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A B S T R A C T

Although many Known Geothermal Resource Areas in Oregon and Idaho were identified during the 1970s and
1980s, few were subsequently developed commercially. Because of advances in power plant design and energy
conversion efficiency since the 1980s, some previously identified KGRAs may now be economically viable
prospects. Unfortunately, available characterization data vary widely in accuracy, precision, and granularity,
making assessments problematic. Here we suggest a procedure for comparing test areas against proven resources
using Principal Component Analysis and cluster identification. The result is a low-cost tool for evaluating po-
tential exploration targets using uncertain or incomplete data.

1. Introduction

In the early 1970s, amidst a national energy crisis, the US Energy
Research and Development Administration (which later became the
United States Department of Energy, or USDOE) partnered with the
United States Geological Survey (USGS) to identify and inventory the
geothermal resources of the United States. As defined by the
Geothermal Steam Act of 1970, a Known Geothermal Resource Area
(KGRA) is an area where “…the prospects for extraction of geothermal
steam or associated geothermal resources from an area are good enough
to warrant expenditures of money for that purpose” (Godwin et al.,
1971). The USDOE/USGS program of geothermal exploration identified
a number of KGRAs, many of which are located in southern Idaho and
eastern Oregon. Unfortunately, as the energy crisis eased during the
1980s, so did federal funding for geothermal exploration, and many of
the identified KGRAs did not receive the follow-on studies that would
have been required to evaluate their economic potential.

In the 40+ years since the Geothermal Steam Act of 1970, in-
novations in power plant design have increased the overall conversion
efficiency of geothermal power developments. Although the average
conversion efficiency of geothermal power plants is still the lowest of
all thermal plants (Zarrouk and Moon (2014) cite an average conver-
sion efficiency of 12%, on the basis of a worldwide review of published
data), technological improvements such as double flash, triple flash,
hybrid geopressure/geothermal, and binary plant designs have allowed

an expansion of installed geothermal capacity to a worldwide total in
2015 of about 12,635MWe (Bertani, 2015). In particular, binary plants,
first introduced in the early 1980s, and the optimization of working
fluids (e.g., ammonia, HCFC123, n-Pentane, PF5050) for a wide range
of evaporation and condensation temperatures, enthalpy fluxes, and
coolant velocities, have improved the performance of power plants and
decreased the required resource temperatures, allowing economic de-
velopment of resources that had previously not been considered viable
(Hettiarachchi et al., 2007). Changes in legislation have also led to
increased opportunities for geothermal development. The Energy Policy
Act of 2005 amended the Geothermal Steam Act of 1970, modifying
how royalties are calculated, how land is leased, and providing tax
incentives and loan guarantees for certain types of energy resources in
an effort to make geothermal (and other renewable resources) more
competitive with fossil fuel electrical power generation.

As a result of the changing technological and economic landscape,
KGRAs that were previously identified as not economically exploitable
may now be commercially viable. Unfortunately, efforts to reevaluate
data collected during earlier phases of exploration have been hampered
by heterogeneous quality and granularity, as well as by site-to-site
variations in observed parameters. To address these challenges, re-
searchers at Lawrence Berkeley National Laboratory and Idaho National
Laboratory, in collaboration with scientists at the University of Idaho,
have been working to develop an approach to making between-area
comparisons that can be used with incomplete and/or uncertain data.
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Here, we present one possible approach to such between-site compar-
isons. Our method applies Principal Component Analysis (PCA),
Hierarchal Cluster Analysis (HCA), and K-Means Cluster Analysis
(KMCA) to compare existing data from a group of candidate areas to
data from multiple (high- and low-geothermal potential) control
groups. The final result of the analysis is a dendrogram of related sites
(see supplemental material S1 and S2) that can be used to help prior-
itize future exploration and characterization efforts.

2. Study area description

The KGRAs evaluated in this study are all located in either eastern
Oregon or southern Idaho in the northwest region of the United States.
With one exception,1 the areas fall into one of two geological provinces:
the Basin and Range province, or the Snake River Plain. We first present
general background information on the geology and geothermal setting
of these two provinces, followed by a brief description of the KGRAs
included in our investigation.

2.1. The Basin and Range

The Basin and Range province is an extensional terrain comprising a
large number of horst and graben structures distributed across the
western United States (Fig. 1). Thinning of the crust due to east–west
extension allows for variable, but generally high, heat flow (from about
60mW/m2 to>100mW/m2; Blackwell, 1983). Northwest–southeast
oriented bulk regional extension in this area is generally manifested
along northeast striking faults (Pezzopane and Weldon, 1993; Blewitt
et al., 2003), and high-temperature geothermal systems are pre-
ferentially located along northeast-striking lineaments (Koenig and
McNitt, 1983; Coolbaugh et al., 2003), or are associated with accom-
modation zones and other structurally favorable settings (Faulds et al.,
2011, 2013). Geothermal activity in the region is generally assumed to
derive from topographically-driven deep circulation of groundwater,
although magmatic heat sources are likely responsible for a subset of
areas (Koenig and McNitt, 1983). The high heat flow of the region,
coupled with active extensional to transtensional faulting, creates a
favorable environment for geothermal development. Apart from the
large number of known and potential conventional geothermal resource
areas in the US Basin and Range province, it is also believed that the
region presents opportunities for “unconventional” (Engineered/En-
hanced Geothermal Systems, or EGS) resources. A review of US geo-
thermal potential cited the Great Basin (a subset of the US Basin and
Range) as first in a list of high-grade EGS resources (Tester et al., 2006).

2.2. The Snake River Plain

The Snake River Plain (SRP) is a large igneous province that stret-
ches some 640 km across southern Idaho, from the Idaho–Oregon
border to the northwest corner of Wyoming (Fig. 1). The region is a
shallow physiographic depression that cross-cuts pre-existing Basin and
Range topography (Pierce and Morgan, 1992; Rodgers et al., 2002;
Smith et al., 2009). The western part of the plain is a large tectonic
graben filled with thick (1000s of meters) lacustrine deposits that are
underlain by rhyolitic ignimbrites and basalt flows. In contrast, the
Eastern Snake River Plain (ESRP) was formed by a string of large cal-
deras associated with the migration of the North American Plate over
the Yellowstone hot spot during the past 17My (Pierce and Morgan,
1992). Up to 2 km of Holocene to early Pliocene basalts underlie the
plain, which were erupted from shield volcanoes and NW-striking
volcanic rifts. Beneath, and largely obscured by the basalts, are ex-
tensive rhyolitic ignimbrites and lava flows that are known from

boreholes and exposures along the margins of the plain (Morgan et al.,
2008; Podgorney et al., 2013). The Snake River Plain represents one of
the highest heat flow provinces in North America (Blackwell, 1989;
Blackwell and Richards, 2004), and was listed second (behind the Great
Basin) in a recent survey of high-grade EGS prospects in the US (Tester
et al., 2006). Near-surface heat flow is suppressed by groundwater in
the high permeability eastern Snake River Plain aquifer (McLing et al.,
2016), but thermal gradients are high along the margins of the plain,
and heat flow below the SRP aquifer is believed to be high as a result of
the intrusion of mafic magmas in a mid-crustal sill complex (Blackwell,
1989; Shervais et al., 2006; Nielson et al., 2017).

2.3. KGRAs

We examined 14 KGRAs or IHRAs (Identified Hydrothermal
Resource Areas; Burkhardt et al., 1980) in southeast Oregon and
southern Idaho. Three of these areas currently host geothermal power
plants (Raft River, Neal Hot Springs, and Summer Lake/Paisley Hot
Springs) for a combined electrical output of about 37MWe, and these
areas were used as a high-potential control group (i.e., high geothermal
potential). In addition to the KGRAs/IHRAs, we also included ground-
water samples from one area with no known geothermal potential to
serve as a low-potential control group, for a total of 15 areas included in
the analysis (Table 1). The low-potential control group samples were
taken from shallow wells producing Ca-HCO3-type waters from the
Eastern Snake River Plain that differ markedly from the deeper, Na-
HCO3-type waters of thermal origin (McLing et al., 2002). Brief de-
scriptions of the 14 thermal areas included in this study are given in the
following paragraphs, and their approximate locations are shown in
Fig. 2.

Alvord Basin Geothermal Area. The Alvord Basin is a north-northeast
trending structural graben located in Harney County, southeast Oregon.
The area is a KGRA comprising three groups of hot springs, with

Fig. 1. Map of the western United States, showing the general area of the northern Basin
and Range Province (darker shaded region) and the Snake River Plain (lighter shaded
region) in southern Idaho. Note that some authors define the Basin and Range to include
much of Idaho and, in some cases, as far north as eastern Washington.

1 Vulcan Hot Springs KGRA is located in the Atlanta lobe of the Idaho batholith,
somewhat off the margin of the western Snake River Plain near Cascade, Idaho.
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discharge temperatures ranging up to 98.5 °C (Anderson and Fairley,
2008). Phillips Geothermal conducted an extensive exploration pro-
gram in the area during the 1970s, including geochemical surveys,
geothermal gradient data collection, AMT and MT surveys, and geolo-
gical mapping. An exploration well drilled by Anadarko Petroleum to a
depth of 451m in 1989 flowed at a rate of 400 gpm and a temperature
of 152 °C (Cummings et al., 1993). Cation geothermometry indicates
equilibration temperatures around 200 °C (Cummings et al., 1993;
Koski and Wood, 2004), and studies indicate hydrothermal discharge in
the basin is fault controlled (Fairley and Hinds, 2004; Anderson and
Fairley, 2008; Hess et al., 2009), with strong lateral variations in fault
permeability tending to channelize subsurface flow into localized “fast-
flow” pathways (Fairley and Hinds, 2004; Fairley, 2009). Environ-
mental restrictions on development in the Alvord Basin have dis-
couraged further commercial exploration in the basin, but the area
provides an important source of data for testing models of geothermal

systems.
Bruneau Geothermal Area. The geothermal potential of the Bruneau

region in southwestern Idaho was first recognized by Piper (1924), and
the area was classified as a KGRA in the early 1970s (Young and
Mitchell, 1973). Subsequent field studies focused on sampling hot
springs and wells, with identified temperatures around the Bruneau and
Grand View areas in the range of 22–54 °C (Young et al., 1975;
Rightmire et al., 1976). Although early assessments indicated sig-
nificant geothermal potential, with predicted reservoir temperatures up
to 190 °C, the prospect failed to attract investors, and there have been
no additional field studies in this area since the 1970s.

Camas Prairie Geothermal Area. Camas Prairie is an east–west elon-
gated (about 50 km by 15 km) valley in Blaine, Camas, and Elmore
Counties in south-central Idaho. The prairie is bounded by an east–west
trending horst known as the Mount Bennett Hills to the south, and the
Soldier Mountains to the north, which are a faulted mountain block
associated with the Cretaceous-Miocene magmatic/volcanic activity of
central Idaho. Although this area has not been designated a KGRA, the
occurrence of several clusters of hot springs (IHRAs) within and along
the margins of the Camas Prairie suggest the presence of geothermal
resources (Mitchell, 1976). Specifically, locations within the larger re-
gion that have been identified as demonstrating geothermal potential
include: Magic Hot Springs and Elk Creek Hot Springs, located on the
eastern and northeastern margins of the prairie, Sheep and Wolf Hot
Springs, located in the western part of the Camas Prairie, and having
discharge temperatures of ∼50 °C, Wardrop Hot Springs (60 °C) in the
north-central part of the Prairie near the base of the Soldier Mountains,
and Barron Hot Springs (73 °C) on the southern side of the prairie near
the base of the Mount Bennett Hills. Recent work in this area has
identified potential exploration targets in the southern portion of the
prairie (Glen et al., 2017; Neupane et al., 2017; Shervais et al., 2017).

Castle Creek Geothermal Area. The Castle Creek geothermal area is a
designated KGRA in Owyhee County, southwestern Idaho (Burkhardt
et al., 1980). The area is located on the southern margins of the western
Snake River Plain between the towns of Grand View and Oreana, Idaho,
west of the Mountain Home geothermal area and northwest of the
Bruneau geothermal area. The area is likely situated within the rhyolitic
basement rocks of the Owyhee Mountains, on the downthrown blocks
of a mapped series of NE-dipping, SE/NW-striking faults (Jenks et al.,
1998). Several hot springs and artesian wells are known in the area,
with water temperatures reported in the range of 23–83 °C (Young
et al., 1975; Moore et al., 1979).

Crane Creek Geothermal Area. The Crane Creek geothermal area is
located about 18 km northeast of Weiser, in Washington County, Idaho.
The area lies along a fault zone that defines the northern margins of the
western Snake River Plain, and includes two groups of hot springs:
Crane Creek Hot Springs, with a discharge temperature of 92 °C, and
Cove Creek Hot Springs, which discharge at 74 °C. The Crane Creek area
displays a negative gravity anomaly, which contrasts with the positive
gravity anomaly of the region west of Weiser, and the general western
Snake River Plain. The high-density basaltic rocks present to the
southwest are thought to thin or truncate near Crane Creek as a result of
southwest-dipping fault structures, and the juxtaposition of higher- and
lower-density rocks across the faults may give rise to the contrasting
gravity measurements (Young and Whitehead, 1975). Reconnaissance
audio-magnetotelluric and telluric current soundings of Crane Creek
and nearby Vale KGRAs indicate low resistivity zones are associated
with both areas (Long and Kaufmann, 1980).

Crump Geyser Geothermal Area. The Crump Geyser geothermal area
is located in the Warner Valley of Lake County, southeast Oregon. In
spite of its reputation as the largest continuously erupting geyser in the
US, Crump Geyser was actually the site of an artesian well that dis-
charged water of unknown (but apparently elevated) temperature,
drilled in 1959 by the Nevada Thermal Power Company on land owned
by Charles Crump. The area was the site of a series of geothermal in-
vestigations, including gravity, seismic, and aeromagnetic surveys, in

Table 1
Names and sizes of KGRAs included in this study. Areas listed are taken from Burkhardt
et al. (1980). The Camas, Neal Hot Springs, and Preston areas have not been officially
designated as KGRAs, but contain several Identified Hydrothermal Resource Areas
(IHRAs). The area listed for the Mountain Home site is for the officially designated KGRA;
however, for this study we extended the boundaries of the area to the west as far as the
Mountain Home Air Force Base. N is the number of samples used for the indicated lo-
cation; of the 22 samples from the Raft River KGRA, 11 are associated with geothermal
power production at the Raft River plant, and are included in the high-potential control
group. High-potential controls (i.e., areas with producing geothermal fields) are listed in
bold type. Latitude and Longitude (WGS84) are approximate picks from Google Earth.

Name Area (km2) N Latitude Longitude

Alvord Basin 715.6 32 42.5997 −118.4872
Bruneau 10.5 60 42.7931 −115.7249
Camas – 37 43.3447 −114.8817
Castle Creek 322.6 26 43.0114 −116.2611
Crane Creek 17.6 3 44.3067 −116.7447
Crump Geyser 346.7 2 42.2265 −119.8812
Lakeview 49.2 7 42.2219 −120.3682
Mountain Home 38.5 10 43.1014 −115.4469
Neal Hot Springs – 4 44.0232 −117.4703
Preston – 6 42.1332 −111.9277
Raft River 122.3 22(11) 42.1021 −113.3843
Summer Lake/Paisley 39.5 4 42.7111 −120.6457
Vale Hot Springs 93.1 8 43.9827 −117.2331
Vulcan Hot Springs 15.5 1 44.5675 −115.6952
Control Group (low) – 6 43.5780 −112.9667

Fig. 2. Map of the northwest United States, showing the approximate locations of areas
included in the analysis presented in this study. The numbered locations are: (1) Alvord
Basin; (2) Bruneau, (3) Camas Prairie, (4) Castle Creek, (5) Crane Creek, (6) Crump
Geyser, (7) Lakeview, (8) Mountain Home, (9) Neal Hot Springs, (10) Preston, (11) Raft
River, (12) Summer Lake/Paisley, (13) Vale Hot Springs, (14) Vulcan Hot Springs, and
(15) low-potential control group.
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addition to hosting a number of exploration and thermal gradient wells
that found maximum temperatures in the subsurface on the order of
120 °C (Fairbank and Smith, 2015). Studies have outlined a fault-con-
trolled reservoir at the site (e.g., Casteel, 2010; Glen et al., 2015).

Lakeview Geothermal Area. The town of Lakeview, Oregon, is the site
of an apparently low-temperature resource that has been developed for
direct use, such as building heating and similar applications. A number
of local establishments make direct use of the hydrothermal resources,
including a commercial greenhouse, a tilapia farm, and the Oregon
Department of Corrections Warner Creek facility, as well as local
schools and a hospital (Sifford, 2014).

Mountain Home Geothermal Area. The Mountain Home KGRA is lo-
cated on the western Snake River Plain in southwest Idaho, and in-
cludes the area surrounding the town of Mountain Home and the
Mountain Home Air Force Base, as well as an expanse of area to the
east. Findings from the Bostic 1-A well, drilled during the late 1970s,
indicated thepresence of a high temperature (∼200 °C) but low per-
meability resource at a depth of about 3 km (Arney and Goff, 1982;
Arney, 1982; Arney et al., 1984). Later drilling of the HOTSPOT MH-2B
well identified a permeable zone at a depth of approximately 1.8 km,
with a temperature of about 150 °C (Shervais et al., 2013). Multiple hot
springs are located along the foot of the Mount Bennett Hills, several
kilometers to the north of the main area.

Neal Hot Springs Geothermal Area. Neal Hot Springs is located near
Vale, Oregon, along faults that are likely to represent the northern
extremity of Basin and Range extension in this area. The geothermal
reservoir is thought to be located within a major step-over in a north-
erly-striking normal fault zone and bounded to the east and west by the
west-dipping Neal and Sugarloaf Butte faults, respectively (Edwards,
2013). The presence of 90 °C springs drew attention to the region as a
potential site for geothermal development, and initial exploratory
drilling in the area by Chevron Minerals was conducted in 1979.
Bottom hole temperatures in several production wells range from
135–145 °C, and US Geothermal currently operates a net 22MWe
power plant at the site.

Preston Geothermal Area. The Preston area is located in the north-
ward trending Cache Valley of southeastern Idaho. It is situated at the
confluence of several geologic terrains at the northeastern extent of the
Basin and Range province, where the Basin and Range meets the Sevier
orogenic belt and the Rocky Mountains. The juncture of these provinces
is characterized by seismic activity and clusters of hot springs (Sbar
et al., 1972). Although this area has not been officially designated a
KGRA, it comprises several IHRAs (i.e., Battle Creek Hot Springs and
Squaw Hot Springs). The area attracted attention in the 1970s as a
result of work by Mitchell (1976), but interest in the area waned until
2014, when a 79m deep well encountered a bottom hole temperature
of 104 °C (Wood et al., 2015). Multicomponent geothermometry sug-
gests a reservoir temperature in the range of 170–180 °C (Neupane
et al., 2016).

Raft River Geothermal Area. The Raft River KGRA is located in
southern Idaho, near the town of Malta. The highest measured bottom-
hole temperature at the site is 149 °C (Dolene et al., 1981). Extensive
exploration and development conducted by the USGS and the US De-
partment of Energy in the mid- to late-1970s and early 1980s proved
the viability of the site for commercial power generation (Dolene et al.,
1981; Ayling and Moore, 2013); currently, US Geothermal operates a
13MWe geothermal power plant at the site. The hydrothermal reservoir
at Raft River is fracture-controlled; hydrothermal fluids circulate
through fractures in the Precambrian basement rocks and rise along
northwest-striking normal faults (Dolene et al., 1981), discharging into
the Tertiary lacustrine sediments of the Salt Lake formation. The Bridge
and Horse Wells fault zones are the two main fault zones in the area,
and these are presumed to intersect a basement shear zone called the
Narrows Structure to control the upflow of hydrothermal fluids at the
site (Ayling and Moore, 2013; Bradford et al., 2015; Li et al., 2017).

Summer Lake/Paisley Geothermal Area. The Summer Lake KGRA is a

relatively low-temperature resource located in the northwest portion of
the Basin and Range Province near Paisley, Oregon. The resource is
believed to be associated with the intersection of two en echelon normal
faults to the west of Summer Lake; pathways created by this fault in-
tersection likely control reservoir permeability and play an important
role in localizing the resource (Mink et al., 2014). Reservoir tempera-
ture estimates based on geothermometry range between 95 and 166 °C,
although a well drilled by Surprise Valley Electric produced hydro-
thermal fluids at a temperature of 111 °C (Makowsky, 2013). In spite of
the apparently modest temperature of the resource, a 3.1MWe plant
currently operates at the site.

Vale Geothermal Area. The Vale geothermal area in southeast Oregon
has a long history of direct use geothermal energy, and is characterized
by the presence of hot springs and wells, with discharge temperatures
around 73 °C. The area lies near the western margin of the western
Snake River Plain, and borders the Basin and Range and Columbia
Plateau geographical regions. Wisian et al. (1996) reported a maximum
subsurface temperature in the Vale area of 143 °C. Geothermal re-
sources in the area are likely controlled by a swarm of southeast-
northwest trending faults known collectively as the Vale fault zone
(Fern et al., 1993), and locally thermal anomalies coincide with gravity
highs (Wisian et al., 1996) and low resistivity (Long and Kaufmann,
1980).

Vulcan Hot Springs Geothermal Area. The Vulcan Hot Springs geo-
thermal area is located in Valley County, Idaho, about 30 km northeast
of the town of Cascade. The area lies entirely within the Cretaceous
Idaho Batholith granite/granodiorite, and is known by the presence of a
group of hot springs that discharge water at temperatures up to 87 °C.
Hot spring activity in the area appears to be structurally controlled,
potentially by an east-dipping, north-south oriented fault, identified by
Christopherson et al. (1980) as passing through the site. Although the
surface expressions of any controlling faults are obscured at the site by
surficial deposits, west- and northwest-dipping faults likely intersect the
proposed east-dipping fault to the south and north of the site, possibly
placing additional structural controls on the reservoir (Christopherson
et al., 1980; Lewis et al., 2012).

3. Methods

3.1. Data compilation

We compiled data from a variety of published sources, including
USGS reports, state water resource management agencies, conference
papers, and journal articles. We chose data primarily gathered from
wells and hydrothermal springs, and the number of observations we
were able to obtain varied between areas. In total across all areas, 228
data points (observations) were used in the final analysis, although
some of these were non-thermal (from the low-potential control group).
The initial dataset was compiled with 26 “continuous” variables (i.e.,
“ratio” or “interval” variables, which are real number-valued variables
either possessing or lacking a true zero, respectively), including co-
ordinates, depth, temperature, pH, conductance, TDS, species con-
centrations, and selected concentration ratios. In addition, we at-
tempted to include non-numerical information that may be helpful in
distinguishing commercially-viable reservoirs by encoding such data as
“categorical” variables; that is, variables that usually cannot be de-
scribed by real numbers, but can be “binned,” or placed into categories.
Categorical variables are either “ordinal” or “nominal” in type, de-
pending on whether the bins can be ranked, or lack an intrinsic order,
respectively. As discussed below, it was ultimately determined that the
reporting of data that could be described by categorical variables was
too inconsistent and uneven between sites for inclusion in the present
study; however, we feel that categorical data are likely to be extremely
valuable for future studies of the commercial viability of geothermal
areas. In the following sections, we therefore discuss both the con-
tinuous and categorical variables that we considered for this study, and

C.R. Lindsey et al. Geothermics 72 (2018) 358–370

361



review the evaluation process by which we arrived at the final set of
variables used in the analysis. A compilation of the data used in this
study, along with citations to the original source material and estimated
reservoir temperatures from a number of different geothermometers on
a per-sample basis, are provided in the supplemental materials S3.

3.1.1. Continuous variables
The initial set of continuous (ratio or interval) variables consisted of

26 parameters such as species concentrations, ratios of the concentra-
tion of two species (e.g., Cl/(HCO3+CO3), Na/K), depth of the re-
source, total dissolved solids (TDS), pH, temperature, etc. A complete
list of all continuous variables compiled for the present study is pro-
vided in Table 2. Of the variables listed in Table 2, Tdev is the difference,
in °C, between the measured temperature for a sample and the expected
temperature at the depth from which the sample was taken, according
to:

= − +T T z T( ) ( ΔTz),dev sur (1)

where T(z) is the measured temperature at the depth z where the
sample was taken (equal to zero for springs or other surface samples),
Tsur is the assumed average surface temperature (taken as 10 °C), and
ΔT is an assumed average linear geothermal gradient (taken as 25 °C/
1000m). The parameter “fracturing” is a qualitative indication of the
ability of a reservoir to hold and transmit hydrothermal fluids, and
ranged from 0 (no fracturing) to 100 (ubiquitous fracturing). Because
we primarily used “legacy” data (i.e., existing data from published lit-
erature), our analysis depended upon information collected and ana-
lyzed by multiple investigators at disparate times, often using different
analytical methods or collection protocols. As a result, the parameters
that were reported varied from site to site, as did the detection limits for
chemical analyses. We removed from consideration parameters that
were missing or below the reported detection limits for more than 25%
of the samples. This eliminated a number of variables from the analysis,
including several species and/or ratios that are commonly used in the
investigation of geothermal systems, such as Li, B, and Na/Li.

3.1.2. Categorical variables
While reviewing published characterizations of hydrothermal sites,

we considered a large amount of information for possible inclusion in
the analysis in the form of categorical variables. Some of the categorical
data commonly used to describe sites have no bearing on development
potential; for example, the KGRA identifier (e.g., “the Alvord Basin” or
“Raft River”) is useful as a reference to an area, but is generally devoid
of scientific content (i.e., it does not add discriminatory power to the
analysis). Other items clearly contain information bearing on the via-
bility of a site, but lack a consistent definition, are overly inclusive, or
are subjective in nature, such that different observers can reasonably
give contrasting descriptions of the same phenomenon. An example of
this type of information is the “permeability” of a KGRA. Although the
term “permeability” has an agreed-upon definition (i.e., the negative of
the ratio of flux to gradient), the statement that a given site is
“permeable” or “has high permeability” is of dubious value. In the study
presented here, most of the sites included in the analysis can be said to
demonstrate “high permeability,” in the sense that there must perforce
be channels of sufficient permeability to conduct discharge of elevated
temperature to the land surface. More specifically, however, the

existence of a permeability “window,” above or below which hydro-
thermal discharge is unlikely to manifest at the surface, is well known
(see, for example, Forster and Smith, 1989). Simulations of fault-con-
trolled hydrothermal systems indicate that elevated surface discharge
temperatures are associated with country rock permeability less than
∼10−15 m2 and effective fault permeabilities in the range of
10−14–10−11 m2; furthermore, peak discharge temperatures are parti-
cularly sensitive to fault permeability (López and Smith, 1995, 1996).
Thus, the description of an area as “high permeability” is not in itself
diagnostic, because a geothermal reservoir requires particular ranges
and spatial distributions of permeability in order to be commercially
viable.

Of all the categorical information examined in this study, probably
the most relevant were the data describing structural setting with re-
spect to faulting. On the basis of a worldwide survey of hydrothermal
discharge areas, Curewitz and Karson (1997) determined that ap-
proximately 78% of all hot springs are located near mapped faults. It is
generally accepted that fault-induced permeability enhancement and
zones of fault dilation (tension) are closely related (Zhang et al., 2008),
and that dilation zones are often associated with focused, high per-
meability flow paths (Curewitz and Karson, 1997; Connolly and
Cosgrove, 1999; Zhang et al., 2008). Dilation and associated high
permeability pathways can occur in a variety of fault settings, including
jogs, step-overs, wing/tail cracks, and fault intersections, and con-
ceptual models for the relationship between fault structural setting and
hydrothermal discharge have been described by a number of in-
vestigators (e.g., Curewitz and Karson, 1997; Connolly and Cosgrove,
1999; Hickman et al., 2004; Micklethwaite and Cox, 2004; Zhang et al.,
2008; Faulds et al., 2011). In the present study, we attempted to encode
structural setting information for the sampled locations as a nominal
(unranked) categorical variable using the classification system of Faulds
et al. (2011). The Faulds et al. (2011) system is based on earlier clas-
sifications of the structural settings of hot springs (Curewitz and Karson,
1997; Micklethwaite and Cox, 2004), but offers a refined classification
for the Basin and Range-type regions of western Turkey and the western
Great Basin of the USA for which it was developed. The five settings
identified by the authors as favorable for geothermal exploration, and
used in the present study as structural setting categories, are: (A) dis-
crete steps in normal fault zones; (B) intersections between normal
faults and transversely oriented oblique-slip faults; (C) overlapping,
oppositely-dipping normal fault zones; (D) terminations of major
normal faults; and (E) transtensional pull-apart zones (Faulds et al.,
2011).

Although we did attempt to include information on structural set-
ting in the present analysis, we were ultimately unsuccessful, for rea-
sons that are discussed in Section 4. As a result of our inability to as-
semble a sufficiently comprehensive dataset of structural setting
information on a per-sample basis, we were forced to exclude this im-
portant information from the analysis described below.

3.2. Analysis

In this study, we used a three-step approach to arrive at the final
clustering of KGRAs. After removing parameters for which there were
too many (i.e., > 25%) missing values, we used the results of Principal
Component Analysis (PCA) to identify which of the remaining variables
were likely to offer the most independent information. In the second
step, the variables identified by PCA were input to a Hierarchal Cluster
Analysis, with the objective of identifying an optimal number of clus-
ters. Finally, we applied K-means clustering to the reduced dataset,
using the results from hierarchal clustering to constrain the choice of K.
We describe each of these steps in the following sections.

3.2.1. PCA
We began the analysis by using PCA as a screening test to determine

the type of variables and the number of principal components (i.e.,

Table 2
Complete list of 26 continuous variables compiled for this study.

pH Temperature TDS Conductivity
Depth Tdev Latitude Longitude
Fracturing Na K Ca
Mg SiO2 Cl HCO3

SO4 F Li B
Na/K Na/Ca K/Mg Na/Li
Cl/(HCO3+CO3) SO4/(HCO3+CO3)
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common denominators) necessary to capture the essence of variability
in the data. PCA is a method for defining a set of linearly uncorrelated
variables (the principal components) from a set of variables, some or all
of which are potentially correlated. The number of principal compo-
nents, which must be less than or equal to the number of the original
variables, form an orthogonal basis set. PCA is often useful in ex-
ploratory data analysis for screening large numbers of variables, some
of which may be correlated (i.e., some variables may not be in-
dependent) to identify a subset of factors that best represents the be-
havior of the group. PCA has been widely applied in the social sciences,
as well as in the geological sciences. Aitchison and Greenacre (2002)
specifically cite its use in analyzing whole-rock oxide compositions. In
hydrology and hydrogeology it is commonly applied to aqueous-phase
geochemical variables (e.g., Otero et al., 2005; Fowler et al., 2017), as
in this evaluation.

In the present study, we treated the data used in the PCA analysis as
either compositional and non-compositional variables (Aitchison, 1986;
Aitchison and Greenacre, 2002). Compositional data are components of
a vector of non-negative values that sum to a constant and fixed value,
and form a closed set (Aitchison, 1986). For example, the mass fractions
of all the components of a system are compositional data, because the
sum of the components is 1.0 (the vectors sum to a fixed and constant
value), and the removal of some or all of one or more of the components
does not change the sum (the set is closed). A set of compositional data
form a finite-dimensional vector space, that provides a consistent de-
finition of distance, norm, and scalar product, and satisfies the geo-
metric requirements of a real space (Otero et al., 2005). However,
compositional data are not truly independent, because a reduction in
the fraction of one component results in a rescaling of all the other
components (Fowler et al., 2017). On the other hand, non-composi-
tional data form an open set, where the values of the individual com-
ponents can vary independently. An aqueous chemistry dataset is al-
ways closed, and therefore compositional; however, a dataset consisting
of measurements of depth to resource, or reservoir temperatures in-
ferred from geothermometry, is open, and thus is non-compositional.
Compositional and non-compositional data require different statistical
treatments, and it has been known since the late 1800s that conven-
tional multivariate statistical analyses cannot be naively applied to
compositional datasets (Pearson, 1897).

Initial non-compositional PCA analyses were performed using the

open set of continuous variables for our cataloged water analyses, in-
cluding temperature, pH, TDS, Na, K, Ca, Mg, SiO2, Cl, HCO3, SO4, F,
Na/K, Na/Ca, and K/Mg. We also tested the impact of using log-
transformed variables to represent species concentrations. When per-
forming the initial analysis, we sought to maximize the percentage of
variance captured by the first two common denominators (factors),
while simultaneously maximizing the separation on biplots between
samples from thermal waters and those from the non-thermal control
group. A biplot is a 2D graphical representation of a singular value
decomposition (Eckart and Young, 1936) that is commonly used to
display the results of PCA (Gabriel, 1971). In biplots, data are re-
presented as points, while variables are shown as rays. A ray is defined
from the center of the plot to the ray's vertex (end-point), and the length
of the ray is proportional to the fraction of the total variance explained
by that variable (Otero et al., 2005). The cosine of the angle between
any two rays is approximately equal to the correlation coefficient be-
tween the two variables; therefore, two rays that are separated by a
small angle represent variables that are likely to be highly correlated,
while two rays that are orthogonal to each other represent variables
that are likely to be independent (or nearly so) (Otero et al., 2005).

On the basis of the initial PCA results, it was determined that the
log-concentrations of nine variables (Na, K, Ca, Mg, SiO2, Cl, HCO3,
SO4, and F) could capture the variability between samples at least as
well as, and possibly more clearly than, the full slate of variables. The
analysis also revealed that the first two principal components ac-
counted for about 70% of the variability in the data, while 97% of the
variability was captured by the first six principal components.

After identifying the set of nine geochemical parameters that best
captured the variability between samples, we tested several additional
factors to see if their inclusion would improve the discriminatory power
of the test. In particular, we examined the results of non-compositional
PCA testing on the nine-variable geochemical dataset, augmented by
three non-geochemical variables: (1) Tdev, or the difference between
measured water temperature and the expected temperature at the
measurement depth based on a conductive geothermal gradient for
each location of interest; (2) the fracture “abundance,” a qualitative
representation of fracture density at a given site (varying between 0 and
100); and (3) the site longitude and latitude. We performed the PCA
with all twelve variables (the nine geochemical and three non-geo-
chemical variables), and on subsets in which each of the three non-

Fig. 3. Non-compositional distance biplots of first two principal components. (A) Full dataset, including both chemical and non-chemical variables. (B) Reduced dataset, excluding non-
chemical data. Plotted points represent observation scores; the closer together two points are, the closer their common denominators. Rays (plotted in red) represent the loadings for each
variable, with a smaller angle between rays indicating greater correlation, and opposing rays corresponding to inverse correlation.
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geochemical variables was successively dropped from the dataset. One
interesting result from these tests was the identification of a strong
correlation between SiO2 concentration and difference in temperature
from the conductive gradient (Fig. 3A); however, no combination of the
non-geochemical variables and geochemical variables showed any es-
sential change from the results obtained with the geochemical data
alone, and dropping the three non-geochemical variables significantly
improved the percentage of variance captured by the first two PCA
factors (Fig. 3B). On the basis of these findings, we did not pursue the
use of the non-geochemical variables further.

The non-compositional PCA analysis yielded a first component
dominated by Cl, Na, K, SiO2, and SO4, and a second component
dominated by Mg, Ca, and F. The corresponding biplots (Fig. 3) show a
clear distinction between the control group of non-thermal waters and
the rest of the areas included in the analysis. This distinction is parti-
cularly strong for the geothermal waters of the Raft River and Preston
sites, one of which (Raft River) arguably represents the “most thermal”
exemplar. These thermal waters align more strongly with a Na–K–Cl
signature, in contrast to the non-thermal waters that tend to align with
a Mg component. This is consistent with the observation that Mg con-
centrations are often elevated in groundwaters, relative to concentra-
tions found in geothermal fluids (Giggenbach, 1988). From inspection
of the biplots in Fig. 3, it may be concluded that waters from Alvord,
Vale, and Summer Lake show the strongest relationship to the Preston
and Raft River areas, even though these areas are located in widely
separate geographic regions.

The non-compositional analyses, such as those presented in Fig. 3,
were extremely useful for identifying potential signatures within the
data, but may give spurious correlations when applied to compositional
data (Pearson, 1897). For this reason, we also applied compositional
PCA, using the set of nine concentration variables, as a check on the
non-compositional results. We used a “centered-log-ratio” (clr) ap-
proach, following the method of Aitchison and Greenacre (2002), in
which the concentration of each variable (Na, K, etc.) is normalized by
dividing by the geometric mean of concentrations across variables x1,
x2, …, xD (Aitchison, 1986; Aitchison and Greenacre, 2002; Otero et al.,
2005):

=
…

= …x
x x x

i Dxclr ( ) log , 1, 2, , .i
i

D1 2D (2)

This approach avoids the problem of spurious correlation that can arise
when applying standard multivariate statistical methods of analysis to
compositional data (Pearson, 1897), and is thought to reveal more
clearly common denominators of compositional data. The biplot ob-
tained from the compositional PCA (Fig. 4) shows three distinct groups:
(1) a thermal “Raft River-like” group with a Na–Cl signature; (2) a
thermal “Castle Creek-like” group with a strong F signature; and (3) a
cold “groundwater-like” group, characterized primarily by the presence
of Mg. As with the non-compositional PCA results, waters from Vale,
Alvord, and Summer Lake appear to show the strongest common de-
nominators with the Raft River thermal group. Many samples from
Bruneau and Camas align with the Castle Creek group, showing a strong
F signature that is possibly indicative of water-rock interaction with
rhyolitic rocks at depth (Whelan, 2016). With the exception of samples
from the Preston group, some samples from all of the KGRAs are clas-
sified with the groundwater (non-thermal) group. Samples from Preston
appear to form their own group, with a character that deviates some-
what from the Raft River group.

Although the compositional PCA offered insights into relationships
between areas examined in this study, the results did not differ in any
substantial way from those of the non-compositional analysis. The two
methods gave consistent results in terms of the variables that included
the least amount of redundant information and provided the greatest
discrimination power for analyzing between-area variations. From
these outcomes, we chose to pursue the cluster analysis (Section 3.2.2)
using the nine geochemical variables identified by the PCA analyses as

offering the most independent information about the areas included in
this investigation.

3.2.2. Cluster analysis
The techniques of statistical analysis collectively known as “cluster

analysis” are a set of related algorithms for sorting N items or ob-
servations into K groups, usually as a means of discovering structure
within complex data landscapes. In general, the aim of cluster analysis
is to sort items into groups, or “clusters,” that are internally homo-
geneous (i.e., the items in a cluster are “closely related,” or “naturally
associated”). At the same time, each cluster or associated group is
distinct from other groups (Anderberg, 1973). The techniques of cluster
analysis have been recognized at least since the 1960s; however, since
the 1990s the method has found widespread applications in the field of
molecular biology as a way to recognize patterns of gene expression in
DNA data (Eisen et al., 1998).

In this study, we used two types of cluster analysis: hierarchal
clustering and K-means clustering. For the analysis, we transformed all
the continuous variables to their corresponding z-scores to allow com-
parison between variables of strongly contrasting magnitude. z-Score
normalization is defined by:

= −z x x
s

,
x (3)

where x is the variable to be transformed, x is the sample mean, sx is the
sample standard deviation, and z is the transformed variable. z-Score
normalization transforms any sample distribution to a corresponding
variable with a mean of 0 and a standard deviation of 1, while retaining
rank information, thus allowing comparison between two (or more)
variables of disparate magnitudes. As discussed in Section 4, the prac-
tical application of clustering techniques is computationally de-
manding, particularly with larger datasets. We used the statistical
computing environment R (R Development Core Team, 2008) for the
computation of clusters and visualization of results (i.e., dendrograms,
scree plots), and performed our cluster analyses on the reduced set of
nine variables identified by PCA as having the least redundent in-
formation about the sites.

Fig. 4. Compositional distance biplot of first two principal components. Plotted points
represent observation scores; the closer together two points are, the closer their common
denominators. Rays (plotted in red) represent the loadings for each variable, with a
smaller angle between rays indicating greater correlation, and opposing rays corre-
sponding to inverse correlation. On this type of plot rays in which the end-points fall on
the same link (blue dashed lines) may indicate the variables are controlled by a single
process.
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Hierarchal Clustering. We chose to use hierarchal clustering as a
preliminary tool to investigate the structure of the existing data.
Because hierarchal clustering does not require the investigator to assign
a target number of clusters, it is useful as an initial screening step (in
addition to the PCA screening described in Section 3.2.1) for ex-
ploratory data analysis. Clustering algorithms use a defined “distance”
(a measure of the difference) between objects in a dataset to quantify
the strength of relationships. There are a number of potential choices as
a measure of distance; for example, Euclidean distance, clr transform
distance, etc. (Aitchison, 1986; Otero et al., 2005). For our investigation
we used Euclidean distance, which is the “normal,” or straightline
distance in parameter space between two points. For any two objects x
and y, characterized by p attributes, the Euclidean distance between
them is given by (Rencher and Christensen, 2012):

∑=
⎡

⎣
⎢ −

⎤

⎦
⎥

=

d x y x y( , ) ( ) .
j

p

j j
1

2
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Hierarchal clustering uses the distance between objects to create a
dendrogram. A dendrogram is a graphical representation of the re-
lationships between objects. In the present instance, the objects are
sampled sites or locations of hot springs or wells, and these objects are
described by a vector of attributes such as temperature, depth, TDS,
species concentrations, etc. Each object occupies a mutually exclusive
position on the dendrogram “tree” (Everitt and Holthorn, 2010), and
the separation between “branches” symbolizes the closeness or re-
moteness of relationship. The two most common methods used to de-
fine groups in hierarchal clustering are the complete linkage (often
referred to as the “furthest neighbor” method) and the average linkage
method. The complete linkage method uses the distance between the
most remote objects to establish clusters. The maximum distance be-
tween two clusters A and B is (Rencher and Christensen, 2012):

=
∈ ∈

D A B d x x( , ) max ( , ).
x A x B

i jmax
,i j (5)

At each step of clustering, the maximum distance is found for all
clusters, and the two clusters with the smallest maximum distance are
merged.

Although complete linkage maintains the most remote clusters and
merges closer relationships, average linkage groups objects by the
closest relationships, or “highest cohesion” between groups, and builds
higher-orders of the dendrogram by combining lower order groups. The
cohesion between groups is defined as (Rencher and Christensen,
2012):
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where nA is the number of objects in cluster A and nB is the number of
objects in cluster B. Although the complete linkage method is more
commonly used in practice, we applied both methods to the analysis of
our datasets, and reconciled the results of the two methods to determine
the optimum clustering of the data.

K-means Clustering. K-means clustering is one of the oldest methods
for partitioning objects (collections of attributes or characteristics) into
K related groups, and works by minimizing some objective function.
Most commonly, the objective function to be minimized is a sum of
squares, defined by:

∑ ∑ −x x( ) ,
j i

jij
2

(7)

where x ij is the overall mean (the mean of all attributes for all groups)
and xj is the cluster mean (the mean distance for all attributes in the jth
group). The objective of the analysis is to maximize the distance be-
tween, and minimize the distance within, a predetermined number of
clusters, K. The optimum distribution of objects between clusters is
accomplished by an iterative process (Everitt and Holthorn, 2010):

1. A number of clusters, K, is chosen by the investigator. In the present
case, K was chosen on the basis of results obtained from hierarchal
clustering.

2. k objects are chosen and placed into the K clusters, one object per
cluster. The distances between all other, yet-to-be classified objects
and the initial set of k classified objects are calculated, and each
object is placed in the cluster to which it is the closest. Once all the
objects have been binned, the overall sum of squares (Eq. (7)) is
calculated for the entire dataset.

3. Objects are moved from one cluster to another cluster, and the sum
of squares is evaluated for the new groupings.

4. If the sum of squares decreases for the new groupings, the groupings
are retained. Otherwise, the objects in the original groups are re-
placed.

5. Steps 2–4 are repeated until convergence is achieved (i.e., until
further reductions in the sum of squares are small enough to be
considered negligible).

The results of our analysis, and the implications for targeting geo-
thermal exploration in the study area, are discussed in the following
sections.

4. Results and discussion

In Section 3.2.2, we alluded to the computationally demanding
nature of cluster analysis, especially in situations involving large da-
tasets. The difficulty of these types of sorting problems is discussed by
Anderberg (1973), who noted the number of ways in which n ob-
servations can be placed into k groups is given by a Stirling number of
the second kind (Abramowitz and Stegun, 1972):
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where the 2×1 array indicates the binomial coefficients. Anderberg
(1973) cites as an example the problem of putting 25 observations into
5 groups, for which there are more than 2×1015 possibilities. Fur-
thermore, if the number of groups is not known a priori, it is necessary
to sum the Stirling numbers over the potential numbers of groups (i.e.,
the Bell numbers). For the example of 25 observations, there are a
minimum of one and a maximum of 25 groups, and Anderberg (1973)
gives the number of possibilities as:
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Clearly, such a large number of possibilities cannot be searched ex-
haustively, and a great deal of effort has been put into finding com-
putational methods that give near-optimum solutions with an achiev-
able number of operations.

Apart from algorithmic advances (i.e., from the invention of new,
more efficient ways to obtain near-optimum solutions to the clustering
problem), there are several steps that may be taken to reduce the
computational burden of cluster analysis. Because of the dramatic in-
crease in the number of possibilities to be searched with an increasing
number of clusters (i.e., Eq. (9)), the simplest way to reduce the com-
putational burden is to limit the number of terms in the summation of
Eq. (9) (i.e., only perform clustering with one – presumably optimum –
value of k, rather than seeking optimum results by testing multiple
possible values of k), and choosing the number of clusters to be a
minimum, while still being large enough to be consistent with an op-
timum solution. We achieved this goal by first applying hierarchal
clustering to the data to find an optimum number of clusters, then using
this optimum number as the parameter for Step 1 in the K-Means
Cluster Analysis.

The second thing that can be done to reduce the computational
burden of cluster analysis is to reduce the number of attributes for each
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item. Although the Stirling number (Eq. (8)) gives the number of ways n
items can be sorted into k groups, each item is characterized by p at-
tributes. The calculation of Euclidean distance between items must be
repeated for each trial grouping, and it is clearly inefficient to make
distance calculations with, for example, ten attributes when seven of
those attributes carry redundant information. To minimize the number
of attributes used in the cluster analysis, we applied PCA to identify the
attributes that provided the maximum ability to discriminate with the
minimum number of factors. By eliminating from consideration linearly
correlated factors, we were able to decrease the number of attributes in
the distance calculations from 26 to 9 (see Section 3.2.1), with a
commensurate savings in computational load.

From the Hierarchal Cluster Analysis results, we developed a “scree
plot” (Fig. 5), which shows the sum-of-squares as a function of the
number of clusters. From this plot, it is clear that the decrease in the
sum-of-squares obtained for additional clusters becomes comparatively
small in the vicinity of 10–12 clusters. From this result, we chose to
pursue further analyses with K-means clustering, using K=10. We also
investigated the robustness of the clustering algorithm to changes in K
by testing the outcome of using values in the range 10≤K≤ 12.

In the final distribution of 10 clusters (see Fig. 6, and supplemental
material S4), 5 Preston samples and 6 of the Raft River samples each
binned together into their own clusters (Groups 2 and 6, respectively).
However, 7 Alvord Basin samples, 40 from Bruneau, 11 from Camas, 7
from Castle Creek, and one sample each from Lakeview, Mountain
Home, and Vale all binned together with 2 samples from production
wells at the Raft River geothermal power plant to comprise the largest

cluster of samples (Group 10; N=70), which we propose as one of the
high geothermal potential clusters. Another high potential cluster was
Group 9 (N=23), in which 10 Alvord Basin samples, 3 Crane Creek
samples, 1 sample from Mountain Home, and 2 samples each from
Crump Geyser and Lakeview bin together with the geothermal pro-
duction wells from Neal Hot Springs (2 samples) and Summer Lake (3
samples). Other, smaller groups also showed development potential.
For example, ∼41% (9/22) of the Raft River samples binned together
with 2 Lakeview samples, 3 Vale samples, and the sole sample from
Vulcan Hot Springs in Group 7. Also, in Group 5 a scattering of samples
from the Alvord Basin (1), Bruneau (2), Camas (2), Mountain Home (2),
and Vale (3) grouped together with a well from Preston, one from
Summer Lake, 2 production wells from Neal Hot Springs, and 5 wells
from Raft River.

In contrast to the clusters containing the high geothermal potential
sites, 5 of the 6 non-thermal control samples binned together with 11
Alvord Basin samples, 21 Camas samples, 4 Mountain Home samples, 3
Bruneau samples, and 1 sample each from Castle Creek and Lakeview in
a low potential cluster (Group 4; N=46). Of course, it is reasonable to
expect that not all the samples from a particular area would tap the
same resources, or show the same geothermal potential, even within an
area of known high resource potential. This is illustrated by the 11
Alvord Basin samples that binned into the low potential Group 4, re-
presenting approximately 34% (11/32) of all the data points for this
known high potential area. Inspection of the sample descriptions,
however, indicates that all 11 Alvord Basin samples in this cluster were
taken from low temperature springs and seeps that are clearly not as-
sociated with hydrothermal activity. Similarly, the 21 Camas samples in
this group consist almost entirely of environmental (i.e., “cold”) springs
and water supply wells. The same is true for Group 1, another low
potential group in which the remaining non-thermal control sample
(USGS 134) binned with 1 Alvord Basin sample (an environmental-
temperature seep on the SE side of Mickey Butte), 2 samples from the
Bruneau area (both of which represent farm wells used for potable
water), a sample from the Seventh-Day Adventist Church well in Vale,
and a shallow thermal gradient hole in Lakeview (Hammersly Canyon
No. 1).

It is worth pointing out that the “near optimal” nature of K-means
(and other) clustering methods results in non-unique membership in the
various clusters. The outcome of K-means clustering, in particular, is
dependent on the initial choice of items for the first round of sorting,
and different picks for the first K items will return somewhat different
final groupings. Because different software implementations of the K-
means clustering algorithm employ various strategies for choosing the
first K items, the final groupings can shift between software packages
and, in fact, even using a different ordering of the observations in the
input deck can lead to variations in the final outcome. Fortunately,
these differences are usually minor, commonly amounting to one or a
few items trading groups, with no significant changes in the overall
distribution.

More obviously, changing the number of clusters (i.e., changing the
number of K) necessarily results in a shuffling and reorganization of the
group memberships; however, in our experience the choice of K is not
critical, provided the chosen value is greater than the point on the scree
plot at which the decrease in the sum-of-squares for K+1 groups be-
comes small. In the present study, we compared the results of K-means
clustering for K=12 with our choice for an “optimum” number of
clusters, K=10. In spite of the fact that group memberships (and, of
course, group numbering) changed slightly for K=12, the overall re-
sults of the cluster analysis changed very little (see supplemental ma-
terial S4). The largest group (the new Group 11, with N=67), which
comprised the majority of high potential sites, included 64 of the
members of the “original” (i.e., for K=10) high potential Group 10.
The remaining 6 members of the original high potential group moved to
a new high potential group (the new Group 1), the membership of
which roughly corresponded to the original (K=10) Group 5, and

Fig. 5. Scree plot showing the weighted sum of squares (WSS) as a function of the number
of clusters for K-means clustering. We chose K=10 as the approximate value of the
optimum K. The decrease in the WSS between K and K+1 is greatest for values of
K < 10; for values of K≥ 10, the incremental decreases were judged to be “small”.

Fig. 6. Graphical representation of data points grouped by cluster for the case of 10
clusters (i.e., K=10).
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binned 3 Alvord Basin samples, 10 Camas samples, and 2 Bruneau
samples with samples from Mountain Home (5), Neal Hot Springs (2),
and Raft River (5). Interestingly, membership in the original Groups 2
and 6, which consisted solely of Preston (5) and Raft River (6) samples,
respectively, was identical to the new (K=12) Groups 12 and 4.

It must be pointed out that the results of the analysis presented here
are essentially entirely dependent on geochemistry data; non-geo-
chemical data that were included in the PCA analyses (e.g., resource
depth, temperature, qualitative fracture density) were shown by the
PCA to be highly correlated with geochemical parameters, and there-
fore largely redundant for the purposes of this investigation. Of the non-
geochemical data that could potentially have made an important con-
tribution to this analysis, the information on structural setting deserves
additional discussion. As was mentioned in Section 3.1.2, the majority
of hydrothermal discharge zones are fault-controlled (Curewitz and
Karson, 1997), and the structural setting of an area with respect to
faulting has been shown to be an important control on the distribution
of permeable flow pathways, at least in Basin and Range-type systems
(Faulds et al., 2011). The primary difficulty we encountered with as-
sembling structural setting data is that such data are inconsistently
reported in the literature, and it is often difficult to evaluate the un-
certainty associated with this type of information. For many areas,
detailed structural information is available for the KGRA as a whole; for
example, structural setting data for Neal Hot Springs (Edwards, 2013),
or Raft River (Dolene et al., 1981; Ayling and Moore, 2013), are ex-
cellent. For other areas, however, the structural setting may be un-
certain or unknown (e.g., Vulcan Hot Springs). Most commonly, in-
formation on the structural setting of a KGRA is known in an overall
sense, but the structural associations for individual samples are not
reported, and this information may be difficult or impossible to de-
termine for legacy data. In such cases, it is not clear whether the
structural setting categories assigned to individual data points should
reflect the overall structural setting of the KGRA, an educated guess by
the analyst (both of which actions open the possibility of introducing
bias into the dataset), or if the structural setting variable should be
assigned a value of ‘NA,’ with the likely result being insufficient data to
include the structural setting variable in the final analysis. This diffi-
culty probably cannot be readily addressed for legacy datasets; how-
ever, the importance of structural setting in determining the commer-
cial viability of a site, and the potential for such information to feed into
studies such as the one presented here, suggest that new studies should
always record information on structural setting on a per-sample level.
Furthermore, future studies aimed at determining the structural settings
of legacy data may also have value for understanding the development
potential of KGRAs.

5. Conclusions

We have proposed a method for grouping a set of samples, each of
which is characterized by a vector of attributes (temperature, TDS,
species concentrations, etc.), so as to highlight areas that share char-
acteristics with sites that are known to have a high potential for geo-
thermal development. The method uses a set of statistical tools to sort
sampled locations into related groups; those that cluster primarily with
control sites for high geothermal potential (in this case, systems hosting
producing geothermal power plants) are assumed to be targets of in-
terest for future exploration and site characterization, while locations
that cluster with non-thermal control locations are supposed to re-
present targets with lesser potential, or at least having greater risk. The
methodology proposed here evaluates existing data using in sequence:
(1) Principal Component Analysis (PCA) to identify those variables that
demonstrate the least covariation (i.e., are closest to linear in-
dependence), and hence offer the greatest amount of new information
with the smallest number of variables; (2) Hierarchal clustering, to
determine the optimal number of clusters into which the locations may
be sorted; and (3) K-means clustering, to establish a distribution of sites

guided by their relationships to each other and the control locations.
KGRAs that cluster with the high-potential locations are considered
worthwhile targets for additional exploration and characterization,
along with areas that fall in clusters that show the closest relationship
to the high-potential groups. Conversely, areas grouped with non-
thermal sites, and those clusters most closely related to the low po-
tential controls, are supposed to be less attractive or more risky targets
for exploration potential.

In the present study, we examined data from 14 KGRAs and IHRAs,
and one non-thermal control group. All the sites examined in this study
were located in eastern Oregon and southern Idaho (Table 1 and Fig. 2),
and the data were collected primarily during the 1980s. In addition to
the candidate areas for future exploration/characterization, we in-
cluded three producing geothermal areas (Raft River, Neal Hot Springs,
and Summer Lake/Paisley Hot Springs) as high geothermal potential
control locations; the group of non-thermal areas was included as a low
potential control site. After removing from consideration any variables
that were not measured at more than 25% of the locations, our dataset
consisted of 228 samples distributed throughout the 15 areas of Table 1,
and characterized by a vector of 26 continuous variables. We refined
this vector to a set of 9 variables (Na, K, Ca, Mg, SiO2, Cl, HCO3, SO4,
and F) that PCA analysis identified as best representing the variability
and relationships between samples. For our dataset, hierarchal clus-
tering indicated that the optimum number of groups into which the
data could be sorted was approximately 10, and the final sorting of the
228 sample locations into 10 groups was accomplished with K-means
clustering.

On the basis of our analysis, we consider the Bruneau KGRA, Castle
Creek KGRA, and Alvord Basin KGRA to be targets of highest priority
for future geothermal exploration and characterization. Crane Creek
and Vale KGRAs are also likely high potential targets, although the
relatively small number of samples available to characterize these areas
(3 and 8 samples, respectively) add uncertainty to their assessment.
Other areas, such as Camas Prairie and Lakeview KGRAs, may be good
targets for exploration but are considered higher risk, due to the fact
that locations within these areas are split between high-potential clus-
ters and the low-potential group. Two of the areas included in this
study, Crump Geyser and Vulcan Hot Springs, were represented by one
(Vulcan Hot Springs) or two (Crump Geyser) samples. These areas
clustered with high-potential groups (Groups 7 and 9, respectively) and
may offer good opportunities for future exploration, but the small
number of observations available makes it difficult to determine the
significance of their placement.

It is difficult to offer a convincing “proof” of the efficacy of the
proposed method, since any ex ante predictions would necessarily re-
quire verification by drilling and, ultimately, commercial development.
However, in terms of ex post facto “predictions,” it is instructive to re-
view the results of the cluster analysis with respect to the Alvord Basin
samples. Although socio-economic (distance to market, available
transmission capacity) and socio-political (land-use designations) fac-
tors have conspired to suppress development in the Alvord Basin,
geothermometry (Cummings et al., 1993; Koski and Wood, 2004) and
exploratory drilling by Phillips Geothermal and Anadarko Petroleum all
indicate the presence of viable resources in terms of enthalpy. The
binning of thermal samples from the Alvord Basin with production
wells from Raft River and Neal Hot Springs (and conversely, of non-
thermal samples with the low-potential control group) provides some
indication that the method yields reasonable results. The strength of the
proposed analysis is that it makes efficient use of existing data that may
vary widely in quality and granularity, and can therefore provide gui-
dance on the prioritization of exploration targets in situations where
data uncertainty would typically make site-to-site comparisons pro-
blematic. However, we emphasize that the method proposed here does
not rank potential targets for exploration, or explicitly call-out high
value resource areas. Many measures that are crucial for identifying the
development potential of a geothermal area are not included in the
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proposed analysis; for example, we have made no attempt to apply
standard geothermometers (e.g., Giggenbach, 1988), or explicitly in-
corporate information on subsurface temperatures into the proposed
methodology. The decision to proceed (or not to proceed) with the
characterization or development of an area is complex, and cannot be
reduced to an objective algorithm. Moreover, interpretation of the re-
sults of the PCA/cluster analyses requires expert judgment and a fa-
miliarity with the potential resource areas. High value targets may be
spread over several groups, increasing uncertainty about a target's true
potential. One reason for this is that geochemical data from any given
area often include samples from water supply wells, environmental
(i.e., non-thermal) springs and seeps, etc. These non-thermal samples
are likely to be binned with non-thermal control sites; therefore, the
grouping of some samples from an area into low potential clusters does
not necessarily reflect the overall potential of the area. In the present
analysis, this situation is perhaps best illustrated by the results for the
Alvord Basin: 11 out of 32 samples from that area clustered with the
non-thermal control samples, in spite of the fact that the Alvord Basin
resource is known from geothermometry and drilling to be a high-value
target. Thus, it is important to be familiar with the data being analyzed,
and to differentiate between samples that are likely to indicate condi-
tions in a geothermal reservoir and those that are non-thermal.

Other factors may also cause samples from a single site to bin into
different groups. Many analyses utilizing legacy data are likely to de-
pend on a mix of samples from surface water (i.e., hot springs) and
wells, as is the case for the present study. There are, of course, differ-
ences in chemistry between samples obtained from deep wells and
those from surface features, the discharge from which has often been
modified by cooling, boiling, and mixing with dilute (non-thermal)
surface fluids. These differences may or may not influence the conclu-
sions drawn from this, or other, methods of analysis (e.g., Neupane
et al., 2015), but the practitioner should be aware of the potential for
such factors to impact the final result. In the present study, PCA showed
that the available non-geochemical variables added little new in-
formation to the analysis; however, it is not clear that this would be true
for all sets of potential target areas. If non-geochemical variables that
added unique information to a PCA/cluster analysis could be identified,
the inclusion of such data may help to minimize the potential for
confounding factors associated with geochemical data (e.g., differences
between deep well and surface discharge samples). In particular, we
have noted that the inclusion of information on structural setting of
individual samples (i.e., sample location with respect to fault struc-
tures) may offer critical insight into the development potential of an
area. Although this type of information is not consistently reported on a
per-sample basis in legacy data, the potential benefit of its inclusion in
an analysis of viability suggests that it should always be reported in new
data gathering efforts, and incorporated into development assessments
whenever possible.

It is also worth noting that many non-geological factors also influ-
ence the development potential of a hydrothermal resource area. In the
present study, we focused on factors that effectively correlate with the
temperature and, to a lesser extent, the enthalpy of a resource. Notably
absent is any consideration of economic factors; for example, distance
to market for produced power, the presence of transmission lines or
available transmission capacity, or access to cooling water. Similarly,
restrictions due to land ownership or zoning are neglected. Because our
analysis focuses on primarily geological factors (and in particular, on
geochemical factors), and many of the other factors are social or eco-
nomic in nature, they do not fit comfortably in the framework we have
proposed here.

The strengths of the method proposed here for identifying potential
geothermal exploration targets are that it is inexpensive, can use ex-
isting data of uneven quality and granularity, has the potential to in-
corporate “soft” data, and provides a rapid assessment of prospects. The
semi-quantitative nature of the analysis, the need for expert judgment
to interpret the results, and the lack of an absolute ranking of

exploration targets suggest the value of the method is primarily heur-
istic. Although heuristic methods are not guaranteed to provide optimal
solutions, they are valued for their ability to offer satisfactory ap-
proaches to problems that are impossible or impractical to solve by
optimal methods. We believe the method described here offers an im-
portant tool for efficiently seeking relationships between data of vari-
able or uncertain quality, and has significant potential for identifying
geothermal resources that might otherwise be overlooked, particularly
when used in combination with other metrics for geothermal resource
analysis, such as play fairway analysis, (e.g., Ito et al., 2017; Shervais
et al., 2017; Siler et al., 2017).
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