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Abstract

Structure-based docking screens of large compound libraries have become common in early 

drug and probe discovery. As computer efficiency has improved and compound libraries have 

grown, the ability to screen hundreds of millions, and even billions, of compounds has become 

feasible for modest-sized computer clusters. This allows the rapid and cost-effective exploration 

and categorization of vast chemical space into a subset enriched with potential hits for a given 

target. To accomplish this goal at speed, approximations are used that result in undersampling of 

possible configurations and inaccurate predictions of absolute binding energies. Accordingly, it is 

important to establish controls, as are common in other fields, to enhance the likelihood of success 

in spite of these challenges. Here we outline best practices and control docking calculations that 

help evaluate docking parameters for a given target prior to undertaking a large-scale prospective 

screen, with exemplification in one particular target, the melatonin receptor, where following 

this procedure led to direct docking hits with activities in the subnanomolar range. Additional 

controls are suggested to ensure specific activity for experimentally validated hit compounds. 

These guidelines should be useful regardless of the docking software used. Docking software 

described in the outlined protocol (DOCK3.7) is made freely available for academic research to 

explore new hits for a range of targets.
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Introduction

Screening chemical libraries using biophysical assays has long been the dominant approach 

to discover new chemotypes for chemical biology and drug discovery. High-throughput 

screening (HTS) of libraries of 500,000 to 3 million molecules has been used since the 

1990s1, and multiple drugs have had their origins in this technique2. While the libraries 

physically screened in HTS were an enormous expansion on those used by classical, 

pre-molecular pharmacology3, they nevertheless represent only a tiny fraction of possible 

‘drug-like’ molecules4. DNA-encoded libraries5, where molecules are synthesized on DNA 

that encodes their chemistry, begin to address this problem by offering investigators libraries 

of 108 molecules, sometimes more, in a single, highly compact format; and multiple 

such libraries can be used in a single campaign. However, as DNA-encoded libraries 

are restricted to reactions on DNA, reaction chemistries are limited to aqueous solutions, 

thereby limiting the type of chemical reactions and subsequent chemical libraries available 

with this technology6.

Computational approaches using virtual libraries are an attractive way to explore a much 

larger chemical space7. Large numbers of molecules—certainly into the tens of billions, and 

likely many more—may be enumerated in a virtual library. Naturally, very few of these 

compounds can ever be actually synthesized because of time, cost and storage limitations, 

but one can imagine a computational method to prioritize those that should be pursued. 

In practice, this idea has had two limitations that have prevented wide-scale adoption: the 

virtual libraries have rarely been carefully curated for true synthetic accessibility8, and there 

were well-founded concerns that computational methods, such as molecular docking, were 

not accurate enough to prioritize true hits within this large space9.

In the last several years, however, two advances have at least partly addressed these 

problems:

First, several vendors and academic laboratories have introduced ‘make-on-demand’ 

libraries based on relatively simple two- or three-component reactions where the final 

product is readily purified in high yields10. At Enamine, a pioneer in this area, >140 

reactions may be used to synthesize products from among >120,000 distinct and often 

highly stereogenic building blocks, leading to a remarkably diverse and, critically, 

pragmatically accessible library of currently over 29 billion molecules11.

Second, structure-based molecular docking, for all of its problems, has proven able to 

prioritize among these ultra-large libraries, if not at the tens of billion molecule level, 

then at the 0.1–1.4 billion molecule level12-14, finding unusually potent and selective 

molecules against several unrelated targets (Table 1). Indeed, simulations and proof-of-

concept experiments suggest that, at least for now, as the libraries get bigger, docking results 

and experimental molecular efficacies improve12.

If docking ultra-large libraries brings new opportunities, it also brings new challenges. 

Docking tests the fit of each library molecule in a protein binding site in a process that 

often involves sampling hundreds-of-thousands to millions of possible configurations. Each 

molecule is scored for fit using one of several different scoring functions15-18. To be feasible 
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for a billion-molecule library on moderately sized computer clusters (e.g., 500–1,000 cores), 

this calculation must consume not much more than 1 s/molecule/core (1 ms/configuration).

This need for speed means that the calculation cannot afford the level of detail and number 

of interaction terms that would be necessary to achieve chemical accuracy. For instance, 

docking typically undersamples conformational states, ignores important terms (e.g., ligand 

strain) and approximates terms that it does include (e.g., fixed potentials)19,20.

Owing to these approximations and neglected terms, docking energies have known errors, 

and the method cannot even reliably rank order molecules from a large library screen21,22. 

What it can hope to do, however, is separate a tiny fraction of plausible ligands from the 

much larger number of library molecules that are unlikely to bind a target. This level of 

prioritization is enhanced with the careful implementation of best-practice guidelines and 

controls. It is the goal of this essay to provide investigators with such best practices and 

control calculations for ultra-large library docking, though they equally apply to modest-

sized library docking (Table 1). These will not ensure the success of a prospective docking 

campaign—the only true test of the method—but they may eliminate some of the more 

common reasons for failure.

We begin by describing protocols and controls that can be used across docking programs and 

that are general to the field (Fig. 1). There are by now multiple widely used and effective 

docking programs23-31, employing different strategies for sampling ligand orientations and 

ligand conformations in the protein site, for handling protein flexibility, and for scoring 

ligand fit once they have been docked. Notwithstanding these differences, there are strategies 

and controls that may be used across docking programs, including how to prepare protein 

sites for docking calculations, benchmarking controls to investigate whether one can identify 

known ligands from among a large library, and controls to investigate whether one’s 

calculations contain biases towards particular types of interactions. Since the true success of 

a virtual screen is the experimental confirmation of docking hits, we also propose a set of 

control assays to validate initial in vitro results. We then turn to protocols that are specific 

to the docking program we use in our own laboratory, DOCK3.7—these necessarily get 

into fine details, and will be of most interest to investigators wanting to use this particular 

program.

General guidelines for virtual structure-based drug discovery

Structure preparation and suitability for docking

Any structure-based campaign begins with a suitable target site.: The most promising 

starting point for a virtual screening campaign is typically a high-resolution ligand-bound 

structure. Ligand-bound (holo) structures usually outperform ligand-free (apo) structures 

as the geometries of the binding pocket are better defined in the bound state than in the 

unbound state32,33. If there is no available holo structure, tools such as SphGen34, SiteMap35 

and FTMap36 can be used to identify potential ligand binding sites.

Generally, small, enclosed binding pockets that well complement a ligand perform better 

than large, flat and solvent-exposed binding sites typical of protein–peptide or protein–

protein interactions. For instance, neurotransmitter G-protein-coupled receptor (GPCR) 
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orthosteric sites, such as the β2 adrenergic, D4 dopamine, histamine H1 and A2a adenosine 

receptors37-40 typically have higher hit rates and more potent docking hits than do peptide 

receptors like the CXCR4 receptor41, and these often perform better than the more open sites 

typical of soluble enzymes like β-lactamase12,42. In most cases, targeting protein–protein 

interaction surfaces, outside of a few that are well defined43, often leads to disappointing 

results.

Modifying the high-resolution protein structure.: It is not always a good idea to use the 

structure exactly as it was found in the database.

• Dealing with mutations. For stability, crystallization and other biochemical 

reasons, high-resolution protein structures are sometimes determined in a mutant 

form; such mutations should be reverted to the wild type especially if they 

are within the ligand site to be targeted. Missing side chains and loops in the 

experimental structures should be added as well if they are close to the binding 

site, while those that are weakly defined by the experimental observables (e.g., 

low occupancy, high displacement parameters (B values), poor electron density) 

should be examined critically

• What about water molecules? When the resolution permits, water molecules can 

also be included in the target preparation, often treating them as nondisplaceable 

parts of the protein structure. Typically, water molecules enclosed in the targeted 

binding pocket or involved in interactions between the co-crystallized ligand 

should be considered as they may determine side-chain conformations or offer 

additional hydrogen-bonding sites. Some docking programs will allow water to 

be switched on or off during the docking44 or include other implicit solvent 

terms45

• Buffer components. Buffer components such as PEG and salts are likely specific 

to the crystallization conditions, and should be removed

• Cofactors. Cofactors like heme or metal ions should be considered if they are 

involved in ligand recognition

• Hydrogen atoms. Due to the resolution limits of most experimentally determined 

structures, hydrogen atoms are often unresolved. The position of many hydrogen 

atoms can be readily modeled according to holonomic constraints (e.g., 

backbone amide hydrogen atoms). For those that are not, such as hydroxyl 

protons on serine and tyrosine residues, imidazole hydrogens on histidine, and 

the adjustment of frequently erroneous terminal amide groups for glutamine and 

asparagine residues46, programs like Reduce47 (default in DOCK3.7), Maestro 

(Schrödinger)48, PropKa49 or Chimera50 can be used to protonate the target of 

interest. While these automated protocols usually produce reasonable protonation 

states, special care should be taken for the residues within the ligand binding 

pocket or residues that form a catalytic/enzymatic site. Lastly, although less 

frequently encountered, glutamic and aspartic acids can adopt protonated forms 

under specific circumstances51
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• In summary, the protonation of the protein structure is critical for the success of 

docking to more accurately depict the Van der Waals (VDW) surface and dipole 

moments of the binding pocket

Homology modeling—When no experimental structure has been determined for the 

target protein, structural models can be generated if a template structure with high sequence 

identity is known. Common programs used for homology modeling include Modeller52, 

Rosetta53, ICM27 and I-Tasser54. These two principles can improve the chances of success:

• Typically, the higher the sequence identity between the target and the template, 

the better the accuracy of the model55. Particular focus should be given to 

identity within the target binding pocket; if there is a choice, choose the template 

that has the highest identity in the binding pocket

• Incorporation of a ligand during the modeling process or ligand-steered 

homology modeling approaches56,57 will help prevent the pocket from collapsing 

inward, and will better orient the side chains of binding residues32,58,59

When it is unknown how a ligand binds within the pocket, orthogonal experimental data 

can guide the modeling such as iterating between docking and modeling60,61. In the 

case of MRGPRX262 and GPR6863, for instance, the authors predicted multiple binding 

poses of a known active ligand and used mutagenesis and binding assays to test these 

predictions. A binding mode and receptor structure were identified that was consistent with 

the mutagenesis data and used for subsequent preparation in the prospective screen. Despite 

many difficulties, homology models have been successful in identifying novel ligands from 

prospective docking campaigns41,62-76; though it is also true that, given the choice, most 

investigators will prefer to use a well-determined experimental structure.

Control calculations—Docking undersamples ligand–protein configurations and 

conformations, and its scoring of these configurations for fit remains highly approximate. 

Unlike methods like quantum mechanics, or certain lattice calculations in statistical 

mechanics, docking has surrendered ‘ground truth’ to be able to pragmatically search 

among a large and growing chemical space. Accordingly, control calculations are critical 

to the success of a docking campaign. As with experimental controls, they do not ensure 
prospective success, but they do guard against obvious sources of failure, and can help one 

understand where things have gone wrong if they do. Through a key control, we assess 

whether the prepared binding pocket and docking parameters can prioritize known ligands 

over presumed inactive molecules. In an optimized binding pocket, these known actives 

should rank higher against a background of decoy molecules in a retrospective screen, and 

reasonable poses should be predicted.

As it is more likely to know true actives than true inactives, it is common practice to use 

property-matched decoys77, which are compounds that have similar physical properties as 

the actives, but unrelated topologies, and so are presumed inactive. The DUDE-Z server 

(tldr.docking.org) was built specifically to generate decoys for a given list of ligands 

by matching the following physical properties: molecular weight, hydrophobicity (LogP), 
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charge, the number of rotatable bonds, and the number of hydrogen bond donors and 

acceptors78.

The performance of the parameterized binding pocket to enrich known ligands over decoys 

can be evaluated by receiver-operator characteristic (ROC) curves, quantifying the true 

positive rate as a function of false positive rate (Fig. 2)17,77,79-81. The area under the 

curve (AUC) is a well-regarded metric to monitor the performance of a virtual screen by 

a single number17 (Fig. 2a). The log transformation of the false positive rate enhances 

the effect of early enrichment for true positives17 (Fig. 2b). This is important because, 

in a docking campaign with hundreds of millions of molecules, only compounds ranked 

within the top 0.1% are often closely evaluated (see ranks in Table 1). For example, if a 

retrospective docking challenge shows that known actives are only identified starting around 

the tenth percentile, novel actives may be missed in a prospective screen. In this setting, 

higher LogAUC values correspond to better discrimination between actives and inactives 

and provide a sanity check on the ability of the docking parameters to identify actives.

A second criterion is the pose fidelity of the docked ligands to their experimental structures. 

The validity of predicted binding poses can be assessed qualitatively by visual inspection of 

reported key interactions between protein and ligand or, in the best case, quantitatively by 

calculating root mean square deviations between predicted and experimentally determined 

poses82. During pocket modeling and docking parameter optimization, one will often insist 

that the retrospective controls lead to both high LogAUC values and good pose fidelity; 

often there will be some trade-off between the two. While calibrating the scoring functions, 

it is also important to monitor the contributions of each energy term to the total score 

and ensure they match the properties of the binding pocket. If one term dominates, the 

scoring may have been overoptimized to that term, while other protein–ligand interactions 

are underweighted, leading to dominance by a certain type of molecule. For instance, if 

the docking score of a polar solvent-exposed pocket is inappropriately dominated by VDW 

energies, large molecules may score high due to nonspecific surface contacts with the target 

protein.

In addition to property-matched decoys, other chemical matter can be used to evaluate 

different aspects of the docking model (Fig. 3). A test set including molecules with extreme 

physical properties (Extrema set), such as a wide variety of different net charges, can be 

screened to measure whether the docking model succeeds in prioritizing molecules with net 

charges corresponding to known actives78. If there is a difference in the charge of top-ranked 

compounds from the extrema set and the charges of the known ligands, the scoring may be 

biased. In another useful control experiment, a small fraction of the purchasable chemical 

space (e.g., readily available ‘in-stock’ compounds from multiple vendors) representing 

the characteristics of the ultra-large make-on-demand screening library can be docked 

against the protein model. This control serves two purposes: to test whether the positive 

control molecules remain among the highest scored compounds and to examine if intriguing 

novel compounds rise to the top of the rank-ordered docking list. It may even be fruitful 

to purchase and experimentally test a few promising and structurally diverse in-stock 

compounds as it could inform the docker if the binding pocket model is likely to find hits 
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in the ultra-large library screen. If top ranked compounds do not form expected interactions, 

further optimization may be beneficial.

Another control, if available, are true inactives from a previous discovery campaign. These 

can be used as a background against known actives to provide a ‘real-world’ benchmark 

of the performance of the system. Lastly, for a protein that has little or no known 

chemical matter (i.e., reported ligands), enrichment calculations with known actives against 

a background of property-matched decoys may be impossible. Here, the docking parameters 

can be calibrated by docking ‘Extrema’, which challenges the docking with extremes of 

physical properties, and ‘in-stock’ compound sets, which probe how the docking will 

perform on a representative subset of the library78,83. It remains true that, without known 

ligands as positive controls, one is at a substantial disadvantage at setting up docking 

campaigns, increasing the risk of failure.

Prospective screen—Once the docking model is calibrated, large libraries of molecules 

can be virtually screened against the target protein. For this virtual screen, it makes sense 

to focus on compounds that are readily available for testing. The ZINC20 database (http://

zinc20.docking.org/) enumerates over 14 billion commercially available chemical products, 

of which ~700 million are available with calculated 3D conformer libraries ready for 

docking. Most of the enumerated compounds belong to the make-on-demand libraries of 

Enamine and WuXi. Further, ZINC20 allows one to preselect subsets of molecules for 

docking, reducing computation time. For instance, ZINC20 allows users to download ready-

to-dock subsets of molecules within user-defined ranges of molecular weight (MWT), LogP 

and net charge, as well as predefined sets such as fragments (MWT ≤ 250 amu) or lead-like 

molecules (250 ≤ MWT < 350 amu; LogP ≤ 3.5). The result of a prospective screen is a list 

of molecules rank-ordered by docking score.

Hit-picking—A well-controlled docking calculation can concentrate likely ligands among 

the top-ranked molecules. But even if it was able to do so among the top 0.1% of the 

ranked library, in a screen of 1 billion molecules this would still leave 1 million molecules 

to consider, and with the errors inherent in docking, many of these will be false positives. 

Accordingly, we rarely pick the top N-ranked compounds by docking to test experimentally, 

but rather will use additional filters to identify promising hits within the top scoring 

300,000–1,000,000 molecules. These filters can catch problematic features missed by the 

primary docking function, ensure dissimilarity to known ligands and promote diversity 

among the prioritized compounds.

Compounds may be filtered for both positive and negative features84 (Table 2). For 

instance, one may insist that a docked orientation has favored interactions with key 

residues. Conversely, molecules with strained conformations should be discarded. Molecules 

with unsatisfied, buried hydrogen-bond donors and acceptors may also be deprioritized. 

Compounds with metabolic liabilities85,86 or that closely resemble colloidal aggregators87 

can also be filtered out, despite otherwise favorable scores. Further, as closely related 

compounds will likely dock in similar poses with similar score, we typically cluster 

compounds by 2D structure similarity after all other filters have been used and only select 

the best scoring cluster representative for testing. In such a large dataset, clustering can be 
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computationally expensive, so reduced scaffold clustering such as Bemis–Murcko88 analysis 

is useful to efficiently parse the compounds. In principle, many of these filters could be 

included directly in the scoring functions, but balancing them against other scoring terms 

can demand extensive optimization and will likely increase the compute time, which will 

become a hindrance for ultra-large library docking. Lastly, visual examination of the docked 

poses has been useful for selection of compounds to purchase. Following the criteria in 

Table 2, we typically inspect up to 5,000 compounds visually after applying automated 

filtering and clustering steps.

Experiments to test docking hits—The success of a docking campaign is ultimately 

measured by its ability to reveal novel chemotypes that can be shown to experimentally bind 

to the target, typically in binding or functional assays (Fig. 4). However, common artifacts 

should be controlled for: chemotypes likely to interfere with specific assays89 (e.g., the 

controversial90 pan assay interference chemotypes), covalent adducts, redox cyclers91 and 

aggregators87,92.

Among the most common of these mechanisms is colloidal aggregation, which can account 

for >90% of all primary hits89,93. This aggregates sequester proteins with little selectivity, 

partially denaturing and inhibiting them32,92,94-96, occasionally even activating them97,98, a 

common problem both in HTS and also in docking screens92. Aggregators tend to have high 

LogP values and limited aqueous solubility, so we prefer to dock and test molecules with 

LogP ≤ 3.5. Chemical stability or reactivity can also contribute to experimental artifacts, 

and reactive scaffolds should be avoided. The ZINC20 database allows users to select 

screening libraries in the lead-like chemical space (i.e., low LogP) and exclude reactive 

compounds9,99. Unless controlled for in the experimental setting (Box 1), these artifacts can 

lead to false positives.

Once convinced that one’s hits are not artifactual, more detailed testing on-target is 

warranted. For all targets, this involves determining concentration response curves, typically 

with 7–12 points at half-log intervals, with the transition being sampled over at least two 

log orders of concentration (Fig. 4). For enzymes, determining a true Ki will illuminate 

mechanism, though this can be laborious and it might only make sense to do this for 

characteristic lead molecules. For receptors such as GPCRs and ion channels, functional 

assays are typically performed to determine if the new ligand is acting as an agonist, an 

antagonist or an allosteric modulator. For GPCRs, initial screening assays may differ from 

secondary confirmatory assays, and showing that a molecule is active in more than one assay 

is often quite useful.

Before initial hits are advanced for optimization, it is important for make-on-demand 

libraries to confirm the identity of the hit compound. Limitations of virtual library 

enumeration, chemical synthesis and downstream purification can result in mismatches 

between the in silico predicted compound and the in vitro tested compound. For example, 

in the screen against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

macrodomain protein, a number of purine derivatives with an N9 substitution were requested 

but N3-substituted compounds were synthesized instead83. Accordingly, it is worth fully 

characterizing promising compounds before costly lead optimization is undertaken; we 
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ourselves have made the mistake of designing analogs based on an in silico starting scaffold 

that was different than the true hit delivered from the chemists. At a minimum, the identity 

and purity of the compounds should be determined. High-resolution mass spectrometry or 

quantitative 1D proton nuclear magnetic resonance spectroscopy can be used to detect gross 

variation between the tested sample and the expected molecule; these data can be obtained 

from most vendors, or the experiments could be performed independently.

The most direct experiment to test a docking pose prediction is the determination of an 

experimental protein structure in complex with the docking hit (Fig. 4). Such structures 

illuminate crucial details of ligand recognition, including adjustments of binding site 

residues or the docking hit in the binding pocket12,100,101. The key question to answer 

with high-resolution structures is whether docking worked for the right reasons, i.e., does 

the predicted binding mode agree with an experimental structure? Previous studies suggest 

that hits from virtual screening generally compare fairly well with experimental high-

resolution structures; i.e., key anchor points are predicted correctly12,83,102,103. However, 

as docking is typically performed against rigid protein structures, conformational changes, 

especially in flexible loops, will complicate pose prediction104. Water-mediated protein–

ligand interactions are generally difficult to explore de novo45,105, though experimentally 

determined and structurally conserved water molecules can be included in virtual screens100. 

Lastly, there are few cases where docking hits showing on-target activity revealed binding 

positions at unexpected and nontargeted subsites. For example, the β2 adrenergic receptor 

allosteric modulator AS408 was predicted to bind to an extracellular subpocket but 

crystallographically determined to bind to the membrane-facing surface of the receptor106. 

In contrast, the pose of an inverse agonist also identified at the β2 adrenergic receptor from 

in silico docking39 was confirmed by X-ray crystallography107, demonstrating the variability 

in outcomes even at the same target.

If the protein target can be readily expressed and purified in milligram quantities, 

crystallography and cryo electron microscopy can guide hit discovery early in the campaign. 

In campaigns against targets where high-resolution structures are more challenging to obtain 

(e.g., for transmembrane receptors), an experimental protein–ligand complex might only be 

achievable for the most potent hit compound. Nonetheless, it is usually worth the effort to 

confirm the predicted binding site and ligand pose, or to identify unexpected interactions 

between the discovered hit and the target106.

Next steps: selecting analogs for hit to lead optimization—In the fortunate 

event that the virtual screen was successful and docking hits were confirmed by different 

experiments, the newly obtained scaffolds are blueprints for exploring structure–activity 

relationships and lead optimization.

A concern about molecules from make-on-demand libraries is that they will initially be 

delivered as racemic or stereomeric mixtures since the production of pure stereoisomers 

requires more sophisticated synthesis routes. If confirmed hits were observed from 

stereomeric mixtures, the measured potency of the mixture may be artifactually lower if only 

one stereoisomer is active at the target (e.g., the concentration of the active stereoisomer is 
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less than the total mixture concentration). Purified stereoisomers can typically be purchased 

from the make-on-demand compound supplier or separated in-house.

Hit optimization can be performed in several ways. Synthetic chemistry groups may 

obtain synthesis routes of the parent compound from the supplier allowing the generation 

of medicinal chemistry-inspired analog series108. Alternatively, chemoinformatic tools 

can be employed to virtually search the purchasable chemical space for structurally 

related scaffolds or identifying molecules with a common substructure to the parent 

hit compound (analog-by-catalog). Searching for similar molecules within the Enamine 

REAL space can be conducted using the SmallWorld (sw.docking.org) search engine99. 

Molecules with an identical substructure as the parent compound can be found using Arthor 
(arthor.docking.org)99. Additionally, the supplier of the parent compound might be able to 

provide a collection of molecules resembling the hit scaffold. While we cannot provide 

clear guidance or a best-practice protocol for hit-to-lead optimization, analog-by-catalog of 

docking hits obtained for the melatonin 1 (MT1) receptor and AmpC led to compounds 

with improved potencies compared with the initial parent compounds12,13. Currently, we 

recommend subtle changes to the starting compound or modifications to test particular 

interactions as suggested from the docked pose.

It is our hope that the above guidelines will be useful for outlining a docking campaign from 

start to finish. As shown, the prospective docking step is actually only one small component 

of the overall pipeline (Fig. 1). Control calculations using retrospective datasets and docking 

setup optimization make up the bulk of the process. Hit picking from the prospective screen 

requires careful perusal of the data, and experimental design of the confirmatory assays is 

critical for defining success of the campaign. We ourselves find that these guidelines insulate 

against the more common sources of failure in large library docking campaigns. Lastly, 

we want to mention that docking campaigns against protein targets without experimental 

structure, i.e., requiring homology modelling, or without known active chemical matter for 

retrospective control calculations are particularly risky and should not be initiated naively.

This concludes our general guidelines for large library docking. In the last section, we turn 

to a detailed protocol to set up, optimize and prospectively screen a target of interest using 

DOCK3.7, though any docking program can use the controls presented.

While the protocol should be general for most proteins, we provide example data from a 

recent campaign against the MT1 receptor13, a target particularly well suited for docking: 

a crystal structure had been determined; the orthosteric pocket is compact and almost 

completely encloses the ligands, simplifying the biophysics; many such ligands exist for 

retrospective calculations and for optimization; and in vitro assays to test docking hits were 

well established. We note that the MT1 receptor is ideal for large library docking, and so the 

achieved hit rate, and the hit potencies, were unusually high. Still, the docking optimization 

strategies below have been useful against a wide spectrum of targets, including the Nsp3 

macrodomain of SARS-CoV-283 and highly solvated pockets as in β-lactamase12, and were 

developed against the spectrum of targets in the DUD-E benchmark77, ranging from ion 

channels to kinases to soluble enzymes. It should be clear that the optimization strategies 
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sketched remain rooted in retrospective controls, and so will work best against targets with 

precedented ligands, and against targets with well-formed and readily liganded binding sites.

Docking campaigns with DOCK3.7 and ZINC20

In DOCK3.7, ligands are placed in the target pocket by mapping ligand atoms onto 

predefined hotspots, so-called matching spheres. Matching spheres are generated from 

the coordinates of heavy atoms from an input bound ligand structure, if available, 

and supplemented with coordinates based on the negative image of the binding site 

generated from the program SphGen34. Ligand rigid fragment (e.g., rings) are mapped onto 

matching spheres using a bipartite graph algorithm79,109. Different ligand conformations and 

orientations are sampled in the binding pocket using precalculated 3D conformer libraries 

(flexibases, db2 files)9,99. During conformer library building, each molecule is divided into 

its rigid fragments, and different conformations of rigid fragment substituents are generated.

Ligand poses are evaluated using a physics-based scoring function (Escore) combining VDW, 

electrostatic (ES) and ligand desolvation (lig_desol) energy terms (Equation 1):

Escore = EV DW + EES + Elig_desol (1)

In order to allow rapid scoring of new poses (typically 1,000 poses per molecule 

per second), contributions of the target protein pocket are mapped onto pregenerated 

scoring grids. The VDW surface of the binding pocket is converted into a scoring 

grid by ChemGrid15. Electrostatic potentials within the binding pocket are estimated 

by numerically solving the Poisson–Boltzmann equation using QNIFFT16,110. Context-

dependent desolvation energy scoring grids, both polar and apolar, are generated by the 

Solvmap program17. Thereby, ligand desolvation energies are computed as the sum of the 

atomic desolvation of each ligand atom scaled by the extent to which it is buried within 

the binding site. Atomic desolvation energies for ligand atoms are calculated during ligand 

building using AMSOL111 and are included in the ligand conformer library. Both, the 

electrostatic and ligand desolvation scoring grids depend on the dielectric boundary between 

the low dielectric protein (εr = 2) and high dielectric solvent (εr = 80) environments. 

Consequently, these scoring grids can be fine-tuned by modulating the protein–solvent 

dielectric interface (see below Steps 41–44).

The following protocol (Fig. 5) prepares a starting structure (Steps 1–4), generates the 

scoring grids and matching spheres (Steps 5–10), and collects a set of control ligands for 

model evaluation (Steps 11–33). Control ligands are docked retrospectively (Steps 34–58) 

to determine the model’s ability to identify actives from a pool of inactives. Optimization 

of sampling (Steps 59–64) and scoring (Steps 65–77) is evaluated with the same controls. 

Model biases are evaluated using an Extrema control set (Steps 78–88) to examine for 

charge preferences in the scoring grids and with a small-scale in-stock screen (Steps 89–

97) to ensure a computationally expensive large-scale prospective screen (Steps 98–103) is 

likely to yield interesting chemical matter. Hit picking (Steps 104–108), though critical to 

success of these prospective experiments, is beyond the scope of the protocol as it is highly 

user- and target-specific, and we suggest referring to Table 2 for insight. Additionally, we 
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caution against regarding hits from a screen as true positives until common artifacts are ruled 

out (Box 1). All controls in silico and in vitro are applicable to any docking program or 

computer-aided drug discovery campaign. The details of grid preparation and modification 

are DOCK3.7-specific, but the principles are transferrable to other software.

Materials

Software

• DOCK3.7.5: apply for a license from http://dock.docking.org/Online_Licensing/

dock_license_application.html. Licenses are free for nonprofit academic 

research. Once your application is approved, you will be directed to a 

download for the source code. The code should run without issue on 

most Linux environments, but can be optimized by recompiling with 

gfortran if needed. Questions related to installation can be addressed to 

dock_fans@googlegroups.com

• Python: the current code uses python2.7, which will also need to be 

installed. Additional python dependencies that are required for running 

scripts can be found in the file $DOCKBASE/install/environ/python/

requirements.txt

• AMSOL: free academic licenses can be obtained from https://

comp.chem.umn.edu/amsol/

• (Optional) 3D ligand building software: if interested in 3D ligand building 

in-house (not necessary for this protocol), licenses will also need to be 

obtained for ChemAxon (https://chemaxon.com/), OpenEye Omega (https://

www.eyesopen.com/omega) and Corina (https://www.mn-am.com/products/

corina). We note that, for many campaigns, 3D molecular structures with all 

necessary physical properties may be downloaded directly from ZINC20. This 

tutorial makes use of a webserver for 3D ligand building that is suitable for small 

control sets. Please apply for an account at https://tldr.docking.org/, which is free 

of charge

• Chimera: this application is recommended for grid visualization with the 

VolumeViewer feature (see Troubleshooting). The ViewDock feature, also within 

Chimera, is useful to examine the docking results

Equipment

• Hardware: initial tests of this tutorial (grid preparation and small retrospective 

screens) can be performed on a single workstation, but more intensive docking 

will need access to a high-performance computing cluster (we regularly use 

1,000 cores)

• Queuing system: DOCK3.7 comes with submission scripts for SGE, Slurm and 

PBS job schedulers. If using a different scheduler, scripts may need to be adapted 

for your specific computing cluster
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• Protein structure: structures can be downloaded from www.rcsb.org or generated 

by the user in the case of homology models

• Example data: an example set of files used in this protocol including 

ligand and decoy sets, default docking grids and optimized docking grids 

can be downloaded from http://files.docking.org/dock/mt1_protocol.tar.gz. The 

example dataset uses the MT1 structure (PDB: 6ME3) co-crystallized with 2-

phenylmelatonin

Equipment setup

Define the pathway to critical software—The environment will need to be defined 

in order to run the following commands correctly. The two most important paths that need 

to be defined are to DOCKBASE and python. We provide an environment script in the 

example dataset that will need to be modified for a user’s settings. Always run the following 

command with updated paths specific to your file directory before working with DOCK3.7:

source env.csh

Procedure

Section 1: set up binding pocket for docking calculations ● Timing 30 min to 1 h

1. Download the structure from the PDB or use in-house structures. Preference 

should be given to structures of high resolution and with a ligand bound in the 

site that will be docked into. Apo structures are useable, but tend to yield poorer 

results due to unconstrained binding site geometries32.

2. Visualize the binding pocket in PyMOL or Chimera to decide on the relevance of 

protein cofactors.

• Delete components from the structure that do not contribute to ligand 

binding such as lipids, water molecules and buffer components

• Fusion proteins engineered for protein stability that are near the binding 

pocket should be removed, and the resulting chain break should be 

either capped or the loop remodeled

• Protein cofactors such as heme or ions should also be kept or discarded 

depending on their relevance to ligand binding in the pocket

• Additionally, examine the residues in the binding pocket for incomplete 

sidechain, multiple rotamers or engineered mutations, and revert or 

rebuild as necessary

• It is helpful to examine the pocket with the electron density if available 

for making these decisions. For the example MT1, we deleted the fusion 

protein, capped non-native termini and reverted two mutations in the 

binding pocket (6me3_cleaned.pdb)

3. Save the rec.pdb file. This file will contain any component that will remain 

static during the docking such as structural waters and cofactors.
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4. Save the xtal-lig.pdb file. This file will contain the atoms of the bound 

ligand, which will be used to generate the matching spheres that guide ligand 

sampling in the pocket.

5. Generate the scoring grids and matching spheres with blastermaster from these 

two inputs (rec.pdb and xtal-lig.pdb)

$DOCKBASE/proteins/blastermaster/blastermaster.py --

addhOptions=" -HIS -FLIPs " -v

? TROUBLESHOOTING

6. Inspect the output, in particular the rec.crg.pdb file located in the new 

working directory to ensure protonation of polar residues and side chain flips of 

glutamine and asparagine side chains look accurate. Examine histidine tautomers 

(HID, HIE and HIP) as well. If everything looks as it should, proceed to Step 10; 

otherwise, proceed to Step 7.

Generating a rec.crg.pdb file manually

7 If the automatically protonated rec.crg.pdb file does not fit to the 

expected protonation state of key residues, the rec.crg.pdb file can be 

generated manually using various protein modeling software packages including 

Rosetta112, Chimera50 or Maestro113. This may include manually flipping side 

chain rotamers and setting the pH value for pKa calculation of charged residues. 

After the modeling step is completed, new rec.pdb, rec.crg.pdb and xtal-

lig.pdb files need to be provided to blastermaster. To be compatible with 

the united atom AMBER force field, rec.crg.pdb should only contain polar 

hydrogen atoms, and explicit histidine tautomer names. rec.pdb and xtal-

lig.pdb only need to contain heavy atom coordinates. In Step 8, we provide a 

script that produces the required files.

8 Assuming the protein modeling software resulted in a fully protonated protein–

ligand complex, protein atoms should be listed as ATOM records, while ligand 

atoms should be listed as HETATM records. Further, ensure that cofactors are 

given the correct heading in the PDB file (i.e., static metal ions should be given 

ATOM records if they are to be included in the scoring grids).

bash $DOCKBASE/proteins/protein_prep/prep.sh 

protonated_input.pdb $PWD

The outputs are new rec.pdb and xtal-lig.pdb files, as well as a 

rec.crg.pdb file inside a working directory. HID, HIE and HIP naming is 

generated automatically from the protonation state of the HIS residues and again 

should be checked for accuracy.

Note: this script requires a path to the Chimera binary file and may need to be 

modified by the user.

Bender et al. Page 14

Nat Protoc. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9 Generate scoring grids and matching spheres from the new files (rec.pdb, 

xtal-lig.pdb, and working/rec.crg.pdb), and examine the outputs as in 

Step 6:

$DOCKBASE/proteins/blastermaster/blastermaster.py --

addNOhydrogensflag -v

Checking the files

10 Check that all files are generated. At the end of a successful blastermaster run, 

the directory should contain an INDOCK file and two directories: working and 

dockfiles. The working directory contains all the intermediate files used 

for grid generation. The dockfiles directory contains the scoring grid files 

and matching spheres file. The INDOCK file contains all parameters to control 

the docking program, such as sampling options and location of input files, i.e., 

docking grids and 3D ligand conformer libraries (see the INDOCK Guide in 

Supplementary Information). In our experience, the automated grid generation 

with blastermaster.py successfully produces reliable docking parameters; 

however, nonstandard amino acids or particular atom types require additional 

information and adjustments of force field parameters. Instructions on how to 

check and adopt the grid generation are provided in the Troubleshooting section 

below and in the Blastermaster Guide (Supplementary Information). For the 

provided example files generated for MT1, the protein–ligand complex was 

modeled using the automated preparation pipeline in Maestro, Schrodinger48.

Section 2: collect and build the control ligand set ● Timing Minutes to hours for ligand 
building, depending on the number of molecules

11 Collect the known actives (positive controls) for retrospective analysis. For a 

given target, these can be found in the scientific literature, patent literature or 

public databases such as IUPHAR/BPS114, ChEMBL115 or ZINC9,99,116, or 

available in-house.

Curate the actives list—▴ CRITICAL While it may be possible to find dozens of 

actives, it is likely that many come from the same chemical series. For a rigorous control 

analysis, redundant (i.e., highly similar) compounds should be clustered and the most potent 

compound selected.

12 Sort all knowns by potency.

13 Cluster these based on 2D similarity using any preferred method. We suggest 

calculating clusters based on ECFP4 Tanimoto similarities with a cutoff of 0.35.

14 Use the most potent compound from each cluster as the representative of that 

scaffold. It is best to refine these actives to a set that is representative of the 

chemical space intended for prospective screening (i.e., with limits on molecular 

weight) so that the retrospective analysis will match the prospective aims.
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15 Find out whether the known ligands of the target are neutral or charged as one 

criteria of the docking parameter calibration is the ability to score ligands with 

corresponding charges well.

16 Save a final list of actives’ SMILES as ligands.smi. Typically, 10–30 diverse 

actives represent a good control set. For targets with less than this value, the 

controls are still useful but may not be as informative. For the example of 

MT1 we extracted a set of 28 agonist and antagonists from the IUPHAR/BPS 

database13.

Build the 3D conformer library of the actives

17 Go to the ‘build3d’ application on tldr.docking.org79.

18 Add the ligands.smi file to the ‘Input’ section.

19 Select ‘db2’ for the file type.

20 Click ‘Go’ to submit.

21 Download the build3d_results.tar.gz file, and move it to your work 

directory.

22 Decompress the tar file:

tar xvfz build3d_results.tar.gz

23 The results are in a build3d_results/ directory with two subdirectories 

failed/ and finished/ indicating the build status of the compounds. In 

example data provided, all ligands were built to completion.

24 To build a split database index file, or path file to the ligands, use the following 

command:

ls -d $PWD/build3d_results/finished/*.db2.gz > actives.sdi

25 To generate a list of actives’ IDs:

ls build3d_results/finished/*0.db2.gz ∣ awk -F"/" '{print 

$NF}' ∣ awk -F"_" '{print $1}' > actives.id

Curate and build the property-matched decoy set

26 Go to the ‘dudez’ application on tldr.docking.org78.

27 Submit the ligands.smi file to the input section.

28 Click ‘Go’ to start the calculation. The ZINC database will be scanned for 

compounds that match the following six properties of the input ligands: 

molecular weight, LogP, charge, number of rotatable bonds, number of hydrogen 

bond donors, and number of hydrogen bond acceptors. Each compound will then 

be compared with the actives for 2D similarity, with similar compounds being 

discarded. A final set of 50 decoys per input active will be calculated.

29 Download the decoys_dudez.tar.gz file, and move it to your work directory.
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30 Extract the files:

tar xvfz decoys_dudez.tar.gz

The files will live in a new directory new_decoys.

31 To obtain the split database index file of the decoys:

ls -d $PWD/newdecoys/decoys/*.db2.gz > decoys.sdi

32 To obtain a list of all the decoys’ IDs:

awk ‘{print $2}’ newdecoys/decoys.smi > decoys.id

33 Collect output files. At this point, four files should be generated: actives.sdi, 

actives.id, decoys.sdi and decoys.id.

Section 3: run retrospective docking calculations to test the binding pocket parameters 
● Timing Minutes to hours depending on number of molecules and compute cores

34 In the directory where blastermaster was run (i.e., contains the INDOCK file and 

dockfiles directory), copy over the ligand and decoys .sdi files and .id 

files.

35 Combine the two .sdi files:

cat actives.sdi ligands.sdi » controls.sdi

36 Check values in the INDOCK file

• Set the atom_maximum to 100. This value is a hard cutoff such that if a 

ligand has more than this number of heavy atoms it will not be docked. 

For retrospective calculations, we want all ligands to be docked and 

scored regardless of size, so we use a large value here

• Set the mol2_maximum_cutoff to 100. This value is a cutoff for 

saving 3D coordinates of docked poses. If a ligand scores worse (i.e., 

more positive) than this cutoff, the pose will not be saved. Setting a 

low value is useful in large-scale prospective screens to save on disk 

space and computation time, but for retrospective screens we want all 

information saved for analysis

37 Set up the docking directory

$DOCKBASE/docking/setup/setup_db2_zinc15_file_number.py ./ 

controls controls.sdi 1 count

This script will separate the controls.sdi file into one directory called 

controls0000. For this first calculation, the size of the sdi file is manageable 

on a single core, though splitting it will be faster (i.e., 10). For control 

calculations with 10,000–100,000 ligands and for large-scale prospective 

screens, the sdi file should be split into multiple directories and the jobs 

distributed over multiple cores. A dirlist file is generated that lists all of 

the split directories prepared for docking.
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38 Dock the control set. At this point, it is possible to submit the data to a computer 

cluster or do the calculation on a single computer.

A. Docking without submitting to a cluster

i. Move into the controls0000 directory. You will find 

INDOCK (pointing to the dockfiles/ directory) and a 

split_database_index file. These are all the inputs that 

the DOCK program needs to run the calculation.

ii. Run the docking calculation:

$DOCKBASE/docking/DOCK/bin/dock.csh

? TROUBLESHOOTING

iii. The output files from the docking program are OUTDOCK, 

listing docking scores of successfully docked molecules, 

computational performance or potential error messages, and 

a zipped mol2 file (test.mol2.gz) containing the 3D poses 

of docked molecules.

iv. Move back into the directory that contains dirlist when 

done.

B. Docking with submitting to a cluster

i. In the directory that contains the dirlist (created in the 

previous step), run one of the following commands depending 

on cluster architecture:

• SGE: $DOCKBASE/docking/submit/

submit.csh

• Slurm: $DOCKBASE/docking/submit/

submit_slurm.csh

• PBS: $DOCKBASE/docking/submit/

submit_pbs.csh

▴ CRITICAL STEP If you use another cluster 

scheduler, adopt these scripts to your needs.

39 When the job has completed, the last line of the OUTDOCK file should contain an 

elapsed time. If this is not the last line of the OUTDOCK file, an error has occurred 

(see Troubleshooting) and the following script will not run.

? TROUBLESHOOTING

40 Extract the scores of all docked compounds

python $DOCKBASE/analysis/extract_all_blazing_fast.py ./ 

dirlist extract_all.txt 100
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The arguments are the dirlist, the name of the file to be written 

(extract_all.txt) and the max energy to be kept (this value should match 

the mol2_maximum_cutoff value in the INDOCK file). The important output 

file for future analysis is the extract_all.sort.uniq.txt file, containing 

the rank-ordered list of docked compounds with only the highest score for each 

compound.

41 Get the poses of the docked compounds

python $DOCKBASE/analysis/getposes_blazing_faster.py ./ 

extract_all.sort.uniq.txt 10000 poses.mol2 test.mol2.gz

The arguments are the path where the docking is located (./), the name of the 

extract_all.sort.uniq.txt file, the number of poses to get (10000, i.e., 

set to larger than the number of compounds docked for retrospective calculations 

since we want to get all), the name of the output mol2 file (poses.mol2), and 

the name of the input mol2 files (test.mol2.gz), containing 3D coordinates 

of predicted poses from the docking calculation (located in the controls0000 

directory).

42 Get the poses of just the actives

python $DOCKBASE/analysis/collect_mol2.py actives.id 

poses.mol2 actives.mol2

The arguments are the file containing active IDs, the pose file containing all of 

the compounds both actives and decoys, and the name of the output file to be 

written.

43 Calculate the LogAUC early enrichment

python $DOCKBASE/analysis/enrich.py -i . -l actives.id -d 

decoys.id

Inputs are the working directory (‘.’ if in the directory where the extract_all 

file is located) and the two files containing the IDs of actives and decoys. 

The output is a roc.txt and roc_own.txt file. Both files report an AUC 

and LogAUC and contain the grid points for plotting receiver operator curve 

(ROC) plots. The roc.txt file is calculated over all inputs in the ID files, and 

the roc_own.txt file is calculated only over the compounds that successfully 

docked.

44 To generate a plot (roc_own.png) of the roc_own.txt file:

python $DOCKBASE/analysis/plots.py-i . -l actives.id -d 

decoys.id

45 Calculate the charge distribution by DOCK score

python $DOCKBASE/analysis/get_charges_from_poses.py 

poses.mol2 charges
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Inputs are the poses files and the name of the output file to be written. The 

output charges file is a list of DOCK scores and the charge of the ligand with 

that score.

46 To generate a plot of total DOCK score by ligand charge 

(charge_distributions_vs_energy.png) run:

python $DOCKBASE/analysis/plot_charge_distribution.py 

charges

47 Plot the contribution of each score term in the energy function outlined in 

Equation 1 (energy_distributions.png):

python $DOCKBASE/analysis/plot_energy_distributions.py 

extract_all.sort.uniq.txt

48 Collate the output files. The important outputs of these steps are: 

actives.mol2, roc_own.png, energy_distributions.png and 

charge_distributions_vs_energy.png.

Evaluate the docked poses of the actives

49 Open the rec.pdb and xtal-lig.pdb in Chimera, and prepare the 

visualization of the binding pocket to the user’s preference.

50 In the Tools tab, select Structure/Binding Analysis and click ViewDock.

51 In the menu, navigate to your directory and open actives.mol2.

52 For file type, select any of the DOCK options. This will open a window 

(ViewDock) to navigate through all of the molecules in this file such as in Fig. 

6a.

53 Under the ‘Column’ tab, several details about the docked ligands can be listed, 

e.g., Total Energy, Electrostatic or Van der Waals terms.

54 In the Tools tab, under Structure/Binding Analysis, ‘Find HBonds’ can be used 

to identify hydrogen bonds between the protein and ligand molecules.

55 Evaluate the docked poses, asking the following questions:

• Do the ligands occupy the part of the pocket as expected?

• Do they make the types of interactions anticipated from what is known 

about the ligands and the pocket?

• Are there aberrant or unsatisfied interactions? For example, in MT1, 

it is known from the crystal structure that ligands can form hydrogen 

bonds with Asn162 and Gln181. Issues with binding poses are usually 

a sampling problem, but scoring terms such as electrostatics can 

influence specific interactions

• If many actives do not dock, is there a reasonable explanation (e.g., 

selected controls are larger than the pocket volume as has been 
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observed when attempting to dock antagonists into agonist pockets)? 

Optimization of sampling is performed with a matching sphere scan as 

detailed in Steps 59–64

Evaluate the enrichment and scoring metrics

56 Evaluate the docking parameters’ ability to discriminate actives from decoys. 

The roc_own.png file shows the plot of the rate of finding actives as a function 

of decoys. The AUC is indicative of this discriminatory power (Fig. 6b). A 

positive LogAUC value is a sign that actives are enriched over decoys, a value 

near 0 represents random selection, and a negative value demonstrates that the 

model prefers decoys over actives. This may be a result of poor poses, improper 

scoring or both. It is best to optimize poses before pushing forward on scoring 

discrimination. Even for good LogAUC values, it is important to evaluate the 

poses as in Step 55 as it is possible to get good scoring actives that do not dock 

in the correct pose.

57 Examine the energy contributions of the docked poses. In the 

energy_distribution.png file (Fig. 6c), the total DOCK scores for the 

docked poses are broken down into the main components of the scoring 

function: electrostatics, VDW and polar ligand desolvation.

Do the contributions of the various score terms match the properties of the 

binding pocket? In the MT1 pocket, the VDW interactions dominate because 

of its largely hydrophobic nature. For targets forming salt bridges to ligands, 

electrostatic terms should at least be balanced with VDW scores. If the balance 

does not match with what is expected for the pocket, the strength of the scoring 

terms can be modified in Steps 65–68.

58 Evaluate the charge preference of the docking parameters. If the 

electrostatics term dominates in Step 57, the scoring function will 

likely prefer highly charged ligands. This can be measured in the 

charge_distributions_vs_energy.png plot (Fig. 6d), which shows the 

charge state of the top scoring molecules. DUDE-Z decoys should have charges 

matching the active ligands. However, in property-unmatched decoys such as the 

Extrema set78 (Steps 78–88) and in-stock set (Steps 89–97), it is important to 

ensure the docking is not biased toward charge extremes, which can suggest an 

overweighting of electrostatic terms; this can be addressed in Steps 65–68.

Section 4: optimize poses by modifying matching spheres ● Timing Minutes to build; ≤1 
h to dock

59 Create a new directory matching_sphere_scan/ that contains the INDOCK 

file and working/ and dockfiles/ directory from the previous directory.

60 Run the following script to create sets of matching spheres in which the 

matching spheres that do not map to atoms in the original xtal-lig.pdb file 

are perturbed as in Fig. 7a: (~1 min)
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python $DOCKBASE/proteins/optimization/scramble-matching-

spheres.py -i $PWD/dockfiles -o $PWD -s 0.5 -n 50

The arguments are: -i, the path to the dockfiles/ directory; -o, the path 

to where new docking directories should be created; -s, the maximum distance 

to move a matching sphere (0.5 recommended); -n, the number of perturbed 

sphere combinations to create. For a single receptor target, we recommend 50–

100 sets of sphere sets.

61 Each new directory should contain an INDOCK file and dockfiles/ directory. 

Check that the matching_spheres.sph file in the dockfiles/ directory is 

unique to each new directory created.

62 For each directory, copy over the controls.sdi file.

63 Run the docking calculation and extract the poses as in Steps 37–48.

64 Examine the new actives.mol2 files and LogAUC values from the different 

matching sphere sets. Ideally, a set of spheres will increase the LogAUC and 

improve the binding poses of the actives. For MT1, the LogAUC increased 

from ~2 to 5. While not a large change, there was improved placement of the 

flexible components of the active ligands, which suggests better sampling and 

pose identification in a prospective screen.

If the poses did not improve during this matching sphere scan, it may indicate 

that there is a problem with the binding pocket model, the ligand set, the 

sampling of ligand conformations, or the placement of the crystallographic 

matching spheres. Examining each of these can help improve the binding poses 

in this first control calculation. Alternatively, the scoring function needs to be 

optimized to score the expected pose better (see Steps 65–68).

? TROUBLESHOOTING

Section 5: optimize ligand scoring by modulating the protein–water dielectric interface 
(adding a layer of dielectric boundary spheres) ● Timing 15 min on cluster; 20–30 min per 
radius on local machine

65 Create a new directory with the INDOCK file and working/ and dockfiles/ 

directories from the best matching sphere set (or the default settings if no 

matching sphere scan was run).

66 Generate the boundary modifying spheres (Fig. 7b)

$DOCKBASE/proteins/optimization/boundary-sphere-scan.sh -b 

$PWD -v

This version of the script will run on an SGE cluster. Modify the submission 

script and scheduler as needed for different cluster architecture. To run on a local 

machine, use the script:

$DOCKBASE/proteins/optimization/boundary-sphere-

scan_no_cluster.sh -b $PWD -v
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67 Combine the different radii boundary spheres (5 min):

python $DOCKBASE/proteins/optimization/combine-grids.py -b 

$PWD

This script generates a set of combinations of boundary modifying spheres 

across both ligand desolvation and low dielectric spheres. These directories 

have everything needed to run individual retrospective calculations except for 

the controls.sdi file that will need to be copied into each one. Repeat the 

retrospective calculations from Steps 37–48.

68 Following retrospective calculations across the combinations of dielectric 

boundary sphere radii, select a combination that ideally improves 

LogAUC (Fig. 6b) and helps to balance the score distributions in the 

energy_distribution.png plot (Fig. 6c). If there are a number of equally 

performing combinations, subsequent control calculations can help identify the 

best set for your system (see Steps 78–97). In the case of MT1, we chose 

electrostatic spheres of radius 1.9 and desolvation spheres of radius 0.1 as they 

increased LogAUC and enhanced the charge distribution of compounds to favor 

neutrals to match known MT1 ligands (Fig. 6d).

Section 6: (optional): polarize (or depolarize) residues to effect electrostatics ● Timing 
15 min

▴ CRITICAL If after these scans a particular interaction is still missed or erroneously 

captured, it may be necessary to modify the partial charges of a particular residue. For 

example, in the case of MT1, the docking scores are largely dominated by VDW interactions 

(Fig. 6c). However, two residues Gln181 and Asn162 form hydrogen bonds with the known 

ligands. For these specific interactions, a global modification to the dielectric boundary 

(Steps 65–68) may not be sufficient and, instead, a local modification to partial charges as 

outlined in Steps 69–77 may enhance favorable scores for these interactions. For targets 

where this is not necessary, proceed to Step 78.

69 Make a new directory for polarizing residues. Copy over rec.pdb, 

xtal-lig.pdb, working/rec.crg.pdb, working/amb.crg.oxt and 

working/prot.table.ambcrg.ambH from the previous docking setup.

70 In the rec.crg.pdb file, rename the residues to be polarized with a unique 

three-letter amino acid code. For example, in the MT1 receptor, we chose to 

polarize GLN181 and ASN162 to enhance the polar interactions between actives 

and these hydrogen bonding residues. Accordingly, we renamed GLN181 as GLD 

and ASN162 as ASM (see Fig. 8).

sed -i 's/GLN A 181/GLD A 181/g' rec.crg.pdb

sed -i 's/ASN A 162/ASM A 162/g' rec.crg.pdb

Generate partial charges for the new residues—▴ CRITICAL The two files 

that read in partial charges are the amb.crg.oxt and prot.table.ambcrg.ambH files 
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located withing the working/ directory. These files contain default partial charges for all 

amino acids and some special residues such as ions. Make the following changes in both 

amb.crg.oxt and prot.table.ambcrg.ambH files.

71 Create new sections for the polarized residues in the two files by copying the 

standard residue partial charges.

72 Rename the polarized residues to match the three-letter codes used 

in the rec.crg.pdb file. The names are all capitalized in the 

prot.table.ambcrg.ambH file as shown in Fig. 8 and all lowercase in the 

amb.crg.oxt file.

73 Redistribute the charge around the atom of interest, making sure that the net 

charge remains the same. We suggest testing modifications of 0.2 or 0.4 charge 

units for a given atom. For example, for an ASN-to-ASM change, where we want 

to enhance the electronegativity of the sidechain carbonyl (OD1), increase the 

charge by 0.4 units, resulting in a change from −0.470 to −0.870. As −0.4 charge 

was added to the residue, +0.4 must be distributed to other atoms in the residue 

to maintain the net charge. One option is to add +0.2 to each of the sidechain 

amide hydrogens (HD21 and HD22) as in Fig. 8, though the charge could have 

been distributed to the backbone amide or another atom not involved in binding.

Running the grid generation

74 Before running the grid generation, check that the following files 

are present: rec.pdb, xtal-lig.pdb, the modified amb.crg.oxt and 

prot.table.ambcrg.ambH files, and a working/ directory with the modified 

rec.crg.pdb file.

75 Run blastermaster with the following command:

$DOCKBASE/proteins/blastermaster/blastermaster.py --

addNOhydrogensflag --chargeFile=amb.crg.oxt --

vdwprottable=prot.table.ambcrg.ambH -v

? TROUBLESHOOTING

76 Rerun control calculations as in Step 37–48. When examining the new poses, 

consider the following questions:

• Does the polarized residue promote or discourage the desired 

interaction?

• Are the new interactions scored more favorably?

77 Rerun the dielectric boundary modifying sphere scan in Steps 65–68. We 

recommend doing this because the new polarized residue(s) will have altered 

the electrostatics grid. It may be necessary to test different combinations and 

strengths (0.2, 0.4) of the polarized residues to identify the best-performing set 

of parameters that enhances correct interactions, improves poses and ideally 

improves LogAUC. However, due to the modification to the electrostatic 
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potential introduced by these changes, it is important to ensure these 

improvements do not come at the cost of biasing the screen towards overly 

charged molecules. This bias can be checked in the next section Steps 78–88.

Section 7: Extrema charge control calculations ● Timing 2–3 h for compound building

Generate the Extrema set—▴ CRITICAL Compounds in the extrema set come from 

the area of chemical space occupied by the known actives (molecular weight and LogP) but 

distinct charges (−2, −1, 0, +1, +2). These decoys will be used to measure biases introduced 

into the scoring function owing to modifications to the electrostatic potential.

78 On tldr.docking.org, navigate to the ‘extrema’ application.

79 Upload the SMILES of your active ligands used in section II to the webpage.

80 Select 500 or 1,000 molecules per charge, and click the ‘Go’ button.

81 After a few minutes, a results file will be available to download and extract. 

Within the file should be five SMILES files grouped by charge. Extract the 

SMILES file from the download:

unzip extrema_results.zip

82 Build the extrema set.

83 For each SMILES file, submit the file to the ‘build3d’ application on 

tldr.docking.org. Depending on the number of ligands in each file, and the 

activity on the website, each file should take 2–3 h to build.

84 When all sets are built and downloaded, combine the path to all compounds in a 

split database index file along with the known actives.

Run the extrema set

85 Navigate to a directory containing the INDOCK file and dockfiles/ directory 

that you want to test. The dockfiles/ directory should contain the set of 

matching spheres and the dielectric boundary sphere combination selected from 

the previous steps.

86 Prepare the docking run. In the previous steps, the control ligand set was small 

enough to run in a single run. This control set often has 10,000+ compounds, 

and it is best to split this into multiple jobs. To do this run:

$DOCKBASE/docking/setup/setup_zinc15_file_number.py ./ 

extrema extrema.sdi 100 count

87 Submit the docking calculations over a cluster as in Step 38B.

88 Repeat the analysis in Steps 39–48 with a focus on the 

charge_distributions_vs_energy.png plot (Fig. 6d). An optimal set of 

docking parameters will have good LogAUC with early enrichment, and the 

top-ranking compounds will contain charges that match the charges of the 

known actives. Sometimes multiple boundary-modifying sphere combinations 
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will be tested in this Extrema calculation to find a set that enhances the scoring 

preference for compounds similar to knowns.

Section 8: run a ‘small’-scale in-stock screen ● Timing 1–24 h depending on download 
speed

89 To collect an in-stock screening library, go to http://zinc20.docking.org/tranches/

home/.

90 At the top of the tranche viewer (Fig. 9), select ‘3D’ representation, set 

Purchasability to ‘In-stock’, and select the charge states of interest to your 

target (i.e., only 0). Next, select the molecular weight range you want to screen. 

Finally, select a LogP range tailored to your target. If no specific LogP range 

is desired, we recommend LogP ≤ 3.5 to avoid insoluble compounds that might 

aggregate and yield false positives in the experimental assay.

91 When only the tranches of interest are selected, click the download button in the 

upper right corner of the screen. Select ‘DOCK37’ as the download format and 

‘cURL’ or ‘WGET’ as the download method. When done, click ‘Download’ to 

obtain a text file with all the cURL or wget commands needed to download the 

set of selected tranches.

92 Prepare a split database index file with the path to all of the newly downloaded 

compounds.

93 Split the docking run over 1,000 jobs to efficiently run the screen as the number 

of compounds is usually ~1–4 million.

$DOCKBASE/docking/setup/setup_zinc15_file_number.py ./ 

instock instock.sdi 1000 count

94 Run the screen on a cluster as in Step 38B.

95 Run the analysis of the screen to generate a LogAUC. It should be on par or 

better than LogAUC values seen previously, as the set of decoy molecules grows 

in size and departs further from the set of known ligands.

96 Test out hit picking strategies. Use any metric for filtering hits (Table 2), and 

visually examine the hits that pass the selected filters.

• Are the compounds forming the expected interactions with the binding 

pocket?

• Are they sampling in the correct region of the pocket?

If there are any issues, determine if it is a sampling or scoring problem and alter 

the previous steps (matching spheres or dielectric boundary modifying spheres, 

respectively) to optimize. If the top poses capture expected interactions, then it is 

worth moving into a large-scale prospective screen.

97 Choose settings for the large-scale docking experiment. If multiple docking 

parameters were tested in this section (i.e., section 8), one method for selecting 

the best settings for large-scale docking is to choose the parameters that yield 
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the greatest number of viable compounds after all of the post-docking filters 

have been applied. This will ensure a large number of hits in the large-scale 

campaign. Alternatively, one can purchase hits from the different screens and 

see which setup leads to more true actives in an experimental setting. Even if 

just a few low-potency hits are obtained at this point, it may suggest which 

interactions are critical for activity in the pocket.

Section 9: large-scale docking ● Timing 1–5 d, depending on number of compounds and 
compute nodes

98 Create a new directory for the large-scale campaign with the final set of 

parameters, i.e., the INDOCK file and the dockfiles/ directory.

99 Change the mol2_maximum_cutoff in the INDOCK file to a value likely to 

eliminate ~90% of the docked molecules to save on disk storage as compounds 

with total scores worse than a certain value (more positive) are unlikely to be 

considered hits from the large screen and should not be saved (use the results of 

the in-stock screen to help inform on the best mol2_maximum_cutoff values to 

use).

100 Obtain the ZINC20 library. The ZINC20 library contains a prebuilt 3D 

conformer library of nearly 700 million fully protonated and tautomerized 

compounds (i.e., protomers). The library is largely built on Enamine’s readily 

accessible library, which consists of molecules that have a >80% likelihood 

of synthesis in one or two reaction steps11. This library can be downloaded 

from https://files.docking.org/3D/ or using the tranche browser as in Fig. 9 and 

consists of ~60 TB of data.

101 Select properties of the ZINC20 library for the screen such as molecular weight, 

charge and LogP. We recommend screening compounds separately by MWT 

range (i.e., fragments ≤ 250 amu) as larger compounds often score better due 

to their ability to form additional interactions within the binding pocket117. To 

obtain a split database index (sdi) file for a predownloaded ZINC20 database, 

use the ‘DOCK Database Index’ download format in the tranche viewer (Fig. 9) 

and provide a path to the downloaded database in the ‘ZINC DB Root’ field.

102 Split the docking campaign over 1,000 or more jobs. Typically, ~100 million 

compounds can be screened per day on an academic 1,000 core cluster of recent 

vintage (as of 2020).

$DOCKBASE/docking/setup/setup_zinc15_file_number.py ./ 

largescale docking zinc20library.sdi 1000 count

103 Run the screen on a cluster as in Step 38B.

Section 10: hit picking ● Timing Days to weeks

104 Extract the scores of the top compounds as in Step 40 with the maximum score 

cutoff set to the mol2_maximum_cutoff set in Step 99

Bender et al. Page 27

Nat Protoc. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://files.docking.org/3D/


python $DOCKBASE/analysis/extract_all_blazing_fast.py ./

dirlist extract_all.txt -50

105 Collect between 300,000 and 1,000,000 poses from the best-scoring compounds.

python $DOCKBASE/analysis/getposes_blazing_faster.py ./ 

extract_all.sort.uniq.txt 1000000 poses.mol2 test.mol2.gz

106 Use any number of post-docking filters including but not limited to those 

described in Table 2.

107 From the compounds that remain after filtering, visually examine up to 

5,000 molecules depending on how viable the docked compounds look. We 

recommend that visual examination is done by more than one person, because of 

the different knowledge base that each individual brings to the selection process 

(i.e., a medicinal chemist will prioritize different features over a molecular 

biologist and vice versa)19. This step should be done before prioritizing 

compounds for purchase, as we have found human-picked compounds have 

better efficacy than compounds obtained from fully automated hit-picking12. 

By using post-docking filters as in Step 106 prior to visual examination, one 

can search more deeply through the list of top ranked molecules to identify 

molecules for testing.

108 Choose 50–200 compounds for wet-lab testing depending on price, capability of 

testing and confidence of success as informed from retrospective calculations.

Troubleshooting

Structure preparation

Alternative conformations or missing side chains should be completely modeled before 

starting the grid generation (blastermaster.py). Otherwise, any superfluous or missing 

atoms will result in erroneous VDW surface or partial charge calculations (see below).

Blastermaster

Section 1, Step 5—All input and output files as well as options and flags of 

the blastermaster program are listed in the Blastermaster Guide (see Supplementary 

Information). Of important note is that blastermaster requires protein and ligand structures 

to be provided as PDB files called rec.pdb (and working/rec.crg.pdb in case a 

protonated structure is used) and xtal-lig.pdb. Alternative file names will not be 

recognized in the default settings.

Section 1, Step 10—If blastermaster does not successfully finish the grid generation, log 

files in the working directory will yield the required information to backtrace the error (see 

Blastermaster Guide in Supplementary Information). We suggest running blastermaster in 

the verbose mode (-v) as it allows to easily detect at which step the program failed.
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Most common errors are related to unknown atom or residue types in rec.pdb (and/or 

rec.crg.pdb). Missing parameters for specific atom types can be added to the following 

parameter files:

$DOCKBASE/proteins/defaults/radii (required for surface calculation 

by the dms program)

$DOCKBASE/proteins/defaults/amb.crg.oxt (partial charges for qnifft)

$DOCKBASE/proteins/defaults/vdw.siz (Van der Waals radii for qnifft)

$DOCKBASE/proteins/defaults/prot.table.ambcrg.ambH (atom typing for 

chemgrid)

$DOCKBASE/proteins/defaults/vdw.parms.amb.mindock (Van der Waals 

parameters for minimizer)

In our experience, most protein input structures can be converted into complete docking 

grids with the default parameters provided in DOCKBASE. For some modifications such 

as capped termini or structural waters, parameters are included in the provided files (e.g., 

amb.crg.oxt) but may use slightly different atom names compared with default names 

from modeling programs such as Chimera, PyMol or Maestro. In these cases, we suggest 

adapting the corresponding atom names in the input protein structure files (rec.pdb, 

rec.crg.pdb) rather than adding more atom types to the default parameter files. Common 

naming errors occur for disulfide bonded cysteines (CYX in prot.table.ambcrg.ambH) 

and water atoms (HOH, TIP, WAT and SPC in prot.table.ambcrg.ambH).

The qnifft program may crash if too many atoms (>50,000) are present in rec.crg.pdb. 

While we do rarely encounter this problem, particularly large proteins or other molecular 

complexes may have to be reduced in atom number (e.g., removing fusion proteins or distal 

monomers). Typically, protein segments >20 Å away from the binding pocket are unlikely to 

influence the resulting docking grids.

In certain cases, blastermaster may be able to calculate all grids, even though some 

parameters might be missing. For example, if nonstandard amino acids are used, the 

protonation state as well as partial charges or VDW surfaces may not be computed correctly, 

but will not cause blastermaster to crash.

To check if all force field parameters were assigned to the protein structure 

correctly, we suggest visual inspection of docking grids (Chimera). The scoring grids 

(vdw.vdw, trim.electrostatics.phi, as well as ligand.desolv.heavy and 

ligand.desolv.hydrogen) are found in the dockfiles directory. The following scripts 

can be run in the dockfiles directory to convert the grids into dx files for visualization.

Convert VDW grid:

python $DOCKBASE/proteins/grid_visualization/create_VDW_DX.py
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Input: vdw.vdw, vdw.bump (default)

Output: vdw.dx (default)

Convert electrostatics grid:

python $DOCKBASE/proteins/grid_visualization/create_ES_DX.py 

trim.electrostatics.phi trim.electrostatics.dx

Input: trim.electrostatics.phi

Output: trim.electrostatics.dx

Convert desolvation grid:

python $DOCKBASE/proteins/grid_visualization/create_LigDeSolv_DX.py

Input: ligand.desolv.heavy (default)

Input: ligdesolv.dx (default)

To visualize the grids, first open the rec.crg.pdb file in Chimera. The dx files can be 

opened with the Volume Viewer application. The vdw.dx file should resemble the surface 

of the receptor. The ligdesolv.dx file demonstrates various solvation levels of the pocket 

(the grid itself is a continuum). By changing the level of the representation, the volume 

should fill the pocket illustrating the ligand moving from a less solvated state to the most 

solvated state. For the trim.electrostatics.dx file, it is best to set the minimum and 

maximum levels to −100 and 100, respectively. Then, set the colors to red for −100 and 

blue for 100. This now shows regions of positive partial charges (blue) and negative partial 

charges (red). For all grids, ensure that the representations match what is expected for the 

binding pocket and that there are no regions of missing grid points. If there are obvious 

holes in any of the grids, in close proximity to the ligand, certain residue types were not 

identified correctly and corresponding parameters could not be assigned.

A list of all partial charges assigned to rec.crg.pdb is given in working/qnifft.atm 

(column 11). If the total charge of the system does not sum up to an integer value, 

certain partial charges may not have been found in $DOCKBASE/proteins/defaults/

amb.crg.oxt. Furthermore, if many partial charges for a given residue (or other structural 

components such as metals or water molecules) are 0, proper parameters were likely not 

assigned. Specific errors in partial charge assignment can be found in working/OUTPARM.

Docking

Section 3, Step 38A(ii)—The DOCK executable ($DOCKBASE/docking/DOCK/bin/

dock64) will only read a file called INDOCK.

Section 4, Step 64—If ligands dock in poses far from the binding pocket, visualize 

the matching spheres to ensure they occupy the same area as the xtal-lig. The 
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matching_spheres.sph file in the dockfiles directory contains the set of matching 

spheres. To view this file in a protein visualization application, they first must be converted 

to a pdb file.

csh $DOCKBASE/proteins/showsphere/doshowsph.csh matching_spheres.sph 

1 matching_spheres.pdb

Input: matching_spheres.sph

Output: matching_spheres.pdb

The output file, matching_spheres.pdb, can be visualized with the receptor and ligand in 

either Chimera or PyMOL. The matching spheres should align to the ligand’s heavy atoms, 

and additional random spheres should be scattered around the ligand as in Fig. 7a.

If many ligands fail to dock (>50%), a number of issues may be at fault. It is common 

for 10–20% of ligands to fail to dock in retrospective calculations because of mismatches 

between the pocket and ligand properties. In the OUTDOCK file, two common statements may 

indicate these issues: ‘Grids too small’ and ‘Skip size’. The ‘Grids too small’ 

statement indicates that the ligands do not fit in the binding pocket. The ‘Skip size’ 

statement is used when the number of atoms in the ligand exceeds the atom_maximum value 

in the INDOCK file. Adjusting this number to a higher value will ensure that larger ligands 

will be docked and scored. If the OUTDOCK file shows many compounds getting scored but 

the poses are not being saved, the mol2_maximum_cutoff value may be too stringent. 

Relaxing this term will save more poses, but be careful to not go too high as the size of 

the output files will correspondingly increase and may be an issue for disk storage capacity. 

Additional INDOCK parameters can be adjusted according to the INDOCK Guide available in 

the Supplementary Information.

Anticipated results

At the end of this protocol, a receptor will have been converted into a dock-readable binding 

pocket, the system optimized on retrospective control calculations, and the system screened 

prospectively against a large chemical library. While this protocol has been specific to a 

single target that yielded successful results13, we have equally applied this protocol to a 

number of targets with general success demonstrating its broad applicability12,83,118. We 

have attempted to curate all of the relevant steps, though expert intuition brought by each 

user for their target will result in a different selection of final hits for purchase. For these 

intuition-based steps, we recommend multiple people review the data before making the 

final decision regarding which compounds to buy.

If none of the purchased compounds demonstrates activity at the target of interest as 

determined experimentally, there remain several reasons for failure, including:

• The calculations were performed using the wrong conformation of the binding 

pocket
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• The compound library did not contain enough examples of the class of 

compound most likely to dock

• Retrospective optimization was not possible due to lack of known chemical 

matter

• The experimental structure contained ambiguities inside chain or loop placement 

due to poor electron density or refinement errors

• Incorrect or low-quality homology model

For example, targets that bind dianions or dications will suffer from much smaller library 

sizes, while targets that bind large protein ligands may be difficult to modulate with small 

molecules. As in experimental biology, no set of retrospective controls will ever guarantee 

prospective success, and the many approximations in docking ensure that we still measure 

success by hit rates.

Nevertheless, these controls and optimization steps can reduce obvious sources of failure, 

and allow one to better design a subsequent campaign. The experience of the field by now 

suggests that the approach is likely enough to succeed to be worth the investment, while the 

novel ligands that result can bring genuinely new biological insight to a field, a longstanding 

goal of the structure-based enterprise.

Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

An example set of files used in this protocol, including ligand and decoy sets, default 

docking grids and optimized docking grids, can be downloaded from http://files.docking.org/

dock/mt1_protocol.tar.gz. The example dataset uses the MT1 structure (PDB: 6ME3) co-

crystallized with 2-phenylmelatonin.

Software availability

DOCK3.7 can be downloaded after applying for a license from http://dock.docking.org/

Online_Licensing/index.htm. Licenses are free for nonprofit research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This work was supported by NIH grants R35GM122481 (to B.K.S.) and GM133836 (to J.J.I.). J.C. was supported 
by grants from the Swedish Research Council (2017-04676) and the European Research Council (ERC) under the 
European Union’s Horizon 2020 research and innovation programme (grant agreement: 715052). B.J.B. was partly 
supported by an NIH NRSA fellowship F32GM136062. C.M.W. was partly supported by the National Institutes of 
Health Training Grant T32 GM007175, NSF GRFP and UCSF Discovery Fellowship. We thank members of the 
Shoichet lab for feedback on the procedures described.

Bender et al. Page 32

Nat Protoc. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://files.docking.org/dock/mt1_protocol.tar.gz
http://files.docking.org/dock/mt1_protocol.tar.gz
http://dock.docking.org/Online_Licensing/index.htm
http://dock.docking.org/Online_Licensing/index.htm


References

1. Mayr LM & Bojanic D Novel trends in high-throughput screening. Curr. Opin. Pharmacol 9, 580–
588 (2009). [PubMed: 19775937] 

2. Keserü GM & Makara GM The influence of lead discovery strategies on the properties of drug 
candidates. Nat. Rev. Drug Discov 8, 203–212 (2009). [PubMed: 19247303] 

3. Keiser MJ, Irwin JJ & Shoichet BK The chemical basis of pharmacology. Biochemistry 49, 10267–
10276 (2010). [PubMed: 21058655] 

4. Bohacek RS, McMartin C & Guida WC The art and practice of structure-based drug design: a 
molecular modeling perspective. Med. Res. Rev 16, 3–50 (1996). [PubMed: 8788213] 

5. Brenner S & Lerner RA Encoded combinatorial chemistry. Proc. Natl Acad. Sci. USA 89, 5381–
5383 (1992). [PubMed: 1608946] 

6. Fitzgerald PR & Paegel BM DNA-encoded chemistry: drug discovery from a few good reactions. 
Chem. Rev 10.1021/acs.chemrev.0c00789 (2020).

7. Grebner C et al. Virtual screening in the Cloud: how big is big enough? J. Chem. Inf. Model 60, 24 
(2020).

8. Davies EK, Glick M, Harrison KN & Richards WG Pattern recognition and massively distributed 
computing. J. Comput. Chem 23, 1544–1550 (2002). [PubMed: 12395423] 

9. Sterling T & Irwin JJ ZINC 15—ligand discovery for everyone. J. Chem. Inf. Model 55, 2324–2337 
(2015). [PubMed: 26479676] 

10. Patel H et al. SAVI, in silico generation of billions of easily synthesizable compounds through 
expert-system type rules. Sci. Data 7, 384 (2020). [PubMed: 33177514] 

11. Grygorenko OO et al. Generating multibillion chemical space of readily accessible screening 
compounds. iScience 23, 101681 (2020). [PubMed: 33145486] 

12. Lyu J et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 
(2019). [PubMed: 30728502] 

13. Stein RM et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. 
Nature 579, 609–614 (2020). [PubMed: 32040955] 

14. Gorgulla C et al. An open-source drug discovery platform enables ultra-large virtual screens. 
Nature 580, 663 (2020). [PubMed: 32152607] 

15. Meng EC, Shoichet BK & Kuntz ID Automated docking with grid-based energy evaluation. J. 
Comput. Chem 13, 505–524 (1992).

16. Sharp KA, Friedman RA, Misra V, Hecht J & Honig B Salt effects on polyelectrolyte-
ligand binding: comparison of Poisson–Boltzmann, and limiting law/counterion binding models. 
Biopolymers 36, 245–262 (1995). [PubMed: 7492748] 

17. Mysinger MM & Shoichet BK Rapid context-dependent ligand desolvation in molecular docking. 
J. Chem. Inf. Model 50, 1561–1573 (2010). [PubMed: 20735049] 

18. Adeshina YO, Deeds EJ & Karanicolas J Machine learning classification can reduce false positives 
in structure-based virtual screening. Proc. Natl Acad. Sci. USA 117, 18477–18488 (2020). 
[PubMed: 32669436] 

19. Irwin JJ & Shoichet BK Docking screens for novel ligands conferring new biology. J. Med. Chem 
59, 4103–4120 (2016). [PubMed: 26913380] 

20. Mobley DL & Dill KA Binding of small-molecule ligands to proteins: “what you see” is not 
always “what you get. Structure 17, 489–498 (2009). [PubMed: 19368882] 

21. Bissantz C, Folkers G & Rognan D Protein-based virtual screening of chemical databases. 1. 
Evaluation of different docking/scoring combinations. J. Med. Chem 43, 4759–4767 (2000). 
[PubMed: 11123984] 

22. Tirado-Rives J & Jorgensen WL Contribution of conformer focusing to the uncertainty in 
predicting free energies for protein-ligand binding. J. Med. Chem 49, 5880–5884 (2006). 
[PubMed: 17004703] 

23. Trott O & Olson AJ AutoDock Vina: improving the speed and accuracy of docking with a new 
scoring function, efficient optimization, and multithreading. J. Comput. Chem 31, 455–461 (2009).

Bender et al. Page 33

Nat Protoc. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



24. Kramer B, Rarey M & Lengauer T Evaluation of the FLEXX incremental construction algorithm 
for protein-ligand docking. Proteins 37, 228–241 (1999). [PubMed: 10584068] 

25. Halgren TA et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment 
factors in database screening. J. Med. Chem 47, 1750–1759 (2004). [PubMed: 15027866] 

26. Morris GM et al. Automated docking using a Lamarckian genetic algorithm and an empirical 
binding free energy function. J. Comput. Chem 19, 1639–1662 (1998).

27. Abagyan R, Totrov M & Kuznetsov D ICM—a new method for protein modeling and design: 
applications to docking and structure prediction from the distorted native conformation. J. Comput. 
Chem 15, 488–506 (1994).

28. Goodsell DS & Olson AJ Automated docking of substrates to proteins by simulated annealing. 
Proteins 8, 195–202 (1990). [PubMed: 2281083] 

29. Mcgann M FRED pose prediction and virtual screening accuracy. J. Chem. Inf. Model 51, 578–596 
(2011). [PubMed: 21323318] 

30. Jones G, Willett P, Glen RC, Leach AR & Taylor R Development and validation of a genetic 
algorithm for flexible docking. J. Mol. Biol 267, 727–748 (1997). [PubMed: 9126849] 

31. Corbeil CR, Williams CI & Labute P Variability in docking success rates due to dataset 
preparation. J. Comput. Aided Mol. Des 26, 775–786 (2012). [PubMed: 22566074] 

32. McGovern SL & Shoichet BK Information decay in molecular docking screens against Holo, 
Apo, and modeled conformations of enzymes. J. Med. Chem 46, 2895–2907 (2003). [PubMed: 
12825931] 

33. Rueda M, Bottegoni G & Abagyan R Recipes for the selection of experimental protein 
conformations for virtual screening. J. Chem. Inf. Model 50, 186–193 (2010). [PubMed: 
20000587] 

34. Kuntz ID, Blaney JM, Oatley SJ, Langridge R & Ferrin TE A geometric approach to 
macromolecule-ligand interactions. J. Mol. Biol 161, 269–288 (1982). [PubMed: 7154081] 

35. Halgren TA Identifying and characterizing binding sites and assessing druggability. J. Chem. Inf. 
Model 49, 377–389 (2009). [PubMed: 19434839] 

36. Ngan CH et al. FTMAP: extended protein mapping with user-selected probe molecules. Nucleic 
Acids Res. 40, W271–W275 (2012). [PubMed: 22589414] 

37. Wang S et al. D4 dopamine receptor high-resolution structures enable the discovery of selective 
agonists. Science 358, 381–386 (2017). [PubMed: 29051383] 

38. Katritch V et al. Structure-based discovery of novel chemotypes for adenosine A(2A) receptor 
antagonists. J. Med. Chem 53, 1799 (2010). [PubMed: 20095623] 

39. Kolb P et al. Structure-based discovery of beta2-adrenergic receptor ligands. Proc. Natl Acad. Sci. 
USA 106, 6843–6848 (2009). [PubMed: 19342484] 

40. De Graaf C et al. Crystal structure-based virtual screening for fragment-like ligands of the human 
histamine H 1 receptor. J. Med. Chem 54, 8195–8206 (2011). [PubMed: 22007643] 

41. Mysinger MM et al. Structure-based ligand discovery for the protein–protein interface of 
chemokine receptor CXCR4. Proc. Natl Acad. Sci. USA 109, 5517–5522 (2012). [PubMed: 
22431600] 

42. Powers RA, Morandi F & Shoichet BK Structure-based discovery of a novel, noncovalent inhibitor 
of AmpC β-lactamase. Structure 10, 1013–1023 (2002). [PubMed: 12121656] 

43. Zarzycka B et al. Discovery of small molecule CD40–TRAF6 inhibitors. J. Chem. Inf. Model 55, 
294–307 (2015). [PubMed: 25622654] 

44. Huang N & Shoichet BK Exploiting ordered waters in molecular docking. J. Med. Chem 51, 
4862–4865 (2008). [PubMed: 18680357] 

45. Balius TE et al. Testing inhomogeneous solvation theory in structure-based ligand discovery. Proc. 
Natl Acad. Sci. USA 114, E6839–E6846 (2017). [PubMed: 28760952] 

46. Weichenberger CX & Sippl MJ NQ-Flipper: recognition and correction of erroneous asparagine 
and glutamine side-chain rotamers in protein structures. Nucleic Acids Res. 35, W403–W406 
(2007). [PubMed: 17478502] 

Bender et al. Page 34

Nat Protoc. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



47. Word JM, Lovell SC, Richardson JS & Richardson DC Asparagine and glutamine: using hydrogen 
atom contacts in the choice of side-chain amide orientation. J. Mol. Biol 285, 1735–1747 (1999). 
[PubMed: 9917408] 

48. Sastry GM, Adzhigirey M, Day T, Annabhimoju R & Sherman W Protein and ligand preparation: 
parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des 
27, 221–234 (2013). [PubMed: 23579614] 

49. Bas DC, Rogers DM & Jensen JH Very fast prediction and rationalization of pKa values for 
protein–ligand complexes. Proteins 73, 765–783 (2008). [PubMed: 18498103] 

50. Pettersen EF et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. 
Comput. Chem 25, 1605–1612 (2004). [PubMed: 15264254] 

51. Bandyopadhyay D, Bhatnagar A, Jain S & Pratyaksh P Selective stabilization of aspartic acid 
protonation state within a given protein conformation occurs via specific “molecular association”. 
J. Phys. Chem. B 124, 5350–5361 (2020). [PubMed: 32484348] 

52. Webb B & Sali A Comparative protein structure modeling using MODELLER. Curr. Protoc. 
Bioinformatics 54, 5.6.1–5.6.37 (2016).

53. Bender BJ et al. Protocols for molecular modeling with Rosetta3 and RosettaScripts. Biochemistry 
55, 4748–4763 (2016). [PubMed: 27490953] 

54. Yang J et al. Template-based protein structure prediction in CASP11 and retrospect of I-TASSER 
in the last decade. Proteins 84, 233–246 (2016). [PubMed: 26343917] 

55. Jaiteh M, Rodríguez-Espigares I, Selent J & Carlsson J Performance of virtual screening against 
GPCR homology models: impact of template selection and treatment of binding site plasticity. 
PLoS Comput. Biol 16, e1007680 (2020). [PubMed: 32168319] 

56. Cavasotto CN et al. Discovery of novel chemotypes to a G-protein-coupled receptor through 
ligand-steered homology modeling and structure-based virtual screening. J. Med. Chem 51, 581–
588 (2008). [PubMed: 18198821] 

57. Phatak SS, Gatica EA & Cavasotto CN Ligand-steered modeling and docking: a benchmarking 
study in class A G-protein-coupled receptors. J. Chem. Inf. Model 50, 2119–2128 (2010). 
[PubMed: 21080692] 

58. Kaufmann KW & Meiler J Using RosettaLigand for small molecule docking into comparative 
models. PLoS One 7, e50769 (2012). [PubMed: 23239984] 

59. Bordogna A, Pandini A & Bonati L Predicting the accuracy of protein–ligand docking on 
homology models. J. Comput. Chem 32, 81–98 (2011). [PubMed: 20607693] 

60. Katritch V, Rueda M, Lam PC-H, Yeager M & Abagyan R GPCR 3D homology models for ligand 
screening: lessons learned from blind predictions of adenosine A2a receptor complex. Proteins 78, 
197–211 (2010). [PubMed: 20063437] 

61. Schafferhans A & Klebe G Docking ligands onto binding site representations derived from proteins 
built by homology modelling. J. Mol. Biol 307, 407–427 (2001). [PubMed: 11243828] 

62. Lansu K et al. In silico design of novel probes for the atypical opioid receptor MRGPRX2. Nat. 
Chem. Biol 13, 529–536 (2017). [PubMed: 28288109] 

63. Huang X-P et al. Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65. 
Nature 527, 477–483 (2015). [PubMed: 26550826] 

64. Trauelsen M et al. Receptor structure-based discovery of non-metabolite agonists for the succinate 
receptor GPR91. Mol. Metab 6, 1585–1596 (2017). [PubMed: 29157600] 

65. Kolb P et al. Limits of ligand selectivity from docking to models: in silico screening for A1 
adenosine receptor antagonists. PLoS One 7, e49910 (2012). [PubMed: 23185482] 

66. Daga PR, Polgar WE & Zaveri NT Structure-based virtual screening of the nociceptin receptor: 
hybrid docking and shape-based approaches for improved hit identification. J. Chem. Inf. Model 
54, 2732–2743 (2014). [PubMed: 25148595] 

67. Diaz C et al. A strategy combining differential low-throughput screening and virtual screening 
(DLS-VS) accelerating the discovery of new modulators for the Orphan GPR34 receptor. Mol. Inf 
32, 213–229 (2013).

68. Langmead CJ et al. Identification of novel adenosine A 2A receptor antagonists by virtual 
screening. J. Med. Chem 55, 1904–1909 (2012). [PubMed: 22250781] 

Bender et al. Page 35

Nat Protoc. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



69. Tikhonova IG et al. Discovery of novel agonists and antagonists of the free fatty acid receptor 1 
(FFAR1) using virtual screening. J. Med. Chem 51, 625–633 (2008). [PubMed: 18193825] 

70. Martí-Solano M, Schmidt D, Kolb P & Selent J Drugging specific conformational states of 
GPCRs: challenges and opportunities for computational chemistry. Drug Discov. Today 21, 625–
631 (2016). [PubMed: 26821135] 

71. Carlsson J et al. Ligand discovery from a dopamine D3 receptor homology model and crystal 
structure. Nat. Chem. Biol 7, 769–778 (2011). [PubMed: 21926995] 

72. Männel B et al. Structure-guided screening for functionally selective D2 dopamine receptor ligands 
from a virtual chemical library. ACS Chem. Biol 12, 2652–2661 (2017). [PubMed: 28846380] 

73. Khare P et al. Identification of novel S-adenosyl-L-homocysteine hydrolase inhibitors through 
homology-model-based virtual screening, synthesis, and biological evaluation. J. Chem. Inf. 
Model 52, 777–791 (2012). [PubMed: 22324915] 

74. Li S et al. Identification of inhibitors against p90 ribosomal S6 kinase 2 (RSK2) through structure-
based virtual screening with the inhibitor-constrained refined homology model. J. Chem. Inf. 
Model 51, 2939–2947 (2011). [PubMed: 21995341] 

75. Eberini I et al. In silico identification of new ligands for GPR17: a promising therapeutic target for 
neurodegenerative diseases. J. Comput. Aided Mol. Des 25, 743–752 (2011). [PubMed: 21744154] 

76. Frimurer TM et al. Model-based discovery of synthetic agonists for the Zn2+-sensing G-protein-
coupled receptor 39 (GPR39) reveals novel biological functions. J. Med. Chem 60, 886–898 
(2017). [PubMed: 28045522] 

77. Mysinger MM, Carchia M, Irwin JJ & Shoichet BK Directory of Useful Decoys, Enhanced 
(DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem 55, 6 (2012).

78. Stein RM et al. Property-unmatched decoys in docking benchmarks. J. Chem. Inf. Model 61, 
699–714 (2020).

79. Coleman RG, Carchia M, Sterling T, Irwin JJ & Shoichet BK Ligand pose and orientational 
sampling in molecular docking. PLoS One 8, e75992 (2013). [PubMed: 24098414] 

80. Huang N, Shoichet BK & Irwin JJ Benchmarking sets for molecular docking. J. Med. Chem 49, 
6789–6801 (2006). [PubMed: 17154509] 

81. Jain AN & Nicholls A Recommendations for evaluation of computational methods. J. Comput. 
Aided Mol. Des 22, 133–139 (2008). [PubMed: 18338228] 

82. Allen WJ & Rizzo RC Implementation of the Hungarian algorithm to account for ligand symmetry 
and similarity in structure-based design. J. Chem. Inf. Model 54, 518–529 (2014). [PubMed: 
24410429] 

83. Schuller M et al. Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through 
crystallographic screening and computational docking. Sci. Adv 7, eabf8711 (2021). [PubMed: 
33853786] 

84. Fischer A, Smieško M, Sellner M & Lill MA Decision making in structure-based drug discovery: 
visual inspection of docking results. J. Med. Chem 64, 2489–2500 (2021). [PubMed: 33617246] 

85. Kirchmair J et al. Predicting drug metabolism: experiment and/or computation? Nat. Rev. Drug 
Discov 14, 387–404 (2015). [PubMed: 25907346] 

86. Kirchmair J et al. Computational prediction of metabolism: sites, products, SAR, P450 enzyme 
dynamics, and mechanisms. J. Chem. Inf. Model 52, 617–648 (2012). [PubMed: 22339582] 

87. Irwin JJ et al. An aggregation advisor for ligand discovery. J. Med. Chem 58, 7076–7087 (2015). 
[PubMed: 26295373] 

88. Bemis GW & Murcko MA The properties of known drugs. 1. Molecular frameworks. J. Med. 
Chem 39, 2887–2893 (1996). [PubMed: 8709122] 

89. Jadhav A et al. Quantitative analyses of aggregation, autofluorescence, and reactivity artifacts in a 
screen for inhibitors of a thiol protease. J. Med. Chem 53, 37–51 (2010). [PubMed: 19908840] 

90. Capuzzi SJ, Muratov EN & Tropsha A Phantom PAINS: problems with the utility of alerts 
for Pan-Assay Interference Compound S. J. Chem. Inf. Model 57, 417–427 (2017). [PubMed: 
28165734] 

Bender et al. Page 36

Nat Protoc. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



91. Baell JB & Holloway GA New substructure filters for removal of pan assay interference 
compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem 
53, 2719–2740 (2010). [PubMed: 20131845] 

92. McGovern SL, Caselli E, Grigorieff N & Shoichet BK A common mechanism underlying 
promiscuous inhibitors from virtual and high-throughput screening. J. Med. Chem 45, 1712–1722 
(2002). [PubMed: 11931626] 

93. Feng BY et al. A high-throughput screen for aggregation-based inhibition in a large compound 
library. J. Med. Chem 50, 2385–2390 (2007). [PubMed: 17447748] 

94. Ganesh AN et al. Colloidal drug aggregate stability in high serum conditions and pharmacokinetic 
consequence. ACS Chem. Biol 14, 751–757 (2019). [PubMed: 30840432] 

95. Coan KED & Shoichet BK Stoichiometry and physical chemistry of promiscuous aggregate-based 
inhibitors. J. Am. Chem. Soc 130, 9606–9612 (2008). [PubMed: 18588298] 

96. Coan KED, Maltby DA, Burlingame AL & Shoichet BK Promiscuous aggregate-based inhibitors 
promote enzyme unfolding. J. Med. Chem 52, 2067–2075 (2009). [PubMed: 19281222] 

97. Wolan DW, Zorn JA, Gray DC & Wells JA Small-molecule activators of a proenzyme. Science 
326, 853–858 (2009). [PubMed: 19892984] 

98. Zorn JA, Wolan DW, Agard NJ & Wells JA Fibrils colocalize caspase-3 with procaspase-3 to foster 
maturation. J. Biol. Chem 287, 33781–33795 (2012). [PubMed: 22872644] 

99. Irwin JJ et al. ZINC20—a free ultralarge-scale chemical database for ligand discovery. J. Chem. 
Inf. Model 60, 6065–6073 (2020). [PubMed: 33118813] 

100. Teotico DG et al. Docking for fragment inhibitors of AmpC -lactamase. Proc. Natl Acad. Sci. 
USA 106, 7455–7460 (2009). [PubMed: 19416920] 

101. Chen Y & Shoichet BK Molecular docking and ligand specificity in fragment-based inhibitor 
discovery. Nat. Chem. Biol 5, 358–364 (2009). [PubMed: 19305397] 

102. Kolb P & Irwin JJ Docking screens: right for the right reasons? Curr. Top. Med. Chem 9, 755–770 
(2009). [PubMed: 19754393] 

103. Wu Y, Lou L & Xie Z-R A pilot study of all-computational drug design protocol–from structure 
prediction to interaction analysis. Front. Chem 8, 81 (2020). [PubMed: 32117898] 

104. Greenidge PA, Kramer C, Mozziconacci JC & Sherman W Improving docking results via 
reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-
GBSA. J. Chem. Inf. Model 54, 2697–2717 (2014). [PubMed: 25266271] 

105. Mahmoud AH, Masters MR, Yang Y & Lill MA Elucidating the multiple roles of hydration 
for accurate protein-ligand binding prediction via deep learning. Commun. Chem 3, 19 (2020). 
[PubMed: 36703428] 

106. Liu X et al. An allosteric modulator binds to a conformational hub in the β2 adrenergic receptor. 
Nat. Chem. Biol 16, 749–755 (2020). [PubMed: 32483378] 

107. Wacker D et al. Conserved binding mode of human β 2 adrenergic receptor inverse agonists 
and antagonist revealed by X-ray crystallography. J. Am. Chem. Soc 132, 11443–11445 (2010). 
[PubMed: 20669948] 

108. Manglik A et al. Structure-based discovery of opioid analgesics with reduced side effects. Nature 
537, 185–190 (2016). [PubMed: 27533032] 

109. Ewing TJA & Kuntz ID Critical evaluation of search algorithms for automated molecular docking 
and database screening. J. Comput. Chem 18, 1175–1189 (1997).

110. Gallagher K & Sharp K Electrostatic contributions to heat capacity changes of DNA-ligand 
binding. Biophys. J 75, 769–776 (1998). [PubMed: 9675178] 

111. Wei BQ, Baase WA, Weaver LH, Matthews BW & Shoichet BK A model binding site for testing 
scoring functions in molecular docking. J. Mol. Biol 322, 339–355 (2002). [PubMed: 12217695] 

112. Leaver-Fay A et al. Rosetta3. in Methods in Enzymology 545–574 (2011); 10.1016/
B978-0-12-381270-4.00019-6 [PubMed: 21187238] 

113. Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R & Sherman W Protein and ligand 
preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. 
Aided Mol. Des 27, 221–234 (2013). [PubMed: 23579614] 

Bender et al. Page 37

Nat Protoc. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



114. Armstrong JF et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2020: extending 
immunopharmacology content and introducing the IUPHAR/MMV Guide to MALARIA 
PHARMACOLOGY. Nucleic Acids Res. 48, D1006–D1021 (2019).

115. Mendez D et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 47, 
D930–D940 (2019). [PubMed: 30398643] 

116. Irwin JJ, Raushel FM & Shoichet BK Virtual screening against metalloenzymes for inhibitors and 
substrates. Biochemistry 44, 12316–12328 (2005). [PubMed: 16156645] 

117. Verdonk ML et al. Virtual screening using protein—ligand docking: avoiding artificial 
enrichment. J. Chem. Inf. Comput. Sci 44, 793–806 (2004). [PubMed: 15154744] 

118. Alon A et al. Crystal structures of the σ 2 receptor template large-library docking for selective 
chemotypes active in vivo. Preprint at bioRxiv 10.1101/2021.04.29.441652 (2021).

119. Babaoglu K et al. Comprehensive mechanistic analysis of hits from high-throughput and docking 
screens against β-lactamase. J. Med. Chem 51, 2502–2511 (2008). [PubMed: 18333608] 

120. Lorber DM & Shoichet BK Flexible ligand docking using conformational ensembles. Protein Sci. 
7, 938–950 (1998). [PubMed: 9568900] 

121. Alhossary A, Handoko SD, Mu Y & Kwoh C-K Fast, accurate, and reliable molecular docking 
with QuickVina 2. Bioinformatics 31, 2214–2216 (2015). [PubMed: 25717194] 

122. Quiroga R & Villarreal MA Vinardo: a scoring function based on Autodock Vina improves 
scoring, docking, and virtual screening. PLoS One 11, e0155183 (2016). [PubMed: 27171006] 

123. Bottegoni G, Kufareva I, Totrov M & Abagyan R Four-dimensional docking: a fast and accurate 
account of discrete receptor flexibility in ligand docking. J. Med. Chem 52, 397–406 (2009). 
[PubMed: 19090659] 

124. Cho Y, Ioerger TR & Sacchettini JC Discovery of novel nitrobenzothiazole inhibitors for 
Mycobacterium tuberculosis ATP phosphoribosyl transferase (HisG) through virtual screening. J. 
Med. Chem 51, 5984–5992 (2008). [PubMed: 18778048] 

125. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW & Taylor RD Improved protein–ligand 
docking using GOLD. Proteins 52, 609–623 (2003). [PubMed: 12910460] 

126. Li C et al. Identification of diverse dipeptidyl peptidase IV inhibitors via structure-based virtual 
screening. J. Mol. Model 18, 4033–4042 (2012). [PubMed: 22460522] 

127. Friesner RA et al. Extra precision glide: docking and scoring incorporating a model of 
hydrophobic enclosure for protein-ligand complexes. J. Med. Chem 49, 6177–6196 (2006). 
[PubMed: 17034125] 

128. Rai BK et al. Comprehensive assessment of torsional strain in crystal structures of small 
molecules and protein–ligand complexes using ab initio calculations. J. Chem. Inf. Model 59, 
4195–4208 (2019). [PubMed: 31573196] 

129. Groom CR, Bruno IJ, Lightfoot MP & Ward SC The Cambridge structural database. Acta 
Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater 72, 171–179 (2016).

130. Gu S, Smith MS, Yang Y, Irwin JJ & Shoichet BK Ligand strain energy in large library docking. 
Preprint at bioRxiv 10.1101/2021.04.06.438722 (2021).

131. Xing L, Klug-Mcleod J, Rai B & Lunney EA Kinase hinge binding scaffolds and their hydrogen 
bond patterns. Bioorg. Med. Chem 23, 6520–6527 (2015). [PubMed: 26358279] 

132. Peng Y et al. 5-HT2C receptor structures reveal the structural basis of GPCR polypharmacology. 
Cell 172, 719–730.e14 (2018). [PubMed: 29398112] 

133. Bissantz C, Kuhn B & Stahl M A medicinal chemist’s guide to molecular interactions. J. Med. 
Chem 53, 5061–5084 (2010). [PubMed: 20345171] 

134. Rogers D & Hahn M Extended-connectivity fingerprints. J. Chem. Inf. Model 50, 742–754 
(2010). [PubMed: 20426451] 

135. Alexander N, Woetzel N & Meiler J Bcl::Cluster: a method for clustering biological molecules 
coupled with visualization in the Pymol Molecular Graphics System. in 2011 IEEE 1st 
International Conference on Computational Advances in Bio and Medical Sciences (ICCABS) 
2011, 13–18 (IEEE, 2011).

Bender et al. Page 38

Nat Protoc. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



136. Bender A & Glen RC A discussion of measures of enrichment in virtual screening: comparing the 
information content of descriptors with increasing levels of sophistication. J. Chem. Inf. Model 
45, 1369–1375 (2005). [PubMed: 16180913] 

137. Simeonov A et al. Fluorescence spectroscopic profiling of compound libraries. J. Med. Chem 51, 
2363–2371 (2008). [PubMed: 18363325] 

138. Lea WA & Simeonov A Fluorescence polarization assays in small molecule screening. Expert 
Opin. Drug Disco 6, 17–32 (2011).

139. Thorne N, Auld DS & Inglese J Apparent activity in high-throughput screening: origins of 
compound-dependent assay interference. Curr. Opin. Chem. Biol 14, 315–324 (2010). [PubMed: 
20417149] 

140. Walters WP & Namchuk M Designing screens: how to make your hits a hit. Nat. Rev. Drug 
Discov 2, 259–266 (2003). [PubMed: 12669025] 

141. Thorne N et al. Firefly luciferase in chemical biology: a compendium of inhibitors, mechanistic 
evaluation of chemotypes, and suggested use as a reporter. Chem. Biol 19, 1060–1072 (2012). 
[PubMed: 22921073] 

142. Sassano MF, Doak AK, Roth BL & Shoichet BK Colloidal aggregation causes inhibition of G 
protein-coupled receptors. J. Med. Chem 56, 2406–2414 (2013). [PubMed: 23437772] 

143. Owen SC, Doak AK, Wassam P, Shoichet MS & Shoichet BK Colloidal aggregation affects the 
efficacy of anticancer drugs in cell culture. ACS Chem. Biol 7, 1429–1435 (2012). [PubMed: 
22625864] 

144. McLaughlin CK et al. Stable colloidal drug aggregates catch and release active enzymes. ACS 
Chem. Biol 11, 992–1000 (2016). [PubMed: 26741163] 

145. McGovern SL & Shoichet BK Kinase inhibitors: not just for kinases anymore. J. Med. Chem 46, 
1478–1483 (2003). [PubMed: 12672248] 

Bender et al. Page 39

Nat Protoc. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 1 ∣

Control experiments to identify false positives among 

tested compounds
Mechanism Structural alert Control experiments

Covalent
Useful if sought, but 
if unintended are an 
artifact

Presence of an 
electrophile (e.g., 
Michael acceptor, α-
halo-ketone, activated 
nitrile)

Incubation of ligand with the target typically 
increases activity. For soluble proteins, pre-
incubate ligand and target at a concentration 
higher than the EC50, and then dilute to below 
the EC50. If irreversible, activity will reflect 
the pre-incubation concentration. If reversible, 
ligand activity will diminish over time

Redox cycling Almost 
always an artifact

Several chemotypes 
(e.g., rhodanines)

Test in the presence and absence of a reductant 
or radical trap, like β-mercaptoenthanol or 
ascorbic acid

Spectroscopic 
interference Assay 
disruption via 
light absorption or 
fluorescence137-140, or 
inhibition of a 
reporter enzyme, like 
luciferase141

Multiple chemotypes, 
often highly conjugated

Spectroscopic interference will change linearly 
with compound concentration, following 
Beer’s law, rather than sigmoidally as in a 
binding isotherm. Molecules that might be 
inhibiting a reporter enzyme used in the assay 
(e.g., luciferase) may be tested for inhibition 
against it

Colloidal aggregation 
Likely the most 
common single 
mechanism of artifact in 
early discovery

Multiple chemotypes. It 
is difficult to predict 
which compounds will 
aggregate. LogP > 3.5 
and similarity to known 
aggregators can capture 
some of these, but many 
will be missed (http://
advisor.bkslab.org/)

Run the assay in the presence and absence of 
a non-ionic detergent like Triton X-100 (for 
soluble proteins) or Tween-80 (for cellular 
assays). Right shifts of two- to threefold 
or greater in EC50 on detergent addition 
suggest compound aggregation. Detergent 
solutions should be made fresh daily. Control 
for the effect of the detergent on a well-
behaved, nonaggregating ligand, which should 
be unaffected93,142,143

Test for the formation of particles >30 nm in 
radii by dynamic light scattering92,144

For assays that will not tolerate detergent, an 
inert protein can be added to prophylactically 
coat the colloids, protecting the assayed target 
from adsorption. BSA is commonly used, 
though most inert soluble proteins will work. 
The inert protein should be present in mg/mL 
concentrations92,95

Colloids are liquid droplets of pure compound, 
and can typically be pelleted in a microfuge 
after a 20 min spin at low temperature. Draw 
off the supernatant and test for activity—if it 
is much reduced, the compound is likely an 
aggregator32,96

As with covalent inhibitors, pre-incubation 
typically increases the activity of a colloidal 
aggregator. Unlike covalent inhibitors, 
incubation at higher enzyme concentrations 
will typically slow the onset of aggregate-
based inhibition, eventually eliminating it 
almost entirely92

Counter-screen against unrelated off-target 
model enzymes, with and without 
detergent. Common enzymes include malate 
dehydrogenase (commercially available) and 
AmpC β-lactamase (freely available from the 
authors)145
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Fig. 1 ∣. Large library docking workflow.
The two required inputs for such a screen are the target structure and a screening database. 

Prior to using the database, the target structure must be converted into a representation 

used by the docking software and the pocket should be optimized with control calculations 

using retrospective analysis on known actives. After the prospective library has been docked, 

top-ranked hits can be filtered and selected for experiment. Multiple assays and controls are 

typically necessary to confirm activity.
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Fig. 2 ∣. Enrichment of actives against decoys.
a, ROC curves for two models used for retrospective docking screens plotting the rate of 

true positives found against decoys found. The AUC can be used to describe the ability 

of the models to identify true positive, known ligands against a background of decoys. 

In this format, the two models have similar AUCs, suggesting similar performance. b, 

Semilogarithmic ROC curves focus on the early enrichment, i.e., determine if true positives 

are identified within the e.g. top 10% (gray area) of docked decoys. The LogAUC is 

calculated as the difference between the semilogarithmic AUC of the model and the random 

semilogarithmic AUC (dashed line). In this format, it is clear that model 2 outperforms 

model 1 in early enrichment with a LogAUC value more than double of model 1.
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Fig. 3 ∣. Control sets for retrospective docking calculations.
For DUDE-Z decoys, properties of the decoys are either forced to match (green) or be 

different (red). Properties that are neither selected for or against are highlighted in yellow. In 

the Extrema set, the charge state is explicitly sampled.
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Fig. 4 ∣. Suggested experimental validation of docking hits.
In general, a primary screen will use a limited number of compound concentrations to test 

for activity at a target. Compounds that pass a set threshold of activity in the primary screen 

will be moved forward to secondary confirmation of activity that is not attributed to colloidal 

aggregation. Identity of the compound should be confirmed if it passes these stages and 

before proceeding to optimization by stereoisomer purification, selection of analogs and/or 

experimental structure determination.
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Fig. 5 ∣. Outline of the procedure for DOCK3.7 virtual ligand discovery campaigns.
Collecting and preparing materials (blue) requires obtaining a structure or model and 

ligand control sets and setting them up for retrospective control calculations (yellow). 

In each control calculation, modifications may demand returning to a previous step and 

reoptimizing. In the absence of known actives for robust retrospective analysis, one may 

jump to testing the prospective performance with a small library. With a final setup, large-

scale prospective screening (orange) can proceed, followed by in vitro testing of docking 

hits (green). The numbers refer to steps described in the Procedure.
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Fig. 6 ∣. Controls for docking optimization.
a, The receptor (blue) is shown with the crystallized ligand (orange). Docked control actives 

are shown in green and yield similar poses and interactions as the crystal ligand. The two 

residues, Asn162 and Gln181, that have their dipoles artificially increased (‘polarized’) to 

enhance the weight of polar interactions are shown hydrogen bonding to the crystal ligand. 

b, A log-transformed ROC plot is shown comparing the rate of identifying ligands versus 

decoys. A random selection would follow the dashed black line. The area under this dashed 

line is subtracted from the values reported for LogAUC such that a curve above the line 

would have a positive LogAUC, a curve below the line would have a negative LogAUC, 

and a curve following the dashed line would yield a LogAUC value of zero. Shown are 

the curves for the default settings and optimized settings for either the DUDE-Z control 

set and the Extrema control set. In both cases, the overall LogAUC value increases and the 

early enrichment improves. c, The energy distribution breakdown shows the individual score 
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terms for each scored molecule in the docked setup. Based on this breakdown, it is clear 

that VDW interactions primarily drive ligand recognition. However, in the optimized setup 

in which electrostatic spheres with a radius of 1.9 that extend the dielectric boundary are 

used, the electrostatic score term shifts to more negative values. The desolvation spheres at 

the dielectric boundary in the optimized setup, with a radius of 0.1, have only minor effects 

on the ligand desolvation score term. d, In the Extrema challenge, the top-ranking ligands 

are plotted by their charge and DOCK score. In the Default settings, there is a preference 

for neutral ligands followed closely by monocations. The Optimized settings enhance the 

preference for neutrals.
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Fig. 7 ∣. Matching and dielectric boundary spheres drive changes to sampling and scoring in 
DOCK3.7.
a, the crystal ligand is shown as orange sticks in the receptor pocket (gray). Matching 

spheres derived from the coordinates of the crystal ligand are shown in yellow and remain 

fixed during sphere perturbation. Random spheres (blue) are calculated with the program 

SphGen, and a set of spheres are selected that are near the crystal ligand. In a matching 

sphere scan, only the random spheres are perturbed and a new set is obtained (green). b, the 

crystal ligand (orange) is again shown in the context of the receptor binding pocket (gray). 

Dielectric boundary spheres (cyan) cover the binding surface around the crystal ligand to 

alter the electrostatic or desolvation potentials at the boundary between solvent and protein.

Bender et al. Page 48

Nat Protoc. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8 ∣. Polarizing effects specific atoms’ electrostatic potential.
In contrast to global modifications to the electrostatic potential with the incorporation 

of thin spheres, polarizing allows for very specific modifications to a residue’s charge 

status. A canonical asparagine (ASN) from the prot.table.ambcrg.ambH file is shown 

with its polarized version ASM in which the carbonyl becomes more electronegative 

while the amide hydrogens become more electropositive to maintain the overall charge. 

The electrostatic potential corresponding to each atom is shown as spheres, with red 

corresponding to negative charge and blue corresponding to positive charge.
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Fig. 9 ∣. Navigating the ZINC20 Tranche Viewer.
Several options are available at http://zinc20.docking.org/tranches/home/ for selecting 

different subsets of ligands for virtual screening. Important criteria such as selecting 

between 2D/3D, purchasability, charge, molecular weight and logP are highlighted. To 

download compounds, different methods such as downloading as an index file or directly 

downloading with cURL and WGET are shown.
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