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Abstract

Eigenvalues of Large Dimensional Random Matrices

by

Brendan Shea Sullivan

This paper demonstrates an introduction to the statistical distribution of eigen-

values in Random Matrix theory. Using mathematical analysis and probabilistic

measure theory instead of statistical methods, we are able to draw conclusions

on large dimensional cases and as our dimensions of the random matrices tend to

infinity. Applications of large-dimensional random matrices occur in the study

of heavy-nuclei atoms, where Eigenvalues express some physical measurement or

observation at a distinct state of a quantum-mechanical system. This specifically

motivates our study of Wigner Matrices. Classical limit theorems from statistics

can fail in the large-dimensional case of a covariance matrix. By using methods

from combinatorics and complex analysis, we are able to draw multiple conclu-

sions on its spectral distributions. The Spectral distributions that arise allow for

boundedness to occur on extreme eigenvalues.
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Chapter 1

Introduction

This paper is concerned with random matrices. Specifically, we are con-

cerned with the statistical distributions of the eigenvalues of random matrices.

When looking at smaller, finite dimensional random matrices, it makes sense to

look at them through classical limit theorems and basic statistics gained from

samples. However, when dimension tends to infinity (or large) we are unsure if

classical limit theorems remain true.

This paper reframes arguments made on two kinds of large dimensional

random matrices: the Wigner matrices, and the sample Covariance matrices.

Wigner matrices have a direct application to the studies of quantum mechanics

and nuclear physics, hence being named after the physicist Eugene Wigner. Sam-

ple Covariance matrices are fundamental in statistical applications to economics

and research science, where measurements for principal component analysis, dis-

crimination analysis, and hypothesis testing are done. We the paper focuses on

the statistical behavior of the eigenvalues of these types of matrices (the ”spectral
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distribution”), in the large dimensional case. In doing so, we are applying some of

the consequences of random matrix theory from the Gaussian Unitary Ensemble.

In the following chapter, we will look at the statistical distribution of the

eigenvalues of Wigner matrices. We use the moment convergence theorem to find

that the empirical spectral distribution of Wigner matrices tends to Wigner’s

Semi-Circle Law, a probability density function that graphs to the shape of a

semi-circle. In Chapter 3, we analogously look at the ESD of sample covariance

matrices. We find that the ESD tends to what is called the Marcenko-Pastur

Law, via the Stieltje’s transform and some theorems from complex analysis.

In chapter 4 we move on to the limiting spectral distributions of our two

types of random matrices. We prove that the eigenvalues tend to be bounded with

respect to their standard deviations found in their probability density functions.

In chapter 5, we conclude our paper with how the study of these forms relate to

the Gaussian Unitary Ensembles (GUE).

As a preliminary, when dealing with Probability as a measure space, with

properties such as Expectation and the probability of an event happening, it will

be assumed that the space in question is a general bounded set of a product space

of real or complex random variables (which will be specified).
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Chapter 2

Wigner Matrices and the

Semicircular Law

2.1 Wigner Matrices

A Wigner Matrix, named after Eugene Wigner, is defined as a Real Sym-

metric Matrix, or a Hermitian Matrix in the complex case. Wigner Matrices are

a type of random matrix, since the entries of the symmetric (or hermitian) matrix

are random variables. Furthermore, the upper-triangular entries of the matrix

are iid complex random variables with mean 0 and variance 1. The diagonal

entries are iid real variables, independent of the upper triangular entries, with

bounded mean and variance. Wigner’s original motivation for studying random

matrices of this type lies in quantum mechanical systems. In Nuclear Physics,

we can describe such a system as an eigenvalue problem

HΨn = EnΨn (2.1)
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Where H is a Hermitian operator (a sample Wigner Matrix) Ψn is an eigen-

function and En is the corresponding eigenvalue. On the Left-hand side of the

equation, the Hermitian operator represents a physical measurement of a sys-

tem at a given point. The different eigenfunctions can characterize the different

states of the system, and the eigenvalue that corresponds is a value to be mea-

sured for the system in that specific state.If we were to consider the system as an

atomic nucleus, the Hermitian operator is the ”Hamiltonian” and the eigenvalues

represent the different energy level states.

For a heavy nuclei atom, we would naturally have a large number of states,

energy levels, and this is where large dimensional random matrices come into play.

Instead of working with one, very large Hermitian operator, a sequence of random

matrices, suffices to model the distribution of the eigenvalues. Each element of

the sequence contributes a finite amount of eigenvalues to the total distribution,

called the empirical spectral distribution. The middle part of this spectrum

(ignoring outliers) might model an infinite spectrum, as needed to understand an

atomic nucleus.

In this Chapter, we will show via the moment method for iid variables

that the Empirical Spectral distribution of Wigner Matrices converges to the

semicircular law as the size of our matrix approaches infinity. This proof is

lengthy, and has also been done by Bai and Silverstein [1], Liu [9], and Edelman

[6].

The Empirical Spectral Definition (ESD) is defined as follows,

Definition 2.1.1 The Empirical Spectral Distribution of any square matrix A is

4



a probability distribution function P that puts equal mass on each eigenvalue of

A.

The Wigner Semicircular law is a probability density function centered at

the origin defined as f(x) = 2
πR2

√
R2 − x2 For x ∈ R and f(x) = 0 for X not in

R.

2.2 The Moment Method

Before we show that the Empirical Spectral distribution for a sequence

Wigner Matrices converges to the semicircular law, we must first define and show

the moment method.

In Random Matrix Theory, we use the Moment Convergence Theorem.

Suppose Fn denotes a sequence of probability distribution functions. The Mo-

ment Convergence Theorem checks what conditions determine the convergence of

moments for all fixed orders, which is a weak converge of the sequence Fn. Specif-

ically, we will utilize the Carleman Condition to show a unique convergence to

the semicircular law.

Let the k-th moment of distribution function Fn be denoted by

βn,k = βk(Fn) :=
∫
xkdFn(x)

The Carleman condition is a condition made for the Carleman’s Theorem.

Theorem 2.2.1 Carleman’s theorem: Let βk = βk(F ) be the sequence of mo-

ments of the distribution function F. If the Carleman condition

∑
β
−1
2k

2k =∞

5



is satisfied, then F is uniquely determined by the moment sequence βk

Proof. LetF and G be two distribution functions with the common moment

sequence βk satisfying the Carleman condition. Let f(t) and g(t) be the charac-

teristic functions of F and G, respectively. By the uniqueness of characteristic

functions, we need only prove that f(t) = g(t) for all t > 0.

We have the relation:

β
1
2k
2k ≤ β

1
2k+2

2k+2

From here, we can see that the Carleman condition is equivalent to

∞∑
k=1

2kβ−2−k

2k
=∞

And for any integer n ≥ 6 and k ≥ 1 , define

hn,k = n−12k(β4
2kβ

5
2

2k+1)2−k

Now we want to show that for any n,

∞∑
k=1

hn,k =∞

Let c < 1/2 be a positive constant. Define

K1 = {1} ∪
{
k : β2−k

2k
≥ cβ−k−1

2k=1

}
and

K2 = {k 6∈ K1} =
{
k : β2−k

2k
< cβ2−k−1

2k+1

}
First, we want to show that,

∑
k∈K1

2kβ−2−k−1

2k+1 =∞

Suppose k ∈ K1 and k + 1, ...k + s ∈ K2. Then,

β−2−k−s−1

2k+s+1 < cβ−2−k−s

2k+s < ... < csβ−2−k−1

2k+1

6



From here, we see K1is nonempty, we can construct

∑
k∈K2

2kβ−2−k−1

2k+1 ≤ 1

1− 2c

∑
k∈K1

2kβ−2−k−1

2k+1

This inequality, along with

∞∑
k=1

2kβ−2−k

2k
=∞, show that (2.2)

∑
k∈K1

2kβ−2−k−1

2k+1 =∞ (2.3)

Now, for each k ∈ K1 we get

hn,k ≥ c4n−12kβ−2−k−1

2k+1

and then by (3); ∑
k∈K1

2kβ−2−k−1

2k+1 =∞

So for each fixed n, we have

∞∑
k=1

hn,k ≥ c4n−1
∑
k∈K1

2kβ−2−k−1

2k+1 =∞

Now we have for any t > 0, there exists an integer m, such that

tn,m−1 ≤ t ≤ tn,m where (2.4)

tn,j = hn,1 + ...+ hn,j for j = 1, 2, ...m− 1. (2.5)

Notation-wise, hn,m = t− tn,m−1, tn,0 = 0 and tn,m = t Let

H = F −G, qn,1(x) = exp(ihn,1x− 1− ihn,1x) and

qn,k(x) = (
k−1∏
j=1

(1+ihn,jx+...+
(ihn,jx)2j−1

(2j − 1
)!)×(exp(ihn,kx)−1−ihn,kx−...−

(ihn,kx)2k−1

(2k − 1
)!)

. For k ≤ m, by an extension of Riesz’s lemma, we have

|qn,k(x)| ≤ Qn,k(x) := (
k−1∏
j=1

(1 + hn,j |x|+ ...+
(hn,j |x|)2j−1

(2j − 1)!
))

(hn,k|x|)2k

(2k)!

7



Since,
∫
xjH(dx) = 0, we get

|f(t)− g(t)| = |
∫ ∞
∞

eitxH(dx)|

= |
∑
k≤m

∫ ∞
∞

exp[i(t− tn,k)x]qn,k(x)H(dx)|

≤
∑
k≤m

∫ ∞
∞

Qn,k(x)(F (dx) +G(dx)) = 2
∑
k≤m

∫ ∞
∞

Qn,k(x)F (dx)

Now, we can expand Qn,k(x). This gives us the form

hv1n,1
v1!

...
h
vk−1

n,k−1

vk−1!

h2k

n,k|x|v

(2k)!

Where v = v1 + ...vk−1 +2k and 0 ≤ vj ≤ 2j−1 By definition of hn,k, the integral

of this term is bounded above by

n−v2µβ2v1
2 β

4−1(4v2−5v1)
4 ...β

2−k+1(4vk−1−5vk−2)

2k−1

v1!v2!...vk−1!
×
β

2−k(2k+2−5vk−1)
2k β

2−k−1v−5/2

2k+1

(2k)!

Here, µ = v1 + 2v2 + ...(k − 1)vk−1 + k2k and note that,

4v1 + (4v2 − 5v1) + ...+ (4vk−1 − 5vk−2) + (2k+2 − 5vk−1) = 2k+2 + 2k − v > 0

Then, if we use an extension of Holder’s inequality β2k ≤ β2−k−1+s

2k+1 we get,

β2v1
2 β

4−1(4v2−5v1)
4 ...β

2−k+1(4vk−1−5vk−2)

2k−1 β
2−k(2k+2−5vk−1)

2k

≤ β2−k−1(4v1+(5v2−5v1)+...+(4vk−1−5vk−2+2k+2−5vk−1))

2k+1

= β
5/2−2−k−1v

2k+1 which implies that,

hv1n,1
v1!

...
h
vk−1

n,k−1

vk−1!

h2k

n,kβv

(2k)!
≤ n−v2µ

v1!v2!...vk−1!(2k)!

and since v ≥ 2k, we can use following bounds for the integral,

∫ ∞
−∞

Qn,k(x)F (dx) ≤
∑

v1+...+vk−1+2k=v

(n−12)v1 ...(n−12k−1)vk−1(n−12k)2k

v1!v2!...vk−1!(2k)!

8



≤
∑

v1+...+vk−1+2k=v

(n−12)v1 ...(n−12k)vk

v1!v2!...vk−1!(2k)!

=

∞∑
v=2k

(n−1(2 + ...+ 2k))v/v! ≤
∞∑

v=2k

(2e/n)v

= (2e/n)2k n

n− 2e
After substituting this into

2
∑
k≤m

∫ ∞
∞

Qn,k(x)F (dx)we get

|f(t)− g(t)| ≤ n

n− 2e

∞∑
k=1

(2e/n)2kwhich converges to zero as n goes to infinity.

This is equivalent to Carleman’s theorem, and the theorem is now proven. We

can now move on to using converging moments for the semicircular law. 2

2.3 Moments of the Semicircular law

Let βk denote the k-th moment of the semicircular law. We have the fol-

lowing theorem.

Theorem 2.3.1 For k = 0, 1, 2, ..., we have

β2k =
1

k + 1

(
2k

k

)
, β2k+1 = 0 (2.6)

Proof. Since the semicircular distribution is symmetric about 0, so β2k+1 being

0 is trivial. For β2k, we know that

β2k =
1

2π

∫ 2

−2
x2k
√

4− x2dx

=
1

π

∫ 2

0
x2k
√

4− x2dx

9



=
22k+1

π

∫ 1

0
yk−1/2

√
1− ydy

(by letting x = 2
√
y)

=
22k+1

π

Γ(k + 1/2)Γ(3/2)

Γ(k + 2)
=

1

k + 1

(
2k

k

)

Which is the desired result. 2

2.4 Semicircular Law for Wigner Matrices

Up until now, we have established the convergence of moments, and have

used that to show the convergence of the moments of the semicircular law. For a

family of Wigner Matrices, (a sequence of Wigner Matrices that changes in size,

(for n=1, 2, ...) we can construct an empirical distribution function FWn that

shows the occurrence of eigenvalues for the Wigner Matrices. Using the moment

method, as the size tends to infinity, we will demonstrate that our function FWn ,

known as the empirical spectral distribution converges to the semicircular law.

Theorem 2.4.1 Suppose that Xn is an n× n Hermitian matrix whose diagonal

entries are independently-identically-distributed (iid) real random variables and

those above the diagonal are iid complex random variables with variance σ2 = 1.

Then, the ESD of Wn = 1√
n
Xn converges to the semicircular law almost surely.

10



The convergence of Wigner Matrices is extremely powerful, and the proof

is lengthy.The proof has also been done at length by Bai and Silversteing [1].

For clarity, this theorem does not depend on the mean of extradiagonal terms,

however does require each moment to be finite. In order to prove this theorem

using moment convergence, we must first perturb our Wigner Matrices in a certain

manner. The following steps will describe how we alter them, and we will also

show how these perturbations do not change the Limiting Spectral Distribution

(LSD) of our family of Wigner Matrices. This will allow for a more general

convergence of ESD’s for normalized Wigner Matrices to the semicircular law,

rather than just specific cases where we have iid random variables with mean

zero and variance 1.

Our first alter will be removing the diagonal elements on the Wigner Matrix.

Let W̃n be the matrix obtained from Wn by replacing the diagonal elements with

zeroes. If we can show that these two matrices are ”asymptotically equivalent”

(their LSD’s are the same) then we can use W̃n equivalently in showing the ESD

of Wn.

Let Nn be the cardinality of the set |xii| ≥ 4
√
n. Let us change the diagonal

elements of Wn by 1√
n
xiiI(|xii| < 4

√
n) Where I is the characteristic function.

Let us call this new matrix Ŵn. Bai and Silverstein [1] proved the following

Corollaries we will now apply:

Corollary 2.4.2 Let A and B be two n×n normal matrices with ESD’s FA and

FB. Then,

L3(FA, FB) ≤ 1

n
tr[(A−B)(A−B)∗].

11



Where L(F,G) is the Levi distance between two functions, and is defined as:

L(F,G) = inf{ε > 0 : F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε,∀x}

We now get the following inequality:

L3(F Ŵn , F W̃n)

≤ 1

n
tr[(Ŵn − W̃n)2]

≤ 1

n2

n∑
i=1

|xii|2I(|xii| < 4
√
n) ≤ 1√

n

From linear algebra, we use the following corollary:

Corollary 2.4.3 Let A and B be two n× n hermitian matrices. Then,

||FA − FB|| ≤ 1

n
rank(A−B)

Then we have,

||FWn − F W̃n || ≤ Nn

n

Now, all we must do is show that Nn
n converges to zero almost surely. Define

pn = P (x11 ≥ 4
√
n) which converges to zero. By Bernstein’s inequality, we know

that for any ε > 0,

P (Nn ≥ εn) = P (

n∑
i=1

(I(|xii| ≥ 4
√
n)− pn) ≥ (ε− pn)n)

≤ 2exp(−(ε− pn)2n2/2[npn + (ε− pn)n]) ≤ 2e−bn

12



For some positive constant, b > 0. This means that it does in fact converge

to zero almost surely, and that our perturbation does not affect the LSD of our

Wigner Matrix.

The next step on our sample Wigner Matrix is we must now truncate

the variables for any fixed positive constant C, at C. We can express it as

xij(C) = xijI(|xij | ≤ C). We can replace these elements in Wn (Our Wigner that

has already had its diagonal elements altered) and call this new Wigner Wn(C).

For clarification, the our new Wigner has zeroes for the diagonal elements and

the off-diagonal elements are 1√
n
xij(C). We must now show that the LSD remains

unchanged for our new Wigner Matrix.

Equivalently, this means that we want to show for Wn(C) = 1√
n
Xn(C) that

for any constant C,

lim sup
n

L3(FWn , FWn(C)) ≤ E(|x11|2I(|x11| > C))

almost surely.

By Corollary 2.4, as well as the law of large numbers, we know that

L3(FWn , FWn(C)) ≤ 2

n2
(
∑

1≤i≤j≤n
|xij |2I(|x11| > C)) Which converges to, (2.7)

E(|x11|2I(|x11 > C)) (2.8)

Now, C can be made extremely large, so our expectation here can be arbi-

trarily small. When proving the ESD semicircular law, we consider the entries of

our matrix to be uniformly bounded to avoid confusion.

After altering the diagonals and truncating the rest of our matrix, the next

13



step is centralization. Using Corollary 2.5, we can apply it to our Perturbed

Wigner Matrix Wn(C) :

||FWn(C) − FWn(C)−a11′ || ≤ 1

n

Where a = 1√
n
R(E(x12(C))) and a11′ is a rank 1 submatrix of our Wigner

matrix. Also, if we consider corollary 2.4, we get:

L(FW(n(C))−RE(Wn(C)), FWn(C)−a11′) ≤
|R(E(x12(C)))|2

n

Which converges to zero almost surely for at least the real parts. This

means that truncation works at least when working with a Real-valued case. We

can now consider the complex case, by looking solely at the imaginary part. Note

from linear algebra, we have the following lemma on skew-symmetric matrices:

Lemma 2.4.4 Let An be an n×n skew-symmetric matrix whose elements above

the diagonal are 1 and those below are −1. Then, the eigenvalues of An are

λk = icot(π(2k − 1)/2n) for k = 1, 2, ..., n. The eigenvectors associated are

uk = 1√
n

(1, ρk, ..., ρ
n−1
k )′, where ρk = (λk − 1)/(λk + 1) = exp(−iπ(2k − 1)/n).

Now, we can apply this lemma to the imaginary part. Let b = EI(x12(C)).

Then EI(Wn(C)) = ibAn. By lemma 2.6, we know the eigenvalues of iI(E(Wn(C)))

are ibλk = −n−1/2bcot(π(2k − 1)/2n) Now, consider the spectral decomposi-

tion of An = UnDnU
∗
n if we rewrite I(E(Wn(C))) = B1 + B2 where Bj =

− 1√
n
bUnDnU

∗
n, j = 1, 2, where Un is a unitary matrix, Dn is a diagonal of the

14



eigenvalues, and

Dn1 = Dn −Dn2 = diag[0, ..., 0, λ[n3/4], λ[n3/4]+1, ...λn−[n3/4], 0, ..., 0]

Now, for any Hermitian Matrix, using corollary 2.4, we have

L3(FC , FC−B1) ≤ 1

n2

∑
n3/4≤k≤n−n3/4

cot2(π(2k − 1)/2n) <
2

nsin2(n−1/4π)

which converges to zero.

And by Corollary 2.5:

||FC − FC−B2 || ≤ 2n3/4

n

which also converges to zero.

In summation, centralization of a Wigner Matrix results in the following:

L(FWn(C) , FWn(C)−E(Wn(C))) = o(1)

We can now move on to the final step of ”preparing” our Wigner Matrices

for the moment method. Let the variance of C be defined as σ2(C) = V ar(x11(C)

and let W̃n = σ−1(C)(Wn(C)−E(Wn(C))). From here, we see that the off-diagonal

entries of
√
nW̃n are x̂kj = σ−1(C)(xkj(C) − E(xkj(C))).

Apply Corollary 2.4, and we get,

L3(F W̃n , FWn(C)−E(Wn(C))) ≤ 2(σ(C)− 1)2

n2σ2(C)

∑
1≤i≤j≤n

|xkj(C) − E(xkj(C))|2

which converges to (σ(C)− 1)2 almost surely.

If C is large, then our solution above can be made arbitrarily small.

15



After altering our matrices in such fashion, we have seen that the Limiting

Spectral distribution is unchanged. We now can use Moment convergence to show

the semicircular distribution of our eigenvalues.

For clarification, let Wn be our Wigner Matrix after we have enacted the

previous alterations to it. Let xij be the variables changed respectively. We

know that the semicircular distribution satisfies the Riesz condition, so if we

show that the moments of the spectral distribution converge to the moments of

the semicircular distribution almost surely, this will suffice.

Let βk(Wn) be the k-th moment of the ESD of Wn:

βk(F
Wn) =

∫
xkdFWn(x) =

1

n

n∑
i=1

λki =
1

n
tr(W k

n ) =
1

n1+k/2
tr(Xk

n)

Where λi’s are the eigenvalues of the matrix Wn, X(i) = xi1i2 , xi2i3 , ...xiki1

where i = (i1, ...ik) and the summation
∑

i runs over all possibilities that i ∈

[1, ...n]k. By applying the moment convergence theorem, we can complete this

proof for iid variables by showing two parts.

The first part being E[βk(Wn)] converges to the k-th moment of the semi-

circular distribution, which is (2.6).

The second part is that for each fixed k,
∑

n V ar[βk(Wn)] <∞

The proof to part 1 (E[βk(Wn)]→ βk):

We have

E[βk(Wn)] =
1

n1+k/2

∑
EX(i)

And for each vector i, we can construct a Γ Graph G(i). Let X(i) = X(G(i)).
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This summation is taken over all of our sequences: i = (i1, i2, ...ik) ∈ {1, 2, ...,

n}k. We know that isomorphic graphs correspond to equal terms, so we first need

to group terms according to each isomorphism classes, then split E[βk(Wn)] into

three sums, based on their categories. So,

E[βk(Wn)] = S1 + S2 + S3

Where

Sj = n−1−k/2
∑

Γ(k,t)∈Cj

∑
G(i)∈Γ(k,t)

E[XG(i)]

. Here the first (outer) series is taken on all canonical Γ(k, t) -graphs in category

j and the second (inner) summation is taken on all isomorphic graphs for a given

canonical graph. By definition of graph category, along with the entries of our

perturbed matrices, we have S2 = 0. Furthermore, since our random variables are

bounded by C, the number of isomorphic graphs are less than nt and t ≤ (k+1)/2.

From here, we can conclude that |S3| ≤ n−1−k/2O(nt) = o(1)

If k = 2m-1, then S1 = 0. Now, let k= 2m. Since each edge coincides with

an edge of opposite direction, each term in S1 is (E|x12|2)m = 1. Therefore we

get:

S1 = n−1−m
∑

Γ(2m,t)∈C1

n(n− 1)...(n−m) = β2m(1− 1

m
)...(1− m

n
)→ β2m

Now tht we have show part 1, we can move on to part 2, (that V ar(βk(Wn))

is finite for all k-natural numbers). We have:

V ar(βk(Wn)) = E[|βk(Wn)|2]−|E[βk(Wn)]|2 =
1

n2+k

∑
∗{E[X(i)X(j)]−E[X(i)]E[X(j)]}

,

17



Where i = (i1, ..., ik), j = (j1, ..., jk) and
∑
∗ is taken over all possibilities

for i, j ∈ {1, ...n}k . Here, we see that βk(Wn) is real, meaning the RHS is

meaningful, despite X(i) and X(j) being complex. Using i and j, let G(i) and G(j)

be two different graphs as in part 1. If no edges coincide between the two graphs,

then X(i) is independent of X(j). Therefore, the corresponding term in the sum is

0. If we combine both graphs and call it G, and we get one edge, then E[X(i)X(j)]

= E[X(i)]E[X(j)] = 0, then the corresponding term in our summation is also 0.Let

G have no single edges and the graph of non-coincidental edges has a cycle. Then

the noncoincidental vertices of G ≤ k. Now, consider the same case but with no

cycle, then there exists at least one edge with coincidence multiplicity ≥ 4, and

the number of noncoincidental vertices is still not above k. From here, we can

also see that each term is ≤ 2C2kn−2−k. As a result, we have

V ar(βk(Wn)) ≤ KkC
2kn−2

Where Kk is a constant with respect to k. This shows that our variance is always

finite. Part 2 is now verified, thus showing via moments that our ESD for Wigner

matrices with iid variables converge to the Semicircular law.
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Chapter 3

Spectral distribution of

Covariance Matrices

3.1 Covariance Matrices

Besides the Physical applications Random Matrices have when looking at

Wigner Matrices, there are many statistical and economic uses for Random Ma-

trices. A sample Covariance Matrix is fundamental in statistics, and can also be

used in Random Matrix theory. In economics, covariance matrices play a key role

in Principal Component Analysis. In Statistics, it is used in hypothesis testing,

factor analysis, and discrimination analysis. Many of these tests use eigenvalues.

Before continuing with the large dimensional spectral analysis of Covari-

ance Matrices, we must first define what a sample covariance matrix is. Given

{xjk, j, k = 1, 2, ...} is a double array of iid complex random variables, with mean

0 and variance σ2. Let xj = (x1j , ..., xpj)
′ and X = (x1, ..., xn). The sample
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covariance matrix is defined by

S =
1

n− 1

n∑
k=1

(xk − x̄)(xk − x̄)∗

where x̄ = 1
n

∑
xj When dealing with large dimensional cases, (such as ours) we

usually just define S as the following:

S =
1

n

n∑
k=1

xkx
∗
k =

1

n
XX∗

We are able to make this substittion because x̄x̄∗ is a rank 1 matrix, so its deletion

will not affect its Limiting Spectral distribution because of this theorem:

Theorem 3.1.1 Let A and B be two p× n complex matrices, then

||FAA∗ − FBB∗ || ≤ 1

p
rank(A−B)

Proof. Let C = B−A. Let rank(C) = k Then, we know that for any nonnegative

integer i ≤ p− k, we have

σi+k+1(A) ≤ σi+1(B) and

σi+k+1(B) ≤ σi+1(A)

Thus, for any x ∈ (σi+1(B), σi(B)) we get,

FBB
∗
(x) = 1− i

p
= 1− i+ k

p
+
k

p
≤ FAA∗(x) +

k

p

Therefore, for all x,

FBB
∗
(x)− FAA∗(x) ≤ k

p
and similarly,

FAA
∗
(x)− FBB∗(x) ≤ k

p

20



2

When discussing spectral distributions of covariance matrices, we assume

that our dimension p tends to infinity proportionally to the degrees of freedom n.

In other words, p/n converges to some positive constant. For sample Covariance

Matrices of large dimension, we will show that the spectral distribution of them

tend to a certain structure, named after its founders, the Marcenko-Pastur Law.

3.2 The M-P Law

The M-P law is a density function Fy(x),

py(x) =


1

2πxyσ2

√
(b− x)(x− a) when x ∈ (a, b)

0 else

This function has a point mass at 1 − 1/y at the origin if y > 1, where

a = σ2(1 − √y)2 and b = σ2(1 +
√
y)2. y is the constant we use to show the

dimension of our smaple size ratio index (p/n). σ2 is the scale parameter, and

if σ2 = 1, the M-P law function is known as the standard M-P law (which is

what we will be using in alignment with our earlier stipulations on our matrix

perturbations). To help get an idea of determining how the ESD of covariance

matrices tends to the M-P law, we must first show what the moments would be

as before.

Theorem 3.2.1 The k-th moment of the M-P law is as follows:

βk =

k−1∑
r=0

1

r + 1

(
k

r

)(
k − 1

r

)
yr
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Proof. We can show this directly:

βk =
1

2πy

∫ b

a
xk−1

√
(b− x)(x− a)dx

let x = 1 + y + z. then

βk =
1

2πy

∫ 2
√
y

−2
√
y
(1 + y + z)k−1

√
4y − z2dz

=
1

2πy

k−1∑
l=0

(
k − 1

l

)
(1 + y)k−1−l

∫ 2
√
y

−2
√
y
(1 + y + z)k−1zl

√
4y − z2dz

=
1

2πy

k−1∑
l=0

(
k − 1

l

)
(1 + y)k−1−l

∫ 2
√
y

−2
√
y
zl
√

4y − z2dz

Let z = 2
√
yu,

=
1

2πy

(k−1)/2∑
l=0

(
k − 1

2l

)
(1 + y)k−1−2l(4y)l+1

∫ 1

−1
u2l
√

1− u2du

let u =
√
w

=
1

2πy

(k−1)/2∑
l=0

(
k − 1

2l

)
(1 + y)k−1−2l(4y)l+1

∫ 1

0
wl−1/2

√
1− wdw

=

(k−1)/2∑
l=0

(k − 1)!

l!(l + 1)!(k − 1− 2l)!
yl(1 + y)k−1−2l

=

(k−1)/2∑
l=0

k−1−l∑
s=0

(k − 1)!

l!(l + 1)!s!(k − 1− 2l − s)!
yl+s

=

(k−1)∑
r=0

k−1−l∑
r=l

(k − 1)!

l!(l + 1)!(r − l)!(k − 1− l − r)!
yr

=
1

k

(k−1)∑
r=0

(
k

r

)
yr

min(r,k−1−r)∑
l=0

(
s

l

)(
k − r

k − r − l − 1

)

=
1

k

(k−1)∑
r=0

(
k

r

)(
k

r + 1

)
yr =

k−1∑
r=0

1

r + 1

(
k

r

)(
k − 1

r

)
yr

By definition, we know β2k ≤ b2k = (1 +
√
y)4k. Therefore, the Carleman condi-

tion is satisfied, and the theorem is proven. 2
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3.3 M-P Law for iid Covariance Matrices

Now, we can look at the Empirical Spectral distribution of the sample

covariance matrix with iid variable entries. Work on these kinds of statistical

distributions has been done by Bai [1], Pereira [2], and Bose [8].

Theorem 3.3.1 Suppose that {xij} are iid complex random variables with mean

0 and variance σ2. Assume p/n tends to some positive finite constant. Then with

probability one, FS tends to the M-P law.

Before we begin the proof, it must be noted that as before in chapter 2, we prepare

our sample covariance matrix. As implied by theorems and corollaries in chapter

2, our ESD’s and LSD’s remain unchanged. There are currently two ways to

show this distribution; via MCT and the Stieltje’s transform. Our first proof to

theorem 3.3 will be with the moment convergence theorem. From calculus, we

know that

βk(Sn) =

∫
xkFSn(dx) = p−1n−k

∑
i1,...ik

∑
j1,...jk

xi1j1 x̄i2j1xi2j2 ...xikjk x̄i1jk

= p−1n−k
∑
ij

XG(i,j)

Where G(i, j) are ∆-graphs. To show the convergence of our ESD of Sn we need

to show two parts:

E(βk(Sn)) = p−1n−k
∑
ij

E(xG(i,j)) =
k−1∑
r=0

yrn
r + 1

(
k

r

)(
k − 1

r

)
+O(n−1) (3.1)

V ar(βk(Sn)) = p−2n−2k
∑

i1,j1,i2,j2

[E(xG1(i1,j1)xG2(i2j2)−E(xG1(i1,j1))E(xG2(i2j2)))] = O(n−2)

(3.2)

with yn = p/n and graphs G1 and G2 are defined by (i1, j1) and (i2, j2) respec-

tively.
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In order to prove the equality in 3.1, we know that two terms will be equal

if their graphs are isomorphic. This means we can rewrite our equation as follows:

E(βk(Sn)) = p−1n−k
∑

∆(k,r,s)

p(p− 1)...(p− r)n(n− 1)...(n− s+ 1)E(X∆(k,r,s))

Where this summation is done over canonical ∆(k, r, s)-graphs. We split the sum

in three parts, according to ∆1(k, r), ∆2(k, r, s), and ∆3(k, r, s) types of graphs.

We know that ∆2(k, r, s) contains at least one single edge, so the expection of

that graph is zero. This means that,

S2 = p−1n−k
∑

∆2(k,r,s)

p(p− 1)...(p− r)n(n− 1)...(n− s+ 1)E(X∆2(k,r,s)) = 0

Now, we can just look at the other two graphs. Consider ∆3(k, r, s). We know

r+ s < k. Since the variable x∆(k,r,s) is bounded by (2C/σ̄)2k, we conclude that,

S3 = p−1n−k
∑

∆3(k,r,s)

p(p− 1)...(p− r)n(n− 1)...(n− s+ 1)E(X∆(k,r,s) = O(n−1).

We now only need to evaluate S1. Consider the graph in ∆1(k, r) (with s = k−r),

each pair of coincident edges has a down edge and an up edge. Let us specify one

with the edge (ja, ia) which will coincide with (ia, ja). The pair of edges together

correspond to the expectation E(|Xia,ja |2) = 1 (from our earlier stipulations).

Therefore, E(X∆1(k,r)) = 1. From here, we can apply lemmas from graph theory

and combinatorics, as discussed in the appendix:

S1 = p−1n−k
∑

∆1(k,r)

p(p− 1)...(p− r)n(n− 1)...(n− s+ 1)E(X∆1(k,r))

=

k−1∑
r=0

yrn
r + 1

(
k

r

)(
k − 1

r

)
+O(n−1)

= βk + o(1)

Here, yn = p/n and y is some positive constant that yn converges to. The equality

in the first part is now shown.
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As for equation 3.2, remember

V ar(βk(Sn)) = p−2n−2k
∑
ij

[E(XG1(i1j1)XG2(i2j2))− E(XG1(i1j1))E(XG2(i2j2))]

This is a parallel to our proof of the semicircle structure of the ESD’s in chapter

2. We can see that the number of noncoincident vertices in G is less than or equal

to 2k. Since the terms are bounded, this verifies and concludes the proof. We

have now verified, by moment convergence, that the ESD of a sample covariance

matrix with iid entries converges to the M-P law.

3.4 Generalization to the non-iid Case

We can generalize to the non-iid case of covariance matrices by applying

Stieltjes transforms to sample covariance matrices. It is practical to consider

such a case, where entries of Xn are independent, but not necessarily identically

distributed. Here, we have the following theorem to prove,

Theorem 3.4.1 Suppose that, for each n, the entries of X are independent com-

plex variables with a common mean µ and variance σ2. Assume that p/n con-

verges to some finite positive constant y, and that, for any η > 0,

1

η2np

∑
jk

E(|x(n)
jk |

2I(|x(n)
jk | ≥ η

√
n)) −→ 0

Before we begin the proof for theorem 3.4, we need to show what the Stieltje’s

transform is for the M-P law. As in Chapter 2, and earlier in Chapter 3, we

assume the same method of truncation, centralization and rescaling on our sample

covariance matrix. Let z = u+ iv with v > 0 and s(z) be the Stieltje’s transform

of the M-P law.
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Lemma 3.4.2 s(z) =
σ2(1−y)−z+

√
(z−σ2−yσ2)2−4yσ4

2yzσ2

Proof. If y < 1 we have

s(z) =

∫ b

a

1

x− z
1

2πxyσ2

√
(b− x)(x− a)dx

where a = σ2(1−√y)2 and b = σ2(1+
√
y)2. If we let x = σ2(1+y+2

√
ycos(w))

and ζ = eiw this gives us,

s(z) =

∫ π

0

2

π

1

(1 + y + 2
√
ycos(w))(σ2(1 + y + 2

√
ycos(w))− z)

sin2(w)dw

=
1

4iπ

∮
|ζ|=1

(ζ2 − 1)2

ζ((1 + y)ζ +
√
y(ζ2 + 1))(σ2(1 + y)ζ +

√
yσ2(ζ2 + 1)− zζ)

dζ

From here we use the Residue Theorem, this integrand function has five simple

poles at,

ζ0 = 0

ζ1 =
−(1 + y) + (1− y)

2
√
y

,

ζ2 =
−(1 + y)− (1− y)

2
√
y

,

ζ3 =
−σ2(1 + y) + z +

√
σ4(1− y)2 − 2σ2(1 + y)z + z2

2σ2√y

ζ4 =
−σ2(1 + y) + z −

√
σ4(1− y)2 − 2σ2(1 + y)z + z2

2σ2√y

The residues from these are,

1

yσ2
,−1− y

yz
,
1− y
yz

,
1

σ2yz

√
σ4(1− y)2 − 2σ2(1 + y)z + z2,− 1

σ2yz

√
σ4(1− y)2 − 2σ2(1 + y)z + z2

Respectively. We see that ζ3ζ4 = 1. We also see that by the definition of radical

complex numbers, the real and imaginary part of
√
σ4(1− y)2 − 2σ2(1 + y)z + z2
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and σ2(1 + y) + z have the same signs, meaning |ζ3| > 1, |ζ4| < 1. Furthermore,

|ζ1| = | −
√
y| < 1 and |ζ2| = | − 1/

√
y| > 1. By Cauchy integration, we get

s(z) =
1

2
(

1

yσ2
− 1

σ2yz

√
σ4(1− y)2 − 2σ2(1 + y)z + z2 − 1− y

yz
)

=
σ2(1− y)− z +

√
(z − σ2 − yσ2)− 4yσ4

2yzσ2

Since y < 1, this verifies the lemma. More generally, for other cases of y, the M-P

law has point mass 1 − 1/y at zero, and s(z) equals the integrand above, with

(1 − y)/yz which gives us residues |ζ3| = | − √y| > 1 and |ζ4| = | − 1/
√
y| < 1.

This means, that the residue for ζ4 would be counted, and the equation of the

lemma would still hold. If y = 1, we yield the same equation by continuity. 2

We are now ready to show via Stieltjes transform that the ESD of Sn converges

to the M-P law for the more general, non-iid case. Let the Stieltjes transform of

the ESD be denoted by sn(z). Define,

sn(z) =
1

p
tr(Sn − zIp)−1

In order to complete the proof, we need to accomplish three parts:

(i)For any fixed z ∈ C+, sn(z)− Esn(z)→ 0 a.s.

(ii)For any fixed z ∈ C+, Esn(z)→ s(z), the Stieltjes transform of the M-P

law.

(iii)Except for a null set, sn(z)→ s(z) for every z ∈ C+

From here, we see the third part is implied by the first two.

For the first part, we need to show almost sure convergence of the random
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part. Let Ek(·) denote the conditional expectation given by {xk+1, ...xn}. Since

(A+ αβ∗)−1 = A−1 − A−1αβ∗A−1

1 + β∗A−1α

We can use this and get,

sn(z)− Esn(z) =
1

p

n∑
k=1

[Ektr(Sn − zIp)−1 − Ek−1tr(Sn − zIp)−1]

=
1

p

n∑
k=1

γk,

The following lemmas are found and proven in Bai [1]: We can now apply

the following Lemma,

Lemma 3.4.3 If the matrix A and Ak the k-th submatrix of A of order (n− 1),

are both nonsingular and symmetric, then

tr(A−1)− tr(A−1
k ) =

1 + αtkA
−2
k αk

αkk − αtkA
−1
k αk

With a similar situation with the Hermitian in the complex case.

By applying this, we get

γk = (Ek − Ek−1)[tr(Sn − zIp)−1 − tr(Snk − zIp)−1]

= −[Ek − Ek−2]
x∗k(Snk − zIp)−2xk

1 + x∗k(Snk − zIp)−1xk

With Snk = Snxkx
∗
k, we see,

|
x∗k(Snk − zIp)−2xk

1 + x∗k(Snk − zIp)−1xk
|

≤
x∗k((Snk − uIp)2 + v2ip)

−1xk
Im(1 + x∗k(Snk − zIp)−1xk)

=
1

v

.

Here we see that {γk} forms a sequence of bounded martingale differences,

and we can now apply this lemma,
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Lemma 3.4.4 Let {Xk} be a complex martingale difference sequence with respect

to the increasing σ − field{Fk}. Then for p > 1,

E|
∑

Xk|p ≤ KpE(
∑
|Xk|2)p/2

The proof to the above lemma can be found in the appendix. Letting p = 4, we

see,

E|sn(z)− E(sn(z)|4 ≤ K4

p4
E(

n∑
k=1

|γk|2)2 ≤ 4K4n
2

v4p4
= O(n−2)

Citing Borel-Cantelli lemma, the first part of the proof is now complete. We now

must show the convergence of the mean,

Esn(z)→ s(z)

where s(z) is defined as before, with σ2 = 1. Here we use the following theorem,

Theorem 3.4.5 If both A and Ak, k = 1, 2, ..., n are nonsingular, and we write

A−1 = [akl] then

akk =
1

akk − αtkA
−1
k βk

tr(A−1) =
n∑
k=1

1

akk − αtkA
−1
k βk

Where akk is the k-th diagonal entry of A, Ak is defined above, αtk is the vector

from the k-th row of A by deleting the k-th entry, and βk is the vector from the

k-ht column by deleting the k-th entry.

This theorem gives us,

sn(z)
1

p

p∑
k=1

1
1
nα

t
kᾱk − z −

1
n2α

t
kX
∗
k( 1
nXkX

∗
k − zIp−1)−1Xkᾱk
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Where Xk is the matrix obtained from X with the k-th row removed and αtk is

the k-th row of X. Then, let

εk =
1

n
αtkᾱk − 1− 1

n2
αtkX

∗
k(

1

n
XkX

∗
k − zI−1

p )−1Xkᾱk + yn + ynzEsn(z)

And as before, yn = p/n. Now,

Esn(z) =
1

1− z − yn − ynzEsn(z)
+ δn

With δn = −1
p

∑p
k=1E( εk

(1−z−yn−ynzEsn(z))(1−z−yn−ynzEsn(z)+εk))

If we solve EsN (z) we get two solutions,

s1(z) =
1

2ynz
(1− z − yn + ynzδn +

√
(1− z − yn − ynzδn)2 − 4ynz)

s2(z) =
1

2ynz
(1− z − yn + ynzδn −

√
(1− z − yn − ynzδn)2 − 4ynz)

Which means, we need to show that Esn(z) = s1(z), and δn → 0. As v →∞, we

know that Esn(z) → 0 and δn → 0. This implies that Esn(z) = s1(z) for all z

with a large imaginary part.

Assume that this is not the case for all z ∈ C+, by continuity of s1 and s2

there exists a z0 ∈ C+ such that s1(z0) = s2(z0) which shows

1− z0 − yn − ynzδn)2 − 4ynz0(1 + δn(1− z0 − yn)) = 0

Implying,

Esn(z0) = s1(z0) =
1− z0 − yn + ynz0δn

2ynz0

=
1− z0 − yn

ynz0
+

1

yn + z0 − 1 + ynz0Esn(z0)

Looking back at properties of the Stieltjes transform, we know that for any trans-

form s(z) of probability F on R+ and positive y, we have

Im(y + z − 1 + yzs(z)) = Im(z − 1 +

∫ ∞
0

yxdF (x)

x− z
)
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= v(1 +

∫ ∞
0

yxdF (x)

(x− u)2 + v2
) > 0

. This means that the imaginary part of the second term must be negative. If

yn ≤ 1, it is apparent that Im(1−z0−yn)/(ynz0) < 0 which implies the imaginary

part of the expectation is negative at z0. This is a contradiction, since a Stieltjes

transform should have a positive imaginary part. This verifies our conclusion for

yn ≤ 1. In general, by the previous equations, we have

yn + z0 − 1 + ynz0Esn(z0) =
√
ynz0

Let s̃n(z) be the Stieltjes transform for our scaled covariance matrix 1
nX
∗X. We

know that 1
nX
∗X and Sn have the same non-zero eigenvalues, we have the relation

between sn and s̃n given by

sn(z) = y−1
n s̃n(z)− 1− 1/yn

z

Which is true for all values of yn. This gives us

yn − 1 + ynz0Esn(z0) = z0Es̃n(z0)

By substitution, we get

1 + Es̃n(z0) =
√
y/
√
z0

This is a contradiction, since the LHS has positive imaginary part, and the RHS

has a negative imaginary part. This verifies the convergence of the expectation.

We now must look at the convergence of δn → 0.

Let,

δn = −1

p

p∑
k=1

(
Eεk

(1− z − yn − ynzEsn(z))2
)

+
1

p

p∑
k=1

E(
ε2k

(1− z − yn − ynzEsn(z))2(1− z − yn − ynzEsn(z) + εk)
)
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= J1 + J2

We see from here that,

|Eεk| = | −
1

n2
EtrX∗k(

1

n
XkX

∗
k − zIp−1)−1Xk + yn + ynzEsn(z)|

= |−1

n
Etr(

1

n
XkX

∗
k − zIp−1)−1 1

n
XkX

∗
k + yn + ynzEsn(z)|

≤ 1

n
+
|z|yn
n

E|tr( 1

n
XkX

∗
k − zIp−1)−1 − sn(z)|

≤ 1

n
+
|z|yn
nv
→ 0.

Showing J1 converges to zero. As for J2,

Im(1− z − yn − ynzEsn(z) + εk)

= Im(
1

n
αtkᾱk − z −

1

n2
αtkX

∗
k(

1

n
XkX

∗
k − zIp−1)−1Xkᾱk)

= −v(1 +
1

n2
αtkX

∗
k [(

1

n
XkX

∗
k − uIp−1)2 + v2Ip−1]−1Xkᾱk) < −v,

Combining this with the Stieltjes transform,

|J2| ≤
1

pv3

p∑
k=1

E|εk|2

=
1

pv3

p∑
k=1

[E|εk − Ẽ(εk)|2 + E|Ẽ(εk)− E(εk)|2 + (E(εk))
2]

Where Ẽ()̇ is the denotes the conditional expectation. We have shown J1 con-

verges to 0. Let A = (aij) = In − 1
nX
∗
k( 1
nXkX

∗
k − zI

−1
p−1Xk. Then,

εk − Ẽ(εk) =
1

n
(

n∑
i=1

aii(|xki|2 − 1) +
∑
i 6=j

aijxkix̄kj)

Which gives us,

1

n2
Ẽ|εtk − Ẽεk|2 ≤

η2
n

v2
+

2

nv2

Which is true since |aii| ≤ v−1. Using Martingale decomposition, we see that,

E|Ẽεk − Eεk|2 =
|z|2y2

n2
E|tr( 1

n
XkX

∗
k − zIp−1)−1 − Etr( 1

n
XkX

∗
k − zIp−1)−1|2
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≤ |z|
2y2

nv2
→ 0.

This completes the proof, using the three estimations and this demonstrates

the mean convergence of the ESD of Sn.

chapterExtreme Eigenvalues Chapter 4 takes our study of spectral distri-

butions of random matrices in a different direction. Rather than study the Em-

pirical Spectral Distribution (ESD) of certain kinds of random matrices, we will

be looking at limits of extreme eigenvalues. In other words, when looking at the

Limiting Spectral Distributions (LSD). It makes sense to focus on the lower and

upper bounds of the eigenvalues as the dimension tends to infinity.

Definition 3.4.6 The Limiting Spectral Distribution is the weak limit of the se-

quence of Empirical Spectral Distributions of a sequence of square random matri-

ces.

In the following sections, we will look at the bounds of our LSD’s for the matrices

previous discussed in this paper: Wigner and Covariance Matrices. This topic

has largely been covered by Liu [9], and Yin and Bai [7].

3.5 Extreme Eigenvalues of Wigner Matrices

This section will cover the complex iid variable case of a scaled Wigner

matrix (
√
nWn), on the limits of Extreme Eigenvalues. Here we have the following

theorems to prove, which have also been proved in Bai [1]:

Theorem 3.5.1 Suppose the diagonal entries of the Wigner matrix (
√
nWn) are
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iid real random variables, and the entries above them are iid complex random vari-

ables, all independent. Then, the largest eigenvalue of W tends to some positive

number c1 with probability 1 iff the following five conditions are true:

• E((X+
11)2) <∞

• E(x12) ∈ R, E(x12) ≤ 0

• E(|x12 − E(x12)|2) = σ2

• E(|x4
12|) <∞

• c1 = 2σ Here, x+ = max(x, 0).

We can use the conditions and implication of theorem 4.2 to find the limit of the

smallest eigenvalues of Wigner Matrix, which gives way to the next theorem.

Theorem 3.5.2 Suppose that the diagonal entries of our Wigner matrix Wn

are iid real random variables, with entries above the diagonal being iid complex

random variables, with all variables independent of each other. Then, the largest

eigenvalue of W tends to c1 and the smallest eigenvalue tends to c2 with probability

1 iff the following five conditions are true:

• E(x2
11) <∞

• E(x12) = 0

• E(|x12|2) = σ2

• E(|x4
12|) <∞

• c1 = 2σ, c2 = −2σ
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Also from Theorem 4.2, using the same proof, we can see the weak con-

vergence of the extreme eigenvalue of a large Wigner Matrix, which gives us the

following theorem.

Theorem 3.5.3 Suppose that the diagonal entries of the scaled Wigner matrix

√
nWn = (xij) are iid real random variables, and the entries above the diagonal

are iid complex random variables, and all variables are independent of each other.

Then, the largest eigenvalue of W tends to c > 0 in probability iff the following

conditions hold true:

• P (x+
11 >

√
n) = o(n−1)

• E(x12) ∈ R,≤ 0

• E(|x12 − E(x12)|2) = σ2

• P (|x12| >
√
n) = o(n−2)

• c = 2σ

In order to prove theorem 4.2, we use the assumptions of our Wigner matrix

from chapter 2, which allows us to be given the following property,

lim inf
n→∞

λn(W ) ≥ 2,

almost surely.

This means that to prove this theorem, we only need to show,

lim sup
n→∞

λn(W ) ≤ 2

almost surely.
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Here we break down each of the conditions and their implications, along

with some combinatorics, will allow us to conclude the sufficiency of conditions

for theorem 4.2.

Our first condition implies that lim sup 1√
n

maxk ≤ x+
kk = 0 almost surely.

Note the relation,

λmax(W ) =
1√
n

max
||z||=1

(
∑
j,k

zj z̄kxjk)

= max
||z||=1

[
1√
n

∑
j 6=k

zj z̄k(xjk − E(xjk)) +
1√
n

n∑
k=1

|zk|2xkk

+Re(E(x12))
1√
n

∑
j 6=k

zj z̄k]

≤ max
||z||=1

(
1√
n

∑
j 6=k

zj z̄k(xjk − E(xjk)) +
1√
n

max
k

(x+
kk −Re(E(x12))))

≤ λmax((̃W )) + oa.s.(1),

Here W̃n is the matrix whose diagonal entries are zero and off-diagonal entries

are 1√
n

(xij − E(xij)). We now only need to show the upper bound for our max

eigenvalue for W̃ , since we have shown before that the LSD remains unchanged

with W̃ .

As in previous chapters, we truncate the off-diagonal elements. By the

fourth condition of theorem 4.2, for any δ > 0, we know,

∞∑
k=1

δ−22kE|x12|2I(|x12| ≥ δ2k/2) <∞.

Now, choose a decreasing sequence of δn’s that converge to zero, such that,

∞∑
k=1

δ−2
2k

2kE|x12|2I(|x12| ≥ δ2k2k/2) <∞.

Let

W̃ =
1√
n

(xjkI(|xjk| ≤ δn
√
n)) (3.3)

36



. Then by 3.3, we get,

P (W 6= W̃ , i.o.) = lim
k→∞

P (∪n=2k ∪1≤i<j≤n (|xjk ≥ δn
√
n)) ≤ 0

By our choice of δn, we get that the maximum eigenvalue of the expectation

of W̃ converges to zero. This means we only need to consider the upper limit

of the largest eigenvalue of the difference between W̃ and E(W̃ ). As before, we

assume W is a truncated and recentralized matrix, so
√
nWn = (xij) and we have

the following conditions about our Wigner Matrix:

• xii = 0,

• E(xij) = 0, σ2
n = E(|xij |2) ≤ 1, for i 6= j

• |xij | ≤ δn
√
n, for i 6= j

• E|xlij | ≤ b(δn
√
n)l−3, for some constant b > 0 and i 6= j, l ≥ 3

We will prove,

lim sup
n→∞

λn(W ) ≤ 2

almost surely. Under the four above assumptions, with iid entries. We know, for

any integer k and real number η > 2, we have:

P (λmax(Wn) ≥ η) ≤ P (tr[(Wn)k] ≥ ηk) ≤ η−kE(tr(Wn)k).

To complete the proof, let k be a sequence of even integers k = kn = 2s

with the properties:

k/ log n→∞

kδ1/3
n / log n→ 0
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We now must show that the RHS of our above inequality is summable. This

means we estimate,

E(tr(W k)) = n−k/2
∑
i1,...,ik

E(xi1,i2xi2i3 ...xiki1)

= n−k/2
∑
G

∑
i

E(xG(i)),

Where the of G are Γ(k) -graphs as defined in earlier sections. We can now

look at the different types of sections based on edges. A T1 edge is if f(a+ 1) =

max(f(1), ..., f(a)) + 1 the edge, ea = (f(a), f(a + 1)). This kind of edge leads

to a new vertex in the path of e1, ..., ea. A T3 edge if it coincides with a T1 that

is single until the T3 appears. It is irregular if there is only one T1 single up to

a–if it does not coincide with any other edges in the chain up to a. All other T3

edges are called regular. All other edges are T4. A T2 edge is merely the first

appearance of a T4.

To show our estimations, we need the following lemmas from Bai and Sil-

verstein [1].

Lemma 3.5.4 Let (f(a), ..., f(c)) be a chain such that the edge (f(a), f(a+1)) is

a T1 single up to c. Then there is a T2 edge contained in the chain (f(a), ..., f(c)).

Lemma 3.5.5 Let t denote the number of T2 edges and s denote the number of

innovations in the chain (f(1), ...f(a)) that are single up to a and have a vertex

coincident with f(a). Then s ≤ t+ 1.

Lemma 3.5.6 The number of regular T3 edges is not greater than twice the num-

ber of T2 edges.
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Using these lemmas, we can now prove our original theorem regarding the

extreme eigenvalues of Wigner Matrices. We begin with our estimation from

earlier. If G has a single edge, then our corresponding terms are zero. So, we

only need to estimate terms corresponding to Γ1 and Γ3 graphs. Suppose that

there are r innovations (r ≤ s) and t T2 edges in the graph G. Then, there are r

T3 edges, k − 2r, T4 edges and r + 1 noncoincident vertices.

From here, we see that the number of graphs of each isomorphic class is

less than nr+1 and the expectation corresponding to each canonical graph is not

larger than bt(δn
√
n)k−2r−t. Then, we need to estimate the number of canonical

graphs. We first note, there are at most
(
k
r

)
ways to choose r edges out of the total

to be r T1 edges. Then, there are at most
(
k−r
r

)
ways to choose r edges out of the

rest of the k−r edges for the r T3 edges. Then the rest of the k−2r edges are for

the T4 edges. For a T1, we have the relation f(l) = max f(1), ..., f(l + 1) + 1, the

only way to plot the T1 is unique, after the subgraph before this edge is plotted.

Irregular T3 edges have only one single T1 edge to be matched. Therefore, there

is only one way to plot it when the subgraph prior to this T3 edge is plotted. By

lemma 4.6, there are at most t+ 1 T1 edges to be matched by a regular T3 edge.

This means that each regular T3 edge has at most t+1 ways to plot it. By lemma

4.7, we have at most 2t regular T3 edges.

This means there are at most (t + 1)2t ≤ (t + 1)2(k−2r) ways to plot the

regular T3 edges. Now, we have to look at the T4 edges. We know for each T4

edge, we have at most (r + 1)2 < k2 ways to determine its two vertices. Then,

we have at most
(
k2

t

)
ways to plot t T2 edges. After all the t positions of T4 are

determined, there are at most tk−2r < (t + 1)k−2r ways to distribute the k − 2r
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T4 edges. We now have the following inequality:

E(tr(W )k)

≤ n−k/2
k/2∑
r=1

k−2r∑
t=0

nr+1

(
k

r

)(
k − r
r

)(
k2

t

)
(t+ 1)3(k−2r)bt(

√
nδn)k−2r−t

≤
k/2∑
r=1

k−2r∑
t=0

nr+1n

(
k

2r

)(
2r

r

)
(t+ 1)3(k−2r)[bk2/(

√
nδn)]tδk−2r

n

≤ n2b−1

k/2∑
r=1

(
k

2r

)
22rδk−2r

n (
3(k − 2r)

log nδn/bk2

3(k−2r)

≤ n2[2 + (10δ1/3
n k/ log n)3] = n2[2 + o(1)]k

With a = t+ 1, and since δ
1/3
n k/ log n→ 0, we can use this to obtain,

P (λmax(Wn) ≥ η) ≤ n2(2 + o(1)/η)−k

which is summable since k/ log n→∞. The proof is now complete. We now have

an understanding on the extreme eigenvalues for Wigner Matrices, which imply

the other theorems on it in this section.

3.6 Extreme Eigenvalues of Covariance Matrices

Now that we have shown the limits of extreme eigenvalues of Wigner Matri-

ces, we can move on to looking at the same characteristics for Sample Covariance

Matrices. Analogous to our last section, we introduce the following theorems:

Theorem 3.6.1 Suppose the entries of Xn = (xjkn, j ≤ p, k ≤ n) are indepen-

dent, but not necessarily iid. If the entries satisfy the following:

E(xjkn) = 0
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|xjkn| ≤
√
nδn

max
j,k
|E|Xjkn|2 − σ2| → 0

as n→∞

E|xjkn|l ≤ b(
√
nδn)l−3

for all l ≥ 3 Where δn → 0 and b > 0. Let Sn = 1
nXnX

∗
n.. Then, for any

x > ε > 0 and integers j, k ≥ 2, we have

P (λmax(Sn) ≥ σ2(1 +
√
y)2 + x) ≤ Cn−k(σ2(1 +

√
y)2 + x− ε)−k

for some constant C > 0.

From here, we construct the main theorem of this section,

Theorem 3.6.2 Assume the entries of {xij} are a double array of iid complex

random variables with mean zero, variance σ2 and finite fourth moment. Let

Xn = (xij ; i ≤ p, j ≤ n) be the p x n matric of the upper left corner of the double

array. If p/n→ y ∈ (0, 1), then with probability 1, we have

−2
√
yσ2 ≤ lim inf

n→∞
λmin(Sn − σ2(1 + y)In)

≤ lim sup
n→∞

λmax(Sn − σ2(1 + y)In) ≤ 2
√
yσ2

In order to prove theorem 4.9, we use several lemmas from Bai and Silver-

stein [1]. The illustration of the proof is that that we estimate the spectral norm

of the power matrix, (Sn−σ2(1+y)I)l. In the first step, we split this matrix into

several different matrices, with a key matrix being noted as Tn(l). This matrix

is defined in the following lemma, proved by Bai and Silverstein [1], which gives

us the estimate of the norm. This leads us to estimate the norm of the rest of

power matrix.
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Lemma 3.6.3 Define,

Tn(l) = n−l(
′∑
xav1 x̄u1v1xu1v2 x̄u2v2 ...xul−1vl x̄bvl)

Here the summation runs for v1, ..., vl = 1, 2, ..., n and u1, ..., ul−1 = 1, 2, ..., p with

the constraints a 6= u1, u1 6= u2... ul−1 6= b ... and similary for vi. By theorem

4.9’s conditions, we get,

lim sup
n→∞

||Tn(l)|| ≤ (2l + 1)(l + 1)y(l−1)/2σ2l

almost surely.

Once we consider this lemma, we can then apply another lemma using the con-

ditions from our theorem:

Lemma 3.6.4 Under the conditions of theorem 4.9, we get,

• lim sup ||Y (1)
n || ≤

√
yσ

• lim sup ||Y (2)
n || ≤

√
E|x11|4 almost surely,

• lim sup ||Y (f)
n || = 0 almost surely, for all f > 2

For clarification, we will prove this using lemma 4.10.

Proof. We have

||Y (1)
n ||2 ≤ ||Tn(1)||+ 1

n
max
i≤p

n∑
j=1

|xij |2

Since, ||Y (2)
n ||2 ≤ tr(Y (2)

n Y
(2)∗
n ), we get that

||Y (2)
n ||2 ≤−2

∑
ij

|xij |4 → yE(|x11|4)
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For the case of f > 2, we get

||Y (f)
n ||2 ≤ n−f

∑
ij |xij |2f → 0 almost surely. 2

To continue the estimation of the the spectral norm, we use the next lemma.

Lemma 3.6.5 As before, using conditions in 4.9, we have

TnTn(k) = Tn(k + 1) + yσ2Tn(k) + yσ4Tn(k − 1) + o(1)

almost surely.

Proof. Assume σ = 1 without loss of generality, as in chapters 2 and 3. By our

previous lemma,

Tn(k) = Yn(Y ∗n � Y ∗n � ...� Y ∗n ) (k times)

−[diag (YnY
∗
n )]Tn(k − 1) + Y (3)

n � (Y ∗n � Y ∗n � ...� Y ∗n )

= Yn(Y ∗n � Y ∗n � ...� Y ∗n )− Tn(k − 1) + o(1) almost surely, and analogously,

Tn(k + 1) = Yn(Y ∗n � Y ∗n � ...� Y ∗n ) (k times)

−[diag (YnY
∗
n )]Tn(k) + o(1) almost surely.

= YnY
∗
n Tn(k)− Yndiag (Y ∗n Y

∗
n )(Y ∗n � Y ∗n � ...� Y ∗n )

−diag (YnY
∗
n )Tn(k) + o(1)

= TnTn(k)− yYn(Y ∗n � Y ∗n � ...� Y ∗n ) + o(1)

= TnTn(k)− y(Tn(k) + Tn(k − 1)) + o(1) almost surely. 2

The Lemma is as follows,
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Lemma 3.6.6 Under the same conditions, we have

(Tn − yσ2Ip)
k =

k∑
r=0

(−1)r+1σ2(k−r)T (r)

[(k−r)/2]∑
t−0

Ci(k, r)y
k−r−i + o(1)

With |Ci(k, r)| ≤ 2k.

Proof. Let k = 1, then T (0) = I which is trivial with C0(1, 1) = 1 and

C0(1, 0) = 1, by induction, this is true in general for all natural k. 2

We can now apply these lemmas to prove our theorem. Assume σ2 = 1. We know

that,

||Sn − Ip − Tn|| ≤ max
i≤p
|
n∑
j=1

(|xij |2 − 1)| → 0

almost surely. Therefore, what is now left to show is that

lim sup ||Tn − yIp|| ≤ 2
√
y

By the previous lemmas, for any fixed k,

lim sup ||Tn − yIp||k ≤ Ck42ky(k−1)/2

Implying, lim sup ||Tn − yIp|| ≤ C1/kk4/k2y(k−1)/2k

When k →∞, we see the estimation and bounds hold true, concluding the

proof to this theorem.
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Chapter 4

Gaussian Unitary Ensembles

So far in this text, we have covered the distribution of eigenvalues and the

bounds of maximum eigenvalues for Wigner matrices and the sample covariance

matrices. In the previous chapter, we looked at what were the extreme eigenval-

ues of certain kinds of random matrices: Wigner matrices and Sample Covariance

Matrices. The upper bound for Eigenvalues of any matrix have always been sta-

tistically and computationally relevant; its applications have ranged from image

buffering, high-energy states of Hamiltonians, to finding conditional numbers. In

other words, extreme eigenvalues are worth noting, and in following suit, the

limiting distribution of normalized extreme eigenvalues a are important.

We introduce the Gaussian Unitary Ensemble, which relates directly to

Wigner Matrices in the sense that it is the set of n × n Hermitian matrices.

The Gaussian Unitary Ensemble is a family of statistical distributions of n × n

Hermitian Matrices. We use the term unitary to describe them because after

spectral decomposition, we know that these matrices are invariant under unitary
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conjugation. For further reading on this topic, the reader can be pointed to

Edelman [3], Fyaodorov [4], and Rezakhanlou [5].

Another property of the GUE is that the linearly independent elements of

our Hermitian matrix are also statistically indepndent. This means that it can

be written as a product of functions depending only on the independent matrix

elements. The Gaussian Measure is described by the following equation,

P (H) =
1

Zu
e

1
2
TrH2

On the space of n×n Hermitian matrices, where Zu is a normalization constant.

The joint distribution functions of the eigenvalues of our n × n hermitian

matrices P
(2)
N is given by,

P
(2)
N (dx1, ...dxN ) = C̄

(2)
N 1x1≤...≤xN |∆(x)|2

N∏
i=1

e2x2i /4dx1...dxN

where

C̄
(2)
N = (

∫ ∞
−∞

...

∫ ∞
−∞
|∆(x)|2

N∏
i=1

e−2x2i /4dxi)
−1

The significance of this topic is that it leads on to further reading on top-

ics such as orthogonal polynomials, which were not introduced in this paper.

These are used not only in understanding the Wigner Semi-Circle law, but also

asymptotic spectral distributions as n→∞.
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Chapter 5

Appendix

In this appendix we will define and introduce the various structures and

lemmas used in the earlier text.

5.1 General Probability Definitions

Definition 5.1.1 A Sequence of random variables is said to converge in distri-

bution (weakly converge) if

lim
n→∞

Fn(x) = F (x)

for every number x ∈ R at which F is continuous, where F and Fn are cumulative

distribution functions of random variables Xn and X

Definition 5.1.2 A sequence {Xn} of random variables is said to converge in

mean (converge strongly) towards X if for ε > 0

lim
n→∞

Pr(|Xn −X| ≥ ε) = 0

.
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5.2 Some lemmas from Combinatorics and graph the-

ory

We now introduce some definitions and lemmas from Combinatorics/graph

theory:

Definition 5.2.1 A Γ graph is a triple (E, V, F ) where E is the set of edges, V

is the set of vertices, and F is a function where F : E → V xV .

Here are some properties on Γ graphs: If F (e) = (v1, v2), the vertices v1, v2 are

called the ends of the edge e, v1 is the initial of e, and v2 is the terminal of e. If

v1 = v2, then the edge e is a loop. If two edges have the same set of ends, then

they are said to be coincident.

The Graphs used in these texts have the following properties: Its vertex

set is V = {1, ..., t} Its edge set is E = {e1, ..., ek} There exists a function g from

{1, 2, ..., k} onto {1, ..., t} satisfying g(1) = 1 and g(i) ≤ max{g(1), ...g(i− 1)}+ 1

for 1 < i ≤ k. F (ei) = (g(i), g(i+ 1)), for i = 1, ..., k with convention g(k + 1) =

g(1) = 1. From here, we look at the isomorphism class of a Γ graph.

Lemma 5.2.2 Each isomorphism class contains n(n − 1)...(n − t + 1) Γ(k, t)

graphs.

We can now classify canonical gamma graphs into three categories:

Category 1 is when each edge is coincident with other edge of opposite

direction and the graph of noncoincident edges forms a tree.

Category 2 is all canonical graphs that have at least one single edge, such
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as an edge not coincident with any other edges.

Category 3 is all others.

Lemma 5.2.3 A Γ3(k, t) graph, t ≤ k+1
2

Lemma 5.2.4 The number of Γ1(2m) graphs is 1
m+1

(
2m
m

)

5.3 More Theorems and Lemmas

Theorem 5.3.1 The Borel Cantelli Theorem states that if the sum of the prob-

abilities of En is finite, then the probability that infinitely many of them occur is

0.

Theorem 5.3.2 Let F and Fn be cumulative distribution functions. If Fn con-

verges weakly to F , then ∫
R
g(x)dFn(x)

converges as n approaches infinity to

∫
R
g(x)dF (x)

for each bounded, continuous function g.

Lemma 5.3.3 Let An be an n×n skew-symmetric matrix whose elements above

the diagonal are 1, and those below the diagonal are -1. Then, the eigenvalues of

An are λk = icot(π(2k−1)/2n) for k = 1, 2, ..., n. The eigenvector associate with

λk is uk = 1√
n

(1, ρk, ..., ρ
n−1
k ) where ρk = (λk − 1)/(λk + 1).

The proof to this lemma can be found in [1] and is done by Bai and Silverstein.
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Definition 5.3.4 A stochastic series X on a probability space (Ω,F , P ) is a Mar-

tingale Difference Sequence if it satisfies the following:

E|Xt| <∞

E[Xt+1|Ft]

= 0

Lemma 5.3.5 Let {Xk} be a complex martingale difference sequence with respect

to the increasing σ − field{Fk}. Then for p > 1,

E|
∑

Xk|p ≤ KpE(
∑
|Xk|2)p/2

Proof. Both {Re(Xk)} and {Im(Xk)} are martingale difference sequences.

Therefore we have the following inequality:

E|
∑

Xk|p ≤ Cp[E|
∑

Re(Xk)|p + E|Im(Xk)|p]

≤ Cp[KpE(
∑
|Re(Xk)|2)p/2 +KpE(

∑
|Im(Xk)|2)p/2]

≤ 2CpKpE(
∑
|Xk|2)p/2

Where Cp = 2p−1. 2
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