associated with a fluid shear stress as
compared with binding of a ligand remain to be elucidated
by molecular simulation studies. The two different forms of
receptor stimulations could lead to differences in intracellu-
lar signaling.

In conclusion, caveolae, besides their classical role as
transport and signaling membrane structures, may also play
a role in the differential regulation of membrane receptor
activation by chemical ligands and fluid shear stress.
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