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ABSTRACT Poxviruses are often thought to evolve relatively slowly because they are
double-stranded DNA pathogens with proofreading polymerases. However, poxviruses have
highly adaptable genomes and can undergo relatively rapid genotypic and phenotypic
change, as illustrated by the recent increase in human-to-human transmission of mon-
keypox virus. Advances in deep sequencing technologies have demonstrated standing
nucleotide variation in poxvirus populations, which has been underappreciated. There
is also an emerging understanding of the role genomic architectural changes play in shaping
poxvirus evolution. These mechanisms include homologous and nonhomologous recombina-
tion, gene duplications, gene loss, and the acquisition of new genes through horizontal
gene transfer. In this review, we discuss these evolutionary mechanisms and their potential
roles for adaption to novel host species and modulating virulence.

KEYWORDS DNA recombination, evolution, gene duplication, horizontal gene transfer,
poxviruses

oxviruses are a diverse family of viruses that can have significant impacts on both human

and animal health. Within the Chordopoxvirinae subfamily, which infects vertebrates, 18
genera are currently recognized. Unlike many other viruses, poxviruses enter host cells by
binding to receptors that are highly conserved between different species, such as glycos-
aminoglycans (1). Therefore, the poxvirus host range is independent of species-specific
receptors, and productive infection is largely determined by how well they can antagonize
the host immune response (2). Within the poxvirus family, there is significant phenotypic
and genotypic variation between, and within, the different genera. For example, all Old World
orthopoxviruses share 109 core genes, but the total gene complement ranges from up to 214
intact genes in cowpox viruses to variola virus, which encodes 162 intact genes and 17
truncated genes, the latter of which might still encode functional proteins (3, 4). Perhaps
not surprisingly, this difference in gene content is also reflected in the viral host range
since many of the “accessory” genes are involved in host range and immune evasion.
Cowpox viruses typically have one of the broadest known host ranges among orthopox-
viruses, whereas variola virus is only able to infect humans. Details of different types of
poxviruses can be seen in Text Box 1.

Because they are double-stranded DNA (dsDNA) viruses and have DNA polymerases
with proofreading capabilities, poxviruses are often thought to evolve relatively slowly
for viruses (12). Until recently, most poxvirus evolutionary analyses were based on a relatively
small number of consensus sequences. However, with the advent of deep sequencing tech-
nologies, we can now assess the frequency of minor variants in poxvirus populations.
Differences in host selective pressure, such as during host switches, or by direct genome
editing through host enzymes like the APOBEC3 family, are also beginning to be recognized
as contributors to this standing variation in viral populations (13). Moreover, recent work has
also demonstrated that poxvirus evolution is shaped through architectural changes just as
much as it is shaped through single nucleotide variants (SNVs). These differences in both
natural history and molecular biology have the potential to differentially shape the selective
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TEXT BOX 1

Orthopoxviruses

Variola virus is the causative agent of human smallpox, which killed more than
500 million people in the last century alone. A WHO-led mass vaccination campaign,
using the closely related vaccinia virus, eradicated variola virus from nature in 1977.
Variola virus infection was restricted to humans, and mortality rates ranged from less
than 1% to 30%. Changes in virulence were observed in multiple lineages over time (5).
Vaccinia virus is the most extensively studied poxvirus. Vaccinia virus has a broad
host range, although the origin of the virus remains unclear. Both laboratory-adapted
and feral strains exist that have many phenotypic and genotypic differences, including
virulence and tissue tropism (6).

Monkeypox viruses can be grouped into two major clades, clade 1 (Central African
origin) and clade 2 (West African origin), which display stark differences in virulence,
for example, fatality rates of approximately 10% or less than 1%, respectively (7, 8).
Cowpox viruses are a heterologous group of poxviruses which represent at least
five distinct orthopoxvirus species. Collectively, they have the broadest host range
and largest genomes among poxviruses (9, 10).

Leporipoxviruses

Myxoma virus is a lagomorph-restricted virus. Its natural hosts are Tapeti and brush
rabbits in the Americas, in which it causes a self-limiting and rarely fatal infection.
However, in European rabbits, this virus causes a systemic infection with a near 100%
mortality rate. Because of this high mortality, myxoma virus has been used as a biological
agent to control European rabbit populations in Australia and Europe. Inadvertently,
these releases have also become one of the best-studied examples of virus-host
evolution in the field. Soon after the release in the field, myxoma virus became
partially attenuated, and European rabbits became partially resistant (11).

pressures each virus is subjected to (14). This work discusses the currently known molecular
mechanisms influencing poxvirus evolution, highlighting areas of future study.

POINT MUTATIONS

Poxviruses have been assumed to have relatively low mutational rates due to the fact
that their genetic material is replicated by DNA polymerases with proofreading abilities. This
paradigm was seemingly supported by epidemiologically linked variola virus isolates that
had no nucleotide changes over periods of up to a year between samples (5). Similarly, ge-
nome sequences from two Tanapox isolates separated by 50 years had only 35 single nucle-
otide differences (15). In contrast, a report has identified an unexpectedly higher rate of SNV
accumulation in recent monkeypox virus isolates, 7 SNVs since the initial outbreak in March
2022 and a total of 50 SNVs since 2018 (13).

The majority of substitution rate studies for dsDNA viruses have been focused on herpesvi-
ruses (14). Both herpesviruses and poxviruses encode a type B family member DNA-depend-
ent DNA polymerase, UL30 in the case of herpes simplex virus 1 (HSV-1) and E9 in the case of
vaccinia virus, and an underlying assumption of these studies is that the respective viral poly-
merases will behave in similar ways. The HSV-1 substitution rate has been estimated between
~1 x 1077 and 1 x 1078 substitutions/site/year (16-19). For variola virus, a substitution rate
of ~1 x 1079 substitutions/site/year was calculated, an approximately 10- to 100-fold differ-
ence from HSV-1 (14, 20). In contrast, the myxoma virus substitution rate, after its release as
a biological control agent against European rabbits, was calculated to be ~1 x 107> substi-
tutions/site/year, approximately 10-fold higher than the calculated variola virus substitution
rate (21). Although many of the myxoma virus field isolates were attenuated, no individual
SNV or pair of SNVs has yet conferred attenuation in reverse-engineered field strains, indi-
cating that multiple mutations may be responsible for the attenuated phenotype, possibly
through epistatic interactions (22).
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The substitution rates for poxviruses suggest that, at least in some cases, the assumption
that herpesvirus mutation rates approximate poxvirus mutation rates may not hold. One ex-
planation for the difference in the substitution rates among poxviruses may be that variola
virus was well adapted to the human population, whereas myxoma virus has been under-
going a recent host switch and was thus presumably subject to increased selective pres-
sures. Host adaptation may also be an explanation for the higher-than-expected SNV accu-
mulation in the recent monkeypox virus outbreak (13). In addition to the substitution rate
itself, both the effective population size and the selection coefficient influence the probabil-
ity that a new mutation will be fixed (23-25). Thus, one possible explanation for the differ-
ence between the epidemiological isolates and the phylogenetic observations is that selec-
tive sweeps or severe bottlenecks, either within a patient or during transmission between
patients, may act to reduce accrued variability in an individual.

Recent experimental evolution studies in poxviruses provide support for this hypothesis, as
multiple polymorphisms have emerged during serial passage in several studies (26-29). While
these experimental evolution studies were not designed to elucidate the mutation rate of pox-
viruses, they underscore the fact that poxvirus populations are not monolithic but have stand-
ing variations. This population-level variation can, in combination with other mechanisms dis-
cussed in this review, allow poxviruses to respond rapidly to selective pressures.

GENOME RECOMBINATION

Poxviruses are highly recombinogenic, and recombination between different poxvirus
species, strains, or isolates is a major driver for poxvirus evolution and genetic diversification
(30). Recombination can be broadly grouped into homologous recombination and nonho-
mologous recombination, which can occur in cis within a genome or in trans between differ-
ent genomes (Fig. 1A and B). In homologous recombination, recombination occurs between
sequences that share sequence identity. In poxviruses, homologous recombination occurs at
a high frequency, which has been exploited in the laboratory to readily generate recombinant
poxviruses (31). In nonhomologous recombination, sequences with little or no sequence iden-
tity recombine, which is much rarer in poxviruses (32). The molecular mechanisms underlying
poxvirus recombination are thought to involve multiple vaccinia virus proteins, particularly
those involved in DNA repair processes. These mechanisms have been reviewed in detail
recently and are therefore not extensively discussed in this review (33).

Recombination between different poxvirus strains or species was first described experimen-
tally by detecting in vitro differences in plaque characteristics, temperature sensitivity of virus
replication, and later by identifying changes in virulence in animal models (34-39). In experi-
mental coinfections with closely related viruses, either myxoma virus and rabbit fibroma vi-
rus (Shope fibroma virus), or two different vaccinia virus strains, recombination has been
detected at 1 event per 8 kb or 12 kb, respectively (28, 40). Recombination can also occur
between regions within the same virus genome. Because these sequences are spatially
tethered, this recombination can happen much faster than recombination between coin-
fecting viruses. During coinfection, the genomes are physically separated in distinct virus
factories; therefore, recombination can only occur after these structures collide and fuse,
about 5 to 6 h postinfection (28, 41).

There is strong evidence that recombination also occurs in natural poxvirus populations. A
recent study identified extensive recombination between multiple cowpox virus clades, which
represent at least five different orthopoxvirus species. This work demonstrates recombination
both within the same virus species and also between more distant species (9). Providing more
evidence for interspecies recombination, phylogenetic analysis of a cowpox virus isolated from
a human demonstrated recombination not only with other cowpox virus clades but also with
ectromelia virus, vaccinia virus, and the more distantly related Alaskapox virus (42). While the bi-
ological consequences of these cowpox virus recombination events are currently unclear, a nat-
ural recombination event involving myxoma virus contributed to a recent host switch, demon-
strating that natural recombination events can have profound phenotypic impacts. A novel
myxoma virus strain (myxoma virus Toledo) was recently isolated from wild Iberian hares that
exhibited myxomatosis-like lesions. Genome analysis of the isolate revealed a 2.8-kb region
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FIG 1 Mechanisms of poxvirus evolution. (A, B) Recombination can occur between homologous (A)
or nonhomologous (B) sequences, either in trans between different genomes as shown here or in cis
within a genome (not shown). (C) Duplications of genome sequences can lead to partial or complete
gene duplications. Duplicated copies can acquire mutations that can lead to gene neofunctionalization, or
increased gene dosage can lead to replication benefits that can increase the chance of beneficial secondary
mutations, which can be followed by the collapse of the duplication. (D) ITRs can expand or decrease in
size, which can result in duplicated genes in the ITR. (E) Gene loss can occur through gene-inactivating
mutations and deletions. (F) Replication-incompetent viruses can be complemented by another virus. (G)
Poxviruses can theoretically acquire host genes through DNA-dependent or RNA-dependent mechanisms,
followed by adaptation through other mechanisms.

il

carrying four genes (M157, M158, M159, and M160) with relatively low sequence identi-
ties to the myxoma virus genes MO60R, MO61R, M064R, and MO65R (43). A subsequent study
showed that the myxoma virus Toledo M159 protein, an ortholog of the vaccinia virus C7L
family of host range factors, was essential for productive replication of the recombinant
strain in hare and human cells (44). Overall, the data suggest that a recombination event
between myxoma virus and an unidentified poxvirus facilitated a host species jump of the
myxoma virus Toledo strain from rabbits to hares. In addition to host switching, recombina-
tion between the two virulent wild-type myxoma virus Lausanne and MSD strains unexpect-
edly resulted in an attenuated vaccine strain, SG33 (45, 46).

Recombination can also occur between naturally circulating poxviruses and poxvirus vac-
cine strains. For lumpy skin disease virus (LSDV), which affects cattle in large parts of the world
(47), a recombinant virus was discovered in Russia that contained a mosaic LSDV genome
combining sequences from a wild-type field strain and a vaccine strain. In this hybrid LSDV
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isolate, 27 recombination events were discovered with an average distance of 2.4 kb between
recombination sites (48). This recombinant virus was repeatedly detected in subsequent LSDV
outbreaks (49, 50). The phenotypic effects of these wild-type vaccine recombinants are not yet
clear. However, based on data from experimental systems and naturally occurring viruses,
recombination between naturally occurring poxviruses or vaccine strains has the potential
to yield viruses with novel properties such as altered host range, transmissibility, or even
modified immune evasion and virulence. Therefore, intense investigation and surveillance
are required to identify potential recombinant viruses, especially during active poxvirus
outbreaks.

GENE DUPLICATIONS

Gene amplification has been a common theme for adaptation across all domains of life,
including viruses (51, 52). In the presence of replication-limiting conditions, this can provide
a rapid way to overcome selective pressure by increasing the copy number of one or more
genes. This increased gene dosage can improve virus replication, presumably through mass
action effects (52-55). In poxviruses, gene amplifications tend to rapidly collapse if the selec-
tive pressure is removed, likely due to increased fitness costs necessary to maintain amplifi-
cation and the recombinogenic nature of poxviruses discussed above. The process of gene
amplification and collapse has been termed “genomic accordions” (26). However, if the
selective pressure persists, gene amplifications can facilitate mutation, neofunctionaliza-
tion, or subfunctionalization (Fig. 1C).

Because gene amplifications are often transient events, it is difficult to observe viruses
undergoing gene amplification in nature. However, there is substantial phylogenetic evi-
dence for gene amplification leading to the establishment of gene families in poxviruses
(4, 56). In general, the founding member of a gene family likely would have been hori-
zontally acquired from the host, discussed below in the “Horizontal gene transfer” sec-
tion. Paralogs of these genes likely would have arisen through gene duplication to estab-
lish the various gene families. There are four main gene families in orthopoxviruses that
account for approximately half of the accessory genes. These are the poxvirus immune
evasion (PIE) domain proteins, approximately half of which also contain the tumor necro-
sis factor (TNF) receptor domain (57), the B-cell lymphoma 2 (Bcl-2) protein family (58),
the poxvirus and zinc finger (POZ) family characterized by an N-terminal BTB domain
and Kelch repeats (59, 60), and ankyrin (ANK) repeat proteins, most of which also contain
an F-box variant PRANC domain (61, 62). A recent study suggested that these families
were largely established through three waves of gene duplication (4).

Maybe the most striking example of gene duplications in poxviruses is represented
by the ANK/PRANC domain-containing gene family, with 35 intact ANK/PRANC genes
present in the canarypox virus genome (63). In mammalian poxviruses, multiple gene dupli-
cation events have occurred independently in different lineages. In some lineages, the dupli-
cated genes are in close proximity and often in tandem, whereas in other lineages, they are
not linked, suggesting that these duplications are evolutionarily older and have migrated in
the genome through recombination events (56, 64). These duplications have resulted in a
multitude of biological functions, often targeting components of the host innate immune
response (61, 62).

There are also examples of lineage-specific duplication events, such as the leporipoxvi-
rus-specific duplication of the C7L-family genes 062, 063, and 064, which likely originated
from two duplication events in a leporipoxvirus ancestor (65). In myxoma virus, these genes
have evolved to have distinct protein interaction partners after duplication (66-68). For
example, only M062 has been shown to interact with sterile alpha motif domain-contain-
ing protein 9 (SAMDO9) and thereby inhibit a cGAS-dependent interferon response (67, 69). A
recent study identified a similar example of duplication in cetacean poxvirus in which the vi-
rus genome was predicted to encode two tandem copies of the E3L ortholog, a full-length
copy (CePV-TA-20) and a truncated copy (CePV-TA-21), which lacks the amino-terminal Z«
domain (70, 71). E3L homologs without the Za domain, like CePV-TA-21, are also found in
other chordopoxviruses such as myxoma and monkeypox viruses (56, 71). Taken together,
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these studies demonstrate that gene duplication events during poxvirus evolution have con-
tributed to an increased repertoire of host range genes and influence the various host ranges
of these viruses.

In addition to the phylogenetic evidence, there is strong experimental evidence that gene
amplification is an early and potent adaptive mechanism in poxviruses. The first evidence of
adaptive gene amplification was documented in a selection study where vaccinia virus devel-
oped resistance to hydroxyurea, an inhibitor of ribonucleotide reductase, by amplifying its
ribonucleotide reductase gene (72). Since this initial report, several experimental evolution
studies have modeled poxvirus adaptation to overcome PKR inhibition in different hosts.
Poxviruses encode two PKR antagonists, called E3L and K3L in vaccinia virus, which have
species-specific differences in their ability to inhibit PKR (73-75). In the initial study, the
authors serially passaged a vaccinia virus lacking E3L in human cells. They demonstrated
an early and rapid gene amplification of the weak PKR antagonist K3L that was sufficient
to fully rescue virus replication in human cells, presumably through mass action effects
(26). This initial amplification facilitated the emergence of an adaptive SNV in the amplified
K3L gene, which rapidly increased in frequency in the population. Taken together, these
observations suggest that increased copy numbers can also provide an increased chance
for adaptive mutations to emerge in the amplified gene. Follow-up studies by the same
group demonstrated that these gene arrays can accelerate selective sweeps of SNVs, at
least in part through a process of gene conversion (76, 77).

In a similarly designed study, a vaccinia virus expressing a weak PKR antagonist derived
from rhesus cytomegalovirus (RhTRS1) also underwent rapid amplification of the rhtrs7 locus
to overcome PKR activity in African green monkey (AGM) cells (27). Unlike the previous study,
adaptive mutations emerged in two other vaccinia virus genes, A24R and A35R, rather than in
the amplified rhtrs1 gene. In addition, this rhtrs7 ampilification also provided a replication bene-
fit in otherwise completely resistant human- and rhesus macaque-derived cells compared to
the parent virus. In a follow-up study, the authors demonstrated that the initial gene amplifica-
tion acquired in the AGM cells was necessary for further adaptation to human cells (78). This
adaptation was facilitated by another increase in rhtrs1 copy number to overcome a more
stringent barrier to replication in human cells, mediated by both PKR and RNase L. This
suggests that gene amplification can overcome species-specific restriction barriers in dif-
ferent hosts through relatively nonspecific gene dosage effects and thus may act as a “mo-
lecular foothold” to facilitate viral spread to otherwise nonpermissive species (Fig. 1C).

In addition to facilitating the emergence of adaptive SNVs, gene duplication can
result in neofunctionalization of existing genes. A recent study identified a rifampin-re-
sistant vaccinia virus isolate carrying a duplication of a gene segment, which resulted
in partial duplication of the A17 gene (79). The partially duplicated gene encoded a C-
terminal-deleted A17 variant which, together with wild-type A17L, bound to the vaccinia vi-
rus scaffolding protein D13 and prevented its interaction with rifampin. This study provided
the first evidence of an alternate mechanism of rifampin resistance, which previously was
always associated with mutations in the D13 gene (80, 81). Furthermore, this work demon-
strates that gene amplification in poxviruses can result in new gene functions by promoting
neofunctionalization or subfunctionalization of existing genes. However, the truncation also
had a dominant negative effect on replication fitness, and amplifications of A17L, including
truncated copies, were lost immediately in the absence of rifampin.

Overall, these observations suggest that gene amplification provides a rapid mode
of adaptation to different selective pressures by increasing gene dosage and providing,
in some instances, a relatively nonspecific replication benefit. The amplification further
increases the apparent rate of adaptation by expanding the number of gene copies
that can acquire an adaptive mutation, as seen in the K3L study (26). Alternatively,
gene amplification may also allow a virus population to sample adaptive mutations at
different gene loci as demonstrated in the rhtrs1 study, where the adaptive mutations
were found in genes outside the amplified locus (27, 78). However, gene amplification
balances these benefits with fitness costs, most notably in the requirement to replicate
and support potentially very large gene arrays. This fitness cost is evident by the rapid
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contraction or loss of these amplified loci in the absence of selective pressure. The underly-
ing mechanisms giving rise to the initial duplication event are poorly understood. However,
once established, this duplication can be rapidly expanded or collapsed to a single copy by
homologous recombination, as discussed above. Because of the relative rapidity with which
duplications have emerged in experimental systems, preexisting gene duplications may be
present at low frequencies in a virus population, although this has not yet been confirmed.
Similarly, it is not yet known whether there are “hot spots” for gene duplication events or if
they can occur across the viral genome.

INVERTED TERMINAL REPEAT EXPANSIONS AND CONTRACTIONS

Poxviruses contain inverted terminal repeats (ITRs) near the ends of their genomes,
which represent identical and oppositely oriented sequences. The length of the ITR
varies between viruses, from less than 1 kb to more than 17 kb in length. Most poxvi-
ruses encode multiple genes in their ITRs, many of which are involved in immune eva-
sion. Because these ITR-encoded genes are essentially duplicated, these gene products
are generally expressed to a higher level through gene dosage effects. This relatively
high expression, particularly of immunomodulatory genes, may play a role in the
extensive host range of multiple poxviruses. For example, the human-restricted variola
virus encodes relatively short ITRs, generally less than 1 kb, that do not contain any
genes (5, 82). Mutations or gene insertions in one ITR region are usually also reflected
in the other ITR region, probably through recombination (83-85).

The ITR also has the ability to expand or contract (Fig. 1D), and while the detailed mecha-
nisms for these phenomena are currently unknown, they may involve nonhomologous
recombination (86). One example is found in myxoma viruses: in the South American myx-
oma virus Lausanne and SLS strains, the ITR terminates within the open reading frame (ORF)
of the K3L ortholog M156R, whereas in the related California MSW strain, the ITR extends
the full length of M156R and encompasses three additional full-length genes. Consequently,
these three genes, which all encode immunomodulatory proteins, are duplicated in the
California MSW strain but not the Lausanne or SLS strains (46). A more direct example of TR
expansion is found in myxoma viruses that were released in Australia. In comparison to the
parental SLS strain, some Australian lineages have expanded their ITRs to include full-length
M156R and M154R genes (87). Different ITR lengths have also been observed in monkeypox
viruses, where the [TRs in clade 1 (Central Africa) and clade 2 (West Africa) isolates are approxi-
mately 6.5 kb and 8.5 kb in length and contain four or six genes, respectively (7, 88). However,
in one clade 1 isolate from Sudan, the ITR was 17.5 kb in length and contained 14 complete
ORFs (89). Thus, ITR expansion represents a second mechanism to increase the gene dosage
of select genes that is likely distinct from the gene duplication mechanism discussed above.

GENE LOSS/GENE INACTIVATION

While gene gain is most frequently observed in poxvirus lineages that lead to distinct
genera, gene loss or gene inactivation is a predominant motif during speciation within
genera (3, 90, 91). Within the Orthopoxvirus genus, gene content correlates with host
range, i.e., the genome of host-restricted variola virus contains 162 intact genes, whereas
cowpox viruses, which have the largest host range, contain as many as 214 intact genes.
As mentioned in the introduction, cowpox viruses possess the largest gene content among
orthopoxviruses; however, no known cowpox virus isolate contain all the genes carried by the
orthopoxvirus genus as a whole (4). In more host-restricted orthopoxviruses, gene loss often
preferentially impacts host range or virulence genes (4, 56).

Gene loss/inactivation can occur through large deletions, smaller insertions and deletions
(indels), SNVs that introduce premature stop codons, mutations in gene regulatory regions,
and nonsynonymous SNVs introducing loss-of-function mutations (Fig. 1E). Microsatellites,
which constitute about a quarter of the poxvirus genome, are a major source of new early
stop mutations (92). The short-nucleotide motifs, between one and six nucleotides in length,
that make up microsatellites are hot spots for evolution due to DNA slippage during replica-
tion and recombination (93).
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One striking example of gene loss is found in orthologs of the vaccinia virus host range
gene K1L. This gene is inactivated in the closely related variola virus, camelpox virus and
taterapox virus. However, the gene-inactivating mutations are different in each virus and
introduced unique stop codons or out-of-frame indels, suggesting that these genes were
independently inactivated (56). Supporting this conclusion, two of four variola virus iso-
lates from the medieval period have intact K1L orthologs, whereas the other two have
unique gene-inactivating mutations (94). This shows that, even within a single lineage, multi-
ple inactivating mutations can occur independently, and it indicates the importance of gene
loss in poxvirus species radiation. Modern variola virus isolates also have a 17-bp deletion
upstream of the K1L open reading frame that is predicted to disrupt the likely promoter
motif. This region is intact in the four previously discussed ancient variola virus isolates, sug-
gesting prolonged and independent selection for K1L inactivation in humans (56, 94). There
are also 13 other genes that are inactivated in modern variola virus isolates but intact in at
least 1 ancient variola virus isolate (94). Many of these genes also encode proteins with immu-
nomodulatory functions.

In some cases, disrupted genes can maintain some of their function rather than being
completely inactivated. For example, the vaccinia virus host range and virulence factor
E3L encodes a protein containing an N-terminal Za domain, which is important for inhib-
iting ZBP1-dependent necroptosis, and a C-terminal dsRNA binding domain, which acts
as an inhibitor of PKR, and other dsRNA binding proteins (95, 96). As we discussed above,
the Za domain-encoding gene fragment is deleted or inactivated in some E3L orthologs,
for example, leporipoxviruses, monkeypox virus, and volepox virus. In leporipoxviruses,
the Za-encoding portion of the gene is deleted, yet the protein product lacking the Z«
domain is still able to inhibit PKR (97). In the monkeypox virus genome, the Za-encoding
part is present; however, the canonical E3L start codon is mutated, and two additional
small deletions disrupt the ORF (56). However, a second start codon downstream within
the Za domain is utilized to also produce a protein product that lacks a functional Z« do-
main but retains dsRNA binding properties, which can inhibit PKR (98).

Protein loss of function can also be precipitated by SNVs or indels that do not disrupt
the open reading frame. One such example is found in the myxoma virus K3L ortholog
M156R, in which a Leu71Pro (previously known as Leu98Pro) mutation was identified in
about half of the myxoma virus isolates from Australia (99). Even though the wild-type and
mutated proteins were expressed to similar levels, the Leu71Pro mutation prevented PKR
inhibition and attenuated the virus in cell culture. Thus, the ~50% of Australian isolates
containing this mutation may promote extended survival of the European rabbit host rela-
tive to wild-type myxoma virus infection, which could lead to better transmission (100). It
is important to note that these nondisruptive loss-of-function mutations are hard to pre-
dict and must be determined experimentally.

One explanation for the prevalence of gene loss in poxviruses may be that the large
complement of immunomodulatory and host range accessory genes found in the poxvirus
family may render some of these genes redundant. In these cases, redundant genes may be
dispensable for infection of their host species, and thus, there may be little selective pressure
to maintain some genes. Consequently, gene loss might indirectly select for a more limited
host range, as these more broadly acting genes are inactivated over evolutionary time.
Smaller genomes might provide advantages during replication, especially within a virus pop-
ulation. Alternately, or additionally, there is some evidence that gene loss may paradoxically
compensate for inactivated genes in some circumstances. In one study using an attenuated
vaccinia virus strain with a deletion in the B1R gene, the authors found compensatory inacti-
vating mutations in the B12R gene, which increased virus replication (101). Similarly, inacti-
vating mutations in A26L, G6R, and A14.5L increased viral fitness after serial passaging an
attenuated vaccinia virus that contained the myxoma virus ortholog of the transcription fac-
tor A8R instead of the vaccinia virus gene (102). These reports indicate that, in some cases,
gene inactivations can compensate for other attenuating mutations. Gene inactivation can
also lead to increased virulence, as shown in a mouse model using a vaccinia virus strain
lacking the B15R gene, which encodes a homolog of the interleukin-18 receptor (103).
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HORIZONTAL GENE TRANSFER

Horizontal gene transfer (HGT) is the exchange of genetic material between differ-
ent organisms by asexual processes, and it can also occur between viruses and their
hosts (104-106). A considerable number of predicted proteins in multiple dsDNA virus
families share moderate to high sequence identities with host proteins, suggesting
that their encoding genes have been captured from previous hosts via HGT (107-109).
In poxviruses, putative horizontally acquired genes are distributed throughout the viral
genomes and include some core genes that are found in most poxviruses (91, 110).
Many of these horizontally acquired genes contribute to poxvirus fitness by counter-
acting the host immune system, extending the virus host range, and protecting from
environmental damage, including interleukin-10, interferon gamma receptor, tumor
necrosis factor (TNF) receptor, serpin, glutathione peroxidase, and deoxyribodipyrimi-
dine photolyase homologs (91, 108, 110-112). In general, these viral genes are signifi-
cantly shorter than their host counterparts, suggesting that there may be selective
pressure, such as constrained genome size, to reduce horizontally acquired genes to
the minimal functional domains of their more complex host counterparts (113).

Computational analysis suggests that a large proportion of poxvirus genes were
horizontally acquired from their hosts (91). The majority of horizontal gene transfer events
likely occurred in three distinct waves throughout poxvirus evolution (4). There are two
broad mechanisms by which poxviruses might acquire host genetic material, either directly
through DNA-mediated mechanisms, including integration via recombination or DNA trans-
posons, or indirectly, including RNA-mediated mechanisms such as retrotransposons or ret-
roviruses (Fig. 1G) (32, 114). Most of the poxvirus genes predicted to have been captured
from hosts lack definitive genomic signatures of either mechanism. However, RNA-medi-
ated mechanisms for HGT are supported by several phylogenetic lines of evidence. For
example, the fowlpox virus genome contains a reticuloendotheliosis provirus, an avian ret-
rovirus (115). In taterapox virus, there is a host-derived short interspersed nuclear element
flanked by a perfect 16-bp target site duplication, a signature of long interspersed nuclear
element-1 (LINE-1) retrotransposons (114). Furthermore, some orthopoxviruses encode
homologs of the Golgi anti-apoptotic protein (GAAP), which shows about 76% protein
identity with mammalian homologs, indicating relatively recent HGT (116). These viral
genes are flanked by adjacent target site duplications and a putative poly(A) tail remnant,
implicating LINE-1 in the capture of a GAAP host gene (84, 85).

Two recent experimental studies address the mechanism(s) of HGT in poxviruses
(84, 85). In each study, the authors used a replication-deficient vaccinia virus, which lacks
PKR inhibitors E3L and K3L and can only replicate in PKR-deficient cells or in the presence of
PKR inhibitors provided in trans. To track host gene transfer, cell lines were stably transfected
with plasmids encoding either E3L or K3L preceded by an intron. These stably transfected
cells were infected with the replication-deficient viruses, and the progeny virions were then
used to infect PKR-competent cells. This selection strategy only allows replication of viruses
that took up a PKR inhibitor from the initial cell line. In these studies, a combined 30 HGT
events were identified. In all cases, the introns were spliced out, and poly(A) tails were pres-
ent. Twenty-six of the transferred genes also contained target site duplications with an aver-
age length of 16.2 bp. These genetic signatures are characteristic of LINE-1-mediated trans-
position of host RNA into the viral genome. In one study, the captured genes primarily
integrated outside the central region (84), while in the other study, captured genes were dis-
tributed throughout the genome, including the central conserved region (85). In some cases,
integration was found in essential genes, which presumably inactivated these genes. In
those cases, the derived virus was rescued by coinfection with the parental virus, enabling
the viruses to complement each other (Fig. 1F). After serial passaging, the viruses formed a
replication-competent virus through a process of recombination to generate tandem arrays
that contained both the uninterrupted essential gene and the essential gene disrupted by
the horizontally acquired PKR inhibitor (85). Importantly, this study demonstrated that rescu-
ing these essential gene disruptions required a cascade of events linking different evolution-
ary mechanisms to generate replication-competent viruses. The approximate gene transfer
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rates in these experiments were between 1 in 23 to 50 million viable virions (84, 85). These
calculations likely underestimate the actual transfer frequency because integrations into
essential genes require the presence of a complementing virus. Taken together, these stud-
ies demonstrate that the HGT of a particular gene is a very rare process. However, because
the genes used to select for HGT represent only one of thousands of genes and transpos-
able elements in the host cell, the actual HGT frequency is likely much higher but, in most
cases, may not be maintained due to detrimental or neutral effects on virus fitness.

CONCLUSIONS

Here, we have reviewed the many mechanisms underlying poxvirus evolution at both
the nucleotide and architectural levels. There is evidence that the poxvirus substitution rate
can, at least in some cases, be faster than in other dsDNA viruses. However, to the best of
our knowledge, there have not yet been any studies rigorously defining the fidelity of the
poxvirus DNA polymerase. In poxviruses, as with other organisms, the vast majority of muta-
tions probably do not provide selective advantages for the virus, and mutations therefore
do not become fixed. However, evolutionary changes can have unpredictable effects on vi-
ral fitness in both closely and distantly related host species. Therefore, a small subset of
mutations in a viral population, by chance, may provide a replication benefit in an otherwise
restricted environment, such as a host change, and become fixed (117).

In addition to nucleotide changes, architectural changes play substantial roles in
poxvirus evolution. These mechanisms can enhance virus replication themselves through
mass action effects, altering extant gene structure to generate new functions, or acquiring
new genetic material from coinfecting viruses or the host. In addition, these mechanisms
can and do work in concert. For example, the additional genes generated during duplication
events can each independently acquire SNVs, which may increase the apparent rate of SNV
accumulation without changing the underlying mutation rate. It is important to note that if
these changes lead to better virus replication, the chance of acquiring additional mutations
is increased both in the amplified gene itself, as well as generally throughout the genome
because there are simply more genomes produced. Similarly, knockout of essential genes
can be compensated for by a cascade of, first, coinfection complementing the virus in trans,
followed by recombination to generate replication-competent virions with new genetic ma-
terial and new functions (85). Gene inactivations in a lineage could also be reversed by
recombination, which might explain why cowpox viruses, which show strong evidence of
frequent recombination, show such a high gene content in all lineages. It is important to
note that other mechanisms, in addition to the ones described here, may also cause archi-
tectural changes, such as gene fusion (4). Additionally, DNA polymerase slippage in microsa-
tellites can cause in-frame indels, resulting in altered amino acid repeat numbers in proteins,
as exemplified by a poly(aspartic acid) stretch of various lengths in the homologs of vaccinia
virus A26 (OPG153) (92). Not unexpectedly, variations in microsatellites are also found in the
current monkeypox virus outbreak, including in the A26 ortholog (118).

The concerted and sometimes transient nature of these evolutionary changes can be dif-
ficult to detect in nature; however, the combination of phylogenetic analysis and experi-
mental evolution will continue to be a powerful method to unravel poxvirus evolution and
identify evolutionary biomarkers of high-risk viruses. It is therefore important to be aware of
the role of architectural changes in poxvirus evolution and ensure that bioinformatic pipe-
lines used for poxvirus sequencing are able to detect these changes. Using whole-genome
sequencing pipelines is even more important during emerging outbreaks because these ar-
chitectural changes are generally not detected by standard screening procedures, and multi-
ple lines of evidence demonstrate that they can arise rapidly in a population and cause sub-
stantial phenotypic changes.
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