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Revenue management models traditionally assume that future demand is unknown, but can
be represented by a stochastic process or a probability distribution. Demand is however
often difficult to characterize, especially in new or nonstationary markets.

In this paper, we develop robust formulations for the capacity allocation problem in
revenue management, using the maximin and the minimax regret criteria, under general
polyhedral uncertainty sets. Our approach encompasses the following open-loop controls:
partitioned booking limits, nested fare classes by origin-destination pairs, Displacement-
Adjusted Virtual Nesting, and fixed bid prices. We also characterize the optimal booking
policy under interval uncertainty; while partitioned booking limits are optimal under the
maximin criterion, some nesting is desirable under the minimax regret criterion.

Our numerical analysis reveals that robust controls can outperform the classical heuristics
for network revenue management, while achieving the best performance in the worst case.
Our models are scalable to solve practical problems, because they combine efficient solution
methods (small mixed-integer and linear optimization problems) with very modest data
requirements.

1. Introduction

The field of revenue management (RM) originated in the airline industry as a way to ef-

ficiently allocate fixed capacity to different classes of customers. Since then, its scope has

expanded, combining capacity rationing with pricing tactics, and the concept has been ap-

plied to a variety of industries, such as hotels, rental cars, and media. See Talluri and van

Ryzin (2004b) for an overview of the field.

The decision to accept or reject an incoming customer is often made without knowing

future demand. Traditional RM models assume that future demand is unknown but can

be characterized by either a stochastic process representing the customer arrival process

(the dynamic models) or a probability distribution representing the aggregate number of

customers (the static models).
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Accurate forecasting is key to effective RM. The best forecasts are typically obtained by

gathering demand information from different sources (e.g., historical sales data, recent book-

ings, competitive environment), interpreting it carefully (e.g., sales data are only censored

demand data), and combining alternative forecasting methods, such as time series, regression

models, and subjective opinion (Boyd and Bilegan 2003). In general, quantitative forecast

methods are favored in stable business environments, where large amounts of historical data

are available and can be used to calibrate econometrics models. On the other hand, simple

forecasting methods are preferable when the business environment is new, nonstationary,

or subject to random shocks (e.g., pandemic crises), and when there is a large amount of

demand quantities to be estimated (about 2 million every day for a medium-size airline, see

Talluri and van Ryzin 2004b). Given the reliance of RM models on quantitative demand

information, one may wonder if RM is really effective without relevant historical data.

In this paper, we investigate the problem of allocating fixed network capacity to different

classes of customers without historical data. Instead of assuming that demand follows a

probability distribution, as is traditionally done, we only assume that it lies in a polyhedral

uncertainty set, giving enough flexibility to model information about the range, moments,

shape, correlation of the demand, data censorship, as well as subjective opinions. This

representation of uncertainty captures the stochastic nature of the problem, but remains

simple to estimate.

We consider the maximin and the minimax regret criteria for decision-making under

uncertainty. The maximin criterion guarantees a minimum level of profit, and is more

appropriate for risk-averse decision-makers. In contrast, the minimax regret criterion mini-

mizes the opportunity cost from not knowing the demand distributions and gives rise to less

conservative recommendations.

The booking policy considered in this paper generalizes the following controls, which are

frequently used in practice: nested booking limits, partitioned booking limits, Displacement-

Adjusted Revenue Virtual Nesting, and fixed bid prices. We develop simple formulations to

compute the worst-case performance (minimum revenue or maximum regret) of any policy

based on these controls. We also characterize the structure of the most robust policy under

interval uncertainty: While partitioned booking limits are optimal under the maximin cri-

terion, some nesting is desirable under the minimax regret criterion. Our numerical study

suggests that the proposed robust policies outperform the traditional open-loop controls,

especially in the presence of correlation or data censorship. Our approach is scalable to solve
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large network RM problems as it combines efficient solution procedures with very modest

data requirements.

Literature Review. The single-resource capacity control problem was introduced by Lit-

tlewood (1972) with two classes of customers arriving sequentially, and was subsequently

extended to multiple classes of customers (see Talluri and van Ryzin 2004b for a review).

With sequential arrivals, the optimal control can be achieved with nested protection levels,

nested booking limits, or bid-price tables (Talluri and van Ryzin 2004b). Several heuris-

tics, such as EMSR-a (Belobaba 1987) and EMSR-b (Belobaba 1992), also perform well in

practice.

The network RM problem is significantly more complex and little is known about the op-

timal policy. Consequently, the network RM problem is often solved heuristically, either by

approximating the revenue-to-go function in the dynamic program (Bertsimas and Popescu

2003, Adelman 2006), or by restricting the set of feasible policies. Commonly used controls

are partitioned booking limits, virtual nesting controls, bid prices (see Williamson 1988,

1992 for a numerical comparison among these controls), and nesting fare classes by itinerary

(Curry 1990 and Chi 1995). Partitioned booking limits and bid prices are usually obtained

with mathematical programming formulations, such as the Deterministic Linear Program

(DLP) (Dror et al. 1988), the Randomized Linear Program (RLP) (Talluri and van Ryzin

1999), and the Probabilistic Nonlinear Program (PNLP) (Wollmer 1986). Recent research

however shows that improved bid prices can be obtained with continuous-time optimal con-

trol formulations (Akan and Ata 2006) and approximate dynamic programming formulations

(Adelman 2006, Topaloglu 2006, Talluri 2007). The controls can then be fine-tuned with a

stochastic gradient algorithm based on demand samples (Bertsimas and de Boer 2005 and

van Ryzin and Vulcano 2005).

Traditional models of demand in RM have been subject to criticism, because they do

not capture sell-ups, buy-downs, demand correlation, group arrivals, and nonsequential or-

der of arrivals among others. To overcome these limitations, the following approaches have

been proposed: consumer-choice behavior, data-driven optimization, and robust optimiza-

tion. Consumer-choice models aim at better understanding the behavior of customers, by

disaggregating demand at the customer level; See Talluri and van Ryzin (2004a) and Zhang

and Cooper (2005) for recent developments in RM. In these models, the source of uncertainty

is no longer the number of requests for fares, but the customers’ probabilities of purchase
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when a limited set of products is offered. In contrast, data-driven optimization and robust

optimization are distribution-free techniques. While data-driven optimization use historical

data to learn and update the decisions, robust optimization only requires limited or no infor-

mation about demand. Hence, data-driven optimization is more effective in stable business

environments with large amount of available data, while robust optimization is more suitable

in nonstationary or new business environments where expert judgment is more critical.

Data-driven optimization for RM was pioneered by van Ryzin and McGill (2000), who

developed an adaptive algorithm to determine booking limits using sales data. More recently,

Bertsimas and de Boer (2005) and van Ryzin and Vulcano (2005) proposed stochastic gra-

dient methods for improving booking policies in network RM, using demand samples. In

stochastic inventory management, nonparametric methods have recently received a lot of

attention, after the work by Godfrey and Powell (2001), Levi et al. (2005), and Huh and

Rusmevichientong (2006). In dynamic pricing, Eren and Maglaras (2006) used historical

data to estimate the entropy-maximizing demand distribution while Rusmevichientong et

al. (2006) and Besbes and Zeevi (2006) analyzed multiproduct pricing problems for a single

and multiple resources, respectively.

In contrast, robust optimization models do not require historical data. Robust opti-

mization has recently received a lot of attention since Ben-Tal and Nemirovski (1999) and

Bertsimas and Sim (2004) among others developed a methodology to make robust but not

too conservative decisions. Robust approaches have been widely used in inventory control

with the maximin criterion (e.g., Scarf 1958, Gallego and Moon 1993, Gallego et al. 2001,

Bertsimas and Thiele 2006, Ben-Tal et al. 2005) and the minimax regret criterion (Yue et al.

2006, Perakis and Roels 2006). In RM, Birbil et al. (2006), Ball and Queyranne (2006), and

Lan et al. (2006) analyzed robust nested booking limits on a single leg. Birbil et al. (2006)

developed efficient algorithms to compute the maximin booking limits, partitioned or nested,

under ellipsoidal uncertainty. Ball and Queyranne (2006) studied nested booking limits in

a single problem using the competitive ratio, with no information about the demand, and

Lan et al. (2006) generalized their results to interval uncertainty. While they also cover the

minimax regret, our study is however more general as it also addresses network problems,

general polyhedral uncertainty sets, and general open-loop booking limit controls.

Outline. The paper is organized as follows. Section 2 reviews the classical network RM

problem, and §3 introduces the decision-theoretic framework. In §4, we propose a mixed-
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integer formulation for the minimax regret network RM problem, characterize its complexity

and the structure of its optimal solution under interval uncertainty, and then develop simpler

formulations and approximations when fare classes are either nested by origin-destination or

partitioned. In §5, we propose a mixed-integer formulation for the maximin problem, and

develop a simpler linear formulation when classes are partitioned. Numerical examples in

§6 illustrate the performance of the proposed policies, in comparison to existing heuristics.

Finally, §7 provides concluding remarks.

Notations. We begin by introducing some notational conventions. Vector (resp. matri-

ces) are denoted in small (resp. capital) bold letters. For a vector x, xj denotes its jth

component; similarly, for a matrix A, Aj represents the jth column and ai the ith row. All

vectors are column vectors, and x′ is the vector transpose. The function min{x,y} takes the

componentwise minimum of vectors x and y, and the function x+ takes the componentwise

maximum of x and 0. Let 1 be a vector of ones. Finally, we often use the terminology of the

airline industry (e.g., seats), but our analysis can be applied to any network RM problem.

2. Problem Statement

We first introduce the dynamic network RM problem following the presentation by Cooper

(2002). Consider a network with K resources (e.g., flights, night stays) and N products,

differentiated by origin-destinations and fare classes (ODF). Customers arrive according to

a certain (continuous or discrete) stochastic process over a finite time interval; let dj be the

random total demand for product j. There are c units available of resources. Each product

j has a unit revenue rj and consumes Aj units of resources.

We seek a policy π that maximizes the expected revenues r′E[nπ], where nπ is the vector

of total number of accepted requests when policy π is in use. The policy needs to satisfy

(almost surely, denoted by a.s.) the capacity constraints, i.e., Anπ ≤ c. The accepted

requests are nonnegative and cannot exceed the total demand, i.e., 0 ≤ nπ ≤ d. In addition,

the policy is required to be non-anticipating. That is, the acceptance/rejection decision at

each time t should be based only on the information acquired up to time t. Let Π be the set

of non-anticipating policies. The problem can then be formulated as follows:

sup
π∈Π

r′E[nπ],

s.t. Anπ ≤ c (a.s.), (1)
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0 ≤ nπ ≤ d (a.s.).

When the arrival process is discrete, Problem (1) can be formulated as a dynamic pro-

gram: At each (discrete) time t, given the level of available capacity, one needs to decide

whether to accept or reject the requests arriving in period t, in order to maximize the total

expected revenues until the end of the time horizon. The dynamic program formulation

highlights the structure of the optimal policy: a request for product j at time t is accepted

if and only if its fare rj exceeds the opportunity cost from consuming Aj units of capacity,

given the level of available capacity at time t (e.g., see Talluri and van Ryzin 2004b).

However, the dynamic program is rarely solved to optimality in practice due to its large

size. Its complexity can be reduced either by approximating the revenue-to-go function (e.g.,

see Bertsimas and Popescu 2003 and Adelman 2006), or by considering a subset of feasible

policies, such as booking limits and bid prices.

Booking Limits. Booking limits set a maximum on the number of requests that can be

accepted for a set of products. In a single-leg problem, products are naturally ordered by

fare and it is optimal to define booking limits over a nest of products. The booking limit

on nest j imposes a maximum on the total number of requests that can be accepted for

products with a fare lower than or equal to rj.

In a network environment, however, there is no natural ordering of products, and it is

not clear how to choose the nests. One alternative is to define booking limits for every

product. The total capacity is accordingly partitioned into N buckets. With partitioned

booking limits, Problem (1) simplifies to a PNLP, see Talluri and van Ryzin (2004b). When

the random demands are replaced by their mean, the problem of finding partitioned booking

limits reduces to the following DLP:

max
y

r′y,

s.t. Ay ≤ c,

y ≤ µ, (DLP )

y ≥ 0.

Another approach is to decompose the network problem into K single-leg problems, one

for each resource, and to define different nests on each resource. This methodology, called the

Displacement-Adjusted Virtual Nesting (DAVN), performs extremely well in practice (Smith
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et al. 1992). The approach relies on modifying the fares to account for network effects;

specifically, the fare of product j on leg k is calculated as rj −
∑

l 6=k:alj=1 pl, where p are the

shadow prices associated with the capacity constraints in the DLP. For every leg, products

are ordered in decreasing order of adjusted fare, and then grouped into a certain number

of buckets. Nested booking limits for these buckets are then computed, on every leg, using

either EMSR or DLP (see Bertsimas and de Boer 2005 for details). An incoming request is

accepted if there is sufficient capacity and if, on every leg, the booking limit of the associated

bucket has not been reached.

Bid-Price Controls. Also widely used are bid-price controls. In every period and for

every vector of resources, a price pk is associated with each resource k. A request for

product j is accepted at time t if and only if the collected fare rj exceeds the implicit cost

of consuming resources, A′
jp. Bid price controls are in general not optimal (Talluri and

van Ryzin 1998), yet they are widely used in practice. Usually, the shadow prices of the

DLP (possibly randomized, see Talluri and van Ryzin 1999) are chosen as bid prices, but

more recent methods use approximate dynamic programming (Adelman 2006 and Topaloglu

2006).

3. Decision-Theoretic Framework

In this paper, we assume only partial information about demand. Specifically, we assume that

the aggregate demand d belongs to a polyhedral uncertainty set P and make no assumption

about the arrival sequence. Let D be the set of multivariate stochastic processes, such that

d ∈ P , and let F be the feasible decision set, assumed to be compact. We denote by R(y,D)

the revenue associated with a decision y ∈ F when the demand process D is realized.

Decision-Making Criteria. Because the expected utility maximization criterion has no

meaning in a distribution-free environment, different decision criteria need to be consid-

ered. In this paper, we use the maximin and the minimax regret criteria, and refer to Ball

and Queyranne (2004) and Lan et al. (2006) for an analysis of the competitive ratio. The

minimax regret criterion is less conservative than the maximin criterion because it bench-

marks the decision made under uncertainty y against what would have been optimal to do in

more informed circumstances. In fact, the maximin criterion is better suited for risk-averse

decision-makers, as it guarantees a minimum level of revenue.
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• The maximin criterion selects the decision that maximizes the worst-case revenue,

where the worst case is taken over all demand processes under consideration, that is,

ϕ∗ = max
y∈F

min
D∈D

R(y,D). (2)

• The minimax regret criterion selects the decision that minimizes the maximum re-

gret, where the maximum is taken over all demand processes from D, that is,

ρ∗ = min
y∈F

ρ(y), (3)

where the regret ρ(y) is defined as the maximum additional revenue that could have

been obtained with full information about the demand process, i.e.,

ρ(y) = max
D∈D

{
max
z∈F

R(z,D)−R(y,D)

}
. (4)

The competitive ratio is similar to the minimax regret, but measures the regret in

relative, and not absolute, terms. It is in fact more risk averse than the minimax regret

because maximizing the competitive ratio with a linear utility function is equivalent

to minimizing the maximum regret with a logarithmic utility function.

Uncertainty Set. We now discuss the choice of the uncertainty set P . If the range of the

demand is known to be equal to [lj, uj], for every product j, then P = {d : l ≤ d ≤ u}. In

particular, P represents the set of all demand realizations.

When demand is characterized differently than by its range, however, one may want to

consider a smaller set than the set of all possible demand realizations. For instance, when

only the mean of all demands is known, the set of all demand realizations is the nonnegative

orthant, which is arguably conservative. Consistently with the recent developments in robust

optimization (see Ben-Tal and Nemirovski 1999 and Bertsimas and Sim 2004), we denote by

P(η) the polyhedral uncertainty set, such that Pr[d ∈ P(η)] ≥ η. Accordingly, the maximin

revenue ϕ∗ and the minimax regret ρ∗, defined over the all multivariate stochastic processes

with d ∈ P(η), are guaranteed only with probability η. In particular, ϕ∗ can be viewed as

the distribution-free analog of the Value-at-Risk criterion.

When the polyhedron is only defined by intervals, the probability of the demand vector

satisfying the constraints can be computed explicitly, e.g., using Markov’s, Chebyshev’s, or

Gauss’ inequalities (Popescu 2005). For general uncertainty sets, the probabilistic guarantee
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can be found by solving a moment bound problem (see Bertsimas and Popescu 2005 and

Popescu 2005). In effect, moment constraints can specify (or bound) the mean, variance,

and correlation among the different demands, as well as the probability that demand exceeds

a certain threshold (as when only censored demand information is available), and shape

constraints can specify the symmetry or the mode of the distribution. If P is represented as

the intersection of a polynomial (in the problem data) number of hyperplanes, the moment

bound problem can be solved in polynomial time (in the problem data), see Bertsimas and

Popescu (2005).

In general, building the uncertainty set [lj, uj] around the median is more robust than

around its mean. Indeed, Perakis and Roels (2006) showed that, in the context of the

newsvendor model, knowing the median is in general more informative than knowing the

mean. Because of the strong connection between RM and the newsvendor model, we expect

the same information levels to hold here. Incidentally, the median is also easier to estimate

than the mean, for it is less affected by censored demand data.

Open Loop Booking Limit Controls. In this paper, we investigate the robustness

of booking limit controls and assume standard nesting (as opposed to theft nesting, see

Bertsimas and de Boer 2005). For every set of products S ∈ S, we define a booking limit

yS. Let xj be the realized sales of product j. Then, the booking limit control ensures that
∑

j∈S xj ≤ yS, for every set S ∈ S. We further assume that the controls are open loop, i.e.,

they are not state-dependent.

These controls generalize the partitioned booking limits (take S = ∪N
j=1{j}), the nested

booking limits on a single leg (take S = ∪N
j=1{j, j + 1, ..., N}), the DAVN booking limits

(take S = ∪K
k=1 ∪Nmax

j=1 {Bk
j , Bk

j+1, ..., B
k
Nmax} where Bk

j is the set of classes in bucket j on

leg k), and the fixed bid prices (take S = ∪N
j=1{j}, and set yj = uj if rj ≥ p′Aj, and

yj = 0 otherwise). They cannot, however, substitute for bid price tables (in which a vector

of bid prices is specified for each level of capacity) or theft nesting, because these controls

are state-dependent.

4. Minimax Regret

In this section, we first formulate and characterize the general minimax regret problem. We

then analyze in more details a specific booking limit policy, which nests fare classes by origins
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and destinations. We show that, for this particular policy, the minimax regret problem (3)

can be formulated as a a linear optimization problem (LP) with an exponential number of

constraints, which leads to a sequence of lower bound approximations. We also provide an

explicit solution for the minimax regret nested booking limits on a single leg and propose an

upper bound approximation on the minimax regret for partitioned booking limits.

4.1 Problem Formulation

We first formulate the inner problem in (3) as a mixed-integer optimization problem (MIP),

for given open-loop booking limits y, and characterize its complexity. Let x be the realized

sales, in the worst case, under policy y. The policy y is benchmarked against the perfect

hindsight policy z, determined after observing the demand process. Clearly, the realized sales

under policy z are exactly equal to z. The maximum regret ρ(y) measures the maximum

difference in revenues between the perfect hindsight policy z and policy y, i.e., max{r′z−r′x},
where x are the realized sales under the booking policy y.

We now formulate the constraints that z and x need to satisfy. Let d be the demand

vector. From the preceding discussion, we assume that d ∈ P(η), where P(η) is a polyhedron.

By definition of our booking limit policy,
∑

j∈S xj ≤ yS, for all S ∈ S. One cannot sell more

than the demand; therefore, z ≤ d and x ≤ d. Moreover, one cannot sell more than the

available capacity; therefore Az ≤ c and Ax ≤ c. Sales are also nonnegative, i.e., z ≥ 0 and

x ≥ 0.

Finally, we model the dynamic dimension of the system. Because arrivals are sequential,

if the realized sales xi are less than the optimal sales zi for some product i, while the booking

limits are not constraining, i.e.
∑

j∈S xj < yS for all S ∈ S such that i ∈ S, then one should

have run out of capacity. In particular, one should have accepted requests for other products,

which would have been rejected under the optimal policy z, and these requests have depleted

the resources to the point that all requests for i cannot be met. That is, the maximum regret

needs to be optimized over all possible sequences of arrivals. Although there is virtually an

infinite number of sequences, we show next how to formulate this problem with at most

|S|+ N + K binary variables.

Let αj, j = 1, ..., N , be a binary variable, equal to 1 if xj = dj, equal to zero otherwise.

Because x ≤ d, we can formulate this condition as follows: d ≤ x + M(1−α), where M is

a large number.
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Let βS, S = 1, ..., |S|, be a binary variable, equal to 1 if the booking limit on products in

S has been reached, i.e.,
∑

j∈S xj = yS, and equal to zero otherwise. Because
∑

j∈S xj ≤ yS,

for all S ∈ S, we can formulate this condition as follows:
∑

j∈S xj ≥ βSyS for all S ∈ S.

Finally, let γk, k = 1, ..., K, be a binary variable, equal to 1 if the k-th capacity constraint

is binding with the realized sales x, i.e., a′kx = ck, equal to zero otherwise. Because Ax ≤ c

and Ax ≥ 0, we can formulate this condition as follows: a′kx ≥ ckγk for all k = 1, ..., K.

If the realized sales are less than the optimal sales, i.e., xj < zj, or alternatively, if xj < dj

(because zj ≤ dj), then either one of the booking limits has been reached, i.e.,
∑

S:j∈S βS ≥ 1,

or one of the resources has been depleted, i.e., A′
jγ ≥ 1. on the other hand, if no booking

limit has been reached, then either the sales equal the demand, i.e., αj = 1, or one of the

resources has been depleted. Finally, if no capacity constraint is binding, then either the

sales equal the demand, or one of the booking limits have been reached. Combining these

statements observations to the following constraint:

A′
jγ + αj +

∑
S:j∈S

βS ≥ 1, j = 1, ..., N.

We are now ready to present the MIP formulation of the maximum regret:

ρ(y) = max
z,x,d,α,β,γ

r′z− r′x,

s.t. Az ≤ c,

0 ≤ z ≤ d,

Ax ≤ c,
∑

j∈S xj ≤ yS, S ∈ S,

0 ≤ x ≤ d, (5)

d ≤ x + M(1−α),
∑

j∈S xj ≥ βSyS, S ∈ S,

a′kx ≥ ckγk, k = 1, ..., K,

A′
jγ + αj +

∑
S:j∈S βS ≥ 1, j = 1, ..., N,

d ∈ P(η),

α ∈ {0, 1}N , β ∈ {0, 1}|S|, γ ∈ {0, 1}K .

The maximum regret (5) allows direct comparison of different policies, including DAVN,

partitioned booking limits, and bid prices, without having to estimate the demand distribu-

tion and arrival processes, at a moderate computational and forecasting cost.
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The next lemma presents an alternate formulation of the maximum regret problem.

Lemma 1. Problem (5) is equivalent to the following bilevel linear optimization problem

(BLP):

ρ(y) = max
z,d,x

r′z− r′x,

s.t. Az ≤ c,

0 ≤ z ≤ d,

d ∈ P(η),

x ∈ arg maxx 1′x,

s.t. Ax ≤ c,
∑

j∈S xj ≤ yS, S ∈ S,

0 ≤ x ≤ d.

Proof. Let (γ,β,α) be boolean variables associated with the constraints of the lower level

problem, equal to 1 if the respective constraint is tight, and equal to 0 otherwise. By Theorem

4.1 in Hansen et al. (1992), every optimal solution of the lower level problem satisfies

A′
jγ + αj +

∑
S:j∈S βS ≥ 1, j = 1, ..., N . Conversely, consider an optimal solution to (5),

and suppose that x is not a maximum flow; then some xj can be increased, a contradiction

because at least one of the constraints involving xj is tight.

Incidentally, the lower level problem is a maximum flow problem and is therefore always

feasible, for any upper level solution (z,d). Consequently, there exists an optimal solution

to the maximum regret problem that is an extreme point of the following polyhedron (see

Hansen et al. 1992):

{
(z,d,x) : Az ≤ c,0 ≤ z ≤ d,d ∈ P(η),Ax ≤ c,

∑
S:j∈S

xj ≤ yS ∀S ∈ S,0 ≤ x ≤ d

}
.

In particular, the worst-case demand vector d is an extreme point of the polyhedron P(η).

For instance, under interval uncertainty, the worst-case demand is either at its lower bound

or at its upper bound.

The next proposition characterizes the complexity of Problem (4): Not only is the inner

problem NP-hard, but the outer problem is also non convex. As a result, it will be critical
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to introduce some simplifications, or develop good approximations to make the method

practical.

Proposition 1.

(a) Evaluating ρ(y) is strongly NP-hard.

(b) ρ(y) may not be quasiconvex.

Proof. (a) From Lemma 1, the evaluation of ρ(y) involves the solution of a BLP, which

has been shown to be strongly NP-hard (Hansen et al. 1992).

(b) Consider the following three-class single-leg problem with partitioned booking limits

(i.e., S = {{1}, {2}, {3}}), with r = [3, 2, 1], c = 6, and P = {d|d1 = 6, d2 = 5, d3 = 2},
that is, demand is deterministic. With y1 = [6, 5, 1], ρ(y1) = (6×3)−(5×2+1×1) = 7

and with y2 = [6, 3, 3], ρ(y2) = (6× 3)− (1× 3 + 3× 2 + 2× 1) = 7. In contrast, with

y = (y1 + y2)/2 = [6, 4, 2], ρ(y) = (6× 3)− (4× 2 + 2× 1) = 8 > max{ρ(y1), ρ(y2)}.
Therefore, the function is not quasiconvex.

Structure of the Optimal Booking Policy. We now proceed to characterizing the

structure of the optimal booking limit policy under interval uncertainty. Proposition 2

considers substitute products, i.e., products sharing common resources, while Proposition 3

considers complementary products.

Proposition 2. If lj ≤ dj ≤ uj, with lj < uj, ∀j, a nested booking policy on classes i and

j, i.e., xj ≤ yj and xi + xj ≤ yi + yj, is optimal only if for all K ⊆ {1, ..., N} such that

Ai = Aj +
∑

k∈KAk, ri ≥ rj +
∑

k∈K rk. Otherwise, if min{Ai,Aj} 6= 0, a partitioned

booking limit policy on classes i and j, i.e., xi ≤ yi and xj ≤ yj, is optimal.

Proof. We first show that the nesting strategy is optimal if the condition holds. Consider

sending a unit of flow through a subnetwork consisting of three nodes, with Ai = [1, 1]′,

Aj = [1, 0]′ and Ak = [0, 1]′, where product k is obtained from aggregating all products in

K. Accordingly, ri ≥ rj +rk. We study the performance of a partitioned booking limit policy

on the first resource, that is, xj ≤ yj and xi ≤ yi, with no restriction on product k. Because
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there is only one unit of capacity available, xi +xj ≤ 1. Under the partitioned booking limit

strategy, the maximum regret is attained at one of the following:

ρ1 = ri(1− yi),

ρ2 = (rj + rk)(1− yj),

ρ3 = ri − rjyj − ri min{1− yj, yi},

where the first regret is incurred when there is only demand for i, the second when there is

only demand for j and k, and the third when there is demand for products i and j, with

that for i arriving before that for j. Clearly, it is optimal to set yi + yj ≥ 1, that is, the

sum of booking limits is larger than the available capacity, and ρ3 = (ri − rj)yj. The first

regret is minimized when yi = 1 and the second and third when they are set equal, i.e., when

yj = (rj + rk)/(ri + rk) < 1. In other words, the optimal booking policy must be nested.

Clearly, for more general networks, i.e., nonunit capacity and constraining demand upper

bounds, the structure of the optimal policy remain the same, while the actual values of the

optimal booking limits may be different.

We now show that partitioned booking limits are optimal whenever the condition does

not hold, that is, when either there exists some K such that Ai = Aj +
∑

k∈KAk and

ri ≤ rj +
∑

k∈K rk, or more generally, when Ai 6⊆ Aj. To see this, consider sending a unit

of flow through a four-node subnetwork, with Ai = [0, 1, 1]′, Aj = [1, 1, 0]′, Ak = [0, 0, 1]′,

and Al = [1, 0, 0]′. Without loss of generality, let the revenues satisfy rj + rk > ri + rl > rj,

where rl may or may not be equal to zero. When rl = 0, we can aggregate products i and l

to get Ai = Aj + Ak and ri < rj + rk; when rl > 0, then Ai 6⊆ Aj and Aj 6⊆ Ai (therefore,

if ri + rl > rj + rk, swapping indices would leave the structure of the network unchanged).

We study the performance of a partitioned booking limit policy on the second resource, that

is, xj ≤ yj and xi ≤ yi, without restrictions on products k and l. Because there is only one

unit of capacity available, xi + xj ≤ 1. Under the partitioned booking limit strategy, the

maximum regret is attained at one of the following:

ρ1 = (ri + rl)(1− yi),

ρ2 = (rj + rk)(1− yj),

ρ3 = (ri + rl)− rjyj − (ri + rl) min{1− yj, yi},
ρ4 = (rj + rk)− riyi − (rj + rk) min{1− yi, yj},
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where the first regret is incurred when there is only demand for i and l, the second when there

is only demand for j and k, the third when there is demand for products i, j, and l, with that

for i arriving before that of j, and the last when there is demand for products i, j, and k, with

that for j arriving before that of i. Clearly, it is optimal to set yi +yj ≥ 1, that is, the sum of

booking limits is larger than the available capacity. The first and fourth regrets are functions

of yi only, respectively decreasing and increasing with yi; accordingly, the maximum regret

is minimized when both functions are set equal, that is, when yi = (ri +rl)/(rj +rk +rl) < 1.

Similarly, the second and third regrets are functions of yj only, respectively decreasing and

increasing with yj; the maximum regret is therefore minimized when they are set equal, that

is, when yj = (rj + rk)/(ri + rk + rl) < 1. Therefore, an optimal booking policy must be

partitioned. Clearly, the structure of the optimal booking policy remains unchanged in more

general networks.

Therefore, nesting booking limits may be optimal, but it needs to be used parsimoniously.

In particular, nesting is optimal among all products with the same OD pair but different

fares, proving the robustness of the policy proposed by Curry (1990) and Chi (1995) and

corroborating the result by Lan et al. (2006) for single-leg networks. Accordingly, the next

section will be devoted to approximating the minimax booking limits under this policy.

However, too much nesting may hurt more than help. In fact, nesting classes gives flexi-

bility not only to the decision-maker, but also to the “clairvoyant adversary” who maximizes

the regret by choosing the worst demand scenario and sequence of arrivals. If the condi-

tion of Proposition 2 is not met, the adversary will always first release a large demand for

low-revenue products, in order to consume capacity, before releasing a large demand for high-

revenue products, which would then have to be rejected by lack of available capacity. In this

case, it is optimal to restrict the flexibility of both the decision-maker and the adversary.

The next proposition develops a necessary optimality condition on the booking limits of

complementary products. To the best of our knowledge, this is the first structural result

exploiting complementarity in a network.

Proposition 3. Suppose that K is a set of complementary products, that is mini∈K{Ai} = 0.

Moreover, suppose that there exists a product k such that
∑

i∈KAi = Ak with rk > ri, ∀i ∈ K,

and
∑

i∈K ri > rk. Then, if lj ≤ dj ≤ uj, ∀j, it is optimal to have xi ≤ yi + xj for every

i, j ∈ K.
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Proof. Without loss of generality, consider sending a unit of flow through the three-node

subnetwork, with Ai = [1, 0]′, Aj = [0, 1]′, and Ak = [1, 1]′. Because of the existence of

product k, it is optimal to impose a booking limit on each product, by Proposition 2, that

is, xi ≤ yi and xj ≤ yj, where yi < 1 and yj < 1. When there is demand for only products i

and j, the regret equals

ρ = (ri + rj)− riyi − rjyj.

Suppose that the booking limits are modified as follows: xi ≤ yi +xj and xj ≤ yj +xi. Then

the regret under this demand scenario is lowered to:

ρ = max {(ri + rj)− riyi − rj min{1, yj + yi}, (ri + rj)− rjyj − ri min{1, yj + yi}} ,

while the regrets under the other demand scenarios (e.g., with positive demand for product

k), remain unchanged. Hence, the modified booking limits, exploiting the complementarity

between products, are optimal.

Although the condition under which Proposition 3 holds may seem restrictive, it applies

in many situations. In hotel RM for instance, customers can book per night or per stay, and

discounts may be offered for longer stays.

As a consequence of Proposition 2, neither partitioned booking limits nor bid prices

are in general optimal for a network problem. In fact, partitioned booking limits are always

dominated by booking limits nested by OD pairs, by Proposition 2, and bid prices are always

dominated by partitioned booking limits, since any bid-price policy p can be expressed as

a partitioned booking limit policy, by setting yj = uj whenever rj > p′Aj and yj = 0

otherwise, for all j = 1, ..., N . 1

4.2 Nesting Fare Classes by Origin-Destination Pairs

In this section, we characterize the minimax regret policy when booking limits are set only

on products with the same OD pair. Formally, {i, j} ⊆ S ∈ S only if Ai = Aj. In

1However, if the partitioned booking limits are required to satisfy the capacity constraints, i.e., Ay ≤ c,
neither policy dominates. To see this, consider the following three-class single-leg problem, with a unit
capacity, l = 0 and u = 1. When r = [3, 2, 1]′, the optimal bid-price policy, setting p = 3/2, leads to a regret
of 1 while the optimal partitioned booking limit policy, setting y1 = 3/5, y2 = 2/5 and y3 = 0, yields a regret
of 6/5. On the other hand, when r = [3, 2, 3/2]′, the optimal bid-price policy, setting p = 3/2, leads to a
regret of 3/2 while the optimal partitioned booking limit policy, setting y1 = 5/9, y2 = 1/3 and y3 = 1/9,
yields a regret of 4/3.
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addition, we assume that the booking limits on the same products are nested, i.e., if i ∈
S, S ′ ∈ S, then either S ′ ⊂ S or S ⊂ S ′. This booking limit policy is similar to the policies

proposed by Curry (1990) and Chi (1995). In fact, it generalizes the classical nesting policy

S = ∪N
j=1{j, j + 1, ..., N} in a single-leg problem, as well as partitioned booking limit policy

S = ∪N
j=1{j} in a general network problem.

Moreover, we assume that the booking limits satisfy the capacity constraints, i.e., Ay ≤
c. While this simplification may be suboptimal in general (e.g., consider a single leg two-

class problem with partitioned booking limits: if r1 = r2, it is optimal to set y1 = y2 = c),

it can be made without loss of optimality for a the single-leg problem with nested booking

limits. Moreover, most existing booking limit controls (such as those derived from the

DLP) satisfy this assumption. Under this assumption, and under interval uncertainty, i.e.,

P = {d : l ≤ d ≤ u}, we demonstrate that Problem (3) simplifies to an LP with an

exponential number of constraints.

In the sequel, we focus on maximal subsets from S, i.e., sets S ∈ S such that there exists

no other S ′ ∈ S with S ⊂ S ′. In particular, let Smax be the set of maximal subsets. Without

loss of generality, we assume that products using the same resources are ordered by fare,

and that maximal subsets comprise adjacent indices only, that is, if {i, j} ⊆ S ∈ Smax, with

i < j, then Ai = Aj, ri < rj, and {i, i + 1, ..., j − 1, j} ⊆ S.

Lemma 2. Suppose that P = {d : l ≤ d ≤ u}. Then, the maximum regret on set S ∈ Smax

from following policy y instead of policy z equals

ρS(y, z) =
∑

j≤τ :j∈S,zj<lj

rj(zj −min{lj, yj}) +
∑

j>τ :j∈S

rj(zj − yj), (6)

where τ = min{j < t : j ∈ S, yj < lj} and t = min{j ∈ S : zj > yj}. If zj ≤ yj for all j ∈ S,

we set t = N + 1. If t = min{j ∈ S}, or if yj ≥ lj for all j < t, j ∈ S, set τ = t− 1.

Proof. For all j ≥ t, j ∈ S, the worst-case demand is equal to max{zj, yj}. To see this,

suppose that dj < zj for some j with zj ≥ yj; the regret can be increased by rj(zj − dj)

by increasing dj, a contradiction. Suppose now that dj < yj for some j with yj > zj. In

particular, let j∗ = min{j ≥ t, j ∈ S : dj < yj, yj > zj} and let k∗ = max{j < j∗, j ∈ S : zj >

yj}; such a k∗ exists by definition of t. In this case, (yj∗−dj∗) units of capacity are available to

satisfy the demand of product k∗; increasing the demand dj∗ by ∆ = min{yj∗−dj∗ , zk∗−yk∗}
increases the regret by (rk∗ − rj∗)∆ > 0, a contradiction. As a result, for all j ≥ t, j ∈ S,

the regret equals rj(zj − yj).
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For all j ∈ S, τ < j < t, the worst-case demand equals max{yj, lj} To see this, suppose

that dj < yj for some j with yj > lj. In particular, let j∗ = min{j > τ, j ∈ S : dj < yj, yj >

lj} and let k∗ = max{j < j∗, j ∈ S : lj > yj}; such a k∗ exists by definition of τ . In this case,

(yj∗ − dj∗) units of capacity are available to satisfy the demand of product k∗; increasing

the demand dj∗ by ∆ = min{yj∗ − dj∗ , lk∗ − yk∗} increases the regret by (rk∗ − rj∗)∆ > 0, a

contradiction. As a result, for all τ < j < t, j ∈ S, the regret equals rj(zj − yj).

Finally, for all j ≤ τ , the worst-case demand is equal to max{zj, lj}. Because yj ≥ zj,

the regret is therefore equal to zero when zj ≥ lj, and to rj(zj −min{yj, lj}) otherwise.

Hence, in the worst case, the demand pattern is such that capacity allocated to a partic-

ular set of products S is never used for other products. That is, if S ⊂ S ′ and there exists

some product j ∈ S ′ \ S for which zj ≥ yj, then the booking limit on S is always reached in

the worst case.

The next proposition demonstrates that, when the demand uncertainty set is defined by

bound constraints, and when the booking policy nests only products with the same OD pair,

the minimax regret problem can be formulated as an LP.

Proposition 4. When fare classes are nested by OD pair, when P = {d : l ≤ d ≤ u}, and

when Ay ≤ c, the minimax regret problem (3) can be formulated as the following LP:

min
ρ,y,w

ρ,

s.t. ρ ≥ R({tS}S∈Smax)−∑N
j=1 rjwj({tS}S∈Smax), ∀{tS}S∈Smax

wj({tS}S∈Smax) ≤ yj, ∀j, ∀{tS}S∈Smax (7)

wj({tS}S∈Smax) ≤ lj, ∀j < tS : {j, tS} ⊆ S ∈ Smax,∀{tS}S∈Smax

Ay ≤ c,

0 ≤ y ≤ u,

where {tS}S∈Smax is a set of products, with only one product per set S ∈ Smax, such that

tS ∈ S ∪ {N + 1} for every S ∈ Smax and where

R({tS}S∈Smax) = max
z

r′z,

s.t. Az ≤ c, (8)

0 ≤ z ≤ u,

zj ≤ lj ∀j < tS : {j, tS} ⊆ S, S ∈ Smax.
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Proof. The maximum regret equals

ρ(y) = max
z

∑
S∈Smax

ρS(y, z),

Az ≤ c,

0 ≤ z ≤ u,

where, by Lemma 2, the maximum regret for each S ∈ Smax equals

ρS(y, z) = max
t∈S∪{N+1}





∑

j<t:j∈S,zj<lj

rj(zj −min{lj, yj}) +
∑

j≥t:j∈S

rj(zj − yj)



 .

Alternatively, one can invert the order of maximization, by first maximizing with respect

to the indices t, for each set S ∈ Smax, denoted by {tS}S∈Smax , and then maximizing with

respect to the policy z, that is

ρ(y) = max
{tS}S∈Smax

{
R({tS}S∈Smax)−

∑
S∈Smax

∑
j<tS :j∈S

rj min{yj, lj} −
∑

S∈Smax

∑
j≥tS :j∈S

rjyj

}
,

where R({tS}S∈Smax) is defined by (8).

The minimax regret problem can then be formulated as

min
y

max
{tS}S∈Smax

{
R({tS}S∈Smax)−

∑
S∈Smax

∑
j<tS :j∈S

rj min{yj, lj} −
∑

S∈Smax

∑
j≥tS :j∈S

rjyj

}
,

s.t. Ay ≤ c,

0 ≤ y ≤ u,

and can therefore be transformed into an LP.

When demand is deterministic, lj = uj = µj for all j = 1, ..., N , the regret ρ equals

a constant, equal to the optimal solution of the DLP, from which
∑N

j=1 rjyj is subtracted.

Equivalently, the problem consists in maximizing r′y, subject to the capacity and the upper

bound constraints. That is, Problem (7) reduces to the DLP.

Problem (7) has an exponential number of constraints, corresponding to the number of

possible choices for {tS}S∈Smax . Specifically, because only one index per set S is selected,

and that there is a choice among |S|+ 1 possible indices (i.e., all products from S as well as

{N +1}), the optimization problem has (|S1|+1)×(|S2|+1)× ...×(|S|Smax|+1), constraints.

In particular, when classes are partitioned, there are 2N constraints.
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The exponential number of constraints is not surprising in light of Proposition 1 (a).

Nevertheless, the explicit formulation of the minimax regret problem as an LP gives rise

to a sequence of lower bounds on the minimax regret, by considering only a subset of the

constraints in (7). In addition, there is a case where the size of the optimization problem

remains tractable, which we examine next.

4.2.1 Single-Leg Problem with Nested Booking Limits

When there is only one leg, and that all classes are nested together, i.e., S = ∪N
j=1{j, j +

1, ..., N}, there are at most N + 1 constraints in (7). Moreover, Subproblem (8) has an

explicit solution.

Corollary 1. When P = {d : l ≤ d ≤ u}, the minimax regret problem (3) on a single leg

can be formulated as the following LP:

min ρ

s.t. ρ ≥ ∑t−1
j=1 rjwj + gt −

∑N
j=t rjyj t = 1, ..., N ′,

∑N
j=1 yj ≤ c, (9)

wj ≥ lj − yj j = 1, ..., N,

yj ≤ uj j = 1, ..., N

wj ≥ 0, yj ≥ 0 j = 1, ..., N.

where N ′ is the smallest integer t ≤ N such that c ≤ ∑t
j=1 lj, or equal to N otherwise and

where

gt =
N∑

j=t

rj

(
min{uj, c−

t−1∑
i=1

li −
j−1∑
i=t

ui}
)+

.

Proof. When tS = t, the optimal solution to (8) is defined recursively as follows:

zj = min{c−
∑
i<j

zi, lj} j < t,

zj = min{c−
∑
i<j

zi, uj} j ≥ t.

Therefore, when t ≤ N ′, R(t) =
∑

j<t rjlj + gt. Substituting the optimal value of R(t) into

(7) completes the proof.
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In fact, Problem (9) has an explicit solution, as shown in the next proposition. Lan et

al. (2006) independently proved the same result, using a competitive analysis argument.

Proposition 5. When P = {d : l ≤ d ≤ u}, the minimax regret nested booking limits, for

the single-leg RM problem are equal to the following:

yj =
(

min{c−∑
i<j yi,

1
rj

(gj − gj+1)}
)+

, if j < N,

yN = c−∑
i<N yi

Proof. Let y∗ be an optimal solution of (9), and let t = arg max{j : yj > 0}. Accordingly,

wj = 0 for all j < t (because yj ≥ lj). With y∗, the t− 1 constraints (in which the terms yj,

j < t, only appear) are tight, together with the capacity constraint. Solving this system of t

equations with t unknowns, one obtains that y∗j = (gj − gj+1)/rj and y∗t = c−∑
j<t y

∗
j .

Full Uncertainty. In the case of complete uncertainty, i.e., lj = 0 and uj ≥ c, the minimax

regret booking limits simplify to

yj = min{c(1− rj+1

rj
), (c−∑

i<j yi)
+} if j < N,

yN = c−∑
i<N yi.

Therefore, if the total capacity is ample and if the spread between fares is small, every

class but the last one is allocated some fraction (1 − rj+1/rj) of the total capacity. The

proportionality of the capacity allocation to the ratio of fares is similar to Littlewood’s

formula (Littlewood 1972) or EMSR-a (Belobaba 1987).

4.2.2 Minimax Randomized Regret for Partitioned Booking Limits

As mentioned earlier, Problem (7) has an exponential number of constraints, equal to 2N ,

when classes are partitioned. In this section, we propose an approximation procedure, dif-

ferent from considering a subset of constraints in (7), by randomizing the perfect hindsight

solution z. Specifically, instead of formulating the problem of choosing the booking lim-

its z as a MIP, we assume that the booking limits z can be randomized and the capacity

constraint must hold only in expectation, that is AE[z] ≤ c. Under this assumption, the

minimax regret network RM problem (3) is relaxed to

min
y:Ay≤c,y≥0

{
max
Z∈Z

max
D∈D

EZ[R(Z,D)−R(y,D)]

}
, (10)

where Z is the set of nonnegative multivariate distributions such that AE[z] ≤ c. We call

(10) the minimax randomized regret. Because Az ≤ c (a.s.) ⇒ AE[z] ≤ c, the minimax
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randomized regret is an upper bound on the minimax regret (3). The next proposition shows

that the minimax randomized regret problem can be efficiently solved.

Proposition 6. The minimax randomized regret network RM problem (10) with partitioned

booking limits can be formulated as the following LP:

min
p,q,y

p′c + q′1

s.t. Ay ≤ c,

p′AU + q′ ≥ r′(U−Y),

p′AL + q′ ≥ 0,

p′AL + q′ ≥ r′(L−Y), (11)

q′ ≥ −r′L,

q′ ≥ −r′Y,

y ≤ u,

p,y ≥ 0.

where U,L,Y are diagonal matrices in which the diagonal elements correspond to u, l, and

y respectively.

Proof. Let δ0
j , δ

l
j, and δu

j the probabilities that the optimal booking limit zj equals 0, lj, and

uj respectively. Since any feasible value for zj can be expressed as a convex combination

of these three points, δ0
j + δl

j + δu
j = 1, and these probabilities are between 0 and 1. With

partitioned booking limits, the maximum regret associated with product j as defined in

Lemma 2 simplifies to

ρ(zj, yj) =

{
rj(zj − yj) if yj < lj,
rj {zj − lj, (zj − yj)

+} if yj ≥ lj,

which is piecewise increasing. The maximum randomized regret therefore corresponds to

the concave envelope of this function, which is also piecewise increasing with at most three

breakpoints at zero, lj, and uj. (The regret when zj = yj can always be replicated, or

dominated, by randomizing zj.) In particular, the regret equals rj(uj − yj) when zj = uj,

rj max{0, lj − yj} when zj = lj, and −rj min{yj, lj} when zj = 0. Therefore, the maximum

randomized regret problem can be formulated as follows:

max r′(U−Y)δu + r′ max{0,L−Y}δl − r′ min{L,Y}δ0,
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s.t. δu + δl + δ0 = 1,

A(Uδu + Lδl) ≤ c,

δu, δl, δ0 ≥ 0.

Let p and q be the dual variables respectively associated with the capacity constraints

and the probability normalization constraints. By strong duality, the above problem is

equivalent to its dual, which is a minimization problem. Plugging this inner problem into

the general minimax regret problem completes the proof.

Despite the regret randomization, Problem (11) simplifies to the DLP when demand is

deterministic, as Problem (7).

Problem (11) has (K + 2N) variables and (K + 6N) constraints, which is a considerable

improvement from (7). In comparison, the DLP has N variables and K + N constraints.

The larger size of the problem is the price to pay to capture demand stochasticity.

Bid Prices Based on Robust Booking Limits. The variables p in (11) are the dual

variables associated with the constraint AE[z] ≤ c. In fact, the optimal value of pk mea-

sures the additional revenue that could be obtained if, in addition to knowing the demand

distributions, the malevolent adversary were also given an additional unit of capacity ck.

Therefore, the optimal value of p can be used as a proxy for the marginal value of capacity.

Although they are obtained from an LP, the variables p capture the stochastic nature of the

demand, in contrast to the dual values of DLP.

5. Maximin Revenue

In this section, we first formulate the maximin problem (2) and then characterize the struc-

ture of an optimal policy.

5.1 Problem Formulation

We first formulate the inner minimization problem in (2) as a MIP, for given open-loop

booking limits y, and characterize its complexity. Using the same notations as in §4.1, the

minimum revenue problem can be formulated as follows:

ϕ(y) = min
x,d,α,β,γ

r′x,
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s.t. Ax ≤ c,
∑

j∈S xj ≤ yS, S ∈ S,

0 ≤ x ≤ d, (12)

d ≤ x + M(1−α),
∑

j∈S xj ≥ βSyS, S ∈ S,

a′kx ≥ ckγk, k = 1, ..., K,

A′
jγ + αj +

∑
S:j∈S βS ≥ 1, j = 1, ..., N,

d ∈ P(η),

α ∈ {0, 1}N , β ∈ {0, 1}|S|, γ ∈ {0, 1}K .

The next proposition characterizes the complexity of the maximin revenue problem. The

proof is similar to that of Proposition 1 and is therefore omitted.

Proposition 7.

(a) Evaluating ϕ(y) is NP-hard.

(b) ϕ(y) may not be quasiconcave.

5.2 Optimal Solution Characterization

We now proceed to characterizing the structure of an optimal solution to (12).

Interval Uncertainty. Interestingly, even with interval uncertainty, the revenue is not

necessarily minimized when dj = lj for all j. 2 Nevertheless, when booking limits are chosen

optimally, the worst-case demand is always equal to its lower bound. It is indeed optimal to

set the partitioned booking limits y so as to maximize r′y subject to Ay ≤ c and 0 ≤ y ≤ l

(i.e., a modified DLP). Increasing yj above lj would never pay off as the adversary can always

choose dj = lj; on the other hand, the unused capacity yj − lj could be used to serve the

(deterministic) demand for another product, potentially leading to an increase in revenue.

Moreover, because only the deterministic component of demand will materialize, nesting fare

classes is never be profitable.

2For instance, consider a two-class problem, with l1 = 1, l2 = 0, and c = 1. If y1 = 0 and y2 = 1, the
worst-case demand scenario is d1 = 1, d2 = 1, leading to a profit of r2. In contrast, with d = l, the profit
would have been equal to r1 > r2.
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As a result, the maximin solution is pessimistic, as it anticipates a demand no larger

than its lower bound. To reduce the level of conservatism of the maximin approach, one can

restrict the total amount of variability to a “budget of uncertainty.” Indeed, it is unlikely

that all demands are significantly different from their nominal value. Let µj be the nominal

value of demand dj, and let σj be the maximum deviation of dj from µj. That is, lj = µj−σj

and uj = µj +σj. Bertsimas and Sim (2004) suggested to limit the sum of relative deviations

from the nominal values to some budget Γ, i.e.,
∑N

j=1 |(dj − µj)/σj| ≤ Γ. The parameter Γ

measures the amount of uncertainty captured by the model. If Γ = 0, there is no uncertainty

and the problem is deterministic (in which case all demands dj are fixed to their nominal

values µj). At the other extreme, if Γ = N , there is complete uncertainty on demand, and

the worst case occurs when dj = µj − σj, ∀j. Intermediate values of Γ specify a moderate

level of conservativeness, while accounting for some uncertainty. For simplicity, we assume

that Γ is an integer.

Interval Uncertainty with a Budget Constraint. We now show that the maximin

problem with partitioned booking limits and under a budget of uncertainty can be formulated

as an LP with a polynomial size (in the problem data). Similarly to §4.2, we assume that

the booking limits satisfy the capacity constraints, i.e., Ay ≤ c. While this may not be

optimal in general (e.g., consider the single-leg two-class problem with unit capacity: under

the demand constraint d1 + d2 ≥ 1, it is optimal to set y1 = 1 = y2), this assumption is

commonly made with existing methods. It is also optimal when either Γ = 0 or Γ = N

because then, the booking limits also play the role of protection levels (as in DLP).

Because revenue is minimized only with negative deviations from the nominal values

when Ay ≤ c (so that capacity reserved for high-revenue products cannot be consumed by

cheap products), it is never optimal to set a booking limit above the nominal demand value,

and the maximin problem with uncertainty budget can be simplified to:

max
y:Ay≤c,0≤y≤µ

min
δ:0≤δ≤1,1′δ≤Γ

N∑
j=1

rj min{µj − σjδj, yj}. (13)

Proposition 8. If Ay ≤ c, the maximin revenue problem with partitioned booking limits,

with a budget of uncertainty Γ on the sum of relative deviations from the nominal values,

(13), can be formulated as the following LP:

max αΓ + β′1 + r′y
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s.t. Ay ≤ c,

y ≤ µ, (14)

rjyj + α + βj ≤ rj(µj − σj), ∀j,
α ≤ 0,β ≤ 0,y ≥ 0. (15)

Proof. The minimization problem in (13) consists in minimizing a concave function (min-

imum of linear functions) over a polyhedron. Therefore, an optimal solution is an ex-

treme point of the polyhedron. Since Γ is integer, every extreme point of the polyhedron

{δ : 0 ≤ δ ≤ 1,1′δ ≤ Γ} different from zero has Γ coordinates equal to 1 and N − Γ

coordinates equal to zero. Because δj can only take two values in an optimal solution, the

inner problem is equivalent to:

min r′y +
∑N

j=1 rj min{0, µj − σj − yj}δj,

s.t. 1′δ ≤ Γ,

0 ≤ δ ≤ 1.

Let α and β be the dual variables associated with the budget constraint and the upper

bound constraints respectively. By strong duality, the above problem is equivalent to its

dual, which is a maximization problem. Plugging this inner maximization problem into the

outer maximin problem proves the result.

There is unfortunately no equivalent linear formulation for nested booking limits, as

all
(

N
Γ

)
demand scenarios must be enumerated to find the minimum revenue. Indeed, the

decision-maker and the malevolent adversary face different types of capacity constraints

(in product units for the decision-maker and in half-intervals σi for the adversary), which

misaligns their optimal strategies, giving rise to multiple local optima.

6. Numerical Examples

6.1 Single-Leg Example

We first consider the single-leg four-class example in pages 48-50 in Talluri and van Ryzin

(2004b). Each class j is characterized by a fare rj, a mean demand µj, and a standard

deviation σj (see Table 1).
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Table 1: Problem data and nested booking limits for the single-leg example of Talluri and
van Ryzin (2004b)

Demand Statistics Nested Booking Limits
j rj µj σj Minimax Regret Maximin EMSR-a EMSR-b
1 1,050 17.3 5.8 119 119 119 119
2 567 45.1 15.0 102 108 102 102
3 534 39.5 13.2 69 77 80 68
4 520 34.0 11.3 37 51 63 35

Minimum Revenue 55,043 55,043 55,043 55,043
Maximum Regret 4,695 7,838 5,039 5,356

Uncertainty Set. We assume that only the range of the demand is known, taken as

[µj − σj, µj + σj]. Assuming a normal demand distribution, this interval covers 68% of the

possible demand realizations, for each fare class. Figure 1 demonstrates that the performance

of the minimax regret and the maximin nested booking limits (the details of the simulation

are explained below) are not too sensitive (i.e., within a few percents) to the amount of

uncertainty captured by the model. Notice the concave shape of the functions, characteristic

of a trade-off between flexibility and conservativeness. Observe also that the minimax regret

is less sensitive to the interval size than the maximin, demonstrating its better ability to

deal with uncertainty.
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Figure 1: Simulated expected revenue for different interval sizes, using the minimax regret
and maximin nested booking limits in the single-leg example by Talluri and van Ryzin
(2004b) when c = 130.
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Policy Comparison. Table 1 displays the nested protection levels obtained with the min-

imax regret, the maximin, EMSR-a (Belobaba 987), and EMSR-b (Belobaba 1992) when

there are 119 seats in the aircraft. Normal demand distributions were assumed to compute

the EMSR booking limits. The maximin criterion is pessimistic and protects little capacity

for high-fare classes. Note that nesting classes is not necessary from a maximin revenue

standpoint (see §5.2). The minimax regret is in contrast less conservative and leads to book-

ing limits comparable to the EMSR heuristics. The two last rows of Table 1 compares the

minimum revenue and the maximum regret guarantees with the different policies, by solving

(5) and (12) respectively. From the minimum revenue objective, all policies are alike. In

fact, the performance guarantee is extremely low, especially when compared with the opti-

mal value of the DLP, equal to 73,723 (which is an upper bound on the expected revenue).

The ranges of the maximum regrets, on the other hand, are extremely narrow, indicating

that all policies are expected to perform well in expectation.

Performance Simulation. To measure the robustness of our policies, we generate 1,000

demand scenarios, and simulate the airline booking process under the proposed policies,

starting 150 days before departure. Similarly to de Boer et al. (2002) and Bertsimas and

de Boer (2005), we model the arrival process as a non-homogeneous Poisson process. The

arrival intensity for ODF j in period t satisfies the following relationship:

λj(t) = Bj(t)Gj,

where Bj(t) follows a standardized beta distribution, and Gj follows a gamma distribution.

The choice of the beta distribution for modeling the arrival pattern is motivated by its

flexible shape (e.g., increasing, decreasing, unimodal, bimodal) while the factor Gj creates

some correlation between the demands for product j across all booking periods. Under this

demand model, the total number of booking requests follows a negative binomial distribution.

In our simulations, the shape parameters of the beta distribution were such that high-fare

demand almost certainly arrives after low-fare demand (specifically, the shape parameters

were set equal to a = [10, 5, 2, 2, 1] and b = [1, 2, 2, 5, 10]). On the other hand, the parameters

of the gamma distribution were derived from the mean and standard deviation presented in

Table 1 (specifically, the shape parameter was set to µ2
j/(σ

2
j − µj) and the scale parameter

was set to σ2
j /µj − 1).
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Table 2 displays the 95% confidence intervals for the mean revenues generated with the

maximin, the minimax regret, EMSR-a and EMSR-b, when capacity is varied from 80 to

150, creating demand factors (DF) from 1.7 to 0.9, under standard nesting.

Table 2: 95% confidence intervals for the mean revenues for the single-leg example of Talluri
and van Ryzin (2004) with r = [1050, 567, 534, 520]

c DF Regret Maximin EMSR-a EMSR-b
80 1.70 49,999±230 49,098±109 49,806±189 49,890±247
90 1.51 55,193±230 54,308±111 55,063±191 55,011±261
100 1.36 60,382±232 59,538±122 60,326±199 60,209±207
110 1.24 65,453±249 64,688±164 65,458±227 65,329±269
120 1.13 70,164±310 69,581±249 70,230±294 70,129±313
130 1.05 74,214±409 73,869±362 74,350±393 74,296±398
140 0.97 77,292±522 77,286±485 77,607±506 77,584±507
150 0.91 79,351±624 79,699±601 79,867±614 79,867±614

In general, the robust approaches perform almost equally well than the EMSR heuristics.

Their good performance is remarkable despite the fact that they focus on the worst cases.

The maximin criterion nevertheless tends to underperform the other approaches, but the

optimality gap is surprisingly small given its the level of conservatism. One should never-

theless point out that the performance of the maximin booking limits depends critically on

how they are used: While the maximin revenue is not affected by whether the booking limits

are nested or partitioned, the simulated revenue would have been significantly lower with

partitioned booking limits.

Observe also that the minimax regret approach tends to underperform the EMSR heuris-

tics when the demand factor decreases. Intuitively, the worst-case demand scenarios foreseen

by the minimax regret (see §4.2.1) are characterized by a high demand load factor (in par-

ticular, there is one worst-case demand scenario for which all demands are equal to their

upper bound), which explains its superior performance under large demand factors.

Evenly-Spaced Fares. Similar observations hold when the fares are more evenly spaced,

as shown in Table 3. The dominance of the EMSR heuristics over the robust approaches,

is however stronger in this case, as well as the dominance of the minimax regret over the

maximin criterion. In fact, with the original fares, all policies concord on protecting a certain

number of seats for class 1, because the opportunity cost of missing a sale is high, while there

is more confusion when fares are more spread out.
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Table 3: 95% confidence intervals for the mean revenues for the single-leg example of Talluri
and van Ryzin (2004) with r = [1050, 950, 699, 520]

c DF Regret Maximin EMSR-a EMSR-b
80 1.70 89,405±541 88,389±382 89,695±469 89,859±543
90 1.51 73,650±355 70,245±146 74,592±383 74,588±411
100 1.36 79,263±392 76,074±181 80,013±412 80,298±506
110 1.24 84,696±436 82,517±261 85,227±415 85,500±506
120 1.13 90,269±531 89,011±376 90,429±448 90,649±519
130 1.05 94,970±678 94,836±524 95,426±550 95,578±584
140 0.97 98,544±804 99,469±686 99,722±695 99,772±708
150 0.91 101,580±902 102,720±841 102,810±844 102,860±848

Demand Correlation. We now investigate the impact of correlation among demands. In

particular, we assume that the distributions of the demand rates Gj are perfectly correlated

gamma distributions. As shown in Table 4, the minimax regret approach tends to outperform

the EMSR heuristics in this case. In effect, the worst-case demand scenarios, against which

the booking limits are protected, typically assume a large degree of (positive or negative)

correlation among demands (see §4.2.1).

Table 4: 95% confidence intervals for the mean revenues for the single-leg example of Talluri
and van Ryzin (2004) with r = [1050, 950, 699, 520] with perfectly correlated demand rates

c DF Regret Maximin EMSR-a EMSR-b
80 1.70 66,975±425 64,406±221 66,725±394 66,965±430
90 1.51 72,472±485 69,519±251 72,172±543 72,532±559
100 1.36 77,812±534 74,622±334 77,294±576 77,259±674
110 1.24 82,996±594 79,900±458 82,420±587 82,448±676
120 1.13 87,712±725 84,958±606 86,804±665 87,301±713
130 1.05 91,559±897 89,491±769 90,379±795 91,008±823
140 0.97 94,817±1,050 93,436±941 93,807±952 94,130±966
150 0.91 97,865±1,193 96,683±1,083 96,854±1,114 97,002±1,121

Censored Sales Data. The robust approaches have clearly the largest appeal when only

limited information about demand is available. So far, we have assumed complete informa-

tion about the demand distributions; however, in practice, only sales data is measured. We

now investigate the performance of the robust approaches with demand censoring.

We assume that the medians µ̂ and the standard deviations σ̂ of the demand are esti-

mated from past sales data. The estimates are naive, in the sense that they are not adjusted
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for the missing demand data, yet the median estimates tend to be less sensitive to outlier

data than alternative estimation methods. We simulate the booking process with EMSR-b

booking limits until the sales data converge (within 5%, with the Euclidean norm) to the

estimates that are used to compute the booking limits. Once the estimates are consistent

with the sales data, we measure the performance of the minimax regret and the maximin

with the estimated range [(µ̂−σ̂)+, (µ̂+σ̂)], as well as the EMSR-a and EMSR-b heuristics,

assuming normal demand with mean µ̂ and standard deviation σ̂.

As shown in Table 5, the minimax regret approach tends to outperform the EMSR

heuristics when demand data is censored and the demand factor is high. The performance

of the maximin booking limits is on the other hand strongly dependent on accurate range

estimation, as they are based on one worst-case scenario (i.e., all demands equal to their

lower bounds), in contrast to the minimax regret, which balances several worst cases.

Table 5: 95% confidence intervals for the mean revenues for the single-leg example of Talluri
and van Ryzin (2004) with r = [1050, 950, 699, 520] with censored sales observations

c DF Regret Maximin EMSR-a EMSR-b
80 1.70 65,927±207 58,724±81 62,220±124 63,039±131
90 1.51 74,557±381 69,893±131 73,557±299 74,002±381
100 1.36 80,338±513 75,151±165 78,577±286 79,204±333
110 1.24 85,551±532 81,740±255 83,919±306 84,457±344
120 1.13 90,619±589 88,699±374 89,784±397 90,158±424
130 1.05 95,273±676 94,792±523 95,210±534 95,382±549
140 0.97 98,997±794 99,465±686 99,644±690 99,713±696
150 0.91 101,580±902 102,720±841 102,810±844 102,860±849

6.2 Small Network Example

We next consider the network example of de Boer et al. (2002), which consists of four cities

arranged in series. Flights are assumed to go only in one direction; accordingly, there are six

possible OD pairs. Each OD pair has three fare classes, giving rise to 18 different products.

There are 150 booking periods, and demand is assumed to follow a non-homogeneous Poisson

process. The fares, means, standard deviations, and shape parameters of the booking arrival

process of all products appear in Tables 8 and 9 of de Boer et al. (2002). In addition to

the base case, we consider a situation with larger variances (Table 10 in de Boer et al.) and

smaller fare spread (Table 11 in de Boer et al.). Each aircraft has 200 seats.
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As before, we assume that the only information available about the demand distributions

is their ranges, defined as [(µ − σ)+, µ + σ] where µ and σ are the median and the stan-

dard deviation of the demand distributions. We benchmark the performance of the robust

approaches against the the following methods, which are commonly used in practice:

• DAVN EMSR/DLP: DAVN booking limits, were classes are clustered in at most 10

buckets, according to the algorithm described in appendix of Bertsimas and de Boer

(2005), and where the booking limits on each resource are respectively computed with

EMSR-b (Belobaba 1992) and the DLP.

• Nested BL DLP: booking limits where fare classes are nested by OD pair (Curry 1990),

and the booking limits are obtained from the DLP.

• Bid DLP/RLP: bid prices, respectively set equal to the shadow prices of the DLP, and

the average shadow prices of 100 randomized DLPs, where the demand samples are

independently generated from a negative binomial distribution.

The robust controls (DAVN-ρ/ϕ, Nested BL-ρ/ϕ,Bid-ρ/ϕ) are defined similarly, but are

computed by minimizing the maximum regret (5) and maximizing the minimum revenue

(12).

The MIPs were solved with the branch-and-bound algorithm of CPLEX 10, and the

outer optimization problem was solved with the Sequential Quadratic Programming (SQP)

method developed in Matlab 2007. Note that, because of lack of convexity (Propositions 1

and 7), the SQP method is only guaranteed to converge to a local optimum.

Table 6 presents the maximum regret ρ(y) and the minimum revenue ϕ(y) for the different

methods, in the base case investigated by de Boer et al. (2002). We also report the 95%

confidence intervals for the mean revenues over 1,000 simulations of the booking process.

Performance of the Minimax Regret. In general, the maximum regret is lower when

fare classes are nested by OD pair, consistently with Proposition 2. In contrast, the mean

simulated revenue is typically larger with DAVN booking limits than when fare classes are

nested by OD pair. Therefore, the most robust policy has not necessarily the same structure

as the best policy on average. Within a class of policies, however, the minimax regret

performs extremely well, and is sometimes superior to the traditional approaches.
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Table 6: Maximum regret, minimum revenue and 95% confidence intervals for the mean
simulated revenues, for the network example of de Boer et al. (2002).

Control Base Case Lower Fare Spread Inflated Variance
ρ(y) ϕ(y) E[R(y)] E[R(y)] E[R(y)]

DAVN-ρ 19,995 36,205 76,429±469 63,232±293 74,142±467
DAVN-ϕ 52,650 42,150 60,098±174 57,200±90 60,747±225

DAVN EMSR 23,875 36,130 77,1297±468 63,802±300 76,231±491
DAVN DLP 22,740 37,450 76,423±431 63,245±318 75,580±460
Nested BL-ρ 16,140 43,350 73,647±402 61,522±205 72,668±413
Nested BL-ϕ 32,270 44,870 74,042±349 57,660±89 62,444±237

Nested BL DLP 20,945 41,350 73,115±398 61,363±283 72,218±433
Bid-ρ/ϕ 39,080 44,870 73,545±297 64,072±254 72,913±314
Bid DLP 39,080 44,870 73,545±297 63,334±192 72,545±333
Bid RLP 32,695 41,190 76,513±381 64,498±250 75,854±402

From these observations, we conclude that RM models are more sensitive to the sequence

of arrivals (which significantly affects the structure of the minimax regret policy) than to

the demand variability (which affects the values of the booking limits, for a given policy).

That is, RM is more sensitive to the combinatorial nature of the sequence of arrivals than

the stochastic nature of demand.

Only single-leg problems reduce to stochastic optimization problems, because their com-

binatorial structure is completely absorbed through the use of nested booking limit controls.

(There however remains the unsolved question on how to use these controls, using standard

or theft nesting, see Bertsimas and de Boer 2005.) In contrast, network RM is mostly a

combinatorial problem, as demonstrate the pathological sequences of arrivals characterizing

the maximum regret, as well as the superiority of the DAVN approaches even when the

stochastic nature of demand is ignored in the computation of the booking limits.

The example proposed by de Boer et al. (2002) not only assumes a strict low-before-high

fare arrivals (which is defendable given the advance-purchase restrictions) but also impose the

same arrival pattern for all products, i.e., that the mix of itineraries remains constant over

time. This latter assumption, which may or may not be true in practice, strikingly contrasts

with the worst-case sequences of arrivals considered by the minimax regret. Clearly, under

more extreme sequence of arrivals, the performance of the minimax regret (and in particular,

of the Nested BL-ρ) would dramatically improve over more traditional approaches.
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Performance of the Maximin. The maximin criterion often performs poorly. One shall

however mention that the maximin controls are generally not uniquely defined, and that not

all perform as poorly. For instance, in the single-leg case, partitioned and nested booking

limits lead to the same maximin revenue but have very different average-case performances.

For general network problems, any control that covers the deterministic portion of demand

l is guaranteed the maximin revenue. One would then need to define a secondary criterion

for selecting the best policy, from an average-case perspective, among those that achieve the

maximin criterion.

Correlation. We now investigate the impact of correlation by assuming perfect correlation

among the demands rates Gj. As shown in Table 7, the performance gap between the DAVN

and the nested booking limit policies disappears when demands are correlated. In fact, the

situation with perfectly correlated demand rates is closer to the worst-case scenarios consid-

ered by the minimax regret approach, highlighting the superiority of nested booking limits

(Proposition 1). As in the case with independent demands, the minimax regret performs

very well, within a class of policies while the maximin controls tend to be conservative (but

can be optimized with a secondary objective).

Table 7: 95% confidence intervals for the mean simulated revenues, for the network example
of de Boer et al. (2002) with perfectly correlated demand rates.

Control Base Case Lower Fare Spread Inflated Variance
DAVN-ρ 71,723±1,084 60,973±646 70,857±1,003
DAVN-ϕ 58,855±196 56,518±164 58,493±340

DAVN EMSR 71,839±1,023 60,894±687 70,751±1,078
DAVN DLP 71,796±952 60,878±703 70,573±1,030
Nested BL-ρ 71,793±927 60,813±475 71,002±938
Nested BL-ϕ 69,739±713 56,888±181 59,701±352

Nested BL DLP 71,342±947 60,459±685 70,047±1,1017
Bid-ρ/ϕ 69,817±595 60,979±931 66,459±741
Bid DLP 68,633±616 60,424±472 66,223±708
Bid RLP 71,678±817 60,979±634 66,459±741

Censored Data. We now evaluate the performance of the robust approaches in the pres-

ence of censored sales observations. With censored observations, the demand parameters are

estimated from the sales data directly. To obtain the demand estimates, we simulate the
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booking process, using the DAVN DLP booking limits, and estimate the mean, median, and

standard deviation from the sales data, without adjustment for the missign data; we then

iterate this procedure until the demand estimates used for deriving the DAVN DLP booking

limits are within 5% (in Euclidean norm) of the demand estimates obtained from the sales

data. After convergence, we simulate the booking process using those demand estimates,

to compare the robust approaches with the more traditional controls. Table 8 shows that,

similarly to the single-leg example, the minimax regret tends to dominate the DLP-based

controls in the presence of censored observations. Interestingly, the DAVN EMSR booking

limits are performing extremely well, despite the fact that both the mean and the standard

deviation of the demand are ill estimated. In comparison, the bid prices obtained from the

RLP have the poorest performance.

Table 8: 95% confidence intervals for the mean simulated revenues, for the network example
of de Boer et al. (2002) with censored sales observations.

Control Base Case Lower Fare Spread Inflated Variance
DAVN-ρ 69,205±278 56,864±147 69,702±299
DAVN-ϕ 66,576±145 56,634±99 68,234±191

DAVN EMSR 70,007±252 58,289±191 69,810±277
DAVN DLP 66,729±194 55,883±139 66,884±209
Nested BL-ρ 68,649±242 57,596±123 68,670±250
Nested BL-ϕ 67,313±134 58,357±68 69,467±179

Nested BL DLP 64,616±210 55,186±136 64,491±214
Bid-ρ/ϕ 60,019±180 55,553±108 60,132±238
Bid DLP 59,910±187 55,688±113 60,429±245
Bid RLP 21,156±479 14,302±310 21,158±448

Minimax Randomized Regret. Computing the minimax regret booking limits becomes

quickly intractable as the network size grows, since evaluating the maximum regret involves

solving a MIP (5). It is therefore important to develop good approximation schemes to

compute the minimax regret booking limits efficiently. In §4.2.2, we showed that, with

partitioned booking limits, evaluating the maximum regret reduces to solving a simple LP

(6) when the regret is randomized. Because of the randomization, the optimal value of (6) is

an upper bound on the maximum regret obtained with the same partitioned booking limits.

The upper bound is in fact very tight: in the three scenarios considered, we never observed a

gap between the upper bound and the actual maximum regret larger than 0.03%. However,
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because partitioned booking limits are in general not optimal, the maximum regret can be

lowered by considering different booking limit policies; for instance, in the base case, nested

booking limits lead to a maximum regret of 16,140 (see Table 6) while partitioned booking

limits give rise to a maximum regret of 16,562.

Problem (6) gives rise to booking limits, which can be subsequently used in a nested

fashion, either using the DAVN method or by nesting fare classes with the same OD pair, as

well as bid prices. Table 9 displays the simulated mean revenues obtained with these controls

(where the tilde refers to the randomization of the regret). Comparing these revenues with

those obtained with the minimax (deterministic) regret (see Table 6) reveals that nearly

the same level of performance can be attained with the randomized regret, at a much lower

computational cost.

Table 9: 95% confidence intervals for the mean simulated revenues with the booking limits
obtained from the minimax randomized regret problem (6), for the network example of de
Boer et al. (2002).

Control Base Case Inflated Variance Lower Fare Spread
DAVN-ρ̃ 77,065±384 62,152±160 76,306±374

Nested BL-ρ̃ 72,989±398 61,308±215 72,496±411
Bid-ρ̃ 73,497±293 64,723±264 72,818±324

6.3 Large Network Examples

We now investigate the viability of the robust approach for solving large-scale network RM

problems. Because of the large computational cost involved with the MIP formulation of

the maximum regret (5), we only use the minimax randomized regret (6). The minimax

randomized regret provides an upper bound on the maximum regret for partitioned booking

limits, and can be used heuristically to choose nested booking limits and bid prices.

The first problem is the hub-and-spoke problem reported in Table 5.3. in Williamson

(1988). Four cities are connected with a hub. Considering all possible origin-destination

pairs, there is a total of 20 itineraries on 8 legs. In addition, there are four classes per

itinerary. Each class on a given itinerary is associated with a mean demand, a standard

deviation, and a fare. We use the same nonhomogenous Poisson model as before, assuming

the same beta-distributed arrival pattern for all itineraries with the same fare class and

selecting the shape and scale parameters of the gamma distribution of the demand rate to
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match the given means and standard deviations. We consider five variants of this problem,

by taking the aircraft capacity equal to 100, 125, 150, 175, and 200 seats, corresponding to

demand factors varying from 125% to 55.4%.

Table 10 reports the mean simulated revenues with the proposed policies. (For the sake

of clarity, we omit the confidence intervals here, but the range is about 600.) As before,

the minimax regret approach is at least comparable to more traditional approaches (except

the bid price controls which behave unevenly). Interestingly, the DAVN EMSR booking

limits perform poorly in this example, in comparison to the DAVN DLP and minimax regret

booking limits.

Table 10: Mean simulated revenues, for the network example of Williamson (1988).
Control Capacity

100 125 150 175 200
DAVN-ρ̃ 131,440 146,580 156,570 165,460 176,360
DAVN-ϕ 104,010 112,980 113,160 113,350 114,210

DAVN EMSR 133,940 147,830 155,900 160,070 160,240
DAVN DLP 132,750 147,470 156,570 167,510 177,280
Nested BL-ρ̃ 127,900 141,690 152,860 162,890 171,710
Nested BL-ϕ 101,700 111,520 112,640 112,630 112,640

Nested BL DLP 127,610 141,110 152,470 162,540 171,640
Bid-ρ̃ 129,380 141,780 127,690 149,730 172,620

Bid DLP 127,300 111,200 138,470 147,420 172,620
Bid RLP 127,310 144,090 152,560 143,980 172,620

The second problem is a real airline network problem, with 517 different itineraries, each

with 11 fare classes, and 67 segments. Arrivals follow a non-homogenous Poisson process,

with 16 changes of rates. The aggregate DF is 64.5%. Table 11 reports the mean revenues

under 100 simulation runs.

Summary. We now provide a brief summary of our main observations:

• The structure of the most robust policies may not be the same as the structure of

the policies that perform the best, on average. However, within a certain booking

policy, the robust approaches perform as well as, and sometimes even better than, the

more traditional approaches, especially in the presence of correlation or censored data.

The sensitivity of the minimax regret to pathological sequences of arrivals highlights

the criticality of addressing the combinatorial nature of network RM models (i.e., all
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Table 11: 95% confidence intervals for the mean simulated revenues, for the real-world hub-
and-spoke network problem.

Control Revenue
DAVN-ρ̃ 3,549,400±9,623
DAVN-ϕ 2,997,900±5,323

DAVN EMSR 3,612,000±9,369
DAVN DLP 3,612,000±9,043
Nested BL-ρ̃ 3,413,100±8,893
Nested BL-ϕ 2,932,200±4,378

Nested BL DLP 3,392,100±7,472
Bid-ρ̃ 3,554,700±9,622

Bid DLP 3,614,700±9,117
Bid RLP 3,601,500±9,336

possible sequences of arrivals), as well as its stochastic nature (i.e., all possible demand

realizations).

• The performance of the robust controls is rather insensitive to the size of the uncertainty

set, especially for the minimax regret which equally weighs the extremes.

• Maximin booking limits may ne be uniquely defined. Given the large spread in perfor-

mance among the maximin solutions, there is a need for another decision criterion, to

be optimized over all maximin solutions.

• Computing the minimax regret booking limits is in general not efficient, as it involves

the solution of a MIP. However, randomizing the minimax regret gives rise to efficient

heuristics to obtain robust controls.

7. Conclusions

In this paper, we develop robust formulations for the capacity allocation problem in RM, us-

ing the maximin and the minimax regret criteria, under polyhedral uncertainty. We consider

generic booking limit controls, including, among others, partitioned booking limits, nested

booking limits, DAVN, and fixed bid prices. Our models allow for a quick performance com-

parison of different policies, because they only involve the solution of LPs or small MIPs.

In addition, when demand uncertainty is represented by intervals, we provide closed-form

solutions for the minimax regret nested booking limits in a single leg, propose a sequence
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of upper bounds when fare classes are nested by OD pairs, develop an efficient heuristic

to compute partitioned booking limits, and show that the maximin booking limits can be

obtained by solving an LP. Our numerical study reveals that the robust policies generally

perform as well as, and sometimes even better than, most traditional approaches.

Robust approaches are pragmatic. They are scalable to solve practical network RM prob-

lems, because they combine efficient solution methods (closed-form solutions, LPs, or small

MIPs) with modest data requirements. They are also flexible, because they do not require

anything about the uncertainty set, as long as it is polyhedral. Accordingly, various levels

of information about demand can be incorporated into the uncertainty set representation,

(such as range, moments, shape, correlation, demand censorship) at no (modeling or com-

putational) cost, in contrast to traditional probabilistic models. Moreover, a probabilistic

guarantee can be derived for any type of uncertainty set and any level of information, by solv-

ing a moment bound problem (Bertsimas and Popescu 2005 and Popescu 2005). Because

of its unique combination of flexibility and scalability, the robust optimization paradigm

has a tremendous potential for improving operations and increasing revenues, especially in

fast-changing business environments.
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