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ABSTRACT

The 1D power spectrum P of the Ly « forest provides important information about cosmological and astrophysical parameters,
including constraints on warm dark matter models, the sum of the masses of the three neutrino species, and the thermal state of
the intergalactic medium. We present the first measurement of P with the quadratic maximum likelihood estimator (QMLE)
from the Dark Energy Spectroscopic Instrument (DESI) survey early data sample. This early sample of 54 600 quasars is
already comparable in size to the largest previous studies, and we conduct a thorough investigation of numerous instrumental
and analysis systematic errors to evaluate their impact on DESI data with QMLE. We demonstrate the excellent performance of
the spectroscopic pipeline noise estimation and the impressive accuracy of the spectrograph resolution matrix with 2D image
simulations of raw DESI images that we processed with the DESI spectroscopic pipeline. We also study metal line contamination
and noise calibration systematics with quasar spectra on the red side of the Ly o emission line. In a companion paper, we present
a similar analysis based on the Fast Fourier Transform estimate of the power spectrum. We conclude with a comparison of these
two approaches and discuss the key sources of systematic error that we need to address with the upcoming DESI Year 1 analysis.

Key words: methods: data analysis —intergalactic medium — quasars: absorption lines.

1 INTRODUCTION

Neutral hydrogen gas between us and distant quasars forms ab-
sorption lines at wavelengths shorter than the Ly o emission line
in the quasar spectrum through absorption and scattering. These
absorption lines are collectively called the Ly« forest; and they
trace the underlying matter distribution in the intergalactic medium
(IGM) and the circumgalactic medium (CGM). The Ly « forest is
consequently a powerful tool to map vast volumes at redshifts 2 < z
< 5 and probing scales from hundreds of Mpc to below 1 Mpc.
Gunn & Peterson (1965) first estimated the density of neutral
hydrogen in the IGM. They realized that the measurement of some
continuum flux of 3C 9 below the Ly o emission line by Schmidt
(1965) implied the IGM was mostly ionized. Later work by Lynds
(1971) showed that the IGM absorption was in the form of discrete
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features. In the 1990s, work by many investigators (Bi, Boerner &
Chu 1992; Cen et al. 1994; Zhang, Anninos & Norman 1995; Bi &
Davidsen 1997) clearly established that this Ly o forest originates
from smooth IGM fluctuations. Based on this smooth density
fluctuations picture, the 1D power spectrum (Pip) has emerged as
an important quantity to measure in high-resolution, high-signal-to-
noise (SNR) spectra (Croft et al. 1998; Irsic¢ et al. 2017; Walther et al.
2017; Karagayl et al. 2022), as well as medium-resolution, medium-
SNR spectra (McDonald et al. 2006; Palanque-Delabrouille et al.
2013; Chabanier et al. 2019). P;p is valuable because it is sensitive
to smaller scales than are accessible in high-redshift galaxy surveys,
and consequently to particular physical quantities. Applications of
the Ly o P;p include investigations of the thermal state of the IGM
(Boera et al. 2019; Walther et al. 2019; Villasenor et al. 2022),
inference of the primordial power spectrum (Viel, Weller & Haehnelt
2004), constraints on the sum of neutrino masses (Croft, Hu & Davé
1999; Palanque-Delabrouille et al. 2015; Yeche et al. 2017), and
explorations of the nature of dark matter (Narayanan et al. 2000;
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Seljak et al. 2006; Wang et al. 2013; Irsic et al. 2017b), with warm
dark matter receiving particular attention (Boyarsky et al. 2009; Viel
etal. 2013; Baur et al. 2016; IrSic et al. 2017a; Villasenor et al. 2023).

Even though P;p is a summary statistic for cosmological analysis,
it is very sensitive to several sources of systematic errors. The five-
year data from the Dark Energy Spectroscopic Instrument (DESI;
Levi et al. 2013) will provide approximately 700000 Ly o quasar
spectra with medium resolution (R =~ 3000), medium SNR (~2
per A; DESI Collaboration 2016a, b), which will constitute a data
set that is four times larger than the Extended Baryon Oscillation
Spectroscopic Survey (eBOSS; Dawson et al. 2016). DESI will
consequently substantially expand the statistical power of Ly o forest
measurements relative to previous work. To fully exploit this great
increase in statistical power requires comprehensive studies of Pp
systematics. These include systematics related to the theoretical
interpretation (e.g. Lukic¢ et al. 2015; Walther et al. 2021; Chabanier
et al. 2023), instrumental effects, and other spectroscopic extraction
details. We address the latter two topics in this paper with early DESI
observations.

We analyse two distinct data sets in this paper. The first set
of spectra was collected between December 2020 and May 2021
during the DESI Survey Validation (SV; DESI Collaboration 2023a)
phase. The purpose of this phase was to perform various tests to
verify the pipeline for target selection, spectral extraction, classifier
performance, and clustering analysis. The spectra collected during
this period will be publicly available as early data release (DESI
Collaboration 2023b). The second set was obtained during the
first two months of the DESI main survey, which began in May
2021. Together, these data span a wide range of SNR. We use
them to measure Pip and characterize the noise, flux calibration,
and spectrograph resolution calculated by the DESI spectroscopic
pipeline.

The two main methods to estimate Pp are the maximum likelihood
estimator and the Fast Fourier transform (FFT). The maximum
likelihood estimator is typically considered to be statistically optimal,
although it is slower than FFT-based algorithms. The maximum like-
lihood estimator can be implemented in two different ways. A direct
implementation finds the maximum likelihood solution by sampling
the likelihood with respect to P (Palanque-Delabrouille et al. 2013).
This implementation has slower convergence properties and is more
prone to numerical instabilities. The second implementation takes
advantage of the Newton—Raphson method and achieves a faster
and more stable performance. We call this estimator the quadratic
maximum likelihood estimator (QMLE; McDonald et al. 2006;
Font-Ribera, McDonald & Slosar 2018; Karacayli, Font-Ribera &
Padmanabhan 2020) and the application of QMLE to DESI data is
the main focus of this paper. In a companion paper by Ravoux et al.
(2023), we present the application of the FFT-based estimator to early
DESI data. That paper adapts the FFT approach previously used for
eBOSS (Chabanier et al. 2019).

A major virtue of QMLE is that it is robust against challenges such
as strong sky emission lines, high-column density (HCD) systems,
and bad CCD pixels. Pixels affected by these features must be masked
to avoid contamination from unrelated physical effects and imperfec-
tions in instrumentation. This masking introduces a bias that must be
corrected in FFT estimates; and these corrections in turn introduce
uncertainties to the measurement (Chabanier et al. 2019). A major
advantage of QMLE is that it can handle masked, uneven spectra
without further corrections by construction. Relatedly, QMLE is
capable of weighting individual pixels by the inverse pipeline noise,
and hence diminishes the impact of variations in instrument noise and
other noisy spectral regions such as certain sky lines. In addition, the
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QMLE implementation of Karacayli, Font-Ribera & Padmanabhan
(2020) interpolates pixel pairs into two redshift bins to account for
the redshift evolution within the Ly « forest. These properties, among
others discussed later in the text, make the QMLE an excellent tool
for DESI Ly @ P)p estimation.

For a medium-resolution, medium-SNR survey such as DESI,
the potential systematics due to the pipeline noise estimation and
the spectrograph resolution require the most attention. Previous ex-
periments suffered from spectroscopic pipeline noise miscalibration
levels of 15 percent, which necessitated separate calculations and
recalibrations of the pipeline noise (McDonald et al. 2006; Palanque-
Delabrouille et al. 2013). DESI was meticulously designed to abate
such miscalibrations (DESI Collaboration 2022; Guy et al. 2023).
Yet even though the pipeline is significantly improved, the statistical
power of even the early data demands ever-stringent precision.
Another consideration is that spectral extraction for DESI is based
on the spectro-perfectionism algorithm, which can handle arbitrarily
complicated (i.e. not solely separable) 2D point-spread functions
(PSF; Bolton & Schlegel 2010). This extraction preserves the full
native resolution of the 2D spectrograph without degradation in the
1D spectrum and yields an independent resolution matrix for each 1D
spectrum that is based on the spectrograph resolution and the noise
in each spectrum (Guy et al. 2023). QMLE can naturally incorporate
this novel resolution matrix, and in this paper, we validate the
spectro-perfectionism and its synergy with the QMLE by simulating
CCD images and extracting spectra with the DESI spectroscopic
pipeline.

The outline of this paper is as follows. First, we describe the
DESI survey, target selection, the creation of quasar catalogues, the
identification of damped Ly o (DLA) systems and broad absorption
lines (BAL), and the properties of the early spectra in Section 2. We
outline the continuum fitting algorithm and detail the QMLE and
various updates in Section 3. Synthetic spectra are central in our
validation to make robust statistical claims. In Section 4, we validate
the continuum fitting algorithm, DLA masking and damping wing
corrections with extensive sets of 1D mock spectra, and validate the
resolution matrix derived by the pipeline CCD image simulations that
we analyse with the same spectroscopic pipeline that we use with
real DESI observations. We perform various tests for systematics
and present our P;p measurement from data in Section 5. Finally,
we compare DESI P;p measurements from the QMLE and FFT
estimators to each other and to eBOSS in Section 6. We summarize
our results in Section 7. As noted before, a companion paper by
Ravoux et al. (2023) presents the FFT-based results.

2 DATA

The DESI collaboration began a five-year survey of 40 million
galaxies and quasars in May 2021. The main goal of this survey
is to measure distances with the baryon acoustic oscillation (BAO)
method from the local universe to beyond z > 3.5 and use these data
to explore the nature of dark energy. DESI will also employ redshift
space distortions to measure the growth of cosmic structures and test
potential modifications to general relativity, measure the sum of neu-
trino masses, and investigate primordial density fluctuations from the
inflationary epoch. The collaboration is conducting this survey with
a new, high-throughput, fiber-fed spectrograph on the 4 m Mayall
telescope that can obtain 5000 spectra in each observation (DESI
Collaboration 2016b; Silber et al. 2023). The light from each fiber is
directed into one of ten, identical, bench-mounted spectrographs that
record the light from 360 to 980 nm in three wavelength channels. The
blue channel is optimized for Ly « forest studies and extends from
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Figure 1. Quasar at z = 2.94 observed during DESI survey validation (TargetID 39627871806818826). The Ly @ forest is defined to be the spectral region
between a quasar’s Ly & and Ly 8 emission lines. Absorption features redward of the quasar’s Ly o emission line may be due to metal systems. The regions from
Ly « to Si1v and from Si1v to C1V are called the ‘side bands’ (SB). We call the Ly o —Si v region SB 1 and the SiIV-CIV region SB 2, and use these regions

to quantify metal contamination, noise and flux calibrations.

360 to 593 nm with a resolution that ranges from 2000 to 3500. These
spectrographs are in a climate-controlled enclosure that provides
very stable calibrations and minimizes systematic errors due to
instrumental effects. The instrumentation is described in detail in
DESI Collaboration (2022) and the spectroscopic pipeline in Guy
et al. (2023).

DESI targets were selected with g, r, z photometry from the
Legacy Imaging Surveys (Dey et al. 2019) and W1, W2 photometry
from the Wide-field Infrared Explorer (WISE; Wright et al. 2010).
The target selection process is described in detail in Myers et al.
(2023). The targets include quasars at 0.9 < z < 2.1 that are used
to trace large-scale structure and at z > 2.1 that are used to trace
the matter distribution with the Ly o forest (Yeche et al. 2020).
The collaboration refined the target selection algorithms during the
Survey Validation (SV; DESI Collaboration 2023a) period in early
2022 with a significant visual inspection effort (Alexander et al.
2023). The final quasar target selection is based on a random forest
algorithm and selects quasars in the magnitude range 16.5 < r <
23 (Chaussidon et al. 2023). We use the One-Percent Survey (SV3)
spectra that are part of early data release (EDR; DESI Collaboration
2023b), and further include two months of main survey (DESI-
M?2) to increase the statistical precision in our analysis. We call
this combined data set EDR+. The target selection validation (SV1)
spectra are the deepest observations in EDR, but their pipeline noise
estimates differ from the other two data sets (Ravoux et al. 2023).
Therefore, we rely on these spectra only for the DLA identification
and not for Pp estimation since the pipeline noise estimates do not
affect DLA identification as they affect Pip. Fig. 1 shows a quasar at
z = 2.94 from this DESI early data.

DESI employs three classification algorithms to identify quasars.
Most targets are correctly classified with Redrock' (Bailey et al., in

Thttps://github.com/desihub/redrock

preparation). This algorithm performs a x? analysis for a range of
spectral templates as a function of redshift and identifies the best
redshift and spectral template for each target. Our visual inspection
process demonstrated that Redrock misses some quasars, so we
employ QuasarNET (Busca & Balland 2018; Farr, Font-Ribera &
Pontzen 2020) and an Mg 11 afterburner (Napolitano et al. 2023) to
help identify additional quasars. QuasarNET is a machine learning
algorithm that uses convolutional neural networks for classification
and the Mgil afterburner searches for broad Mgil emission at
the Redrock redshift in the spectral of quasar targets classified as
galaxies. Chaussidon et al. (2023) describe this process in more
detail. We limit ourselves to objects that are targeted as quasars in
the afterburner catalogue.

2.1 Quasars with broad absorption lines

BAL features are present in about 15 per cent of all quasar spectra
and can contaminate the Ly « forest as well as impact quasar redshift
errors and classifications. The vast majority of BAL quasars exhibit
blueshifted absorption associated with the CIvV emission feature
and the BAL identification algorithm searches this region in every
quasar spectrum where this spectral region is visible (1.57 < z <
5). This algorithm is similar to the one presented by Guo & Martini
(2019), except that it does not use the Convolutional Neural Network
(CNN) classifier. Filbert et al. (2023) describe the BAL identification
and characterization for the early DESI quasar catalogues in detail,
including the catalogue completeness and purity, and the impact of
BAL features on redshift errors (Garcia et al. 2023). We use the
measured velocity range of the BAL features associated with C1v
to mask this ion and also mask the wavelengths that correspond to
the same velocities associated with the S1v, Pv, C1i1, Ly &, N v, and
Si1v. All of these features may be present in BALs (Mas-Ribas &
Mauland 2019), and all but S 1v can contaminate the Ly « forest (e.g.
Ennesser et al. 2022).

MNRAS 528, 3941-3963 (2024)
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2.2 Damped Ly o systems

DLAs are identified using both CNN and Gaussian process (GP)
finders, then their results are combined into a concordance catalogue
while adopting GP results over CNN if both detect the same DLA
(Ho, Bird & Garnett 2021; Wang et al. 2022). We pick unique DLA
identifications while combining three separate DLA catalogues for
SV1, SV3, and DESI-M2 since the same quasars and DLAs can be
present in different catalogues. If two DLAs are within a threshold
redshift separation Az, that corresponds to a DLA’s observed redshift
size, we pick the highest confidence identification, where

°

7.3A

Az = (1+2p1a) 3 10Wu=20)/2, )

Lya

We select systems based on average signal-to-noise ratio SNR
between 1420 and 1480 Ain quasar’s rest frame. For DLAs that
are identified by CNN, we keep them in the catalogue if the host
quasar spectrum has SNR > 3, but remove them from the catalogue
if the confidence level is less than 0.3 in quasars with SNR < 3. We
keep all systems GP identifies. There are 41 946 DLAs with Ny, >
20.3 in the combined catalogue. Sub-DLA detections contain many
false positives, so we do not mask them. Our selection criteria and
duplicate removal reduce this number to 30 131. Introducing a minor
confidence threshold of 0.2 for high SNR and 0.9 for GP systems
removes 567 DLAs. We believe masking possible DLAS in this small
sample is more valuable than missing them. We note that not all DLA
sightlines end up in our final sample since some host quasars are left
out due to quality cuts.

2.3 Redshift distribution

Fig. 2 shows the quasar redshift distribution of our sample on the
top panel. The quasar distribution ngs,(z) drops off rapidly at higher
redshift, as expected from the selection function. There are 67 241
quasars in our final sample. On the bottom panel, we show the
SNR distribution in the forest as a function of redshift with bin
size Az = 0.1. We define SNR based on the propagated error o (z),
where SNR = 1/0(z) and the propagated error o (z) on the weighted
mean as follows:

o) = | wiok., / > wi, @)

where w! = ol + 02, and summation is done over all pixels
that fall into the redshift bin. This quantity is equivalent to pixel SNR
values after coadding all quasar spectra in the forest region into coarse
Az = 0.1 pixels. Large-scale structure variance o is calculated
during the continuum fitting process as described in Section 3. Even
though we keep BAL quasars while continuum fitting, we remove
them from final P, estimates. Removing these BAL quasars leaves
us with 54 600 spectra and reduces our SNR as shown in blue in
Fig. 2.

We explain the details regarding DLA and BAL masking in
Section 5.

3 METHOD

3.1 Continuum fitting

The continuum fitting algorithm we use was developed over the last
few years and has been applied to both 3D analyses (Bautista et al.
2017; du Mas des Bourboux et al. 2019, 2020) and P;p measurements

MNRAS 528, 3941-3963 (2024)
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Figure 2. (Top) Quasar redshift distribution of our sample. (Bottom)
Weighted mean SNR distribution in the forest as a function of redshift, where
we define SNR to be 1/0(z) and o (z) is the propagated error on the weighted
mean of pixel size of Az = 0.1. Having BAL quasars (orange) improves
SNR, but it also comes with possible biases in Pip (see Section 2).

(Chabanier et al. 2019). This algorithm is part of the software Package
for Igm Cosmological-Correlations Analyses (PICCA) and is publicly
available.” We summarize the algorithm below.

One important aspect of the algorithm is that the definition of
the quasar continuum absorbs the mean transmission F(z) of the
IGM. Specifically, we model every quasar ‘continuum’ FC,(Agr)
by a global mean continuum C(Agr) and two quasar ‘diversity’
parameters, amplitude a, and slope b,:

FCy(hrr) = COrp) (ag + by A) 3)

log re — log Ay

= ®) (1) @)
log Agg — log Agg

where Agp is the wavelength in quasar’s rest frame and Agl;-z) are the
minimum and maximum wavelengths considered for calculation. We
assume that the global mean continuum C(gr) does not depend on

Zhttps://github.com/igmhub/picca
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redshift, and therefore our model only adjusts F(z), as well as solves
for the a, and b, parameters for each quasar. In other words, the
amplitude and slope parameters do not only fit for intrinsic quasar
diversity such as brightness, but also for the IGM mean transmission.
Given these definitions, transmitted flux fluctuations are given by

_f
%)= FC,(1)

where A = (1 + z,)Arr is the observed wavelength and f, (1) is the
observed flux. The effect of spectrograph resolution has been ignored
for simplicity as noted in Slosar et al. (2013), since the affected scales
are small for 3D analysis. The features in the continuum are also
wider than the spectrograph resolution, so this assumption should
also hold for Pp.

Our continuum fitting procedure calculates a, and b, for each
quasar, and three global functions: the mean quasar continuum
C(\gp), the large-scale Ly @ fluctuations GLZSS(A), and the pipeline
noise correction term n(A). We do not assume a functional form
for these three functions; instead, we construct linear interpolations
based on binned estimates. Specifically, C(hgp) is calculated between
rest-frame wavelengths Agl): and )L%Z in bins of size AAgg. The other
two parameters 7(1) and ULZSS(A) are calculated in the observed frame
in Ngp, bins linearly spaced between A" and A®. These binning
parameters are tuned for each analysis depending on the available
statistics. Before we start our fitting process, we co-add the three
spectrograph arms using the pipeline inverse variance as weights.
Our fitting procedure is iterative. Each iteration i is as follows:

-1 (&)

(i) Fiteach spectrum for a, and b, while keeping other parameters
fixed.

(11) Calculate 6,4] ()\RF)

(iii) Fit for variance parameters 1 and Ufss (defined below) for
each bin.

For each quasar, we find the a, and b, values that minimize the
following cost function while keeping all other parameters fixed:
— (2
[fj —(a, + byA )T (ﬁ

=Y —

j q.J

2
)] +) InoZ . (6)
J

where the summation j is over all pixels in the forest region and
Aj is the observed wavelength. The major complication comes from
aqz. ;» Which must take into account the intrinsic large-scale Ly o
fluctuations o

—2 A
g =N )0ppe; + ss(A)ag + by A ;)*C (ﬁ) . 7
q

After every quasar is fit, we stack all continua in the rest frame
and update the global mean continuum C. As described above,
parameters 7 and o are calculated at discrete wavelength bins.
For each bin, we rebin the § values with respect to the pipeline noise
estimates o . and calculate the scatter in these o ;. bins to measure
the o — o, relation from the data. Lastly, we fit equation (7) to
this relation to find 1 and o values for every wavelength bin.

3.2 Quadratic estimator

We measure P;p using the quadratic maximum likelihood estimator
(QMLE), which was extensively studied in the 90s in the context of
cosmic microwave background radiation, galaxy surveys, and weak
lensing (Hamilton 1997; Tegmark, Taylor & Heavens 1997; Seljak
1998; Tegmark et al. 1998), and later also applied to the Ly « forest

DESI early 1D power spectrum — 3945
(McDonald et al. 2006; Karacayli, Font-Ribera & Padmanabhan
2020; Karagayl et al. 2022). The QMLE works in real space (instead
of Fourier space) to estimate the power spectrum, and therefore
allows weighting by the pipeline noise, accounts for intrinsic Ly «
large-scale structure correlations, and most importantly is not biased
by gaps in the spectra. We refer the reader to Karacayli, Font-
Ribera & Padmanabhan (2020) and Karacayl et al. (2022) for our
development process and application to high-resolution spectra. In
this section, we provide a short summary of QMLE and then describe
the important steps for the resolution matrix and shifting Nyquist
frequency implementations. Details regarding the continuum error
marginalization are in Appendix A and signal-noise coupling cor-
rection is in Appendix B.

One motivation for the development of QMLE is that the power
spectrum is typically estimated on discrete wavenumbers k as band
powers, since it cannot be estimated continuously on k, and this
discretization inevitably averages the underlying power over these
bands. Our QMLE implementation alleviates this effect by estimating
deviations from a fiducial power spectrum such that P(k, z) = Pgq(k,
2) + Dm0 Wonm (ks 2)0 oy, Where we adopt top-hat k bands with &,
as bin edges and linear interpolation for z bins with z,, as bin centres.
This fiducial power spectrum further improves the weighting by
including large-scale Ly o correlations, does not have to exactly
match the true power spectrum, and can be approximated in an
unbiased way if no safe guess is available (as shown by Karagayli,
Font-Ribera & Padmanabhan 2020). We use the following fitting
function:

kPﬁd(k, Z) _ (k/k0)3+n+ozlnk/ko ( 14z )B+ﬂlnk/k0
P N 1+ (k/kp)? 1+2

where ko = 0.009 skm™" and zo = 3.0, and stress that this is sufficient
for a baseline estimate, which in turn can be used to weight pixels,
but does not capture all of the scientific information in P;p.

Given a collection of pixels representing normalized flux fluctua-
tions § r, the quadratic estimator is formulated as follows:

, (®)

A 1

O+ — az EF;,(da/ — by — to), )
where X is the iteration number and

dy =87C7'Q,C '8, (10)
by = Tr(C'Q,C™'N), (1
te = Tr(C™'Q,C ™' Spa). (12)

The covariance matrix C = (§8%) is the sum of signal and noise,
C = Shs + > eQs0, + N, Q, = 0C/06, and the estimate of the
Fisher matrix is

Fow = %Tr(C“QQC"Qw. (13)

The covariance matrices on the right-hand side of equation (9)
are computed using parameters from the previous iteration 6%,
Assuming different quasar spectra are uncorrelated, the Fisher matrix
F,, and the expression in parentheses in equation (9) can be
computed for each quasar, then accumulated, i.e. F = Zqu etc.

We convert wavelength to velocity using logarithmic spacing,
following the convention in cosmology:

Vi =¢C ln()\.,'/)\.Lya) (14)

where Ay, = 1215.67 A. We assume the noise is uncorrelated at
different wavelengths, which results in a diagonal noise matrix with
N;; = a,-z, where o; is the continuum-normalized pipeline noise.
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3.2.1 Resolution matrix

In our previous applications of QMLE, we approximated the spec-
trograph resolution effects by a continuous window function W(v,
v") such that the smoothed flux fluctuations §; were given by

Sr(v) = /dv’ W, v)8(). (15)

Even though it is a valid and prevalent approximation, this formalism
unfortunately fails to capture wavelength-dependent resolution of
the spectrographs. However, for DESI the spectral extraction is
built on the improved spectro-perfectionism algorithm (Bolton &
Schlegel 2010; Guy et al. 2023). Spectro-perfectionism produces a
resolution matrix R associated with each spectrum that is based on
the spectrograph resolution as well as the noise properties of each
spectrum, and captures the wavelength-dependent resolution on the
same discrete wavelength bins as the spectrum. The observed signal
becomes a matrix—vector multiplication:

3z =R4. 16)

This redefinition is natural to incorporate into the QMLE formalism.
We achieve this by replacing the integral equations for the signal S
and derivative matrices Q by the following expressions:

Sk = (8z8%) = RSR” (17)

Q% = RQ*R’, (18)

where the subscript R denotes the smoothed matrices, and matrices
without a subscript are evaluated as integrals but now without a
resolution window function.

6d * dk
Si; = = cos(kvi;) Pa(k, zij), 19
0

where vj; =v; — vjand 1 4 z;; = /(1 4 z;)(1 + z;). The derivative
matrix for redshift bin m and wavenumber bin » is

() kn+1 dk
i = L(zi)) — cos(kv;;), (20
kn

where 7,,(z) is the interpolation kernel. This is 1 when z = z,, and 0
when z =z, 4 1.

However, there are more subtleties regarding the resolution matrix.
First, these matrix multiplications require that all pixels are present,
so we mark masked pixels with large noise estimates instead of
eliminating them from the spectrum. Secondly, the resolution matrix
does not capture the resolution outside the spectral range (by
construction). This is a potential problem at the largest scales, so
we implement an option in QMLE that pads the resolution matrix by
mirroring its columns at the edges. Thirdly, both synthetic spectra and
the actual DESI pipeline produce this matrix on the same wavelength
grid as the spectrum with the same spacing. This is natural in the
spectro-perfectionism formalism in data, and we test its accuracy in
Section 4.2; however, it yields an undercorrection at small scales
in the mock analysis. Our solution to this problem in mocks is
to oversample every row of the resolution matrix (Appendix D;
Guy et al. 2023). One could model the resolution matrix at each
row (i.e. wavelength) as a convolution of Gaussian and top-hat
window functions, and fit for one or two free parameters for this
model. One then evaluates each row of the oversampled resolution
matrix using the best-fitting parameters at smaller wavelength steps.
However, spectro-perfectionist resolution matrix carries negative
elements and evidently does not follow this simple description.

MNRAS 528, 3941-3963 (2024)

Therefore, achieving a stable oversampling method requires a nu-
anced procedure. We decided to use an unassuming description by
interpolating the intermediate values. To correctly capture the rapid
change in resolution matrix elements, we interpolate using their
natural logarithms with a cubic spline. To obtain a valid natural
logarithm, we shift every element to a small positive value in each
row. This small positive value is the smallest absolute value in that
row (using an arbitrary number breaks down in subsequent steps). We
then apply a cubic spline to the natural logarithm of these elements,
oversample at a desired factor (usually three), and finally trace back
these changes to obtain the new resolution matrix.

3.2.2 Shifting Nyquist frequency on a linear wavelength grid

Another update to QMLE concerns the Fisher matrix and DESI’s
wavelength binning. The DESI pipeline extracts spectra on a linear
wavelength grid of AL = 0.8 A, which results in an increasing
Nyquist frequency with wavelength in velocity space kny = 7/dv,
where dv = cAA/A. In other words, we can measure higher k modes
at higher redshifts. However, forcing the code to measure the same k
bins at lower redshifts results in numerically unstable Fisher matrix
elements that could contaminate all scales when inverted. Hence,
these modes should be removed from the analysis.

We decide each spectral segment’s Nyquist frequency using their
median dv, then set k > kyy/2 modes in the Fisher matrix and the
power spectrum to zero. Since this procedure results in a ‘singular’
matrix, we replace zeros on the diagonal with one while inverting.
Note this replacement does not contaminate lower k modes, because
it constitutes a block diagonal matrix. This process stabilizes the
Fisher matrix.

3.2.3 Nominal estimator settings

Throughout this paper, we use 20 linear bins with Ak, = 0.5 x 1073
s km™! and 13 log-linear bins with Akjog = 0.05. We use redshift
bins of size Az = 0.2 from z = 2.0 to z = 3.8 included. To reduce
computation time and help continuum marginalization, we split the
spectra into two segments if they have more than 500 pixels, and we
ignore segments having less than 20 remaining pixels. We interpolate
the signal and derivative matrices using 3601 points in velocity with
10 km s~! spacing and 400 points in redshift.

3.3 Software

Our quadratic estimator® is written in C++. It depends on CBLAS
and LAPACKE routines for matrix/vector operations, GSL* for certain
scientific calculations (Galassi et al. 2021), FFTW3? for deconvo-
Iution when needed (Frigo & Johnson 2005); and uses the Message
Passing Interface (MPI) standard®:”-® to parallelize tasks. The DESI
spectra are organized using HEALPIX (Gorski et al. 2005) scheme on
the sky. We use the following commonly used software in PYTHON
analysis: ASTROPY® a community-developed core PYTHON package

3https://github.com/p-slash/lyspeq
“https://www.gnu.org/software/gsl
Shttps://fftw.org
Ohttps://www.mpi-forum.org
"htps://www.mpich.org
Shttps://www.open-mpi.org
https://www.astropy.org
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for Astronomy (Astropy Collaboration 2013, 2018, 2022), NUMPY °
an open source project aiming to enable numerical computing
with PYTHON (Harris et al. 2020), sciPY!' an open source project
with algorithms for scientific computing, HEALPY to interface with
HEALPIX in PYTHON (Zonca et al. 2019), NUMBA'? an open source
just-in-time (JIT) compiler that translates a subset of PYTHON and
NUMPY code into fast machine code, MPI4PY!*® which provides
PYTHON bindings for the MPI standard (Dalcin & Fang 2021). Finally,
we make plots using MATPLOTLIB'* a comprehensive library for
creating static, animated, and interactive visualizations in PYTHON
(Hunter 2007).

4 VALIDATION

Synthetic data are crucial to verify that the measurements are
unbiased, and the errors are correctly captured. Our mock generation
procedure consists of the generation of transmission files with forest
fluctuations, diverse quasar spectra, and simulation of the DESI
instrument. The lognormal mock transmission files are generated
using the procedure in Karagayli, Font-Ribera & Padmanabhan
(2020). We generate them on a linear wavelength grid of 0.2 A
spacing without any resolution and noise effects.

We develop two methods to simulate and validate the DESI
analysis pipeline. The first set of mocks is produced using quick-
quasars, which is part of the DESISIM package!®> and uses SPEC-
siM'® (Kirkby et al. 2021) for quick simulations of fiber spectrograph
response (see Herrera-Alcantar et al. (2023) for a detailed description
of quickquasars mocks). This program generates random quasar
continua, simulates sky and instrumental noise, and incorporates
wavelength-dependent camera resolution, but does not validate the
computationally expensive spectral extraction. Hence, we cannot
validate the spectro-perfectionist resolution matrix with these mocks.
In order to apply and validate the spectro-perfectionism algorithm in
the Ly « forest, we create a second set of mocks called ‘CCD image
simulations’ that project mock quasar spectra on to 2D images that
simulate DESI raw data at the CCD pixel level with the DESISIM
package. These CCD image simulations are then processed in a
similar manner to actual data with the algorithms that comprise
the DESI spectroscopic reduction pipeline (Guy et al. 2023). This
approach is more computationally expensive than 1D mocks, so we
only employ it on a smaller number of mock spectra.

4.1 Quickquasars mocks

For these mocks, the quasar diversity, DESI instrument, and the sky
are simulated through a program called quickquasars in the
DESISIM package. This program randomly generates quasar continua
from a broken power law with emission lines, convolves with the
wavelength-dependent camera resolution for each arm, adds noise for
a given exposure time and observation program, and finally resamples
on to the output DESI wavelength grid of Aipgs; = 0.8 A per pixel.
We smooth out the source contribution to noise with a Gaussian
kernel of ¢ = 10 A to imitate the DESI pipeline (Guy et al. 2023).

10https:/mumpy.org
https://scipy.org
2https://mumba.pydata.org
Bhttps://mpidpy.readthedocs.io
https://matplotlib.org
Bhttps://github.com/desihub/desisim
16https://github.com/desihub/specsim
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All unique targets that are identified as quasars are simulated
in our mocks. However, in real data analysis, we remove certain
surveys, programs and low SNR targets. We generate the trans-
mission files with the exact redshift distribution of DESI quasars
in our sample and assume a constant 4000 s exposure time for all
spectra.

As extensive and realistic as quickquasars is, it does not
fully reproduce the spectral extraction pipeline output since it does
not generate 2D CCD images. As an important consequence, the
output resolution matrix does not follow the spectro-perfectionism
formalism and instead it is approximated as a box-car average over
rows and columns of the finely sampled camera resolution matrix.
Unfortunately, this approximation is not correct as it smoothes the
resolution matrix twice, once over rows and once over columns.
To correct that implementation, we deconvolve a top-hat window
function and oversample each row of this matrix by a factor of 3 in the
power spectrum estimation. This yields adequately unbiased power
spectrum results but is not a precise enough solution to strongly rely
on x 2 criteria. We also perform CCD image simulations to understand
the behaviour of the resolution matrix in data.

As noted, we generate a mock spectrum for each unique target
in our sample, which yields 92 780 quasars in our final sample. We
define the forest to be between 1050 and 1180 A in the quasar rest
frame, use the analytically calculated true power spectrum as our
fiducial and perform a single iteration using the QMLE (Karagayli,
Font-Ribera & Padmanabhan 2020). We define our small-scale
confidence range with respect to effective velocity spacing R, =
cAhpgsi/(1 + 2)Aiye of each redshift bin, where Akpes; = 0.8 A.

4.1.1 True continuum, no systematics

We start validating our analysis without any continuum fitting
complications or other systematics. We obtain flux transmission
fluctuations 65 using the true continuum (which is provided by
quickquasars) and true mean transmission. We estimate the
mean transmission from pure transmission files, confirm that this
estimate is correct using the analytical mean transmission expres-
sion (Karagayli, Font-Ribera & Padmanabhan 2020), and use the
analytical expression to remove the measurement noise.

We find that the estimated power spectrum agrees with the
true underlying power albeit the problems at small scales due to
inaccuracy in the resolution as mentioned above. We calculate the
reduced chi-square x2 = x2/v, where the number of degrees of
freedom v is equal to the number of P(k, z) points in the range
of concern, and 2 = (P — Pyy)"C™ (P — Pyy) where P is the
measurement, P, is the underlying true power spectrum, and C
is the covariance matrix from QMLE. Fig. 3 shows the reduced
%2 from the true continuum analysis results in blue triangles. x2
values increase as we include higher k values (going from the top
to the bottom row), which is unfortunate but expected since our
correction to the quickquasars resolution matrix is not exact.
The kR < 0.9 range is firmly validated with x; ~ 1. The kR < 1
range deteriorates the agreement between power spectra by 1.50,
and finally, the agreement breaks down in the kR < 1.2 range.

4.1.2 Continuum fitting, no systematics

We now turn to validating our continuum fitting procedure, since we
do not have access to the true quasar continua. The quickquasars
code generates quasar continua with broken power laws and emission
lines, so our continuum fitting model with a single global mean and

MNRAS 528, 3941-3963 (2024)
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Figure 3. Reduced XUZ comparison for different k cuts and continuum marginalization polynomials on mocks. We find XVZ increases for all settings as we include
higher k values, which is unfortunate but expected since our correction to the quickquasars resolution matrix is not exact. The true continuum analysis
results (blue triangles) stay within 1.5¢0 of XVZ = 1. Lower rows correspond to larger small-scale confidence regions. From left-most column to the right, we
remove large-scale modes. When continuum errors are not marginalized (orange squares), throwing out these large-scale modes brings x2 down to 1 within
error bars. We also find that first (green circles) and second (red triangle) order marginalizations remove the contamination from continuum errors at all scales.

two diversity parameters is not exact. Therefore, our mock continuum
is not tailored towards our fitting model, and the test results we
present here also capture model mismatches.

There are 92 780 quasars in our mock data set. We find that fitting
for o gs is not valid for observed wavelength A > 6000 A due to
the small number of high-redshift quasars with forest data at these
wavelengths (only 883), so we limit our continuum fitting region
to 3600—6000 A. This sets Z1lye = 3.8 as our largest redshift bin.
We measure the global mean continuum C(Agr) in 2.5 A steps. We
fix 7 = 1, and measure o7 in 20 wavelength bins in the observed
frame in equation (7). We do not apply an SNR cut in order to keep
all spectra and perform five iterations.

In Fig. 4, we compare the mean continua from the true continuum
analysis to the one from continuum fitting. Continuum fitting accen-
tuates peaks and valleys in the mean continuum compared to when the
true continuum is known. These deviations are interesting and merit
further investigation, but our main objective is to obtain unbiased
Pip results. As we discuss below, these deviations do not impede
that objective. The bottom panel of Fig. 4 shows o/ estimated from
the true and continuum fitting analyses. We find fitting the variance
leads to the correct o values. We note that o is not only a
function of P)p, but also depends on spectrograph resolution and
wavelength spacing.

We investigate reduced 2 values for various settings to judge the
accuracy of the P p estimate. In addition to the true continuum re-
sults, Fig. 3 shows results for no continuum marginalization (orange
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squares), first-order In A polynomial (green circles), and second-order
polynomical (red triangles). x> from no the marginalization case is
not visible in the left-most column, but produces reasonable values
when large-scale modes are removed in the middle and right columns.
This result illustrates the importance of continuum marginalization,
especially in that we can retain even the largest scales. We note
that this analysis does not account for metals or DLA systematics,
which dominate at these scales. Furthermore, we estimate the power
spectrum produced by the remaining continuum errors by calculating
8¢ = Ces/Ciye — 1 and running it through QMLE. We do not
subtract noise and fiducial terms in this case, but keep everything
else the same. We find this continuum error power spectrum is a
factor of 107> smaller than the signal at most scales and redshifts as
shown in Fig. 5. With these results, we consider our continuum fitting
and marginalization validated for this work. In future work, we will
test our analysis pipeline on multiple (ideally 100) realizations and
directly study the x? distribution.

4.1.3 Masking high-column density systems

We finally tested masking the high-column density (HCD) systems
both in continuum fitting and in the P estimate. We generate mocks
with randomly placed HCDs and build a truth catalogue using their
redshifts and column densities. There are 17273 HCDs with Ny >
19.5 on 15097 sightlines, which corresponds to 16.2 per cent of all
sightlines.
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Figure 4. (Top) Mean global continuum from the true continuum analysis
versus from continuum fitting on mocks. The continuum fitting accentuates
features in the mean continuum.