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Abstract

We estimate with a branching process model the propa-
gation of load shed and the probability distribution of load
shed in simulated blackouts of an electric power system.
The average propagation of the simulated load shed data
is estimated and then the initial load shed is discretized and
propagated with a Galton-Watson branching process model
of cascading failure to estimate the probability distribution
of total load shed. We initially test the estimated distribu-
tion of total load shed using load shed data generated by the
OPA simulation of cascading transmission line outages on
the 300 bus IEEE test system. We discuss the effectiveness
of the estimator in terms of how many cascades need to be
simulated to predict the distribution of load shed accurately.

1 Introduction

Large blackouts are rarer than small blackouts, but are
costly to society when they do occur and have substantial
risk [12]. Large blackouts generally become widespread by
a cascading process of successive failures [18, 22, 23]. It
is useful to study mechanisms of cascading failure so that
blackout risk may be better quantified and mitigated. The
electric power infrastructure is vital in maintaining our so-
ciety, and maintaining high reliability is especially impor-
tant as the electric power infrastructure is being transformed
in response to changes in new energy sources, new loads,
technological advances, sustainability, markets and climate
change.

There are many and diverse mechanisms in power sys-
tems by which components tripping or failures cause further
components tripping [12, 15, 18, 22, 23]. These include line
overloads, failures in protection, communication, mainte-
nance or software, various types of instability, and errors in
coordination, situational awareness, planning or operations.
It is infeasible to analyze a full range of these mechanisms
with one simulation, so cascading failure simulations model
and analyze a selected subset of these mechanisms [15]. In

this paper we analyze load shed data produced by the OPA
simulation of cascading line overloads. Each simulated cas-
cade has successive generations in which transmission lines
are tripped and load is shed, and the total number of lines
tripped and the total amount of load shed are measures of
the size of the blackout.

In the OPA simulation model [2], the power system is
represented with a standard DC load flow approximation.
Starting from a solved base case, blackouts are initiated by
random line outages. Whenever a line is outaged, the gen-
eration and load is redispatched using standard linear pro-
gramming methods. The cost function is weighted to ensure
that load shedding is avoided where possible. If any lines
were overloaded during the optimization, then these lines
are outaged with a specified probability. The process of re-
dispatch and testing for outages is iterated until there are no
more outages. Then the total load shed is the power lost in
the blackout. The OPA model neglects many of the cascad-
ing processes in blackouts and the timing of events. How-
ever, the OPA model does represent in a simplified way a
dynamical process of cascading overloads and outages that
is consistent with some basic network and operational con-
straints. This paper considers a restricted form of the OPA
model in which the power grid is fixed and does not evolve
or upgrade; in other work the OPA model also represents
the complex dynamics of an evolving grid [3, 12, 19].

Branching processes have long been used in a variety of
applications to model cascading processes [1, 14], but their
application to the risk of cascading failure is recent [7,8]. In
particular, Galton-Watson branching processes give a high-
level and tractable probabilistic model of cascading failure.
There is some initial evidence that Galton-Watson branch-
ing processes can capture some general features of simu-
lated and observed cascading line trips [8, 9, 20] and can
approximate other probabilistic models of cascading fail-
ure [7, 11, 17]. The branching process gives a simple prob-
abilistic description of the cascading process as an initial
disturbance followed by an average tendency for the cas-
cade to propagate in stages until the cascade dies out or all
the components fail.
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In previous work [9, 10], we obtained cascading failure
data from the OPA simulation with 118 and 300 bus IEEE
standard test systems, estimated the initial number of lines
tripped and average propagation of line trips from this data,
and then used the branching process to predict the proba-
bility distribution of the total number of lines tripped. This
predicted distribution was then shown to match well with
the empirical distribution produced by exhaustively running
the OPA simulation in most of the cases tested. It is useful to
predict the distribution of total number of lines tripped via
the branching process because this can be done with signif-
icantly fewer simulated cascades. The total number of lines
tripped is a measure of blackout size of interest to utilities,
whereas load shed is a measure of blackout size and im-
pact of much more direct interest to all users of electricity.
Therefore in this paper we test estimating the propagation
and probability distribution of load shed.

In contrast with the case of number of lines tripped,
which are nonnegative integers, the amounts of load shed
are nonnegative real numbers. We estimate the initial distri-
bution of load shed and the average propagation λ from the
simulated load shed data. Then we discretize the contin-
uous initial distribution of load shed and use this discrete
distribution as the initial distribution of a Galton-Watson
branching process with average propagation λ to estimate
a discretized distribution of the total load shed.

Our previous work [10,24] also estimated the initial dis-
tribution of load shed and the average propagation λ from
simulated load shed data, but then took a different approach
using continuous state branching processes [13, 16, 21] to
estimate the distribution of the total load shed. The off-
spring distribution was assumed to be a gamma distribution,
with mean λ and variance estimated from the data. Then
computer algebra was used to manipulate cumulant gen-
erating functions to compute the distribution of total load
shed. In this approach, it is not yet known what form of
offspring distribution fits power system cascading data well
(the gamma distribution was chosen in [10, 24] because it
is easy to compute with). Also, there remain challenges in
estimating a second parameter of the offspring distribution
such as variance and in improving the methods that compute
the distribution of load shed for general offspring distribu-
tions. These challenges for the approach based directly on
continuous state branching processes may be met in the fu-
ture, but here we are able to suggest an alternative approach
that seems simpler.

We assume some background explanations in previous
papers. The OPA model is explained in detail in [2] and ref-
erences to a variety of cascading failure methods and sim-
ulations are in [12, 15]. The branching process model and
parameter estimation are explained in more detail in [9] and
general background on branching processes is in [1,13,14].

2 Estimating propagation and distribution of
load shed with a branching process

This section describes the procedure for estimating the
propagation and probability distribution of load shed with a
branching process.

For each simulated cascade the total load shed as well as
the load shed at each intermediate generation of the cascade
is recorded. The first step is to round very small load shed
amounts that are considered negligible (less than 0.5% of
total load) to zero. Then the data is modified so that each
cascade starts with a nonzero amount of shed. In particular,
cascades with no load shed are discarded. The remaining
K cascades are those with some non-negligible load shed.
Therefore the computed statistics, such as the probability
distributions of initial and total load shed, are conditioned
on the cascade starting with some non-negligible amount of
load shed. Moreover, for the cascades with no load shed
in initial generations and non-negligible load shed in sub-
sequent generations, we discard the initial generations with
no load shed so that generation zero always starts with a
positive amount of load shed.

Now the data has K cascades with non-negligible load
shed. Letting Xi

n denote the load shed at generation n of
cascade i, the data looks like this:

gen. 0 gen. 1 gen. 2 · · ·
cascade 1 X

(1)
0 X

(1)
1 X

(1)
2 · · ·

cascade 2 X
(2)
0 X

(2)
1 X

(2)
2 · · ·

...
...

...
...

...
cascadeK X

(K)
0 X

(K)
1 X

(K)
2 · · ·

The total load shed in cascade i is

Y (i) = X
(i)
0 +X

(i)
1 + . . .

The estimator for the average propagation λ is the stan-
dard Harris estimator [6, 13, 14, 25]:

λ̂ =

K∑
k=1

(
X

(k)
1 +X

(k)
2 + ...

)
K∑
k=1

(
X

(k)
0 +X

(k)
1 + ...

) (1)

The Harris estimator (1) is an asymptotically unbiased max-
imum likelihood estimator [14, 25]. Our cascading process
is assumed to be subcritical (λ < 1) and saturation effects
are neglected. (In supercritical or saturating cases, other es-
timators for λ are appropriate as discussed in [10, 17].)

The load shed amounts X(1)
0 , X

(2)
0 , · · · , X(K)

0 are sam-
ples from the probability distribution of initial load shed,
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assuming that some non-negligible load is shed. The aver-
age initial load shed θ is estimated as

θ =
1
K

K∑
k=0

X
(k)
0 (2)

To estimate the probability distribution of total load shed
from the initial load shed and the estimated propagation λ̂,
we discretize the samples of the initial load distribution and
assume they are propagated by a Galton-Watson branching
process with a Poisson offspring distribution of mean λ̂.

There are general arguments suggesting that the choice
of a Poisson offspring distribution is appropriate [4,5]. The
Poisson distribution is a good approximation when each
load shed increment is related to stress on the supply to a
large number of other loads so that each load shed increment
can be associated with a small, fairly uniform probability of
independently leading to other load shed increments in a
large number of locations.

We choose a discrete amount of load shed ∆. Then each
initial load shed sampleXk

0 is discretized to an integer mul-
tiple of ∆:

Zk0 = int
[
Xk

0

∆
+ 0.5

]
, (3)

where int[x] = integer part of x. Write Z0 for the initial
load shed expressed in integer multiples of ∆. Then the
empirical probability distribution of Z0 is

P [Z0 =z0] =
1
K

K∑
k=1

I[Zk0 =z0] (4)

Now, given the probability distribution (4) of the initial
distribution Z0 and the average propagation estimated from
(1), branching process theory implies that the discretized to-
tal load shed is distributed according to a mixture of Borel-
Tanner distributions:

P [Y =r∆] =
r∑

z0=1

P [Z0 =z0]z0λ(rλ)r−z0−1 e−rλ

(r − z0)!
(5)

3 Results

The cascading failure data is produced by the OPA simu-
lation on the IEEE 300 bus standard test system [26]. Three
load levels are considered: 1.0, 1.05 and 1.1 times the base
case load. 20 000 cascades were simulated for each load
level. The number of cascades K with non-negligible load
shed is shown in Table 1 for each load level. The proba-
bility of a cascade with non-negligible load shed (that is, a
significant blackout) is K/(20 000).

For the IEEE 300 bus system the load shed discretiza-
tion ∆ is chosen to be 952 MW, which is 4% of the base

case load of 23 800 MW. This value of ∆ is chosen by ex-
perimenting with a range of values. (As a possible point of
reference, the power system contains 409 lines as discrete
elements and each line comprises 0.24% of the total num-
ber of lines.) Too small a value of ∆ does not allow suffi-
cient samples within each discretization bin to get a good
estimate of the frequency of blackouts in that discretization
bin. Too large a value of ∆ gives insufficient resolution in
the load shed. In the cases tested we find that varying ∆ by a
factor of 2 has not much effect on the results. The choice of
∆ does affect the way that the branching process models the
cascading load, and we hope that future work will establish
more systematic methods for the choice of discretization.

The average propagation λ is estimated using (1) for
each load level and is shown in Table 1. The average ini-
tial load shed θ estimated using (2) for each load level is
also shown in Table 1.

Table 1. Average propagation λ and average
initial load shed θ in IEEE 300 bus test system

load level λ θ(GW) K
1.0 0.09 3.72 4137
1.05 0.21 3.57 8568
1.1 0.42 3.29 9381

For the base case load level 1.0, the probability distri-
bution of total load shed estimated via the branching pro-
cess is compared to the empirical distribution of total load
shed in Figure 1. Although both probability distributions
are discretized in load, the distribution of total load shed es-
timated via the branching process has its points joined by a
line so it can be clearly distinguished. The match is good,
but this is expected in this case since the average propaga-
tion λ = 0.09 is small and the cascading effect is small,
so that the distribution of total load is close to the initial
distribution of load.

For the higher load level 1.05, the probability distribu-
tion of total load shed estimated via the branching process
is compared to the empirical distribution of total load shed
in Figure 3. The average propagation λ = 0.21 and the
match is good. The empirical initial load shed distribution
is shown in Figure 2. The cascading has the effect of chang-
ing the initial distribution of load shed into a distribution of
total load shed with larger blackouts.

For the higher load level 1.1, the probability distribution
of total load shed estimated via the branching process is
compared to the empirical distribution of total load shed in
Figure 5. The average propagation λ = 0.42 and the match
is good except for the sharply dropping portion of the tail.
The empirical initial load shed distribution is shown in Fig-
ure 4. The cascading has a larger effect of changing the
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Figure 1. Probability distributions of total
load shed for IEEE 300 bus system at load
level 1.0. Dots are the empirical distribution;
line is estimated with the branching process.

initial load shed distribution into the total load shed distri-
bution.

4 Number of cascades for accurate estimates

This section roughly estimates how many fewer cascades
are needed to estimate propagation and then estimate the
probability distribution of load shed with the branching pro-
cess compared to direct empirical estimation of the proba-
bility distribution of load shed.

In our case of a Poisson offspring distribution, the
asymptotic standard deviation of the Harris estimator can
be worked out using the methods of [25] to be

σ(λ̂) ∼
√
λ(1− λ)√
Kθ/∆

(6)

Note that θ/∆ estimates EX0/∆ = EZ0, which is the
mean number of discretized amounts of initial load shed.

Let pbranch be the probability of shedding total load S,
computed via estimating λ from Kbranch simulated cas-
cades with non-negligible load shed and then using the
branching process model. pbranch is conditioned on a non-
negligible amount of load shed. Assume that the initial dis-
tribution of load shed is known with high accuracy. Then
the standard deviation of pbranch is

σ(pbranch) =
∣∣∣∣dpbranch

dλ

∣∣∣∣σ(λ̂)

=
∣∣∣∣dpbranch

dλ

∣∣∣∣
√
λ(1− λ)∆
Kbranchθ

(7)
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Figure 2. Probability distribution of initial
load shed at load level 1.05.
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Figure 3. Probability distributions of total
load shed at load level 1.05. Dots are the em-
pirical distribution; line is predicted with the
branching process.

Let pempiric be the probability of shedding total load S,
computed empirically by simulatingKempiric cascades with
non-negligible load shed. Then the standard deviation of
pempiric is

σ(pempiric) =

√
pempiric(1− pempiric)

Kempiric
(8)

If we require the same standard deviation for both meth-
ods, then we can equate (7) and (8) to approximate the ratio
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Figure 4. Probability distribution of initial
load shed at load level 1.1.
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Figure 5. Probability distributions of total
load shed at load level 1.1. Dots are the em-
pirical distribution; line is predicted with the
branching process.

of the required number of simulated cascades as

Kempiric

Kbranch
=
pempiric(1− pempiric)θ

λ(1− λ)∆

(
dpbranch

dλ

)−2

(9)

To obtain a rough estimate of the ratio, we evaluate (9)
for total load shed S = 9.52 GW for each of the three load
levels. dpbranch/dλ is estimated by numerical differencing.
We find that Kempiric exceeds Kbranch by an order of mag-
nitude or more.

5 Conclusion

In this paper, we suggest approximating the cascading
process of load shed in blackouts by discretizing the load
shed and then using a Galton-Watson branching process.
The average propagation of failures λ is estimated using
the standard Harris estimator from cascading load shed data
that records the load shed in each cascade generation. Then
the branching process model estimates the probability dis-
tribution of load shed from the discretized distribution of
initial load shed and the estimate of λ. We test this es-
timation on cascading failure data from the OPA simula-
tion of cascading transmission line outages in the 300 bus
IEEE electric power test system. The estimated distribution
is close to the empirical distribution in most of the cases
tested, suggesting that the branching process model with an
averaged propagation can capture some aspects of the cas-
cading of load shed, at least for the purpose of estimating
the probability distribution of total load shed.

The approach via propagation and the branching process
opens opportunities for estimation of the probability distri-
bution of load shed from fewer observed or simulated cas-
cades. We assume that the probability distribution of ini-
tial load shed is known accurately. These initial load shed
statistics can be estimated by methods of conventional re-
liability or by observations, since some load is shed much
more frequently than there is a large cascading blackout.
Given that the probability distribution of initial load shed
is known accurately, our initial testing of the estimation via
the branching process of the probability distribution of to-
tal load shed suggests that an order of magnitude or more
fewer cascades are needed for this estimation in the tail of
the distribution than is needed for direct empirical estima-
tion of the probability distribution of load shed. This is not
only helpful in reducing simulation times, which are always
burdensome and often prohibitive for cascading failure sim-
ulations of large power system models, but also will be a
crucial attribute in designing practical methods of estimat-
ing the probability distribution of load shed from cascades
observed in the power system. Empirical methods of ac-
cumulating blackout statistics that simply wait for enough
cascades to occur take too long to be practical when estimat-
ing the rare but important large blackouts in the tail of the
distribution. Model based approaches to cascading failure
such as the method presented here are needed to estimate
the probability of large blackouts from observations over a
time scale of about a year rather than over decades.

The approach seems to be easier than a previous method
[10,24] that estimates the offspring distribution of a contin-
uous state branching process and then uses computer alge-
bra to compute cumulant generating functions of the distri-
bution of total load shed.

This paper estimates average propagation and the distri-
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bution of load shed using a branching process. These first
results are sufficiently promising that further testing with
other power system models or more detailed cascading fail-
ure simulations is warranted.
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