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Abstract

On the interactions and phase behavior of indirect excitons in semiconductor materials

by

Paul R. Wrona

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Phillip L. Geissler, Co-chair

Professor Eran Rabani, Co-chair

Understanding the interactions of excitons has been central to the development of technolo-
gies such as solar cells and light-emitting diodes. To improve quantum yields and design
materials with desired optoelectronic properties, researchers require an understanding of
how multiple electron-hole pairs interact. From a fundamental perspective, excitons display
rich phase behavior; as composite bosons, they can support both Bose-Einstein condensation
as well as quantum Fermi liquids such as Keldysh’s electron-hole liquid. Additionally, since
they are analogous to hydrogen atoms, excitons can form molecules in the form of biexcitons
and ions in the form of trions.

Recent studies on the interactions and phase behavior of excitons have considered indi-
rect excitons whose constituents are constrained to reside in distinct planes separated by
a distance d. By separating the electrons from the holes, both radiative and non-radiative
recombination lifetimes are extended by orders of magnitude, making it easier to study and
probe their equilibrium phase behavior. Additionally, indirect excitons possess permanent
electric dipole moments, introducing a repulsion between particles. This interaction inhibits
the formation of biexcitons and provides more favorable conditions for Bose-Einstein con-
densation. Furthermore, there is experimental and theoretical evidence for new emergent
phases not previously observed when considering spatially-direct excitons, such as a classical
liquid of individual excitons.

In this dissertation, we use a broad range of theoretical techniques to study the phase be-
havior of indirect excitons. First, we examine the interaction between two indirect excitons
using diffusion Monte Carlo, finding long-range dipole-dipole repulsion in addition to short-
range attraction for relatively small d. In order to study the effects of introducing a third
exciton, we construct basis sets for indirect excitons and apply the full configuration inter-
action method, typically used for three-dimensional electronic systems. For very small d,
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the lowest energy state of the triexciton is a weakly-bound exciton-biexciton van der Waals
complex. Because the three-body potential is so weak and not pair-wise decomposable, we
find no evidence for a driving force towards the classical condensation of indirect excitons.

In order to explain recent observations of a condensed phase of indirect excitons, we consider
Keldysh’s electron-hole liquid in a bilayer geometry. Working within the random-phase
approximation, we calculate the ground state energy of a dense degenerate phase of unbound
carriers, finding good agreement with experimental measurements. Taking the Green’s-
function approach to finite temperatures, we evaluate free energies for electrons and holes in
a bilayer geometry using the linked-cluster expansion. By solving the law of mass action, we
investigate how the exciton Mott transition from bound excitons to free carriers varies with
d. Finally, using Maxwell equal-area constructions, we map the quantum liquid-gas phase
diagram in the plane of temperature and total carrier density. These diagrams are in close
agreement with the aforementioned experimental observations.
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To all of my teachers.
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“Tiger got to hunt, bird got to fly;
Man got to sit and wonder ‘why, why, why?’
Tiger got to sleep, bird got to land;
Man got to tell himself he understand.”
– Kurt Vonnegut, Cat’s Cradle
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Chapter 1

Introduction

1.1 Excitons: fleeting and fascinating

Excitons, or bound electron-hole pairs, are observed in a diverse array of materials and
are responsible for many important and compelling phenomena [1-2]. In semiconducting
polymers, electronic excitations are typically localized to one chromophore- a region of several
conjugated repeating units- and can “jump” to another through Förster energy transfer [3].
Within the light harvesting complexes of plants and algae, excitons transport optical energy
absorbed by chromophores to the reaction center where energy is eventually stored in the
form of chemical bonds [3]. Furthermore, in narrow-gap semiconductors or semimetals, if the
exciton binding energy is larger than the band gap between the valence and conduction band,
then the material will form an unconventional insulating ground state called an excitonic
insulator [5-6].

Our understanding of excitons in semiconductors is responsible for the development of
many important types of technology such as light-emitting diodes [7] and solar cells [8-9]. For
instance, recent research on solar cells has focused on utilizing multiple exciton generation
[10] as well as enhancing exciton diffusion lengths [11] to increase quantum efficiencies and/or
output photocurrents. Other approaches have centered around minimizing non-radiative
decay through applied strain [12] or simply by operating under low excitation power. In this
latter case, the collection of excitons may be approximated by a low-density non-interacting
gas. While this can yield high power conversion efficiencies, the amount of output power
is low. One outstanding challenge in this field is how to support and effectively utilize a
dense assembly of excitons. Thus, understanding how excitons interact individually and
collectively can lead to better design principles.

Beyond the pragmatic technological advantages, excitons are fundamentally interesting,
displaying fascinating properties, phenomena, and phases. Since an electron-hole pair is
closely analogous to a hydrogen atom, two excitons can bind to form an excitonic molecule
called a biexciton [13-14]. Similarly, an exciton and a free carrier can create hydrogenic
ions called trions [15]. These composite species form with a high probability when thermal
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Figure 1.1: Sketch of a phase diagram for excitons in the density-temperature plane.

energy is less than their binding energy (Eb,X , Eb,trion, and Eb,XX for excitons, trions, and
biexcitons, respectively). These regimes are sketched in Figure 1.1. Transformations between
these phases are not sudden, but rather continuous like the chemical equilibrium between
hydrogen atoms and molecules. From their Stark effect [16] to their fine structure [17],
excitons encompass the wealth of physics surrounding hydrogen.

At very low temperatures, the influence of quantum statistics becomes apparent. Unlike
fermions (e.g., electrons and holes), bosons (e.g., excitons and biexcitons) do not obey an
exclusion principle, allowing a macroscopic number of particles to occupy the same state and
create a Bose-Einstein condensate (BEC). In three dimensions, the critical temperature for
non-interacting bosons is [18]

TBEC =
3.31h̄2n2/3

ξ2/3mkB
(1.1)

where h̄ is the reduced Planck constant, n is the density, ξ is the degeneracy of the lowest
energy single-particle state, m is the particle’s mass, and kB is the Boltzmann constant. At
first glance, one may expect experiments to operate at high excitation densities in order to
raise this degeneracy temperature. However, excitons are stabilized by forming biexcitons
with a larger mass, so in practice, the densities must be low enough such that the excitons
are approximately non-interacting (see Figure 1.1). A BEC of excitons was first proposed a
decade before a BEC of spin-aligned hydrogen atoms [19-20]. However, the hydrogenic BEC
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was the first to be experimentally realized [21-23].
In the opposite regime, if thermal energy (i.e., kBT ) is greater than the exciton binding

energy, excitons dissociate and create an electron-hole plasma. Formation of this new phase
occurs gradually when driven exclusively by thermal effects. However, this transformation
can also occur suddenly if one increases the density and makes exchange and screening effects
more significant. When the inter-exciton distance is on the order of the exciton’s size (e.g.,
the thermal de Broglie wavelength given in Eq. (3.104)), a first-order Mott transition can
occur from a gas of bound excitons to an ionized fluid. Originally meant to describe the
transition from an insulator to a metal under high doping concentrations [24], a modified
form of this theory has successfully described this transition from an insulating exciton gas
to a conductive electron-hole plasma.

Other phases have been predicted and subsequently observed in the intermediate regime
between BECs and plasmas. As composite bosons, excitons display rich phase behavior
characteristic of both bosons and fermions. At temperatures slightly above TBEC , exci-
tons can condense into a metallic electron-hole liquid (EHL). First hypothesized by L. V.
Keldsyh in 1968 [25], this degenerate state is stabilized by exchange and screening effects
[26]. Experiments in the following decades revealed some of its intriguing properties, such
as high mobility, simple mechanical control through applied stress, and quantized droplets
[27-31]. Figure 1.1 shows the coexistence region for the EHL and gas. For many materials
and geometries [32-33], the critical temperature is

TC ≈ 0.1Eb,X

kB
(1.2)

Above the critical point lies a supercritical fluid phase: the electron-hole plasma.
Perhaps the biggest complication involved in studying the equilibrium phase behavior

of excitons is their finite lifetime. One way to extend their recombination lifetimes is by
creating indirect excitons (IXs) whose constituents are located in different regions of space.
To separate the attractive carriers, one can utilize electric fields [34] or a type-II band
alignment [35]. As shown in Figure 1.2, coupled quantum wells (CQW) use the former to
confine carriers to separate quantum wells. In doing so, the excitons acquire permanent
dipole moments proportional to the quantum wells’ separation, d, drastically changing their
interactions and collective behavior. With their extended lifetimes and mutual repulsion,
indirect excitons have been observed to traverse distances orders of magnitude larger than
their size [36]. Furthermore, a number of novel exciton phases have been proposed, such as
a spin-density wave [37], a crystal [38-39], and a high-temperature superfluid [40].

One of the most interesting hypothesized phases of indirect excitons is a classical (i.e.,
non-degenerate) liquid [41]. This state is impossible to assemble with spatially-direct excitons
as they are stabilized in the form of biexcitons. However, the dipole moments of IXs weaken
the exciton-exciton bond, opening up the possibility of a liquid of individual excitons. Recent
experiments conducted by Bar-Joseph and co-workers studied the phase diagram of indirect
excitons in GaAs at intermediate temperatures: a few degrees above TBEC [42-43]. Below
a critical temperature and above a threshold laser power, they observed a phase boundary
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Figure 1.2: Schematic of a coupled quantum well. d is the separation between the centers of
the quantum wells.

Figure 1.3: The left panel is a photoluminescence image of coupled quantum wells from a
top-down view. The right panel consists of spatially-resolved spectra taken across the dashed
yellow line shown in the image. Region I contained the emission from indirect excitons (IX)
and was interpreted as a gas of IXs. Region II featured a red-shifted peak (Z) and was
interpreted as a classical liquid of IXs [42,43].

in their photoluminescence (PL) images (see Figure 1.3). By acquiring spatially-resolved
PL spectra across the boundary, they noticed that the emission from the new phase was
red-shifted by 4 meV. The authors interpreted this state as a classical liquid of IXs. In
contrast, earlier studies concluded that a high-density IX phase was Keldysh’s electron-hole
liquid realized in a bilayer geometry [44-45]. Indeed, others have cast doubt on the validity
of the classical liquid of IXs [46], but there has been little concrete evidence for or against
this newly considered phase thus far.

In this dissertation, we investigate the stability of various phases of indirect excitons.
In the remainder of this chapter, we establish the overarching theoretical framework. We
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first consider the possibility of a classical liquid of indirect excitons in Chapter 2. Classical
liquids are typically stabilized by attractive interactions, so we first seek an attraction among
multiple IXs. Additionally, we investigate whether there is any regime of quantum well
separations d in which the many-body potential can be approximately decomposed as a
sum of two-body pair potentials. We begin by reviewing diffusion Monte Carlo studies
of the interactions between two IXs. In order to study a third IX, we borrow techniques
from quantum chemistry and extend the full configuration interaction method from three-
dimensional electronic systems to bilayer excitonic systems. We ultimately find no evidence
of a driving force towards the classical condensation of indirect excitons in realistic CQWs.

In Chapter 3, we apply field theoretic techniques to study Keldysh’s electron-hole liquid
in a bilayer geometry. We find that the energy difference between a gas of excitons and the
electron-hole liquid is approximately equal to the red-shift measured in [42]. Encouraged
by this result, we then calculate free energies and chemical potentials for a collection of
degenerate electrons and holes and identify instabilities which prompt a transition to a
condensed state.

In Chapter 4, we synthesize the results of Chapters 2 and 3 to study the effects of electrons
and holes binding to form excitons and determine how the exciton Mott transition depends
on the distance between quantum wells, d. Finally, we use Maxwell equal-area constructions
to map the liquid-gas phase diagram for indirect excitons and analyze how the critical point
varies with d as well as the electron-hole mass ratio.

1.2 Overarching theoretical framework

Excitons are difficult to study theoretically since they are bound states of quasielectrons
and quasiholes [47]. A rigorous approach to calculating the properties of these latter pri-
mary elementary excitations involves solving for the many-body one-particle Green’s function
[48]. Then, to incorporate the quasielectron and quasihole interaction, one solves the Bethe-
Salpeter equation for the two-particle Green’s function [49]. This framework has success-
fully described Auger recombination [50] and exciton-phonon coupling [51] in semiconductor
nanostructures. However, due to their complexity and computational cost, these methods
have been restricted to studying phenomena involving at most two excitons [52].

In light of this, we work within the effective mass approximation [47]. Because we are
interested in thermally-equilibrated states located at the band edge, we are safe in assuming
a parabolic band structure. Specifically, we consider isotropic conduction and valence bands
and take the effective masses for electrons and holes in GaAs to be me = 0.063m0 and
mh = 0.51m0 respectively, where m0 is the rest mass of the electron. Because we assume a
single conduction and valence band, the system is symmetric under the exchange of electron
and hole masses. That is, two systems with electron-hole mass ratios σ = me/mh and σ−1

are equivalent. Without loss of generality, we restrict our studies to 0 ≤ σ ≤ 1.
We use excitonic units throughout this dissertation. Our length scale is the exciton Bohr
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Figure 1.4: Bilayer model with the bilayer separation d indicated.

radius

aex =
4πϵ0ϵh̄

2

mrede2
(1.3)

=
ϵm0

mred

a0 (1.4)

≈ 12nm GaAs (1.5)

where ϵ0 is the vacuum permittivity, ϵ is the static dielectric constant (12.9 for GaAs),
m−1

red = m−1
e +m−1

h is the electron-hole reduced mass, e is the elementary charge, and a0 is
the Bohr radius. Similarly, our energy scale is the exciton Rybderg

Ryex =
mrede

4

2(4πϵ0ϵ)2h̄
2 (1.6)

=
e2

2(4πϵ0ϵ)aex
(1.7)

=
mred

ϵ2m0

Ry (1.8)

≈ 5meV GaAs (1.9)

where Ry is the Rydberg constant.
We follow most theoretical work on indirect excitons by approximating coupled quantum

wells with an ideal bilayer model shown in Figure 1.4. Here, the electron and hole planes
are assumed to be infinitely thin, thus neglecting fluctuations in the transverse direction. As
hinted by their name, the widths of most quantum wells are smaller than 1aex, so the carriers
experience quantum confinement effects. To a good approximation, the wavefunction in the
z-direction is given by the ground state of a particle-in-a-box, whose probability density is
largest at the center of the wells. Indeed, exact numerical calculations of an exciton in a
realistic coupled quantum well system reveal that the carriers are predominantly located at
the center of the wells, even under the influence of an electric field [53]. Thus, we will map
the bilayer separation d to the separation between the wells’ centers.
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Chapter 2

Few-body interactions of indirect
excitons

2.1 Introduction

In this Chapter we consider the possibility of a classical liquid of indirect excitons as hy-
pothesized in [41-43]. By classical we mean that the excitons are non-degenerate, so their
typical separation from each other is larger than their thermal de Broglie wavelength. A
necessary ingredient in forming a condensed, non-crystalline phase is an attractive force
among particles.1 A distinguishing feature of indirect excitons is their permanent electric
dipole moment. As bound excitons are charge-neutral, their dipole moments dictate their
long-range electrostatic interaction. Since these moments are aligned in the same direction
as one another, IXs are purely repulsive on the basis of classical electrostatics. Due to
the overwhelming evidence of an attraction between two indirect excitons [54-57], we must
examine the problem quantum mechanically.

Even within the simplifying framework of the effective mass approximation, it remains dif-
ficult to compute the interactions between two excitons due to their composite nature. Oku-
mura and Ogawa [58] were the first to study the so-called “composite-particle effect,” or the
deviation of an exciton’s statistics from that of an ideal boson. Using second-quantization,
they derived a bosonized Hamiltonian and computed interaction potentials for two excitons,
noting that “these interaction potentials agree with the result of the Heitler-London theory”
[58]. Building on this work, Schindler and Zimmermann [55] calculated spin-dependent po-
tentials for two-dimensional and bilayer systems using the Heitler-London approximation in
addition to solving the Schrödinger equation numerically with the Lanczos algorithm. This
latter approach gave improved results, but required them to treat the holes as infinitely
massive.

1It is well-known that a collection of hard spheres in three dimensions crystallizes at high densities. The
situation is murkier in lower dimensions due to the Mermin-Wagner theorem, which states that continuous
symmetries cannot be spontaneously broken in one or two dimensions. While this prohibits the existence of
a crystal with long-range positional order, there is evidence of a hexatic phase with orientational order.
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The most accurate studies of two indirect excitons utilize diffusion Monte Carlo (DMC)
[56,59]. This method yields the ground state wavefunction and energy by solving the
imaginary-time Schrödinger equation by propagating Monte Carlo “walkers” according to
a diffusion-like equation. These walkers sample the wavefunction like a probability distri-
bution, which is valid for positive-definite, nodeless wavefunctions. Because there are only
two electrons and two holes in a biexciton, the ground state spin configuration for both
the electrons and holes is a singlet and DMC is exact in principle. In practice, statistical
error is accrued due to sampling the wavefunction, but this can be minimized by biasing the
walkers according to a guiding or trial function. While the final energy and wavefunction
are independent of the trial function, the statistical errors are significantly reduced using
an appropriate function. Additionally, DMC is exact in the limit that the propagation time
step dτ goes to zero; in practice one first calculates the desired observable using multiple
time steps and then extrapolates to dτ = 0.

2.2 Diffusion Monte Carlo studies of two indirect

excitons

The Hamiltonian in atomic units (h̄ = e = m0 = 4πϵ0 = 1) for two indirect excitons is

H = − 1

2me

(
∇2

1 +∇2
2

)
− 1

2mh

(
∇2

a +∇2
b

)
+

1

ϵ|r1 − r2|
+

1

ϵ|ra − rb|
−
∑
i=1,2

∑
α=a,b

1

ϵ
√

|ri − rα|2 + d2
(2.1)

1 and 2 refer to the electrons, and a and b refer to the holes. The first four terms are
the kinetic energy of the electrons and holes, the next two terms are the statically-screened
Coulomb repulsion between identical particles, and the last four terms are the statically-
screened Coulomb attraction between dissimilar particles. All vectors are two-dimensional.

Following [56], we solved Eq. (2.1) using DMC with a trial wavefunction of

ψT (re1, re2, rh1, rh2) = exp[−|re1 − rh1 + dẑ|] exp[−|re2 − rh2 + dẑ|] exp[−|re1 − rh2 + dẑ|]

× exp[−|re2 − rh1 + dẑ|] exp
[ 0.5|re1 − re2|
1 + |re1 − re2|

]
exp

[ 0.5|rh1 − rh2|
1 + |rh1 − rh2|

]
(2.2)

The first four terms are inspired by the exciton ground state wavefunction (an exponential),
and the last two terms are Jastrow factors. The latter factors incorporate electron-electron
and hole-hole correlations, and they obey the Kato cusp condition [60-61] which guarantees
that the Hamiltonian is non-singular when two electrons or holes coalesce.

Upon solving Eq. (2.1) for the 4-particle biexciton energy EXX , we compute the biexciton
binding energy

Eb,XX = 2EX − EXX (2.3)
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Figure 2.1: Biexciton binding energy Eb,XX as a function of the bilayer separation d. The
electron-hole mass ratio is σ = me/mh = 0.3. Lee et al. comes from [56].

where EX is the ground state energy of a single indirect exciton. In [59], Needs and co-
workers computed EX(d) as a function of the bilayer separation d by solving the radial the
Schrödinger equation for an IX:

−1

r

∂

∂r

(
r
∂Φ

∂r

)
− 2√

r2 + d2
Φ = EXΦ (2.4)

When d = 0, the equation can be solved exactly to give EX(0) = −4Ryex. For d > 0, they
used 4th Runge-Kutta integration to solve Eq. (2.4). The result was fit to

EX = − 4 + Ad+Bd2 + Cd3

1 +Dd+ Ed2 + Fd3 +Gd4
(2.5)

whereA=154.363, B=648.9, C=225.005,D=46.4263, E=384.976, F=628.158, andG=129.672.
This fit gives a maximum error of 0.0028Ryex. When expressed in Ryex, EX is independent
of the electron-hole mass ratio σ = me/mh. Figure 2.1 shows how the biexciton binding
energy changes with the bilayer separation. Multiple time steps are shown in addition to
the extrapolated dτ = 0 result. As expected, the binding energy decreases as the electrons
and holes are increasingly separated from each other. We can equivalently attribute this
destabilization to the growing dipole moments of the indirect excitons.

By identifying the bilayer separation where Eb,XX = 0 for various d and σ, Lee et al.
mapped the region of biexciton stability shown in Figure 2.2. Indirect biexcitons are the
most stable when σ = 0. When the holes are infinitely-massive classical point charges,
the electrons can localize around them which increases the electron-hole attraction while
decreasing electron-electron and hole-hole repulsion.
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Figure 2.2: Region of biexciton stability from [56].

To calculate the interaction potential between two indirect excitons, Needs and co-workers
[56] transformed Eq. (2.1) into

H = − 1

2mred

(
∇2

X1 +∇2
X2

)
+

1

ϵ|R+ mred

me

(
rX1 − rX2

)
| +

1

ϵ|R+ mred

mh

(
rX2 − rX1

)
|

− 1

ϵrX1

− 1

ϵrX2

− 1

ϵ|R− mred

mh
rX1 − mred

me
rX2|

− 1

ϵ|R+ mred

me
rX1 +

mred

mh
rX2|

(2.6)

where rX1(X2) is the electron-hole separation for exciton 1 (2) andR is the separation between
the excitons’ centers-of-mass. In this form, R = |R| can be treated as a fixed parameter,
allowing one to evaluate the biexciton energy as a function of the exciton-exciton separation.
Since the electrons are distinguished in these coordinates, this transformation is only valid
for relatively large R where the excitons remain bound.

To compute accurate interaction potentials, especially in the limit of large d, we require
a more accurate trial wavefunction than Eq. (2.2). In this case, we used

ψT = ψeeψhhψeh (2.7)

where
ψee = exp

[ c1r12
1 + c2r12

]
(2.8)

ψhh = exp
[ c3rab
1 + c4rab

]
(2.9)
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ψeh = exp
[c5r1a + c6r

2
1a

1 + c7r1a
+
c5r1b + c8r

2
1b

1 + c9r1b
+
c5r2a + c8r

2
2a

1 + c9r2a
+
c5r2b + c6r

2
2b

1 + c7r2b

]
+ exp

[c5r1a + c8r
2
1a

1 + c9r1a
+
c5r1b + c6r

2
1b

1 + c7r1b
+
c5r2a + c6r

2
2a

1 + c7r2a
+
c5r2b + c8r

2
2b

1 + c9r2b

]
(2.10)

Eq. (2.2) is recovered if c1 = c3 = 0.5, c2 = c4 = 1, c5 = −1, and c6 = c7 = c8 = c9 = 0. We
optimized these variational parameters using variational Monte Carlo within the CASINO
program [62].

The exciton-exciton interaction potential is defined as

VX−X(R) = EXX(R)− 2EX (2.11)

Figure 2.3 shows an interaction potential for d = 0.6aex and σ = 0 after extrapolating
to dτ = 0. When the excitons are far from each other, their interaction is described by
classical electrostatics. Since they do not have a net charge, their interaction to lowest order
is dipole-dipole. In excitonic units,

VX−X(R) =
2d2

R3
R ≫ 1aex (2.12)

This interaction is shown in dotted lines. Figure 2.4 shows the heavy-hole two-body inter-
action potentials for d = 0.8 and 0.9aex. At these large values of d, the well depth is on the
order of 10−3–10−2Ryex, and the equilibrium separation between the excitons is extended to
3aex.

Because the electron and hole effective masses are less than the rest mass of an electron,
there are significant zero-point effects. This causes the true exciton-exciton binding energy
to be less than the well depth (i.e., the minimum value) of VX−X . If we naively assume that
interaction potentials are independent of the electron-hole mass ratio, we can use heavy-hole
(σ = 0) potentials to estimate the change in biexciton binding energy. Figure 2.5 shows a
fit of the d = 0 heavy-hole potential to the Morse potential

V (r) = D(1− exp[−a ∗ r])2 −D (2.13)

Setting the dissociation energy to the zero-point energy [63],

D =

√
2D

mred

a

2
− a2

8mred

(2.14)

We solve this equation to find the smallest reduced mass mred that yields bound states of the
Morse oscillator. Following this procedure for various d and finding the σ at which excitons
remain bound, we map biexciton stability and compare it in Figure 2.6 to the previous DMC
results. Using the σ = 0 potentials causes us to overestimate the region of stability, but the
agreement is still quite good.

What do these indirect exciton pair potentials imply for the experiments of [42,43,45]
which observe a condensed phase of IXs? The coupled quantum wells under investigation
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Figure 2.3: Exciton-exciton interaction potential for d = 0.6 and σ = 0 calculated using
DMC. Shown in the dotted line is the dipole-dipole repulsion given by Eq. (2.12).
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Figure 2.4: Interaction potentials for d = 0.8 and 0.9 aex and σ = 0 using DMC.
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Figure 2.6: Critical bilayer separation for bound biexcitons as a function of electron-hole
mass ratio. “Exact” refers to diffusion Monte Carlo calculations for two electrons and 2
holes. “σ = 0” refers to diffusion Monte Carlo calculations for 2 electrons with infinitely
heavy holes. See main text for more details.
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have a center-to-center well separation of d ≥ 1aex. Although the carriers of a single indirect
exciton are most likely found in the centers of the wells [53], it is possible that interactions
with other indirect excitons lead to the carriers being pulled closer to one another. The
electron-hole mass ratio for GaAs is σ ≈ 0.1, so the effective bilayer separation must be cut
in half (d < 0.6aex according to Figure 2.6) in order to observe any attraction between two
indirect excitons.

Furthermore, there is no reason to believe that the many-body potential is pair-wise de-
composable. In three and two dimensions (d = 0), the ground state of three hydrogen atoms
is a van der Waals complex consisting of a hydrogen molecule and an atom; two atoms are
strongly bound in close proximity due to their covalent bond and the third is loosely held a
large distance away. Since the hydrogenic analogy breaks down for d ̸= 0, it is possible that
the indirect excitons’ dipole moments inhibit the exchange interaction which underlies the
“excitonic bond.” While we doubt that the aforementioned experiments observe a classical
liquid of excitons as they investigate large quantum well separations, it remains fundamen-
tally interesting and significant if there is some regime of bilayer separations for which the
many-body potential is accurately described by a pair-decomposable form. Therefore, we
wish to calculate the three-body interaction potential for indirect excitons.

Unfortunately, diffusion Monte Carlo is no longer exact when applied to systems whose
wavefunctions have nodes such as triexcitons. However, this method can provide insight
into how to further proceed. In addition to obtaining the ground state energy, diffusion
Monte Carlo also yields the ground state wavefunction. Figure 2.7 shows biexciton electronic
probability distributions projected along the hole-hole axis for σ = 0 and d = 0.9. When
the holes are far apart (R = 4.5aex), the electronic distribution is peaked directly above the
holes. However, as R decreases, the electrons are pulled inwards towards the other hole,
reminiscent of the formation of a covalent bond. In a hydrogen molecule, the electrons
are shared between both nuclei. As the electrons delocalize over both nuclei, the electron-
nuclear attraction increases and the electrons’ kinetic energy decreases. Molecular orbital
theory describes this delocalization using linear combinations of atomic orbitals.

To test if indirect biexciton formation can be captured by an orbital-based approach,
we first obtained the wavefunction for a single exciton. Figure 2.8 shows the corresponding
electronic density projected along the x-axis for d = 0.9aex. We then added together two
exciton wavefunctions centered above the holes and computed the resulting electronic distri-
bution. In Figure 2.9, we compare the exact biexciton electronic distribution to the sum of
two non-interacting exciton states. Surprisingly, we find quite good agreement, suggesting
that this orbital picture can accurately describe the interactions between excitons, even for
d ̸= 0. Moving forward, we will push the exciton-hydrogen atom analogy as far as possible.

2.3 Building a Gaussian basis for indirect excitons

Since diffusion Monte Carlo samples the ground state wavefunction like a probability dis-
tribution, the method is best suited for systems with nodeless wavefunctions, such as those
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Figure 2.7: Plots of electronic density projected along the hole-hole axis for σ = 0, d = 0.9aex
and three different hole-hole separations. Dashed lines show placement of the holes on the
lower plane.
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Figure 2.8: Single exciton wavefunction for d = 0.9 and σ = 0. The fit is to a Gaussian with
zero mean and a variance of 1.583a2ex.

with two electrons (and/or two holes). DMC can be applied to systems with more electrons
if one invokes approximations like the fixed-node approximation [64], but these depend on
the quality of the trial wavefunction. Over the past several decades, quantum chemists have
developed a plethora of techniques to solve the Schrödinger equation for molecules with many
electrons. These have relied on building many different three-dimensional atomic basis sets.
Even for the slightly more common case of a strictly two-dimensional (d = 0) system, there
are no commonly-used basis sets.

Because we’re interested in multiple indirect excitons residing in a variety of bilayer
separations, we must first solve the single IX Hamiltonian (in atomic units)

H = − 1

2mred

∇2 − 1

ϵ
√
r2 + d2

(2.15)

where r is a two-dimensional vector describing the lateral separation between the electron
and hole. When d = 0, the system is equivalent to the hydrogen atom; the ground state
energy is −4Ryex and the corresponding normalized eigenstate is

ϕd=0(r) =

√
2

π
exp[−r] (2.16)

For d ̸= 0, the Hamiltonian does not appear to be analytic.
From Figure 2.8, the electronic density of an indirect exciton for relatively large d is

well-described by a single Gaussian. As a first approach, we solve Eq. (2.15) variationally
using

g(r;σ2) =
1√
πσ2

exp
[
− r2

2σ2

]
(2.17)
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Figure 2.9: Comparing electronic densities of a biexciton with two excitons placed above the
holes.
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as the trial wavefunction and the variance σ2 as the variational parameter. (For the remainder
of this Chapter, σ will refer to a standard deviation of some Gaussian. Our solutions to the
indirect exciton Hamiltonian hold for all electron-hole mass ratios since we use center-of-mass
coordinates. In contrast, we will solve the biexciton and triexciton Hamiltonians within the
infinitely heavy hole limit.)

The matrix elements for the kinetic and potential energy operator can be computed
exactly in a Gaussian basis. Derivations are included in the appendix, and the results (in
hartrees, Eh = 2Ryex) are∫

drg(r;σ2)
(
− 1

2mred

∇2
)
g(r;σ2) =

1

2mredσ2
(2.18)∫

drg(r;σ2)
(
− 1

κ
√
r2 + d2

)
g(r;σ2) = −

√
π

σ2
exp

[d2
σ2

]
erfc
[d
σ

]
(2.19)

The indirect exciton energy (in Eh) is thus

E(σ) =
1

2mredσ2
−
√

π

σ2
exp

[d2
σ2

]
erfc
[d
σ

]
(2.20)

We differentiate this with respect to σ to find its optimal value. Figure 2.10 shows the
resulting energy as a function of bilayer separation compared to the exact value given by
Eq. (2.5). The ground state wavefunction at d = 0 is known to be an exponential, which
explains why the Gaussian trial wavefunction gives a 25% relative error in this case.

The error in the energy decreases with increasing d, suggesting that the indirect exciton
wavefunction becomes better described by a Gaussian. In truth, an indirect exciton resembles
a harmonic oscillator at large bilayer separations. The multipole expansion of the Coulomb
interaction is

− e2

ϵ
√
r2 + d2

=
e2

ϵd

[
− 1 +

1

2

(r
d

)2
+O(

r

d
)4
]

(2.21)

≈ −Ẽ +
Ẽ

2

(r
d

)2 r

d
≪ 1 (2.22)

where Ẽ = e2/(ϵd) is the basic scale of the electrostatic attraction. The oscillator’s charac-
teristic frequency is thus

ω =

√
Ẽ

d2mred

(2.23)

=

√
e2

ϵd3mred

(2.24)

The ground state wavefunction of a harmonic oscillator is

ψoscillator(x) =
(mredω

πh̄

)1/4
exp

[
− mredωx

2

2h̄

]
(2.25)
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Figure 2.10: Ground state energy of an indirect exciton as a function of the bilayer separation.
“Variational” refers to using a single Gaussian with the optimal variance. “DMC” refers to
exact diffusion Monte Carlo results.

so its spatial extent (i.e., its standard deviation) is

l =

√
h̄

mredω
(2.26)

Measured in exciton Bohr radii aex = h̄2ϵ/(mrede
2), we get

l

aex
=
( d

aex

)3/4
(2.27)

We compare this expected value to the results of the variational approach in Figure 2.11.
The electron and hole planes must be separated by hundreds of exciton Bohr radii before
the exciton behaves like an oscillator.

To improve our variational wavefunction, we first naively added more Gaussians. In
this case, we computed the exciton energy on a grid of σ2 and chose the set which yielded
the lowest energy. However, there is no straightforward way to obtain excited states which
are typically used to incorporate electron-electron correlations. Therefore, we return to the
single IX Hamiltonian, Eq. (2.15), and solve the time-independent Schrödinger equation(

− 1

2mred

∇2 − 1

ϵ
√
r2 + d2

)
ϕ(r, θ) = Eϕ(r, θ) (2.28)
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Figure 2.11: Comparing the optimal standard deviation of a single Gaussian modeling an
indirect exciton to the large-d behavior of a harmonic oscillator.

We first separate variables and write

ϕ(r, θ) = R(r)Θ(θ) (2.29)

The solution to the resultant angular equation is

Θ(θ) =
1√
2π

exp[imθ] (2.30)

where m is the angular quantum number. Similar to atomic states in three dimensions,
m ≤ n, where n is the eigenvalue index for the radial component given by

− 1

2r

d

dr

(
r
dR

dr

)
+
(m2

2r2
− 1√

r2 + d2

)
R(r) = En,mR(r) (2.31)

We solved for the eigenvalues and eigenfunctions of Eq. (2.31) using a real-space grid and
the Arnoldi method. Figure 2.12 compares the resulting ground state energy as a function
of the bilayer separation to Eq. (2.5), a fit to the energy calculated using 4th-order Runge-
Kutta integration [59]. In Figure 2.13, we show the radial wavefunctions of the 1s state for
various bilayer separations. These are normalized according to

1 =

∫ ∞

0

r|R(r)|2dr (2.32)
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Figure 2.12: Ground state energy of an indirect exciton as a function of bilayer separation.
“Arnoldi & real-space grid” refers to this work and “Runge-Kutta” comes from [59].

For d > 0, there is no longer a singularity in the Coulomb potential. Therefore, the cusp
at r = 0 is smoothed as d increases. Additionally, the exciton becomes more delocalized
as the bilayers separate as the electron experiences less of an attraction to the hole. Also
shown in Figure 2.13 are radial wavefunctions for exemplary 2p and 3d states. Since these
wavefunctions are zero at r = 0 and peaked away from the hole, they experience less of an
effect with increasing d.

For the hydrogen atom in any number of dimensions, the Runge-Lenz vector is a conserved
quantity, guaranteeing that the eigenvalues are independent of m. In the context of our
bilayer model, this means En,m ≡ En for d = 0. However, for d > 0, this symmetry is broken
and the degeneracy with respect to m is lifted. Figure 2.14 shows how the indirect exciton
spectrum changes with the bilayer separation. The spectrum compresses as d increases, and
states with higher angular momentum are lower in energy.

To expedite the multi-exciton calculations, we rewrote the single exciton states as Gaus-
sian contractions (i.e., linear combinations of Gaussians) since they offer analytic matrix
elements. However, as seen in Figure 2.13, states with m > 0 are not peaked at r = 0.
Instead of fitting Gaussians to R(r), we factor out r−m and fit to

f(r) = r−mR(r) (2.33)

Similar to three-dimensional atomic states, these new functions f(r) are peaked at r = 0, as
shown in Figure 2.15. We subsequently minimize∫ ∞

0

r
[
f(r)−

Ng∑
i=1

cig(r, σ
2
i )
]2
dr (2.34)

with respect to the Gaussians’ variances σ2
i and their coefficients ci. Ng is the number

of Gaussians in our basis set. Figure 2.16 shows the relative error between the energy
computed using these contracted states and the exact eigenvalues En,m. In order to describe
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Figure 2.13: Radial wavefunctions, R(r), for the 1s, 2p, and 3d states of an indirect exciton
for various bilayer separations d.
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Figure 2.14: The first several eigenvalues as a function of bilayer separation. The degeneracy
associated with the angular quantum number m is lifted for d > 0.

the attraction between excitons, we want this relative error to be at least less than the
fraction of biexciton energy used in bonding:

threshold =
VX−X(Req)

EXX(Req)
(2.35)

where Req is the equilibrium biexciton bond length. Using five Gaussians, the states up to
4s are under the d = 0.9aex threshold for 0.5 ≤ d

aex
≤ 0.9, and all of the states are under the

d = 0.4aex threshold.

2.4 Interactions between two indirect excitons using

the full configuration interaction method

To test the validity of this orbital approach, we revisit the exciton-exciton interaction.
Equipped with a basis for single excitons, we can use any method available in the quantum
chemistry toolbox at the expense of working within the Born-Oppenheimer approximation
(i.e., taking the mass of the holes to infinity). This regime gives the strongest exciton-exciton
attraction, and thus should provide the best conditions for exciton condensation.

Because the biexciton binding energy decreases with increasing bilayer separation, we
seek an accurate method that captures as much electron-electron correlation as possible. We
only consider a handful of electrons at a time, so we can afford the accurate but computa-
tionally expensive full configuration interaction (FCI) method. This approach includes all
electron-electron correlation available within a given basis by diagonalizing the N -electron
Hamiltonian in the basis of all possible N -electron states
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Figure 2.15: Plots of f(r)– radial wavefunctions multiplied by r−m– for the 2p and 3d states
of an indirect exciton for various bilayer separations d.

For N = 2, our Hamiltonian is Eq. (2.1) if we take mh → ∞. The matrix elements in
terms of Gaussian states are derived in Section 2.6. The ground state spin configuration for
the hydrogen molecule is a singlet, so we write the spin wavefunction for our biexciton as an
antisymmetric singlet, as well. Consequently, our spatial wavefunction must be symmetric
with respect to exchange of the electrons so that the overall wavefunction is antisymmetric.
Our biexciton FCI wavefunction is

ΨXX(r1, r2) =

Norbitals∑
i,j=1

cij
(
ϕi(r1)ϕj(r2) + ϕj(r1)ϕi(r2)

)
(2.36)

ϕi is a Gaussian contraction of the single exciton orbital i (e.g., 1s, 2p, etc.) located in the
electrons’ plane directly above one of the holes. This is a generalization of the generalized
valence bond (GVB) wavefunction [65]. The Heitler-London wavefunction studied by both
Okumura and Zimmerman [55,58] is a specific case of the GVB wavefunction.
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Figure 2.16: The relative error of our 5-Gaussian basis set for the first several states and
several bilayer separations d. The dashed lines are the thresholds given in Eq. (2.35).

Figure 2.17 shows interaction potentials for d = 0. As we increase our basis set from {1s}
to {1s,2s,2p}, we converge towards the exact diffusion Monte Carlo result. However, we ob-
serve slow convergence. While our single IX basis is complete, we can only afford a handful of
states at a time. Therefore, we optimized our basis sets. Inspired by Dunning’s “correlation-
consistent” basis sets [66], we scaled the size of our orbitals to account for electron-electron
repulsion. Specifically, we minimized the biexciton energy at the equilibrium geometry by
dividing the standard deviations of the Gaussians by ξ:

gscaled(r;σ
2, ξ) = g(r; (σ/ξ)2) (2.37)

The optimal scaling factor depends on the separation between the holes, but we fixed ξ for
all configurations for simplicity as we are mainly interested in describing the attractive force
between excitons. This leads to an artificial repulsion at large exciton-exciton separations,
as shown in Figure 2.17.

For d = 0, the 1s states were scaled by ξ1s = 1.3, leading to a substantial increase in
the interaction potential as shown in Figure 2.17. Similar to the three-dimensional hydrogen
molecule, shrunken 1s orbitals reduce the electron-electron repulsion. For 0.1 ≤ d

aex
≤ 0.3,

the optimal ξ1s decreased to 1.2 and 1.1, and ξ1s = 1 for d > 0.4aex. As d increases, the
single-particle states delocalize (see Figure 2.13) and the growing dipole moments of the
IXs increases their equilibrium separation. These two factors cause the natural, unscaled 1s
orbitals to afford the largest electron-hole attraction and minimal electron-electron repulsion.

For d ≤ 0.5aex, we observe exciton-exciton attraction using only scaled 1s orbitals,
whereas more states are required for larger bilayer separations. Coincidentally, the energy
difference between the 1s and 2p states falls below 1Ryex for d > 0.5aex. Thus, for these larger
bilayer separations, electron-electron correlations “push” the electrons to higher-energy or-
bitals in order to form an indirect biexciton. Figure 2.18 shows the interaction potential for



CHAPTER 2. FEW-BODY INTERACTIONS OF INDIRECT EXCITONS 26

0.5 1.0 1.5

RX−X (aex)

−2

−1

0

V
X
−
X

(R
y e
x
)

1s

1s, 2s

1s, 2s, 2p

Scaled 1s, 2s, 2p

DMC

Figure 2.17: Exciton-exciton interaction potential for d = 0 and σ = 0 calculated using our
FCI approach. Also shown is the exact DMC result.

d = 0.6aex. The 2p states needed to be optimized in order to observe the exciton-exciton
attraction. While we only capture half of the well depth by optimizing the 1s, 2s, and 2p
orbitals, our biexciton energy EXX has a relative error of 1%. A table containing the optimal
scaling factors is included in Section 2.7.

Figure 2.19 compares exciton-exciton interaction potentials for d=0, 0.1, and 0.5aex. As
expected from diffusion Monte Carlo results, the equilibrium hole-hole separation increases
and the exciton-exciton attraction decreases as d grows. (Recall that the d = 0 potential
does not go to zero at large RX−X because we fix ξ. In reality, the orbitals relax (i.e., ξ → 1)
as the excitons are separated.)

Using optimized 1s, 2s, 2p, and 3d orbitals is insufficient to capture the exciton-exciton
attraction for 0.7 ≤ d

aex
< 1. While the biexciton energy would continue to decrease as

we include more orbitals, it is unknown how many states would be needed to observe an
attraction. Furthermore, the experiments of Bar-Joseph [42,43] study coupled quantum
wells with a center-to-center distance of 1.5aex and an electron-hole mass ratio of σ = 0.1.
As shown in Figure 2.6, biexcitons are only stable up to d=1 aex for σ = 0. So, classical
condensation of IXs– if possible– would occur between repulsive entities, for which there is
little evidence. Instead of converging our biexciton calculations for large d, we next turn
to triexciton calculations. Our goal will be to assess, for any d, whether the three-body
potential can be approximately described by pair potentials and whether multiple indirect
excitons will be energetically stable.
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Figure 2.18: Exciton-exciton interaction potential for d = 0.6aex and σ = 0 calculated using
our FCI approach.
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Figure 2.19: Various exciton-exciton interaction potentials.
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2.5 Interactions among three indirect excitons using

the full configuration interaction method

Extending our approach from Section 2.4, we now consider three indirect excitons in the
heavy-hole limit. The Hamiltonian is

H =− 1

2me

(
∇2

1 +∇2
2 +∇2

3

)
+

1

2

∑
i=1,2,3

∑
j ̸=i

1

ϵ|ri − rj|
+

1

2

∑
α=a,b,c

∑
β ̸=α

1

ϵ|rα − rβ|

−
∑

i=1,2,3

∑
α=a,b,c

1

ϵ
√
|ri − rα|2 + d2

(2.38)

Writing the triexciton wavefunction is not as straightforward as the biexciton case. To
enforce the antisymmetry of the electrons, we start from a Slater determinant:

ΨXXX(r1, r2, r3, ω1, ω2, ω3) =

∣∣∣∣∣∣
ϕa(r1)α(ω1) ϕb(r1)β(ω1) ϕc(r1)α(ω1)
ϕa(r2)α(ω2) ϕb(r2)β(ω2) ϕc(r2)α(ω2)
ϕa(r3)α(ω3) ϕb(r3)β(ω3) ϕc(r3)α(ω3)

∣∣∣∣∣∣ (2.39)

ϕa is a single-particle spatial orbital, α and β are spin functions, and ωi is the spin variable
for electron i. This wavefunction is not an eigenstate of the total spin operator

Ŝ2 = Ŝ−Ŝ+ + Ŝz + Ŝ2
z (2.40)

= P̂αβ +
1

4

(
2N + (Nα −Nβ)

2
)

(2.41)

where Ŝ± =
∑N

i=1 ŝ± are ladder operators, P̂αβ =
∑N

i ̸=j

∑N
j=1 ŝ−(i)ŝ+(j) permutes the spin

orbitals, N is the total number of electrons, and Nα (Nβ) is the number of spin up (down)
particles [67]. Operating Eq. (2.41) on Eq. (2.39) yields

Ŝ2ΨXXX =

∣∣∣∣∣∣
ϕa(r1)α(ω1) ϕb(r1)α(ω1) ϕc(r1)β(ω1)
ϕa(r2)α(ω2) ϕb(r2)α(ω2) ϕc(r2)β(ω2)
ϕa(r3)α(ω3) ϕb(r3)α(ω3) ϕc(r3)β(ω3)

∣∣∣∣∣∣
+

7

4

∣∣∣∣∣∣
ϕa(r1)α(ω1) ϕb(r1)β(ω1) ϕc(r1)α(ω1)
ϕa(r2)α(ω2) ϕb(r2)β(ω2) ϕc(r2)α(ω2)
ϕa(r3)α(ω3) ϕb(r3)β(ω3) ϕc(r3)α(ω3)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
ϕa(r1)β(ω1) ϕb(r1)α(ω1) ϕc(r1)α(ω1)
ϕa(r2)β(ω2) ϕb(r2)α(ω2) ϕc(r2)α(ω2)
ϕa(r3)β(ω3) ϕb(r3)α(ω3) ϕc(r3)α(ω3)

∣∣∣∣∣∣ (2.42)

which is clearly not equal to Eq. (2.39).
To obtain an eigenstate of Ŝ2, we can project Eq. (2.39) onto the desired spin state. This

requires us to know the transformation between the uncoupled and coupled bases. While this
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generally involves Clebsch-Gordon coefficients, our system of three electrons is easy enough
to solve directly. Without loss of generality, we pair the spins of electrons 1 and 2 into a
singlet and couple the spin of the third electron which we choose to be up. In the uncoupled
basis, we have

|doublet⟩ =
( |↑↓⟩1,2 − |↓↑⟩1,2√

2

)
|↑⟩3 =

|↑↓↑⟩1,2,3 − |↓↑↑⟩1,2,3√
2

(2.43)

Since singlet states have zero spin, we know that in the coupled basis,

|doublet⟩ = |1
2
;+

1

2
⟩ (2.44)

Finally, we project Eq. (2.39) onto Eq. (2.43) to obtain

|1
2
;+

1

2
⟩
(⟨↑↓↑| − ⟨↓↑↑|√

2

) ∣∣∣∣∣∣
ϕa(r1) |↑⟩ ϕb(r1) |↓⟩ ϕc(r1) |↑⟩
ϕa(r2) |↑⟩ ϕb(r2) |↓⟩ ϕc(r2) |↑⟩
ϕa(r3) |↑⟩ ϕb(r3) |↓⟩ ϕc(r3) |↑⟩

∣∣∣∣∣∣
=
(
ϕa(r1)ϕb(r2)ϕc(r3)− ϕc(r1)ϕb(r2)ϕa(r3)

− ϕb(r1)ϕc(r2)ϕa(r3) + ϕb(r1)ϕa(r2)ϕc(r3)
) 1√

2
|1
2
;+

1

2
⟩ (2.45)

Summing over all possible orbitals, the full configuration interaction wavefunction reads

ΨXXX(r1, r2, r3) =

Norbitals∑
i,j

Norbitals∑
k ̸=i

(
ϕi(r1)ϕj(r2)ϕk(r3) + ϕj(r1)ϕi(r2)ϕk(r3)

− ϕk(r1)ϕj(r2)ϕi(r3)− ϕj(r1)ϕk(r2)ϕi(r3)
)

(2.46)

After surveying the potential energy surface, we determined that the collinear configu-
ration yields the lowest energy for all bilayer separations. Furthermore, the lowest energy is
always attained when two indirect excitons are separated by the equilibrium biexciton “bond
length,” similar to the van der Waals complex of H3. Figure 2.20 shows exciton-biexciton
interaction potentials for various bilayer separations. As in the case for the two-body poten-
tials, the equilibrium separation increases and the binding energy decreases with increasing
d. However, unlike the pair potentials, these well depths are 1000 times smaller. Further-
more, an indirect triexciton complex is only energetically stable for d ≤ 0.1aex. Finding no
evidence supporting the condensation of multiple IXs, we conclude that the condensed phase
observed in [42,43,45] is not a classical liquid of excitons.
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Figure 2.20: Exciton-biexciton interaction potentials for various bilayer separations com-
puted using our FCI approach. The three excitons are collinear, and the distance between
the two closest excitons is the equilibrium biexciton bond length. RX−2X is the distance
between the center of mass of the biexciton and the third exciton.

2.6 Appendix: matrix elements for full configuration

interaction calculations

2.6.1 s orbitals

2.6.1.1 Overlap matrix elements

It is well-known that the product of two Gaussians is a third Gaussian [65]. Defining

g(r⃗ − r⃗A) = exp
[
− α|r⃗ − r⃗A|2

]
(2.47)

we have
g(r⃗ − r⃗A)g(r⃗ − r⃗B) = Kg(r⃗ − r⃗P ) (2.48)

where

K = exp
[
− αβ

(α + β)
|r⃗A − r⃗B|2

]
(2.49)

r⃗P =
αr⃗A + βr⃗B
α + β

(2.50)
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and the new exponent is
p = α + β (2.51)

Starting from
1

πσiσj

∫
exp

[
− |r⃗e − r⃗A|2

2σ2
i

]
exp

[
− |r⃗e − r⃗B|2

2σ2
j

]
dr⃗e (2.52)

we combine the two Gaussians into a single Gaussian.

(2.52) =
exp

[
− |r⃗A−r⃗B |2

2σ2
i +2σ2

j

]
πσiσj

∫
exp

[
−
( 1

2σ2
i

+
1

2σ2
j

)
|r⃗e −

r⃗A/(2σ
2
i ) + r⃗B/(2σ

2
j )

1
2σ2

i
+ 1

2σ2
j

|2
]
dr⃗e (2.53)

Centering this new Gaussian,

(2.52) =
exp

[
− |r⃗A−r⃗B |2

2σ2
i +2σ2

j

]
πσiσj

∫
exp

[
−
( 1

2σ2
i

+
1

2σ2
j

)
r2e

]
dr⃗e (2.54)

The angular integral yields 2π, and the radial integral is evaluated using∫ ∞

0

x exp[−αx2]dx =
1

2α
(2.55)

The result is

(2.52) =
2 exp

[
− |r⃗A−r⃗B |2

2σ2
i +2σ2

j

]
σiσj

(
1
σ2
i
+ 1

σ2
j

) (2.56)

For four Gaussians, we start from

1

π2σiσjσkσl

∫ ∫
exp

[
− |r⃗e1 − r⃗A|2

2σ2
i

]
exp

[
− |r⃗e2 − r⃗C |2

2σ2
k

]
× exp

[
− |r⃗e1 − r⃗B|2

2σ2
j

]
exp

[
− |r⃗e2 − r⃗B|2

2σ2
l

]
dr⃗e1dr⃗e2 (2.57)

we combine the two pairs of Gaussians and center them to get

(2.57) =
exp

[
− |r⃗A−r⃗C |2

2σ2
i +2σ2

k
− |r⃗B−r⃗D|2

2σ2
j+2σ2

l

]
π2σiσjσkσl

×
∫ ∫

exp
[
−
( 1

2σ2
i

+
1

2σ2
k

)
r2e1 −

( 1

2σ2
j

+
1

2σ2
l

)
r2e2

]
dr⃗e1dr⃗e2 (2.58)

The result is

(2.57) =
4 exp

[
− |r⃗A−r⃗C |2

2σ2
i +2σ2

k
− |r⃗B−r⃗D|2

2σ2
j+2σ2

l

]
σiσjσkσl

(
1
σ2
i
+ 1

σ2
k

)(
1
σ2
j
+ 1

σ2
l

) (2.59)
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2.6.1.2 Kinetic energy matrix element

Starting from

− 1

2mπσiσk

∫
exp

[
− |r⃗e − r⃗A|2

2σ2
i

]
∇2

e exp
[
− |r⃗e − r⃗B|2

2σ2
k

]
dr⃗e (2.60)

we center the Gaussian on the right to get

(2.60) = − 1

2mπσiσk

∫
exp

[
− |r⃗e + r⃗B − r⃗A|2

2σ2
i

]
∇2

e exp
[
− r2e

2σ2
k

]
dr⃗e (2.61)

Evaluating the polar Laplacian,

(2.60) = − 1

2mπσiσk

∫
exp

[
−|r⃗e + r⃗B − r⃗A|2

2σ2
i

][ r2e
σ4
k

exp
[
− r2e
2σ2

k

]
− 2

σ2
k

exp
[
− r2e
2σ2

k

]]
dr⃗e (2.62)

Letting r⃗C = r⃗B − r⃗A, we distribute the Gaussian and combine the pairs to get

(2.60) = −
exp

[
− r2C

2σ2
i +2σ2

k

]
2mπσiσk

{ 1

σ4
k

∫
r2e exp

[
−
(σ2

i + σ2
k

2σ2
i σ

2
k

)
|r⃗e +

σ2
kr⃗C

σ2
i + σ2

k

|2
]
dr⃗e

− 2

σ2
k

∫
r2e exp

[
−
(σ2

i + σ2
k

2σ2
i σ

2
k

)
|r⃗e +

σ2
kr⃗C

σ2
i + σ2

k

|2
]
dr⃗e

}
(2.63)

We again center the Gaussians to get

(2.60) = −
exp

[
− r2C

2σ2
i +2σ2

k

]
2mπσiσk

{ 1

σ4
k

∫
|r⃗e −

σ2
kr⃗C

σ2
i + σ2

k

|2 exp
[
−
(σ2

i + σ2
k

2σ2
i σ

2
k

)
r2e

]
dr⃗e

− 2

σ2
k

∫
r2e exp

[
−
(σ2

i + σ2
k

2σ2
i σ

2
k

)
r2e

]
dr⃗e

}
(2.64)

We evaluate the second integral and expand the norm in the first term.

(2.60) = −
exp

[
− r2C

2σ2
i +2σ2

k

]
2mπσiσk

{ 1

σ4
k

∫ (
r2e − 2

σ2
k

σ2
i + σ2

k

rerC cos θ +
σ4
k

(σ2
i + σ2

k)
2
r2C
)

× exp
[
−
(σ2

i + σ2
k

2σ2
i σ

2
k

)
r2e

]
dr⃗e −

4π

σ2
k

σ2
i σ

2
k

(σ2
i + σ2

k)

}
(2.65)

where θ is the angle between r⃗e and r⃗C . The second integrand is the only term with angular
dependence, and luckily that angular integral yields 0. After completing the other integrals,
we get

(2.60) = −
exp

[
− r2C

2σ2
i +2σ2

k

]
2mπσiσk

{ 1

σ4
k

( 4πσ4
i σ

4
k

(σ2
i + σ2

k)
2
+

2πσ2
i σ

6
kr

2
C

(σ2
i + σ2

k)
3

)
− 4πσ2

i σ
2
k

σ2
k(σ

2
i + σ2

k)

}
(2.66)

= −
exp

[
− r2C

2σ2
i +2σ2

k

]
σ2
i

mσiσk(σ2
i + σ2

k)

{ 2σ2
i

σ2
i + σ2

k

+
σ2
kr

2
C

(σ2
i + σ2

k)
2
− 2
}

(2.67)
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2.6.1.3 Electron-hole matrix element

We start from

− 1

πσiσj

∫
exp

[
− |r⃗e − r⃗A|2

2σ2
i

] 1√
|r⃗e − r⃗B|2 + d2

exp
[
− |r⃗e − r⃗C |2

2σ2
j

]
dr⃗e (2.68)

Combining the 2 Gaussians, we get

(2.68) = −
exp

[
− |r⃗A−r⃗C |2

2σ2
i +2σ2

j

]
πσiσj

∫
exp

[
− σ2

i + σ2
j

2σ2
i σ

2
j

|r⃗e −
σ2
j r⃗A + σ2

i r⃗C

σ2
i + σ2

j

|2
] 1√

|r⃗e − r⃗B|2 + d2
dr⃗e

(2.69)
Taking r⃗e − r⃗B → r⃗e,

(2.68) = −
exp

[
− |r⃗A−r⃗C |2

2σ2
i +2σ2

j

]
πσiσj

∫
exp

[
− σ2

i + σ2
j

2σ2
i σ

2
j

|r⃗e+ r⃗B−
σ2
j r⃗A + σ2

i r⃗C

σ2
i + σ2

j

|2
] 1√

r2e + d2
dr⃗e (2.70)

We rewrite the Coulomb potential in terms of its inverse Fourier transform:

1√
r2 + d2

=
1

2π

∫
d2k⃗

exp[−kd]
k

exp[−i⃗k · r⃗] (2.71)

Thus,

(2.68) = −
exp

[
− |r⃗A−r⃗C |2

2σ2
i +2σ2

j

]
2π2σiσj

∫
d2k⃗

exp[−kd]
k

∫
d2r⃗e exp[−i⃗k · r⃗e]

× exp
[
− σ2

i + σ2
j

2σ2
i σ

2
j

|r⃗e + r⃗B − σ2
j r⃗A + σ2

i r⃗C

σ2
i + σ2

j

|2
]

(2.72)

After transforming r⃗e+ r⃗B− σ2
j r⃗A+σ2

i r⃗C

σ2
i +σ2

j
→ r⃗e, we evaluate the r⃗e integral by taking the Fourier

transform of the Gaussian.

(2.68) = −
exp

[
− |r⃗A−r⃗C |2

2σ2
i +2σ2

j

]
2π2σiσj

∫
d2k⃗

exp[−kd]
k

exp[−i⃗k ·
{σ2

j r⃗A + σ2
i r⃗C

σ2
i + σ2

j

− r⃗B
}
]

× 2πσ2
i σ

2
j

σ2
i + σ2

j

exp
[
− σ2

i σ
2
j

2(σ2
i + σ2

j )
k2
]

(2.73)

= −
exp

[
− |r⃗A−r⃗C |2

2σ2
i +2σ2

j

]
πσiσj

σ2
i σ

2
j

σ2
i + σ2

j

∫
d2k⃗

exp[−kd]
k

exp
[
− σ2

i σ
2
j

2(σ2
i + σ2

j )
k2
]

× exp[−ik
∣∣∣∣σ2

j r⃗A + σ2
i r⃗C

σ2
i + σ2

j

− r⃗B

∣∣∣∣ cos θ] (2.74)
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Using the definition of the Bessel function of order 0 (which includes a factor of 2π), we get

(2.68) = −
2σiσj exp

[
− |r⃗A−r⃗C |2

2σ2
i +2σ2

j

]
σ2
i + σ2

j

∫ ∞

0

dk exp
[
−kd− σ2

i σ
2
j

2(σ2
i + σ2

j )
k2
]
J0

[
k

∣∣∣∣σ2
j r⃗A + σ2

i r⃗C

σ2
i + σ2

j

− r⃗B

∣∣∣∣ ]
(2.75)

2.6.1.4 Electron-electron matrix element

Starting from

1

π2σiσjσkσl

∫ ∫
exp

[
− |r⃗e1 − r⃗A|2

2σ2
i

]
exp

[
− |r⃗e1 − r⃗C |2

2σ2
k

] 1

r⃗e1 − r⃗e2

× exp
[
− |r⃗e2 − r⃗B|2

2σ2
j

]
exp

[
− |r⃗e2 − r⃗D|2

2σ2
l

]
dr⃗e1dr⃗e2 (2.76)

we combine the two pairs of Gaussians and insert the Fourier transform of the Coulomb
potential to get

(2.76) =
exp

[
− |r⃗A−r⃗C |2

2(σ2
i +σ2

k)
− |r⃗B−r⃗D|2

2(σ2
j+σ2

l )

]
π2σiσjσkσl

∫ ∫
exp

[
−
( 1

2σ2
i

+
1

2σ2
k

)
|r⃗e1 −

σ2
kr⃗A + σ2

i r⃗C
σ2
i + σ2

k

|2
]

× exp
[
−
( 1

2σ2
j

+
1

2σ2
l

)
|r⃗e2 −

σ2
l r⃗B + σ2

j r⃗D

σ2
j + σ2

l

|2
] 1

2π

∫
exp[−i⃗k · (r⃗e1 − r⃗e2)]

k
dk⃗dr⃗e1dr⃗e2

(2.77)

Let

X =
exp

[
− |r⃗A−r⃗C |2

2(σ2
i +σ2

k)
− |r⃗B−r⃗D|2

2(σ2
j+σ2

l )

]
π2σiσjσkσl

(2.78)

We now take the Fourier transforms of both Gaussians to get

(2.76) = 2πX
σ2
i σ

2
k

σ2
i + σ2

k

σ2
jσ

2
l

σ2
j + σ2

l

∫
dk⃗

1

k

× exp
[
− k2

2

( σ2
i σ

2
k

σ2
i + σ2

k

+
σ2
jσ

2
l

σ2
j + σ2

l

)]
exp

[
− i⃗k ·

(σ2
kr⃗A + σ2

i r⃗C
σ2
i + σ2

k

− σ2
l r⃗B + σ2

j r⃗D

σ2
j + σ2

l

)]
(2.79)

= 2πX
σ2
i σ

2
k

σ2
i + σ2

k

σ2
jσ

2
l

σ2
j + σ2

l

∫ ∞

0

dk exp
[
− k2

2

( σ2
i σ

2
k

σ2
i + σ2

k

+
σ2
jσ

2
l

σ2
j + σ2

l

)]
×
∫ 2π

0

dθ exp
[
− ik

∣∣∣∣σ2
kr⃗A + σ2

i r⃗C
σ2
i + σ2

k

− σ2
l r⃗B + σ2

j r⃗D

σ2
j + σ2

l

∣∣∣∣ cos θ] (2.80)
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The angular integral is a Bessel function, so

(2.76) =
4π2X(σiσjσkσl)

2

(σ2
i + σ2

k)(σ
2
j + σ2

l )

∫ ∞

0

dk exp
[
− k2

2

( σ2
i σ

2
k

σ2
i + σ2

k

+
σ2
jσ

2
l

σ2
j + σ2

l

)]
× J0

[
k

∣∣∣∣σ2
kr⃗A + σ2

i r⃗C
σ2
i + σ2

k

− σ2
l r⃗B + σ2

j r⃗D

σ2
j + σ2

l

∣∣∣∣ ] (2.81)

This is just a Gaussian integral, so the answer is

(2.76) =
4π2X(σiσjσkσl)

2

(σ2
i + σ2

k)(σ
2
j + σ2

l )
exp

−(σ2
i + σ2

k)(σ
2
j + σ2

l )
∣∣∣σ2

k r⃗A+σ2
i r⃗C

σ2
i +σ2

k
− σ2

l r⃗B+σ2
j r⃗D

σ2
j+σ2

l

∣∣∣2
4(σ2

i σ
2
jσ

2
k + σ2

i σ
2
jσ

2
l + σ2

i σ
2
kσ

2
l + σ2

jσ
2
kσ

2
l )


×
√

π(σ2
i + σ2

k)(σ
2
j + σ2

l )

2(σ2
i σ

2
jσ

2
k + σ2

i σ
2
jσ

2
l + σ2

i σ
2
kσ

2
l + σ2

jσ
2
kσ

2
l )

× I0

(σ2
i + σ2

k)(σ
2
j + σ2

l )
∣∣∣σ2

k r⃗A+σ2
i r⃗C

σ2
i +σ2

k
− σ2

l r⃗B+σ2
j r⃗D

σ2
j+σ2

l

∣∣∣2
4(σ2

i σ
2
jσ

2
k + σ2

i σ
2
jσ

2
l + σ2

i σ
2
kσ

2
l + σ2

jσ
2
kσ

2
l )

 (2.82)

where I0 is a modified Bessel function of the first kind.

2.6.2 General orbitals

For states with m > 0, the single-particle orbitals are polynomials of x or y multiplied by
Gaussians. The matrix elements are computed using moment generating functions. For the
simplest case,

x̂ · (r⃗e − r⃗a) exp[−
|r⃗e − r⃗a|2

2σ2
i

] =
d

dγ

(
exp[σ2

i γ
2/2] exp

[
− |r⃗e − r⃗a − σ2

i γx̂|2
2σ2

i

] )∣∣∣
γ=0

(2.83)

2.6.2.1 Overlap matrix elements

The most general overlap matrix element between two orbitals is

1

πσiσj

∫
(xe − xa)

a exp[−|r⃗e − r⃗a|2
2σ2

i

](ye − yb)
b exp[−|r⃗e − r⃗b|2

2σ2
j

]dr⃗e

=
da

dγa1

db

dγb2

(2 exp[(σ2
i γ

2
1 + σ2

jγ
2
2)/2]

σiσj(σ
−2
i + σ−2

j )
exp

[
− |r⃗a + σ2

i γ1x̂− r⃗b − σ2
jγ2ŷ|2

2σ2
i + 2σ2

j

] )∣∣∣
γ1=γ2=0

(2.84)

For 2 px orbitals,

1

πσiσj

∫
(xe − xa) exp[−

|r⃗e − r⃗a|2
2σ2

i

](xe − xb) exp[−
|r⃗e − r⃗b|2

2σ2
j

]dr⃗e =

2σ3
i σ

3
j (σ

2
i + σ2

j − (xa − xb)
2)

(σ2
i + σ2

j )
3

exp[− |r⃗a − r⃗b|2
2σ2

i + 2σ2
j

] (2.85)
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For px and py orbitals,

1

πσiσj

∫
(xe − xa) exp[−

|r⃗e − r⃗a|2
2σ2

i

](ye − yb) exp[−
|r⃗e − r⃗b|2

2σ2
j

]dr⃗e =

2σ3
i σ

3
j (xa − xb)(ya − yb)

(σ2
i + σ2

j )
3

exp[− |r⃗a − r⃗b|2
2σ2

i + 2σ2
j

] (2.86)

For 2 s orbitals,

1

πσiσj

∫
exp[−|r⃗e − r⃗a|2

2σ2
i

] exp[−|r⃗e − r⃗b|2
2σ2

j

]dr⃗e =
2σiσj
σ2
i + σ2

j

exp[− |r⃗a − r⃗b|2
2σ2

i + 2σ2
j

] (2.87)

For s and px orbitals,

1

πσiσj

∫
exp[−|r⃗e − r⃗a|2

2σ2
i

](xe − xb) exp[−
|r⃗e − r⃗b|2

2σ2
j

]dr⃗e =
2σiσ

3
j (xa − xb)

(σ2
i + σ2

j )
2

exp[− |r⃗a − r⃗b|2
2σ2

i + 2σ2
j

]

(2.88)
For the overlap between four exciton orbitals, we start from

1

π2σiσjσkσl

∫
(xe1 − xa)

a exp[−|r⃗e1 − r⃗a|2
2σ2

i

](ye1 − yb)
b exp[−|r⃗e1 − r⃗b|2

2σ2
j

](xe2 − xc)
c

× exp[−|r⃗e2 − r⃗c|2
2σ2

k

](ye2 − yd)
d exp[−|r⃗e2 − r⃗d|2

2σ2
l

]dr⃗e1dr⃗e2

=
da

dγa1

db

dγb2

dc

dγc3

dd

dγd4

(4 exp[(σ2
i γ

2
1 + σ2

jγ
2
2 + σ2

kγ
2
3 + σ2

l γ
2
4)/2]

σiσjσkσl(σ
−2
i + σ−2

j )(σ−2
k + σ−2

l )

× exp
[
− |r⃗a + σ2

i γ1x̂− r⃗b − σ2
jγ2ŷ|2

2σ2
i + 2σ2

j

− |r⃗c + σ2
kγ3x̂− r⃗d − σ2

l γ4ŷ|2
2σ2

k + 2σ2
l

] )∣∣∣
γ1=γ2=γ3=γ4=0

(2.89)

2.6.2.2 Kinetic energy matrix element

The most general kinetic energy matrix element is

− 1

2mπσiσj

∫
(xe − xa)

a exp[−|r⃗e − r⃗a|2
2σ2

i

]∇2
e

{
(ye − yb)

b exp[−|r⃗e − r⃗b|2
2σ2

j

]
}
dr⃗e

=
da

dγa1

db

dγb2

(
− σ2

i exp[(σ
2
i γ

2
1 + σ2

jγ
2
2)/2]

mσiσj(σ2
i + σ2

j )
exp

[
− |r⃗a + σ2

i γ1x̂− r⃗b − σ2
jγ2ŷ|2

2σ2
i + 2σ2

j

]
×
{ 2σ2

i

σ2
i + σ2

j

+
σ2
j |r⃗a + σ2

i γ1x̂− r⃗b − σ2
jγ2ŷ|2

(σ2
i + σ2

j )
2

− 2
} )∣∣∣

γ1=γ2=0
(2.90)
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For 2 px orbitals,

− 1

2mπσiσj

∫
(xe − xa) exp[−

|r⃗e − r⃗a|2
2σ2

i

]∇2
e

{
(xe − xb) exp[−

|r⃗e − r⃗b|2
2σ2

j

]
}
dr⃗e

=
σ3
i σ

3
j

m(σ2
i + σ2

j )
5
exp

[
− |r⃗a − r⃗b|2

2σ2
i + 2σ2

j

]
×
{
4(σ2

i + σ2
j )

2 + (xa − xb)
2|r⃗a − r⃗b|2 − (σ2

i + σ2
j )
(
7(xa − xb)

2 + (ya − yb)
2
)}

(2.91)

For 2 py orbitals, we can replace every instance of (xa − xb) with (ya − yb) and vice versa.
For px and py orbitals,

− 1

2mπσiσj

∫
(xe − xa) exp[−

|r⃗e − r⃗a|2
2σ2

i

]∇2
e

{
(ye − yb) exp[−

|r⃗e − r⃗b|2
2σ2

j

]
}
dr⃗e

=
σ3
i σ

3
j

m(σ2
i + σ2

j )
5
exp

[
− |r⃗a − r⃗b|2

2σ2
i + 2σ2

j

]
(xa − xb)(ya − yb)(|r⃗a − r⃗b|2 − 6σ2

i − 6σ2
j ) (2.92)

For 2 s orbitals,

− 1

2mπσiσj

∫
exp[−|r⃗e − r⃗a|2

2σ2
i

]∇2
e

{
exp[−|r⃗e − r⃗b|2

2σ2
j

]
}
dr⃗e

= − σi
mσj(σ2

i + σ2
j )

exp
[
− |r⃗a − r⃗b|2

2σ2
i + 2σ2

j

]( 2σ2
i

σ2
i + σ2

j

+
σ2
j |r⃗a − r⃗b|2
(σ2

i + σ2
j )

2
− 2
)

(2.93)

For s and px orbitals,

− 1

2mπσiσj

∫
exp[−|r⃗e − r⃗a|2

2σ2
i

]∇2
e

{
(xe − xb) exp[−

|r⃗e − r⃗b|2
2σ2

j

]
}
dr⃗e

= − σiσ
3
j

(σ2
i + σ2

j )
4
exp

[
− |r⃗a − r⃗b|2

2σ2
i + 2σ2

j

]
(xa − xb)(|r⃗a − r⃗b|2 − 4σ2

i − 4σ2
j ) (2.94)

Again, for s and py orbitals, we can replace the (xa − xb) with (ya − yb).
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2.6.2.3 Electron-hole matrix element

The most general electron-hole matrix element is

− 1

πσiσj

∫
(xe − xa)

a exp[−|r⃗e − r⃗a|2
2σ2

i

]
(
|r⃗e − r⃗b|2 + d2

)−1/2

(ye − yc)
c exp[−|r⃗e − r⃗c|2

2σ2
j

]dr⃗e

=
da

dγa1

dc

dγc2

{
−2σiσj exp[(σ

2
i γ

2
1 + σ2

jγ
2
2)/2]

σ2
i + σ2

j

exp
[
− |r⃗a + σ2

i γ1x̂− r⃗c − σ2
jγ2ŷ|2

2σ2
i + 2σ2

j

]
×
∫ ∞

0

exp
[
− kd− σ2

i σ
2
jk

2

2σ2
i + 2σ2

j

]
J0

(
k

∣∣∣∣σ2
j (r⃗a + σ2

i γ1x̂) + σ2
i (r⃗c + σ2

jγ2ŷ)

σ2
i + σ2

j

− r⃗b

∣∣∣∣ )}
γ1=γ2=0

(2.95)

We can evaluate the last integral with Gauss-Laguerre quadrature:∫ ∞

0

exp[−x]f(x)dx ≈
N∑
i=1

wif(xi) (2.96)

where xi is the i
th root of the Laguerre polynomial LN(x) and the weight wi is

wi =
xi

(N + 1)2
(
LN+1(xi)

)2 (2.97)

For 2 px orbitals,

− 1

πσiσj

∫
(xe − xa) exp[−

|r⃗e − r⃗a|2
2σ2

i

]
(
|r⃗e − r⃗b|2 + d2

)−1/2

(xe − xc) exp[−
|r⃗e − r⃗c|2

2σ2
j

]dr⃗e

=

∫ ∞

0

dk
σ3
i σ

3
j

(σ2
i + σ2

j )
3
exp

[
− σ2

i σ
2
jk

2 + 2d(σ2
i + σ2

j )k + |r⃗a − r⃗c|2
2σ2

i + 2σ2
j

]
{
−2(σ2

i + σ2
j )J0(kξ) + 2(xa − xc)

2J0(kξ) −
2kσ2

i σ
2
j

ξ3/2

(
σ2
jxa + σ2

i xc

σ2
i + σ2

j

− xb

)2

J1(kξ)

+
2kσ2

i σ
2
j

ξ
J1(kξ) +

2k(σ2
j − σ2

i )(xa − xc)
(
σ2
i (xc − xb) + σ2

j (xa − xb)
)

(σ2
i + σ2

j )ξ
J1(kξ)

+
k2σ2

i σ
2
j

(
J0(kξ)− J2(kξ)

)
ξ2

(
σ2
jxa + σ2

i xc

σ2
i + σ2

j

− xb

)2
}

(2.98)

where

ξ =

∣∣∣∣σ2
j r⃗a + σ2

i r⃗c

σ2
i + σ2

j

− r⃗b

∣∣∣∣ (2.99)

For 2 py orbitals, we replace xi with yi, for i ∈ {a, b, c}. If r⃗a, r⃗b, and r⃗c are all at the origin,
we can’t use (15); it would contain numerous indeterminate forms. The correct simplified
expression is
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− 1

πσiσj

∫
(xe − xa) exp[−

|r⃗e − r⃗a|2
2σ2

i

]
(
|r⃗e − r⃗b|2 + d2

)−1/2

(xe − xc) exp[−
|r⃗e − r⃗c|2

2σ2
j

]dr⃗e

=

∫ ∞

0

dk
k2σ5

i σ
5
j − 2(σ3

i σ
5
j + σ5

i σ
3
j )

(σ2
i + σ2

j )
3

exp
[
− dk − σ2

i σ
2
j

2(σ2
i + σ2

j )
k2
]

(2.100)

For px and py orbitals,

− 1

πσiσj

∫
(xe − xa) exp[−

|r⃗e − r⃗a|2
2σ2

i

]
(
|r⃗e − r⃗b|2 + d2

)−1/2

(ye − yc) exp[−
|r⃗e − r⃗c|2

2σ2
j

]dr⃗e

=

∫ ∞

0

dk
σ3
i σ

3
j

(σ2
i + σ2

j )
3
exp

[
− σ2

i σ
2
jk

2 + 2d(σ2
i + σ2

j )k + |r⃗a − r⃗c|2
2σ2

i + 2σ2
j

]
{2(xa − xc)(ya − yc)J0(kξ) −

2kσ2
i σ

2
j

ξ3/2

(
σ2
jxa + σ2

i xc

σ2
i + σ2

j

− xb

)(
σ2
j ya + σ2

i yc

σ2
i + σ2

j

− yb

)
J1(kξ)

+
2kJ1(kξ)

(σ2
i + σ2

j )ξ

×
[
σ2
i (xa − xc)

(
σ2
j (yb − ya) + σ2

i (yb − yc)
)
+ σ2

i (ya − yc)
(
σ2
j (xa − xb) + σ2

i (xc − xb)
)]

+
k2σ2

i σ
2
j

(
J0(kξ)− J2(kξ)

)
ξ2

(
σ2
jxa + σ2

i xc

σ2
i + σ2

j

− xb

) (
σ2
j ya + σ2

i yc

σ2
i + σ2

j

− yb

)}
(2.101)

For 2 s orbitals,

− 1

πσiσj

∫
exp[−|r⃗e − r⃗a|2

2σ2
i

]
(
|r⃗e − r⃗b|2 + d2

)−1/2

exp[−|r⃗e − r⃗c|2
2σ2

j

]dr⃗e

= − 2σiσj
σ2
i + σ2

j

exp
[
− |r⃗a − r⃗c|2

2(σ2
i + σ2

j )

] ∫ ∞

0

dk exp
[
− kd− σ2

i σ
2
j

2(σ2
i + σ2

j )
k2
]
J0(kξ) (2.102)

For s and px orbitals,

− 1

πσiσj

∫
exp[−|r⃗e − r⃗a|2

2σ2
i

]
(
|r⃗e − r⃗b|2 + d2

)−1/2

(xe − xc) exp[−
|r⃗e − r⃗c|2

2σ2
j

]dr⃗e

=
2σiσ

3
j

σ2
i + σ2

j

exp
[
− |r⃗a − r⃗c|2

2(σ2
i + σ2

j )

]{ σ2
i

ξ(σ2
i + σ2

j )

(
σ2
jxa + σ2

i xc

σ2
i + σ2

j

− xb

)
×
∫ ∞

0

dkk exp
[
− kd− σ2

i σ
2
j

2(σ2
i + σ2

j )
k2
]
J1(kξ)−

2(xa − xc)

2σ2
i + 2σ2

j

×
∫ ∞

0

dk exp
[
− kd− σ2

i σ
2
j

2(σ2
i + σ2

j )
k2
]
J0(kξ)

}
(2.103)
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2.6.2.4 Electron-electron matrix element

We start from

1

π2σiσjσkσl

∫ ∫
(xe1 − xa)

a exp[−|r⃗e1 − r⃗a|2
2σ2

i

](xe1 − xb)
b exp[−|r⃗e1 − r⃗b|2

2σ2
j

]

× 1

|r⃗e1 − r⃗e2|
(xe2 − xc)

c exp[−|r⃗e2 − r⃗c|2
2σ2

k

](xe2 − xd)
d exp[−|r⃗e2 − r⃗d|2

2σ2
l

]dr⃗e1dr⃗e2

=
da

dγa1

db

dγb2

dc

dγc3

dd

dγd4

{
4σiσjσkσl exp[(σ

2
i γ

2
1 + σ2

jγ
2
2 + σ2

kγ
2
3 + σ2

l γ
2
4)/2]

(σ2
i + σ2

j )(σ
2
k + σ2

l )

× exp
[
− |r⃗a + σ2

i γ1x̂− r⃗b − σ2
jγ2x̂|2

2σ2
i + 2σ2

j

− |r⃗c + σ2
kγ3x̂− r⃗d − σ2

l γ4x̂|2
2σ2

k + 2σ2
l

− (σ2
i + σ2

j )(σ
2
k + σ2

l )

4Σ
Γ
]

×

√
π(σ2

i + σ2
j )(σ

2
k + σ2

l )

2Σ
I0

((σ2
i + σ2

j )(σ
2
k + σ2

l )

4Σ
Γ
)}

(2.104)

where
Σ = σ2

i σ
2
jσ

2
k + σ2

i σ
2
jσ

2
l + σ2

i σ
2
kσ

2
l + σ2

jσ
2
kσ

2
l (2.105)

Γ =

∣∣∣∣σ2
j (r⃗a + σ2

i γ1x̂) + σ2
i (r⃗b + σ2

jγ2x̂)

σ2
i + σ2

j

− σ2
l (r⃗c + σ2

kγ3x̂) + σ2
k(r⃗d + σ2

l γ4x̂)

σ2
k + σ2

l

∣∣∣∣2 (2.106)

and I0is the zeroth-order modified Bessel function of the first kind.
For a = b = c = d = 0 (i.e. all s orbitals),

1

π2σiσjσkσl

∫ ∫
exp[−|r⃗e1 − r⃗a|2

2σ2
i

] exp[−|r⃗e1 − r⃗b|2
2σ2

j

]
1

|r⃗e1 − r⃗e2|

× exp[−|r⃗e2 − r⃗c|2
2σ2

k

] exp[−|r⃗e2 − r⃗d|2
2σ2

l

]dr⃗e1dr⃗e2

=
4σiσjσkσl

(σ2
i + σ2

j )(σ
2
k + σ2

l )
exp

[
− |r⃗a − r⃗b|2

2σ2
i + 2σ2

j

− |r⃗c − r⃗d|2
2σ2

k + 2σ2
l

− (σ2
i + σ2

j )(σ
2
k + σ2

l )

4Σ
ζ
]

×

√
π(σ2

i + σ2
j )(σ

2
k + σ2

l )

2Σ
I0

((σ2
i + σ2

j )(σ
2
k + σ2

l )

4Σ
ζ
)

(2.107)

where

ζ =

∣∣∣∣σ2
j r⃗a + σ2

i r⃗b

σ2
i + σ2

j

− σ2
l r⃗c + σ2

kr⃗d
σ2
k + σ2

l

∣∣∣∣2 (2.108)
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For a = 1 and b = c = d = 0,

1

π2σiσjσkσl

∫ ∫
(xe1 − xa) exp[−

|r⃗e1 − r⃗a|2
2σ2

i

] exp[−|r⃗e1 − r⃗b|2
2σ2

j

]
1

|r⃗e1 − r⃗e2|

× exp[−|r⃗e2 − r⃗c|2
2σ2

k

] exp[−|r⃗e2 − r⃗d|2
2σ2

l

]dr⃗e1dr⃗e2

=

√
2πσ3

i σjσkσl(σ
2
k + σ2

l )(
(σ2

i + σ2
j )(σ

2
k + σ2

l )Σ
)3/2 exp [− |r⃗a − r⃗b|2

2σ2
i + 2σ2

j

− |r⃗c − r⃗d|2
2σ2

k + 2σ2
l

− (σ2
i + σ2

j )(σ
2
k + σ2

l )

4Σ
ζ
]

×
{
−
(
2Σ(xa − xb) + σ2

j

(
(σ2

k + σ2
l

)
(σ2

jxa + σ2
i xb)− (σ2

i + σ2
j

)
(σ2

l xc + σ2
kxd)

)
× I0

((σ2
i + σ2

j )(σ
2
k + σ2

l )

4Σ
ζ
)
+ σ2

j

(
(σ2

k + σ2
l

)
(σ2

jxa + σ2
i xb)− (σ2

i + σ2
j

)
(σ2

l xc + σ2
kxd)

)
× I1

((σ2
i + σ2

j )(σ
2
k + σ2

l )

4Σ
ζ
)}

(2.109)

If b = 1 and a = c = d = 0, we make the replacements σi → σj, σj → σi, xa → xb, and
xb → xa. For c = 1 and a = b = d = 0,

1

π2σiσjσkσl

∫ ∫
exp[−|r⃗e1 − r⃗a|2

2σ2
i

] exp[−|r⃗e1 − r⃗b|2
2σ2

j

]
1

|r⃗e1 − r⃗e2|

× (xe2 − xc) exp[−
|r⃗e2 − r⃗c|2

2σ2
k

] exp[−|r⃗e2 − r⃗d|2
2σ2

l

]dr⃗e1dr⃗e2

=

√
2πσiσjσ

3
kσl(σ

2
i + σ2

j )(
(σ2

i + σ2
j )(σ

2
k + σ2

l )Σ
)3/2 exp [− |r⃗a − r⃗b|2

2σ2
i + 2σ2

j

− |r⃗c − r⃗d|2
2σ2

k + 2σ2
l

− (σ2
i + σ2

j )(σ
2
k + σ2

l )

4Σ
ζ
]

×
{
−
(
2Σ(xc − xd) + σ2

l

(
(σ2

i + σ2
j

)
(σ2

l xc + σ2
kxd)− (σ2

k + σ2
l

)
(σ2

jxa + σ2
i xb)

)
× I0

((σ2
i + σ2

j )(σ
2
k + σ2

l )

4Σ
ζ
)
+ σ2

l

(
(σ2

i + σ2
j

)
(σ2

l xc + σ2
kxd)− (σ2

k + σ2
l

)
(σ2

jxa + σ2
i xb)

)
× I1

((σ2
i + σ2

j )(σ
2
k + σ2

l )

4Σ
ζ
)}

(2.110)

The d = 1 and a = b = c = 0 case can be obtained through analogous replacements. Also,
if a py orbital is used, then each x-coordinate should be a y-coordinate.

2.7 Appendix: optimal scaling factors

Table 2.1 contains the optimal scaling factors for our Gaussian basis set for indirect excitons
when calculating biexciton states. The values were optimized for two excitons separated by
the equilibrium biexciton bond length Req. We first optimized the 1s states by computing
the biexciton energy on a grid of ξ with a spacing of ∆ξ = 0.1 and choosing the value which
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d (aex) 1s factor 2px factor 2py factor 2s factor Req (aex)

0 1.3 0.8 1.0 4.6 0.4
0.05 1.2 0.6 5.0 3.7 0.55
0.1 1.1 3.8 4.1 3.2 0.7
0.2 1.1 3.1 3.4 2.7 1.0
0.3 1.0 2.5 2.8 2.5 1.3
0.4 1.0 2.3 2.5 2.2 1.7
0.5 1.0 2.1 2.3 2.0 2.0
0.6 1.0 2.0 2.2 1.9 2.3
0.7 1.0 1.9 2.1 1.7 2.7
0.8 1.0 1.8 1.9 1.5 3.1
0.9 1.0 1.7 1.8 1.3 3.8

Table 2.1: Optimal scaling factors for our Gaussian basis sets.

minimized the energy. We then worked up to the 2p and 2s states, and we included the
previously optimized states at each level. After a first pass, we re-optimized the factors until
we found a local minimum in the biexciton energy.
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Chapter 3

A pair of 2D quantum liquids: the
electron-hole liquid in a bilayer
geometry

3.1 Introduction

In this chapter, we consider the electron-hole liquid formed by indirect excitons. The EHL
has been studied using nearly every method applicable to studying the degenerate electron
gas: Green’s-function techniques [33,68,69], the many-body variational approach [70], and
path integral Monte Carlo [39], to name a few. We take the first approach, first calcu-
lating the ground-state energy within the random-phase approximation and finding good
agreement between the binding energy per particle in the EHL and the photoluminescence
red-shift measured by Bar-Joseph et al. [42,43]. Notably, we determine that the classical
mean-field capacitor term dictates how the total energy varies with the bilayer separation.
Proceeding to finite temperatures, we calculate the correlation free energy using the linked
cluster expansion.

3.2 Model

We consider N electrons and N holes restricted to their own infinitely-thin planes of area
A = L2 separated by d (see Fig. 1.4). In this Chapter, we neglect bound exciton states. We
solve the law of mass action in Chapter 4 to determine the fraction of free carriers relative to
the total number of carriers at thermal equilibrium. We will see that no excitons are present
at the high densities of the electron-hole liquid, allowing us to safely neglect bound excitons.

The first-quantized Hamiltonian is a straightforward extension of the indirect biexciton
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or triexciton Hamiltonians given by Eq. (2.1) or (2.38):

H = − h̄2

2me

N∑
i=1

∇2
e,i −

h̄2

2mh

N∑
i=1

∇2
h,i +

e2

2(4πϵ0ϵ)

N∑
i, ̸=j

1

|re,i − re,j|

+
e2

2(4πϵ0ϵ)

N∑
i ̸=j

1

|rh,i − rh,j|
− e2

(4πϵ0ϵ)

N∑
i,j

1√
|re,i − rh,j|2 + d2

(3.1)

To utilize Green’s function methods, we recast this Hamiltonian in second quantization. For
a general all-electron Hamiltonian [18],

H =
∑
i

T (ri) +
1

2

∑
i ̸=j

V (ri − rj) (3.2)

is written in second quantization as

H =
∑
r,s

⟨r|T |s⟩ a†ras +
1

2

∑
r,s,t,u

⟨rs|V |tu⟩ a†ra†sauat (3.3)

where a†r (ar) creates (destroys) an electron indexed by the quantum number(s) r. These
fermionic creation and annihilation operators are completely defined by the anticommutation
rule

{ak, a†k′} = aka
†
k′ + a†k′ak (3.4)

= δk,k′ (3.5)

For our two-component system, we must also introduce the operators b†r and br which create
and destroy a hole, respectively. These operators obey a similar anticommutation rule.

Because our system is translationally invariant, we enforce periodic boundary conditions
and take our single-particle basis to be plane waves:

ψk,ξ(r) =
1√
A
eik·rηξ (3.6)

The allowed wavevectors are

ki =
2πni

L
ni = 0,±1,±2, ... (3.7)

the spin functions indexed by the quantum number ξ are

η↑ =

[
1
0

]
(3.8)

η↓ =

[
0
1

]
(3.9)
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and the non-interacting single-particle energies are

εi,k =
h̄2k2

2mi

(3.10)

where mi is the mass of a particle of type i.
Since our basis is a set of plane waves, the matrix elements in Eq. (3.3) are the Fourier

transforms of the kinetic and potential energies. The kinetic energy matrix elements are
just the single-particle energies. On the other hand, the Fourier transform of the potential
energy terms is more complicated and subtle.

3.2.1 Capacitor term

Before evaluating the potential energy matrix element, we introduce exponential convergence
factors to regularize the Coulomb interactions. Specifically, each Coulombic term in Eq. (3.1)
individually diverges in the thermodynamic limit, but their sum is finite. After dropping the
factors of e2/(4πϵ0ϵ), the potential energy in first quantization is

V =
1

2

N∑
i ̸=j

exp[−µ|re,i − re,j|]
ϵ|re,i − re,j|

+
1

2

N∑
i ̸=j

exp[−µ|rh,i − rh,j|]
ϵ|rh,i − rh,j|

−
N∑
i,j

exp[−µ|re,i − rh,j|]
ϵ
√

|re,i − rh,j|2 + d2
(3.11)

We now turn to the required matrix element.

⟨k1ξ1k2ξ2|V |k3ξ3k4ξ4⟩ =
1

ϵA2
δξ1,ξ3δξ2,ξ4

∫
dr1

∫
dr2 exp[−i(k1 · r1 + k2 · r2)] (3.12)

× exp[i(k3 · r1 + k4 · r2)]
{exp[−µ|r1 − r2|]

|r1 − r2|
− exp[−µ|r1 − r2|]√

|r1 − r2|2 + d2

}
Let r = r2 and y = r1 − r2, so

⟨k1ξ1k2ξ2|V |k3ξ3k4ξ4⟩ =
1

ϵA2
δξ1,ξ3δξ2,ξ4

∫
dr exp[−i(k1 + k2 − k3 − k4) · r] (3.13)

×
∫
dy exp[i(k3 − k1) · y]

{exp[−µy]
y

− exp[−µy]√
y2 + d2

}
The r-integral gives an area times a Kronecker δ-function which guarantees momentum
conservation. Let q = k1 − k3 be the momentum transferred in the two-particle interaction.

⟨k1ξ1k2ξ2|V |k3ξ3k4ξ4⟩ =
1

ϵA
δξ1,ξ3δξ2,ξ4δk1+k2,k3+k4 (3.14)

×
∫ ∞

0

dy

∫ 2π

0

dθy exp[−iqy cos θ]
{exp[−µy]

y
− exp[−µy]√

y2 + d2

}
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Let’s first address the q = 0 case. After evaluating the θ-integral,

⟨k1ξ1k2ξ2|V |k3ξ3k4ξ4⟩ =
1

ϵA2
δξ1,ξ3δξ2,ξ4δk1+k2,k3+k4

×
∫ ∞

0

dy
{
exp[−µy]− y exp[−µy]√

y2 + d2

}
for q = 0 (3.15)

Turning to the y-integral, we first consider∫ L

0

dy
y√

y2 + d2
(3.16)

where we will later take L→ ∞. Letting u = y2,∫ L

0

dy
y√

y2 + d2
=

1

2

∫ L2

0

du
u√

u+ d2
(3.17)

=
√
u+ d2

∣∣∣u=L2

u=0
(3.18)

=
√
L2 + d2 − d (3.19)

= L
(
1 +

1

2

( d
L

)2
+ ...

)
− d (3.20)

In the thermodynamic limit (i.e., large L/d),∫ L

0

dy
y√

y2 + d2
= L− d (3.21)

so

lim
L→∞

∫ L

0

dy
{
1− y√

y2 + d2

}
= d (3.22)

We can add the convergence factor without effect:

lim
µ→0

∫ ∞

0

dy
{
exp[−µy]− y exp[−µy]√

y2 + d2

}
= d (3.23)

Therefore,

⟨k1ξ1k2ξ2|V |k3ξ3k4ξ4⟩ =
2πd

ϵA
δξ1,ξ3δξ2,ξ4δk1+k2,k3+k4 (3.24)

For the q ̸= 0 case, we can set µ = 0 in Eq. (3.14) and introduce a Bessel function of order
zero to get

⟨k1ξ1k2ξ2|V |k3ξ3k4ξ4⟩ =
2π

ϵA
δξ1,ξ3δξ2,ξ4δk1+k2,k3+k4

∫ ∞

0

dyJ0(qy)
{
1− y√

y2 + d2

}
for q ̸= 0

(3.25)

=
2π

ϵA
δξ1,ξ3δξ2,ξ4δk1+k2,k3+k4

{1
q
− exp[−qd]

q

}
(3.26)
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Putting everything together and reintroducing the factors of e2/(4πϵ0ϵ), the second-quantized
Coulomb interaction is

V =
e2π

4πϵ0ϵA

∑
k ̸=0

∑
k,p

∑
ξ1,ξ2

{1
q
a†k+q,ξ1

a†p−q,ξ2
ap,ξ2ak,ξ1 +

1

q
b†k,ξ1b

†
p,ξ2

bp−q,ξ2bk+q,ξ1 (3.27)

− 2 exp[−qd]
q

a†k+q,ξ1
b†p,ξ2bp−q,ξ2ak,ξ1

}
+

2πe2N2d

4πϵ0ϵA

and the total Hamiltonian is

H =
∑
k

h̄2k2

2me

a†kak +
∑
k

h̄2k2

2mh

b†kbk

+
e2π

4πϵ0ϵA

∑
q ̸=0

∑
k,p

∑
ξ1,ξ2

{1
q
a†k+q,ξ1

a†p−q,ξ2
ap,ξ2ak,ξ1 +

1

q
b†k,ξ1b

†
p,ξ2

bp−q,ξ2bk+q,ξ1

− 2 exp[−qd]
q

a†k+q,ξ1
b†p,ξ2bp−q,ξ2ak,ξ1

}
+

2πe2N2d

4πϵ0ϵA
(3.28)

The last term– the q = 0 contribution to the potential energy– is a classical mean-field
result. It is the energy associated with two parallel plates separated by d each possessing a
uniform charge density which is equal and opposite in sign (i.e., the energy of a parallel plate
capacitor). We now write this in terms of Ryex, defined in Eq. (1.7). Instead of working
with the carrier density n = N/A, it is customary to use rs, the dimensionless interparticle
spacing measured in aex, defined in Eq. (1.4). In two dimensions, these are related by

Nπr2sa
2
ex = A (3.29)

na2ex =
1

πr2s
(3.30)

The density is also related to the Fermi wavevector kF , the largest wavevector accessed by
non-interacting particles at zero temperature. To derive this relation, we start by calculating
the total number of particles:

N =
∑
k,λ

f(k, β, µ) (3.31)

where the Fermi-Dirac distribution for a general particle of type i is

fi(k, β, µ) =
exp[−β(εi,k − µ)]

exp[−β(εi,k − µ)] + 1
(3.32)

β−1 = kBT , and µ is the chemical potential. At zero temperature, the distributions for both
the electrons and holes reduce to a Heaviside step function, so

Ni =
∑
k,ξ

Θ(k − kFi
) (3.33)
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In the thermodynamic limit, the spacing between wavevectors vanishes (cf. Eq. (3.7) as
L→ ∞), so we can replace the momentum sum with an integral following the rule

∑
k,ξ

h(k) →
∑
ξ

Ld

(2π)d

∫
ddkh(k) (3.34)

where d = 2 is the dimensionality of the system [18]. Thus,

Ni =
∑
ξ

A

(2π)2

∫
d2kΘ(k − kFi

) (3.35)

=
2A

(2π)2

∫ kFi

0

2πkdk (3.36)

=
Ak2Fi

2π
(3.37)

ni =
k2Fi

2π
(3.38)

For a general system with νi bands for particle i [71],

ni

νi
=
k2Fi

2π
(3.39)

Combining Eq. (3.30) and (3.38), we get

kFaex =

√
2

rs
(3.40)

or in general,

kFi
aex =

√
2√
νirs

(3.41)

Therefore, the capacitor energy per particle is

Ecap =
4d′

r2s
Ryex (3.42)

where d′ = d/aex.

3.3 Zero temperature theory

There are four contributions to the ground state energy of Eq. (3.28):

Etot = Ekin + Eexch + Ecor + Ecap (3.43)
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The kinetic and exchange energies (Ekin and Eexch, respectively) can be computed exactly.
In contrast, the correlation energy (Ecor) can be written as an infinite series in the coupling
constant of the Coulomb potential and can only be solved approximately. In this section,
we use the random-phase approximation and sum all possible ring diagrams [18,72]. One
can improve upon these calculations by taking into account the immediate surroundings of
each electron (i.e., the exchange-correlation hole). Hubbard [73], Nozieres & Pines [74], and
Singwi et al. [75] have each proposed local field or vertex corrections to the polarization
rings. Alternatively, one can evaluate the thermodynamic potential for arbitrary T and
chemical potential µ and then take the limit T → 0. Using the linked-cluster theorem
[72], the thermodynamic potential is expressed in terms of ring diagrams similar to the
zero temperature case in addition to new anomalous diagrams. This approach includes
more diagrams and is more accurate because it uses the exact chemical potential for the
interacting system. In contrast, the zero temperature approach uses the Fermi energy of the
unperturbed system [18].

3.3.1 Kinetic energy

To calculate the total kinetic energy of an electron-hole liquid at zero temperature, we simply
add up the contributions from each electron and hole [33]:

Ekin =
∑
i=e,h

νiξi
∑
k<kFi

h̄2k2

2mi

(3.44)

We can write the sum as an integral following Eq. (3.34).

Ekin =
∑
i=e,h

νiξi
h̄2

2mi

A

(2π)2

∫ kFi

0

2πk(k2)dk (3.45)

=
∑
i=e,h

νiξi
h̄2

2mi

A

2π

k4Fi

4
(3.46)

Using Eq. (3.39),

Ekin =
∑
i=e,h

νiξi
h̄2k2Fi

2mi

N

νi4
(3.47)

Ekin

N
=
h̄2

2

(ξek2Fe

2me

+
ξhk

2
Fh

2mh

)
(3.48)

Using Eq. (3.40), this can be written in Ryex as

Ekin

N
=

1

4r2s

(ξe
νe

1

σ + 1
+
ξh
νh

σ

σ + 1

)
Ryex (3.49)

For our model, νe = νh = 1 and ξe = ξh = 2, so

Ekin

N
=

1

r2s
Ryex (3.50)
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3.3.2 Exchange energy

To compute the zero-temperature exchange energy to first order, we evaluate the potential
energy matrix element with the Hartree-Fock state. For an all-electron system, this is a Slater
determinant of the single-particle states given by Eq. (3.6). For the EHL, the Hartree-Fock
state is a product of two of these determinants: one for the electrons and one for the holes.
The matrix element reduces to two terms: one is the capacitor energy (sometimes called the
“direct” term) and the other is the exchange energy [18,33]

Eexch = −
∑
i=e,h

νiξi
2A

∑
k,p

U0(k− p)fi(k, β → ∞, µ)fi(p, β → ∞, µ) (3.51)

where we have the Fourier transform of the statically-screened two-dimensional Coulomb
interaction

U0(k) =
2πe2

4πϵ0ϵk
(3.52)

As before, the Fermi distributions reduce to Heaviside step functions at zero temperature.
The result is [76]

Eexch

N
= −

∑
i=e,h

8
√
2

3πrs
Ryex (3.53)

= −2.401

rs
Ryex (3.54)

3.3.3 Correlation energy

The difference between the total ground state energy and the energy calculated using the
non-interacting Hartree-Fock state is defined as the correlation energy. For q = 0, the
correlation energy is equivalent to the capacitor energy. In strictly two dimensions (d = 0),
the q ̸= 0 contribution is given exactly by [18]

Ecor =
h̄iA

2(2π)3

∫ 1

0

dλ

λ

∫
d2k

∫
dω
[
ϵλ(k, ω)

−1 − 1− λU0(k)
(
Π0

e(k, ω) + Π0
h(k, ω)

)]
(3.55)

λ is a coupling constant that scales the bare Coulomb interactions, Eq. (3.52), ω is the
frequency, Π0

i is the lowest-order polarization for particle i,

ϵλ(k, ω) = 1− λU0(k)
(
Πλ,∗

e (k, ω) + Πλ,∗
h (k, ω)

)
(3.56)

is the dielectric function, and Πλ,∗
i (k, ω) the proper polarization for particle i. Working

within the random-phase approximation, we approximate the proper polarization to lowest
order and subsequently suppress the superscript: Π∗ ≈ Π0 ≡ Π. In this case, Eq. (3.55) can
be written as

Ecor =
h̄iA

2(2π)3

∫
d2k

∫
dω

∫ 1

0

dλ
λ
(
U0
ee

)2
1−

(
Πe +Πh

)
λU0

ee

(
Πe +Πh

)2
(3.57)
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The λ integral is ∫ 1

0

λ

1− λa
dλ = − ln(1− a) + a

a2
(3.58)

so

Ecor = − h̄iA

2(2π)3

∫
d2k

∫
dω
[
ln(1−

(
Πe +Πh

)
U0
ee) +

(
Πe +Πh

)
U0
ee

]
(3.59)

For d ̸= 0, the electrons and holes reside in different regions of space, so they screen each
other differently. In this case, we must solve the generalized equation

Ecor =
h̄iA

2(2π)3

∫ 1

0

dλ

λ

∫
d2k

∫
dω
[
Πe Πh

] [ Uλ
eeλU

0
ee Uλ

ehλU
0
eh

Uλ
ehλU

0
eh Uλ

hhλU
0
hh

] [
Πe

Πh

]
(3.60)

where

U0
ij =

{
2πe2

k
i = j

−2πe2

k
exp[−kd] i ̸= j

(3.61)

and Uλ
ij are the dynamically-screened effective interactions. Within the random-phase ap-

proximation, these are given by the following Dyson-like or Ornstein-Zernike-like equations
[69]

Uλ
ee = λU0

ee + λU0
eeΠeU

λ
ee + λU0

ehΠhU
λ
eh (3.62)

Uλ
hh = λU0

hh + λU0
ehΠeU

λ
eh + λU0

hhΠhU
λ
hh (3.63)

Uλ
eh = λU0

eh + λU0
eeΠeU

λ
eh + λU0

ehΠhU
λ
hh (3.64)

or in matrix form,[
Uλ
ee Uλ

eh

Uλ
eh Uλ

hh

]
= λ

[
U0
ee U0

eh

U0
eh U0

hh

]
+ λ

[
ΠeU

0
ee ΠhU

0
eh

ΠeU
0
eh ΠhU

0
hh

] [
Uλ
ee Uλ

eh

Uλ
eh Uλ

hh

]
(3.65)

We first factor out U0
ee from Eq. (3.60) and use

U0
ii

U0
ee

= 1
U0
ij

U0
ee

= − exp[−kd] (3.66)

to obtain

Ecor =
h̄iA

2(2π)3

∫ 1

0

dλ

λ
U0
ee

∫
d2k

∫
dω
[
Πe Πh

]
×
[

Uee −Ueh exp[−kd]
−Ueh exp[−kd] Uhh

] [
Πe

Πh

]
(3.67)
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In Section 3.7, I derive this matrix of effective interactions in terms of the bare electron-
electron interaction. Substitution of this result leads to

Ecor =
h̄iA

2(2π)3

∫
d2k

∫
dω

∫ 1

0

dλ

λ

(λU0
ee)

2

1− λ
(
Πe +Πh

)
U0
ee + λ2

(
1− exp[−4kd]

)
ΠeΠh

(
U0
ee

)2
(3.68)

×
[
Πe Πh

] [ 1 + λ
(
exp[−4kd]− 1

)
ΠhU

0
ee exp[−2kd]

exp[−2kd] 1 + λ
(
exp[−4kd]− 1

)
ΠeU

0
ee

] [
Πe

Πh

]
If d = 0, we recover the usual result when the electron-electron and electron-hole inter-

actions are equal.

Ecor =
h̄iA

2(2π)3

∫
d2k

∫
dω

∫ 1

0

dλ

λ

(λU0
ee)

2

1− λ
(
Πe +Πh

)
U0
ee

[
Πe Πh

] [ 1 1
1 1

] [
Πe

Πh

]
(3.69)

=
h̄iA

2(2π)3

∫
d2k

∫
dω

∫ 1

0

dλ

λ

(λU0
ee)

2

1− λ
(
Πe +Πh

)
U0
ee

(
Πe +Πh

)2
(3.70)

In the other asymptotic limit (d → ∞), the electrons and holes no longer interact with
each other. From Eq. (3.68), we have

Ecor =
h̄iA

2(2π)3

∫
d2k

∫
dω

∫ 1

0

dλ

λ

(λU0
ee)

2

1− λ
(
Πe +Πh

)
U0
ee + λ2ΠeΠh

(
U0
ee

)2 [ Πe Πh

]
×
[
1− λΠhU

0
ee 0

0 1− λΠeU
0
ee

] [
Πe

Πh

]
(3.71)

=
h̄iA

2(2π)3

∫
d2k

∫
dω

∫ 1

0

dλ

λ

(λU0
ee)

2

(1− λΠeU0
ee)(1− λΠhU0

ee)

[
Πe Πh

]
×
[
1− λΠhU

0
ee 0

0 1− λΠeU
0
ee

] [
Πe

Πh

]
(3.72)

=
h̄iA

2(2π)3

∫
d2k

∫
dω

∫ 1

0

dλ

λ

[
Πe Πh

]
×
[
(λU0

ee)
2/(1− λΠeU

0
ee) 0

0 (λU0
ee)

2/(1− λΠhU
0
ee)

] [
Πe

Πh

]
(3.73)

=
h̄iA

2(2π)3

∫
d2k

∫
dω

∫ 1

0

dλ

λ

{ (λΠeU
0
ee

)2
1− λΠeU0

ee

+

(
λΠhU

0
ee

)2
1− λΠhU0

ee

}
(3.74)

This last equation is the correlation energy for two non-interacting electron and hole gases.
We now return to Eq. (3.68) and consider intermediate bilayer separations. To express

this in Ryex, we scale lengths by aex, wavevectors by kF , and frequencies by h̄2k2F/(2mred).
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Using Eq. (3.40) and (3.30),

Ecor

N
=

i

πr2s

∫ ∞

0

dk

∫ ∞

0

dω

∫ 1

0

dλ
kλ
(
U0
ee

)2
1− λ

(
Πe +Πh

)
U0
ee + λ2

(
1− exp[−4

√
2kd/rs]

)
ΠeΠh

(
U0
ee

)2
×
[
Πe Πh

] [ 1 + λ
(
exp[−4

√
2kd/rs]− 1

)
ΠhU

0
ee exp[−2

√
2kd/rs]

exp[−2
√
2kd/rs] 1 + λ

(
exp[−4

√
2kd/rs]− 1

)
ΠeU

0
ee

]
×
[
Πe

Πh

]
Ryex (3.75)

The result of the matrix multiplication is

Ecor

N
=

i

πr2s

∫ ∞

0

dk

∫ ∞

0

dω

∫ 1

0

dλk
λ

1− λ
(
Πe +Πh

)
U0
ee + λ2

(
1− exp[−4

√
2kd/rs]

)
ΠeΠh

(
U0
ee

)2
×
(
U0
ee

)2(
Π2

e +Π2
h

)
+ 2
(
U0
ee

)2
ΠeΠh exp[−2

√
2kd/rs]

+ λ
(
exp[−4

√
2kd/rs]− 1

)(
U0
ee

)3(
Πe +Πh

)
ΠeΠh

)
Ryex (3.76)

The λ integral we need to solve for arbitrary d is∫ 1

0

λ

1− aλ+ bλ2
(
c+ fλ

)
dλ (3.77)

I outline how to compute it in Section 3.8.

3.3.3.1 Zeroth-order zero temperature polarizability in two dimensions

To solve for the correlation energy given by Eq. (3.76), we need the electron and hole po-
larizabilities. Stern was the first to calculate the two-dimensional lowest-order polarizability
for the electron gas [77], and Kuramoto and Kamimura were the first to utilize these po-
larizabilities to study the two-dimensional EHL [78]. For a particle of type i, the real part
is

ReΠi(k, ω) =
mi

h̄2π

[
− 1− ω − k2

2k2

√
1−

( 2k

ω − k2
)2

+
ω + k2

2k2

√
1−

( 2k

ω + k2
)2]

(3.78)

and the imaginary part is

ImΠi(k, ω) = − mi

h̄2πk

[√
1−

(ω − k2

2k

)2 −√1−
(ω + k2

2k

)2]
(3.79)

In both cases, each square root must be set to zero when they acquire a negative argument.
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Polarizabilities are always multiplied by a bare Coulomb interaction U0. Using Eq. (3.40)
and

mred =
me

σ + 1
(3.80)

=
σmh

σ + 1
(3.81)

we have

U0(k)ReΠe(k, ω) = (σ + 1)A(k, (σ + 1)ω, rs) (3.82)

U0(k)ImΠe(k, ω, ) = (σ + 1)Σ(k, (σ + 1)ω, rs) (3.83)

U0(k)ReΠh(k, ω) =
(σ + 1)

σ
A(k,

(σ + 1)

σ
ω, rs) (3.84)

U0(k)ImΠh(k, ω) =
(σ + 1)

σ
Σ(k,

(σ + 1)

σ
ω, rs) (3.85)

where

A(k, ω, rs) =

√
2rs
k

[
− 1− ω − k2

2k2

√
1−

( 2k

ω − k2
)2

+
ω + k2

2k2

√
1−

( 2k

ω + k2
)2]

(3.86)

and

Σ(k, ω, rs) = −
√
2rs
k2

[√
1−

(ω − k2

2k

)2 −√1−
(ω + k2

2k

)2]
(3.87)

Figure 3.1 shows A and Σ as functions of q and ω.
As mentioned earlier, one may improve upon RPA calculations by including a “local

field” correction which takes into account correlations between like particles [68]. In two
dimensions [78], Hubbard’s correction involves replacing the RPA polarizabilities with

AHubbard =
(
1− k

4(k + kF )

)
A (3.88)

ΣHubbard =
(
1− k

4(k + kF )

)
Σ (3.89)

3.4 Zero temperature results

We evaluate the double integral in Eq. (3.76) evaluated using Simpson’s rule. Figure 3.2
shows the correlation energy using Hubbard’s correction of a σ = 1 2D EHL at rs = 0.5 as
a function of the integration step size ∆ω for various ∆q. The integrals are converged when
the step sizes are both approximately 0.01. Figure 3.3 shows how the ω-integral varies with
ωmax as a function of q (again using Hubbard’s correction). While most of the integral lies
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Figure 3.1: Plots of the real and imaginary parts of the 2D RPA polarizability multiplied by
the Coulomb potential.
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Figure 3.2: Correlation energy of a σ = 1 2D EHL at rs = 0.5 as a function of the integration
step size ∆ω for various ∆q.
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Figure 3.3: Correlation energy as a function of qmax for various ωmax.

within q < 10 and ω < 30, we noticed that there can be significant contributions at larger q
and ω, especially for σ ̸= 1. We typically used qmax = 30, ωmax = 60, ∆ω = ∆q = 0.01, and
qmin = ωmin = 0.01.

The ground state energy (per particle) of the bilayer electron-hole liquid is given by the
sum of the kinetic energy (Eq. (3.50)), exchange energy (Eq. (3.54)), correlation energy
(Eq. (3.76)), and capacitor energy (Eq. (3.42)). Figure 3.4 shows these contributions as
a function of the interparticle spacing rs for σ = 1 and d = 0. Similar to the degenerate
electron gas, the exchange and correlation energy stabilizes the condensed phase while the
kinetic energy (and possibly the capacitor energy) destabilizes it.

Figure 3.5 shows the total energy per particle as a function of rs for d = 0 and various
electron-hole mass ratios σ. The total energy is minimized as σ decreases from unity, similar
to how the biexciton energy decreases by lowering σ.

The total energy depends on the bilayer separation only through the correlation and
capacitor terms. In Figure 3.6, we show their sum for various d. The energy increases as the
electrons and holes are separated from each other due to two effects. Firstly, the electrons
and holes cannot effectively screen one another as they reside in distinct planes. Secondly
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Figure 3.4: Contributions to the total energy for the 2D σ = 1 electron-hole liquid.
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Figure 3.5: Total energy of 2D EHL as a function of interparticle spacing for σ = 1 and 0.1.
“Rustagi” comes from [33] and “Kuramoto” comes from [78].
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Figure 3.6: Correlation energy (including the q = 0 contribution) per particle as a function
of interparticle spacing for σ = 1 and various d.

and more notably, there is an energetic cost for pulling apart two oppositely-charged planes;
this is the capacitor term.

Figure 3.7 show the total energy versus r0 = rsaex for various d. As expected, the
equilibrium interparticle spacing (i.e., the value of r0 which minimizes the energy) increases
as d increases. However, these values remain near unity for 0 ≤ d

aex
≤ 1.5, so this condensed

phase is clearly in the degenerate regime.
The minimum of the total energy is often defined as the binding energy for a carrier

in the EHL. As d increases and the electrons and holes are separated, this binding energy
decreases, as shown in the top panel of Figure 3.7. Interestingly, if we remove the capacitor’s
contribution, the d ̸= 0 curves nearly match the d = 0 curve (see the bottom panel of Figure
3.7). While there is some d-dependence in the q ̸= 0 correlation energy, it is almost negligible
compare to the kinetic and exchange energies. Therefore, the classical mean-field capacitor
term dictates how the ground state energy of the electron-hole liquid changes by separating
the electrons from the holes.

As seen in Eq. (1.4) and (1.7), the length and energy scales (aex and Ryex) change with
the electron-hole mass ratio. To compare systems with different σ on equal footing, we fix

m∗
e = m0 (3.90)

so

Ryσex =
1

σ + 1
Ryσ=0

ex (3.91)

and
aσex = (σ + 1)aσ=0

ex (3.92)

Figure 3.8 shows the binding energy of various exciton phases as function of bilayer sepa-
ration. As before, the binding energy of an EHL is just the minimum of the total energy
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Figure 3.7: Total energy of EHL for various d. In the second figure, we remove the contri-
bution from the capacitor term.

consisting of kinetic, exchange, correlation, and capacitor contributions. Here, we define the
binding energy of a gas of excitons as their ground state energy plus a capacitor contribu-
tion to include their interactions at the mean-field level. To compare the stability of these
phases at the same high densities, we evaluate the capacitor energy at the same equilibrium
interparticle spacing. The binding energy of a gas of biexcitons is defined similarly. The
energy difference between the σ = 0.1 EHL and an exciton gas for d = 1.5aex is about 1
Ryex, which is approximately the same value as the photoluminescence red-shift Bar-Joseph
and co-workers observed [42,43]. Motivated by this close agreement, we now turn to our
finite temperature calculations.

3.5 Finite temperature theory

To study the electron-hole liquid at finite temperatures, we follow most of the same steps
as in the zero temperature case with some key differences. Instead of working in the mi-
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Figure 3.8: Electron-hole liquid binding energies as a function of bilayer separation.

crocanonical ensemble, it is convenient to now work in the grand canonical ensemble. We
first calculate the chemical potential for non-interacting fermions starting from the grand
canonical partition function. Next, we evaluate the exchange contribution to the thermo-
dynamic potential as well as the Helmholtz free energy. Finally, using the linked cluster
expansion [33,72], we incorporate correlation effects by summing the same “ring diagrams”
as in the zero temperature case. However, in order to access finite temperatures, we sum
over discrete Matsubara frequencies rather than integrate over the previously continuous
frequencies. The q = 0 contribution to the correlation free energy– the capacitor term– is
independent of temperature.

3.5.1 Ideal chemical potential

In the grand canonical ensemble, the partition function for N non-interacting particles is

Ξ =
∑

n1,n2,...,nk,...

exp
[
− β

∑
k

(εk − µ)nk

]
(3.93)

where nk are occupation numbers and εi,k are the single-particle energies given in Eq. (3.10).
For non-interacting fermions, the exponential factorizes, so we get

Ξ =
∏
k

{ 1∑
nk=0

exp
[
− β(ϵk − µ)nk

]}
(3.94)

=
∏
k

{
1 + exp

[
− β(ϵk − µ)

]}
(3.95)
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The total number of particles is calculated using

⟨N⟩ = ∂ ln Ξ

∂(βµ)
(3.96)

=
∑
k

exp[β(µ− εk)]

1 + exp[β(µ− εk)]
(3.97)

=
∑
k

f(k, β, µ) (3.98)

where f is the Fermi-Dirac distribution given by Eq. (3.32). For particle i with νi bands
and ξi spin degeneracies, we have

⟨Ni⟩ = νiξi
∑
k

fi(k, β, µ) (3.99)

Previously, we’ve used Eq. (3.98) to relate the Fermi wavevector kF to the density by
taking β → ∞. Here, we evaluate it for general β. After writing the sum over wavevectors
as an integral using Eq. (3.34), we have

⟨Ni⟩ =
νiξiA

(2π)2

∫
d2k

exp[β(µ− εi,k)]

1 + exp[β(µ− εi,k)]
(3.100)

=
νiξiA

2π

∫ ∞

0

exp[β(µ− εi,k)]

1 + exp[β(µ− εi,k)]
kdk (3.101)

We now use a u-substitution: u = exp[β(µ− εi,k)].

⟨Ni⟩ =
νiξiA

2π

mi

h̄2β

∫ exp[βµ]

0

1

1 + y
dy (3.102)

=
νiξiA

λ2i
ln
(
1 + exp[βµ]

)
(3.103)

where we have the thermal de Broglie wavelength

λ2i =
2πh̄2β

mi

(3.104)

After some algebra, we obtain the chemical potential for N non-interacting particles of type
i:

βµi
0 = ln

(
exp[nλ2i /(νiξi)]− 1

)
fermions (3.105)

The classical, non-degenerate limit is recovered when nλ2i ≪ 1; this occurs at high
temperatures or low densities. By Taylor expanding the exponential, we get the chemical
potential for a classical gas:

βµi
0 =nλ2

i≪1 ln(nλ
2
i /(νiξi)) (3.106)
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In the opposite highly degenerate regime (nλ2i ≫ 1), we have

βµi
0 =nλ2

i≫1

nλ2i
νiξi

(3.107)

µi
0 =nλ2

i≫1

n2πh̄2

νiξimi

(3.108)

The chemical potential for ideal fermions becomes independent of temperature and propor-
tional to density.

For bosons, the grand partition function given by Eq. (3.93) becomes

Ξ =
∏
k

(
1− exp[β(µ− εk)]

)−1

(3.109)

Following the same steps as above, we get

⟨Ni⟩ = νiξi
∑
k

exp[β(µ− εi,k)]

1− exp[β(µ− εi,k)]
(3.110)

=
νiξiA

2π

mi

h̄2β

∫ exp[βµ]

0

1

1− y
dy (3.111)

= −νiξiA
λ2i

ln
(
1− exp[βµ]

)
(3.112)

Hence, the chemical potential for bosons is

βµi
0 = ln

(
1− exp[−niλ

2
i /(νiξi)]

)
bosons (3.113)

3.5.2 Exchange free energy

The first-order exchange contribution to the thermodynamic potential is a generalization of
Eq. (3.51):

Ωexch(β, µ) = −
∑
i=e,h

νiξi
2A

∑
k,p

2πe2

4πϵ0ϵ|k− p|fi(k, β, µ)fi(p, β, µ) (3.114)

where fi is the Fermi-Dirac distribution for particle i, given in Eq. (3.32). This equation is
exact when we use the chemical potential for the interacting system, µ. Following previous
work [33,76], we replace this exact chemical potential by the one corresponding to the non-
interacting system, Eq. (3.105). Perrot and Dharma-Wardana have evaluated the higher-
order corrections to this approximation [86]. Because we now write Eq. (3.115) in terms of
densities, it becomes a Helmholtz free energy:

Fexch(β, n) = −
∑
i=e,h

νiξi
2A

∑
k,p

2πe2

4πϵ0ϵ|k− p|fi
(
k, β, µ0(n)

)
fi
(
p, β, µ0(n)

)
(3.115)
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We now introduce dimensionless quantities. Let k′ = k/kF and t = T/TF , where the
Fermi temperature is

TF =
h̄2k2F

2mredkB
(3.116)

The ideal chemical potentials become

βµi
0 =

ln
[
exp

(
1

t(σ+1)

)
− 1
]

i = e

ln
[
exp

(
σ

t(σ+1)

)
− 1
]

i = h
(3.117)

and the Fermi-Dirac distributions become

fi(k
′, t, n) =


exp
[
1/
(
t(σ+1)

)]
−1

exp
[
k′2/
(
t(σ+1)

)]
+exp

[
1/
(
t(σ+1)

)]
−1

i = e

exp
[
σ/
(
t(σ+1)

)]
−1

exp
[
k′2σ/

(
t(σ+1)

)]
+exp

[
σ/
(
t(σ+1)

)]
−1

i = h

(3.118)

Note that when the electrons and holes have different masses, they feel two different effective
temperatures:

ti =

{
t(σ + 1) i = e

t(σ + 1)/σ i = h
(3.119)

In these reduced units, the density dependence enters only through the reduced temperature.
We now set νe = νh = 1 and ξe = ξh = 2. Dividing by N and converting the sums in Eq.

(3.115) to integrals using Eq. (3.34), we get

Fexch(t)

N
= −

∑
i=e,h

kF e
2

(2π)2

∫
d2k′

∫
d2p′

fi(k
′, t)fi(p′, t)

4πϵ0ϵ|k′ − p′| (3.120)

In [76], Phatisena and co-workers write the exchange free energy of a two-dimensional electron
gas (2DEG) relative to its exchange energy at zero temperature, EX , given by eq. (3.54).

F 2DEG
exch (t)

EX

= 3

∫ ∞

0

dxx2f(x, t)

∫ 1

0

dzf(xz, t)K(z) (3.121)

= C(t) (3.122)

where K(z) is the complete elliptic integral of the first kind. To apply this result for our
two-component system, we evaluate it at the previously defined effective temperatures:

Fexch(t)

N
= −

∑
i=e,h

1.2004

rs
C(ti)Ryex (3.123)
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Figure 3.9: Temperature-dependent correction to the exchange energy of a two-dimensional
electron gas.

We computed the double integral in Eq. (3.121) using Simpson’s rule. Our integration
parameters were as follows: xmin = 0, xmax =2 for t < 0.1 and xmax =10 for t > 0.1,
∆x=0.05, ymin = 0, ymax = 1 − 10−16, and ∆y = 0.001. Figure 3.9 shows C(t), the
temperature-dependent correction to the exchange energy of a two-dimensional electron gas.
As one should expect, the exchange free energy decreases as we move to the classical regime
of high temperatures.
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3.5.3 Correlation free energy

Using the linked-cluster expansion [33], the correlation thermodynamic potential for a bilayer
electron-hole liquid is the finite temperature generalization of Eq. (3.60):

Ωcor(β, µ) = − 1

2β

∑
ωl,k

∫ 1

0

dλ

λ

[
Πe Πh

] [ Uee(λ, k)U
0
ee(λ, k) Ueh(λ, k)U

0
eh(λ, k)

Ueh(λ, k)U
0
eh(λ, k) Uhh(λ, k)U

0
hh(λ, k)

]
×
[
Πe(k, ωl, β)
Πh(k, ωl, β)

]
(3.124)

= − A

2β(2π)2

∑
ωl

∫
d2k

∫ 1

0

dλU0
ee

λU0
ee

1− λ
(
Πe +Πh

)
U0
ee + λ2

(
1− exp[−4kd]

)
ΠeΠh

(
U0
ee

)2
×
[
Πe Πh

] [ 1 + λ
(
exp[−4kd]− 1

)
ΠhU

0
ee exp[−2kd]

exp[−2kd] 1 + λ
(
exp[−4kd]− 1

)
ΠeU

0
ee

] [
Πe

Πh

]
(3.125)

In lieu of integrating over a continuous frequency, we now must sum over discrete bosonic
Matsubara frequencies

ωl =
2πl

β
l = 0,±1,±2, ... (3.126)

Using the same dimensionless quantities as before and Eq. (3.40), we obtain the correlation
free energy per particle:

Fcor(t, rs)

N
= − t

r2s

∑
ωl

∫ ∞

0

dk

∫ 1

0

dλ

×
{ kλ

1− λ
(
Πe +Πh

)
U0
ee + λ2

(
1− exp[−4

√
2kd′/rs]

)
ΠeΠh

(
U0
ee

)2
×
((
U0
ee

)2(
Π2

e +Π2
h

)
+ 2
(
U0
ee

)2
ΠeΠh exp[−2

√
2kd′/rs]

+ λ
(
exp[−4

√
2kd′/rs]− 1

)(
U0
ee

)3(
Πe +Πh

)
ΠeΠh

))}
Ryex (3.127)

The polarizabilities are even functions of ωl, so we sum over l = 0, 1, 2, ... and multiply
the l ̸= 0 terms by two. This is the same λ integral as in the zero-temperature case; it is
evaluated in Section 3.8. The k-integral was evaluated using Simpson’s rule and the same
integration parameters as in the zero-temperature case.

Figure 3.10 shows the contribution of each Matsubara frequency to the correlation energy
of a σ = 1 d = 0 electron-hole liquid at two different reduced temperatures t. As noted in
[76], for t > 10, the frequency sum converges rapidly and we only need to sum over the first
21 frequencies. In contrast, the convergence is very slow for t ≈ 0.1, so we include the first
301 frequencies.
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Figure 3.10: Contribution of each Matsubara frequency to the correlation energy of a d = 0,
σ = 1 electron-hole liquid.

3.5.3.1 Zeroth-order finite temperature polarizability in two dimensions

The finite-temperature lowest-order polarizability in two dimensions for particle j is

Πj(k, ωl, β) = −2

∫
d2p

(2π)2
fj(p+ k, β, µ)− fj(p, β, µ)

ih̄ωl −
(

h̄2|p+k|2
2mj

− h̄2p2

2mj

) (3.128)

We replace the true chemical potential by one corresponding to an ideal system, divide all
wavevectors by kF , and divide all temperatures by the same Fermi temperature as before.
After dividing by the Fermi energy present in the denominator, Eq. (3.128) becomes

Πj(k, ωl, t) = − mr

π2h̄2

∫
d2p

fj(p+ k, t)− fj(p, t)

i2πlt− mr

mj

(
|p+ k|2 − p2

) (3.129)
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or

Πj(k, ωl, t) = − mj

π2h̄2

∫
d2p

fj(p+ k, t)− fj(p, t)

i2πltj −
(
|p+ k|2 − p2

) (3.130)

The Fermi-Dirac distributions are given in Eq. (3.118); their reduced temperature is the
same tj as in the denominator.

After evaluating the angular integral, the static (l = 0) and dynamic (l ̸= 0) polarizabil-
ities can be simplified as [76]

Πj(k, l = 0, t) = − 4mj

πh̄2k

∫ k/2

0

dx
xf(x, tj)√
k2 − 4x2

(3.131)

and

Πj(k, l ̸= 0, t) = −4mj

πh̄2

∫ ∞

0

dx
xfj(x, t) cosϕ[(

k4 − 4x2k2 − 4l2π2t2j
)2

+ 16l2π2t2jk
4
]1/4 (3.132)

where

tan(2ϕ) =
4k2lπtj

k4 − 4x2k2 − 4l2π2t2j
(3.133)

When computing ϕ, we must use “atan2(y, x),” the two-argument arctangent function which
yields the angle between the positive x-axis and the point (x, y). Both integrals were com-
puted using Simpson’s rule. For the static case, we used xmin = 0, xmax = k/2 − 10−8,
and ∆x = 3 × 10−5. For the dynamic case, we used xmin = 0, xmax = 5 for t < 0.01 and
xmax = 30 for t > 0.01, and ∆x = 0.1. Some finite-temperature polarizabilities are shown in
Figures 3.11 and 3.12. To directly compare with the results of Phatisena et al. [76], we set
h̄ = 1 and mj = 0.5 for plotting purposes.

We computed these polarizabilities for k = 0.01, 0.02, ..., 30 and l = 0, 1, ..., 300. For
l < 20, the polarizabilities depend strongly on t, so we computed them for 100 values of t
following a geometric progression starting from 10−4 and with a common ratio of 1.26. For
larger l, we used 25 values of t following a geometric progression starting from 10−4 and with
a common ratio of 1.83. We then linearly interpolated each polarizability across t at each
wavevector k.

3.6 Finite temperature results

In the previous section, we evaluated contributions to the free energy per particle, F . The
corresponding chemical potentials are

µ = F +

(
∂F

∂n

)
T,A

n (3.134)
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Figure 3.11: Static and dynamic polarizabilities as functions of k. “Phatisena” comes from
[76].
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Figure 3.12: Static polarizability as a function of k for various reduced temperatures t.
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Figure 3.13: Exchange-correlation free energy as a function of free carrier density. The exact
values as well as the fit given by Eq. (3.136) are shown.

The capacitor’s contribution can be computed exactly:

µcap =
8d′

r2s
Ryex (3.135)

where d′ = d/aex. In order to obtain smooth exchange and correlation chemical potentials,
we first fit these free energies to the function

Ffit(n;nC) =

{∑N
j=0 ajn

j/2 n < nC∑2N+2
j=N+1 aj(lnn)

j−N−1 n ≥ nC

(3.136)

nC is the density threshold where we change the functional form. (We typically used 109

cm−2.) The low-density classical regime is described by Debye-Hückel theory; in two dimen-
sions the free energy is proportional to

√
n. The fit in the high-density regime is inspired by

density functional theory exchange-correlation functionals within the local-density approxi-
mation. The fit is shown in Figure 3.13, and the derivation and numerical implementation
is provided in Section 3.9.

Figure 3.14 shows the total chemical potential µtot for a σ = 1, d = 0 electron-hole
liquid as a function of the free carrier density. At low densities, the exchange-correlation
contribution is zero, and the ideal contribution can be described classically by Eq. (3.106).
Between 109 and 1011 cm−2, the non-ideal exchange-correlation piece dominates, causing µtot

to decrease. Here, the thermodynamic stability criterion(∂µ
∂n

)
T,A

> 0 (3.137)

is not met [79]. To resolve this, the system phase separates into low and high densities
regions in order to stabilize. In Chapter 4, we will correct this and map the liquid-gas phase
diagrams by Maxwell equal-area constructions.
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Figure 3.14: Chemical potential for a σ = 1, d = 0 electron-hole liquid at 8 K. The ideal and
non-ideal contributions are separated.

The temperature dependence of the total chemical potential is shown in Figure 3.15.
The linear behavior (on the log-x scale) at low densities can be described classically by
Eq. (3.106); here, the chemical potential is proportional to temperature. At high densities,
all three systems experience pressure due to quantum degeneracy; the chemical potentials
become independent of temperature and proportional to density, as seen in Eq. (3.108).
Finally, we note that the chemical potential is a monotonically non-decreasing function for
T = 16 K; this is approximately the critical temperature for the liquid-gas transition of free
electrons and holes.

In Figure 3.16, we compare the total chemical potential for a σ = 0.1 EHL at T=14 K for
three different bilayer separations. Similar to the zero-temperature case, the d-dependence
of the total chemical potential only enters through the correlation and capacitor terms.
Since these pieces are only relevant at high densities, all three µtot are equal at low densities.
Additionally, if we remove the capacitor’s contribution, the chemical potentials are strikingly
similar; the d = 0 case is slightly different because the electrons and holes reside in the same
plane and can effectively screen one another.

As discussed earlier with the zero-temperature results, the energy scale (Ryex) increases
and the length scale (aex) decreases as the electron-hole mass ratio deviates from unity. Thus,
for smaller σ < 1, the exchange-correlation contributions are magnified and influence µtot at
slightly lower densities. This is reflected in Figure 3.17, which shows chemical potentials for
a d = 0 EHL at T = 8 K for σ =1, 0.1, and 0.01.

In this Chapter, we studied the energetics of Keldysh’s electron-hole liquid in a bilayer
geometry using a field-theoretic (i.e., Green’s-function) approach. First considering zero
temperatures, we calculated the binding energy of this condensed state and compared it to
the energy of a gas of indirect excitons. For the same bilayer separation and electron-hole
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Figure 3.15: Chemical potentials for a σ = 1, d = 0 electron-hole liquid at three different
temperatures.
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Figure 3.16: Chemical potentials for a σ = 0.1 electron-hole liquid at T=14 K and d=0, 0.5,
and 1 aex. The capacitor contributions are removed for d ̸= 0.
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Figure 3.17: Chemical potentials for a d = 0 electron-hole liquid at T=8 K for three different
mass ratios.

mass ratio as in Bar-Joseph experiments, we find the energy difference between the quantum
EHL and IX gas to be approximately equal to the photoluminescence red-shift they measured.
Next, we evaluated free energies and chemical potentials. As shown in Figures 3.14-3.17,
if the temperature is below some critical value, the chemical potential violates the stability
criterion Eq. (3.137), over a certain range of densities. In Chapter 4, we will map the phase
diagram using Maxwell equal-area constructions. Additionally, we will check the validity of
neglecting bound indirect excitons.

3.7 Appendix: deriving effective Coulomb

interactions for the bilayer geometry

The equation we need to solve is[
Uee −Ueh exp[−kd]

−Ueh exp[−kd] Uhh

]
=

[
U0
ee −U0

eh exp[−kd]
−U0

eh exp[−kd] U0
hh

]
(3.138)

+

[
ΠeU

0
ee −ΠhU

0
eh exp[−kd]

−ΠeU
0
eh exp[−kd] ΠhU

0
hh

] [
Uee −Ueh exp[−kd]

−Ueh exp[−kd] Uhh

]
[

1− ΠeU
0
ee ΠhU

0
eh exp[−kd]

ΠeU
0
eh exp[−kd] 1− ΠhU

0
hh

] [
Uee −Ueh exp[−kd]

−Ueh exp[−kd] Uhh

]
=

[
U0
ee −U0

eh exp[−kd]
−U0

eh exp[−kd] U0
hh

]
(3.139)
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We invert the leftmost matrix to get[
Uee −Ueh exp[−kd]

−Ueh exp[−kd] Uhh

]
=
{(

1− ΠeU
0
ee

)(
1− ΠhU

0
hh

)
− ΠeΠh

(
U0
eh

)2
exp[−2kd]

}−1

×
[

1− ΠhU
0
hh −ΠhU

0
eh exp[−kd]

−ΠeU
0
eh exp[−kd] 1− ΠeU

0
ee

] [
U0
ee −U0

eh exp[−kd]
−U0

eh exp[−kd] U0
hh

]
(3.140)

We then factor out U0
ee from the rightmost matrix.[

Uee −Ueh exp[−kd]
−Ueh exp[−kd] Uhh

]
=

U0
ee(

1− ΠeU0
ee

)(
1− ΠhU0

hh

)
− ΠeΠh

(
U0
eh

)2
exp[−2kd]

(3.141)

×
[

1− ΠhU
0
hh −ΠhU

0
eh exp[−kd]

−ΠeU
0
eh exp[−kd] 1− ΠeU

0
ee

] [
1 exp[−2kd]

exp[−2kd] 1

]
=

U0
ee(

1− ΠeU0
ee

)(
1− ΠhU0

hh

)
− ΠeΠh

(
U0
eh

)2
exp[−2kd]

×
[
A B
C D

]
where

A = 1− ΠhU
0
hh − ΠhU

0
eh exp[−3kd] (3.142)

B = exp[−2kd]− ΠhU
0
hh exp[−2kd]− ΠhU

0
eh exp[−kd] (3.143)

C = exp[−2kd]− ΠeU
0
ee exp[−2kd]− ΠeU

0
eh exp[−kd] (3.144)

D = 1− ΠeU
0
ee − ΠeU

0
eh exp[−3kd] (3.145)

We can write this in terms of only U0
ee.

[
Uee −Ueh exp[−kd]

−Ueh exp[−kd] Uhh

]
=

U0
ee

1−
(
Πe +Πh

)
U0
ee +

(
1− exp[−4kd]

)
ΠeΠh

(
U0
ee

)2
(3.146)

×
[
1 +

(
exp[−4kd]− 1

)
ΠhU

0
ee exp[−2kd]

exp[−2kd] 1 +
(
exp[−4kd]− 1

)
ΠeU

0
ee

]
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3.8 Appendix: solution to the λ-integral for the

bilayer geometry

The integral we need to compute is

∫ 1

0

λ

1− aλ+ bλ2
(
c+ fλ

)
dλ =

∫ 1

0

{
cλ

1− aλ+ bλ2
+
f

b
+
afλ/b− f/b

1− aλ+ bλ2

}
dλ (3.147)

for complex a, b, c, and f . To start, let’s only consider the first term in the integrand. We
first decompose it in terms of partial fractions. Assuming that a2 ̸= 4b,

cλ

1− aλ+ bλ2
=

A

λ− λ1
+

B

λ− λ2
(3.148)

where

λ1 =
a+

√
a2 − 4b

2b
λ2 =

a−
√
a2 − 4b

2b
(3.149)

A =
cλ1

2bλ1 − a
B =

cλ2
2bλ2 − a

(3.150)

Since λ1 and λ2 are complex, we need to make the denominators of (3.148) purely real.
Multiplying by the denominators’ complex conjugates, we get

cλ

1− aλ+ bλ2
=

A(λ− λ̄1)

λ2 − (λ1 + λ̄1)λ+ λ1λ̄1
+

B(λ− λ̄2)

λ2 − (λ2 + λ̄2)λ+ λ2λ̄2
(3.151)

where x̄ is the complex conjugate of x. These integrals are in Gradshteyn & Ryzhik [80]:

∫ 1

0

Mλ+N

O + 2Pλ+Qλ2
dλ =

M

2Q
ln |O + 2P +Q|+ NQ−MP

Q
√
OQ− P 2

arctan

(
Q+ P√
OQ− P 2

)
(3.152)

− M

2Q
ln |O| − NQ−MP

Q
√
OQ− P 2

arctan

(
P√

OQ− P 2

)
OQ > P 2

=
M

2Q
ln |O + 2P +Q|+ NQ−MP

2Q
√
OQ− P 2

ln

(
Q+ P −

√
P 2 −OQ

Q+ P +
√
P 2 −OQ

)
(3.153)

− M

2Q
ln |O| − NQ−MP

2Q
√
OQ− P 2

ln

(
P −

√
P 2 −OQ

P +
√
P 2 −OQ

)
OQ < P 2

=
N −MP/Q

P
− N −MP/Q

P +Q
+
M

Q
ln

∣∣∣∣1 + P

Q

∣∣∣∣− M

Q
ln

∣∣∣∣PQ
∣∣∣∣ OQ = P 2 (3.154)
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If a2 = 4b,

cλ

1− aλ+ bλ2
=

ac/(2b2)(
λ− a/(2b)

)2 +
c/b

λ− a/(2b)
(3.155)

and ∫ 1

0

cλ

1− aλ+ bλ2
dλ = −c

b
− ca

2b2(1− a
2b
)
+
c

b
ln
∣∣∣1− a

2b

∣∣∣− c

b
ln
∣∣∣ a
2b

∣∣∣ (3.156)

The second term is trivial. Assuming a2 ̸= 4b, the third can be written as

afλ/b− f/b

1− aλ+ bλ2
=

Ã

λ− λ1
+

B̃

λ− λ2
(3.157)

where

Ã =
afλ1/b− f/b

2bλ1 − a
B̃ =

afλ2/b− f/b

2bλ2 − a
(3.158)

We again multiply by the denominators’ complex conjugates and use the same Gradshteyn
& Ryzhik integrals. If a2 = 4b,

∫ 1

0

afλ/b− f/b

1− aλ+ bλ2
dλ = −af

b
+

2f

a
− a2f/(2b2)− f/b

1− a/(2b)
+
af

b
ln
∣∣∣1− a

2b

∣∣∣− af

b
ln
∣∣∣ a
2b

∣∣∣ (3.159)

3.9 Appendix: fitting exchange-correlation free

energies

Given exchange and correlation free energies FXC at various densities {nα}, we seek the
optimal fit function

Ffit(n;nC) =

{∑N
j=0 ajn

j/2 n < nC∑2N+2
j=N+1 aj(lnn)

j−N−1 n ≥ nC

(3.160)

N is the order of both polynomials and nC is the density cutoff, above which we fit the data
using a polynomial of lnn. By defining

cj(n;nC) =


nj/2 j ≤ N and n < nC

0 j ≤ N and n ≥ nC

0 j > N and n < nC

(lnn)j−N−1 j > N and n ≥ nC

(3.161)
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and a⃗ as our vector of desired fitting coefficients, (1) is more compactly written as

Ffit(n;nC) = c⃗(n;nC) · a⃗ (3.162)

At nC , we require the values and first derivatives of the polynomials to the left and right
to be equal:

N∑
j=0

aj(nC)
j/2 =

2N+2∑
j=N+1

aj(lnnC)
j−N−1 (3.163)

d

dn

(
N∑
j=0

aj(n)
j/2

)
n=nC

=
d

dn

(
2N+2∑
j=N+1

aj(lnn)
j−N−1

)
n=nC

(3.164)

If we define

d1j =

{
n
j/2
C j ≤ N

−(lnnC)
j−N−1 j > N

(3.165)

d2j =

{
j
2
n
j/2−1
C j ≤ N

− (j−N−1)
nC

(lnnC)
j−N−2 j > N

(3.166)

our constraints become
d⃗1 · a⃗ = 0 (3.167)

d⃗2 · a⃗ = 0 (3.168)

To minimize the squared residual error

E =

Ndensity∑
α=1

(
Ffit(nα;nC)− FXC(nα)

)2
(3.169)

subject to our constraints, we introduce two Lagrange multipliers, λ1 and λ2. Our Lagrangian
is

L({nα}, nC , λ1, λ2) =

Ndensity∑
α=1

(
Ffit(nα;nC)− FXC(nα)

)2 − λ1d⃗1 · a⃗− λ2d⃗2 · a⃗ (3.170)

To find a⃗ which minimizes L, we set its derivative equal to 0:

∂L
∂ai

= 0 (3.171)

= 2

Ndensity∑
α=1

(
Ffit(nα;nC)− FXC(nα)

)2) ∂Ffit

∂ai

∣∣∣∣
n=nα

− λ1d1i − λ2d2i (3.172)

Note that
∂Ffit

∂ai

∣∣∣∣
n=nα

= ci(nα;nC) (3.173)
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Let’s define

χ−1
ij = 2

Ndensity∑
α=1

ci(nα;nC)cj(nα;nC) (3.174)

and

bi = 2

Ndensity∑
α=1

FXC(nα)ci(nα) (3.175)

(3.172) becomes

χ−1 · a⃗ = b⃗+ λ1d⃗1 + λ2d⃗2 (3.176)

so our desired coefficients are given by

a⃗ = χ · b⃗+ λ1χ · d⃗1 + λ2χ · d⃗2 (3.177)

The Lagrange multipliers are determined by

0 = d⃗1 · a⃗ (3.178)

= d⃗1 · χ · b⃗+ λ1d⃗1 · χ · d⃗1 + λ2d⃗1 · χ · d⃗2 (3.179)

0 = d⃗2 · a⃗ (3.180)

= d⃗2 · χ · b⃗+ λ1d⃗2 · χ · d⃗1 + λ2d⃗2 · χ · d⃗2 (3.181)

If we define
gij = d⃗i · χ · d⃗j (3.182)

and
hi = −d⃗i · χ · b⃗ (3.183)

we have
G · λ⃗ = h⃗ (3.184)

so
λ⃗ = G−1 · h⃗ (3.185)
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Chapter 4

A tale of two phase transitions: the
exciton Mott transition and EHL-gas
transition in a bilayer geometry

4.1 Introduction

Equipped with exchange and correlation chemical potentials, we are finally in a position to
investigate phase transitions. In Section 3.6, we showed chemical potentials for a collection
of free electrons and holes and identified density regimes where the first derivative was
negative. This is thermodynamically unstable [79], so the carriers stabilize by coexisting in
a dilute gas phase and a condensed degenerate state. At this point, we could use a Maxwell
equal-area construction to map EHL-gas phase diagrams in the plane of temperature and
free carrier density nfree. However, at the low temperatures in consideration [42,43,45],
we should expect a strong tendency for electrons and holes to associate as bound excitons.
Therefore, we first solve the law of mass action to calculate α, the fraction of free carriers
relative to the total number of carriers. This allows us to translate our phase diagrams to
the plane of temperature and total density ntot, which is more relevant to experiments as it
is proportional to the laser power.

Below a critical temperature, the order parameter, α, suddenly changes as the density,
ntot, crosses some threshold value: this is the exciton Mott transition. Below a critical
temperature and at high densities, indirect excitons begin to dissociate, provide improved
screening for other excitons, and cause an “ionization avalanche.” We find that the bilayer
separation does not change the nature of this phase transition, but only the density and
temperature scales where it occurs. This agrees with earlier theoretical studies on single
and double quantum wells [81,82] as well as experimental studies on CQWs [34,83]. We
find that the transition to the liquid phase is always heralded by the Mott transition. The
impetus for both the exciton Mott and the EHL-gas transition is the exchange and correlation
contributions of free degenerate electrons and holes. As charge-neutral species, excitons do
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not participate in the transition to the condensed state; they just act as a reservoir that
reduces the density of free carriers that truly drive the transition.

4.2 Methodology

The binding of electrons and holes into excitons may be described by the chemical reaction

e− + h+ ⇀↽ X (4.1)

We only consider optical excitations, so the electron and hole densities are equal: ne = nh =
nfree. At equilibrium, the chemical potentials for the free carriers and the bound excitons
are equal:

µfree
tot = µX

tot (4.2)

where
µfree
tot = µe

0 + µh
0 + µeh

exch + µeh
cor + µeh

cap (4.3)

and
µX
tot = µX

0 + µX
cap (4.4)

We neglect exchange and correlation effects for excitons. However, the exchange interaction
is repulsive for bosons, and in Chapter 3 we saw that the energetic contributions due to
exchange and correlation are similar in magnitude. Thus, neglecting these non-ideal effects
is an acceptable approximation.

The ideal chemical potentials for electrons and holes in two dimensions is given by Eq.
(3.105):

µi
0(nfree, β) = β−1 ln

(
exp[nfreeλ

2
i /(νiξi)]− 1

)
(4.5)

We take νe = νh = 1 and ξe = ξh = 2. The exchange and correlation pieces were evaluated in
Chapter 3. The capacitor energy is proportional to the total density of carriers, so µeh

cap = µX
cap

and this classical mean-field interaction does not influence the binding equilibrium. For
non-interacting excitons in (quasi-)two dimensions, their chemical potential is given in Eq.
(3.113).

µX
0 (nX , β, d) = EX(d) + ln

(
1− exp[−nXλ

2
i /(νXξX)]

)
(4.6)

EX is the exciton binding energy given in Eq. (2.5). We use ξX = 4 to include one singlet
and three triplet states and νX = 1.

Returning to Eq. (4.2), our law of mass action reads

1− exp[−nXλ
2
X/(νXξX)](

exp[nfreeλ2e/(νeξe)]− 1
)(

exp[nfreeλ2h/(νhξh)]− 1
) = K (4.7)

K is the equilibrium constant

K(nfree, β, d) ≡ exp[−β
(
EX(d)− µeh

exch(nfree, β)− µeh
cor(nfree, β, d)

)
] (4.8)



CHAPTER 4. A TALE OF TWO PHASE TRANSITIONS: THE EXCITON MOTT
TRANSITION AND EHL-GAS TRANSITION IN A BILAYER GEOMETRY 80

In this form, we see that the exchange-correlation chemical potential reduces the exciton
binding energy. Indeed, these non-ideal effects renormalize the band gap [33,84].

We now rewrite nfree and nX in terms of the total carrier density ntot and the ionization
ratio α = nfree/ntot. The law of mass action becomes

1− exp[−ntot(1− α)λ2X/(νXξX)](
exp[ntotαλ2e/(νeξe)]− 1

)(
exp[ntotαλ2h/(νhξh)]− 1

)
= exp[−β

(
EX(d)− µeh

exch(ntotα, β)− µeh
cor(ntotα, β, d)

)
] (4.9)

When ntotλ
2
e ≪ 1, we can Taylor expand the exponentials to derive the classical analog

(1− α)νeξeνhξh
α2ntotλ2redνXξX

= exp[−β
(
EX(d)− µeh

exch(ntotα, β)− µeh
cor(ntotα, β, d)

)
] (4.10)

where

λ2red =
2πh̄2β

mred

(4.11)

In the context of plasmas, this classical law of mass action is called the Saha ionization
equation [85].

Given β, ntot, and d, we can solve Eq. (4.9) for α. However, we have found that there
can be multiple solutions at high densities. The correct choice is the one that minimizes the
system’s free energy. The change in Helmholtz free energy due to carriers partitioning into
free and bound states is given by

dF = µfree
tot dnfree + µX

totdnX (4.12)

= (µfree
tot − µX

tot)ntotdα (4.13)

so
dF

dα
= (µfree

tot − µX
tot)ntot (4.14)

Integrating from some arbitrary reference value α0 leads to

F (α) = F (α0) + ntot

∫ α

α0

(
µfree
tot (α̃)− µX

tot(α̃)
)
dα̃ (4.15)

Because the location of the minimum doesn’t depend on F (α0) or the factor of ntot, these
terms can be neglected.

The ionization ratio that minimizes the free energy is always the correct solution to the
law of mass action, Eq. (4.9). Accordingly, the chemical potentials for the free carriers and
bounds excitons are equal, so for the electron-hole-exciton system,

µtot(ntot, α, β, d) = µe
0(αntot, β) + µh

0(αntot, β) + µeh
exch(αntot, β)

+ µeh
cor(αntot, β, d) + µeh

cap(ntot, d) (4.16)

After obtaining µtot, we identify the total carrier densities at which the liquid and gaseous
phases coexist via standard Maxwell equal-area constructions [79].
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Figure 4.1: Free energy as a function of ionization ratio. The densities in the legend are in
units of cm−2. The Mott transition occurs near ntot ≈ 1.25× 1011 cm−2.

4.3 Results for the exciton Mott transition

In Figure 4.1 we show how the free energy varies with α for various densities. Around
ntot ≈ 1.25 × 1011 cm −2, the exciton Mott transition occurs and the free energy minimum
suddenly jumps from 0 to 1. This abruptness is characteristic of a first-order phase transition.

In Figures 4.2 and 4.3, we show the fraction of free carriers α as a function of the total den-
sity ntot for various temperatures, bilayer separations, and electron-hole mass ratios. Starting
with Figure 4.2, we find that the order parameter, α, changes suddenly at ntot=7.2×108 cm−2

for T = 4 K. In contrast, the transition to free carriers is more gradual at higher temper-
atures. Thus, the critical temperature for the exciton Mott transition at d = 1.5 aex and
σ = 0.1 is approximately four Kelvin. A transition from bound excitons to a plasma still
occurs above this value, but because the underlying free energy is not discontinuous with
respect to ntot, the transition is not first-order.

In the left panel of Figure 4.3, we plot α as a function of ntot for three different bilayer
separations. Because the capacitor term does not influence this binding equilibrium and µcor

depends on d weakly, the dependence due to the bilayer separation is mostly contained in
the exciton binding energy, EX(d). As d increases, the IX binding energy decreases which
increases the fraction of free carriers for all values of ntot. Similarly, since the critical density
for the exciton Mott transition is approximately where the exchange and correlation chemical
potentials equal the exciton binding energy, this critical value decreases as d increases.

In the right panel of Figure 4.3, we compare the effect of the electron-hole mass ratio.
Recall that the exciton binding energy is independent of σ when expressed in Ryex. In
contrast, the ideal, exchange, and correlation contributions to the chemical potential all
have an explicit dependence on σ. Furthermore, as discussed in Chapter 3, the energy scale
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Figure 4.2: Ionization ratio as a function of total carrier density for σ = 0.1 d = 1.5 aex, and
various temperatures.
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Figure 4.3: Ionization ratio as a function of total carrier density for σ = 0.1, T=4 K, and
various bilayer separations and mass ratios.
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Figure 4.4: Total chemical potentials as a function of total carrier density.

(Ryex) increases and length scale (aex) decreases as the electron-hole mass ratio decreases.
The major conclusion is that as σ decreases, carriers are more likely to be bound in an IX
for intermediate densities.

Figure 4.4 shows chemical potentials for the electron-hole-exciton system, µtot, as a func-
tion of total carrier density for various d and T . In the low-density, classical regime, µtot is
dictated by the ideal contributions given by Eq. (3.106) and which are independent of d. In
the high-density, degenerate regime, the capacitor’s contribution given by Eq. (3.135) over-
takes the ideal, exchange, and correlation contributions. Thus, µtot is entirely determined
by d.

The kinks observed in the green, blue, and orange curves are caused by the exciton
Mott transition. Immediately after this transition, the chemical potential does not obey the
stability criterion given in Eq. (3.137); in this immediate density regime, the exchange and
correlation contributions dominate over the ideal and capacitor contributions. To resolve this
instability, the system phase separates into a low- and high-density phase. The low-density
phase contains a mixture of free carriers and excitons while the high-density phase consists
only of unbound electrons and holes.

4.4 Results for the EHL-gas phase transition

If the chemical potentials, µtot, disobey the stability criterion
(
Eq. (3.137)

)
, we can use

Maxwell equal-area constructions to identify the coexistence densities of the liquid and
gaseous phases. Figure 4.5 show the resulting phase diagrams in the T–ntot plane for σ = 0.1
and three different bilayer separations. As the bilayer separation increases, the electron-hole-



CHAPTER 4. A TALE OF TWO PHASE TRANSITIONS: THE EXCITON MOTT
TRANSITION AND EHL-GAS TRANSITION IN A BILAYER GEOMETRY 84

104 106 108 1010 1012

ntot (cm−2)

5

10

15

20

T
(K

)

d = 0.5 aex

d = 1 aex

d = 1.5 aex

Gas Liquid

Indirect exciton phase diagrams

Coexistence

Figure 4.5: Liquid-gas phase diagrams for σ = 0.1

exciton system destabilizes due to the capacitor’s contribution to the chemical potential. This
leads to smaller values of the critical temperature, TC as well as the critical density, nC .

The experiments of Bar-Joseph and co-workers used coupled quantum wells with d = 1.5
aex and σ = 0.1. They measured a critical temperature of approximately five Kelvin. Taking
into consideration the approximations we have made to calculate these phase diagrams (e.g.
the isotropic effective mass approximation, using a single-band model, and the random-phase
approximation), our estimate of TC = 12 K agrees rather well.

Figures 4.6 summarizes the effect of the bilayer separation on the critical point for the
EHL-gas transition. The left panel shows how TC varies with d, and the right panel shows
how nC varies with d. We also include three different electron-hole mass ratios. In analogy
to how a biexciton is stabilized as σ deviates from unity, the electron-hole liquid is stable at
higher temperatures as σ decreases from one.

In this Chapter, we synthesized the results of Chapters 2 and 3 to investigate the exciton
Mott transition in addition to the phase behavior of the electron-hole liquid. Using the exci-
ton binding energies calculated in Chapter 2 and the exchange and correlation free energies
from Chapter 3, we first solved the law of mass action in order to take into account the
association equilibrium between free carriers and bound excitons. At temperatures below a
critical value and at large densities, we observed the exciton Mott transition, when bound IXs
suddenly dissociate. While there is a quantitative dependence on the bilayer separation, we
found that the nature of this transition is independent of the geometry. Then, given the frac-
tion of free carriers, we calculated chemical potentials for the electron–hole–exciton system
and found regimes in which µtot violated thermodynamic stability. Using Maxwell equal-area
constructions, we mapped the phase diagram for the EHL-gas transition for various bilayer
separations.
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