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Abstract

Robots must be able to communicate naturally and efficiently,
e.g., using concise referring forms like it, that, and the ⟨N’⟩.
Recently researchers have started working on Referring Form
Selection (RFS) machine learning algorithms but only evaluat-
ing them offline using traditional metrics like accuracy. In this
work, we investigated how a cognitive status-informed RFS
computational model might fare in actual human-robot inter-
actions in a human-subjects study (N=36). Results showed im-
provements over a random baseline in task performance, natu-
ralness, understandability, and mental workload. However, the
model was not perceived to outperform a simple, naive, non-
random baseline (constant use of indefinite noun phrases). We
contribute several key research directions for further develop-
ment of cognitive status-informed RFS models, the inclusion
of multi-modality, and further development of testbeds.

Keywords: cognitive status; referential choice; anaphora gen-
eration; natural language generation (NLG), human-robot in-
teraction (HRI)

Introduction
For language-capable robots to be genuinely helpful, they
must be able to communicate naturally and efficiently. When
generating descriptions of objects, locations, and people,
robots must be able to use not only full definite descriptions
(e.g., the medkit), but also more concise forms (e.g., or that
medkit, this, or it). Humans regularly and strategically use
them not only to express their intent more concisely, but also
to allow their interlocutors to more quickly and effectively
identify their target referents (Gundel et al., 1993).

However, these more concise referring forms are less well
studied than the long, deeply nested, descriptive phrases that
predominantly take center stage (Van Deemter, 2016; Krah-
mer & Van Deemter, 2012), particularly in the computational
Natural Language Generation (NLG) community and the ap-
plication domain of Human-Robot Interaction (HRI).

Instead, the focus was on higher-level decisions like what
intent the robot should convey (Tellex et al., 2013; Jackson
& Williams, 2022; Cakmak & Thomaz, 2012; Williams et
al., 2015; Gervits et al., 2021), or lower-level decisions like
the properties that should be included in definite descriptions,
i.e., Referring Expression Generation (Tellex et al., 2014;
Fang et al., 2015; Zender et al., 2009; Williams & Scheutz,
2017; Wallbridge et al., 2019; Doğan et al., 2019; Dogan &
Leite, 2020; Sarthou et al., 2021).

Yet Referring Form Selection (RFS) is an important first
step that robots must perform before considering including
descriptive content (Krahmer & Van Deemter, 2012). As
such, some researchers (Same & van Deemter, 2020; Pal et

Figure 1: In the human-subjects study, a Pepper robot was
teaching a participant to construct a building using instruc-
tions containing referring forms. In this work, we evaluated a
cognitive status-informed referring form selection model.

al., 2021; Chen et al., 2021; Han & Williams, 2022a; Spevak
et al., 2022) have begun working on this important intermedi-
ate task of selecting a referring form among a set of candidate
options. For example, Chen et al. (2021) used deep learning
end-to-end methods, while Same & van Deemter (2020) and
Pal et al. (2021) used feature-based machine learning compu-
tationally to model the mechanics of reference choices.

Pal et al. (2021)’s approach is of particular interest to this
work due to explainability and its use of the Givenness Hi-
erarchy theory with its constituent notion of Cognitive Sta-
tus (Gundel et al., 1993). The theory suggests that different
referring forms signal different cognitive statuses of objects
that speakers assume in the mind of their interlocutors (Rosa
& Arnold, 2011). For example, “this” signals that a speaker
believes that their target referent is at least activated in the
listener’s mind. This theory has been validated across a wide
range of languages with distinct origins (Gundel et al., 2010).

While Givenness Hierarchy theoretic approaches have
achieved good performance in machine learning metrics like
accuracy (Pal et al., 2021; Han & Williams, 2022a), they
are offline comparisons to human reference choices. These
models have not been evaluated in the context of live human-
robot interactions with a physically situated robot. As such,
it is unclear whether they will provide observable benefits in
real-world collaborative human-robot interaction tasks. Ad-
dressing this key research gap is critical, both to understand
whether and how these cognitive computational models im-
prove task performance and subjective perceptions of robots.

2012
In M. Goldwater, F. K. Anggoro, B. K. Hayes, & D. C. Ong (Eds.), Proceedings of the 45th Annual Conference of the Cognitive Science
Society. ©2023 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



In this work, we thus conducted a human-subjects study
(N=36) evaluating a cognitive status-informed RFS model.
Participants followed a robot’s instructions to perform a se-
ries of building construction tasks. The referring forms used
by the robot in its instructions were chosen using either the
model, a random baseline, or a simple indefinite noun ap-
proach. These models were compared on the basis of ob-
jective task performance (i.e., instruction completion time),
and participants’ subjective perceptions of naturalness, un-
derstandability, and mental workload.

Related Work
Linguistic Models of RFS
Although the process of RFS has been understudied in the
Computational Linguistics and HRI communities, it has been
studied extensively by linguists and psycholinguists.

A number of competing theories (e.g., Gundel et al., 1993;
Ariel, 2001) have been proposed to make different predic-
tions. These models fall into two classes: rational and prag-
matic selection models (Arnold & Zerkle, 2019). Rational
models seek to explain how speakers egocentrically decide
whether to use pronouns, e.g., for ease of production (Aylett
& Turk, 2004; Jaeger & Levy, 2006; Frank & Goodman,
2012; Mahowald et al., 2013). Pragmatic models seek to
explain how speakers allocentrically decide to use pronouns
based on their cognitive status within a discourse or conver-
sation, i.e., a mapping between cognitive representations and
referring forms (Brown, 1983; Brennan et al., 1987; Ariel,
1991; Grosz et al., 1995; Gundel et al., 1993; Ariel, 2001).

One notable pragmatic model is the Givenness Hierarchy
theory (Gundel et al., 1993). It suggests referring forms are
selected based on a nested set of six tiers of cognitive statuses:
{in focus ⊆ activated ⊆ familiar ⊆ uniquely identifiable ⊆
referential ⊆ type identifiable}. A referring form choice re-
lies on the cognitive status of the target referent in the mind of
the listener. For example, if “it” is used by a speaker to refer
to an entity, the listener can infer that the entity’s cognitive
status must be in focus. Similarly, when that ⟨N′⟩ is used, the
listener can infer that the entity is at least familiar, but may
also be activated or even in focus.

While these models are promising in predicting whether
a speaker chooses to use a definite noun phrase or a more
reduced form, neither category of models predicts exactly
which referring form to be used. For example, rational mod-
els predict more for reduced forms, which are easier to pro-
duce, than the frequency that people use in reality.

Moreover, neither type of model attempts to comprehen-
sively model reference production as a whole, but tends to
focus on specific referential phenomena, e.g., the reduced
forms (Arnold & Zerkle, 2019; Grüning & Kibrik, 2005).
Similarly, these models do not attempt to model cognitive
mechanisms or psycholinguistic processes (Arnold, 2016).
Indeed, Grüning & Kibrik (2005) highlight that many lin-
guists have narrowly focused on specific factors that may im-
pact how referring forms are chosen, like linear (linguistic)

distance (Givón, 1983), rhetorical distance (Fox, 1993; Mann
et al., 1989), and narrative episodic structure (Tomlin, 1987;
Marslen-Wilson et al., 1982). Finally, for human-robot inter-
action tasks, most research has used textual corpora without
any situated features that exist in real-world task scenarios,
such as the distance of the objects, which helps differentiate
this and that.

Computational Models of RFS

These linguistic models serve as natural starting points for
computational modeling. Yet while they provide critical lin-
guistic insights into the nature of RFS, they offer little direct
input into the cognitive processes, mechanisms, or algorithms
that govern this process.

Work in the Artificial Intelligence or Computational Lin-
guistics community has similar problems. Most relevant
work from these fields (McCoy & Strube, 1999; Callaway
& Lester, 2002; Poesio et al., 2004; Kibble & Power, 2004;
Kibrik, 2011; Kibrik et al., 2016) falls under multi-factorial
process modeling. They model the process of referring as
a classification problem based on features (Kibrik, 2011;
Van Deemter et al., 2012; Gatt et al., 2014). Like the linguis-
tic or psycholinguistic models, these models do not predict
specific referring forms but rather pronoun use as a whole.

Cognitive Status-Informed Computational Model Some
recent research efforts have attempted to solve these prob-
lems, predicting referring forms at a fine-grained level. For
example, Pal et al. (2020) proposed a computational model
of cognitive status. Pal then leveraged this model along with
a set of other features of target referents such as physical
distance and temporal distance (recency of mention), as fea-
tures for a decision tree-based model of Referring Form Se-
lection (Pal et al., 2021), which achieved over 80% accuracy.
The training and evaluation of this model were notably con-
ducted on a corpus from a dyadic human-human situated task
by Bennett et al. (2017).

Yet more recently, Han & Williams (2022a) found that this
task lacks ecological validity for RFS modeling in several
critical ways. First, the task domain only contains a small
number of candidate referent targets, leading to irregular sit-
uations where most of the task-relevant objects are constantly
at least activated. According to the Givenness Hierarchy, this
results in a skewed use of referring forms such as “this”. It is
also likely the cognitive status of task-relevant objects will re-
main constant throughout the discourse due to the small num-
ber of task-relevant objects. Second, all task-relevant objects
in this task are uniquely identifiable, with some even labeled
with a unique letter. This means that all objects can be de-
scribed by proper nouns and simple single-property descrip-
tions, without the need to seriously consider the choice of re-
ferring expression. Finally, all objects in this task are visible
at all times. This discourages the usage of indefinite nouns
such as a ⟨N′⟩, which are often used when speakers assume
that listeners do not already have knowledge of the target ref-
erent. These challenges were addressed by Han & Williams
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(2022a), who developed a new task domain in which a wide
variety of referring forms was collected and modeled while
alleviating these problems. We thus used their comprehen-
sive model in this work.

Hypotheses
Because the Givenness Hierarchy-based referential choice al-
gorithm considers the cognitive status of the interlocutor, we
expect positive effects on both task performance (H1) and
subjective experience (H2–H4).

Hypothesis 1 (H1) – Increased Task Performance: It
will take less time to finish tasks instructed using these re-
ferring forms.

Hypothesis 2 (H2) – Higher Perceived Naturalness:
These referring forms are more natural.

Hypothesis 3 (H3) – Increased Understandability:
These referring forms are more understandable.

Hypothesis 4 (H4) – Lower Workload: Following these
referring forms requires less workload.

Method
We conducted a human-subject experiment in which partic-
ipants were instructed by a robot to construct a series of
buildings from wooden blocks. The study followed a within-
subjects design, and the order was fully counterbalanced.

Apparatus and Materials
Robot Platform We used the SoftBank Pepper robot
(Pandey & Gelin, 2018): a two-armed, 1.2m (3.9 f t) tall hu-
manoid robot with two speakers at the sides of its head. The
voice speed was set at 90% to make its speech clearer.

Quadrants The task environment (Fig. 1) was constructed
by adjoining two tables and erecting barriers from four pieces
of foam board. This created a partially-observable environ-
ment to include uses of references like a ⟨N′⟩ to refer to non-
present objects.

Blocks Nine distinct block shapes were used (Melissa &
Doug, 2019). They include triangles (small and long), cubes,
three types of cuboids, cylinders, arches, and half-circles. All
blocks were randomly placed on a 3 × 3 grid within each
quadrant. This leads to varying physical distance between
blocks, which helps to differentiate referring forms whose use
typically varies by distance, i.e., this vs. that (Dixon, 2003).

Buildings As shown in Fig. 2, participants constructed
three buildings. Each building had 18 blocks to ensure candi-
date referents were not trivially distinguishable. Nine (50%)
blocks were evenly distributed to other quadrants to include
references introducing new objects.

Instruction Design
All the instructions given by the robot were based on instruc-
tions given by real humans. Specifically, one series of in-
structions was first selected from Han & Williams (2022b)’s

Figure 2: The three buildings in the construction tasks. The
number and variety of blocks were designed to lead to various
cognitive statuses in instructions.

publicly available dataset for each building. Next, some utter-
ances were removed from these instruction sequences, such
as corrective utterances (e.g., “Okay. I think that should be
square.”) and confirmative utterances (e.g., “Yeah.” and “Per-
fect.”). Finally, all referring expressions in the instructions
were identified and replaced with new referring expressions.

We divided a referring expression into two key parts: a
referring form and a (possibly empty) set of propositional se-
mantic content. The referring form is assumed to be one in
{it, this, that, this ⟨N′⟩, that ⟨N′⟩, the ⟨N′⟩, a ⟨N′⟩}, which
are associated with cognitive statuses by the Givenness Hi-
erarchy: In Focus → it, Activated → {this, that, this ⟨N′⟩},
Familiar → that ⟨N′⟩, Uniquely Identifiable → the ⟨N′⟩, Type
Identifiable → a ⟨N′⟩.

For referring expressions using referring forms that in-
cluded a noun phrase ⟨N′⟩, we assumed that the propositional
semantic content represented by this noun phrase always had
the form {size} {color} {shape}, e.g., “long yellow trian-
gle”. For the remaining it, this, that, this without a noun
phrase ⟨N′⟩, the propositional semantic content was empty.

Accordingly, our three strategies comprising our three ex-
perimental conditions all followed the same strategy for se-
lecting propositional content, but each used a different strat-
egy for selecting referring forms:

1. Random: All referring form was randomly chosen from
{it, this, that, this ⟨N′⟩, that ⟨N′⟩, the ⟨N′⟩, a ⟨N′⟩}.

2. Indefinite nouns. All referring forms were in the form
of a ⟨N′⟩. Indefinite nouns are associated with the lowest
(type-identifiable) tier and are thus always justifiable.

3. Model: All referring forms were predicted by Han &
Williams (2022a)’s cognitive computational model, described
in the end of the Related Work section.

When we started designing this experiment, we originally
included a human condition where the robot directly repeated
what the original human participant had said. However, we
found that without also replicating that original speaker’s ges-
tures, the utterances did not make sense. We thus decided to
leave out the condition. Modeling the impacts of gesture on
cognitive status is a key direction for future work.

Procedure
Participants first completed an informed consent form and a
demographics questionnaire, and then entered the first quad-
rant and sat on the left of that quadrant, as shown in Fig. 1.
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The Pepper robot was positioned on the right side, 50cm
away from the table edge, so it looked at the table with its ver-
tical field of view covering all blocks. We disabled Pepper’s
autonomy mode so no built-in autonomous behavior could
confound participants’ perception during the experiment.

Participants followed Pepper’s instructions to construct the
three buildings sequentially and were asked to say “Ok” af-
ter they were ready for another instruction. To avoid wrong
speech recognition for “Ok”, the experimenter manually trig-
gered the robot’s next utterance right after hearing the word
from earphones in another room. After a building was con-
structed, participants completed a survey to measure subjec-
tive experience and workload. Participants then entered the
next quadrant.

The experiment was approved by the human subjects re-
search committee at Colorado School of Mines in the US.

Measures
To test our hypotheses, we measured instruction completion
time, workload, naturalness, and understandability.

To measure instruction completion time, we logged the
time when the Pepper robot finished giving an instruction and
when the robot spoke the next instruction. Intervals of more
than a minute were removed after outlier analysis.

To measure cognitive effort, we used the widely-accepted
NASA Task Load Index (Hart, 2006; NASA, 2019), including
both its load survey and weighting survey components.

To measure naturalness and understandability of the refer-
ring forms, participants completed (after each within-subjects
experimental block) 7-point Likert Items in which they were
asked to indicate how natural and understandable Pepper’s
verbal references had been during the preceding block.

Participants
Thirty-six participants contributed valid data, while 38 par-
ticipants were recruited from a university community in Col-
orado, USA. Two participants’ data were excluded because
part of their workload responses were not recorded.

The age ranges from 18 to 59 (M=26, SD=10.6). 18 (50%)
were male, 16 (44.4%) were female, one (0.03%) was gen-
derfluid, and one (0.03%) was gender nonconforming. They
were mostly white (30, 83.3%) while six (16.3%) reported
Asian identities. For whether they have experience with
robots, 11 (30.6%) disagreed, two (0.06%) were neutral, and
23 (63.9%) agreed. Participants spent 40.41 minutes on aver-
age for the experiment and received $10 Amazon gift cards.

Data Analysis
We analyzed our data using the Bayesian statistical frame-
work (Wagenmakers et al., 2018) in JASP 0.16.3. The
Bayesian approach has one key benefit: It can quantify ev-
idence both for and against hypotheses of interest using the
Bayes factor (BF), which is a ratio of the likelihood of given
data being observed under each of two competing hypothe-
ses, H1 and H0. For example, a Bayes Factor of BF10=5
indicates that the data are five times more likely under H1
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Figure 3: Mean naturalness ratings. Error bars show 95% CI.
Results favored differences among all pairwise comparisons.

than under H0. To facilitate decision-making, we used the
widely-accepted discrete classification scheme proposed by
Lee & Wagenmakers (2014). For evidence favoring H1, a
Bayes factor BF10 is deemed “anecdotal” when BF ∈ (1,3],
“moderate” when BF ∈ (3,10], “strong” when BF ∈ (10,30],
“very strong” when BF ∈ (30,100], and “extreme” when
BF ∈ (100,∞]. For data in favor of H0, these thresholds are
inverted (1, 1/3, 1/10, 1/30, 1/100). In such cases, we also use
BF01 (1/BF10) rather than BF10 for easier interpretability.

Results
Instruction Completion Time
As we planned to use Bayesian one-way repeated measures
analysis of variance (RM-ANOVA) (Rouder et al., 2012),
we assessed the normality of our data by visually inspecting
the Q-Q (Quantile-Quantile) plots, a well-accepted practice
among Bayesianists (Wagenmakers et al., 2018), revealing
violation of normality and linearity. We thus log-transformed
the data, which successfully addressed this violation.

We then ran a Bayesian one-way RM-ANOVA. Results
showed moderate evidence in favor of H0 (BF01 = 8.714),
meaning the data are around 8.7 times more likely under
models that did not include an effect of condition than un-
der those that did. Participants spent around the same time
on each instruction (MRandom = 9.623, MInde f inite = 9.494,
MModel = 9.743). Thus, H1 was not supported: Participants
did not spend less time on the task in the Model condition.

Naturalness
Visual inspection of Q-Q plots upheld the linearity and nor-
mality of Naturalness data across conditions. A Bayesian
one-way RM-ANOVA showed extreme evidence (BF10 =
37585.667) favoring an effect of referring form selection
strategy. Post-hoc Bayesian t-tests showed evidence favor-
ing differences across all pairwise comparisons, as shown
in Fig. 3. Specifically, these tests provide extreme evidence
(BF10 = 82216.093) that utterances were perceived less natu-
ral in the Random condition (M=3.639, SD=1.552) than in
the Indefinite condition (M=4.806, SD=1.167), strong evi-
dence (BF10 = 12.851) suggesting that utterances were per-
ceived less natural in the Random condition than in the
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Figure 4: Mean understandability ratings. Error bars show
95% CI. Evidence was found favoring differences between
the Random condition and the other conditions (BF10 > 100),
but against a difference between the Indefinite condition and
the Model condition (BF01 = 5.464).

Model condition (M=4.306, SD=1.636), and moderate evi-
dence (BF10 = 3.592) that utterances were perceived less nat-
ural in the Model condition than in the Indefinite condition.
Thus, H2 was not supported. Although naturalness was rated
higher in the Model condition than in the Random condition,
participants did not perceive these cognitive status-informed
referring forms as more natural than indefinite nouns.

Understandability
Visual inspection of Q-Q plots upheld the linearity and
normality of Understandability data across conditions. A
Bayesian one-way RM-ANOVA showed extreme evidence
(BF10 = 37617.862) in favor of an effect on Understand-
ability, as shown in Fig. 4. Post-hoc Bayesian t-tests pro-
vided extreme evidence (BF10 = 170.949) that utterances
were perceived less understandable in the Random condi-
tion (M=2.833, SD=1.232) than in the Indefinite condition
(M=4.028, SD=1.576), extreme evidence (BF10 = 3014.702)
that utterances were perceived less understandable in the
Random condition than in the Model condition (M=3.972,
SD=1.276), but moderate evidence (BF01 = 5.464) against
a difference between the Indefinite condition and the Model
condition.

Thus, H3 is not supported. In the Model condition, the
referring forms were not perceived as more understandable.

Workload
According to the NASA Task Load Index manual (NASA,
2019), a weighted score was calculated for each participant.
Visual inspection of Q-Q plots upheld the linearity and nor-
mality of Workload data across conditions.

A Bayesian one-way RM-ANOVA shows inconclu-
sive anecdotal evidence (BF10 = 1.047) in favor of ef-
fect, as shown in Fig. 5. Pairwise comparisons by
Bayesian posthoc t-tests showed moderate evidence (BF01 =
3.639) against a difference between the Indefinite con-
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Figure 5: Mean weighted workload. Error bars show 95%
CI. Results confirmed that there is no difference between the
Indefinite condition and the Model condition (BF01 = 3.639).

dition (M=52.296, SD=17.465) and the Model condition
(M=54.565, SD=15.099), and inconclusive evidence for
the other two pairs. Specifically, there was probably no
difference (BF10 = 2.455) between the Random condition
(M=58.278, SD=17.774) and the Indefinite condition, but
it is possible that utterances in the Indefinite condition in-
duced lower levels of perceived cognitive load than the Ran-
dom condition. Similarly, there was probably no difference
(BF01 = 1.916) between the Random condition and the Model
condition, but it is possible that the Model condition induced
lower perceived cognitive load than the Random condition.

Thus, H4 is not supported. The workload was rated the
same in the Model condition as in the Indefinite condition.

Discussion
Surprisingly, results did not support any of our hypotheses
regarding the cognitive status-informed model.

Hypothesis One: Task Performance
The first hypothesis was that it would take participants less
time to finish their tasks when instructed with cognitively
predicted, humanlike referring forms. Results suggested no
difference across all conditions (BF01 = 8.714): Participants
spent an average of approximately 9.5 seconds on each in-
struction. This might be due to the time it took participants
to find and retrieve a referred block when it was in another
quadrant. These results suggest the community needs to in-
vestigate better metrics to measure when an understanding
of a referring form ends or is achieved. Such metrics would
be challenging and need not only to be precise but also non-
invasive because interruptions could interfere with cognitive
status dynamics. Future work needs to investigate the use of
eye-tracking, neurophysiological measures, or through video
coding, for detecting reference resolution timing while mini-
mizing subjectiveness.

Hypothesis Two: Naturalness
The second hypothesis was that humanlike referring forms
would be more natural. Surprisingly, using cognitive status-
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informed referring forms did not improve the naturalness.
While the utterances were ranked more natural in the Model
condition than in the Random condition, neither were rated
as highly as in the Indefinite condition. While we explic-
itly asked participants about the naturalness of how robots
referred to blocks rather than how the robot spoke in gen-
eral, the overall naturalness of the utterances may still play a
role. Future work needs to investigate ways of encouraging
participants to only attend to the referring forms to measure
naturalness.

Hypothesis Three: Understandability
Our third hypothesis was that humanlike referring forms
would be more understandable. As shown in Fig. 4, both in-
definite nouns and cognitive status-informed referring forms
were rated equally highly.

This might be due to the limited ambiguity present in the
experimental context. While the task context used in this
work was originally developed to increase ambiguity by in-
creasing the variety of different combinations of colors and
shapes, this, unfortunately, leads to only at most two identi-
cal blocks in each building from our investigation (see Fig.
2). As such, an indefinite noun phrase to refer to the in-
tended color and shape of the next block may be sufficient
for an interactant to pick out the object, and thus is rated as
understandable. Future work should examine task contexts
with more ambiguity, encompassing both reference compre-
hensiveness and ambiguity, so complex relations need to be
described to disambiguate through a full noun phrase.

Hypothesis Four: Mental Workload
Our fourth hypothesis was that humanlike referring forms
would require less mental workload. Results instead showed
no workload differences between cognitive status-informed
referring form selection and indefinite noun phrases. One
reason might be the same confluence of factors that led to the
lack of differences in other dependent variables. For example,
workload differences may not have been observable when as-
sessed after each building was constructed. While measuring
workload at instruction level is challenging as cognitive sta-
tus can be interrupted, future work could investigate design-
ing a task with a constrained goal or time limit.

General Discussion
One trend we noticed across our analyses was that indefi-
nite nouns performed as well or better than cognitive status-
informed referring form selection. We do not take this as ev-
idence that robots should always use indefinite noun phrases,
just as humans would not be advised to do so.

Rather, although we observed that the predicted referring
forms in the Model condition were generally of high qual-
ity, the model occasionally made memorably poor predictions
that may have singlehandedly ruined the naturalness ratings.

Specifically, there were some cases where the robot used
“it” in contexts where it was not justified, leading to obvious
difficulty for participants. Several participants visibly stared

at Pepper for a few seconds, and some explicitly asked the
experimenter whether the robot had “glitched”.

It is possible that robots should simply avoid some overly
restrictive referring forms unless with extremely high confi-
dence. Future research could consider models that avoid us-
ing it and assess their performance.

Our results could also be due to the attempt to generate
referring forms in isolation. Human speakers select refer-
ring form, content, word choice, and so forth as part of a
single process. By filling new referring forms into the sen-
tence structures selected by humans, it may have introduced
incongruencies and irregularities that needlessly impaired the
cognitive status-informed approach. Similarly, the model fo-
cused on verbal communication without gesturing. The pre-
dicted referring forms would need to appropriately trigger
nonverbal cues for many reduced forms like it to be used
successfully. Future work should investigate the evaluation
of referring form selection models as part of a complete and
multimodal natural language generation pipeline.

Finally, results raise key questions about the goal of hu-
manlikeness in robot language generation. In fact, Han &
Williams (2022a) pointed out that a model does not need to
perfectly mimic human utterances to be successful, and there
might be multiple referring forms that are equally appropri-
ate. Moreover, humans may sometimes use concise referring
forms for their own ease of production rather than to pro-
vide any benefit for listeners; if so, this suggests that robots
can often be more prolix than human speakers. Finally, it is
worth noting that many of the ethical and practical problems
that plague neural Natural Language Generation models lie
in their single-minded focus on fluency and humanlikeness.
We would be well served to avoid overreliance on mimicry of
humanlikeness as a guiding principle (Williams et al., 2020).

Conclusion
In this work, we conducted a human-subject study to inves-
tigate the objective and subjective performance of cognitive
status-informed referring form selection models in a live col-
laborative HRI task. Results showed that these cognitive
status-informed models have a long way to go in terms of per-
formance in live human-robot interactions, with recent mod-
els outperformed by a naive indefinite noun phrase approach.

Rather than suggesting that robots can just use simple
heuristic strategies like constant indefinite noun phrases go-
ing forward, we take the results as evidence that more work
is needed to improve these cognitive status-informed models,
as a nod towards the types of metrics we need to consider
and the types of multimodal features needed to improve per-
formance relative to those metrics, and as a reminder of the
nuances of language and of the fragility of interactions with
our new robotic teammates: even a single overly ambiguous
pronoun may be enough to derail the overall interaction.

Supplementary Materials
All experiment materials, code, data, and analysis scripts are
available at https://osf.io/nzwvf/.
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