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, INTEGRAL EQUATIONS (OTHER METHODS) 

1. Introduction 

The intimate connection between differential equations and problems 

in the calculus of variations furnishes the bridge between linear differential 

eigenvalue problems·~nd their abstract formulation in terms of stationary 

values of functionals or, equivalently, of eigenvalues of linear bounded 

operators on an abstract vector space. Although this reformulation is 

troublesome and is to be avoided, if possible, in particular calculations, 

it is of inestimable conceptual advantage since it strips away the superfluous 

notions that enter into the original statement of the problem and leaves one 

only with considerations on the primitive objects that are really genuine 

to the problem, namely functions. 

The connection which was alluded to above between differential 

eigenvalue problems and the calculus of variations consists, of course, in 

the well-known necessary condition that x(t) give a stationary value of 

the functional, 

J(x) -

b s F(x, x, t)dt , 

a 
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namely~ that x(t) . satisfy the Euler equation 

d a F = 8 F ::;:;: 0 ~ where x(a) :;;: x0 ~ x(b) ::: x1 
dt ax. ax 

If one considersj instead~ the problem of finding a stationary value 

of b 

J(x) ~ F(x~ 0 

t)dt x, 

a 

while b 

~ G(xj 
0 

t)dt constant~ x, -= 
K(x) 

a 

one is led by the method of the Lagrangean multiplier A to the Euler 

equation 

d c9 (F =A G) 

dt d i: 
cZ(F = A G) - 0 9 

ax 
which represents a differential eigenvalue problem. 

In order 9 rtow 9 to relate a given differential eigenvalue problem to 

one concerning functionals defined on a space of functions one must tread 

the same path in the reverse direction and discover the calculus of variations 

problem with side conditions which corresponds to the given situation. 

The way of doing this with as much generality as is at present possible 

is described in reference (2) and is quite complicated. Here, a recipe shall 

merely be given in general~ a few examples presented to make the recipe 

plausible, and the admonition be impressed on the practitioner to test the 

recipe in the particular case to which it is to be applied. 
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2. General Procedure 

Suppose, then, that A and B are linear differential operators and 

that it is required to determine numbers ) and functions f(P) such that 

A f(P) = A B f(P) (1) 

where Pc~ , a simply connected domain inn-dimensional Euclidean space 

and f(P) is a function possessed of sufficiently many continuous 

derivatives to make Eq. (1) meaningful while satisfying the linear homogeneous 

boundary conditions 1\. f = 0 on C, the frontier of f) • The recipe 
l. 

to be applied for the conversion of the problem (1) into-one of the calculus 

of variations is 

)-1 = ~ . 
ft sup J. f B f(P)dv 

~ 

and ~ f A f(P)dv - 1. 

-:1> 
If A and B are of even order, which is the onlycase that has as yet been 

treated with any generality, then one can reduce the order of the differential 

operator occurring under the integral sign by partial integration (Green's 

formula, Gauss 1 theorem, etc.) and use of the boundary conditions with the 

result that if A, which is supposed to have the highest order, is of order 

2t, only boundary conditions of order L t remain explicitly. 

It is at this point that the reformulation of (1) into a problem of 

the calculus of variation has rendered its chief service by defining properly 

0 the class of functions that must be considered. For, the remaining boundary ,., 
J 

conditions of order ""'- t, , define, because of their linear-homogeneous 

character, a class of functions that constitutes a linear manifold that can 

be completed into a Hilbert space. 
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In order to complete the above mentioned linear manifold~ it is 

necessary to introduce a metric~ that is~ a distance function for elements 

of the linear manifold and thereupon to add sufficiently many elements~ 

functions, to it so that one is assured that every sequence of elements that 

converges in the metric converge to a point of the space. 

In some cases such a completion may not be necessary since the 

problem may have solutions in the incomplete manifold defined by the 

boundary conditions. 

3. Examples 

3.1 Example 1: 

B - 1 

while 

Since 
A = = div grad 

we can use Gauss' fonnula: 

SS div >f dx dy 

f, 
to find that 

::: 

arid 

in 1J with u :;;; 0 on C. 

constant. 

2 
u div grad u = div(u grad u) = (grad u) 

\ ' 
"\ .. '' 
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S5- u r 4 +-A\ dx dy = + ~ u grad u .~do--t-ssr~u)2 ~(_b., 2Jdx dy. 
Jj \-a X rl Y/ C . J) r X \8 Y) 

But on using the boundar.y condition u = 0 on C 

· and the ultimate formulation of' the problem is 

while 

s~p SS u 
2 

dx dy 

cfJ 

s~ [(tiJ + c~JJ dx dy = 
1 0 

/ 

Note that i~ the final formulation, the differentiability conditions 

are relaxed while a first order boundary condition such as grad u = 0 is 

inadmissible. 

hl Example 2: 

u = 0 , grad u = 0 • 

and.B:l. 

Noting that A = div grad div grad and using the same tools as in example 1, 

we arrive at the final formulation 

sup 1S u2 
dx dy = A while 

~ . 

where ~ represents the Laplacian. 



UCRL-2333 

In both of the above examples a situation obtains that is typical for 

most problems~ namely that jl u A u dv is a positive definite quadratic 

form. It therefore serves to define an inner product and norm on our 

manifold of functions. In example 1~ 

(u, v) = SJ~u ~ +~ LY) dx dy 
a X ax ay ay 

and in example 2 ~ 

(u, v) - ss~2~ 4:z + 
d 2

U 4) dxdy - a x2 axit. ax ay 

and = -/(:':-J in both cases. 

4. Continuation of Procedure 

The only task remaining is to complete the function space under 

the norm II u ll = S S u A u dx dy, i.e.~ the correspo?ding metric 

dist (u, v). Once this is done we are in firm possession 

of a Hilbert space. Our calculus of variations problem is translated then 

into the problem of finding the stationary values of' a quadratic form 

55uBudxdy for functions u such that 1. By a theorem 

of Riesz, however, this is equivalent to find the stationary values of 

(Ku, u) where K is some bounded linear operator which is for suitable B 

and boundary conditions self'=adjoint and completely continuous. 

The remainder of this paper will therefore treat the following problem: 

Let H be a Hilbert space and K a completely continuous hermitian operator 

thereon. Let it be required to calculate numbers A and to determine 

vectors x such that 

Kx = A X • (2) 

\ 

\ ,.. 
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The following theorems serve to lay the rigorous foundation for the 

Rayleigh-Ritz method of solving eigenvalue problems such as 1. 

Theorem 1: 

If K is a self-adjoint operator on a Hilbert space H, then the 

norm of K; defined as sup I It K x II , is 
llx I - 1 

sup 
ff.H 

I (K f' f) I 
(f' f) 

Theorem 2: (Maximum Principle) 

If K is self-adjoint and K is completely continuous (i.e., has 

only a point spectrum) then It K II or - II K ( / is an eigenvalue of K. 

Theorem 3: (Monptony Principle) 
I .I 

If H C H is a subspace of H and K is the operator K 

I 
considered as an operator on H , and K is completely continuous and 

K is self-adjoint then 

AI 
k 

I 
i.e., the k 1th eigenvalue of K is less than or equal to the k 1th eigenvalue 

I 

of K. (The ordering is by decreasing magnitude and if H is of dimension 
I 

N, then the eigenvalue ~N+l = 0 by convention.) 

The Rayleigh-Ritz Method: 

In this method the given Hilbert space H is approximated by means 
I 

of a finite dimensional subspace H . 

Let H
1 

be subtended by basis vectors w1 , w2, .•• ,wn. The matrix 

elements of K
1

, the restriction of K to H 

k· . . ~J 
- (P K wi, wj) 

(wi, wj) 

I 
are given by 
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where the projection operator P has the effect of cutting off those components 
I 

of K wi that do not lie in H • 

The eigenvalue problem for the matrix { kij } can then be solved by 

means of the determinantal equation 

or else by recourse to the variational methods. To illustrate the method, 

the trivial example of the harmonic oscillator is given below: 

2 
y(O) y(7() sLz + ky = 0 , = = 0 . 

' 2 dx 

-f i1dx 

11 s y2 dx 

k = max 0 = max 0 

5"' 2 r 2 yg dx 
~ dx 

0 dx 
0 

by the recipe presented in the introduction. 

Consider the one-dimensional space subtended by the function 

w1 = x(x - T() . 

Then the problem becomes that of minimizing 

11 
S [x2. 21f x3 + 112 

x
2 J dx 

5 4 . 2 3 
.X -~..y11x 
~ 2 3 

0 --
11 

3 2 2 
c s (2x -1/)2 dx !EL 2i/x + tl-x 

3 
0 

~1 -

f('j 

I 
0 

1( 

0 

\.\ 
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which·is a good approximation to the largest eigenvalue 1 of the inverse 

operator and is less as demanded by the monotony theoremo 

The Rayleigh-Ritz method only furnishes lower bounds to the eigenvalues. 

The Weinstein method tries to remedy this defect by using the monotony 

principle in reverse, that is, by constructing a supers pace enclosing the · · 

given Hilbert space and solving the eigenvalue problem for operators that 

ar~ extensions of the given operator. Although .the method is rather 

complicated it has found employment in the solution of eigenvalue problems 

for vibrating clamped plates. 
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