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Abstract 

 

Design Considerations for Earthquake-Resistant 

Reinforced Concrete Special Moment Frames 

 

By 

 

Tea Višnjić 

 

Doctor of Philosophy in Engineering - Civil and Environmental Engineering 

 

University of California, Berkeley 

 

Professor Marios Panagiotou, Chair 

 

 

In recent decades, improvement in construction and design practices and better estimation in 

seismic demands has led to an increasing number of reinforced concrete special moment 

resisting frame (SMRF) buildings with height and member sizes exceeding those typically built 

in the past. While current codes improved greatly over the years, reflecting the development in 

all areas of structural engineering including design, analytical models, computing capabilities, 

material technologies and so forth, many design specifications introduced around the prevailing 

practices from decades ago remain in effect. The aim of this dissertation is to address some 

potentially problematic areas in current design standards and propose ways to improve them. 

Specifically, the focal points of the work presented concern with two separate areas in the design 

of reinforced concrete SMRF buildings.  

The first topic is the investigation of the transverse steel spacing requirements in the plastic 

hinge zones of reinforced concrete SMRF beams. Two large reinforced concrete SMRF beams 

were built and subjected to earthquake-like damage in the laboratory test with the goal: (a) to 

demonstrate that the maximum hoop spacing limits specified in the concurrent 2008 ACI 318 

Code could produce a beam with performance inferior to the implied expectations at design level 

ground shaking intensity, and (b) to evaluate the effect of reducing this hoop spacing limit and 

recommend code changes for the 2011 ACI 318 Code. The experiments included two 30 in. x 48 

in. beams with identical size, material properties, and longitudinal reinforcement ratio, but 

different transverse hoop spacing, which were subjected to reverse cyclic displacement history to 

simulate the earthquake-induced deformations expected at the design earthquake (DE) hazard 

level. The first specimen, Beam 1, was designed with the 2008 ACI 318 hoop spacing 

requirement and exhibited limited ductility before experiencing sudden and significant loss of 

load bearing capacity at a displacement ductility of 3.4. The second specimen, Beam 2, built with 

reduced hoop spacing, showed notable improvement in response and was capable of sustaining 

90% of its load bearing capacity up to a displacement ductility level of 6.5. Of the two 

specimens, only Beam 2 sustained the deformation levels compatible with the DE shaking 

intensity without significant loss of strength. Both beams, however, failed due to longitudinal bar 

buckling, which pointed to potential vulnerability in the current transverse reinforcement 

detailing using multiple piece hoops consisting of stirrups with vertical and horizontal crossties 
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and bracing only alternate longitudinal bars with vertical crossties. Further experimental research 

in this area is strongly recommended. 

The second topic concerns with the global nonlinear response of reinforced concrete SMRFs 

under strong ground motion, with emphasis placed on seismic shear demand in SMRF columns. 

Current ACI 318 specifications offer two different approaches in calculating the seismic shear 

demand, however with some ambiguity and much room for free interpretation that can vastly 

impact the shear capacity of the column and potentially result in unconservative design. Total of 

eight numerical models of buildings with perimeter SMRFs of varying configurations were 

analyzed in two separate studies (four buildings are presented in Chapter 5 and the other four in 

Chapter 6) under multiple ground acceleration records to find the mean shear envelopes in the 

columns. Depending on the interpretation of the ACI 318 code, various levels of conservatism in 

estimating column shears were achieved. A common design approach to estimate seismic 

column shear from the joint equilibrium with beams having reached the probable moment 

strengths, while the unbalanced moment is distributed evenly between the columns above and 

below, was shown to lead to unconservative seismic shear estimate, in some cases resulting in 

half of the actual demand computed in the nonlinear dynamic analyses. It is demonstrated that 

the seismic shear demand on columns is better estimated with a method based on amplifying the 

seismic shear calculated with the elastic code-prescribed modal response spectrum analysis with 

the system overstrength and dynamic amplification factors.  
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CHAPTER 1 
1 1 

INTRODUCTION 
 

 

Reinforced concrete moment frames are among the lateral load resisting systems used in 

buildings designed to withstand strong ground motion shaking. They are commonly chosen in 

both residential and commercial construction in the United States, because they provide open 

view lines and thus more architectural flexibility compared to other structural systems such as 

braced frames or shear walls, which obstruct the vertical space in the system plane. Reinforced 

concrete moment frames also tend to have substantial system ductility which makes them 

desirable in seismic design applications.  

Moment frames are composed of beams, columns, and joints, which all engage in resisting the 

seismic forces by axial, moment, and shear force actions. In a seismic event, an intended 

nonlinear response of a well-designed moment frame involves a strong column-weak beam 

mechanism. This mechanism comprises of plastic hinging in the beams along the height of the 

frame and the columns at the base of the structure, with limited, though ideally no inelastic 

column deformations in the rest of the stories, except at the column end at the very top of the 

building.  

In the United States, reinforced concrete moment frames are proportioned and detailed in 

accordance with requirements of ACI 318 (various editions). Those moment frames that are 

designed to withstand the highest levels of seismic forces are entitled Special Moment Resisting 

Frames (SMRFs) per ACI 318 and follow the most stringent detailing requirements to ensure 

sufficient strength and ductility is achieved. In the U.S., the design forces for reinforced concrete 

SMRFs are typically calculated using the modal response spectrum analysis (MRSA) method 

with response modification factor R = 8 (IBC 2012, ASCE 2010) and with individual modal 

responses combined using a selected modal combination rule.  

Generally speaking, the role of codes is to provide minimum requirements to ensure the life 

safety of occupants through avoidance of sudden and brittle failures both on system and 

component level. Some common examples of brittle failures in reinforced concrete members are 

shear failures of beams, columns, or joints, axial load failures in columns or joints due to 

concrete crushing, buckling of longitudinal reinforcement bars in beams or columns, rupture of 

transverse reinforcement, and so forth. Some of these member failures can lead to the formations 

of story mechanisms in a seismic event, which can lead to structural instabilities and, in the 

extreme case, collapse. Modern codes (e.g. ACI 318) are aimed at avoiding member failures 

through capacity design principles, which are based on allowing the structure to yield in ductile 

modes, while the capacity of the brittle yielding modes is elevated to increase the safety margin. 

The design practice in frame buildings aims to reduce the likelihood of localized story 

mechanisms by detailing frame elements to follow a strong column-weak beam action described 

earlier. Strong column-weak beam behaviour is enforced by requiring that columns be flexurally 

stronger than beams at any given joint (except for the joints at the very top of the frame).  To this 

end, according to ACI 318, the sum of the column nominal moment strengths is required to be at 

least 1.2 times the sum of the beam nominal moment strengths at every beam-column joint.  



2 

 

The strong column-weak beam mechanism implies that the SMRF beams will sustain 

repeated cycles of large inelastic deformations and thus capacity design is enforced in the beams 

to ensure ductility on a component level, as well. For this purpose, ACI 318 requires that the 

shear capacity of the beams exceeds the shear demand occurring at the time when the beam 

develops plastic hinges in all locations intended to yield in flexure. To provide the beam ductility 

during inelastic SMRF response, ACI 318 establishes detailing requirements and a limit on a 

minimum amount of transverse reinforcement that needs to be provided in the beam plastic hinge 

regions. 

Many of the current U.S. code requirements for SMRF buildings were first developed several 

decades ago and based on the prevailing design practices of that time. Some predate the UBC 

1997 code which, in many cases, nearly doubled the seismic forces used in structural design 

compared to those obtained from the procedures specified in the previous editions (UBC 1994 

and earlier). For this reason, in the past, reinforced concrete SMRF members were designed to 

resist smaller seismic forces and were hence smaller, while the buildings also had fewer stories. 

However, some portions of the modern day codes that were established at that time remain in 

effect.  

In urban areas of seismically active regions of the United States, and particularly the west 

coast, modern reinforced concrete moment frame buildings often exceed the heights of those 

built in the past and can reach up to 30 stories in height. Thus, a question is: can the reinforced 

concrete SMRF buildings conforming to the modern design codes achieve the projected 

performance level during the anticipated seismic event? Conversely, are there aspects of the 

current design standards that need to be improved to ensure a SMRF building can attain the 

performance expectations implied in the life safety target performance level during the design 

earthquake?  

In the recent decades, 10- to 20- story reinforced concrete frame buildings suffered large 

earthquake damage worldwide, including those in the 1995 M6.9 Kobe, Japan (Otani, 1999), 

earthquake, the 1999 M7.6 Chi-Chi, Taiwan (Tsai et al., 2000), and the M6.3 2011 Christchurch, 

New Zealand, earthquake (Elwood et al., 2012). The earthquake ground motion characteristics in 

all these cases resulted in significant displacement demands in the period range of the 10- to 20-

story buildings. While the affected buildings were designed following the guidelines that are 

different from the current U.S. codes, the occurrence of damage suggests potential vulnerability 

of reinforced concrete moment frame systems, and warrants study to better understand the design 

requirements.  

 

1.1 OBJECTIVES 

The main objective of this dissertation is to investigate several specific aspects of current design 

practice and code requirements as they pertain to reinforced concrete SMRFs and offer 

enhancements to improve the seismic performance of SMRF buildings under anticipated levels 

of shaking. In particular, the objectives are the following: 

 

 To investigate the adequacy of transverse reinforcement maximum spacing limits in 

plastic hinge regions of SMRF beams, as defined in concurrent 2008 ACI 318 code, 

by testing a large SMRF beam barely satisfying these spacing limits. 
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 To determine the extent to which reduction in the plastic hinge hoop spacing would 

improve seismic response of a large SMRF beam.  

 To improve understanding of the nonlinear response of reinforced concrete SMRFs 

under strong ground shaking by numerical investigation of several archetype buildings 

with the same height and geometry, but slight SMRF design variations. 

 To show that beam elongation phenomenon can significantly increase the seismic 

demand on exterior columns in SMRFs, while demonstrating that post-tensioning in 

the adjacent reinforced concrete slab does not effectively suppress this elongation, as 

currently assumed in design.  

 To evaluate currently available methods of estimating seismic design forces in 

columns including axial and shear force by comparing the design estimates to the 

forces computed in nonlinear dynamic analyses of multiple archetype buildings. 

 To develop a method to better estimate the shear force demand in SMRF columns 

induced by strong ground motion shaking. 

 

1.2 ORGANIZATION OF THE CONTENTS 

This dissertation consists of seven chapters, each focusing on one of the objectives presented in 

the previous section. The background, findings, conclusions, and ideas for future research are 

addressed separately in each chapter, as they relate to a specific topic. Most important findings 

and conclusions are summarized in Chapter 7. Where needed, appendices are provided at the end 

of the dissertation with further information pertaining to the contents of Chapters 2-6.  

Chapter 2 presents the laboratory tests of two large SMRF beams. The experiments 

investigated the plastic hinge transverse steel requirements for SMRF beams in 2008 ACI 318, 

and served as a basis for 2011 ACI 318 code change.  

Chapter 3 discusses the numerical modeling strategies for different response components of 

reinforced concrete SMRF beams in the context of objectives of this dissertation. That is, the 

models presented are aimed at providing conservative force demand estimates, rather than 

correctly simulating failure.  

Chapter 4 illustrates the impact of beam elongation on column shear in moment frames, which 

is commonly neglected in design because of the assumption that the post-tensioned slab which is 

typically cast uniformly with the beams in the SMRF buildings, suppresses the axial lengthening.  

Nonlinear response characteristics of tall SMRF buildings are discussed in Chapter 5, where 

small design variations are shown to improve the seismic response. This chapter also compares 

the design column shear and axial forces using current design practices and considers alternative 

design concept to better estimate these forces. 

Chapter 6 focuses on refining the methods for estimating design shear forces in columns of 

special moment resisting frames to account for system overstrength, higher mode effects, and 

response variability. The chapter concludes with a recommendation for update in the NIST GCR-

8-917-1 SMRF design guidelines pertaining to estimation of design shear in SMRF columns. 

Chapter 7 summarizes the most important findings in this dissertation and offers suggestions 

for future investigation. 
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CHAPTER 2 
2 2 

EXPERIMENTAL INVESTIGATION OF LARGE REINFORCED 

CONCRETE SPECIAL MOMENT RESISTING FRAME BEAMS  
 

 

Recent trends in high-rise construction in seismically active regions of the U.S. are resulting in 

construction of reinforced concrete special moment resisting frames (SMRFs) having beams that 

are larger than those that were typical of past practices. For example, it is not uncommon for 

SMRF beams to reach section depth up to 48 in. The ACI 318-08 Code provisions for these 

beams could result in hoop spacing as large as 12 in. in the plastic-hinge zone, potentially 

leading to inferior beam performance during strong ground motion shaking.  

With SMRF beam seismic performance being a concern, an experimental study presented in 

this chapter was undertaken to test the implications of concurrent code hoop spacing limits on 

beam response. The test included two large, special moment frame beams, one barely satisfying 

the ACI 318-08 hoop spacing limits and another with closer hoop spacing. These are believed to 

be the largest flexurally-dominant reinforced concrete beams tested under simulated earthquake 

loading. The results presented in this chapter provide an important insight into behavior of large 

reinforced concrete SMRF beams and have served as the basis for building code changes 

introduced in ACI 318-11. 

 

2.1 SMRF BEAM DESIGN REQUIREMENTS 

SMRFs generally conform to the provisions of ACI 318 Code (various editions), which are 

structured around the strong column-weak beam principle. Under such design, the majority of 

inelastic flexural deformations are intended to occur in the beams along the height of the 

building during strong ground shaking and it is expected that the beams would have the ability of 

sustaining multiple reversing inelastic deformation cycles without significant strength loss. 

Concrete cracking and yielding of reinforcement in the plastic hinge zones of these beams during 

the inelastic deformation cycles provide the major source of energy absorption and dissipation in 

the reinforced concrete special moment frames. Therefore, a stable inelastic flexural behavior of 

SMRF beams is essential for satisfactory building performance.  

ACI 318 requires use of hoops (transverse reinforcement in the form of closed ties) along 

lengths of SMRF beams where flexural yielding is anticipated. The hoops are intended to confine 

the core concrete, improve shear resistance, and provide lateral support to longitudinal bars. 

According to ACI 318, a hoop can be in the form of a closed tie with seismic hooks at both ends 

or it can be made up of several reinforcement elements each having seismic hooks at both ends 

(Figure 2.1.1[a] and [b]). Alternatively, a hoop can be made up of a stirrup with seismic hooks at 

both ends that is closed by a crosstie (Figure 2.1.1[c]).   
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Figure 2.1.1. Typical hoop configurations: (a) single closed hoop; (b) overlapping hoops; and (c) 

stirrups with crossties (db = diameter of a hoop bar). 

In consideration of anticipated inelastic flexural response of a SMRF beam, ACI 318 defines 

the beam design shear force Vu as the shear corresponding to development of beam probable 

moment strength Mpr at both ends of the beam acting in combination with the factored tributary 

gravity load along its span (Figure 2.1.2). Due to anticipated concrete damage in the plastic hinge 

regions of the beam, ACI 318 requires that the hoop reinforcement in the plastic hinge be 

proportioned for shear assuming that there is no contribution from the concrete. Thus, along a 

length equal to 2h from the column face, the design requirement is ϕVn ≥ Vu, with Vn = Vs, in 

which h = overall thickness of the beam, ϕ = strength reduction factor (ϕ = 0.75 for shear), Vn = 

nominal shear strength, and Vs = shear strength provided by the hoops.  

 

 

Figure 2.1.2. Design shear for beams according to ACI 318 (source: ACI 318). 

To improve lateral support for the longitudinal reinforcement and thereby improve bar 

buckling resistance, ACI 318 also requires that every corner and alternate longitudinal bar have 

crossties

stirrup

(a) (c)(b)

closed

hoops

 6db extension

 6db extension

seismic hook with extension

of length 6db    3 in. (typ.)

consecutive crossties engaging the

same longitudinal bars have their

90 degree hooks on opposite sides
≥
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lateral support provided by the corner of a tie or crosstie, with no unsupported bar located more 

than 6 in. clear from a laterally supported bar. Furthermore, ACI 318-08 requires that hoop 

spacing sh within 2h of the beam ends shall not exceed the least of d/4, 8db, 24dbh, and 12 in., 

where d = distance from the extreme concrete compression fiber to the centroid of the 

longitudinal tension reinforcement, db = longitudinal bar diameter, and dbh = hoop bar diameter. 

Smaller hoop spacing may be required for shear, as noted previously.  

The ACI 318-08 provisions for maximum allowable hoop spacing in SMRF beams were 

introduced in 1983 based on prevailing practices of that time. Special moment frames of that era 

typically had multiple bays, were provided along multiple framing lines, and were designed to 

resist lower seismic design forces, such that SMRF beam depths seldom exceeded around 36 in. 

Hence, the limit of sh = 12 in. typically did not control the hoop spacing. When applied to larger 

SMRF beams in modern construction, however, the hoop spacing can approach or can be limited 

by sh = 12 in. This raised a concern that beams with such detailing might not perform well during 

earthquake-induced inelastic deformations, especially considering possible buckling of beam 

longitudinal reinforcement.   

Numerical simulations of four generic 20-story SMRFs reported in Chapter 5, for buildings 

located on a hypothetical site in Los Angeles, CA and conforming to ASCE 7-10 and ACI 318-

08 provisions indicate that the frames sustained mean story drift ratios of 0.02 during design 

earthquake (DE) shaking levels and 0.03 during maximum considered earthquake (MCE) 

shaking levels, along more than 30% of the building height. For the frames investigated in 

Chapter 5, peak beam chord rotations (drift ratios) were approximately 1.3 times the peak story 

drift ratios at DE and MCE shaking intensities.  This implies that the SMRF beams would have 

to sustain 0.026 and 0.039 mean chord rotations for the DE and MCE shaking levels, 

respectively. 

 

2.2 LARGE BEAM EXPERIMENTS REPORTED IN LITERATURE 

Few experimental studies have investigated flexure-dominant, cast-in-place reinforced concrete 

beams (or beam-column subassemblies) with beam thickness h greater than 24 in. under multiple 

displacement reversals. These are summarized in Table 2.1, along with the relevant beam 

configuration parameters. In each of these reported tests, the beam cantilevered from a stiff 

reaction block or column and was loaded by a concentrated force applied transverse to the beam 

axis with minimal distributed load. These investigations showed that the degree of damage 

depends primarily on deformation amplitude; amount of longitudinal reinforcement; shear span 

ratio (defined as the moment M at the beam end divided by the product of the shear force V and 

the beam height); and quantity, spacing, configuration, and material properties of the transverse 

reinforcement. Notably, none of the beams had hoop spacing approaching the upper limit of sh = 

12 in. permitted by ACI 318-08.   

Predominant failure modes of the reported beams included strength and stiffness degradation 

due to diagonal cracking and yielding of the transverse reinforcement; longitudinal bar buckling; 

and bond degradation between longitudinal reinforcement and surrounding concrete within the 

beam, the anchorage, or both. Table 2.1 lists maximum beam drift ratio amplitude θcap prior to 

significant loss of strength and the observed failure mode. Beam drift ratio θcap, or “chord 

rotation,” is defined as the displacement at point of load application at the end of the beam 
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cantilever divided by the cantilever length. Significant strength loss is arbitrarily defined as a 

reduction in resistance exceeding 20% of the maximum resistance.  

 
Table 2.1. Previous tests of large flexure-dominated beams under cyclic loading (Characteristics associated 

with apparent failure: BF = bond failure; EDC = excessive diagonal cracking; HY = hoop yielding; LRB = 

longitudinal reinforcement buckling; LRF = longitudinal reinforcement fracture; NF = no failure in beams, i.e. 

other subassembly components [joints, columns] failed first) 

Authors 

bw, mm 

(in.) 

h, mm 

(in.) 

M/

Vh 

 , 

% 

’ , 
% sh / db Hoop configuration  cap Failure mode 

Popov et al. 
(1972) 

483 

(19) 

737 
(29) 

2.7 1.58 1.58 2.7 Single closed hoop 0.045 HY/EDC 

Blakeley et 

al. (1975) 

457  

(18) 

889 

(35) 

3.9 1.10, 

1.03 

0.70 5.3 Pair of closed hoops 0.050 LRB/ 

EDC 

Birss 

(1978) 

356 

(14) 

610 
(24) 

3.6 1.3 1.3 2.5-5.0 

(varied sh 

within 
p.h.1) 

Pair of closed hoops 0.036  

(Unit B1) 

0.032 

 (Unit B2) 

NF 

Beckingsale 
(1980) 

356 

(14) 

610 
(24) 

3.6 1.10, 

0.86 

0.58, 

0.86 

2.7-5.4 

(varied sh 

within 

p.h.) 

Pair of closed hoops exceeds 0.040 
(units B11 and 

B12) 

exceeds 

0.027(unit B13) 

BF (Units B11 & 
B12) 

NF (Unit B13) 

Paulay and 

Scarpas 
(1981) 

356 

(14) 

610 

(24) 

3.6 0.9 0.9 5.0 Pair of closed hoops exceeds 0.038 NF  

(Units 1 & 3) 

HY (Unit 2) 

Restrepo et 

al. (1990) 

300 

(11.8) 

700 

(27.5) 

2.7 0.93 0.95 4.3 Single closed hoop 0.036 BF (Unit 5) 

EDC (Unit 6) 

Warcholik 
and Priestley 

(1997), 

508  

(20) 

762 
(30) 

3.5 1.17 1.17 2.8 Closed hoop with 
vertical cross tie  

exceeds 0.028 NF 

Warcholik 
and Priestley 

(1998a) 

508  

(20) 

762 
(30) 

3.5 1.17 1.17 2.8 Closed hoop with 
vertical cross tie  

exceeds 0.039 NF 

Warcholik 

and Priestley 
(1998b) 

508  

(20) 

762 

(30) 

3.5 0.83 0.83 2.9 Closed hoop with 

vertical cross tie 
(specimen HSJ12-4) 

exceeds 0.058 NF 

Chang et al. 

(2008) 

483 (19), 

559 (22) 

914 

(36) 

3.3 0.60 

0.67 

0.60.

0.67 

1.5 Single closed hoop 

(beams 3 & 4)  
vertical cross tie 

(beam 3) 

0.055, 

0.071 

LRF (Beam 3) 

NF (Beam 4) 

 

Among the beams reported in literature that were loaded to the point of significant loss of 

strength, most were capable of sustaining chord rotations in excess of 0.038 without significant 

loss of resistance. The exception are the specimens reported in Restrepo et al. (1990) which 

showed stable response up to 0.036 beam chord rotation upon which strength loss was noted due 

to either bond failure around longitudinal bars within the joint anchorage, accompanied with the 

crushing of the surrounding concrete cover, or major diagonal cracking and excessive shear 

deformations. Only one study (Blakeley et al. 1975) reported longitudinal bar buckling as a 

primary failure mode of the beams tested. Those beams reached θcap = 0.050.  

 

                                                 
1
 plastic hinge 
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2.3 EXPERIMENT OVERVIEW 

A laboratory test program was undertaken to explore whether a large SMRF beam, barely 

satisfying the ACI 318-08 hoop spacing limits, would be able to sustain chord rotations 

consistent with the rotations inferred from the tall building simulations presented in Chapter 5 

and also in Visnjic et al. (2012). A second test studied behavior of a beam with nominally 

identical properties except with closer hoop spacing. The two SMRF beam specimens were 

constructed at full scale and were tested under reversed-cyclic deformations of progressively 

increasing amplitude. Two test beams were designed and constructed to test the requirements of 

ACI 318-08 as well as recommended revisions for ACI 318-11. The beams cantilevered from a 

common reaction block that was anchored to the laboratory floor (Figure 2.3.1).  The beams 

were tested by imposing upward and downward displacement cycles to simulate the deformation 

reversals occurring during earthquake loading. Deformations were imposed by hydraulic 

actuators connected near the beam ends.  

 

Figure 2.3.1 Test set-up. 

2.4 DESIGN OF SPECIMENS 

2.4.1 DIMENSIONS AND REINFORCEMENT 

The beams were 160 in. long and had rectangular cross section measuring 48 in. deep by 30 in. 

wide (Figure 2.4.1). The two beams contained nominally identical longitudinal reinforcement 

consisting of No. 11  ASTM A706 Grade 60 deformed reinforcing bars at both top and the 

bottom faces, corresponding to longitudinal reinforcement ratio ρ = As/bwd = 0.0058 (As = area of 

longitudinal tensile reinforcement, bw = beam width). Individual hoops of both beams were each 

made up of three pieces of No. 5 ASTM A706 Grade 60 deformed reinforcing bars: a stirrup 

with seismic hooks, a crosstie at the top to close the hoop (commonly referred to as cap tie), and 

an additional vertical crosstie to restrain longitudinal bars along the top and bottom faces. The 

crossties were alternated end for end along the length of the beams.  

Beam 1 (Figure 2.4.2) was designed to satisfy all provisions for SMRF beams according to 

ACI 318-08 and had hoops spaced at 11 in. The ratio of distributed transverse reinforcement area 

(vertical legs only) to gross concrete area perpendicular to that reinforcement in Beam 1 was ρt = 

0.0028. In Beam 2 (Figure 2.4.3), the hoop spacing was reduced to 6 in., corresponding to a 

transverse reinforcement ratio ρt = 0.0051. The beams also contained No. 4 skin reinforcement to 

satisfy serviceability requirements of ACI 318-08. That reinforcement extended along the full 

point of loading

4
'-

0
"

12'-6"

c actuator

Beam 2

Lreaction block

strong floor

4
'-

0
"

c actuator

Beam 1

L

point of loading

13'-6" 1'-0"
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length of the beam and terminated 6 in. inside the reaction block, as shown in Figure 2.4.1. For 

both beams, specified strength of concrete was 5 ksi. 

 

 

Figure 2.4.1. Beam specimens. 

 
 

Figure 2.4.2. Beam 1 prior to testing. 
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Figure 2.4.3. Beam 2 prior to testing. 

2.4.2 MATERIALS USED IN CONSTRUCTION 

2.4.2.1 CONCRETE 

Normalweight concrete containing pea gravel (not crushed) as the maximum size aggregate was 

used in construction of both the beams and the reaction block, with target compressive strength 

of 5 ksi. A total of 25.6 cubic yards of concrete were required for construction of the two beam 

specimens and the reaction block.  Three batches of concrete were used and 18 standard 6 in. x 

12 in. cylinders were cast for material testing.  The first batch was mainly cast on the bottom of 

the reaction block and a portion of the bottom part of both beams.  The second batch was cast 

over the middle portion of the beams and the reaction block, and the third batch topped off the 

remaining part of the block and the beams. Table 2.2 summarizes the compressive strength 

results obtained at 28, 60, and 86 days after casting for each of the three concrete batches. The 

last two tests were conducted on the days the experiments took place for Beams 1 and 2, 

respectively.    

The 28-day strength test included 9 cylinders, three for each batch. Compressive strengths for 

the three batches ranged from 5.23 to 5.58 ksi, with average of 5.34 ksi. The first beam test took 

place 60 days after casting the beams and cylinders, at which time two cylinders were tested for 

each concrete batch. Their corresponding stress-strain relations are plotted in Figure 2.4.4(a). 

Average compressive strength calculated for the six cylinders was f'c = 5.8 ksi, and the average 

strain at maximum compressive strength was calculated to be εo = 0.0030. The third batch had 

the highest average compressive strength of 6.17 ksi which was 10% higher than the lowest 

measured strength. 

 

 



11 

 

Table 2.2. Measured compressive strength of concrete cylinders. 

Concrete 

Age 
Batch 

Compressive strength of concrete f'c, MPa (ksi) 

Specimen 1 Specimen 2 Specimen 3 Average 
Batch 

Average 

28 days 

1 37.3 (5.41) 35.5 (5.15) 35.7 (5.17) 36.1 (5.24) 

(5.34)  2 36.3 (5.27) 36.2 (5.25) 35.6 (5.17) 36.0 (5.23) 

3 38.6 (5.60) 39.0 (5.66) 37.7 (5.48) 38.4 (5.58) 

60 days  

1 39.2 (5.69) 39.1 (5.68) - 39.2 (5.69) 

40.1 (5.82) 2 38.3 (5.55) 39.0 (5.66) - 38.6 (5.61) 

3 41.9 (6.09) 43.1 (6.26) - 42.5 (6.17) 

86 days 

1 40.7 (5.91) - - 40.7 (5.91) 

42.3 (6.13) 2 40.4 (5.87) - - 40.4 (5.87) 

3 45.8 (6.65) - - 45.8 (6.65) 

 

 

The second beam test took place 86 days after casting and the remaining three cylinders were 

tested on this day (one for each concrete batch)  by which time the average compressive strength 

of the three batches was f'cm = 6.1 ksi with the average strain at maximum compressive strength 

at εo = 0.0028. The stress-strain curves for these three specimens are plotted in Figure 2.4.4(b). 

The highest compressive strength (measured again in the third batch) was 6.65 ksi and was 13% 

higher than the lowest measured compressive strength.  

 

 
Figure 2.4.4. Concrete stress-strain curves. 

2.4.2.2 STEEL 

Type ASTM A706 Grade 60 deformed reinforcing bars were used for both the longitudinal and 

transverse reinforcement. For each of the No. 11 and No. 5 bar sets, three coupons were tested in 

tension to obtain the stress-strain relationship of the steel. The curves obtained are shown in 

Figure 2.4.5. No. 5 reinforcement did not display a yield plateau; rather, the stress-strain curve 

was characterized by a gradually increasing softening with the strain increase. The point where 

nonlinear hardening initiated occurred around the stress of fym = 52 ksi and a strain of εy =
 

0.0020. The average maximum stress of No. 5 bars was fum = 103 ksi. No. 11 longitudinal bars 
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had the mean yield stress of fym = 73 ksi and a well-defined yield plateau. Average maximum 

measured stress in the three coupons was fum = 105 ksi with the average corresponding strain of 

0.12. Measured yield strain of steel in No. 11 bars was 0.0023 and the Es = 31,000 ksi. 

 

 
Figure 2.4.5. Monotonic stress-strain curves for steel obtained from tensile coupon tests: (a) hoop 

reinforcement, and (b) longitudinal reinforcement. 

2.4.3 BEAM DESIGN STRENGTH 

Probable moment strength Mpr of both beams, calculated using specified material properties in 

accordance with Chapter 21 of ACI 318-08, was Mpr = 2110 kip·ft. Skin reinforcement was not 

included in the strength calculation because it was not fully developed into the reaction block. 

Consideration of the skin reinforcement, if assumed fully developed into the reaction block, 

would result in a 9% increase in Mpr.  

Nominal shear strength was calculated using specified material properties in accordance with 
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          ⁄ , nominal shear strength for Beam 1 is Vn = 420 kips. ACI 318 requires that Vn be 

calculated assuming Vc = 0 within 2h from the column face; therefore, within this length of Beam 

1, Vn = 229 kip. In these expressions, Vc = nominal shear strength provided by concrete, Vs = 

nominal shear strength provided by shear reinforcement,   
  = specified concrete compressive 

strength (5000 psi), Av = transverse reinforcement area (vertical legs only), fyt = nominal yield 

strength of hoops. For Beam 2, nominal shear strength ignoring the contribution of concrete was 

Vn = 420 kip, while that with concrete contribution included was Vn = 612 kip.  

Assuming the gravity load on the specimens consisting of beam self weight is equal to Vg = 

20.3 kips, then the controlling design shear force for both beams is Vu = Mpr/l + Vg = 193 kips. 

For Beam 1, ϕVn (ϕ = 0.75) is 1.63 times the required Vu. For Beam 2, the factored shear strength 

ϕVn is 2.37 times the Vu. 

 

2.5 INSTRUMENTATION 

Instrumentation included applied forces, overall displacements, local deformations, and strains. 

Overall displacement of the beam was measured by a linear variable displacement transducer 

(LVDT) positioned at the point of load application a distance L = 150 in. from the face of the 

reaction block, and measuring between the beam bottom face and the laboratory strong floor. To 

measure local deformations, LVDTs connected between steel rods embedded approximately 1.5 

in. into the concrete core at the top, side, and bottom faces of the beams. Two rows of LVDTs 

were placed along the top face (TL, TR series, Figure 2.5.1) and bottom face (BL, BR series, 

Figure 2.5.2) of each beam. Side LVDTs (Figure 2.5.3) were aligned vertically (V series, Figure 

2.5.3), diagonally (S series, Figure 2.5.3), and horizontally (H series, Beam 2 only, see Figure 

2.5.3). Strain gauges were attached to longitudinal and transverse reinforcement at selected 

locations, as shown in Figure 2.5.4 and Figure 2.5.5.  

Due to an error in data acquisition system during the Beam 1 test, data from portion of the 

instruments was permanently lost. These include both the strain gauges and LVDTs located close 

to the Beam 1 root. Nevertheless, data collected from the remaining instruments was sufficient to 

capture the behavior of Beam 1. Data recorded in all instruments is included in Appendix A. 

 

 
Figure 2.5.1. Layout of displacement transducers: top face of the beams. 
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Figure 2.5.2. Layout of displacement transducers: bottom face of the beams. 

 

  
Figure 2.5.3. Layout of displacement transducers: side face of the beams. 
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Figure 2.5.4. Layout of longitudinal reinforcement strain gauges: (a) location of instrumented 

bars; (b) location of strain gauges along a single No. 11 bar. 

 
Figure 2.5.5. Layout of transverse reinforcement strain gauges: (a) location of hoops with 

instrumented stirrups; (b) gauge locations on a stirrup. 
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2.6 DISPLACEMENT HISTORY 

The displacements applied to Beam 1 and Beam 2 are intended to simulate a typical loading 

history imposed onto a beam acting as a part of a special moment frame during strong ground 

motion. The displacement history selected was based on the beam rotation histories inferred from 

numerical simulations of 20-story special moment frames presented in Chapter 5.  

Figure 2.6.1 shows the displacement history for the tests. The displacement amplitude Δ 

corresponds to the displacement at the point of actuator load application. Beam chord rotation  

is defined as Δ/L, where L = distance from the face of the reaction block to the actuator load 

point. The beam chord rotation is alternatively described in terms of the drift ratio, defined as the 

beam rotation expressed in percentage.  

The displacements shown in Figure 2.6.1 represent the actual displacements applied during 

the test and hence include the actuator lag, which is the cause of the slight discrepancy in the 

displacement peak amplitudes (generally less than 2% relative error). The last half cycle to beam 

chord rotation amplitude of -0.0012 for Beam 1 (occurring around 7000
th

 data point, see Figure 

2.6.1) was omitted due to an input error into the actuator control protocol. As can be observed in 

Figure 2.6.1, the actual displacements applied during the two tests diverged in the final cycles. 

This was a result of different beam responses described later in this chapter.  

 

 
Figure 2.6.1. Displacement history for Beam 1 and Beam 2 (1 in. = 25.4 mm). 
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tension (see section 2.8.1). For Beam 1 the yield displacement was Δy = 1.2 in, and for Beam 2, 

Δy = 0.9 in. 

 
Table 2.3. Displacement test protocol.  

Step 
Number 

of cycles 

Displacement Δ                       

(in.) 

Chord Rotation 

θ = Δ / L 

Displacement 

ductility 

μΔ = Δ / Δy 

Beam 1 Beam 2 Beam 1 Beam 2 Beam 1 Beam 2 

1 3 0.1 0.1 0.0007 0.0007 0.1 0.1 

2 3 0.3 0.2 0.0018 0.0016 0.2 0.3 

3 3 0.4 0.4 0.0028 0.0028 0.4 0.5 

4 3 0.6 0.6 0.0038 0.0040 0.5 0.7 

5 3 1.2 1.3 0.0081 0.0087 1.0 1.5 

6 2
2
 1.8 1.8 0.0120 0.0120 1.5 2.0 

7 1 0.5 0.5 0.0033 0.0033 0.4 0.6 

8 2 2.7 2.7 0.0180 0.0180 2.3 3.0 

9 1 0.5 0.5 0.0033 0.0033 0.4 0.6 

10 2 4.1 4.3 0.0270 0.0290 3.4 4.8 

11 1 0.5 0.5 0.0033 0.0033 0.4 0.6 

12 2 5.5 5.8 0.0360 0.0390 4.5 6.5 

13 1 0.5 0.5 0.0033 0.0033 0.4 0.6 

14 1 7.6 8.0 0.0510 0.0530 6.4 8.8 

15 1 0.5 0.5 0.0033 0.0033 0.4 0.6 

16 1 8.3 
8.7 

(-9.6) 
0.0550 

0.0580 

(-0.0640 ) 
6.9 

9.7 

(-10.7 ) 

 

 

2.6.1 SIGN CONVENTION 

Global displacement of the beam is defined as positive downward; beam moment and shear are 

defined as positive for actions that produce downward displacement. The reported beam moment 

is the sum of moments at the face of the reaction block due to actuator force and beam self 

weight, assuming self weight of the beam equal to 20.3 kips. Local deformations and strains are 

defined as positive for elongation. Deflections due to self weight of the beam are deemed 

negligible. 

 

2.7 RESPONSE OVERVIEW 

Figure 2.7.1 shows the measured relations between beam moment and beam chord rotation for 

Beam 1. In the early cycles, the beam developed cracks associated with flexure, shear, and dowel 

action. The response was stable during all cycles after yielding prior to and including the first 

half cycle to peak chord rotation θ = 0.027. Upon displacement reversal during the second half 

                                                 
2
 Last half-cycle omitted for Beam 1. 
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cycle to  = 0.027, all of the top longitudinal bars buckled, creating a cave-like fissure running 

along the longitudinal bars that remained open for all remaining cycles (Figure 2.7.2). During the 

second cycle with a peak chord rotation of 0.027 the maximum resistance of the beam reduced 

by 30% of the peak resistance, as can be observed in Figure 2.7.1.  

Bottom longitudinal reinforcement buckled during the positive (downward) loading phase of 

second cycle to 0.027 chord rotation, although the bars were better restrained by the hoops at this 

location. After buckling of longitudinal bars, increased shear deformations were observed, which 

were especially apparent during the downward loading phases (see Figure 2.7.3 and also 

discussions of crack widths and shear deformations to follow). During the subsequent cycles 

(with peak chord rotations of θ = 0.036 and θ = 0.051), the resistance of Beam 1 reduced to 50% 

of the peak resistance. At the end of testing, 135-deg. seismic hooks were observed to have 

opened along the length over which buckling occurred (Figure 2.7.4). 

 

 

Figure 2.7.1. Relationship between moment and beam rotation for Beam 1. 

The measured yield moment and chord rotation for Beam 1 were My = 1860 kip·ft and θy = 

0.008. This value of My is 10% higher than the nominal moment strength Mn = 1690 kip·ft 

calculated with ACI 318 provisions using the nominal steel strength fy = 60 ksi and specified 

concrete strength f’c = 5 ksi. Beam 1 secant stiffness at yield was 0.13EcIg, where Ec is Young's 

modulus of concrete calculated as Ec = 57,000√    psi based on measured cylinder compressive 

strength for Beam 1, and Ig is second moment of area of the beam gross cross section.  

The peak measured moment in Beam 1 was 2100 kip·ft, which is very close to the probable 

moment strength Mpr calculated in accordance with ACI 318 using the specified compressive 

strength of concrete f’c = 5 ksi and 1.25 times the nominal yield strength of the longitudinal steel 

(that is, 1.25 x 60 ksi = 75 ksi). The value of Mpr calculated is 2115 kip·ft, which is indicated 
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with dashed lines in Figure 2.7.1. The beam sustained a peak shear force of V = 164 kips, which 

corresponds to a nominal shear stress of V/bwd = 121 psi, or 1.6√     psi.  

 

 

Figure 2.7.2. Beam 1 crack patterns and buckling of the top longitudinal bars (first cycle with 

peak θ = -0.027). 

 

Figure 2.7.3. Buckling of bottom longitudinal bars and large apparent shear deformation in Beam 

1 (cycle with peak θ = 0.055). 
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Figure 2.7.4. Stirrup hook opening at the end of Beam 1 test. 

Figure 2.7.5 shows moment versus chord rotation response of Beam 2. The behavior of Beam 

2 was similar to that of Beam 1 in the early cycles, including development of cracks associated 

with flexure, shear, and dowel action (Figure 2.7.6). Beam 2 exhibited stable response prior to 

the reversal from peak downward displacement during the second cycle with drift amplitude θ = 

0.029. At this instance the initiation of buckling in top longitudinal reinforcement was observed. 

The buckling became excessive and obvious in the measured moment-drift response in the cycle 

with 0.039 peak chord rotation (Figure 2.7.5 and Figure 2.7.6). The peak resistance of the beam 

in the subsequent cycle was 10% less than the maximum strength measured during the same 

direction of loading. Buckling of the bottom longitudinal bars became obvious during a cycle 

with a peak drift of 0.053 (Figure 2.7.7). During the last loading cycle with chord rotation 

amplitude of 0.064, one of the top corner bars fractured at an instantaneous beam rotation of 

0.007, which resulted in a sudden strength loss in the beam of approximately 38% of the 

instantaneous resistance prior to bar fracture. The peak resistance for this cycle was 43% lower 

than for the previous downward cycle, and 48% lower than the peak strength for loading in this 

direction. Similarly to Beam 1, the 135-deg. seismic hooks were observed to have opened along 

the length over which buckling occurred in Beam 2 (Figure 2.7.8). 

Beam 2 moment resistance at yield was My = 1880 kip·ft, which is 11% higher than the 

calculated nominal moment Mn = 1690 kip·ft. Secant stiffness calculated at this instance (at θy = 

0.006) corresponded to 0.16EIg. The maximum measured moment in Beam 2 was 2320 kip·ft, 

which is 10% higher than the calculated Mpr. Peak shear force measured in Beam 2 was 181 kips, 

corresponding to a nominal shear stress of V/bwd = 134 psi or 1.7√     psi.   
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Figure 2.7.5. Relationship between moment and beam rotation for Beam 2. 

 

 
Figure 2.7.6. Crack patterns and buckling of the top longitudinal bars in Beam 2 (first cycle with 

peak θ = - 0.039). 
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Figure 2.7.7. Buckling of bottom longitudinal bars in Beam 2 (θ = 0.053). 

 
Figure 2.7.8. Apparent opening of the cap tie on top face of Beam 2 as observed upon completion 

of Beam 2 test. 

Beams 1 and 2 have similar moment-chord rotation responses until the cycle with peak chord 

rotation of 0.018, as can be seen in Figure 2.7.9. For both beams, fixed-end rotation associated 

with slip of the longitudinal reinforcement from the anchorage block comprises roughly 40% of 

the total beam tip deflection for the cycles prior to longitudinal bar buckling. During the cycle 

with a peak rotation of 0.027, longitudinal bar buckling resulted in rapid loss of strength in Beam 

1; therefore, the maximum rotation capacity of Beam 1 can be taken as θcap = 0.027. For Beam 2, 
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minor strength degradation occurred during cycles with 0.029 peak drift, with more significant 

strength loss delayed until the cycles with peak chord rotation of 0.039. Therefore, for Beam 2, 

the maximum rotation capacity can be taken as θcap = 0.039.  

 

 
Figure 2.7.9. Comparison of Beam 1 and Beam 2 responses. 

2.8 MEASURED LOCAL RESPONSE 

Local responses include reinforcement strains, crack widths, and local deformations between 

fixed points measured by the LVDTs along the top, bottom, and side faces of the beams. 

Initially, measurements from the LVDTs could be used to estimate average longitudinal strains, 

defined as the elongation measured by an LVDT divided by its gauge length. After buckling of 

longitudinal reinforcement initiated, however, distortion of the concrete cover resulted in 

displacement and rotation of the steel instrumentation rods, such that the resulting measurement 

no longer represented the average strain correctly. Consequently, deviations from expected 

longitudinal strains provide a good indication of the onset and extent of buckling. The majority 

of the strain gauges failed after measuring a strain of about 0.02, such that strains were not 

recorded during the largest displacement cycles, including those for which buckling was 

observed.  

2.8.1 LONGITUDINAL REINFORCEMENT STRAINS 

Figure 2.8.1 shows the evolution of strains in the longitudinal bars through the progression of the 

cycles for the two beams. Two strain histories are shown for each beam: one from the gauge 

attached to one top longitudinal No. 11 bar (Figure 2.8.1[a] and [c] for Beam 1 and Beam 2, 

respectively) and the other from the gauge attached to one bottom No. 11 bar (Figure 2.8.1[b] 

and [d] for Beam 1 and Beam 2, respectively). The readings shown were measured by the gauges 
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indicated in the respective plot titles, which were attached to the longitudinal bars 2 in. from the 

reaction block. 

 

Figure 2.8.1. Propagation of strain in longitudinal reinforcement at beam root with increasing 

drifts measured in (a) top and (b) bottom bar of Beam 1 for cycles up to and including the first 

cycle with θ = 0.018, and (c) top and (d) bottom bar of Beam 2 for cycles up to and including the 

first cycle with θ = 0.029. 

The plots in Figure 2.8.1 indicate minor excursions of the bars into the compressive strain 

range in the early stages of the test. The top No. 11 bars experience compressive strains during 

the upward cycles with the rotation amplitudes |θ| < 0.005, while the bottom bars experience 

compressive strains for the downward cycles with the rotation amplitudes |θ| < 0.009. Thereafter, 

the reinforcement strain histories indicate that only tensile strains develop with the increasing 

beam rotation, which is the sort of longitudinal strain history typical of reinforced concrete 

beams in the absence of axial force. The top and bottom longitudinal bars in Beam 1 yield in 

tension at chord rotations of 0.008 and -0.007, respectively. For Beam 2, the top and bottom bars 

yield at 0.006 and -0.005 chord rotation, respectively.  

Figure 2.8.2 through Figure 2.8.5 plot the progression of the longitudinal reinforcement 

strains through the beam displacement cycles. Each curve in these figures represents the 

instantaneous longitudinal reinforcement strain measured at the moment when the beams reach 

the displacement amplitude for the corresponding cycle. The x-axes in the figures represent the 

location of the given strain gauge, measured from the face of the reaction block. Negative 

distance indicates that the gauge was located along the portion of the longitudinal bar embedded 
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within the reaction block. A solid black vertical line has been added to all figures to indicate the 

location of the beam interface with the reaction block. 

As expected for this type of loading, the highest levels of the longitudinal strain are reached in 

the close proximity of the beam root. Within the beam, the longitudinal reinforcement strains 

gradually decrease with the distance from the reaction block for all beam displacement cycles 

prior to yielding (Figure 2.8.2[a], Figure 2.8.3[a], Figure 2.8.4[a], and Figure 2.8.5[a]). Once 

yielding has occurred, the highest levels of strains tend to concentrate within the first 26 in. of 

the reaction block (Figure 2.8.2[b], Figure 2.8.3[b], Figure 2.8.4[b], and Figure 2.8.5[b]), which 

is approximately the length of the plastic hinge observed in the tests. 

 

 

Figure 2.8.2. Strain distribution along the instrumented top longitudinal bars, Beam 1. 

-22 -10 2 14 26 38 50
0.0000

0.0005

0.0010

0.0015

0.0020

location of strain gauge (in.)

(a)

st
ra

in

Cycles with 
peak

 < 
y

 

 
peak

 = 0.0007 (1)


peak

 = 0.0007 (2)


peak

 = 0.0007 (3)


peak

 = 0.0018 (1)


peak

 = 0.0018 (2)


peak

 = 0.0018 (3)


peak

 = 0.0028 (1)


peak

 = 0.0028 (2)


peak

 = 0.0028 (3)


peak

 = 0.0038 (1)


peak

 = 0.0038 (2)


peak

 = 0.0038 (3)

-22 -10 2 14 26 38 50
0.0000

0.0100

0.0200

0.0300

0.0400

location of strain gauge (in.)

(b)

st
ra

in

Cycles with 
peak

 > 
y

 

 


peak
 = 0.0081 (1)


peak

 = 0.0081 (2)


peak

 = 0.0081 (3)


peak

 = 0.0120 (1)


peak

 = 0.0120 (2)


peak

 = 0.0180 (1)


peak

 = 0.0180 (2)


peak

 = 0.0270 (1)


peak

 = 0.0270 (2)


peak

 = 0.0360 (1)



gauges shown



26 

 

 

 
Figure 2.8.3. Strain distribution along the instrumented bottom longitudinal bars, Beam 1. 
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Figure 2.8.4. Strain distribution along the instrumented top longitudinal bars, Beam 2. 
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Figure 2.8.5. Strain distribution along the instrumented bottom longitudinal bars, Beam 2. 
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where xi signifies the approximate location of the midspan of each LVDT pair (plotted along the 

x-axis in Figure 2.8.6 through Figure 2.8.9), Ti and Bi are the measurements from the top and 

bottom LVDTs, respectively, Li is the length of instrument i, and Rv is the vertical distance 

between the top and bottom instruments, approximately 53 in. It should be noted that the 

buckling of the longitudinal bars affected the measurements of the top and bottom LVDT 

instruments after 0.012 rotation amplitude cycles in Beam 1, and second cycle to 0.029 rotation 

amplitude in Beam 2. Thus, in the curvature levels computed for these cycles were do not reflect 

the actual values, but are nevertheless included in the plots to indicate the changing deformations 

due to impending longitudinal bar buckling. 

 

 
 

Figure 2.8.6. Curvature distribution at the downward displacement peaks in Beam 1. 
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Figure 2.8.7. Curvature distribution at the upward displacement peaks in Beam 1. 

6.5 14.5 32

-8

-6

-4

-2

0

x 10
-5

location of LVDT  (in.)

(a)

C
u

rv
at

u
re

 (
in

-1
)

Cycles with 
peak

 < 
y

 

 
peak

 = -0.0007 (1)


peak

 = -0.0007 (2)


peak

 = -0.0007 (3)


peak

 = -0.0018 (1)


peak

 = -0.0018 (2)


peak

 = -0.0018 (3)


peak

 = -0.0028 (1)


peak

 = -0.0028 (2)


peak

 = -0.0028 (3)


peak

 = -0.0038 (1)


peak

 = -0.0038 (2)


peak

 = -0.0038 (3)

6.5 14.5 32

-2

-1

0

1

x 10
-4

location of LVDT  (in.)

(b)

C
u

rv
at

u
re

 (
in

-1
)

Cycles with 
peak

 > 
y

 

 


peak

 = -0.0081 (1)


peak

 = -0.0081 (2)


peak

 = -0.0081 (3)


peak

 = -0.0012 (1)


peak

 = -0.0180 (1)


peak

 = -0.0180 (2)







31 

 

 Figure 2.8.8. Curvature distribution at the downward displacement peaks in Beam 2. 
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Figure 2.8.9. Curvature distribution at the upward displacement peaks in Beam 2. 

2.8.3 CRACK WIDTHS 

In both beams, vertical cracks associated with flexural action were the first to form, followed by 

the inclined cracks attributable to shear and horizontal cracks attributable to dowel actions. The 

propagation of vertical and inclined cracks through the cycles is plotted in Figure 2.8.10(a) and 

(b), respectively. The points shown in the graph represent the measurements taken at the peak 

displacement at a first cycle of a given step (refer to Figure 2.6.1). For Beam 2, residual crack 

widths were also recorded at the zero beam displacement upon completion of each step (i.e., 

completion of each sequence of cycles to equal drift amplitude). These are also are plotted in 

Figure 2.8.10(a). Residual crack widths increase at an increasing rate beyond the yield 

6.5 14.5 23 32 38.5 47.5

-1.5

-1

-0.5

0

x 10
-4

location of LVDT  (in.)

(a)

C
u

rv
at

u
re

 (
in

-1
)

Cycles with 
peak

 < 
y

 

 
peak

 = -0.0007 (1)


peak

 = -0.0007 (2)


peak

 = -0.0007 (3)


peak

 = -0.0016 (1)


peak

 = -0.0016 (2)


peak

 = -0.0016 (3)


peak

 = -0.0028 (1)


peak

 = -0.0028 (2)


peak

 = -0.0028 (3)


peak

 = -0.0040 (1)


peak

 = -0.0040 (2)


peak

 = -0.0040 (3)

6.5 14.5 23 32 38.5 47.5

-1

-0.8

-0.6

-0.4

-0.2

0

x 10
-3

location of LVDT (in.)

(b)

C
u

rv
at

u
re

 (
in

-1
)

Cycles with 
peak

 > 
y

 

 


peak

 = -0.0087 (1)


peak

 = -0.0087 (2)


peak

 = -0.0087 (3)


peak

 = -0.0120 (1)


peak

 = -0.0120 (2)


peak

 = -0.0180 (1)


peak

 = -0.0180 (2)


peak

 = -0.0290 (1)







33 

 

displacement (which approximately corresponds to chord rotation of 0.008 and 0.006 for Beams 

1 and 2, respectively). Beyond yield displacement, the crack width accumulates during each 

beam displacement cycles at a given step, due to the beam elongating under inelastic 

deformations. This is can be observed in Figure 2.8.10(a) by noting that for a given post-yield 

chord rotation amplitude, the residual width of the crack exceeds the crack width measured at the 

peak displacement during the first cycle of the step. Accumulation of the crack widths is also 

visible in the strain history recorded with the horizontal H1 and H2 LVDTs attached to the side 

face of the beam (refer to Appendix A for instrument readings and Section 2.8.7 for more 

details). 

  

Figure 2.8.10. Crack propagation with drift (1 in. = 25.4 mm). 
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the top and bottom faces of the beams. Figure 2.8.11 plots the LVDT readings for peak 

displacement amplitudes during various displacement cycles for Beams 1 and 2. The LVDT 

deformations measured have been normalized to the respective gauge lengths. For LVDTs 

attached to the top face (TL series and TR series), data are presented for upward displacement 

peaks, while for LVDTs attached to the bottom face (BL series and BR series), data are presented 

for downward displacement peaks. For Beam 1, the data show an “elongation bulge” associated 

with buckling of the top longitudinal reinforcement, which becomes apparent during the 0.018 

rotation amplitude cycles, and is centered around 20 in. from the beam end (Figure 2.8.11[a]). 

Along the bottom face (Figure 2.8.11[b]), the data show a similar bulge associated with 

buckling of the bottom longitudinal reinforcement, which initiated during the cycles with 0.018 

peak beam rotation and became more noticeable for the 0.027 drift amplitude cycles, and is 

centered around 16 in. from the beam end. This is consistent with the observations during the test  

(see Figure 2.7.2 and Figure 2.7.3). Beam 2 LVDT data, plotted in Figure 2.8.11(c) and (d), also 

show the “elongation bulge” in both top and bottom faces. In both locations, the bulge was more 

pronounced during the second load cycle to 0.029 chord rotation amplitude and was centered 
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around 15 in. from the beam support for both top and bottom instruments. This agrees with the 

test observations shown in Figure 2.7.6 and Figure 2.7.7. 

Deformation histories of LVDT instruments which recorded the largest elongation associated 

with bar buckling (see Figure 2.8.11) are plotted individually in Figure 2.8.12. The 

measurements are plotted for the cycles with peak drift ratio of |θ| < 2.7 % and |θ| < 2.9% for 

Beam 1 and Beam 2, respectively. For Beam 1, longitudinal bar buckling is evident during the 

cycles with drift ratio amplitude θ = 1.8%, especially at the top face of the beam. During these 

cycles, as the beam moves towards θ = -1.8% after having reached peak tensile strain of 0.041 

and 0.043 (during 1
st
 and 2

nd
 cycle with θ = 1.8%, respectively), the tensile strain on the 

compressive side (top face) of the beam starts to increase, as shown in Figure 2.8.12[a]. Similar 

behavior can be observed at the bottom face of the beam based on LVDT BL3 (see Figure 

2.8.12[b]).  

 

 

Figure 2.8.11. Profiles of elongation measured between steel instrumentation rods normalized to 

gauge length: (a) Beam 1 top face; (b) Beam 1 bottom face; (c) Beam 2 top face; and (d) Beam  2 

bottom face. Note: Negative elongation corresponds to shortening. 
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Figure 2.8.12. LVDT strain measurements along the top and bottom faces of the beam vs. beam 

drift ratio: (a) instrument TL4 (Beam 1 top face); (b) instrument BL3 (Beam 1 bottom face); (c) 

instrument TR3 (Beam 2 top face); and (d) instrument BR3 (Beam 2 bottom face). 

For Beam 2, LVDT strain measurements indicate buckling during the second cycle with peak 

drift ratio of θ = 2.9% at both the top and the bottom side of the beam (see Figure 2.8.12[c] and 

[d]). However, increasingly positive strains as the beam moves upward are noted along the top 

face even for the cycles with amplitude |θ| < 1.9%, as indicted by a "bump" in the curve, 

occurring at approximately 1% instantaneous drift ratio. Note that the LVDT measurements in 

the locations indicate that for the cycles with drift ratio amplitude |θ| > 1.2%, only positive 

strains develop along the top and bottom faces of the beam, indicating that the cracks do not 

close during compressive loading. This is consistent with the observations made from strain 

gauge measurements (Figure 2.8.1). 

Buckling of longitudinal reinforcement was accompanied by vertical growth of the side face 

of the beams, as might be expected considering that buckling occurred in the vertical direction.  

Figure 2.8.13 plots variations of strain as inferred from strain gauges and from vertically oriented 

LVDTs spanning middle 38.5 in. of the beam side face. Strain gauges show strains approaching 

or exceeding the "nominal" yield strain of 0.0028 for Beam 1 (refer to earlier discussion on 

material properties).  Strains less than this nominal yield strain occurred for Beam 2. Average 

strains obtained from LVDT measurements generally exceeded the strain gauge readings, 

suggesting that the vertical dilation of the beam exceeded the amount that could be accounted for 

by stirrup strain alone. It is likely that stirrup hook opening at the top of the beams contributed to 
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vertical dilation of the specimens (Figure 2.7.4 and Figure 2.7.8), without having to yield the 

stirrup. 

 

 
Figure 2.8.13. Deformation history recorded in instruments along the side face of the beams: (a) 

Beam 1 stirrup strain gauges; (b) Beam 1 vertical LVDTs; (c) Beam 2 stirrup strain gauges; and 

(d) Beam 2 vertical LVDTs. 

2.8.5 FIXED-END ROTATION 

For the test specimens, beam longitudinal reinforcement was developed within the reaction block 

using a standard 90-degree hook that extended 57 in. into the reaction block (Figure 2.4.1). 

During the test, beam moment results in flexural tension force in either the top or bottom 

longitudinal reinforcement, which must be developed through bond within the reaction block. 

Consequently, the tension longitudinal reinforcement is subjected to tensile strains over the 

development length, which leads to reinforcement elongation and slip between the reinforcement 

and surrounding concrete. The slip, in turn, results in fixed-end rotation between the beam and 

the reaction block at their interface. Past tests have shown the fixed-end rotation contributes 

substantially to the total beam rotation.   

Fixed-end rotations were measured by two pairs of LVDTs placed at the beam-reaction block 

interface – two LVDTs were located at the top face of each beam and two were located at the 

bottom face. The instruments were positioned to span a very short length of the beam (2.5 in.) so 

as to minimize flexural and shear deformation components in the measurement. Figure 2.8.14(a) 

shows the relationship between the fixed-end rotation and the total beam drift ratio for Beam 2 

for the cycles prior to longitudinal bar buckling. As can be observed, fixed-end rotation 

comprises roughly 40% of the total beam tip deflection. A 50% increase in fixed-end rotation is 
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noted for the second cycle of 2.9% drift ratio, which is likely attributable to bond deterioration 

both within the anchorage and with the beam span along the length of the buckled reinforcement.  

Instrumentation problems for Beam 1 precluded measurement of the fixed-end rotation. 

Measured reinforcement slip in tension (Figure 2.8.14 [b]), however, was similar up to drift ratio 

0.7%. At drift ratio 1.8%, slip for Beam 1 was 1.9 times that for Beam 2. It is plausible that 

impending buckling for Beam 1 had reduced bond along the buckling length of the beam, 

increasing the fixed-end rotation for that beam in comparison with Beam 2.   

 

 
Figure 2.8.14. (a) Fixed-end rotation vs. drift ratio for Beam 2 and (b) interface crack width 

measured by TL1 instruments for beams 1 and 2 (1 in. = 25.4 mm). 

2.8.6 SHEAR DEFORMATION 

Shear deformations in reinforced concrete beams have been traditionally measured using a single 

pair of diagonal LVDTs arranged in a grid such as the one shown in Figure 2.8.15(a), consisting 

of series of multiple grid bays, shown in Figure 2.8.15(b). Note that this differs from the 

instrumentation arrangement in Beams 1 and 2. For clarity, total deformation of any given 

instrument in Figure 2.8.15 is labeled using the same name as the element itself. Under pure 

flexure, the bay deforms as shown in Figure 2.8.15(c). Because curvature φ across the bay length 

l is uniform, this type of bending causes no deformation in diagonal LVDTs (here labeled as D1 

and D2). Pure shear deformation (Figure 2.8.15[d]) causes equal and opposite elongation of the 

diagonal instruments, D1 and D2, while vertical dilation causes the diagonals to expand by equal 

amounts (Figure 2.8.15[e]). Thus, correcting the D1 and D2 measurements for the vertical 

dilation contribution, the shear deformation within a single grid bay, Δsb, has historically been 

computed with the following equation:  

2 1

2sin
sb

D D




   2.2 

where  is the angle of the diagonal instruments with respect to the horizontal (labeled in Figure 

2.8.15[b]).  
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Figure 2.8.15. Typical LVDT grid arrangement. 

The assumption in Equation 2.2 is that the curvature is uniform across the instrumentation 

bay, such that the measurements D1 and D2 are not affected by the flexural deformations in the 

beam. However, upon flexural yielding in reinforced concrete beams, significant curvature 

gradient may be present across length l spanning the plastic hinge zone. This means that portion 

of the deformations recorded with diagonal instruments D1 and D2 are due to flexure, and not 

shear. In this case, Equation 2.2 leads to overestimation of shear deformations.  

Hiraishi (1984) noted this problem (Figure 2.8.16) and offered a modification of Equation 2.2 

to correct the shear deformation computation from by using the measurements from the 

horizontal LVDTs T and B, positioned as shown in Figure 2.8.15. However, in the absence of top 

and bottom LVDT instruments spanning the grid bay, as is the case in the instrumentation layout 

used in Beams 1 and 2, it is not possible to make this correction.  

Massone and Wallace (2004) presents the analysis of the data from 4 different laboratory tests 

of reinforced concrete shear walls having the aspect ratio of 3, which is almost identical to the 

aspect ratio of Beams 1 and 2, and the axial load of 0.10Agf'c. Using the approach of Hiraishi 

(1984), Massone and Wallace (2004) estimates 16-31% error in shear deformations computed 

within the plastic hinge region by using Equation 2.2.  
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Figure 2.8.16. Deformation components contributing to elongation of diagonal LVDTs in the 

shear panel (after Hiraishi 1984). 

As noted before, the arrangement of LVDTs attached along the side face of Beams 1 and 2 

was different from the one shown in Figure 2.8.15. Four smaller grids of length l and height h 

were used to calculate the approximate beam shear deformations within the 43-in. instrumented 

beam length (Figure 2.5.3).  These were calculated using the following expression: 

 

2 2

[( 4 2) ( 6 8)]
2

shear

l h
S S S S

h


      2.3 

Here, Δshear is the vertical displacement due to shear within the instrumentation block on the side 

face of the beam, l and h are the dimensions shown in Figure 2.8.17, and S2, S4, S6, and S8 are 

the deformations of the corresponding diagonal LVDTs. Equation 2.3 takes into account the sign 

of the displacements recorded with the instruments (e.g. for a given positive shear deformation, 

instrument S4 shortens, which is recorded as a negative deformation, while S2 lengthens, which 

is recorded as a positive deformation). Assuming constant vertical beam dilation along the beam 

height for the displacement cycles prior to buckling, the portion of the deformation of diagonal S 

instruments due to vertical dilation cancels out in Equation 2.3. Upon buckling, many 

instruments became permanently displaced, thus their readings are disregarded after this point. 

 

 
Figure 2.8.17. Computing the shear deformation in Beams 1 and 2 with diagonal LVDTs attached 

to the side face of the specimens. 
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Figure 2.8.18. Instrumentation panel under idealized curvature distribution. 

Equation 2.3 is analogous to Equation 2.2 in the sense that it is written under the assumption 

of uniform curvature distribution along the span of any given diagonal LVDT in Figure 2.8.17. 

Using the instrumentation grid of Beams 1 and 2, this is illustrated in Figure 2.8.18. Here, the left 

two panels experience curvature φ2, while the right two panels experience curvature φ1. It is 

expected that the level of error in shear deformations calculated using Equation 2.3 would be 

similar to those calculated using Equation 2.2 in structures of similar aspect ratio, such as the 

shear walls studied by Massone and Wallace (2004).  

 

 
 

Figure 2.8.19. Shear deformations as observed during Beam 1 test. 

Shear damage and deformations in the two specimens were most visible within the region of 

largest damage, extending to approximately 40 in. from the supports (see Figure 2.8.19). Within 

this region, movement along inclined cracks was visible in later stages of the tests. Outside this 
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region, only narrow inclined cracks were observed, extending along approximately half the 

cantilever beam length. The concentration of shear deformations around the plastic hinge regions 

observed in the tests is typical of reinforced concrete beams responding inelasticaly. 

The relationship between the total resisting shear (including that due to self-weight) and the 

approximate shear deformation within the 43-in. gauge length is shown in Figure 2.8.20. The 

relationship is plotted only for the cycles prior to longitudinal reinforcement buckling. Although 

nominal shear strength Vn calculated in accordance with ACI 318 was more than twice the peak 

resisting shear for Beam 1, deterioration of shear stiffness is notable as the cycles progress. For 

example, shear displacement measured during the first cycle to rotation 0.018 nearly doubled 

during the second cycle to the same drift amplitude (Figure 2.8.20). Shear stiffness deterioration 

is also evident in progressively greater pinching in the moment-drift ratio curves in Figure 2.7.9, 

although pinching is also partially attributable to longitudinal bar buckling and slip. 

 
Figure 2.8.20. Estimated shear deformations in beams 1 and 2. 

For a given displacement amplitude, Beam 2 exhibited smaller shear deformations than Beam 

1 (Figure 2.8.20). For example, during the last cycle with rotation amplitude 0.018, shear 

deformation in Beam 2 was approximately half the shear deformation of Beam 1. Beam 2 was 

loaded to less than 30% of the calculated ACI 318 nominal shear strength, yet about 10% of the 

total beam displacement was attributable to shear deformations for the cycles preceding 

longitudinal bar buckling. 

Figure 2.8.21 shows the relationship between the approximate shear deformations in the test 

beams and the total beam chord rotation. It is evident that the amount of shear deformations 

increases in nonlinear fashion as the total beam chord rotation increases, implying that the shear 

deformations increase with the damage accumulation even in these flexure-dominant beams 

which have not yielded in shear for the displacement cycles shown. 
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Figure 2.8.21. Relationship between the shear deformations measured within the plastic hinge 

region and the total beam rotation. 

2.8.7 BEAM AXIAL LENGTHENING 

In a beam without axial load, reversed cyclic loading has been observed to result in beam 

elongation (e.g. Fenwick and Fong 1979, Qi and Pantazopoulou 1991). This elongation can be 

especially important in the lower stories of buildings with column restrained at the ground level, 

and in buildings with precast floors supported on short seats (Corney et al. 2013). Figure 2.8.22 

shows the measured elongation in the plastic hinge region for the two specimens. The curve 

plotted corresponds to the elongation along the centerline of the beam, computed by averaging 

the elongations measured along the top and bottom face of the beams. This calculation excluded 

the contribution of bar slip at the interface with the reaction block. The results indicate that in the 

early cycles, beam elongation is roughly equal to θ·h/4 (where θ is chord rotation expressed in 

radians). For the loading cycles with rotation amplitudes greater than 0.02 rad, axial elongation 

of the beam  is closer to θ·h/2.  

The deformation measurements in the LVDTs along the top and bottom face of the beams 

indicate that only tensile strains develop throughout the history (see Appendix A for instrument 

data). Apparently, cracks that opened under flexural tension never fully closed under flexural 

compression. This is also evident in the longitudinal bar strain histories plotted in Figure 2.8.1. 

For loading in the direction that would tend to result in flexural compression, the gauges indicate 

partial crack closure (due to compression) during the cycles which precede longitudinal bar 

buckling. Even less crack closure is apparent once longitudinal bar buckling commences. 
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Figure 2.8.22. Elongation of beams 1 and 2 prior to buckling. 

2.9 BUCKLING BEHAVIOR OF LONGITUDINAL BARS 

Studies on cyclic behavior of reinforcing bars deformed into the inelastic range (Monti and Nuti 

1992, Rodriguez et al. 1999) have demonstrated that the ratio of the unsupported bar length Lb to 

the bar diameter db is the primary factor that determines the buckling behavior of bars for a 

specific axial deformation history. The ratio Lb/db is typically considered equivalent to sh/db ratio 

in reinforced concrete specimens where the transverse reinforcement (spaced at sh) provides the 

lateral support of the longitudinal bars. It is of interest to compare the behavior of longitudinal 

bars in Beams 1 and 2 to what was observed in the latter study, which considered the effects of 

inelastic cyclic deformation of the steel bars (Rodriguez et al. 1999). 

As noted before, the deformation history of No. 11 bars in Beams 1 and 2 is characterized by 

increasing inelastic tensile strains with no compressive strains for drift ratios larger than 0.9% 

(Figure 2.8.1). Rodriguez et al. (1999) hypothesized that the onset of buckling, after unloading 

from the maximum tensile strain εm
+
 (Figure 2.9.1), under this type of strain history would 

depend on the strain range εp
*
 = ε0

+ 
- εp, where ε0

+
 is

 
the strain for which the bar experiences 

compressive stress after unloading from εm
+
 and εp is the strain at buckling initiation (shown in 

Figure 2.9.1). Rodriguez et al. (1999) defines the variables εp
*
, εm

+
, εm

-
, ε0

+
, and εp (all shown in 

Figure 2.9.1) based on the average bar strain calculated by dividing the total axial deformation 

by the length of the test coupon. Buckling was said to occur when the gauges located on opposite 

faces of test coupons indicate 20% difference in strain readings, as a result of the buckling-

induced curvature in the bar. 

Rodriguez et al. (1999) demonstrated the dependence of onset of bar buckling on parameter 

εp
*
 by showing a trend in the data obtained from bar tests using loading histories representative 

of those experienced by the longitudinal bars in beams and columns, as Figure 2.9.1 illustrates. 

Figure 2.9.1 also shows the values of εp
*
 estimated from the mean curve of Rodriguez et al. 
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(1999) for sh/db ratios of 7.8 and 4.25, corresponding to Beams 1 and 2, respectively. The values 

estimated are approximately 0.012 for Beam 1 and 0.06 for Beam 2, as marked in Figure 2.9.1. 

The available instrumentation in the beam tests did not permit determination of the strain at 

initiation of buckling, εp, in the same way as was done in Rodriguez et al. (1999). Instead, the 

strain range εp
*
,c = ε0

+ 
- εm

- 
was inferred from the average strains recorded by the LVDTs 

spanning the buckling region before significant bulging was observed. For this purpose, the 

strain ε0
+
 at zero stress after unloading from εm

+
 was taken as ε0

+
 = εm

+
 - εy, where εy = 0.002 

(Figure 2.9.1).  The strain εm
-
 was taken at the instant when the LVDTs recorded a local 

minimum tensile strain in the compression side of the beam during unloading (Figure 2.8.12). 

These points are marked with a solid circle in Figure 2.8.12 (a) and Figure 2.8.12 (c). Diamond 

markers in the same figure indicate peak tensile strain εm
+
 measured prior to reaching εm

-
.  

 

                     

Figure 2.9.1. Strain range εp as a function of sh /db (after Rodriguez et al. 1999). 

The value of εp
*
,c for top bars in Beam 1 reached 0.027 prior to buckling, compared with  εp

*
 

= 0.012 obtained from the Rodriguez et al. (1999) curves. For Beam 2 top bars, the calculated 

εp
*
,c was 0.011 compared to εp

*
 = 0.06 obtained from Rodriguez et al. (1999) curves. Despite the 

inherent differences in experiment configurations (bare steel coupons versus bars embedded in 

concrete) and strain measurement methods between Rodriguez et al. (1999) tests and Beams 1 

and 2, the discrepancies in the εp
*
 values can provide an insight into buckling behaviour of bars 

in the beams and help reinforce the observations made during beam tests. 

The buckling of top and bottom longitudinal bars in Beam 1 occurred during the cycles with 

the same drift ratio amplitude and prior to spalling of concrete cover. Though dowel cracks in 

Beam 1 appeared prior to buckling at both top and the bottom, the presence of concrete cover 

increases bar resistance to buckling when compared to a bare bar, which supports why εp
*
,c 

reached in Beam 1 was larger than Rodriguez et al. (1999) estimate. The striking difference in 
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measured vs. predicted εp
*
,c in Beam 2 bars and also the delayed buckling of the bottom bars may 

point to insufficient lateral support provided by the hoops. An interesting crack pattern noted 

along the top face of Beam 2, and shown in Figure 2.9.2, may be the evidence of this. A narrow 

crack appeared during the upward displacement of the first cycle to -0.019 rotation, coinciding 

with the location of the No. 11 bar which was not directly supported by a vertical crosstie, and 

was oriented parallel to the bar. The crack was progressively wider with the increasing upward 

displacements, until the bars buckled (shown in Figure 2.9.2), which may indicate that the 

outward excursion of the buckling No. 11 bars was the cause of this crack. It is possible that the 

buckling initiated in the bars not directly braced by a vertical crosstie (those that are next to the 

outermost top and bottom bars), which have the unsupported length exceeding the hoop spacing 

sh. The outward excursion of these bars likely caused the cap ties to disengage, forcing the 

neighbouring bars to also buckle. This may explain why the beams reported in Blakeley et al. 

(1975) with comparable design parameters to those of Beam 2, but with all longitudinal bars 

braced directly by a vertical crosstie, sustained larger deformations before bar buckling occurred.  

Buckling of the bottom bars in Beam 2 became apparent at drift ratio amplitudes 35% larger 

than those for which the top bars buckled, suggesting that the presence of cap ties may reduce the 

effectiveness of the hoops in lateral bracing of the bars. Cap ties used in the beams of the present 

study are likely to be most effective in closing a hoop where a slab is cast at the top of the beam. 

Where there is no slab, or where the beam is upturned with the slab at the bottom of the beam, 

the presence of cap ties creates a weakness at the top of the beam. As a result, the 90-degree 

hook as well as the seismic hook with only 6db extension in a horizontal crosstie may have led to 

premature opening of the hoop. The use of longer extensions in the seismic hooks of the stirrups, 

cross-ties, and cap ties may potentially enhance the resistance against longitudinal bar buckling. 

Whether the presence of the slab actually would have improved performance, however, was not 

part of the present study. Further research is needed to investigate effectiveness of this hoop 

arrangement and also alternative hoop configurations within the plastic hinge regions of 

reinforced concrete beams. 

 

 

 
 

Figure 2.9.2. Possible buckling of bar with no direct lateral restraint by a vertical crosstie. 
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2.10  PERFORMANCE EVALUATION 

Responses of Beams 1 and 2 are evaluated based on ASCE 41 (ASCE 2006) and FEMA 356 

(2000), which define several structural performance levels and the corresponding damage states. 

The state of least damage is at the Immediate Occupancy (IO) performance level where "only 

very limited structural damage has occurred" (FEMA 356). Minor cracking may be present, but 

no concrete crushing should occur in primary elements of concrete frames. The most severe 

damage state is at the Collapse Prevention (CP) performance level, where "the building is on the 

verge of partial or total collapse" while "significant components of the gravity load-resisting 

system must continue to carry their gravity load demands". 

 According to FEMA 356, the damage states for beams are established based on the maximum 

plastic rotation angle, defined as θp = θcap - θy. For reinforced concrete beams at CP performance 

level, θp = 0.025 (rad.). Beams 1 and 2 reached θp = 0.019 and 0.033, respectively, prior to losing 

significant amount of vertical load carrying capacity. Thus, only Beam 2 satisfies the CP 

performance level.  

The IO performance level for reinforced concrete beams is defined when θp < 0.010, which 

corresponds to beam rotation of 0.02 and 0.019 for Beams 1 and 2, respectively. At this level of 

deformation, neither beam exhibited concrete crushing. The residual cracks were only measured 

for Beam 2, and thus only this beam can be fully evaluated against the IO performance level 

criteria. The maximum residual crack width of Beam 2 when θp < 0.010 was 2 mm (0.08 in.), 

which can loosely be considered in excess of "minor hairline cracking", if hairline cracking limit 

is usually considered to be less than a tenth of a millimeter wide. Thus, despite the improved 

general performance of Beam 2, the current detailing of ACI 318 may need to be further 

investigated to ensure the performance is consistent with the criteria in ASCE 41. 

 

2.11  RECOMMENDED CODE CHANGES 

Beam 1 was designed and detailed in accordance with ACI 318-08. Specifically, the hoop 

spacing within the intended plastic hinge zone was 11 in. based on the requirement of Section 

21.5.3.2 that spacing not exceed the least of d/4, 8db of the smallest longitudinal bars, 24db of the 

hoop bars; and 12 in. The beam was able to resist inelastic cyclic deformations up to a chord 

rotation of 0.027, at which point buckling of longitudinal reinforcement caused major loss of 

lateral force-resisting capacity. This performance is deemed, in general, to be unsatisfactory for a 

beam of a special moment frame, because rotations exceeding this rotation capacity generally 

can be anticipated for shaking at the MCE level.  

By decreasing the hoop spacing to 6 in., as was done for Beam 2, longitudinal reinforcement 

buckling resulting in strength decay was delayed until equivalent beam rotation of 0.039. This 

performance would generally be considered acceptable for a beam of a special moment frame. 

Based on these observations, a Code Change Proposal to ACI 318-08 Section was made and 

implemented into ACI 318-11, limiting the bar hoop spacing to the smallest of d/4, 8db of the 

smallest longitudinal bars, 24db of the hoop bars; and 6 in. 
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2.12  CONCLUSIONS 

Based on the results presented in this chapter, the observations and conclusions are the 

following: 

 

1. Beam 1 flexural stiffness at yield point was 0.13EcIg while that of Beam 2 was 0.16EcIg. 

Rigid body displacements associated with slip of reinforcement from the anchorages 

constituted approximately 40% of the total beam displacement.  

2. Beams 1 and 2 developed peak moment strengths equal to 0.99Mpr and 1.10Mpr, 

respectively, where Mpr is probable moment strength calculated in accordance with ACI 

318.  

3. Maximum nominal shear stresses for both beams were on the order of 1.7√    psi using 

measured concrete compressive strength. Even though shear forces were less than provided 

shear strengths, notable shear deformations occurred in the plastic hinge region.  

4. In both beams, initiation and progress of damage were dominated by longitudinal 

reinforcement buckling. For Beam 1, buckling initiated during a cycle with a peak rotation 

0.018 and became more extensive during the cycles with 0.027 rotation amplitude. For 

Beam 2 with reduced hoop spacing, buckling was delayed until the first cycle with rotation 

amplitude of 0.029 and became more extensive during the cycle with 0.039 peak rotation.  

5. Longitudinal bar buckling in both beams initiated at the top of the beam where local 

concrete strength would be expected to be lowest. It seems more likely, however, that the 

tendency for earlier buckling at the top of the beam was influenced mainly by the presence 

of the cap ties that closed the hoops at the top of the beam. The use of longer extensions in 

the seismic hooks of the stirrups, crossties, and cap ties may enhance the resistance against 

cap ties disengaging and longitudinal bar buckling. Further research is needed to explore 

the effect of different hoop configurations within the plastic hinge regions on cyclic 

response of large beams. 

6. Existing models for estimating the onset of longitudinal bar buckling (Rodriguez et al. 

1999) have shown to not be good indicators of when the buckling occurs in a beam where 

the bars are embedded in concrete, and cracking, shear deformations, and curvature 

gradient are present. These models should thus be used only in qualitative comparison of 

different design alternatives (for example, variation of transverse hoop spacing) and not as 

an indicator when the buckling might occur in a reinforced concrete member. 

7. Beam 1 with hoop spacing satisfying the requirements of ACI 318-08 did not meet the 

performance expectations at the deformation levels expected during the design earthquake 

level of shaking, implicit in that code or explicit in ASCE 41. By reducing the hoop 

spacing to no greater than 6 in. and 6db of the longitudinal bars, the performance met the 

expectations. Maximum permitted hoop spacing within the intended plastic hinge zone was 

modified in the 2011 ACI 318 edition to the least of d/4, 6db of the smallest longitudinal 

bars, and 6 in. 

8. Significant elongation was present in both Beams 1 and Beam 2 as a result of reverse 

inelastic displacement loading. This axial lengthening was proportional to θ·h/2 (θ = beam 

chord rotation, h = beam depth). This is an important aspect of inelastic behavior of 
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reinforced concrete members and should be taken into account in design and analysis of 

moment frames.  

9. In a large reinforced concrete beam similar to those tested in this study, with equal areas of 

top and bottom longitudinal reinforcement, flexural tension cracks formed during loading 

in one direction tend to remain open for loading in the reversed direction. As a result, 

flexural compression is resisted mainly by the longitudinal reinforcement near the flexural 

compression face and not by the concrete. Thus, requirements for hoop reinforcement need 

not be based on considerations of concrete confinement, but instead should be based on 

considerations of beam shear and longitudinal reinforcement buckling restraint.  
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CHAPTER 3 
3 3 

NUMERICAL MODELING OF LARGE REINFORCED 

CONCRETE BEAMS IN SPECIAL MOMENT RESISTING 

FRAMES 
 

 

This chapter serves as a foundation to develop and justify a reinforced concrete beam modelling 

approach implemented in the nonlinear static and dynamic analyses of special moment resisting 

frames (SMRF) presented in Chapters 4-6. The following sections explore different options for 

numerical representation of reinforced concrete beam force-deformation response components 

which are used as a basis for selecting the modeling strategies for frame analysis. Beam response 

components addressed include: flexural behavior including axial beam lengthening, fixed-end 

rotations due to longitudinal bar strain penetration into the anchorage and the associated bar slip, 

and shear deformations. Beam elongation is emphasized in this chapter as a response component 

that can impact the level of column forces computed in the nonlinear analysis of reinforced 

concrete moment frame structures.  

Although it is reasonable to expect that the degradation of strength would occur in the 

reinforced concrete members during strong ground shaking (due to longitudinal bar buckling, 

bond failure, shear failures, etc.), modeling strategies presented in this chapter only consider the 

beams which respond in ductile manner and without strength degradation. Because the purpose 

of Chapter 3 is to establish a beam model adequate for nonlinear analyses of SMRFs aimed at 

estimating peak design forces in frames, not accounting for strength degradation leads to 

conservative computations of maximum forces and thus the aforementioned assumptions fit the 

scope of this dissertation. For the same reason, beam shear force-deformation response is only 

addressed for completeness and is not used as a parameter in selecting the numerical model for 

large SMRF beams. 

 

3.1 SIGNIFICANCE OF ELONGATION IN REINFORCED CONCRETE BEAMS 

The phenomenon of axial lengthening in reinforced concrete beams under lateral cyclic 

deformations, also referred to as beam growth, has been known for over three decades. It was 

noted in the laboratory tests around the same time by several research groups - Takiguchi and 

Ichinose (1977) and Fenwick and Irvine (1977) both observed elongation of beam specimens that 

was mostly concentrated in the plastic hinge region and reaching up to 1% of the member length. 

Since then, beam growth was noted in many experiments including both isolated beam tests and 

also frame subassemblies where elongating beam imposed outward column deflections in the 

plane of the frame (Fenwick and Fong 1979, Restrepo et al. 1990, Qi and Pantazopoulou, 1991, 

Fenwick and Megget 1993, Fenwick et al. 1996, Kim et al. 2004, Peng et al. 2006). It was 

observed that in the frames under sidesway displacements, this kinematic interaction lead to the 

largest deformation demand on the base exterior column sustaining the largest compression from 

the overturning moment (Figure 3.1.1).  
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Figure 3.1.1. Effect of beam elongation on frame kinematics (after Kim et al. 2004). 

Axial elongation can conceptually be divided into two components. The first occurs when the 

sidesway frame motion creates a gap opening at the interface between the beam and the column. 

The gap-opening is inherent to precast concrete frame construction (El-Sheikh et al. 1997, 

MacRae and Gunasekaran 2006), timber and steel members with rocking beam joints, but also 

reinforced concrete members due to bar slip at the support. Because the center of beam section 

rotation (or neutral axis) does not coincide with the section mid-height, the overall distance 

between the beam ends along the member centerline increases, causing the outward push on the 

columns supporting the beam, shown in Figure 3.1.2. 

 

 
Figure 3.1.2. Gap opening in reinforced concrete/gap systems, as opposed to steel systems (after 

MacRae and Gunasekaran 2006). 

The second component of axial elongation occurs within the member itself, such as the 

reinforced concrete beam undergoing inelastic flexural deformations, as a result of accumulating 

residual tensile strains in reinforcing steel. Due to shallow compression zone on a beam section, 

the compressive strains reached are much smaller compared to the tensile reinforcement strains 

developed upon yielding. Loading reversal is not sufficient to bring the steel tensile strains to 

sway (conventional analysis) beam growth combined
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zero, resulting in a gradual buildup of elongation as the beam undergoes deformation cycles (see 

Figure 2.8.22, Chapter 2). This is evident in the increasingly positive strain histories with almost 

no excursions into the negative range recorded in the longitudinal steel of Beam 1 and Beam 2 

(refer to Chapter 2, Section 2.8.1 and also Appendix A for individual strain gauge histories). 

3.2 OVERVIEW OF BEAM DEFORMATION COMPONENT MODELS 

The following sections present the major components of the inelastic response of reinforced 

concrete beam under reverse cyclic loading. In order to develop the models to properly simulate 

the beam cyclic behavior, response components and the adopted models are described here with 

the basic assumptions, variables, and computations of key parameters. These are the flexural 

deformations within the beam as a result of beam curvature, reinforcement slip, fixed-end 

rotations, and shear deformations. The discussions exclude torsion effects because the nonlinear 

dynamic analyses in this dissertation are limited to planar 2D frame models. 

3.2.1 REINFORCEMENT SLIP BEHAVIOR  

A reinforced concrete beam undergoing flexural deformations while anchored into a concrete 

support (such as a beam-column joint, reinforced concrete wall, or a reaction block) develops 

resisting moments at the supports that result in flexural tension force in either the top or bottom 

longitudinal reinforcement.  The reinforcement which is anchored into the beam support must be 

developed through bond within the reaction block that occurs between the steel and the 

surrounding concrete. Consequently, the tension longitudinal reinforcement is subjected to 

tensile strains over the development length, which leads to reinforcement elongation and slip 

between the reinforcement and surrounding concrete. The slip, in turn, results in fixed-end 

rotation between the beam and the support at their interface. 

Different empirical models relating the stress of an anchored bar to bond strength and 

consequent slip are available in literature (Moehle 2014). Here, we adopt a relationship by Sezen 

and Setzler (2008) because of its simplicity and relatively good agreement with the test data 

presented in Chapter 2, as will be shown in the subsequent sections. Figure 3.2.1 shows the 

diagram of the reinforcement slip model proposed by Sezen and Setzler (2008). The free body 

diagram on the very left shows a longitudinal bar extruding from the anchorage, the stress fs 

developed in the bar of cross sectional area As, and the bond stress ub occurring at the interface of 

the embedded portion of the bar and the surrounding anchorage concrete. The middle of the three 

diagrams on the right shows the assumed bar stress distribution within the anchorage.  

The bond stress distribution function shown to the left is adopted from Lehman and Moehle 

(2000) and is stepped in such way that the bond stress equals to ub = 12     (psi) along the 

length ld where bar experiences stresses below the steel yield strength fy. Along the portion of the 

bar denoted ld' where steel stresses exceed fy, bond stresses are assumed to reduce due to bond 

deterioration and are set to ub' = 6     (psi) according to the model. Note that the total length of 

the bar experiencing nonzero stress l = ld + ld' does not equal to the total embedment length of the 

bar. If the bar development length complies with the minimum code requirements of ACI 318, 

the ld + ld' will typically be less than the embedment length with the assumed bond stress values 

in Sezen and Setzler 2008. Steel strain is assumed to vary linearly with the stress, upon the 

yielding is reached, as can be seen in the strain diagram on the very right.  
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Figure 3.2.1. Reinforcement slip model (after Sezen and Setzler 2008). 

Based on a known value of bar stress at the interface fs(x=0), lengths ld and ld' can be 

computed from the equilibrium of forces acting on the bar of diameter db within the embedment 

and shown on a free body diagram in Figure 3.2.2. This leads to the following expressions: 
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Figure 3.2.2. Free body diagram of a reinforcing bar segment of length dx with bond stresses ub 

acting across the bar surface. 

 
Figure 3.2.3. Bar stress vs. slip relationship based on bond stress distribution adopted from 

Lehman and Moehle (2000) including the simplified bilinear curves. 

Figure 3.2.3 plots the relationship between the bar stress at the interface and the amount of 

slip from anchorage computed for bars with several different diameters and assuming the bond 

stress distribution proposed by Lehman and Moehle (2000). The bars were arbitrarily selected to 

be No. 8, No. 10 and No. 11 size in order to observe the relationship trend. The steel yield stress 

and concrete compressive strength are selected to approximately correspond to the average 

values obtained from Beam 2 material tests, presented in Chapter 2. That is, fy = 73 ksi and f'c = 

6.13 ksi. As can be seen, bars of larger diameter exhibit larger slip for a given bar stress, while 

the stress-slip relation is not a linear function. Figure 3.2.3 also plots a bilinear approximation of 

the stress-slip curve that was selected to have an "elastic" initial stiffness equal to the secant 

stiffness of the corresponding nonlinear curve taken at the yield stress fy = 73 ksi, and a post-

yield hardening ratio of βslip = 0.012. The significance of the post-yield hardening ratio will be 

discussed in the consequent sections describing the rotational spring for modeling fixed-end 

deformations. The curves in Figure 3.2.3 generally show good agreement for the range of steel 

stress lower than the ultimate strength of steel (fu).  
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3.2.2 FIXED-END ROTATIONS FROM BAR SLIP 

Knowing the amount of slip S, fixed-end rotations θs are calculated based on the diagram shown 

in Figure 3.2.4, where c is compression zone depth and d is the distance between the tensile bar 

and the outmost compression fiber on the opposite side of the beam section: 

 

s

S

d c
 


 3.5 

 

In traditionally used lumped plasticity beam models that do not employ sections with uniaxial 

material fiber discretization, flexural deformations concentrated at the beam support due to 

reinforcement slip from the support (fixed-end deformations) are typically accounted for by 

adjusting the stiffness of the moment-rotation hysteretic curve if a rotational spring is used, by 

increasing the elastic flexibility of the beam itself, or by appropriately calibrating the length of 

the plastic hinge to match the response observed in the physical specimens, such as a beam or a 

column (e.g. ASCE 41 2006, Berry et al. 2006). Distributed plasticity elements with sections that 

utilize fiber discretization with uniaxial material properties do not account for the contribution of 

the slip and as a result can lead to an element having less flexibility than exists in a physical 

element. Therefore, when using fiber-section based elements with distributed plasticity, such as 

those presented in this chapter, the fixed-end flexibility due to bar slip needs to be explicitly 

modeled. 

  

 
Figure 3.2.4. Calculation of fixed-end rotation after Sezen and Setzler (2008). 
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The most common way to account for fixed-end rotations is to add a rotational spring between 

the beam-column element and the support (acting in series with the beam-column element), 

which would represent the relationship between the beam moment and the fixed-end rotation. 

The simplest option is the use of linear elastic spring, calibrated to add a desired level of 

flexibility to the beam-column. Such spring, however, cannot be adjusted to simulate the 

changing flexibility resulting from the deterioration of the bond after the anchoring steel bars 

exceed the yield stress.  

Another option is using a rotational spring with nonlinear hysteretic rule calibrated to produce 

the moment-rotation relationship corresponding to the changing bar stress-slip relationship. The 

simplest way to accomplish this is using a bilinear rotational spring corresponding to the 

anchored bar stress vs. slip relation idealized in Figure 3.2.3, with the hysteresis parameters 

(such as elastic stiffness and post-yield hardening slope) computed using the relationship 

between the bar slip and the fixed end rotation established in Equation 3.5.  

The spring elastic branch would correspond to the rotation caused by the bar slip resulting 

from the bond strength ub. When the yielding moment is reached in the beam, the spring has a 

loading stiffness with the post-yield hardening ratio. Thus, the spring has to be calibrated for the 

appropriate yielding moment in the beam, My,beam. The disadvantage of using the bilinear spring 

in conjunction with the fiber section elements is that in case the yield moment capacity of the 

beam-column member increases as the result of an increased axial force during the frame 

analysis, the "yielding" in the spring at a value My,spring that was calibrated at a lower axial load 

and is hence lower will be triggered sooner. This would cause the concentration of excessive 

plastic rotations within the spring itself, leading to overestimation of the beam flexibility with the 

underestimation of the computed beam forces as a consequence. A crude way to circumvent this 

issue is to set the My,spring  to a slightly higher value than the My,beam projected after some 

expected level of increase in the axial load in the beam-column element. This approach would 

lead in underestimation of the post-yield fixed-end rotations occurring in the resisting moment 

range My,beam and My,spring. 

A more elaborate way to simulate fixed-end rotations that is also compatible with the use of 

beam-column elements with fiber sections is using the nonlinear spring that also utilizes the 

uniaxial material fiber discretization. Such spring has the capability to adjust the flexural 

response based on the changing axial load. Fiber-section spring used in this chapter will be 

referred to as the "bar slip" element henceforth and is based on the concept proposed in Zhao and 

Shritharan (2007) and a modification presented in Ghannoum (2007). Bar slip element is 

represented by an element of zero length with a fiber section discretization identical to the 

discretization of the sections within the beam elements. In place of steel fibers, this bar slip 

element uses a material with the hysteretic behavior characterizing the bar stress vs. amount of 

slip relationship.  

For the hysteretic rule of fibers designated to represent the bar stress vs. slip behavior, Zhao 

and Shritharan (2007) proposed the use of a specific BondSlip hysteretic material (OpenSees 

2014) in conjunction with concrete fibers ( 
Figure 3.2.5). The BondSlip hysteretic behavior is derived from the empirical data obtained from 

the bar pull-out tests surveyed in Zhao and Shritharan (2007). Note that the backbone curve 

shown in the left plot of  
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Figure 3.2.5 has very similar characteristics with the bar stress vs. slip curves shown in Figure 

3.2.3 with a linear elastic loading branch up to a yield point and a gradually softening post-

yielding curve. The concrete fibers are modeled as perfectly plastic upon reaching the peak stress 

in order to accommodate large strains that develop in the zero-length element. The disadvantage 

of Zhao and Shritharan (2007) model is that it was calibrated for bridge columns and hence it 

produces moment-rotation relationship that may not be representative of what occurs in the 

interface section of reinforced concrete beam, which is the focus of this chapter. Moreover, as 

noted in Ghannoum (2007), this model lacks the ability to adjust the center of fixed-end rotation 

based on the changing neutral axis depth which occurs in columns of moment frames under 

varying axial loads. 

 
 

Figure 3.2.5. Bondslip hysteretic model proposed by Zhao and Shritharan (2007). 

Ghannoum (2007) introduced a modification of fiber-section spring that enforces the fixed-

end rotations arising from bar-slip to be centered at the flexural neutral axis of the bar slip 

element section, such that the amount of slip S computed within the bar stress-slip material fibers 

produces the fixed-end rotation equal to θs in Equation 3.5. This is accomplished by enforcing 

the strain compatibility between the zero-length fiber section representing flexural spring and the 

neighboring section of the beam-column element by setting the compression zone depth c in two 

sections identical.  

In order for the neutral axis to remain the same in the bar slip element and the end section of 

the frame element, the strain profile shown in  

Figure 3.2.6 is required. Such strain profile is achievable by using the identical fiber 

discretization and steel and concrete materials in the bar slip and the frame element sections and 

scaling all of the material strains in the bar slip element by the same factor ry. This way, for a 

given set of forces V, N, and M (see  

Figure 3.2.6) acting on the bar slip element and the distributed plasticity frame element, each 

of the fibers in the bar slip section has the identical stress as the fiber with the same location in 

the adjacent frame element, while the deformations are proportionally larger in the bar slip 

section fibers. Note that this holds true only when the distributed plasticity elements with force 

based formulation are used.  

The bond-slip material is represented by the steel material object that has been adjusted such 

that the “yield” strain of this modified material represents the amount of bar slip Sy from the 
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anchorage (in units of length) reached when the bar slipping is stressed to fy. The basis of this 

concept is no different from the one proposed in Zhao and Shritharan (2007). The elastic 

stiffness of this material is Eslip = fy/Sy. The stress-strain relationship for concrete fibers in the bar 

slip section are then modified by increasing the material flexibility by a factor ry = Es /Eslip = 

Sy/εy. Thus, for any given strain in the concrete fiber in the frame element, the concrete fiber with 

the identical [y, z] coordinates in the bar slip section will have the strain εc' = (Sy/εy)εc (for 

referenced coordinate system, see Figure 3.4.1 and Figure 3.5.1). For example, the strain at peak 

compressive stress in a modified concrete fiber within the bar slip element would be ε0' = 

(Sy/εy)ε0, where ε0 is the strain at peak stress in concrete material assigned to fibers within the 

beam column element. 

 

 

 
 

Figure 3.2.6. Bar slip section equilibrium, strain profiles and materials (after Ghannoum 2007). 

Similarly, at a given level of loading strains in the steel fiber of a bar slip element will be 

larger than the strains in the corresponding fiber representing the steel bar in the beam column 

element by the factor ry = Sy/εy. This way, the bond-slip model represented by material models 

which exhibit strain hardening such as bilinear, or Giufre Menegotto Pinto (Filippou et al. 1983) 

model will retain the post-yielding strain hardening ratio of the steel stress-strain curve used for 

the steel fibers of beam-column element. Section 3.2.1 discussed the bilinear idealization of the 
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bar stress – slip curves derived based on Lehman and Moehle (2000) bond stress distribution 

model, where it was demonstrated that the hardening stiffness ratio of βslip = 0.012 proved to 

have reasonable agreement with the “exact” bar stress-slip relationship computed. The steel 

material itself is typically calibrated to have a post-yield strain hardening ratio of βsteel = 0.01-

0.02, making the bar slip modeling strategy proposed by Ghannoum (2007) well suited for use 

where load bearing capacity loss of concrete elements is not of interest. The model implicitly 

simulates the degrading concrete bond strength within the anchorage compatible with Lehman 

and Moehle (2000) model. 

The method presented in Ghannoum (2007) is attractive in modeling reinforced concrete 

members with varying axial loads because no calibration of spring stiffness is required once the 

stress-strain relationship of bond-slip material is established. That is, the center of rotation within 

the flexural spring adapts to the current state of stress (or strain profile) within the fiber section. 

The consequence of this "automatization" is that the axial strain at the geometric centroid of the 

zero-length fiber section is equal to the width of the gap opening at the interface of beam-column 

support, shown in Figure 3.1.2(b). Thus, the method presented in Ghannoum (2007) makes an 

ideal candidate in simulating beam elongation that arises due to interface gap opening in 

reinforced concrete frame nonlinear analysis.  

 

3.2.3 SHEAR DEFORMATIONS 

Experimental findings presented in Chapter 2 indicate that shear deformations can have a notable 

contribution to total beam deformations in the beam displacement cycles after flexural yielding. 

As the beam is loaded cyclically, the shear deformations increase even though the shear force 

remains practically constant (see Figure 2.8.20, Chapter 2). This is supported by the evidence 

presented by others (e.g. Fenwick and Fong 1979, Beyer et al. 2011) indicating that a flexure-

dominant reinforced concrete member can exhibit significant shear deformation upon flexural 

yielding, despite having a large margin between the shear strength capacity and the demand. 

These shear deformations tend to concentrate in the plastic hinge area, where damage is induced 

by flexural yielding, as shown in a sketch in Figure 3.2.7 and also in Figure 2.8.19 from Beam 1 

experiment (Chapter 2). 

  

 
Figure 3.2.7. Concentration of shear deformation in a beam plastic hinge region occurring upon 

flexural yielding and the resulting damage concentration in plastic hinge (after Fenwick and 

Fong, 1979). 

flexure

shear
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A general backbone curve relating the shear forces V and deformations γ (in radians) is shown 

in Figure 3.2.8.  The elastic relationship between the shear forces and deformations based on the 

elastic shear modulus of concrete, G, and a either a gross area of the concrete section Ag or some 

percentage of the gross area (A0 = 0.8Ag after Priestley et al. 1994, Sezen and Moehle 2004, A0 = 

5/6Ag after Ghannoum 2007) is: 

 

( )0V GA   3.6 

  

where: 

2(1 )

cE
G





, 

υ = Poisson’s ratio of concrete, and 

Ec = Young’s modulus of concrete. 

 

 
Figure 3.2.8. Backbone curve for shear force-deformation relationship of a beam model proposed 

by Mergos and Kappos (2012). 

Prior to formation of diagonal cracks in the beam, the shear deformations can be assumed 

constant along the beam length, such that: 
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Here, Lb is the length of the beam and Δv signifies the beam tip displacement resulting from the 

shear deformations. The limiting shear level for this linear elastic relationship is the cracking 

shear Vcr. Using the tension strength of concrete as the limiting principal stress at the onset of 

diagonal cracking in a reinforced concrete member with no axial load, Sezen and Moehle (2004) 

suggest using 6 '

c
2 f (psi) for a limiting shear stress at cracking and a cross-sectional area of A0 = 

0.8Ag. such that: 
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After the cracks form, the shear stiffness of the beam reduces. Based on the truss analogy 

presented in Park and Paulay (1975), the post-cracking shear stiffness, denoted in Figure 3.2.8 as 

GA1, is computed as: 

 
4 2

1 4

( ') sin cot

sin

s w w t t

t w

E b d dV
GA

  

  


 


 3.9 

 

where:  

Es = Young's modulus of reinforcing steel,  

bw = beam width,  

d-d' = distance between the centerline of the top and bottom longitudinal reinforcement,  

w = volumetric ratio of transverse reinforcement,  

η = modular ratio (Es / Ec), and  

θt = angle of the compressive struts in the beam truss model (usually assumed as 45
°
).  

 

The shear stiffness established in Equation 3.9 reduces upon flexural yielding, which in 

Figure 3.2.8 is denoted with Vy and γy. This is evident in the increasing shear deformations 

despite the almost constant shear force applied visible in the shear force-deformation relationship 

plotted in Figure 2.8.20 in Chapter 2 for Beams 1 and 2. Note that Vy and γy in Figure 3.2.8 

signify the resisting shear and the corresponding shear deformation that occur at the instance 

when the beam experiences flexural yielding, and not the shear corresponding to the yielding of 

the transverse reinforcement.  

Different studies proposed various approaches to establishing the force-deformation 

relationships for post-cracking shear stiffness beyond the point of flexural yielding (e.g. Ozcebe 

and Saatcioglu 1989, Petrangeli et al. 1999, Sezen and Moehle 2004, Marini and Spacone 2006). 

Mergos and Kappos (2012) adopted a multi-linear shear force-deformation relationship 

compatible with the phenomenological beam-column model that simulates the spread of flexural 

and shear inelasticity by adjusting the plastic hinge lengths with appropriate factors that depend 

on the moment diagram distribution. The sketch of the backbone curve used to establish the 

proposed model is shown in Figure 3.2.8. Mergos and Kappos (2012) propose a modification of 

the GA1 slope from the point of flexural yielding occurring at point (γy, Vy) in Figure 3.2.8 until 

the loading reaches the point Vuo based on the flexural displacement ductility demand in a beam. 

That is, the reduced stiffness GAeff (corresponding to the branch connecting [γy, Vy] and [γst, Vuo] 

in Figure 3.2.8) reduces with increased beam chord rotation. Finally, as the beam reaches the 

point (γst, Vuo) defined at the instance that the beam reaches the shear force causing the transverse 

steel yielding, the shear resisting mechanism is assumed perfectly plastic.  

Although the numerical beam modeling strategies explored in this chapter differ from those 

presented in Mergos and Kappos (2012), the backbone curve shown in Figure 3.2.8 is used as a 

concept for exploration in the subsequent sections due to its simplicity.  

 

3.3 OVERVIEW OF BEAM MODEL CALIBRATION AND LOADING HISTORY 

The basis for numerical modeling strategies explored in this chapter is the response of Beam 2 

specimen discussed in Chapter 2. Hence, the geometry, reinforcement configuration, material 

properties, and loading history are selected to match those of the specimen itself (see Chapter 2). 
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All computations are performed on OpenSees software framework (McKenna et al. 2007) using 

the readily-available element and material objects. The focus on this portion of the study is to 

adequately estimate the beam response for all cycles for which no strength deterioration occurs. 

This serves the ultimate goal of computing the peak element forces in nonlinear analyses of 

frames (Chapters 4-6), and thus, the beam response upon initialization of strength deterioration 

such as that observed upon the longitudinal bar buckling in Beam 2 is not a concern for the 

present study. 

 
 

Figure 3.3.1. Deformation components of Beam 2 used in the model calibration. 

The displacement history logged during the cyclic loading of Beam 2 is used to calibrate the 

numerical models of the test specimen in the sections to follow. In addition, where flexural and 

shear response components are represented by separate elements (i.e. flexural and axial springs 

used for fixed-end and shear deformation representation), loading history was adjusted to only 

include the response components that are being calibrated. For example, if only distributed 

plasticity elements are calibrated with neither shear deformation nor the fixed-end deformation 

component modeled, the loading history of Beam 2 is adjusted to exclude the shear and fixed-

end deformations measured during the laboratory test.  

Figure 3.3.1 plots the displacement histories used in subsequent sections. Alongside the Beam 

2 displacement history, Figure 3.3.1 shows the displacement history without the shear and the 

shear and fixed-end deformation contribution. These loading protocols were obtained by 

subtracting the measured shear deformations (Section 2.8.6 in Chapter 2), and both the shear and 

the fixed-end rotation (attributable to bar slip and presented in Section 2.8.5 of Chapter 2) 

contributions, respectively.  
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3.4 FIBER SECTION DISCRETIZATION AND CALIBRATION OF UNIAXIAL 

MATERIALS  

This section describes the numerical representation of Beam 2 cross section used to develop the 

appropriate numerical models in Chapter 3 including the distributed plasticity models, the fixed-

end rotation springs, and the moment-curvature analysis used to calibrate the lumped plasticity 

model. The numerical model of Beam 2 section is shown in Figure 3.4.1. It is discretized into 32 

layers stacked along the y-axis, i.e. perpendicular to the principal axis of bending (the local z-

axis, shown in Figure 3.4.1) representing the concrete material. The longitudinal steel is 

represented by the individual fibers with the locations coinciding with the location of the 

reinforcement bars. No. 4 skin reinforcement present in the Beam 2 test specimen is not included 

in the model, because it was not fully developed into the anchorage and hence unable to develop 

full strength of the bar. Constitutive properties of materials represent those obtained from the 

laboratory material tests, and are described next. 

 
Figure 3.4.1. Fiber section discretization. 

3.4.1 STEEL 

Two different material models were considered for representing the steel material: 

ReinforcingSteel (Kunath et al. 2009) based on Chang and Mander (1994) hysteretic curve and 

Steel02 based on Giufre-Menegotto-Pinto (Filippou et al. 1983) curve. ReinforcingSteel was 

selected because of its capability of simulating the yielding plateau and subsequent strain 

hardening which leads to a better agreement with the experimentally recorded steel hysteretic 

behavior. Steel02 is less computationally complex compared to the ReinforcingSteel and thus has 

a greater appealing for use in nonlinear dynamic analyses of larger structural models where 

numerical stability and computation time may be a concern. 

Table 3.1 lists the properties used for the two steel models in OpenSees. The properties were 

selected in order to match the cyclic stress-strain curve obtained experimentally for the coupon 

made from the No. 11 longitudinal bar from the same batch as those used in Beam 2. The bar 

strain history was selected to approximately mimic the strain history experienced by No. 11 bars 

in Beam 2, that is, the tensile strains were increasingly larger and no compressive strains were 

applied onto the bar. This curve, plotted in grey in Figure 3.4.2(a) and Figure 3.4.2(b), is 

superimposed with the corresponding stress-strain relationship computed with ReinforcingSteel 

and Steel02, respectively, for the same loading history. As can be seen, the ReinforcingSteel 

follows a post-yield changing stiffness with great accuracy, while Steel02 displays constant 

strain hardening. Therefore, Steel02 was calibrated in such way to result in the monotonic stress-

strain curve that reaches the ultimate stress fsu = 105 ksi at the strain εsu = 0.087. With the 

y

z

concrete layers

steel fibers
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presence of isotropic hardening, however, the actual stresses computed during cyclic strain 

history will be slightly higher than this. 

 
Table 3.1. Input parameters for steel materials in OpenSees.  

Uniaxial material 

input parameter Description ReinforcingSteel Steel02 

fy Yield stress (ksi) 73 ksi 73 ksi 

Es Young's modulus (ksi) 31000 31000 

fu Ultimate stress (ksi) 105 - 

βsteel Strain hardening ratio - 0.012 

Esh Tangent stiffness at initial strain hardening 1100 - 

εsh Strain at initiation of strain hardening 0.006 - 

εsu Strain at ultimate stress 0.18 - 

Ro, cR1, 

 cR2 

Parameters for controlling transition from 

elastic to plastic branches 
- 

16, 0.925, 

0.15 

a1, a2, 

 a3, a4 

Parameters for controlling isotropic 

hardening 
- 

0.01, 1, 

0.01, 1 

 

 
Figure 3.4.2. Comparison of hysteretic stress-strain relationship for steel models: (a) 

ReinforcingSteel and (b) Steel02. 

3.4.2 CONCRETE 

Concrete03 material based on Kent-Park model (Figure 3.4.3) is selected to represent concrete 

material layers indicated in Figure 3.4.1. This model features degradation in unloading and 

reloading stiffness and tensile strength with nonlinear tension softening. The stress-strain 

relationship defined for the concrete material fibers is based on the unconfined concrete 

properties. Peak concrete stress f’c and the corresponding strain ε0 were selected to fit the 

monotonic stress-strain curve obtained from the compressive cylinder tests. In general, small 

variations in compressive concrete strength in tension-controlled beam-column sections exhibit 

little impact on the section flexural response, because the concrete does not reach the limiting 

strain when the tension steel yields during flexural deformations. Because Beam 2 contained 

mostly concrete from the 2
nd

 batch (Section 2.4.2, Chapter 2), the curves obtained from Cylinder 
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1 test from Batch 2 was selected to define the stress-strain relationship for the numerical model. 

Thus, f’c = 5.87 ksi and ε0 = 0.0029. In lieu of Cylinder 1 properties, average compressive 

cylinder strength with the corresponding strain could have been used leading to comparable 

section behavior. Note that adjustment factor for concrete cylinder strength reduction, typically 

set at 0.85 f’c, was not used. 

 

 
Figure 3.4.3. Concrete03 model based on Kent-Park stress-strain curve and the corresponding 

input parameters. 

Figure 3.4.4 shows the numerical model for concrete plotted together with the backbone 

stress-strain curve obtained from the cylinder test. The cylinder tests were terminated when the 

concrete resistance decreased by about 5% upon reaching the peak strength (see Figure 2.4.4, 

Chapter 2) and the path of the stress-strain curve and the strain at zero strength upon softening is 

not available from the tests. Thus, the compressive portion of the curve was set to unload to zero 

residual strength at ultimate strain of εu = 2ε0 ≈ 0.0060, which is typically assumed for the 

spalling strain of unconfined concrete (Moehle 2014).  

When the beam section yielding mechanism is not controlled by concrete crushing, that is – 

the beam section does not exhibit post-yield softening due to concrete crushing, this unloading 

path is not crucial to capturing correct global response. Concrete strains exceed those at the peak 

strength and causing the softening of the beam section can lead to numerical localization which 

produces a model with global response sensitive to element discretization (number and location 

of integration points along the element, and integration length).  

Scott and Fenves (2006) offer several approaches to retain modeling objectivity. One includes 

the material regularization technique whereby the concrete fiber material stress-strain curve is 

modified based on the numerical length of the plastic hinge in order to satisfy the constant 

fracture energy released in concrete crushing over the integration length. Alternatively, a 

concrete constitutive model obtained in cylinder tests is recommended for use in conjunction 

with a plastic hinge length observed in the laboratory – which corresponds to a damage 

localization length over which the crushing of concrete occurs in the physical specimen. The 
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present study employs the latter approach. Numerical localization is not a concern in Chapter 3, 

because beam section does not exhibit softening response, however this becomes a concern in 

Chapter 4 where implications of suppressing beam elongation are explored. 

 

 
Figure 3.4.4. Unconfined concrete stress-strain relationship. 

 
Figure 3.4.5. Initial cycles of Beam 2 moment-rotation response and corresponding numerical 

simulation using ReinforcingSteel and Concrete03 with: (a) no concrete tensile strength, (b) 

concrete tensile strength ft = 2 '

c
2 f  (f'c in psi).  
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Tensile strength of concrete, ft, was not experimentally obtained for the tests presented in 

Chapter 2. For the purpose of numerical modeling, the value of ft was selected such that the 

moment-rotation curve obtained numerically from the distributed plasticity model described in 

Section 3.5 closely follows the measured pre-cracking stiffness of Beam 2. To this end, an 

assembly containing distributed plasticity elements described in Section 3.5 using 

ReinforcingSteel material for steel fibers was subjected to flexural deformation history measured 

from the experiment and described in Section 3.3.  

The comparison of the flexural component of force-drift ratio curve computed with numerical 

model with that measured in the experiment is shown in Figure 3.4.5. Note that shear and fixed-

end deformations are removed from the loading history applied to the model which contains only 

the distributed plasticity elements. As can be seen from the plot in Figure 3.4.5(a), if concrete 

model is assigned ft = 0, the stiffness of the initial deformation cycles is underestimated leading 

to a beam response equivalent to having an initial stiffness of a cracked section. The computed 

response is improved by selecting a concrete tensile strength of ft = 2√   ,obtained by trial and 

error, as observed in Figure 3.4.5(b). The computed moment-rotation curve in Figure 3.4.5(b) 

closely follows both the moment-rotation recorded from the experiment for both the loading and 

unloading paths and the contour of the hysteresis. Table 3.2 lists the input parameters for 

Concrete03 material in OpenSees. 
 

Table 3.2. Input parameters for Concrete03 material. 

Uniaxial material 

input parameter 
Description Value 

$fc1U Compressive strength -5,873 psi 

$eps1U Strain at compressive strength -0.003 

$fc2U Ultimate stress 0 psi 

$eps2U Strain at ultimate stress -0.006 

$lambda Parameter controlling unloading slope 0.2 

$ft Tensile strength 153 psi 

$epst0 See Figure 3.4.3 0.0009 

$ft0 See Figure 3.4.3 0 psi 

$beta See Figure 3.4.3 1.0 

$epstu See Figure 3.4.3 0.20 

 

3.5 DISTRIBUTED PLASTICITY BEAM-COLUMN ELEMENTS  

Lumped plasticity models based on phenomenological moment-curvature or moment-rotation 

hysteretic rules have been traditionally employed for modeling of reinforced concrete beams in 

nonlinear analysis of special moment resisting frames. Such models have a decoupled flexural 

and axial force-deformation behavior and thus lack the capability of simulating the axial 

elongation of the beam which accumulates during inelastic flexural deformations. This section 

presents a distributed plasticity fiber-section model that, with relatively good accuracy, simulates 

the evolution of axial elongation while correctly representing the cyclic force-deformation 

response of the reinforced concrete beam with post-yield hardening section behavior.  

Figure 3.5.1 shows the general schematic of the numerical representation of Beam 2 (Chapter 

2). This mathematical model is a combination of both phenomenological components and finite 
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element components that utilize constitutive relationships of steel and concrete materials. Two 

Euler-Bernoulli beam-column elements with fiber section discretization represent the 

cantilevered beam specimen (Elements 1 and 2) and simulate flexural and axial deformations 

occurring within the beam itself. Fixed-end rotation, which occurs as a result of longitudinal 

reinforcement slip from the beam support, is represented by a zero-length rotational spring (bar 

slip Element 3). For completeness, the shear component of the total beam deformation is 

represented by a zero-length shear spring (Element 4) placed in parallel with the rotational 

spring.  

 
Figure 3.5.1. Numerical model schematic. 

Two distributed plasticity beam-column elements with force-based formulation (Taucer et al. 

1991) placed in series represent the beam itself: Element 1, which is 48 in. long, and Element 2, 

which measures 102 in. Each element contains two numerical integration points. Such 

subdivision of the cantilever beam was chosen in order to control the tributary length of the first 

integration point where the largest flexural and axial deformations are concentrated, as opposed 

to assigning the integration lengths based on those computed with the default element integration 

scheme (i.e. using the Gauss Lobatto quadrature rule).  

The tributary length of first integration point in Element 1 is set to be equal to the 

approximate beam plastic hinge length lp which was selected to provide a good estimate of the 

global moment-rotation response of the cantilever beam. Plastic hinge length of lp = h/2 = 24 in. 

(h = beam height) was found to lead to satisfactory estimate of this relationship for Beam 2 with 

the model presented. In lieu of using two separate elements (1 and 2), comparable results can be 

obtained via single element with multiple integration points, where the first integration point has 

the tributary length close to lp. The latter approach reduces the global degrees of freedom and the 

number of equations solved in analysis and is used in modeling beams the frame structures in 

Chapters 4, 5, and 6.  

3.5.1 COMPARISON OF GLOBAL FLEXURAL BEAM RESPONSE COMPUTED WITH 

DISTRIBUTED PLASTICITY ELEMENTS WITH EXPERIMENTAL RESULTS 

Numerical beam discretization using distributed plasticity Elements 1 and 2 described previously 

was evaluated by comparing the cyclic force-deformation curves computed with those obtained 
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from the test of Beam 2. A force-deformation curve recorded for the test specimen had been 

adjusted to exclude the portion of deformations attributable to fixed-end rotations and shear 

deformation, as explained in Chapter 2 and plotted in Figure 3.3.1. This enabled isolating the 

flexural deformations arising from the curvature section deformations within the beam itself in 

order to compare them to the deformations computed by the numerical model consisting of 

Elements 1 and 2.  

The flexural displacement history (plotted in solid grey line in Figure 3.3.1) is applied to 

beam model consisting of Element 1 and 2 at Node 4 (see Figure 3.5.1), while Node 2 is held 

fixed. With Node 2 held fixed, only Elements 1 and 2 are allowed to deform. The resulting 

moment-rotation curve is shown in Figure 3.5.2. The corresponding curve obtained from the test 

data of Beam 2 experiment is also plotted. Figure 3.5.2(a) shows the moment-flexural 

deformation relationship computed for the distributed plasticity model using the using 

ReifnorcingSteel, while Figure 3.5.2(b) plots the same relationship computed using the Steel02 

uniaxial material model.   

 

 
Figure 3.5.2. Moment-chord rotation curves for flexural components of Beam 2 deformation and 

Elements 1 and 2 using (a) ReinforcingSteel and (b) Steel02. 

Figure 3.5.2(a) shows that Model 1 consisting of distributed plasticity elements with fiber 

section computes with high accuracy the initial stiffness, yield point, post-yield hardening and 

unloading and reloading curve for the beam when ReinforcingSteel material is used. Slightly less 

accurate but satisfactory results are obtained using Steel02 material, as shown in Figure 3.5.2(b).  

3.6 ROTATIONAL SPRING FOR FIXED-END DEFORMATIONS 

This section explores three different approaches in modeling the fixed-end rotations in reinforced 

concrete beam. These are: nonlinear fiber section rotational spring, nonlinear rotational spring 

with bilinear hysteretic material, and linear elastic rotational spring. Flexibility induced by fixed-

end rotations is accounted for by a bar slip Element 3 shown in Figure 3.5.1. First, each bar slip 

element is calibrated with moment vs. fixed-end rotation curve obtained from the Beam 2 test, 
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followed by the comparison of the global moment-beam chord rotation response of Beam 2 with 

the response computed by adding the bar slip element (Element 3) to the distributed plasticity 

Elements 1 and 2, which were calibrated in the previous section.  

3.6.1 FIBER SECTION ROTATIONAL SPRING (BAR SLIP ELEMENT) 

The theory behind the bar slip modeling approach based on the fiber section was discussed in 

Section 3.2.2. The method presented in Ghannoum (2007) and adopted here was tested in 

conjunction with both steel material models used: namely the ReinforcingSteel and Steel02. First, 

the experimental stress-slip relationship is derived for Beam 2 specimen to use as a benchmark in 

calibrating the uniaxial material used to represent the bar-slip behavior in the bar slip element 

(Element 3).  Then, the computed moment-rotation hysteresis of the bar slip element is compared 

with the corresponding experimental results obtained by plotting the Beam 2 resisting moment 

versus the fixed-end rotations. Lastly, global moment-rotation of Beam 2 (corrected to exclude 

the shear deformations) is compared with the moment-rotation hysteresis using Elements 1-3.  

3.6.1.1 DERIVING THE EXPERIMENTAL STRESS-SLIP RELATION 

To calibrate the uniaxial bar stress-slip material, a corresponding experimental bar stress-slip 

curve needs to be established first. In traditional bar pullout experiments (e.g. Jirsa and Marques 

1972, Viwathanatepa et al. 1979, Eligehausen et al. 1982) where tension or compression force is 

applied onto a single bar embedded in concrete, the bar stresses can be directly obtained by 

dividing the measured pullout force applied on a bar by the bar cross sectional area. The amount 

of slip is obtained from the instrument positioned in such way to directly measure the amount of 

bar slip at the interface. In Beam 2 test, such measurements were not possible. However, the 

instrumentation data along with the appropriately calibrated theoretical stress-strain relationship 

model of the steel material can be used to infer the approximate bar stress-slip curves in the test 

specimen. 

Measurements from the LVDT instruments positioned at the root of the beam at the top and 

bottom faces are used to obtain the amount of bar slip. The underlying assumption here is that 

the slip is approximately equal to the interface crack width which roughly corresponds to the 

data recorded by the LVDTs, due to the close proximity of the longitudinal No. 11 bars and the 

LVDT instruments. Using the strain histories recorded in the strain gauges positioned on the No. 

11 bars close to the beam root, bar stress histories are computed via mathematical relationship 

from a uniaxial material model that is calibrated to match the behavior of the No. 11 steel 

coupons. Here, bar stresses are computed using the steel stress-strain model by Kunath et al. 

(2009) calibrated as explained in Section 3.4.1 and shown in Figure 3.4.2(a). 

Figure 3.6.1 shows the strain history recorded in the LTI-OUT(1) and LTI-IN(1) gauges 

installed on a top and bottom side, respectively, of the top longitudinal No.11 bar of Beam 2 and 

located 2 in. from the support (refer to Chapter 2, Section 2.5 for detailed instrumentation 

layout). The strain histories are very similar at first and then diverge due to a differential in bar 

curvature once the buckling starts, evident around the 9000
th

 loading point in the figure. Thus, 

the average strain is used to compute the stresses in the top bars. Figure 3.6.2 shows the strain 

gauge measurements obtained from LBII-IN(1) and LBII-OUT(1) gauges installed on a top and 

bottom side, respectively, of the bottom longitudinal No.11 bar of Beam 2 and located 2 in. from 

the support (detailed instrumentation plan is shown in Figure 2.5.4, Chapter 2). As can be seen, 

gauge LBII-IN(1) becomes damaged immediately after yielding (around the 3600
th

 loading 

point), but otherwise shows consistent readings with gauge LBII-OUT(1). Thus, the strain history 
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measured by the latter instrument is used to compute the approximate bar stresses. The stress-

strain curves computed in the No. 11 top and bottom bars based on the strain gauge data and 

using the Kunath et al. (2009) model are plotted in Figure 3.6.3. These are plotted for the cycles 

preceding the bar buckling, which includes the first cycle with the beam rotation amplitude |θ| = 

0.029. 

 
Figure 3.6.1. Strain measured in strain gauges located at the top No. 11 bar in Beam 2. 

 
Figure 3.6.2. Strain measured in strain gauges located at the bottom No. 11 bar in Beam 2. 

Figure 3.6.4 shows the readings of the LVDT instruments placed on the top (TL1 and TR1) 

and bottom (BL1 and BR1) faces of Beam 2, respectively. Each pair of instruments (top and 

bottom) were placed approximately 11.5 in. from either side edge of the beam, along the beam 

width (refer to Figure 2.5.1 and Figure 2.5.2 in Chapter 2). The readings of top instruments TL1 

and TR1 are almost identical over the first 13000 data points, corresponding to the deformation 

cycles prior to longitudinal bar buckling (refer to Chapter 2 for Beam 2 response discussion). 

After this point in loading history, the readings slightly diverge, with instrument TR1 showing 
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smaller readings and indicating possible instrument distortion when compared with the TL1 data. 

Thus, the measurements obtained from instrument TL1 were selected to represent the interface 

crack width, corresponding approximately to the amount of bar slip at the interface of the beam 

with the reaction block.  

 

 
Figure 3.6.3. Bar stresses at the interface of the beam support as computed by Kunath et al. 

(2009) model based on the strain gauge readings from Beam 2 experiment. Stresses in: (a) top 

No. 11 bars, and (b) bottom No. 11 bars. 

The bottom LVDT pair shows very different readings over the entire loading history. The BL1 

instrument measured deformations which differed from the BR1 readings by approximately 40-

50% throughout the loading history shown in Figure 3.6.4. While for the downward direction of 

beam loading, instrument BL1 was showing larger absolute deformations (larger compressive 

strains), during the upward direction of beam loading, the trend reversed, with BL1 showing 

smaller extensions compared to BR1. Because the instruments were carefully calibrated prior to 

beginning of the test, and the initial readings do start from zero, this discrepancy could possibly 

be attributed to an instrument rotation from the neutral position during the test. Because the bond 

strength within the concrete reaction block is expected to be approximately uniform along the 

height of the reaction block due to post-tensioning (see Figure 2.4.1[a]), and the variation in 

longitudinal bar strains at the beam support showed very similar trends both in the top and the 

bottom bars, it is plausible that the levels of bar slip would be comparable at the top and the 

bottom. Thus, the data from BR1 are selected from the bottom pair, because the absolute values 

of deformations recorded are consistent with the corresponding values at the opposite cycles for 

the top instruments.  

The strain histories recorded in top instruments are plotted as a function of the bar slip which 

was taken to be equal to the reading from BR1 and TR1 instrument. The corresponding 

relationships are shown in Figure 3.6.5. The trends are very similar between the top and bottom 

bars. In both cases, there is an almost linear relationship between the amount of slip and the bar 

stress prior to yielding, whereas the backbone contour softens upon yielding. The curves unload 

at the slope similar to the "elastic" slope, but tend to soften and display pinching as the cycles 
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progress, indicating the deterioration in the bond and also the reverse slip of the bar (into the 

block).  

The measured slip at yield point (steel yield stress fy,m = 73 ksi)  in both cases is 

approximately equal to Sy,m = 0.038 in. and 0.04 in. for top and bottom bars, respectively. This 

agrees relatively well with the Sy = 0.033 calculated with Equation 3.4 and Lehman and Moehle 

(2000) bond stress distribution model using the measured material properties (the avg. cylinder 

strength f'c = 6,130 psi, steel Es = 31,000 ksi, and db = 1.41 in.). At the instance when the bars 

reach the stress of 90 ksi, the approximate slip measured is 0.26 in. and 0.27 in., in the top and 

bottom bars, respectively, which is within 25% of the 0.34 in. estimated by the Equation 3.4.  

 

 

 
Figure 3.6.4. LVDT readings from instruments spanning first 2 inches of beam from reaction 

block at the top and the bottom faces. 
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Figure 3.6.5. Bar stress vs. slip for Beam 2 as computed for: (a) top bar (including first cycle with 

0.029 peak rotation) and (b) bottom bar (including cycles prior to 0.029 amplitude cycle).  

3.6.1.2 CALIBRATION OF STRESS-SLIP MATERIAL MODEL 

 
Figure 3.6.6. Comparison of experimentally obtained bar stress vs. slip behavior with that 

simulated by using: (a) ReinforcingSteel based on Kunath et al. (2008) curve, and (b) Steel02 

based on Giufre-Menegotto-Pinto curve. 

The stress-strain uniaxial material curves calibrated for steel fibers of Element 1 and 2 using 

the two different steel stress-strain relationship models, namely ReinforcingSteel and Steel02, are 

modified as explained in Section 3.2.2 to represent the bar stress vs. slip behavior. This 

mandated calculating the amount of bar slip at the instance when the longitudinal bars in tension 
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reach the yield stress fy. According to Equation 3.4 and using Lehman and Moehle (2000) bond 

stress distribution assumption, the slip at yield for No. 11 bars is Sy = 0.033. Thus, all of the 

parameters of ReinforcingSteel and Steel02 were multiplied by the factor ry = Es /Eslip = Sy/εy = 

14.34.  

A single steel fiber element was subjected to a deformation history equal to the bar slip 

measured experimentally and shown in Figure 3.6.4.  Readings from TL1 instrument were used 

as a benchmark for the experimental data because more points were recorded by TL1 in 

comparison with the other three LVDTs before the data became incoherent (see data readings in 

Appendix A). Figure 3.6.6(a) shows the numerically simulated stress-slip hysteresis 

superimposed with the experimentally obtained hysteretic curve from Figure 3.6.5(a). The 

backbone curve of the numerical model agrees well with the experimental data, with initial 

stiffness, the yielding point, and the post-yield hardening ratio being closely together. However, 

as the ReinforcingSteel material model is only intended to simulate hysteretic behavior inherent 

to steel material, the pinching that occurs when reloading from zero stress in the cycles after the 

yielding is not simulated. Nevertheless, for any given point level of bar stress, the amount of slip 

computed is very close to the amount of slip measured in the experiment. Similar trends can be 

observed for Steel02 model, plotted in Figure 3.6.6(b). In comparison with the ReinforcingSteel, 

Steel02 with softened material properties exhibits rounder hysteretic loops, however, the model 

is still found to be appropriate for simulating the bar stress-slip response. The concrete stress-

strain curves are adjusted as described in Section 3.2.2.  

 

 
Figure 3.6.7. Comparison of Beam 2 moment vs. fixed-end rotation curves obtained 

experimentaly and numerically using fiber section zero-length element and: (a) ReinforcingSteel, 

and (b) Steel02. Note: cycles plotted include the first cycle when bar buckling caused a decrease 

in the moment resistance, with 0.029 rotation amplitude. 
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3.6.1.3 MOMENT-ROTATION RESPONSE OF FLEXURAL SPRING 

Bar slip element (Element 3, Figure 3.5.1) representing the fixed-end rotation spring and 

using the materials described in Sections 3.4.1 and 3.4.2 is evaluated against the experimental 

data. The fixed-end rotation history obtained from the LVDT instruments located at the root of 

the beam (as explained in Chapter 2 and plotted in Figure 2.8.14[a]) is applied to a bar slip 

element alone and the resisting moment is logged.  

Moment-rotation hysteresis obtained from bar slip Element 3 using the two steel uniaxial 

materials are plotted in Figure 3.6.7 and compared to an experimentally obtained moment-fixed-

end rotation behavior of Beam 2. An experimental moment-rotation relationship is obtained by 

plotting a resisting moment of Beam 2 versus the fixed-end rotations calculated using the LVDT 

instruments (see Section 2.8.5, Chapter 2). The moment plotted on the y-axis corresponds to the 

moment resisted by the beam at the support, corrected for the beam self-weight, as explained in 

Chapter 2. Figure 3.6.7(a) indicates good agreement between the experimental hysteretic loop 

and the numerical simulation using ReinforcingSteel uniaxial material in the zero-length element 

fiber section. Similarly good results are obtained using Steel02 in the zero-length fiber section, as 

shown in Figure 3.6.7(b). 

3.6.1.4 GLOBAL BEAM RESPONSE INCLUDING FLEXURAL AND FIXED-END DEFORMATIONS 

In this section, we examine the response of the beam model consisting of Elements 1, 2, and 

3, while Element 4 is set to have infinite stiffness. That is, no shear deformations are allowed to 

occur. The goal is to examine the interaction between the zero-length spring representing the 

flexibility due to bar slip and the element representing the beam itself. Numerical model of Beam 

2 consisting of elements 1-3 is subjected to a monotonically increasing displacement at the tip 

and also the cyclic displacement history from the Beam 2 experiment, adjusted to exclude the 

deformations attributable to shear (plotted in black dashed line in Figure 3.3.1). 

The monotonically increasing loading history is applied at Node 4 (Figure 3.5.1), and the 

depth of the compression zone measured from the uppermost fiber is monitored at the integration 

point located in Element 1 at the very root of the beam and within the bar slip Element 3 

simulating the fixed-end rotation behavior. The compression zone depth computed using 

ReinforcingSteel and Steel02 is plotted as a function of the beam tip displacement and is plotted 

in Figure 3.6.8. As can be observed in both cases, the curves are identical for the zero-length 

section element, proving the section strain compatibility is enforced for all the beam deformation 

levels. Similarly, curves in Figure 3.6.9 show the strain compatibility is realized during most of 

the cyclical loading, with the curves only diverging at few computation points, which can be 

attributable to numerical error. 

Figure 3.6.10 shows the relationship between the beam moment and the total chord rotation 

(excluding the shear deformations) and the fixed-end rotation as a function of total beam chord 

rotation obtained from the cyclic displacement loading for the beam model using the two 

different steel uniaxial materials. As before, the curves have been superimposed with the 

experimental results. The top two graphs show the analytical results obtained from the numerical 

model using ReinforcingSteel, while the bottom two show the results obtained using Steel02. The 

plots include all cycles prior to those where loss of strength was noted due to bar buckling. As 

can be seen from Figure 3.6.10(a) and (c), both beam models result in hysteretic curves that 

agree with the experimental data remarkably well for the cycles shown.  Figure 3.6.10(b) and (d) 

indicate that the zero-length element simulates the fixed-end flexibility reasonably well.  
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Figure 3.6.8. Monotonic pushover curves and variation of neutral axis depth within the zero-

length element section and the adjacent section of beam-column Element 1, as computed using: 

(a) ReinforcingSteel and (b) Steel02. 

Figure 3.6.11 plots the elongation computed with the numerical model using Elements 1-3 to 

that measured in the experiment of Beam 2.  The total beam elongation (Figure 3.6.11[a]) is 

divided into the portion of the elongation computed within the Elements 1 and 2 (corresponding 

to the elongation of the beam itself, and plotted in Figure 3.6.11[b]) and the elongation within the 

bar-slip element corresponding to the gap opening (interface crack) width recorded at the beam 

interface with the reaction block (Figure 3.6.11 [c]). The gap opening measured in the laboratory 

was computed as the average reading of LT1 and LB1 instruments (shown in a picture inset in 

Figure 3.6.4), respectively. In each plot, the curves computed using ReinforcingSteel and Steel02 

are in good agreement with the experimental data obtained from Beam 2 test. 

Agreement in the overall elongation vs. drift evolution plotted in Figure 3.6.11 indicates that 

the modeling strategies based on distributed plasticity elements which utilize fiber sections with 

appropriate hysteretic materials are an adequate tool to use in modeling reinforced concrete 

beams when analyzing structures that may be impacted by the beam elongation. Chapter 4 

explores this further.  

The pitfall of modeling bar slip element using fiber section as described is that it may lead to 

erroneous computation results when the beam-column elements are loaded with axial forces prior 

to experiencing flexural deformations. An example of such case is numerically applying post-

tensioning to the beams, or applying gravity loads to columns prior to laterally applied loads 

such as a pushover force pattern or ground acceleration. The reason is that the rotational spring 
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fiber section has an axial flexibility that is a function of uniaxial material fiber properties and 

thus cannot be decoupled from the flexural flexibility.  

 

 
Figure 3.6.9. Variation of compression zone depth for Element 1, section 1, and Element 3 as 

measured from the top edge of the section using: (a) ReinforcingSteel and (b) Steel02 materials.  

As noted before, the material stress-strain curves in the bar slip element section are adjusted 

by a factor ry and are thus an order of magnitude more flexible that the fibers in the beam-

column elements (in this case ry = 14.34). This implies that under a constant axial load, a bar slip 

element section deforms axially 14.34 times more than the beam-column section. Thus, the node 

between the bar slip element and the beam-column element moves past the beam-column 

support, leading to a deformed beam length greater than would be computed otherwise. The 

direct consequence of computing such length is that the beam would experience smaller axial 

forces than may exist in actuality. In bar slip sections at the bottom of columns of comparable 

cross section in regular frames, the effect of this phenomenon can be ignored, because all of the 

columns support nodes shift by approximately same length. In beams, and where post-tensioning 

slabs are to be included in the analysis, it is important to avoid this problem. 
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Figure 3.6.10. Comparison of experimental and numerical results of cyclic test: (a) moment-

rotation curve for Beam 2 using ReinforcingSteel, (b) fixed-end rotation vs. total beam rotation 

for Beam 2 using ReinforcingSteel, (c) moment-rotation curves using Steel02, and (d) fixed-end 

rotation vs. total beam rotation using Steel02. 

 

-0.02 0 0.02
-3000

-2000

-1000

0

1000

2000

3000

M
o

m
e
n

t 
(k

ip
   

ft
)

Beam rotation (rad)
(a)

-0.020 0.000 0.020
-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

Beam rotation (rad)
(b)

F
ix

e
d

-e
n

d
 r

o
ta

ti
o

n
 (

ra
d

)

-0.02 0 0.02
-3000

-2000

-1000

0

1000

2000

3000

M
o

m
e
n

t 
(k

ip
   

ft
)

Beam rotation (rad)
(c)

 

 

experiment

simulation with ReinforcingSteel

simulation with Steel02

-0.020 0.000 0.020
-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

Beam rotation (rad)
(d)

F
ix

e
d

-e
n

d
 r

o
ta

ti
o

n
 (

ra
d

)



79 

 

 
Figure 3.6.11. Comparison of experimental and numerically computed elongation of Beam 2: (a) 

lengthening of the beam itself, (b) gap opening at the beam interface with the support, and (c) 

total beam elongation. 

3.6.2 BILINEAR AND LINEAR ELASTIC ROTATIONAL SPRINGS  

Where post-tensioning axial loads in beam-column elements are non-zero, as described in 

previous section, fixed-end rotation deformations can be accounted for by a rotational spring 

with a decoupled flexural and axial behavior as described next. The distributed plasticity beam-

column elements are thus the only elements to simulate the beam elongation (i.e. gap opening at 

the beam interface with the support is not explicitly modeled). Here, we use the same Elements 1 

and 2 described before with uniaxial material Steel02. In lieu of a bar slip section in Element 3, a 
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rotational spring with a unit area and both bilinear hysteretic and linear elastic moment-rotation 

relationship is used. 

The bilinear spring is modeled with Hysteretic material in OpenSees (Figure 3.6.12). The 

backbone curve is defined with the bilinear relationship between the beam moment and the 

appropriate fixed-end rotation. Thus, only two points are necessary to define the moment-

rotation relationship: the yield moment My and the ultimate moment Mu with the corresponding 

fixed end rotations θsy and θsu. The two moment capacities are computed from moment-curvature 

section analysis presented in Section 3.8 and the fixed-end rotations for the two levels of load 

were obtained using Equation 3.5 and the appropriate amounts of bar slip Sy and Su computed 

assuming Lehman and Moehle (2000) bond stress distribution (refer to Section 3.2.1).  

Hysteretic material requires an input of ultimate force-deformation capacity (labeled as [$e3p, 

$s3p] and [$e3n, $s3]). The values for ultimate moment capacity were set to be very large to 

avoid localization of inelastic deformation within the rotational spring in case that the beam 

moment capacity increases during nonlinear analysis, as a result of possible axial load increase. 

Therefore, [θsu, Mu] pair was used to determine the post-yield hardening slope βh = 0.0127, which 

was then utilized to set the rotation corresponding to the very large moment capacity. The input 

parameters for the Hysteretic material are listed in Table 3.3. Note that additional parameters 

controlling the pinching of the hysteresis and damage accumulation are set to zero. Parameter 

$beta, which controls the softening of the unloading stiffness is also set to zero. 

 
Figure 3.6.12. Hysteretic material (OpenSees 2014). 

 

Table 3.3. Input parameters for Hysteretic material. 

Input Parameter Description Value 

$e1p, $e1n Rotation at positive and negative 

yield moment (radians) θsy 

0.0008, -0.0008 

$s1p, $s1n Positive/Negative yield moment 

(kip·in)  

(23,500), (-23,500) 

$e2p, $e2n Rotation at ultimate moment 

capacity θsu 

0.0267, -0.0267 

$s2p, $s2n Positive and negative  ultimate 

moment capacity 

(32,800), (-32,800) 
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Linear elastic spring was modeled by an Elastic material in OpenSees. The only input needed 

for this material is the stiffness, which was computed as the slope from a line connecting the 

origin to the [θsy, My] point. Essentially the linear elastic spring exhibits the moment-rotation 

behavior identical to the elastic branch of the bilinear rotational spring shown in Figure 3.6.12. 

 

3.6.2.1 COMPARISON OF RESPONSE 

Beam model consisting of Elements 1-3, where Element 3 is represented by either bilinear 

hysteretic spring or linear elastic spring is subjected to the loading history from Figure 3.3.1 that 

does not include shear deformation component. The resulting moment vs. fixed-end rotation 

behavior of the Element 3 is plotted along with the experimental curve from Beam 2 test and is 

shown in Figure 3.6.13. Clearly, the linear elastic spring only captures the initial rotation pre-

yielding, whereas the bilinear spring simulates the fixed-end rotations due to bar slip quite well. 

 
Figure 3.6.13. Comparison of experimentally computed moment vs. fixed-end rotation 

relationship with numerically computed using bilinear rotation spring and linear elastic spring in 

Element 3. 

The fixed-end rotation computed with the two different springs are plotted as a function of 

total beam chord rotation in Figure 3.6.14. Clearly, the bilinear spring faithfully estimates the 

fixed-end rotation levels due to bar slip after yielding, while the linear elastic spring lacks this 

capability. However, the global moment-rotation response is very similar between the two 

models, as can be seen in Figure 3.6.15. As expected, the beam model which contains linear 

elastic spring results in roughly 6% higher peak moment computed in post-yield deformation 

cycles, compared to the one computed when bilinear spring is used. However, if beam elongation 

is a concern, the use of linear elastic spring produces better estimation of beam elongation, while 

approximately capturing the added flexibility from bar slip, as can be seen in Figure 3.6.16. This 
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is expected, because elongation is roughly proportional to the amount of chord rotation and the 

more rotation comes from the fiber based elements, the more elongation is computed. 

 

 
Figure 3.6.14. Fixed-end rotation as a function of total beam rotation. 

 
Figure 3.6.15. Comparison of moment-rotation response for the numerical models. 

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
-0.02

-0.01

0

0.01

0.02

Beam chord rotation (rad)

F
ix

e
d

-E
n

d
 R

o
ta

ti
o

n
 (

ra
d

)

 

 

experiment

bilinear spring

linear elastic spring

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
-3000

-2000

-1000

0

1000

2000

3000

Beam rotation (rad)

M
o

m
e
n

t 
(k

ip
   

ft
)

 

 

experiment

bilinear spring

linear elastic spring



83 

 

 
Figure 3.6.16. Beam elongation computed with numerical model using: (a) bilinear spring and (b) 

linear elastic spring. 

3.7 SHEAR SPRING 

The global moment-rotation behavior of the fiber-section based beam model developed in the 

preceding sections is adjusted in this section to include a shear spring to account for the shear 

deformations during cyclic loading. This is accomplished by using a shear spring labeled as 

Element 4 in Figure 3.5.1 which acts in parallel with the bond-slip Element 3 developed in 

Section 3.6.1. Thus, the relationship modeled is that of shear force vs. beam displacement along 

the local y-axis due to shear deformations (denoted here as Δv and expressed in units of length), 

as opposed to shear deformations defined as an angular distortion (γ, expressed in units of 

radians) from the centerline of the undeformed beam.  

Shear force-deformation relationship is represented with Pinching4 material in OpenSees, 

with the points defining the hysteretic shape shown in Figure 3.7.1. As previously noted, the 

ordinate of the graph shown represents the shear force V (kips), while the abscissa represents the 

shear deformations Δv (in.). The initial slope in the V-Δv relationship is set to correspond to the 

elastic shear stiffness defined in Equation 3.7, where the elastic stiffness of the shear spring is 
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Kv0 = 85,690 kip/in. The Kv0 was calculated as explained in Section 3.2.3 using Lb = 150 in., υ = 

0.18 as the concrete Poisson’s ratio, Ec = 4,463 ksi as the concrete Young’s modulus based on 

the average compressive cylinder strength f’c = 6.13 ksi for Beam 2 on the day of the testing, and 

the shear modulus of elasticity of G = 8,926 ksi. Thus, the elastic shear deformations occurring 

prior to formation of diagonal cracks are integrated over the entire length of the beam. 

 

  
Figure 3.7.1. Pinching4 uniaxial material parameters (OpenSees, 2014). 

The cracking shear Vcr for Beam 2 calculated with Equation 3.8 is 173 kips. However, Beam 2 

test results indicate that the diagonal cracks formed even before the specimen reached this value 

of shear force. From Table A.2 (Appendix A), it is evident that the diagonal cracks occurred 

during the first cycle to peak chord rotation of θ = 0.0028, which corresponds to the peak 

resisting shear of 109 kips including beam self-weight. Thus, the empirically observed Vcr = 109 

kips was used instead of that obtained from Equation 3.8. The corresponding shear deformation 

computed with elastic shear stiffness is Δcr = 0.0011 in, which is equivalent of having uniform 

shear deformation along the length of the beam of γcr = 8.5x10
-6

 rad. 

The post-cracking slope of the backbone curve is determined using the stiffness V/γ = GA1 

calculated with Equation 3.9. Using Beam 2 design parameters (Es = 31500 ksi, bw = 48 in., d-d' 

= 42.34 in., w = 0.0057, η = 0.1424, and θt = 45
°
), Equation 3.9 results in GA1 = 141,922 kip/in. 

As discussed in Section 3.2.3, the stiffness of the shear mechanism in the beam reduces upon the 

beam reaching flexural yielding point. Thus the shear stiffness GA1 is assumed to be valid up to 

Vy which denotes the shear resisted at the instance that My is reached at the root of the beam. The 

yielding moment of Beam 2 was computed by the moment-curvature analysis and verified 

experimentally as approximately My = 23,500 kip·in., which for the moment distribution 

resulting from the point load at the end of the cantilever and assumed uniformly distributed beam 

weight wself = 1.45 kip/ft leads to:  

http://opensees.berkeley.edu/wiki/images/f/f3/Piinching4.jpg
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Note that Ltotal = 162 in. is the total length of the Beam 2 specimen, as opposed to the Lb = 

distance of the actuator force point of application from the beam support which is the same as the 

length of the numerical model presented in Figure 3.5.1. Using GA1, the change in the shear 

deformation γ = V/GA1 = (Vy-Vcr)/GA1 = 0.000267. If it is assumed that this post-cracking 

stiffness is roughly uniform throughout the beam length, the beam tip displacement at Vy due to 

shear would be (γcr + γ)Lb = 0.041 in. However, this assumption leads to computation of 

excessive shear deformations, because the shear deformations would tend to decrease from the 

beam support to the beam tip due to less flexural cracking present and smaller shear-flexure 

interaction. A better agreement with experimental results is obtained by assuming that the post-

cracking shear deformations occur within a limited region at the root of the beam. The length of 

this region was arbitrarily set equal to hb = 48 in. which lead to computed shear deformations 

more consistent with the experimental data. Therefore, Δv,y = Δcr +γHb = 0.014 in, and the 

second branch of backbone curve has the slope Kv1 = 2985 kip/in. 

 

 
Figure 3.7.2. Force-deformation backbone curve for shear spring (Element 4). 

In lieu of the varying post-yielding stiffness of the shear mechanism as a function of flexural 

deformation ductility proposed by Mergos and Kappos (2012), a constant stiffness with the slope 

of βvGA1 was used because of its simplicity and also the fact that the shear spring is modeled 

separately from the flexural beam-column elements and not compatible with the numerical 
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modeling methods of the said study. The factor βv = 0.05 was empirically selected to give an 

acceptable agreement with the test data. A positive βvGA1 slope ensures that no localizations 

occur during the computations. The backbone curve of the force-deformation relationship for 

shear spring represented by Element 4 is illustrated in Figure 3.7.2. The shear-deformation curve 

is assumed to not reach the plastic branch described in Section 3.2.3, because shear yielding did 

not occur for Beam 2 and is of no interest to a present study. The rest of the parameters of the 

Pinching4 material were selected to produce the pinching of the moment-chord rotation curve 

consistent with what is observed in the Beam 2 test results.  

A numerical model consisting of Elements 1-4 is subjected to the same displacement protocol 

as the Beam 2. The displacement history in this case corresponds to the total displacement of the 

beam tip, because all of the considered beam deformation components have been calibrated and 

accounted for. Elements 1-3 utilize ReinforcingSteel to represent steel fibers, as described in 

Sections 3.4.1 and 3.4.2. Figure 3.7.3 shows the shear force vs. tip displacement due to shear 

hysteretic relationship obtained experimentally and computed using the hysteretic shear spring 

with Pinching4 material with parameters identified in Table 3.4. The data include cycles up to 

0.029 beam rotation when major buckling occurred in the longitudinal bars, after which the shear 

deformations recorded with the instrumentation were incoherent. The plot indicates relatively 

good agreement between the experimental data and the computed deformations. 

Figure 3.7.4(a) plots the equivalent beam rotations caused by the shear deformation (defined 

as Δv/Lb) versus the total beam chord rotation. The curves are shown for experimental data and 

the computed curves. As can be seen, the correlation between the two variables is effectively 

simulated with the hysteretic shear spring using Pinching4 material calibrated as discussed. 

 
Table 3.4. Input parameters for Pinching4 material (all units in kips and inches). 

Uniaxial material input parameter Description Value 

$ePf1, $ePd1 

See Figure 3.7.1 

109, 0.0012 

$ePf2, $ePd2 146, 0.0139 

$ePf3, $ePd3 363, 1.504 

$ePf4, $ePd4 363, 100 

$eNf1, $eNd1 -109, -0.0012 

$eNf2, $eNd2 -146, -0.0139 

$eNf3, $eNd3 -363, -1.504 

$eNf4, $eNd4 -363,-100 

$rDispN, $rForceN, $uForceN -0.1, 0.1, 0 

$rDispP, $rForceP, $uForceP -0.1, 0.1, 0 

$gK1, $gK2, $gK3, $gK4, $gKLim 0.01, 0.01, 1, 1, 0.9 

$gD1, $gD2, $gD3, $gD4, $gDLim 0, 0, 0, 0, 0.5 

$gF1, $gF2, $gF3, $gF4, $gFLim 1.0, 0, 1.0, 1.0, 0.9 

$gE 10 

$dmgType "energy" 
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Figure 3.7.3. Comparison of shear force-deformation hysteresis computed with the test results of 

Beam 2. 

 
Figure 3.7.4. Comparison of tip displacement attributable to shear as a function of total beam 

rotation obtained experimentally and numerically using shear spring with: (a) hysteretic behavior 

defined with Pinching4 material, and (b) linear elastic stiffness Kv,eff.  
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Figure 3.7.5. Linear elastic shear force-deformation relationship based on the effective shear 

stiffness defined as the secant stiffness to flexural yield point. 

 
Figure 3.7.6. Linear elastic shear spring force-deformation relationship based on equivalent shear 

stiffness of the beam. 
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A simpler alternative of accounting for the shear deformations using a linear elastic spring is 

explored. Analogous to computing effective flexural stiffness at yield in beam moment-

deflection computations, an effective shear stiffness GAeff is used with an assumption that the 

beam element has the same effective shear stiffness along the length (i.e. shear deformations are 

uniform and no concentration of deformation occurs in any particular region) equivalent to the 

secant stiffness from the (0,0) point to (Vy,γy) (Figure 3.7.5). With Vy and γy as defined 

previously, this leads to GAeff = 533,212 kip/rad. The resulting Kv,eff used for the elastic shear 

spring is obtained by using Kv,eff = (GAeff/Lb) = 3555 kip/in. The linear elastic shear spring 

behavior is also plotted in Figure 3.7.3. The relationship between total beam rotation and the 

equivalent beam rotations caused by the shear deformation (Δv/Lb) is shown in Figure 3.7.4(b). 

Simulated and experimental responses agree for the initial beam deformation cycles, after which 

the shear deformations are underestimated by the linear elastic spring model. 

 

3.7.1.1 COMPARISON OF GLOBAL BEAM RESPONSE 

Figure 3.7.7 shows the moment-rotation relationship for the numerical model and the test 

specimen, including all cycles up to 0.029 beam chord rotation. The numerical model shows 

good agreement with the physical response to lateral deformation cycles for both nonlinear 

spring and the equivalent linear elastic spring. Utilization of nonlinear spring as described earlier 

introduced slight pinching of the moment-rotation curve (Figure 3.7.7[a]), while this 

phenomenon is not present in the response computed with linear shear spring (Figure 3.7.7[b]).  

 

 
Figure 3.7.7. Comparison of experimentally obtained moment-rotation curves for Beam 2 with 

numerical computations obtained using distributed plasticity elements and shear spring based on: 

(a) hysteretic material Pinching4 and (b) equivalent linear elastic spring stiffness.  
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Figure 3.7.8. Beam elongation computed with distributed plasticity element models with shear 

spring. 

Figure 3.7.8 compares the beam elongation computed with the numerical model of Beam 2 

shown in Figure 3.5.1 using distributed plasticity elements and bar slip element with fiber section 

discretization with ReinforcingSteel and the nonlinear and linear elastic shear springs for 

Element 4. It can be seen that a beam model with nonlinear shear spring results in computing 

slightly smaller beam elongation compared that computed using the linear elastic spring. This is 

expected, because as the nonlinear spring becomes more flexible upon flexural yielding, the 

shear deformations have larger contribution to total tip displacement. This leads to smaller 

contribution of flexural deformations and proportional to these, smaller elongation. Nevertheless, 
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both models (linear elastic shear spring and nonlinear shear spring) are consistent with the 

elongation levels recorded in the Beam 2 during the test. 

Figure 3.7.9 shows the moment-rotation curves computed with the beam model using linear 

elastic shear spring and rigid shear spring (model including Elements 1-3 only). As before, the 

distributed plasticity elements and the corresponding fiber-based bar slip element utilize 

ReinforcingSteel material. The beam is subjected to loading history corresponding to the total 

deformation of Beam 2 (including all deformation components). The figures indicate practically 

identical moment-rotation curves are computed without utilizing any shear flexibility. This holds 

true in the present case because limited shear stiffness deterioration was noted in the portion of 

the test prior to buckling. Because ultimately, a numerical model is sought that would be utilized 

in nonlinear analyses of Chapters 4 through 6 to determine peak forces in the frames, shear 

strength degradation is conservatively assumed to not occur at any point during the loading 

history. Therefore, in absence of a more robust nonlinear shear model to be used with fiber-based 

models of reinforced concrete beams with flexure-dominant response, either a linear elastic shear 

spring based on equivalent beam shear stiffness or a rigid shear spring (that is, no shear behavior 

modeled) may be used in modeling of beams in frame structures of Chapters 4 through 6. The 

latter option is used to reduce efforts in calibration of shear spring properties.  

 
Figure 3.7.9. Effect of modeling shear spring on moment-rotation curves. 
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(typical of beams in a frame with gravity loads sufficiently low to avoid the occurrence of 

irreversible hinges). 

The plastic hinge model requires a definition of moment-curvature relationship of a beam 

section. To this end, a numerical model of representing a cross-section of Beam 2 and discretized 

as shown in Figure 3.4.1 using Concrete03 and ReinforcingSteel materials calibrated as 

described in Sections 3.4.1 and 3.4.2 is subjected to monotonically increasing curvature.  The 

resulting curve is plotted in Figure 3.8.1, together with a bilinear idealization used to develop the 

lumped-plasticity model. The idealization was done by establishing the elastic portion of the Mz-

 to represent the secant stiffness of the section. The yield point of the section is set at Mz,y = 

23,500 kip·in and y = 0.000075 in
-1

. The post-yielding portion of the curve was done by 

establishing a straight line from the yield point to the moment strength reached when the steel 

bar in tension reaches εu = 0.12 strain, which was arbitrarily selected to be a maximum usable 

strain. This instance corresponds to u = 0.002866 in
-1

, and Mz,u = 32,800 kip·in, as shown in 

Figure 3.8.1. 

 
Figure 3.8.1. Moment-curvature relation computed for Beam 2 section with fiber discretization 

section model and corresponding bilinear idealization. 

Under concentrated load acting at the tip of a cantilever beam with bilinear hardening section 

response such as the one shown in Figure 3.8.2(a), the moment and curvature distribution will 

approximately correspond to those shown in Figure 3.8.2(b) and (c), respectively. Thus, the 

beam tip deflection due to the yield and the ultimate moments can be expressed as: 
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Where the length of the plastic hinge zone depends on the level of moment resisted at the root 

of the beam: 
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Figure 3.8.2. Curvature distribution in a cantilever beam with bilinear hardening moment-

curvature section behavior under concentrated point load at the tip. 

 
 

Figure 3.8.3. Moment-rotation envelope for bilinear beam force-displacement behavior. 
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and θs,u = 0.0267 for the bar stress at the yield and ultimate, respectively. Thus, by adding the 

chord rotation from curvature deformations and the fixed-end contribution, the total beam 

rotation at the instance of resisting the yield and ultimate moments at the support is θy = 0.0046 

and  θu = 0.0828, respectively. The bilinear moment-rotation relationship is plotted in Figure 

3.8.3. 

Figure 3.8.4 shows a lumped-plasticity model of a beam consisting of a plastic spring located 

at the beam support and an elastic portion of the beam of a length Lb = 150 in., which is 

equivalent to the distance between the load application point and the Beam 2 support in the test. 

The plastic spring is modeled as rigid for any moment less than the yielding moment. The elastic 

portion of the beam is set to have a flexural stiffness equal to 0.207EcIg,( Ec = 4,463 ksi, Ig = 

276,480 in
4
). The factor α = 0.207 was calculated by setting θy = Mz,yLb/3αEcIg which is the 

elastic beam chord rotation of an Euler-Bernouli beam deforming under a point load at the beam 

tip. Therefore, the flexural stiffness of the beam responding elastically (Mmax < Mz,y = 23,500 

kip·in) is the slope of the moment-rotation relationship M-θ:  
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Figure 3.8.4. Representation of a cantilever beam with elastic element and plastic spring. 
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The plastic spring is represented by a rigid-hardening behavior depicted in Figure 3.8.5. The 

spring resists bending moments lower than Mz,y = 23500 kip·in with no deformation. Once the 

moment in a spring exceeds the yielding moment, the rotation in a spring increases linearly with 

the moment at a rate ks, which is the spring flexural stiffness. The coefficient ks was calibrated to 

match the theoretically obtained hardening slope for Beam 2 shown in Figure 3.8.6. The post-

yield slope of the moment-rotation curve of Beam 2 is approximately kh = 0.023kel = 118,926 

kip·in/rad. Since the beam and the spring act in series, the relationship between the stiffness of 

the rotational spring, the elastic element, and total beam stiffness is: 
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For the elastic portion of the loading, the second term on the right of the equation approaches  

zero since ks = ∞ for Mz,y, and therefore the beam total stiffness is equal to the stiffness of the 

elastic element. For the post-yield portion of loading, the stiffness of the spring that would result 

in overall beam stiffness with hardening ration kbm = kh is the following: 
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And thus, the stiffness of the rotational spring is set to ks =121,760 kip·in/rad. 

 
Figure 3.8.6. Bilinear approximation of the backbone curve of moment-rotation hysteresis for 

Beam 2. 
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Lumped plasticity beam model from Figure 3.8.4 is subjected to Beam 2 loading history 

which includes all deformation components. The moment-rotation hysteresis occurring in 

rotational spring is shown in Figure 3.8.7, while Figure 3.8.8 plots the numerical moment-

rotation curves for the entire lumped plasticity beam model superimposed with the corresponding 

experimental curve for Beam 2. The initial stiffness and the yield moment is slightly 

overestimated by the lumped plasticity model, however the two curves show good agreement in 

the overall response. 

 
Figure 3.8.7. Bi-linear rotational spring hysteresis. 

 
Figure 3.8.8. Lumped plasticity model moment-rotation hysteresis vs. experimental results. 
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CHAPTER 4 
4 4 

IMPACT OF BEAM ELONGATION ON SEISMIC RESPONSE OF 

REINFORCED CONCRETE SPECIAL MOMENT FRAMES 
 

 

Elongation of reinforced concrete beams undergoing flexural deformation cycles has been 

known to increase force and deformation demands on columns in frames deforming under lateral 

loads. The kinematic interaction between the elongating beam and column under frame sidesway 

displacements leads to the largest deformation demand on the base exterior column sustaining 

the largest compression from the overturning moment. The beam elongation phenomenon gained 

much attention particularly in New Zealand where post-earthquake damage in frame buildings 

pointed to vulnerability of precast floor systems to collapse due to loss of support as the beams 

dilated axially.  

Over the last few decades, much effort has been invested in estimating the amount of beam 

elongation (Fenwick and Megget 1993, Restrepo 1993, Matthews 2004, Lau et al. 2003, Lee and 

Watanabe 2003) and developing analytical tools to accurately simulate this mechanism in beams 

acting as a part of the frame system (Kabeyasawa et al. 2000, Lau et al. 2003, Peng et al. 2013). 

It was found that beam growth imposes additional shear forces onto exterior columns under 

compression, altering the shear force distribution from the one assumed in the absence of axial 

beam deformations (Fenwick et al. 1996, Kabeyasawa et al. 2000, Kim et al. 2004, Visnjic et al. 

2012). 

Current US design practice assumes that post-tensioning in the slabs cast monolithically with 

the beams restrains the axial beam growth and the phenomenon is not considered in the analysis 

and design of moment frames. This chapter demonstrates that restraining beam from elongating 

lowers the beam ductility and that the beam would elongate under typical levels of prestress in 

concrete slabs under seismic loads. Thus, beam elongation should be accounted for in the 

analysis and design of special moment resisting frames to ensure satisfactory global behavior 

under strong ground motion.  

This chapter includes two short studies: the first one investigates the effects of the post-

tensioned (PT) slab on beam elongation; the second one is a parametric study of multiple one-

story frames with varying geometry and beam sizes to note the variation of impact of beam 

elongation on different frame configurations.  

4.1 EFFECT OF PT SLAB ON BEAM ELONGATION 

Special moment resisting frames in perimeter configuration, such as the one shown in Figure 

4.1.1, are commonly selected for buildings having 20 or more stories in height. The SMRFs are 

placed along the two principal directions of the building and are assumed to solely resist the 

lateral load. The gravity framing is provided with sufficient ductility to accommodate 

earthquake-induced lateral deformations while fully sustaining the gravity loads from the 

tributary floor areas. In such systems, concrete slabs are typically cast monolithically with SMRF 

and gravity framing beams and are generally post-tensioned to reduce out-of-plane slab 
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deflections which allows for larger spacing between gravity columns and also smaller slab 

thickness necessary to provide acceptable levels of deflection for serviceability requirements. 

Unbonded tendons are placed in the principal directions of a concrete slab either at 

approximately even spacing in one direction and clustered in several locations along the other 

principal direction, as shown in Figure 4.1.1. 

 If the PT slab is idealized as having point loads acting at the tendon anchorage points (Figure 

4.1.1), then based on Saint-Venant’s principle, uniform axial compression can be assumed to act 

across the slab away from the edges. The ACI 318 (ACI 2014) requires the post-tensioning to 

provide minimum 125 psi prestress on the slab (excluding the area of beams cast monolithically), 

but the values of prestress in common design practices often reach up to 400 psi. Under such 

configuration, it is assumed that the slab acts as a diaphragm in transmitting in-plane seismic 

forces to the outer SMRFs and because of its high axial stiffness in the direction of loading, the 

gravity and seismic framing is assumed to have little or no relative movement in this direction 

(the diaphragm however may or may not be assumed rigid in the horizontal direction 

perpendicular to the lateral load line of action).  
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Figure 4.1.1. Floor plan of typical perimeter SMRF building with post-tensioned slab (Section     

A-A shown in Figure 4.1.6). 

When analyzing SMRF buildings with post-tensioned (PT) slabs, the horizontal diaphragm is 

modeled either explicitly by invoking the appropriate geometric constraint or implicitly by 

modeling beams and/or slab with rotational hinges and a de-coupled axial spring with high 

elastic stiffness. Thus, the implied notion of common design practice is that axial slab rigidity in 

the presence of PT slab would suppress the beam growth – at least to a level where the beam 

growth itself would not impose additional column shears or deformations. Laboratory tests of 

beam-slab subassemblies, however, have indicated that reinforced concrete slab without 

prestressing does not provide restraint against beam axial elongation (Restrepo 1993). On other 

hand, the compressive stress added by post-tensioning in the slab is assumed to provide 

sufficient resistance to the beam axial elongation, but no experimental study has confirmed the 
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extent of this restraint from post-tensioned slabs of common SMRF frame arrangements used in 

the United States. 

The present numerical investigation is aimed at two goals. First, a short numerical exercise is 

used to show that allowing for beam to elongate is imperative to beam ductile response. The 

second is to demonstrate the effect of slab post-tensioning on beam elongation under for the 

lower and upper bound of prestress levels typically used in SMRF construction. Both topics are 

addressed using the same archetype beam models as described next. 

4.1.1 BEAM SECTION CONFIGURATIONS 

Three different beam-slab configurations shown in Figure 4.1.2 are considered. The first is the 

Plain Beam (Figure 4.1.2 [a]) and represents a SMRF beam cast with no slab. This configuration 

served as the basis for numerical model development in Chapter 3 and is used here to 

demonstrate the implications of suppressing the beam elongation (described in Section 4.1.2). 

The dimensions, reinforcement layout, and material properties were selected to match the Beam 

2 in Chapter 2 which was used to validate the numerical model. This beam cross section was 30 

in. x 48 in. and contained five No. 11 longitudinal bars both at the top and the bottom, resulting 

in longitudinal reinforcement ratio  =' = 0.59%. Measured yield strength of steel was fy = 73 

ksi and concrete compressive strength was f'c = 6.1 ksi. The beam was tested in cantilever 

configuration with actuator force applied 150 in. from beam support, resulting in the shear span 

ratio 3.1.  

(a) Plain Beam (b) Beam w/ RC slab (c) Beam w/ PT slab
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Figure 4.1.2. Three beam configurations considered. 

Portion of the slab cast monolithically with the beam acts as a beam flange and increases the 

beam flexural stiffness and strength. Two additional SMRF beam configurations are used to 

investigate the effects of slab and also post-tensioning on the elongation of the beam and the 

results are presented in Section 4.1.3. The two configurations are shown in Figures 2(b) and (c) 

and comprise of the beam identical to Plain Beam (Figure 2[a]), but considering the portion of 

the monolithically cast reinforced concrete slab without and with post-tensioning, respectively. 

As the two limiting values, this study considers effects of slab post-tensioned to provide 125 ksi 

and 400 ksi slab prestress.  
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When the slab is cast only on one side of the beam, such as in the perimeter SMRF beams, the 

slab overhang acting as a flange is approximated by the ACI 318 as the minimum of 6ts (ts = slab 

thickness), one half the clear distance to next web, or one-twelfth the span length of the beam. In 

all cases where slab is considered (Figure 2[b] and [c]), the size of the slab considered as the 

effective flange width is computed in accordance with the ACI 318-14, which results in the 25 

in. overhang and 55 in. overall effective beam flange width. ACI 318 states that this does not 

apply to prestressed concrete slabs, however, it is deemed reasonable in this study to estimate the 

effective flange width of the beam using the same expression.  

4.1.2 IMPLICATIONS OF AXIAL DEFORMATION RESTRAINT ON CYCLIC RESPONSE 

The purpose of this section is to demonstrate that allowing for beam to elongate is imperative to 

beam ductile response. A numerical model of Plain Beam (Figure 4.1.2[a]) used for this exercise 

is shown in Figure 4.1.3. The beam model consists of two distributed plasticity elements 

(Elements 1 and 2) restrained from axial deformation by a pin support at Node 3, as shown in the 

schematics in Figure 4.1.3. All three degrees of freedom at Node 1 are also fixed. The zero-

length element representing the bar slip is not included in this portion of the study in order to 

avoid numerical deformation localization, as will become clear shortly. The length of Element 1 

is 48 in., while the length of Element 2 is 102 in. Each of the two elements contains 2 numerical 

integration points. Thus, the first integration point of Element 1, which represents the plastic 

hinge region of length lp, has a tributary length of lp = hb/2 = 24 in. Both elements have 

corotational formulation. 

2l

Distributed Plasticity
Elements

L  - 2l

Element 2

L

Element 1

Node 1 Node 2
Node 3

(restrained in
x-direction)

Loading
Direction

x

y

z

p pb

b

 
Figure 4.1.3. Numerical model of beam restrained from elongating. 

Figure 4.1.4(a) and (b) plot the beam rotation versus the axial force and moment, respectively, 

resisted by the beam undergoing deformation cycles of increasing amplitude while being 

prevented from elongating along the neutral chord position. The cyclic displacement history 

discussed in Chapter 2 and shown in Figure 2.6.1 is applied to Node 3. For comparison, Figure 

4.1.4 [b] shows also the moment-rotation response for the Plain Beam if it is allowed to dilate 

axially. While the longitudinal tension reinforcement in the unrestrained beam yields around the 

beam rotation of 0.003, the restrained beam does not reach the "yield" point until the 

approximate rotation of 0.008 (Figure 4.1.4[b]). For the cycles corresponding to beam rotation 

amplitude less than approximately 0.008 the resisting axial force and moment in the restrained 

beam are increasing with the increasing drift. The increase in the flexural resistance occurs as a 

result of the increase in axial force within the beam, which acts as a tension-controlled member 
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up to the point where axial load causes the concrete to crush before the yielding of tension steel 

occurs.  

Upon reaching the chord rotation of 0.008, concrete fibers within the plastic hinge begin to 

soften and the beam begins to lose the axial and flexural resistance. This means that the beam is 

not responding as a tension-controlled member. Rather, brittle failure with concrete crushing as 

the yielding mechanism occurs at relatively small rotation levels implying low, if any, ductility 

in the beam (Figure 4.1.4[b]). Looking at the Figure 4.1.4[b], may lead one to think that the 

restrained beam cyclic response would follow that of the unrestrained beam once the crushing 

occurs at 0.008 rotation, as the two response curves converge for rotation amplitudes exceeding 

0.01. However, this would likely not be true, because in the physical specimen, the loss of 

concrete core would lead to longitudinal bar buckling, or shear sliding along the plane where 

concrete was crushed, or another failure mode, which was not considered in this numerical 

model. Thus, the response curve of restrained beam shown in Figure 4.1.4[b] is only to be used 

for conceptual understanding of how the beam behavior may be affected by the axial restraint. 

 

 
Figure 4.1.4. (a) Axial force and (b) moment resisted by a beam during lateral deformation cycles 

with suppressed axial deformation. 
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This numerical exercise underlines two important points. Restraining the beam from 

elongating during nonlinear cyclic response would lead to brittle failure that is controlled by the 

concrete crushing, rather than the steel yielding. Consequently, the ductile response of the beam 

is inherently accompanied by the axial dilation and thus this phenomenon will be present in any 

reinforced concrete SMRF deforming nonlinearly under seismic forces.  

In most frame tests reported in literature, where the columns are under relatively low axial 

load and have smaller sections, the axial stiffness of the elongating beam is higher than the 

flexural stiffness of the columns and the beam pushes the columns out. In tall RC SMRFs 

column sizes often reach or exceed 48 in. depth and carry large compressive load both due to 

gravity and lateral load-induced overturning moment. Thus the columns of tall SMRFs are 

notably stiffer and may largely restrain the beams from axial elongation, impacting the SMRF 

beam ductility. This, however, is dependent on the concrete confinement level within the beam 

and the relative strengths of beams and columns, so conclusions cannot be made based only on 

numerical simulations. Laboratory tests are needed to examine the performance of beams and 

columns under kinematic interaction in tall SMRFs. 

4.1.3 BEAM RESPONSE TO CYCLIC LOADING IN THE PRESENCE OF PT SLAB 

This section focuses on investigating the extent to which the PT slab cast uniformly with the 

beam affects the beam elongation. This is done by comparing the cyclic response of several 

variations of two section configurations shown in Figure 4.1.2: a) beam with cast-in-place slab, 

which provides a baseline response for comparison (shown in Figure 4.1.2[b]), b) the same beam 

with added post-tensioning of fpc  = 125 psi on the slab (shown in Figure 4.1.2[c]), and c) the 

same beam with increased post-tensioning of fpc  = 400 psi (also shown in Figure 4.1.2[c]). The 

schematics of a numerical model used in this investigation in shown in Figure 4.1.5.  
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Figure 4.1.5. Numerical model schematic. 

Numerical model of the cross section has the same characteristics described in Section 3.4 

(Chapter 3), using ReinforcingSteel and Concrete03. The PT tendon depicted in Figure 4.1.2(c) 

is not explicitly modeled; rather, an axial force producing the stress avg is imposed on the beam 

and is held constant during all cycles of deformation. The stress avg is related to the slab 

prestress, fpc, as avg = fpc(Aslab/Atotal) where Aslab and Atotal signify the cross-sectional area of the 

slab only, and slab including the beams, respectively, as shown in Figure 4.1.6. 
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Aslab

Atotal

Section A-A

perimeter SMRF beam (typ.)

 
Figure 4.1.6. Definition of the slab area and the total cross section area of slab and beams. See 

Figure 4.1.1. for reference on the floor plan. 

The beams with three different cross section variations are first subjected to a monotonically 

increasing tip displacement and the response is logged in plots shown in Figure 4.1.7. As a 

reference, the plot in the figure shows also the monotonic moment-rotation curve for a Plain 

Beam (Figure 4.1.2[a]). The presence of reinforced concrete slab only slightly alters the beam 

strength, as can be seen in Figure 4.1.7. The additional post-tensioning stress causes the beam 

initial stiffness to increase, and also results in larger flexural yield strength of the beam. For the 

beam and slab configuration at hand (see Figure 4.1.2[b] and [c]), the post-tensioning stress of 

125 psi increases the yield moment by a factor of 1.15, while the post-tensioning stress of 400 

psi increases it by a factor of 1.5.  

There is an important implication in this observation. SMRF reinforced concrete beams are 

designed for shear based on capacity design principles which assume that the beam has reached 

its moment strength at both ends, and thus the ultimate shear Vu = Vpr is computed as: 

,1 ,2

2

pr pr u n
pr

n

M M w l
V

l


   4.1 

Where Mpr,1 and Mpr,2 are the probable moment strengths at either end of the beam, ln is the 

beam clear span, and wu is the distributed gravity load calculated using the appropriate load 

combination. Based on the observations made in Figure 4.1.7, for a range of post-tensioning 

levels, the Mpr of the beams considered in this study increases by a factor ranging between 1.15-

1.5. Thus, the design shear in the beams is also going to increase in the presence of post-

tensioned slab. To avoid potential shear failures in SMRF beams, it is important to consider the 

Mpr levels developed in the beams after the post-tensioning is applied. 

Next, the three beams are subjected to a cyclic loading history plotted in Figure 2.6.1 in 

Chapter 2 and the axial elongation versus the beam rotation is plotted in Figure 4.1.8. Presence 

of reinforced concrete slab results in an elongation that is slightly higher in one loading direction, 

as a result of asymmetry in reinforcement and also the concrete about the neutral axis (note that 

the beam elongation in the nonlinear range is expected to be asymmetric because material fibers 

will exceed elastic strains first in one direction despite the symmetric reinforcement 

configuration). Overall the beam elongation is only slightly affected by the presence of 

reinforced concrete slab with no post-tensioning. 

The addition of 125 psi prestress decreases the level of beam elongation at a neutral position 

(zero rotation) to 0.6 of the elongation in the same beam with no PT slab present. However the 

elongations are reduced only by 10% at the maximum beam rotation (Figure 4.1.8). Further 

increase of post-tensioning to 400 psi results in reduction of beam elongation at a neutral 
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position to 0.18 of the elongation when no post-tensioning is present. This increased post-

tensioning leads to only 25% reduction in beam elongations occurring at the extreme beam 

deflections (Figure 4.1.8).  

 
Figure 4.1.7. Moment-rotation response variation with presence of slab and post-tensioning. 

 
Figure 4.1.8. Axial elongation variation with presence of PT slab. 
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The trends observed are consistent to those obtained experimentally for RC beams with 

constant nonzero axial force applied (Issa et al. 1997, Matti et al. 1998, Cooper et al. 2005). 

Thus, it is clear that the common range of axial compression in beam provided by the post-

tensioned slab does not suppress the beam growth, contrary to the common assumptions in the 

current U.S. design practice.  

 

4.2 IMPACT OF BEAM ELONGATION IN MULTI-BAY FRAMES 

Previous studies (Kabeyasawa et al. 2000) found that the additional shear force in the exterior 

columns imposed by the elongating beam is affected by the number of bays and beam depth. To 

examine the effect of beam elongation on column shear distribution in multi-bay reinforced 

concrete frames in the context of US state of practice, a series of single story RC frame 

numerical models are subjected to pushover analyses. One of the archetype frames was also 

subjected to post-tensioning force in order to examine the extent to which a presence of a PT slab 

would alter the shear distribution in the columns impacted by a beam elongation. 

 

 
 

Figure 4.2.1. Frame geometry of single-story multi-bay model frames. 

The archetype structures selected for this short parametric study consist of 1-, 2-, 3-, and 4-

bay single story frames, depicted in Figure 4.2.1.  All frames measure 12 ft (144 in.) in height 

(Hframe) and have bays that have length of Lbay = 30 ft The dimensions of the beams and columns 

are selected to represent those encountered in taller SMRF buildings, rather than those typically 

selected in single-story structures. All beams are identical in cross-section size and strength and 
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have been assigned the properties of Beam 2 studied in Chapter 2. That is, the beam cross section 

measures 30 in. x 48 in. and has the same amount of longitudinal reinforcement (ρl = 0.0058), 

with all the material properties matching those in Beam 2. Because the bay length is twice as 

long as the cantilever Beam 2 discussed in Chapter 2, the beams in single-story archetype frames 

also have the same shear span ratio of 3.1. The columns of all four frames have square cross 

sections which measure 48 in. x 48 in. The concrete properties in columns were also selected to 

match the average concrete strength of Beam 2 (Chapter 2). 

4.2.1 KINEMATIC RELATIONS FOR HORIZONTAL BEAM ELEMENTS IN FRAMES 

UNDER SMALL DISPLACEMENT LINEARIZATION 

To aid the discussion presented in this chapter and also in Chapters 5 and 6, basic kinematic 

relations between the beam deformations and the global displacements of a planar frame 

structure are defined here. Figure 4.2.2 shows a single story one-bay frame displacing in a simple 

sidesway motion. The nodes are shown as black squares and the undeformed structure is shown 

with a dotted line. The tangent lines to the deformed beam shape at each node are also drawn 

with a dotted line. Terms U1-U6 represent the global degrees of freedom (DOFs) at the nodes 

with no restrained motion; those corresponding to the nodes at the base of the structure are 

omitted from the diagram for clarity. The arrows corresponding to DOFs point in the positive 

direction for each degree of freedom.  

Beam deformations are defined as follows: vε is the axial deformation, vi and vj are the beam 

chord rotations at ends i and j, respectively. Chord rotations are defined as the angle between the 

element chord (defined as the line segment connecting the structural nodes in the deformed 

state). The chord rotations vi and vj as depicted in Figure 4.2.2 show the elastic deformations of 

the beam, but they refer to total beam chord rotation which also contains a plastic hinge rotation 

upon beam yielding. The vi and vj correspond to rotations θ = Δ/Lbeam in a cantilever beam 

laboratory setup, such as the one in Beam 1 and Beam 2 discussed in Chapters 2 and 3. 

 
Figure 4.2.2. Kinematics of a beam in a two dimensional frame. 

Under the small displacement assumption, the basic kinematic relations for a beam in a 

structure in Figure 4.2.2 are the following:  
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When joint rigidity is taken into account by including the rigid offsets of length lr in the beam 

at both ends, as shown in Figure 4.2.3, the compatibility equations for beam chord rotations 

under small displacements approximation become: 
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where Lbeam = Lbay – 2lr. Here it is assumed that the rigid offsets at both ends have equal lengths, 

which is the case in all frames considered in this dissertation. 

 

 
Figure 4.2.3. Kinematics of a beam in two-dimensional frame with the presence of rigid offsets. 

4.2.2 NUMERICAL MODELS 

All analyses are performed on OpenSees. The schematics of the numerical models employed for 

this parametric study are shown in Figure 4.2.4. The first model, shown in Figure 4.2.4(a), serves 

as a basis for frame behavior with no beam elongation impact. It is used only to compare the 

single story frame behavior of a one-bay frame, as discussed in Section 4.2.3. The second model, 

shown in Figure 4.2.4(b), is used for all other analyses, where beam elongation is taken into 

account.  

In both frame model types shown in Figure 4.2.4, columns are represented with elastic 

elements to isolate the effect of kinematic interaction of beam and columns. That is, the flexural 

stiffness of the exterior columns will not be affected by the difference in axial load, and thus the 
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columns will resist the same shear if displaced by the same amount at the top joint (in both 

translation and rotation). The flexural section stiffness of the elastic elements representing the 

columns is EcIeff = 0.5EcIg, which is the value typically assigned in elastic analysis of reinforced 

concrete columns. Modulus of elasticity of concrete Ec is arbitrarily selected to match that 

measured in Beam 2 in Chapter 2. Neither frame model considers the joint rigidity, i.e. the beams 

do not have rigid offsets at either end. 

 
Figure 4.2.4. Schematic of a numerical model: (a) "control" frame with no beam elongation 

simulated and (b) frame with simulated beam elongation (each tributary length of the beam 

element integration point is hatched with a different color). 

In the first frame model (Figure 4.2.4[a]), beam is represented with an elastic Euler-Bernoulli 

element in series with the nonlinear rotational springs at beam ends. Both the elastic frame 

element and the nonlinear springs were calibrated in Chapter 3 to adequately simulate the 

nonlinear response of the reinforced concrete beam with the design parameters selected in this 

study. For details on calibration of this beam model, refer to Section 3.8 in Chapter 3. 

In the second frame model (Figure 4.2.4[b]), beams are represented with force-based beam-

column element using fiber sections. The element is discretized with 5 Gauss Lobatto integration 

points along the element length, such that the end points have tributary length of 0.05Lbeam. For 

the given beam dimensions, this corresponds to 0.31hb (hb = beam height) as is generally in the 

range of the plastic hinge lengths observed in physical specimens. The fiber section 

discretization is described in Section 3.4 and depicted in Figure 3.4.1. Present model considers 
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steel model based on Giufre-Menegotto-Pinto formulation, which is discussed in Section 3.4.1. 

Concrete is modeled with Concrete03 with stress-strain relationship assumed as perfectly plastic 

once peak compressive stress is reached in order to avoid numerical localization problems, 

discussed in Section 3.4.2 in Chapter 3. The effects of reinforcement slip from the columns are 

considered using the zero-length section element with fiber discretization, as described in 

Section 3.6 in Chapter 3.  

Archetype frames are subjected to a monotonically increasing lateral load using displacement 

control algorithm to a maximum story drift ratio measured at the horizontal DOF in the leftmost 

column (labeled as Column 1 in Figure 4.2.1), where the displacement is monitored during the 

analysis. Reference load is assigned to all horizontal DOFs, as shown in Figure 4.2.1 and gravity 

load is not assigned to any of the frames.  

4.2.3 BEAM ELONGATION IMPACT IN A SINGLE-BAY ARCHETYPE FRAME 

This portion of the investigation considers a single-bay frame response to monotonic pushover 

with and without consideration of beam axial lengthening. The frame models shown in Figure 

4.2.4 are analyzed under increasing lateral displacement up to 0.04 story drift ratio, defined as 

the displacement U1 (see Figure 4.2.2) normalized by the height of the frame, Hframe = 144 in.  

 
Figure 4.2.5. Comparison of column shear developed in single-story frames with and without 

considering the kinematic interaction of elongating beam with the columns. 

Figure 4.2.5 plots the shear force in the columns of the single-story frame as a function of a 

horizontal story displacement. The column shear is identical in both Columns 1 and 2 when 

beam elongation is not considered. When beam elongation is modeled, the shear in the column 

on the compression side of the frame (Column 2), Vcol,2, increases compared to the column shear 

Vcol,1 on the tension side of the frame (Column 1). The difference in shear force between the two 
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columns also increases with the lateral drift. It should be noted that the total resisting shear in a 

single story frame (Vframe = Vcol,1 + Vcol,2) is higher in the frame with a distributed plasticity beam 

model, which is due to differences in beam stiffness computed with different numerical models, 

and not the function of beam elongation.  

To analyze the beam elongation impact on frame structures, results from the pushover 

analysis of a single story frame considering beam elongation are studied further. Figure 4.2.6 

plots the joint displacements as a function of lateral drift measured at a joint at the Column 1 on 

the left of the frame (DOF labeled as U1 in Figure 4.2.2). The horizontal translations of DOFs U1 

and U2 are plotted in Figure 4.2.6(a), while the rotations at DOFs U3 and U6 are shown in Figure 

4.2.6(b). As evident in these plots, the beam lengthening causes the lateral translations to 

increase at the joint on top of Column 2. Column 2 is thus further displaced to the right, causing 

larger rotations at the top (DOF U6), than those experienced by Column 1 at the top (DOF U3). 

 
Figure 4.2.6. Difference in node displacements at columns 1 and 2: (a) horizontal translational 

DOFs and (b) rotational DOFs. 

The relative difference in the joint rotations at the two columns leads to different levels of 

beam chord rotations at ends i and j, as shown in Figure 4.2.7. Thus, the beam does not bend in 

anti-symmetric fashion anymore, and the difference between the chord rotations at beam ends 

increases with the increasing lateral drift. As a reference, in addition to total beam chord rotation 

at either end, Figure 4.2.7 also plots the portion of beam rotation attributable to longitudinal 

reinforcement slip from the joint.  

Figure 4.2.8 plots the total elongation of the beam on either side of the counter-flexure point 

as a function of the total beam chord rotation. To verify that the elongation levels computed with 

the numerical model of the single-story frame are representative of the levels that may be 

expected in a physical structure, Figure 4.2.8 also plots the beam elongation - chord rotation 

curve obtained from Beam 2 laboratory test (Figure 2.8.22, Chapter 2). The curves agree well for 

the rotations shown. 
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Figure 4.2.7. Difference in beam chord rotations at ends i and j. 

 
Figure 4.2.8. Beam elongation as a function of chord rotations at ends i and j. 

Another direct cause of beam elongation is the increase in beam axial force. This is shown in 

Figure 4.2.9, which plots the beam axial force Nu normalized with Agf’c as a function of lateral 

drift U1/Hframe. ACI 318 defines beam-column elements as those with axial compression 
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turn, causes larger beam shears transferred to columns, and thus increased axial forces on 
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increase in axial load results in increased moment capacity. This is illustrated in Figure 4.2.10, 
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reference, when a constant axial load of -0.07Agf’c is imposed on a beam (negative sign indicates 

compression). The moment overstrength increases with increasing beam rotations, which are in 

proportion to increasing lateral drifts, and thus, the beam axial lengthening. At the beam rotation 

0.04, the beam moment capacity is about 1.2 times the strength when no beam elongation is 

considered in the model. 

 
Figure 4.2.9. Increase in axial force in beam as a result of elongation. 

 
Figure 4.2.10. Increase in beam moment overstrength as a result of elongation. 

0 0.005 0.01 0.015 0.02 0.025 0.03

-0.1

-0.08

-0.06

-0.04

-0.02

0

U
1
/H

frame

N
u
/A

g
f'
c

0 0.01 0.02 0.03 0.04 0.05 0.06
0

1000

2000

3000

4000

5000

b
e
a
m

 e
n

d
 m

o
m

e
n

t 
(k

ip
-f

t)

beam rotation (rad)

 

 

end i

end j

cantilever beam moment-rotation with no axial load

cantilever beam moment-rotation with -0.07A
g
f 'c axial load



113 

 

4.2.4 COLUMN SHEAR IN MULTI-BAY FRAMES 

This section illustrates the way that the axial beam lengthening affects the distribution of the 

shear forces in columns. Numerical models of frames with 1, 2, 3, and 4 bays (Figure 4.2.1) are 

investigated under a monotonically increasing lateral loads. As before, the control DOF for 

lateral displacements is the horizontal translation at the leftmost column (labeled with number 1 

in each of the frames depicted in Figure 4.2.1). All frames are represented with the numerical 

model described in Figure 4.2.4(b), which utilizes fiber sections in beams with the material 

properties as described before. 

 
Figure 4.2.11. Column shear forces during pushover analysis in frames with: (a) one bay, (b) two 

bays, (c) three bays, and (d) four bays. 
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When no beam elongation is present, the interior columns in a planar moment frame structure 

with bays of equal lengths carry approximately the same shear, and each of the exterior columns 

carries roughly a half of the shear of the interior columns. Figure 4.2.11 shows the column shear 

forces versus the story drift computed during the pushover analysis of the frames. Each plot also 

shows the average column shear Vavg, which is defined as the total base shear divided by the 

number of columns and serves as a reference curve to illustrate the variation in shear force 

among the columns.  

The curves plotted in Figure 4.2.11(a) are identical to those in Figure 4.2.5 corresponding to 

frame with axial beam lengthening. The curve Vavg in the case of a one-bay frame corresponds to 

a column shear if there were no beam elongation present. In all frames, it is evident that beam 

elongation alters the distribution of the column shear from what would be expected if no 

elongation was considered. Beam lengthening counteracts the lateral displacements on the 

tension side of the frame and causes the exterior columns on that side to have smaller shear 

forces that would be expected otherwise. The opposite holds true for the exterior columns on the 

compressive side, as discussed before. Beam elongation also impacts the interior columns, as can 

be seen in the varying shear between the interior columns in Figure 4.2.11(c) and (d). 

 
Figure 4.2.12. Impact of number of bays on the exterior column shear amplification due to 

kinematic interaction between the elongating beam and the column. 

Figure 4.2.12 plots the amplification of exterior column shear under compression, as a 

function of lateral drift and number of bays. The y-axis represents the exterior column shear 

developed when beam elongation is present, versus the exterior column shear of the same frame 

undergoing the same motion, but with no beam elongation considered. Clearly, the shear 

amplification increases with number of bays, as also noted by others (Kabeyasawa et al. 2000). 

In 3- and 4-bay frames, which are typically employed in SMRF construction, the exterior column 

shear can be amplified by a factor of 1.4 and 1.5 due to the presence of beam elongation only. 
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Interior columns located directly next to the exterior columns under compression are also 

impacted, but less severely (Figure 4.2.13). 

 

  
Figure 4.2.13. Impact of number of bays on the first interior column shear amplification (on 

compressive side of the frame) due to kinematic interaction between the elongating beam and the 

column. 
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elongation should be considered in numerical modeling in order to more accurately compute 
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has been demonstrated, that the beam elongation has similar level of impact on column shear 

regardless of whether the floor slabs have been post-tensioned or not. 

 
Figure 4.2.14. Effect of post-tensioning on shear distribution in columns of RC frame impacted 

by beam elongation. 

 
Figure 4.2.15. Impact of post-tensioning on the exterior column shear amplification due to 

kinematic interaction between the elongating beam and the column. 
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4.3 CONCLUSIONS 

The present chapter illustrates simple techniques for simulating axial elongation of a reinforced 

concrete beam – a deformation component usually overlooked in the current analysis and design 

practice in the United States. Modeling approach that is based on the use of distributed plasticity 

elements with fiber section discretization containing path-dependent hysteresis materials was 

shown to provide acceptable level of elongation estimate under cyclic beam loading. Short 

numerical exercise demonstrated that suppressing the axial elongation of a beam may lead a 

brittle beam response. In addition, it was demonstrated that under all practical levels of post-

tensioning in the slabs cast uniformly with the perimeter SMRF beams, the elongation was only 

slightly reduced by the slab post-tensioning, and thus the post-tensioned slabs would not prevent 

the beam elongation from impacting the column shear.  

A parametric numerical exercise consisting of single-story frames with varying number of 

bays showed that exterior column shear induced by beam elongation increases with the 

increasing number of bays. For the frames studied in this chapter, under sidesway frame 

deformation, beam elongation lead to column shear 50% higher than the column shear computed 

if beam elongation was disregarded. Further experimental investigation is necessary to better 

understand the implications of beam growth phenomenon on seismic performance of tall 

buildings with common SMRF-slab configurations. 
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CHAPTER 5 
5 5 

SEISMIC RESPONSE OF 20-STORY TALL REINFORCED 

CONCRETE BUILDINGS WITH SPECIAL MOMENT RESISTING 

FRAMES  
 

 

Construction of buildings exceeding 160 ft in height, referred herein as "tall," is increasing in 

earthquake-prone regions of the United States and worldwide (Emporis 2012).  Reinforced 

concrete (RC) special moment resisting frames (SMRFs) are commonly selected as the seismic 

force-resisting system in such buildings. Considerable damage of 10- to 20-story reinforced 

concrete frame buildings in past earthquakes has been reported, including the 1995 M6.9 Kobe, 

Japan earthquake (Otani 1999), the 1999 M7.6 Chi-Chi, Taiwan earthquake (Tsai et al. 2000), 

and the M6.3 2011 Christchurch, New Zealand, earthquake (Elwood et al. 2012). The occurrence 

of damage suggests potential vulnerability of these systems, and warrants study to better 

understand design requirements.  

Several groups have described performance expectations, analysis requirements, and 

proportioning and detailing requirements tailored to tall buildings (SEAONC 2007, Moehle et al. 

2008, Willford et al. 2008, TBI 2010, Moehle et al. 2011, LATBSDC 2011).  In the U.S., design 

forces for reinforced concrete SMRFs typically are calculated using the modal response spectrum 

analysis (MRSA) method with response modification factor R = 8 (ASCE 2010) and with 

individual modal responses combined using either the square root of the sum of squares (SRSS) 

or the complete quadratic combination (CQC) modal combination rules. The RC SMRF itself is 

subsequently proportioned and detailed in accordance with requirements of ACI 318 (ACI 2011). 

Typical design practice in frame buildings aims to reduce the likelihood of localized story 

mechanisms by detailing frame elements to follow a strong column-weak beam philosophy. In 

ACI 318, the sum of column nominal moment strengths is required to be equal to at least 1.2 

times the sum of beam nominal moment strengths at every beam-column joint, except the roof 

where column axial forces are small and consequences of column yielding are minor. 

Recognizing that this approach cannot preclude inelastic flexure in columns, ACI 318 requires 

confinement reinforcement in columns above and below every beam-column joint. 

Kuntz and Browning (2003) showed that inelastic deformations may occur in the columns 

above the base level of multi-story frames designed to satisfy the strong-column weak-beam 

requirement of ACI 318. The occurrence of column yielding above the base in SMRFs satisfying 

U.S. design requirements is in accord with more recent findings by Haselton et al. (2011) noting 

also that the predominant collapse mechanism was a partial collapse engaging only several floors 

and including column yielding above the base.  

Several other studies of dynamic response of multi-story frame buildings have been reported. 

Pettinga and Priestley (2005) investigated analytically the response of reinforced concrete frame 

buildings up to 20 stories tall, designed with a displacement-based design method. This study 

noted the significant contribution of higher modes to the forces and story drifts along the 

building height, and proposed approaches to calculate design shear forces and bending moments 

accounting for higher-mode effects. Barbosa (2011) reported a study of a 13-story wall-frame 
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system with SMRFs design to resist all of the seismic forces in one direction, noting that system 

shear demands were higher than those obtained from the equivalent lateral force procedure as 

described in ASCE 7. Moehle et al. (2011) studied numerically a 42-story dual system consisting 

of a reinforced concrete core wall and perimeter SMRFs designed to resist 25% of the total 

lateral seismic force as required by prescriptive code criteria in the U.S. The study found column 

axial forces well in excess of values indicated by the design analysis, but none of the force or 

deformation demands exceeded available capacities. 

Numerical studies investigating the response of steel moment frames around 20 stories tall 

(Hall et al. 1995, Hall 1998, Alavi and Krawinkler 2004, Krishnan 2007, Muto and Krishnan 

2011) have indicated that strong pulse-type near-fault excitations cause significant inelastic 

deformation demands in frame elements that may exceed available capacities. Thus, it is 

important to consider appropriate ground motion characteristics when studying performance 

potential of a seismic force-resisting system. Thus far, the number of numerical studies of the 

inelastic response of tall RC frames subjected to near-fault ground motions is limited (Liao et al. 

2001, Akkar et al. 2005).    

This chapter investigates the seismic response of four 20-story tall RC SMRFs designed in 

accordance with ASCE 7 and ACI 318 code provisions and subjected to strong earthquake 

excitation. Analytical models of the buildings are developed for nonlinear dynamic analysis. 

These are subjected to a set of ground motions scaled to two different smoothed design response 

spectra representing the design earthquake (DE) and the maximum considered earthquake 

(MCE) hazard levels. The results of analyses are quantified in terms of global response (story 

drifts, story shears, etc.) and local response (column shears, axial loads, longitudinal 

reinforcement strain).  The forces computed in the nonlinear dynamic analysis are then compared 

to the forces calculated using MRSA described in ASCE 7.  In addition, two methods for 

estimating design column shears described in ACI 318 are evaluated. 

5.1 BUILDING DESCRIPTION 

The four buildings considered in this study have the same plan and elevation view (Figure 5.1.1). 

They have two reinforced concrete special moment resisting frames (SMRFs) as the seismic 

force resisting system in each of the two principal directions of the buildings. Each SMRF is 

located at the perimeter and has four bays (each 21 ft long) and 20 stories (each 12 ft tall). Total 

building height is H = 144 ft. In this study, reference will be made to various column lines in the 

SMRFs. Column lines A and E (1 and 5) are designated “exterior columns,” column lines B and 

D (2 and 4) are designated “interior columns,” and column line C (3) is designated the “middle 

column” (see Figure 5.1.1). 

Two frame types are considered. Type A has column size and longitudinal reinforcement ratio 

that decrease along height, while Type B has uniform column size and reinforcement ratio over 

building height. The beams are identical in both frame types, with smaller beams in levels 11-20 

than in levels 1-10. One Type A building is considered, designated A20-1. Three Type B 

buildings are considered, designated B20-1, B20-2, and B20-3. Table 5.1 lists beam and column 

dimensions as well as the longitudinal and transverse steel ratios of the studied buildings. In 

building A20-1, column dimensions are constant from levels 1-10, with reduced dimensions in 

levels 11-20.  Column longitudinal reinforcement is curtailed at levels 6, 11, and 16, as listed in 

Table 5.1. In building B20-1, column size and longitudinal reinforcement in every story are the 

same as those used in the first story of building A20-1. Buildings B20-2 and B20-3 are identical 
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to B20-1 except the size and longitudinal steel ratio are different for the exterior columns (see 

Table 5.1).  

 

Figure 5.1.1. (Left) Elevation and (Right) floor plan of buildings considered. 

5.2 SEISMIC HAZARD AND GROUND MOTION SELECTION 

The studied buildings are considered to be at a site in Los Angeles, California, with soil type D 

(ASCE, 2010). The site seismic hazard and corresponding smooth design spectra were 

determined in accordance with ASCE 7 at both DE and MCE levels. A set of fourteen ground 

motions was selected and linearly scaled such that the mean spectrum approximately matches the 

smooth design spectra over the period range of interest. The ground motion set consisted of fault-

normal components of near-fault pulse-type ground motions affected by directivity effects. 

Individual ground motion information and scale factors are listed in Table 5.2.   
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Table 5.1. Frame element sizes and steel ratios (b = width, h = height, l = longitudinal reinforcement 

ratio, t = transverse reinforcement ratio). Note: * = t in first-story column only. 

  A20-1 B20-1 B20-2 B20-3 

zone 1 2 3 4 1 2 1 2 1 2 

stories 1-5 6-10 11-15 16-20 1-10 11-20 1-10 11-20 1-10 11-20 

b
ea

m
 

b (in.) 24 24 24 24 24 24 24 24 24 24 

h (in.) 42 42 36 36 42 36 42 36 42 36 

l (%) 2.2 2.2 1.8 1.8 2.2 1.8 2.2 1.8 2.2 1.8 

t (%) 1.0 1.0 0.9 0.9 1.0 0.9 1.0 0.9 1.0 0.9 

ex
te

ri
o

r 
 

co
lu

m
n
 

b (in.) 48 48 42 42 48 48 60 60 72 72 

h (in.) 48 48 42 42 48 48 60 60 72 72 

l (%) 2.8 1.1 1.1 1.0 2.8 2.8 2.0 2.0 1.7 1.7 

t (%)
  2.1* 

1.2 
1.2 1.2 1.2 

  2.1* 

1.2 
1.2 

  1.9* 

1.2 
1.2 

  1.9 * 

1.2 
1.2 

in
te

ri
o

r/
 m

id
d

le
 

co
lu

m
n
 

b (in.) 48 48 42 42 48 48 48 48 48 48 

h (in.) 48 48 42 42 48 48 48 48 48 48 

l (%) 1.5 1.0 1.1 1.0 1.5 1.5 1.5 1.5 1.5 1.5 

t (%)
  1.9* 

1.6 
1.6 1.6 1.6 

  1.9* 

1.6 
1.6 

  1.9* 

1.6 
1.6 

  1.9* 

1.6 
1.6 

 

 
  Table 5.2. Near-fault pulse-type ground motions and their scale factors.  

No. Mw Year Event Station 

Scale Factor 

DBE MCE 

1 6.5 1979 Imperial Valley El Centro Differential Array 1.35 2.02 

2 6.7 1987 Superstition Hills Parachute Test Site 0.59 0.89 

3 6.9 1989 Loma Prieta LGPC 1.67 2.50 

4 7.3 1992 Landers Lucerne 1.29 1.93 

5 6.7 1994 Northridge Newhall – Fire Station 1.67 2.50 

6 6.7 1994 Northridge Sylmar Olive View Med FF 0.71 1.06 

7 6.7 1994 Northridge Jensen Filter Plant 0.46 0.70 

8 6.7 1994 Northridge Rinaldi Receiving Sta 1.02 1.53 

9 6.7 1994 Northridge Sylmar Converter Station 0.77 1.16 

10 7.6 1999 Chi-Chi, Taiwan TCU065 0.50 0.75 

11 7.6 1999 Chi-Chi, Taiwan TCU067 1.35 2.03 

12 7.6 1999 Chi-Chi, Taiwan TCU071 1.67 2.50 

13 7.6 1999 Chi-Chi, Taiwan TCU074 0.75 1.12 

14 7.6 1999 Chi-Chi, Taiwan TCU102 0.78 1.17 

 

Figure 5.2.1(a) and (d) show the mean pseudo-acceleration and displacement spectra of the 

scaled ground motions together with the corresponding DE and MCE design spectra. The mean 

scale factors were 0.88 and 1.32 for the DE and MCE levels, respectively. The rest of Figure 

5.2.1 shows the individual scaled pseudo-acceleration and displacement spectra and their mean 

for the DE and MCE levels. The plots also identify the first two modal periods of building A20-

1, T1 and T2, computed using uncracked section properties with the numerical model described in 

Section 5.4 (These periods are representative of all four buildings, as explained in Section 5.5). 

Very good agreement between the design spectra and the mean response spectra is observed for 
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periods between 0.5 and 4.0 s for both sets of ground motion.  Conditional mean response 

spectra (Baker 2011) were not pursued because response of these tall buildings is strongly 

affected by multiple modes and practical techniques using conditional mean spectra are not 

available for such cases. 

 

 

 

Figure 5.2.1. Design and linear pseudo-acceleration and displacement response spectra of ground 

motions scaled to DE and MCE design seismic hazard levels (= damping ratio). 

5.3 DESIGN OF THE BUILDINGS 

The buildings were designed based on ACI 318-11 and ASCE 7-10 provisions. Dead load was 

172 psf including self-weight of the structure and permanent non-structural components. The 

service floor live load was 60 psf.  Total seismic weight, Wtotal, including 25% of the live load, is 

listed for each building in Table 5.3.  Nominal concrete compressive strength, f'c, was 7.5 ksi, 

and nominal steel yield strength, fy, was 60 ksi.  For the remainder of this paper the design and 

analysis of one of the two SMRFs is considered and discussed for each of the buildings. The 

seismic weight of each of the two SMRFs is W=Wtotal /2. 

 
   Table 5.3. Total seismic weight (per frame) of archetype buildings. 

Building A20-1 B20-1 B20-2 B20-3 

Seismic weight per frame, W (kip) 26140 26780 27070 27430 
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Design forces were determined using the code-prescribed MRSA procedure using SRSS 

modal combination rule with a response modification factor R = 8. The first five modes were 

included in the elastic analysis, which accounted for more than 90% of the modal mass. The 

effective flexural rigidities used for columns and beams were 0.5EcIg and 0.35EcIg, respectively 

(Moehle et al. 2008), where Ig = gross section moment of inertia and Ec = elastic modulus of 

concrete = 4932 ksi. The design base shear force of each SMRF (Vb) for all four buildings was 

controlled by minimum base shear requirements of ASCE 7, resulting in a base shear coefficient 

Vb / W = 5.36%.  The following load combinations, numbered consistent with ASCE-7, were 

considered in the design: 

 

1. 1.4D, 

2. 1.2D + 1.6L, 

5. (1.2 + 0.2SDS)D + 0.5L ± 1.0E, and  

7. (0.9 - 0.2SDS)D ± 1.0E, 

 

where D = dead load, L = live load, SDS = design spectral response acceleration parameter at 

short periods (ASCE 7), and E = earthquake load. 

Beam design shear forces were calculated considering development of probable moment 

strength, Mpr, at both ends of the beam plus the uniformly distributed gravity load. Transverse 

reinforcement in beams comprised No. 5 hoop and a cross tie (with 5/8 in. diameter), spaced at s 

= 4 in. in the lower ten stories and s = 4.25 in. in the upper ten stories. Longitudinal and 

transverse steel ratios (landt) of the beams were identical among the four buildings and are 

listed in Table 5.1. Note that because shear behavior of frame elements is not modeled in these 

archetype buildings, the amount of transverse reinforcement is only used to establish the 

constitutive relationship for confined concrete core (where applicable) and also to provide a 

reader with a reference point on the amount of reinforcement typically required in buildings of 

this size. 

Longitudinal reinforcement in columns was reduced in building A20-1 every five stories but 

was constant in the other three buildings (see Table 5.1). The exterior columns were in the 

transition region between compression- and tension-controlled section at the base, according to 

ACI 318, with 0.3% strain in extreme tensile reinforcement at nominal flexural strength Mn. 

Interior and middle columns were in the tension-controlled region. For all three B20 buildings 

the column longitudinal steel ratio was selected to be uniform along the height. Base exterior 

columns of B20-1 and B20-2 were in the transition region between tension- and compression-

controlled sections (0.3% and 0.49% strain in extreme tensile reinforcement at Mn, respectively), 

while for B20-3 building, the exterior column at the base had a tension-controlled section (0.7% 

strain in extreme tensile reinforcement at Mn). Interior and middle columns were in the tension 

controlled region for all three B20 buildings. 

Column transverse reinforcement of the buildings is categorized within three zones: bottom 

story, second story and stories three to twenty (Table 5.1). The provided transverse 

reinforcement satisfied the shear and confinement requirements of ACI 318. Shear requirements 

based on Method B2 described in Section 5.6 controlled the column design at the bottom story 

for all four buildings. In all cases, for load combination 7, the factored axial compressive force 

was less than Agf'c/20, and therefore the nominal shear strength was calculated considering only 

the contribution of transverse reinforcement (Vs) and ignoring that of concrete (Vc).   
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In all four buildings, column transverse reinforcement comprised a No. 5 hoop and multiple 

No. 5 crossties in each transverse direction, spaced vertically at 4 in. along column height. The 

transverse reinforcement in the two orthogonal directions of the columns was equal and uniform 

along the column height, resulting in a volumetric transverse steel ratio ρs = 2ρt. In all buildings, 

joint shear strength and the strong column-weak beam requirements of ACI 318 were satisfied. 

 

5.4 NUMERICAL MODEL 

The 2-dimensional nonlinear response history analysis (NRHA) described below was performed 

using the Open System for Earthquake Engineering Simulation software platform (McKenna et 

al. 2007, OpenSees 2012). The model consisted of a single SMRF with lumped mass and vertical 

load applied at the joints. Force-based Euler-Bernoulli nonlinear fiber-section frame elements 

with P-Δ geometric transformation were used for all beams and columns, with five and four 

integration points along beam, and column elements, respectively. This modeling approach 

includes axial force - bending moment interaction; interaction between shear force and bending 

moment and/or axial force was not considered. Beam-column joints were modeled with rigid end 

zones in both columns and the beams.  

Based on the Gauss-Lobatto integration used for the nonlinear frame elements, the integration 

weights of the end integration points are 0.05Lb and 0.08Lc, for the total of five and four 

integration points used, respectively.  Here, Lb and Lc signify the clear length of the beams and 

the columns, respectively. Thus, the strain levels reported in this study represent the average 

strain values computed within the 0.05Lb and 0.08Lc from either end of a given element. In 

beams, for example, the strains discussed in the results represent the average values over the 9-

10 in. from the end node of each beam, which is about h/4 where h is the beam depth. For the 

given deformation level, strain values in a physical specimen are expected to be higher. 

Gravity framing was assumed to provide sufficient strength and stiffness to resist P-Δ effects 

under tributary gravity load, but, consistent with the approach of Haselton et al. (2008), the 

gravity framing was assumed to not provide lateral resistance. Gravity loading on frames in the 

numerical model included all of the dead load and 25% of the live load, in accordance with 

ASCE 7. Foundation flexibility was not considered.  Initial stiffness Rayleigh damping with 2% 

damping ratio in modes 1 and 3 was used. Slab effects were not considered in the numerical 

model. 

The numerical models accounted for strain penetration of beam longitudinal reinforcement 

into joints and column longitudinal reinforcement into the foundation. This was modeled using 

fiber-based zero-length section elements as described in Section 3.6.1, Chapter 3. The Menegoto 

Pinto material model, Steel02 (OpenSees 2012), was used to model reinforcing steel and also the 

bar stress-slip relationship in the zero-length section elements. The strain hardening ratio for both 

materials was defined as βsteel = 0.012. The Steel02 material constituitive model accounted for 

material overstrength and thus, the numerical model was specified to have fy = 69ksi. Bar 

buckling and fracture was not considered in the model. Concrete was modeled using the 

Concrete03 material model (OpenSees 2012) with the confined concrete strength f'cc and the 

corresponding strain εcc calculated based on Mander et al (1988). At strain levels exceeding 

concrete strain εcc at f'cc, the concrete stress-strain relationship was modeled as perfectly plastic.   
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5.5 VIBRATION PROPERTIES AND STRENGTH 

The buildings have similar modal characteristics with a first modal period T1 between 1.51 and 

1.60 s and a ratio of first to second mode period T1 / T2 of about 2.9. The effective modal mass of 

the first mode normalized with the total mass M1 / M ranged between 0.73 and 0.75 while the 

corresponding range for the second mode is 0.13 to 0.15. These modal properties are 

summarized in Table 5.4. 

Figure 5.5.1 shows the force-displacement curves up to 4% roof drift ratio obtained from a 

monotonic nonlinear static (pushover) analysis using the first-mode lateral force distribution of 

each of the four buildings. The force-displacement relationships are similar in the effectively 

linear range, with a system base shear of approximately 0.073W at 0.4% roof drift ratio. The 

relations diverge beyond this due to different column flexural strengths.  At 2% roof drift ratio, 

the base shear is between 1.7 and 1.9 times the design base shear of 0.054W, the increase due to 

design factors and section overstrength of the frame members. Figure 5.5.1 also identifies 

instances when the tensile strain in longitudinal steel of base-level exterior columns on the uplift 

side first reaches 0.01, 0.02, and 0.03.  

 

Table 5.4. Characteristics of the first three modes of the buildings considered. 

Mode 

q 

A20-1 B20-1 B20-2 B20-3 

T (s) Mq / M Hq /H T (s) Mq / M Hq/H T(s) Mq / M Hq / H T(s) Mq /M Hq / H 

1 1.75 0.73 0.69 1.76 0.74 0.69 1.71 0.75 0.69 1.67 0.75 0.69 

2 0.61 0.15 0.04 0.61 0.14 0.02 0.58 0.14 0.02 0.57 0.13 0.01 

3 0.33 0.04 0.10 0.32 0.04 0.10 0.32 0.04 0.11 0.31 0.04 0.12 

 

 

Figure 5.5.1. Force-displacement curve for the buildings from first-mode pushover analysis. 
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5.6 RESULTS FROM NONLINEAR RESPONSE HISTORY ANALYSIS 

Representative response quantities obtained from the NRHA are summarized in Tables 5.5 and 

5.6, which lists the computed mean and standard deviation for the peak responses calculated 

from the 14 ground motions. Response quantities presented in Table 5.5 include: roof drift ratio, 

defined as D / H, where D is roof displacement relative to base and H height from base to roof; 

system base shear Vb normalized by W; maximum story drift ratios θ along the building height; 

shear force at the base of the exterior columns normalized with Ag√   ; and peak compressive and 

tensile forces of exterior columns normalized by f'cAg. Table 5.6 includes: beam longitudinal 

reinforcement tensile strain; compressive strains in confined concrete at the base of the exterior 

columns; and column longitudinal reinforcement tensile strains in levels 1, 6, 11, and 16, which 

is where the column size and/or amount of longitudinal reinforcement was reduced in building 

A20-1.  

For the remainder of this chapter, discussions regarding material strains refer to those 

computed in the most extreme tensile reinforcement steel fibers and the most extreme confined 

concrete core fibers. As mentioned before, the strain values reported represent the average strain 

occurring over a tributary length of a numerical integration point, and are likely to be lower than 

those occurring in a physical specimen at the same deformation levels. For this reason, the 

material strains computed are intended to serve as qualitative indicators of differences in seismic 

response among different buildings, as will be discussed in the following sections. Expressions 

involving √    are written for f'c in units of psi.  Shear force responses have been processed using 

a low-pass filter with 10 Hz cut-off frequency to eliminate numerically induced spurious high-

frequency spikes that occur due to sudden changes in the tangent modulus for the material 

models used (Wiebe and Christopoulos 2010).  

 
Tale 5.5. Summary of mean (standard deviation) values of selected response quantities for the 

four buildings subjected to the 14 ground motions. 

Response Quantity 
A20-1 B20-1 B20-2 B20-3 

DE MCE DE MCE DE MCE DE MCE 

Roof drift ratio,  

D / H (%) 

1.2 

(0.6) 

1.8 

(0.8) 

1.2 

(0.6) 

1.8 

(0.8) 

1.2 

(0.6) 

1.8 

(0.8) 

1.3 

(0.7) 

1.9 

(0.9) 

Maximum story drift ratioalong 

building height,  (%) 

2.2 

(1.2) 

3.1 

(1.8) 

1.9 

(1.1) 

2.9 

(1.6) 

1.9 

(1.1) 

2.8 

(1.5) 

1.9 

(1.0) 

2.7 

(1.4) 

System base shear, 

 V / W 

0.12 

(0.02) 

0.14 

(0.02) 

0.12 

(0.02) 

0.14 

(0.02) 

0.13 

(0.02) 

0.14 

(0.02) 

0.14 

(0.02) 

0.15 

(0.02) 

Exterior column base shear,  

Vext / Ag√    

6.26 

(1.25) 

7.48 

(1.67) 

6.28 

(1.24) 

7.54 

(1.70) 

4.92 

(0.90) 

5.82 

(1.21) 

3.99 

(0.73) 

4.65 

(0.89) 

Interior column base shear, 

Vint / Ag√    

4.04 

(0.53) 

4.53 

(0.73) 

4.08 

(0.52) 

4.56 

(0.73) 

3.70 

(0.43) 

4.05 

(0.55) 

3.53 

(0.38) 

3.85 

(0.49) 

Ext. col. base tensile force, 

 T / f'cAg 

0.14 

(0.03) 

0.15 

(0.02) 

0.14 

(0.03) 

0.15 

(0.02) 

0.08 

(0.02) 

0.09 

(0.01) 

0.05 

(0.01) 

0.06 

(0.01) 

Ext. col. base compressive force, 

 C / f'cAg 

0.31 

(0.02) 

0.32 

(0.02) 

0.31 

(0.02) 

0.32 

(0.02) 

0.22 

(0.02) 

0.23 

(0.02) 

0.17 

(0.01) 

0.17 

(0.02) 
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Table 5.6. Summary of mean (standard deviation) values of material strains for the  

four buildings subjected to the 14 ground motions. 

Response Quantity 

A20-1 B20-1 B20-2 B20-3 

DE MCE DE MCE DE MCE DE MCE 

Maximum beam 

reinforcement tensile 

strain along building 

height (%) 
6.8 

(3.3) 

7.9 

(3.3) 

6.9 

(3.2) 

7.9 

(3.3) 

6.2 

(3.1) 

7.5 

(3.4) 

6.0 

(3.0) 

7.5 

(3.4) 

Concrete compressive 

strain, exterior column 

base (%) 
1.0 

(1.0) 

2.3 

(2.0) 

1.0 

(0.9) 

2.2 

(1.9) 

0.5 

(0.4) 

1.0 

(0.8) 

0.2 

(0.1) 

0.3 

(0.2) 

C
o

lu
m

n
 r

ei
n

fo
rc

em
en

t 
te

n
si

le
 s

tr
ai

n
 (

%
) 

E
x

te
ri

o
r 

1st  floor 
2.3 

(2.6) 

5.3 

(4.9) 

2.2 

(2.50) 

5.2 

(4.80) 

2.2 

(2.4) 

4.8 

(4.4) 

2.0 

(2.3) 

4.1 

(3.7) 

6th    floor   
0.5 

(0.5) 

1.7 

(1.9) 

0.1 

(0.05) 

0.3 

(0.33) 

0.1 

(0.04) 

0.2 

(0.2) 

0.1 

(0.04) 

0.1 

(0.06) 

11th  floor   
0.6 

(0.4) 

1.2 

(0.8) 

0.1 

(0.03) 

0.1 

(0.04) 

0.1 

(0.02) 

0.1 

(0.02) 

0.1 

(0.03) 

0.1 

(0.03) 

16th  floor   
0.3 

(0.2) 

0.7 

(0.6) 

0.1 

(0.06) 

0.2 

(0.13) 

0.1 

(0.09) 

0.2 

(0.2) 

0.1 

(0.08) 

0.2 

(0.2) 

In
te

ri
o

r 

1st  floor 
2.7 

(2.9) 

5.9 

(5.2) 

2.7 

(2.80) 

5.9 

(5.10) 

2.4 

(2.5) 

5.4 

(4.8) 

2.3 

(2.4) 

4.9 

(4.2) 

6th   floor   
0.4 

(0.5) 

1.6 

(1.8) 

0.2 

(0.20) 

0.7 

(0.85) 

0.2 

(0.2) 

0.6 

(0.8) 

0.2 

(0.2) 

0.5 

(0.6) 

11th  floor   
0.8 

(0.5) 

1.5 

(1.0) 

0.2 

(0.05) 

0.2 

(0.06) 

0.2 

(0.06) 

0.2 

(0.09) 

0.2 

(0.07) 

0.3 

(0.1) 

16th  floor 
0.6 

(0.4) 

1.2 

(0.8) 

0.2 

(0.10) 

0.4 

(0.30) 

0.3 

(0.2) 

0.5 

(0.5) 

0.3 

(0.2) 

0.6 

(0.6) 

M
id

d
le

 

1st  floor 
2.1 

(2.3) 

4.8 

(4.3) 

2.0 

(2.20) 

4.7 

(4.30) 

1.9 

(2.0) 

4.3 

(4.0) 

1.8 

(1.9) 

3.9 

(3.6) 

6th    floor   
0.4 

(0.5) 

1.4 

(1.7) 

0.2 

(0.20) 

0.6 

(0.80) 

0.2 

(0.2) 

0.6 

(0.7) 

0.2 

(0.2) 

0.5 

(0.6) 

11th  floor   
0.8 

(0.5) 

1.5 

(0.9) 

0.2 

(0.04) 

0.2 

(0.06) 

0.2 

(0.06) 

0.2 

(0.07) 

0.2 

(0.06) 

0.3 

(0.1) 

16th  floor   
0.5 

(0.3) 

1.0 

(0.6) 

0.2 

(0.11) 

0.4 

(0.27) 

0.3 

(0.2) 

0.5 

(0.5) 

0.3 

(0.2) 

0.6 

(0.6) 

 

5.6.1 RESPONSE OF BUILDING A20-1 

The response of building A20-1 is discussed first. Figure 5.6.1 presents mean envelopes of 

relative displacements, story drift ratios, story moments, and story shear forces. The envelopes of 

all response quantities have similar shapes for the DE and MCE response levels. The computed 

mean roof drift ratios are 1.2% for the DE and 1.6% for the MCE hazard levels (Table 5.5).  As 

shown in Figure 5.6.1(a), the mean displacement envelopes have a maximum value at the roof of 

the building. The story drifts build up mainly in the bottom two stories, which is associated with 

significant inelastic deformations of the columns and beams in this region (Figure 5.6.1[b]). The 

mean story drift envelope has similar values between 0.2H and 0.7H at both DE and MCE levels, 

with local peaks at 0.3H and 0.6H. The largest value of the mean story drift is 2.0 and 3.1%, at 

DE and MCE levels, respectively.   

The mean base shear for the DE motions is 0.13W, increasing to 0.15W for the MCE shaking 

level (Figure 5.6.1[c]). The mean base shear at DE is 49% higher than the base shear computed 

from the nonlinear static pushover analysis using the first-mode lateral force profile at 1.2% roof 

drift ratio (the mean roof drift ratio for the DE motions), also plotted in Figure 5.6.1(c). This 
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difference resulted from higher-mode contributions to the system base shear response. Only 6% 

increase is noted in the mean computed story moments going from DE to MCE hazard level 

(Figure 5.6.1[d]). The story moment profile from the first-mode monotonic pushover analysis, 

also plotted, agrees very well with the mean story moment envelopes indicating negligible higher 

mode contribution to the system moment. 

 

 
Figure 5.6.1. System mean response envelopes for building A20-1: (a) Relative displacement 

ratios; (b) Story drift ratios; (c) Story shear force; (d) Story moment. 

Peak inelastic tensile strains in column longitudinal reinforcement occur at the base of the 

building for both shaking intensities, as shown in Table 5.6 and Figure 5.6.2(a) through (c). The 

mean tensile strain in the first-story exterior columns is 2.1% for the DE shaking. The mean 

tensile strain at MCE is 4.1%, which is roughly four times the strain obtained from the pushover 

analysis at drift ratio equal to the mean MCE drift ratio of 1.6% (shown in Figure 5.5.1), 

indicating different deformation patterns arising from these two different methods of analysis, as 

has been reported before (ATC 2005).  The static pushover analysis does not appear to be an 
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accurate tool for estimating the expected deformation demands in the columns at the base of the 

building. 

Inelastic deformations occurred in columns above the bottom story in different locations 

along the height of the buildings (Figure 5.6.2 [a]-[c]). Over the building height, the interior and 

middle columns develop roughly 30% larger reinforcement tensile strains than the exterior 

column. At the DE, the mean reinforcement tensile strains above the base in the exterior columns 

are less than 0.9%, while at the MCE level they reach up to 2.2%. The largest mean strain above 

the bottom two stories of the columns occurs in the locations of column size reduction or 

longitudinal column reinforcement curtailment. 

Significant longitudinal reinforcement tensile strains developed in the beams for both the DE 

and MCE shaking levels, as can be observed in Figure 5.6.2 (d). The strain envelopes at both 

seismic hazard levels had similar shapes, roughly following the pattern of peak story drifts 

(Figure 5.6.1[b]), with nearly uniform strain levels in the bottom 70% of the building height. The 

mean tensile strain envelopes of the beams reached a peak value at 0.3H (Figure 5.6.2 [d]) and 

were 3.4 and 5.3% at the DE and MCE levels, respectively.  

 
Figure 5.6.2. Longitudinal reinforcement mean tensile strain envelopes in frame members of 

buildings A20-1 and B20-1. 
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The exterior columns of A20-1 at the base developed mean concrete compressive strains 

equal to 1.0 and 2.0% at DE and MCE hazard levels, respectively (Table 5.6). Relatively large 

strains at the base of the exterior columns were the result of large inelastic deformations and 

significant axial compressive forces. For the total volumetric transverse steel ratio in the plastic 

hinge region, ρs = 0.04, the maximum concrete compressive strain according to Scott et al. 

(1982) was calculated as εcu = 5.4%. Note that the calculated confined concrete strain capacity 

does not consider simultaneous shear, axial force, and inelastic lateral deformations, which may 

reduce the strain capacity of the confined concrete in columns when acting concurrently over 

several cycles. In stories 3 to 20 the mean concrete compressive strains in all columns are less 

than 0.3% for both the DE and MCE levels.   

Figure 5.6.3 shows the envelope of the computed axial load ratios P/f'cAg for the exterior 

columns and for the beams, plotted along height. The computed mean compressive axial force in 

the exterior columns is 0.33f'cAg at DE and increased by less than 4% to (0.34f'cAg) at the MCE 

hazard level. The exterior column mean tensile axial force is 0.15f'cAg and 0.17f'cAg at the DE 

and MCE, respectively. These magnitudes of forces exceeded the design axial forces calculated 

by the code-specified modal response spectrum analysis (MRSA), primarily because the code 

procedures do not account for the design overstrength which arises mostly from the as-designed 

flexural strength of beams. Section hardening of the beams along the height of the building with 

increasing lateral displacements is the second cause of increased axial force demands computed 

with NRHA. The mean DE (MCE) level compressive axial force computed with the NRHA for a 

first-story exterior column was 1.39 (1.42) times the design value estimated with MRSA and 

load combination 5 [(1.2 + 0.2SDS)D + 1.0E + 0.5L]. The mean tensile forces computed at the 

base of the exterior columns in NRHA for DE and MCE were, respectively, 2.0 and 2.2 times the 

demand calculated by MRSA and load combination 7 [(0.9 - 0.2SDS)D + 1.0E]. 

 

 

Figure 5.6.3. Exterior column axial forces and beam axial compression forces for building A20-1. 
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compression forces at the base of the exterior columns were roughly 1.6, and 1.3 times the 

design forces computed with MRSA and load combinations 7 and 5, respectively (Figure 5.6.3 

[a] and [b]). At 1.6% roof drift ratio (the mean roof drift ratio at MCE level) the corresponding 

tension and compression forces were about 2.1 and 1.4 times the design values, respectively.   

 
 

Figure 5.6.4. Column shear envelopes for building A20-1. 

Lastly, individual column shear envelopes normalized by Ag√    are plotted in Figure 5.6.4, 

along with the design forces calculated by different methods for the exterior, interior, and middle 

columns, respectively. The column shear calculated using NRHA typically is more than twice 

the value computed using MRSA. Note that while the mean shear force in the third-story interior 
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result in beam elongation that forces the exterior columns outward leading to increased shear 

force and rotations mainly of the exterior column, as demonstrated in Chapter 4 and also noted 

by others (e.g. Fenwick and Fong 1979, Restrepo et al. 1990, Qi and Pantazopoulou 1991, 

Fenwick and Megget 1993, Kim et al. 2004, Peng et al. 2006). The increasing axial compression 

in exterior bay beams toward the bottom of the building (Figure 5.6.3[c]) indicates that beam 

elongation mostly impacts the columns in the first story and, to a lesser extent, the second story 

for the building studied. In exterior columns, the mean shear is 6.26Ag√    for the DE and 

7.48Ag√    for the MCE ground motions. The magnitude of the calculated forces, and the shear 

stresses associated with them, suggests that beam growth can be an important component of the 

shear forces that develop in the columns in the first few stories, a factor that may should be 

considered in design.   

The NRHA-computed column shears are compared with the design shears computed by two 

methods specified in ACI 318. Method A considers the shear Vi developed in the column at the 

time when both of its ends reach the maximum probable moment strength, Mpr,c, associated with 

the range of factored axial loads, Pu, calculated from load combinations 5 and 7 (ASCE 7). 

Specifically, this shear is Vi = 2Mpr,c,i  / lu,i where lu is the column clear height. Method B 

considers column shear corresponding to development of beam probable moment strengths, 

Mpr,b, at the joints but the resisting moments in column above and below are indeterminate and it 

is up to a designer to decide the moment distribution pattern. It is not uncommon in practice to 

assume the resisting moment ∑Mpr,b at a given joint to be divided evenly between the column 

above and below the joint, which would roughly correspond to the point of contraflexure being 

located at the story mid-height. This approach, termed here B1, yields a design shear at floor i > 

1 equal to Vi = (∑Mpr,b,i + ∑Mpr,b,i-1) / 2lu,i.  For clarity, the contribution of beam shear at the face 

of the column to joint moment equilibrium was ignored in this expression, but it is included in 

the shears presented in Figure 7. In the first story, column design shear is obtained by replacing 

the ∑Mpr,b,i-1 values by the column Mpr,c at level i-1, that is, at the base of the building. 

An alternative approach, B2, is essentially an upper-bound of Method B. It conservatively 

assumes that column at level i resists all the probable moments from beams framing into floors 

above and below the column, that is, Vi = (∑Mpr,b,i + ∑ Mpr,b,i-1) / lu,i. This approach doubles the 

values of shear forces found by approach B1, except at the bottom story. This is because both 

methods consider the development of Mpr,c at the base of the column, which is typically much 

larger than Mpr,b of the beams and thus controls the value of V1.  For example, in building A20-1 

the Mpr,c of first-story columns under design Pu leading to the largest probable moment strength 

is 3-5 times the Mpr,b in the bottom story beams.  

Method A significantly overestimated the shear force demands compared with those 

computed using NRHA for all columns along the height (Figure 5.6.4). Shear forces calculated 

by this method at the base of the columns were approximately twice the mean shear forces 

computed by the NRHA for the MCE hazard level. Method B1 underestimated the shear forces 

in all columns along most of the bottom two-thirds of the building height. The exception was at 

the bottom story where Method B1 resulted in shear forces 1.08, 1.35, and 1.55 times the mean 

shears computed by the NRHA for the MCE level in the exterior, interior, and middle columns, 

respectively. Method B2 overestimated the shear forces in columns everywhere, except at the 

second story exterior column where it slightly underestimates the mean MCE level response. 
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Figure 5.6.5. Scatter in the system response parameter envelopes for building A20-1 and near 

fault pulse-type ground motion set scaled to DE. 

The shears in the exterior columns near the base of the building are of particular interest 

because of the boost in shear resulting from beam axial growth. In the first story, the shear by 

Method A is 1.96 times the mean value from NRHA for MCE motions.  Methods B1 and B2 

produce shears that are 1.08 and 1.18 times, respectively, mean shears from NRHA at the same 

hazard level. The applicable code in New Zealand, NZS3101 (SNZ 2006) considers the effect of 

beam growth on exterior columns by requiring that a method equivalent to Method A be used for 

shear design in regions affected by beam growth. For the second-story exterior columns of the 

present study, which is also affected by the beam growth, the mean shear is roughly the same as 

the value estimated by Method B2 at MCE shaking level. 

Figure 5.6.5 and Figure 5.6.6 show the individual response envelopes for building A20-1 

under 14 near-fault pulse-type ground motions scaled to DE and MCE hazard levels, 

respectively.  Higher scatter is observed in story displacements, accelerations and story drifts.  

Less scatter is observed in the shear forces and even less in the bending moments (which are not 

shown).   
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Figure 5.6.6. Scatter in the system response parameter envelopes for building A20-1 and near 

fault pulse-type ground motion set scaled to MCE. 

5.6.2 RESPONSE OF TYPE B BUILDINGS 

We now turn our attention to the response of Type B buildings. The main global response 

envelopes are plotted in Figure 5.6.7.  The analyses of building B20-1 under DE and MCE level 

motions showed global responses very similar to those of building A20-1. The mean and peak 

roof drift ratios, base shear forces, axial forces at the base of the exterior columns, and beam 

tensile strains were practically the same as those of A20-1 (Table 5.5 and Figure 5.6.7). 

However, contrary to behavior of building A20-1, the reinforcement tensile strain values at 

levels 6, 11, 16 of B20-1 for DE level were below yielding, as can be seen in Figure 5.6.2(e)-(g) 
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buildings A20-1 and B20-1. The concentration of large reinforcement tensile strains at levels 6, 

11, and 16 in columns of building A20-1 is attributable to the reduction of column size and 

longitudinal reinforcement curtailment in that building. On other hand, building B20-1 had no 

curtailment in column size or amount of longitudinal reinforcement over height and hence no 

associated concentrations of large strain.   

 

Figure 5.6.7. Comparison of mean response envelopes for B20 buildings under near-fault pulse-type 

ground motion set, and two levels of ground motion intensity. 
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exterior column for B20-1, -2, and -3 buildings were 1.0, 0.5, and 0.2% at the DE level (Table 

5.6).  At the MCE level, the mean compressive strains in concrete at this location were 1.9, 1.0, 

and 0.4%, for the three buildings. The difference in the reinforcement tensile strains along the 

building height above the base for the three B20 buildings was negligible (Table 5.6). With the 

exception of the bottom story, mean tensile strains were either well below or slightly above the 

yielding levels for both ground motion intensities.   

Due to the increased exterior column size, the axial load ratio was reduced in the exterior 

columns for buildings B20-2 and B20-3 (Table 5.5) compared with that in B20-1, even though 

the actual exterior column axial force increased compared with that in B20-1 (by 9 and 17% for 

B20-2 and B20-3 at DE, respectively). For B20-2, the compressive axial load ratio at the base 

was 30% lower than that of B20-1, whereas in building B20-3, it was 51% lower. Reduction of 

axial load ratios resulted in decreased concrete compressive strain at the exterior column base, 

which could correspond to smaller post-earthquake damage. 

Exterior column shear stress was also reduced by using larger exterior columns. In the first-

story exterior column of buildings B20-1, B20-2, and B20-3 the mean shear force normalized 

with Ag√    at DE (MCE) levels were 0.52(0.62), 0.41 (0.48) and 0.33 (0.39), respectively (Table 

5.5). Shear forces in middle and interior columns of all buildings were well under those 

computed by Method B2 of ACI 318, as shown in Figure 5.6.8.  Method B2 provided a 

conservative design shear estimate in exterior columns of buildings A20-1 and B20-1, except in 

the second story. As the column size increased in B20-2 and B20-3, however, the method 

increasingly underestimated the shear demand in the exterior columns.  For building B20-2, the 

DE-level exterior column shear exceeded the design shear between stories 2-6 and 11-15, while 

for B20-3, the shear demand was higher than the design estimate along most of the building 

height, except in the stories 1, 7-10 and at in the upper two floors. Method A significantly 

overestimated design shear forces in all buildings with the overestimation increasing with 

increase of column size.  
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Figure 5.6.8. Comparison of column mean shear force response envelopes with proposed design 

method and ACI 318 design shear force envelopes.  
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5.7 MODIFICATIONS FOR ESTIMATION OF COLUMN DESIGN FORCES 

The ASCE 7 and ACI 318 code procedures significantly underestimated axial forces in columns 

of the studied buildings. Furthermore, depending on the method used, ACI 318 procedures either 

significantly underestimated or overestimated the column shear forces. In this section we present 

alternative approaches intended to better estimate design column axial forces, design system 

shear forces, and design column shear forces.  

Axial forces in exterior columns of SMRFs subjected to earthquake excitation arise from the 

shear forces transferred from the beams framing into the column as well as the gravity loads of 

the column itself and, if vertical ground motion component is present, the corresponding inertia 

forces. Ignoring the latter, the design tension and compression forces in the exterior columns can 

be computed using Equations 5.1 and 5.2, which combine axial forces from gravity loads and 

probable moment strength in beams.   

, ,, ,

N

j iT
pr j g iU T iP V P


   5.1 

, ,, ,

N

j iC
pr j g iU C iP V P


   5.2 

In these equations, gravity load Pg, is the sum of all tributary gravity loads above the level in 

question computed from the load combination used in NRHA (1.0D+0.25L). Vpr is the shear 

corresponding to development of probable moment strengths Mpr in beams framing above the 

level in question, calculated assuming zero gravity loads. Factors γT and γC are the average 

percentage of the probable shear force developed by all the beams above this level i. This 

approach for estimating the axial forces in exterior columns is similar to the one outlined in New 

Zealand concrete design code NZS3101 (SNZ 2006). In NZS3101, however, these factors are 

calculated for each individual story; here, one single value was pursued.   

 
Figure 5.7.1. Comparison of exterior column mean axial force envelopes and axial forces by the 

proposed design method. All results for MCE level. 
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Factors γT and γC were calibrated so that Equations 5.1 and 5.2 produce exterior column axial 

force equal to the mean axial force calculated using NRHA procedures. The values of γT ranged 

between 0.73 and 0.76, while the values of γC varied between 0.78-0.80 for the mean axial force 

at the DE level, as can be seen in Table 5.7. The values are close to, but higher than the 0.7 value 

recommended by the NZS3101 at the base of the buildings. At the mean MCE level, the γT 

factors increased to 0.77-0.80, while the γC increased to 0.80-0.86 (Table 5.7).  

Figure 5.7.1 plots the exterior column axial force envelopes calculated for the NRHA for the 

MCE hazard level and also by the design method considered previously. Very good agreement is 

observed at mean response with uniform γ factors calibrated based on the first story axial load. A 

designer may conservatively use an upper bound value γT = γC = 0.86. 

For system shear forces a modification of the elastic modal response spectrum analysis is 

proposed using Equation 5.3. This approach is based on amplifying the shear forces, VMRSA, 

calculated using the code procedure, by the system overstrength factor Ω, which considers the 

design and section hardening overstrength, and factor AD, which accounts for higher-mode 

effects. 

Du MRSAV V    5.3 

In Equation 5.3, VMRSA is the shear calculated by the elastic MRSA procedure of ASCE 7. The 

factor Ω is calculated using Equation 5.4 as the ratio of the system moment capacity at the base 

of the building, Mb,Ω, to the corresponding system moment at the base, Mb,u, computed from the 

MRSA.  
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Mb,Ω corresponds to a level of response equal or larger than that corresponding to the DE 

seismic hazard level.  Mb,Ω is calculated as the sum of the probable flexural strength of the 

columns at the base of the building and the moment due to axial forces in the columns. The 

∑Mpr,c,g is the sum of probable moment strengths of columns at the base when subjected to axial 

load equal to gravity load used for the NRHA, that is 1.0D + 0.25L. The latter term is calculated 

based on the axial forces PT,Ω and PC,Ω of the exterior columns at the base and is amplified with 

the factor κ to account for the relative contribution of the interior column axial forces to the base 

moment. Axial forces PT,Ω and PC,Ω are calculated using Equations 5.1 and 5.2 with the 

difference of setting γT and γC factors equal to unity. In Equation 5.4, B represents the distance 

between the centerlines of two exterior columns. Dynamic amplification factor AD was calculated 

for each building by dividing the base shear computed from the NRHA by the base shear 

computed by MRSA multiplied by the system overstrength factor from Equation 5.4.   

Design factors AD, κ, and Ω computed for the individual buildings studied are listed in Table 

5.7. The computed mean value of AD ranged from 1.0-1.12 for DE, and from 1.18-1.29 for MCE 

shaking level.  Values of factor AD computed at the peak values of the DE and MCE levels were 

similar to the dynamic magnification factor ω=1.3 used in NZS3101 for individual column shear 

force estimation. An upper bound value is recommended for use when estimating Vu during the 

design process, that is AD = 1.3. Factor κ was calculated equal to 1.1 for the frames considered in 

this chapter. 

Using the factors computed, design envelopes were generated for the system shear of the four 

buildings. These are presented alongside the corresponding NRHA-computed response 

envelopes at DE and MCE shaking intensities in Figure 5.7.2  for all four buildings.  The system 
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shear envelopes computed by the method presented bounded the NRHA-calculated system shear 

forces at all levels for building A20-1 and across all stories, except for the top two stories of 

building B20-1 and in the second and third stories of B20-2 and B20-3. 

 
     Table 5.7. Design factors at mean response. 

 A20-1 B20-1 B20-2 B20-3 

κ 1.1 1.08 1.05 1.02 

Ω 2.35 2.29 2.39 2.35 

γT 
DBE 0.73 0.74 0.75 0.76 

MCE 0.77 0.79 0.79 0.80 

γC 
DBE 0.78 0.78 0.79 0.80 

MCE 0.81 0.80 0.83 0.86 

AD 
DBE 1.05 1.05 1.08 1.12 

MCE 1.20 1.21 1.24 1.28 

 

 
Figure 5.7.2. System shear force response envelopes for Type B buildings. 

While the estimated design system shear is not directly used as a design parameter, it can be 

an important tool in estimating the individual column shears.  A correct distribution of story 

shear provides the estimate of the individual column shears.  The applicability of the proposed 

method to estimating individual column shears was explored by applying the amplification 

factors Ω and AD to MRSA-estimated column shear envelopes and comparing the obtained 

quantities to the NRHA shear demands. Findings are summarized in Figure 5.6.8. 
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column design shears in most of the stories.  The NRHA-calculated shears slightly exceed those 
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5.6.8).  In all cases, the method gave closer estimate to design shear than Method B2 of ACI 318. 
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and middle columns.  Alternatively Method B2 provides a much more conservative estimate for 

design shears in interior and middle columns. 

In the exterior column the proposed Equation 5.3 provided a conservative estimate at the DE 

level in building A20-1 everywhere except the top story and the bottom two stories which were 

significantly affected by beam elongation effects.  The MCE-level shears slightly exceeded those 

estimated by the method proposed except the base story where the underestimation was 

significant.  In Type B buildings, the method increasingly underestimated the column shear as 

the size of the exterior column increased. Here, shear demands were on average 1.1-1.5 times the 

design shears estimated by the method for DE hazard level. The largest underestimation was 

observed in the bottom two stories and especially in the first that was mostly affected by beam 

elongation effects.  Further refinement of proposed shear calculation method is needed to find a 

more suitable way for estimating design shear forces in exterior columns. This is further 

explored in Chapter 6. 

5.8 CONCLUSIONS 

This chapter numerically investigated seismic response of four 20-story reinforced concrete 

special moment resisting frames numerically simulated on OpenSees platform. The buildings 

were designed according to ASCE 7-10 and ACI 318-11 code provisions.  Building A20-1 (Type 

A) had columns with dimensions and longitudinal steel ratio reduced at levels 6, 11, and 16.  The 

other three buildings, labeled as Type B, had uniform column size and reinforcement ratio along 

the height.  Building B20-1 had columns with size and longitudinal reinforcement identical to 

that used at the base of building A20-1. Buildings B20-2 and B20-3 differed from B20-1 only in 

the size and longitudinal reinforcement of exterior columns. The buildings were subjected to a 

set of ground motions scaled to both the DE and the MCE design spectra of ASCE 7, for a site 

located in Los Angeles, California. Based on the results presented in the preceding sections, the 

following conclusions are drawn: 

 

1. All of the studied buildings developed significant inelastic deformations in the columns at the 

base of the building and in 70% of the beams along the building height for both DE and MCE 

hazard levels.   

2. Increasing the size of exterior columns significantly reduces compressive strains in confined 

concrete and, to a lesser extent, reinforcement tensile strains developed in the up-sized 

columns, possibly leading to less post-earthquake damage. The mean compressive strains 

computed at DE (MCE) shaking levels at the base of the exterior columns of the four 

buildings were 1.0(2.0), 1.0(1.9), 0.5(1.0), and 0.2(0.4)% for buildings A20-1, B20-1, B20-2, 

and B20-3, respectively.  The size increase of the exterior columns also resulted in a decrease 

of story drift at the first story. 

3. Building A20-1, for which columns had progressively smaller cross-sections and amount of 

longitudinal reinforcement with height, developed moderate inelastic deformations in the 

columns around the levels where the size and reinforcement reduced. At these locations the 

reinforcement tensile strains ranged between 0.2-0.9% at the DE and 0.5-2.2% at the MCE 

shaking level. The same locations of building B20-1 developed negligible inelastic 

deformations.   
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4. Equivalent elastic modal response spectrum analysis (MRSA) of ASCE 7 significantly 

underestimates axial forces in the exterior columns because it does not consider the design as 

well as the section overstrength of frame elements.  For the DE hazard level, the mean axial 

tensile forces in exterior columns were roughly 2 times the values computed by MRSA while 

mean axial compressive forces in exterior columns were roughly 1.4 times values calculated 

by MRSA. A simple method of calculating the exterior column axial forces based on beam 

flexural overstrength led to a very good design force estimate.   

5. The mean story shears were between 2.2 and 2.8 times the design base shear computed with 

MRSA of ASCE 7.  This discrepancy is attributable to design and section overstrength in 

addition to the effect of higher modes on dynamic response.  Amplifying the design system 

shear forces with an overstrength factor (calculated based on the probable flexural strength of 

the beams and the columns at the bottom story) and a dynamic amplification factor between 

1.05 and 1.28 resulted in very good estimations of the seismic system shear forces demand.  

Extrapolation of the proposed method to interior and middle columns provided satisfactory 

estimates of design shears, but further refinement is needed to adequately estimate the 

exterior column design shears.  

6. Kinematic interaction between beams and columns at the bottom two stories due to beam 

elongation resulted in significant increase of the first-story exterior column shear.  Mean 

values of first-story exterior column shears were between 1.12-1.65 times those in the first-

story interior columns.  This effect should be considered in the design of the columns. 

7. ACI 318 procedures for determining column design shear resulted in widely different design 

values. The shear corresponding to development of column probable moment strengths at 

column ends (referred to as Method A herein) grossly overestimated the design shear forces. 

The shear corresponding to development of beam probable moment strengths at beam ends 

resulted in different column design shears depending on the interpretation of the Code 

requirement. If the column above and below each joint was assumed to resist half of the 

resulting moment (referred to as Method B1 herein), then the design shears were significantly 

underestimated in several stories. If the column was assumed to resist the entire moment 

within the story being analyzed for shear (referred to as Method B2 herein), then the design 

shears were overestimated in most stories. Method B2 resulted in underestimation of design 

shear forces in exterior columns, along many stories above the base story, in buildings B20-2 

and B20-3 at both the DE and the MCE level of shaking. This method underestimated the 

design shear forces in exterior columns at the first story only of buildings A20-1 and A20-2 

at MCE level of shaking.  
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CHAPTER 6 
6 6 

SEISMIC SHEAR DEMAND ON COLUMNS OF SPECIAL 

MOMENT FRAMES 
 

 

As was seen in Chapter 5, current methods for approximating design column shear in special 

moment frames do not always result in a conservative estimate of ultimate shear forces that 

columns need to sustain. Overloading of a column in shear is likely to reduce the flexural 

deformation capacity, and in extreme cases may cause shear failure, which may in turn lead to 

localized damage and failure of the structural system. Therefore, conservative methods for 

estimating shear should be implemented in design.   

The aim of this chapter is to develop a method of estimating earthquake-induced ultimate 

shear forces in columns of tall reinforced concrete special moment resisting frames. The method 

is developed through an investigation of four archetype frame buildings via series of two 

dimensional nonlinear dynamic analyses. The four buildings range in height and in number of 

bays per frame. The designs conform to requirements of ASCE 7-10 and ACI 318-14. All four 

buildings have perimeter SMRF configuration, which is typical of design practices in the 

seismically active regions of the United States. Note that the four archetype buildings presented 

in this chapter are different from the buildings investigated in Chapter 5. 

6.1 STATE OF PRACTICE DESIGN METHODS FOR SMRF COLUMN SHEAR 

Columns in special moment frames are detailed according to the provisions of ACI 318 (ACI 

2014). In general, shear in reinforced concrete columns is resisted by the concrete itself (which is 

considered to provide shear capacity Vc) and the transverse steel reinforcement (which is 

considered to provide shear capacity Vs). The usual practice is to sum the two nominal strength 

contributions, resulting in the following design requirement: 

 

Vu < (Vc + Vs) 6.1 

 

where Vu is the ultimate shear demand used in design and  is the strength reduction factor for 

shear. In ACI 318, for shear is set to 0.75. 

According to ACI 318, the portion of the shear strength carried by the transverse 

reinforcement is: 

 

v yt

s

A f d
V

s
  6.2 

 

where:  

s = shear reinforcement spacing,  

Av = area of shear reinforcement within spacing s,  

fyt = nominal strength of transverse reinforcement steel, and  
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d = distance from extreme compression fiber to centroid of tensile reinforcement. 

The portion of the shear strength carried by concrete in members subjected to axial 

compression (such as the columns) is defined in ACI 318 as: 

 

2(1 ) '
2000
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N
V f b d

A
   6.3 

 

Here: 

Nu = factored axial force (in units of pounds, lb) normal to cross section occurring 

simultaneously with Vu; taken as positive for compression,  

Ag = gross area of a concrete section, 

λ = correction factor for light weight concrete, 

f'c = nominal strength of reinforced concrete (in units of psi), and 

bw = section width of a member. 

 

When the reinforced concrete member is subjected to significant axial tension, Vc can be 

assumed to be zero.  ACI 318 also offers the following expression, where Nu takes on a negative 

sign in tension: 
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In columns of special moment frames, ACI 318 requires that all shear be resisted with 

transverse steel within the region of length lo from each column joint face (and on both sides of 

any section likely to form a plastic hinge), when both: a) the earthquake-induced shear force 

represents one-half or more of the maximum required shear strength within lo, and b) the axial 

compressive force Pu, including earthquake effects, is less than Agf'c/20. The region lo is defined 

as the maximum of: a) the depth of the member at the joint face or at the section where flexural 

yielding is likely to occur, b) 1/6 of the clear span of the member, and c) 18 in. 

Avoiding shear failure in reinforced concrete members is accomplished through capacity-

design principles. Flexural yielding regions in beams and columns are first identified, and then 

these regions are designed for moments and axial forces computed in appropriate code-based 

procedures. Subsequently, the design shear is computed using equilibrium and with the 

assumption that the members develop probable moment strengths in these flexural yielding 

regions. Currently, two different publications used in the U.S. design practice address the 

methods of estimating the ultimate design column shear Vu in reinforced  concrete moment 

frames: the ACI 318 code (ACI 2014) and the NIST GCR 8-917-1 (Moehle et al. 2008) 

document. The procedures of finding Vu defined in these two documents are described in the 

following two sections. 

6.1.1 Vu ACCORDING TO ACI 318-14 

The design shear for SMRF columns, according to ACI 318-14, shall in no case be less than the 

factored shear determined from the analysis of the structure (such as the modal response 

spectrum analysis or the equivalent lateral force procedures in ASCE 7). In addition, the seismic 

shear force Ve used in the design shall not be less than the shear determined from consideration 

of the maximum moments that can be developed at each end of the column adjacent to the joint 
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faces. The column moments at the joint faces can be taken equal to the maximum probable 

moment strengths, Mpr,c, at each end of the column associated with the range of factored axial 

loads acting on the column. ACI 318-14 implicitly recognizes that this latter approach could 

result in a large overestimation of column shears and the reinforcement required would 

potentially be unfeasible to construct. Hence, the maximum column shear that needs to be 

considered in the design is defined as the column shear at the instance when the beams framing 

into the joint above and below reach their respective probable moment strengths, Mpr,b. However, 

the ACI 318 does not specify what the moment distribution pattern in columns should be and it is 

up to a designer to decide the resisting moments in the column above and below (Figure 6.1.1). 

As seen in Chapter 5, this can lead to very different results, some resulting in large 

underestimation of design shear.  

It is not uncommon in practice to assume the resisting moment ∑Mpr,b at a given joint to be 

divided evenly between the column above and below the joint, which would roughly correspond 

to the point of contraflexure of the columns being located at the story mid-height. This approach, 

termed here B1, yields a design shear at floor i > 1 equal to Vi = (∑Mpr,b,i + ∑Mpr,b,i-1) / 2lu,i.  For 

clarity, the contribution of beam shear at the face of the column to joint moment equilibrium was 

ignored in this expression, but it is included in the shear forces presented later in this chapter. In 

the first story, column design shear is obtained by replacing the ∑Mpr,b,i-1 values by the column 

Mpr,c at level i-1, that is, at the base of the building. 

An alternative approach, B2, is essentially an upper-bound of Method B1. It conservatively 

assumes that column at level i resists all of the probable moments from beams framing into 

floors above and below the column, that is, Vi = (∑Mpr,b,i + ∑ Mpr,b,i-1) / lu,i. This approach 

doubles the values of shear forces found by approach B1, except at the bottom story. This is 

because both methods consider the development of Mpr,c at the base of the column, which is 

typically much larger than Mpr,b of the beams and thus controls the value of shear in the first 

story.  For example, in building A20-1, Mpr,c of the first-story columns under the design value of 

Pu leading to the largest probable moment strength is 3 to 5 times Mpr,b in the first-story beams.  

 

 

Figure 6.1.1. Options for calculating design shear in column members, according to ACI 318 

(source: NIST GCR 8-917-1). 
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6.1.2 Vu ACCORDING TO NIST GCR 8-917-1  

In 2008, National Earthquake Hazard Reduction Program (NEHRP) released a NIST GCR 8-

917-1 document titled “Seismic design of reinforced concrete special moment frames: a guide 

for practicing engineers” (Moehle et al. 2008) intended to serve as a guide to practicing structural 

engineers in applying the ACI 318 requirements in reinforced concrete SMRF design. 

Particularly, the guide follows the 2008 edition of ACI 318 and addresses main SMRF design 

aspects such as flexural and shear design of beams and columns, joint design, and anchorage 

requirements. For the remainder of this chapter, the NIST GCR 8-917-1 document will be 

interchangeably referred to as the “NIST Design Guide”. 

ACI 318-14 introduced notable changes in the design of transverse steel for confinement 

requirements in plastic hinge regions of columns. Nevertheless, the shear requirements remain 

the same as they were in the 2008 and 2011 code editions, and therefore the NIST Design Guide 

remains current in this aspect. The column shear design method recommended in that document 

is therefore included in the subsequent discussions. 

NIST Design Guide dissuades calculating the column design shear based on the beam-

yielding mechanism and distributing the unbalanced moments at a joint to columns in proportion 

to their flexural rigidities (this loosely corresponds to ACI 318 method B1 defined previously). 

The guide recommends using ACI 318 method A whenever feasible. NIST Design Guide 

recognizes, however, that the latter may lead to column section that is difficult to construct; 

hence, it recommends computing the column design shear based on the shear from lateral 

analysis but amplified to account for the beam flexural overstrength.  

Individual column shear computed by an MRSA or similar procedure following the 

recommendations of the ASCE 7 or similar code serves as a baseline value, here denoted as 

VMRSA. This is also the minimum design shear required by the ACI 318. The VMRSA is amplified 

by a factor corresponding to an average flexural overstrength of all beams framing into the 

column, Φm = average(Mpr,b,i,j/Mu,i,j), where Mpr,b,i,j  = probable moment strength of beam i 

(where more than one beam frames into the column at a given floor) of story j and Mu,i,j = design 

moment for that same beam.  

6.2 DESCRIPTION OF ARCHETYPE FRAMES 

In order to investigate the effect of height on column shear distribution, the four SMRF buildings 

investigated consist of both 10- and 20-story buildings. Both 3- and 4-bay frame configurations 

are considered for each building height to note the effect of different frame configuration on 

building response. To be consistent with Chapter 5, all buildings are named starting with a letter 

A, which indicates that the columns of these buildings have gradual reduction in cross section 

size and amount of longitudinal reinforcement along the height (unlike building type B in 

Chapter 5, which had uniform size and reinforcement for all stories).  

 
Table 6.1. Building parameters. 

 10 story 20 story 

3 x 28-ft bays A10-3 A20-3 

4 x 21-ft bays A10-4 A20-4 

 

The buildings are systematically labeled with a suffix "# of stories - # of bays" to ease the 

discussion. For example, A10-3 represents a building having 10 stories height and 3 bays in the 



147 

 

special moment resisting frame, while A20-4 represents a 20-story building having 4 bays in the 

SMRF. Story height in all buildings is 12 ft, while the bay length varies, as shown in Table 6.1.  
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Figure 6.2.1. Floor plan of the archetype buildings: (a) 3-bay SMRF configuration and (b) 4-bay 

SMRF configuration. 
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Figure 6.2.2. Elevation of 10-story archetype buildings: (a) A10-3 and (b) A10-4. 

All buildings have identical floor plan (110 ft x 110 ft) and feature two special moment 

resisting frames in each orthogonal direction, with interior gravity framing, as shown in Figure 

6.2.1. The center-to-center distance of 84 ft between the two end columns is identical in all 

frames. Figure 6.2.2 shows the elevation view of the 10-story buildings, while Figure 6.2.3 

shows the elevation view of the 20-story buildings. For simplicity, cross-sectional area of gravity 

columns is identical in all four buildings. This configuration allows the two buildings of the same 

height to have approximately the same natural frequencies, seismic masses, and strengths. In the 

3-bay frames, the exterior columns are those identified in column lines A, D, 1, and 4 (Figure 
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6.2.1[a]), while the remaining columns are referred to as interior columns. In the 4-bay frames, 

the exterior columns are those positioned along column lines A, E, 1, and 5 (Figure 6.2.1[b]). 

Term "middle column" in further discussion refers to the columns located on lines C and 3, and 

the remaining columns are referred to as "interior".  
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Figure 6.2.3. Elevation of 20-story archetype buildings: (a) A20-3 and (b) A20-4. 

 

 

In all of the buildings, the beams are of uniform size and longitudinal reinforcement ratio 

along all of the height. The sizes of beams are listed in Table 6.2. In all of the buildings, column 

strength is reduced along the height either by reduction of size, amount of longitudinal 

reinforcement, or both. In the 10-story buildings, the size of the columns is uniform along the 

height; however, the longitudinal reinforcement ratio is reduced at the 6
th

 floor. In the 20-story 

buildings, the amount longitudinal reinforcement is reduced every 5 stories, and the column size 

is also reduced at the 11
th

 floor. The stories of a given building that contain identical column 

cross section and longitudinal reinforcement are lumped into zones, as illustrated in Figure 6.2.2 

and Figure 6.2.3. The size and longitudinal reinforcement ratio of columns are also indicated in 

Table 6.2.  Interior and middle columns of buildings with 4-bay frames are identical in cross 

section, thus, Table 6.2 only includes specifications for interior columns. Due to design 

constraints, longitudinal reinforcement reduction in interior columns of A20-3 and A20-4 and 

exterior columns of A20-4 at the 16
th

 story would have resulted in less than 15% reinforcement 

ratio reduction. Thus, the amount of longitudinal reinforcement was kept constant in zones 3 and 

4 of these columns. 
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Table 6.2. Frame element sizes and steel ratios (b = width, h = height, l = longitudinal 

reinforcement ratio. Note: for beams l = As/bd, for columns l = As/bh, with As = area of 

longitudinal reinforcement on one face of the beam, and for columns l = As/bh, with As = total area 

of longitudinal reinforcement in the cross section). 

Building Zone 

beam exterior column interior column 

b 

(in.) 

h 

(in.) l 
b 

(in.) 

h 

(in.) l 
b 

(in.) 

h 

(in.) l 

A10-3 
1 

24 36 0.0078 
36 36 0.0171 36 36 0.0171 

2 36 36 0.0110 36 36 0.0110 

A10-4 
1 

24 32 0.0071 
32 32 0.0154 32 32 0.0185 

2 32 32 0.0117 32 32 0.0154 

A20-3 

1 

28 46 0.0064 

48 48 0.0151 48 48 0.0123 

2 48 48 0.0110 48 48 0.0110 

3 44 44 0.0114 44 44 0.0147 

4 44 44 0.0100 44 44 0.0147 

A20-4 

1 

24 38 0.0092 

42 42 0.0202 42 42 0.0159 

2 42 42 0.0125 42 42 0.0125 

3 36 36 0.0122 36 36 0.0216 

4 36 36 0.0122 36 36 0.0216 

6.3 SEISMIC HAZARD 

The four archetype buildings are located on a hypothetical site in the financial district of 

downtown San Francisco, California (Figure 6.3.1). The selected location is on stiff soil, which 

categorizes as site class D, according to the ASCE 7 classification. For a design earthquake (DE) 

level and 5% damping, ordinates of pseudo-acceleration spectrum at a short- and 1s- period are 

SDS = 1.0g and SD1 = 0.6g, respectively (g = gravity constant). At maximum considered 

earthquake hazard, the corresponding spectral ordinates are SMS = 1.5g and SM1 = 0.9g. Figure 

6.3.2 shows the ASCE 7 design spectrum at DE level. The MCE level design spectra are 

obtained by multiplying the DE spectral ordinates by 1.5. 

 

 
Figure 6.3.1. Hypothetical location of archetype buildings from United States Geological Survey 

report (marked with a bull's-eye). 
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Figure 6.3.2. Pseudo-acceleration design spectrum for DE hazard level and 5% damping at the 

hypothetical building site in San Francisco, CA (source: USGS). 

6.4 DESIGN OF BUILDINGS 

The four archetype buildings conform to ACI 318-14 and ASCE 7-10 provisions.  According to 

ASCE 7 classification, each building belongs to risk (occupancy) category II with seismic 

importance factor Ie = 1.0. All four buildings classify under seismic design category D, according 

ASCE 7. Gravity loads include the self-weight of structure and permanent non-structural 

components and contents. The design floor live load is 60 psf.  Total seismic weight of the four 

buildings, Wt, includes 100% of dead load and 25% of the live load. Because each principal 

building direction has two special moment frames, the seismic weight per frame is W = Wt/2. 

Table 6.3 lists the seismic weights (per frame) of the four buildings. 

 
Table 6.3. Total seismic weight (per frame) of archetype buildings. 

Building A10-3 A10-4 A20-3 A20-4 

Seismic weight per frame, W (kip) 10,400 10,700 23,635 22,065 

 

The nominal concrete compressive strength used in design of SMRF members, f'c, is 6.0 ksi, 

and the nominal steel yield strength, fy, is 60 ksi.  The following load combinations, numbered 

consistent with ASCE 7, were considered in the design: 

 

1. 1.4D, 

2. 1.2D + 1.6L, 

5. (1.2 + 0.2 SDS)D + 0.5L ± 1.0E, and  

7. (0.9 - 0.2SDS)D ± 1.0E, 
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where: 

 

D = dead load,  

L = live load,  

SDS = design spectral response acceleration parameter at short periods (ASCE 7), and  

E = earthquake load.  

Design forces were determined using the code-prescribed MRSA procedure using square root 

of sum of squares (SRSS) modal combination rule with a response modification factor R = 8.  

The first five modes were included in the elastic analysis of 10-story buildings, which accounted 

for more than 97% of the modal mass. The first ten modes were included in the elastic analysis 

of 20-story buildings, which accounted for more than 98% of the modal mass. The effective 

flexural rigidities for columns and beams used in the elastic MRSA analysis were 0.5EcIg and 

0.35EcIg, respectively (Moehle et al., 2008), where Ig  = gross section moment of inertia and Ec  

= elastic modulus of concrete = 4596 ksi.  The design base shear force from code (Vb) for all four 

buildings was controlled by minimum base shear requirements of ASCE 7, resulting in the base 

shear magnification factors (defined as 0.85Vmin/Vb,E, where Vmin = minimum base shear 

determined as per ASCE 7 and Vb,E = base shear computed from elastic MRSA analysis using the 

response modification factor R = 8) and design base shear coefficients (Vb /W) listed in Table 6.4.  

All four buildings satisfy the story drift limit set forth in ASCE 7 for the DE seismic hazard 

level. Peak story drifts are calculated during the MRSA from story displacements at design 

earthquake forces and appropriate deflection amplification factor (defined as Cd = 5.5 for RC 

frame buildings) to account for the nonlinear response. More specifically, peak (inelastic) story 

drifts for the archetype buildings are 0.014hsx (A10-3), 0.013hsx (A10-4), 0.010hsx (A20-3) and 

0.011hsx (A20-4) and are well under the 0.02hsx limit (hsx = story height).   

 
Table 6.4. Base shear magnification factor for minimum base shear requirement (ASCE 7) 

and resulting design base shear coefficient. 

Building 
A10-3 A10-4 A20-3 A20-4 

Base shear magnification factor, 0.85(Vmin/Vb ) 1.55 1.47 1.86 2.00 

Design base shear coefficient, Vb /W 
0.038 0.036 0.032 0.033 

 

Table 6.2 lists the longitudinal steel ratios (l) of the beams. Beam design shear forces were 

calculated considering development of probable moment strength, Mpr,b, at both ends of the 

beam and the uniformly distributed gravity load acting simultaneously. In all cases, the beam end 

moments due to factored gravity load contributed to less than 15% of the ultimate design 

moment Mu. Transverse reinforcement in beam plastic hinge regions (within 2h of member ends) 

was controlled by shear requirements, with s/db ranging between 3.5 – 4.9  for the four buildings 

(s = hoop spacing, db = longitudinal reinforcing bar diameter).  Transverse reinforcement in these 

regions comprised of No. 5 hoop and a cross tie (5/8 in. diameter), placed at spacing sh ranging 

between 5 in. and 6 in., depending on the building.   

Table 6.2 also lists the longitudinal steel ratios of the columns. Amount of longitudinal 

reinforcement in columns was reduced every five stories in most buildings. The exception is 

building A20-4 and also interior columns of building A20-3, where the column longitudinal 

reinforcement was kept constant along floors 11-20. In most locations, the minimum amount of 

longitudinal reinforcement required l was controlled by the load combination 7 ([0.9 - 0.2SDS]D 
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± 1.0E). In the upper stories (Zones 3 and 4 – see Table 6.2), the design was controlled by either 

the strong column-weak beam requirement (mostly as a consequence of keeping the beam 

flexural capacity uniform throughout the building height) or the minimum allowed longitudinal 

steel ratio l = 0.01 set forth in ACI 318.  In all buildings, joint shear strength and the strong 

column-weak beam requirements of ACI 318 were satisfied. 

Amount of transverse reinforcement (referred to in terms of volumetric ratio t = At/sb) was 

selected based on criteria for confinement requirements of ACI 318-14 and also design shear. 

Because the very aim of this chapter is to develop the method of estimating column design shear, 

the latter check was somewhat ambiguous and obsolete at this point, but was included as a check 

and a general indicator of which criterion might control the design of column transverse 

reinforcement in plastic hinge regions, if the more conservative Method A of ACI 318 was 

followed. It is important to keep in mind that the transverse reinforcement is only indirectly 

considered in numerical modeling by the way in which it affects the theoretical stress-strain 

relationship for the confined core concrete model. The transverse reinforcement volumetric ratios 

are listed in the appropriate tables of Appendix B. 

6.5 NUMERICAL MODELS 

Numerical modeling of the four archetype buildings studied in this chapter was similar to that 

conducted for the buildings in Chapter 5, with few changes. As before, a two-dimensional 

mathematical model consisting of a single SMRF with lumped mass and vertical load applied at 

the joints was implemented on the OpenSees platform. Both beams and columns were 

represented by the force-based Euler-Bernoulli nonlinear fiber-section frame elements with P-Δ 

geometric transformation. This modeling approach includes axial force – bending moment 

interaction and allows the beam elongation effects to be represented adequately, as was shown in 

Chapter 3.  

The nonlinear beam-column elements were discretized in such way that the tributary length of 

numerical integration points at element ends (where plastic hinges form) was approximately 

0.25-0.5h, where h represents the height of reinforced concrete element cross section. In all 

building models, beams were discretized into 5 numerical integration points, while the columns 

were discretized into 4 integration points. Beam-column joints were modeled with rigid frame 

elements connecting between the centerline of columns to the ends of beams, as shown in Figure 

6.5.1. The length of a rigid frame element on either side of the joint is equivalent to half of the 

dimension of the column in that direction (h/2), so that the total rigid zone has the same width as 

the column width in the plane of the frame. Rigid end zones with a length of a beam depth were 

also included in the columns (Figure 6.5.1). Slab effects were not considered in the numerical 

model. Damping matrix was defined based on initial stiffness Rayleigh damping with 2% 

damping ratio in modes 1 and 3.   
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Figure 6.5.1. Schematic of numerical model at the joint. 

The numerical models accounted for strain penetration of beam longitudinal reinforcement 

into joints and column longitudinal reinforcement into the foundation, based on a model 

developed in Chapter 3. The Giuffre-Menegoto-Pinto material model, Steel02 (OpenSees  2014), 

with a post-yield hardening ratio of βsteel = 0.012 was used to represent the reinforcing steel 

material fibers. The numerical steel model includes the material overstrength, which for A706 

Grade 60 steel used in seismic design implies that the actual yield strength of the steel is 

approximately 69 ksi (Bournonville et al. 2004). As explained in detail in Chapter 3, Section 

3.6.1, the relationship between the bar stress and amount of slip from anchorage was represented 

also with a Steel02 model object with identical post-yield hardening ratio as the steel material in 

the adjoining element (βsteel = 0.012), but with initial stiffness adjusted to produce Sy (amount of 

slip at yield computed per Section 3.2.1, Chapter 3) at the time that the steel bar reaches fy. 

Concrete was modeled using the Concrete03 material model (OpenSees 2014) which uses Kent-

Park relationship. The confined concrete strength was based on Mander et al. (1988). At strain 

levels exceeding concrete strain εcc at f'cc, the concrete stress-strain relationship was modeled 

with a descending branch, to a point where zero residual strength was reached, which was set to 

occur at the compressive strain of εcu = 0.05.  

Because the aim of this chapter is to compute the levels of shear in columns that would need 

to be accommodated during nonlinear response, it was assumed that shear yielding does not 

occur, and hence no shear springs, such as those discussed in Section 3.7 in Chapter 3, were 

included in the structural models. This way, the shear forces are not bounded by some 

hypothetical capacity, but were rather allowed to reach any level necessary to balance the 

moments developing in the beams and columns during the dynamic response of the buildings.  

6.6 VIBRATION CHARACTERISTICS AND SYSTEM STRENGTH 

Modal properties of the first three translational modes of the planar models, based on uncracked 

section properties, are listed in Table 6.5. The buildings of same height have very similar modal 

properties, with 10-story buildings having fundamental period T1 = 1.4 to 1.47, and 20-story 

buildings having T1 = 2.12 to 2.24.  For all four buildings, the ratio of first to second mode 

period T1/T2 is approximately 3.1, while the ratio of the first to third mode period T1/T3 ranges 

Column element 

Rigid link (typ.) 

Beam 

element 

Zero length element 

for bar slip 
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between 5.4-5.7. The effective modal mass of the first mode normalized with the total mass 

M1/M is around 0.68 for all four buildings, while the corresponding range for the second mode is 

0.10 for 10-story and 0.13 for the 20-story buildings.  The effective modal heights (Hq) of 

equivalent single degree of freedom systems are also listed for the first three modes and these 

values are shown as a fraction of a total building height H. 

 
Table 6.5. Characteristics of the first three modes  

of the archetype buildings. 
Building Mode q T (s) Mq / M Hq /H 

A10-3 

1 1.47 0.810 0.687 

2 0.47 0.103 0.123 

3 0.27 0.037 0.143 

A10-4 

1 1.40 0.814 0.686 

2 0.45 0.105 0.126 

3 0.26 0.036 0.135 

A20-3 

1 2.12 0.767 0.679 

2 0.68 0.130 0.036 

3 0.37 0.037 0.101 

A20-4 

1 2.24 0.760 0.681 

2 0.73 0.136 0.012 

3 0.40 0.037 0.095 

 

  
Figure 6.6.1. Spatial distribution of lateral story displacements of 10- and 20- story buildings 

corresponding to the first two modes of vibration. 
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is plotted in Figure 6.6.1. Figure 6.6.2 through Figure 6.6.5 show the base shear versus the roof 

displacement Droof (normalized by the total height, H) for the four buildings subjected to 

increasing story displacements with a spatial distribution along the height of the building 

proportional to the first and second mode force vectors. The figures also show the design base 

shear computed with the elastic modal response spectrum analysis using strength reduction factor 

R = 8 and the appropriate minimum base shear amplification factor discussed in Section 6.4. 

 

 

 
Figure 6.6.2. First mode pushover curve for buildings A10-3 and A10-4. 

 
Figure 6.6.3. Second mode pushover curve for buildings A10-3 and A10-4. 

As can be seen in Figure 6.6.2 and Figure 6.6.3, the 10-story buildings have almost identical 

nonlinear force-deformation characteristic, with building A10-3, which has only three bays in the 

SMRF, having slightly more flexibility than building A10-4. The roof drift at yield for first-mode 

pushover is roughly Dr,1,y = 6" (0.004H) for both A10-3 and A10-4, with the base shear at system 

yield at approximately 0.08W for both frames. In the second-mode pushover, system yield occurs 

at approximately roof displacements of Dr,2,y = 2.1" (0.0014H) and 1.7"(0.0012H) for the A10-3 
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and A10-4, respectively. Base shear at system yield in the second mode is approximately 0.093W 

and 0.088W for A10-3 and A10-4, respectively.  

 

 
Figure 6.6.4. First mode pushover curve for buildings A20-3 and A20-4. 

 
Figure 6.6.5. Second mode pushover curve for buildings A20-3 and A20-4. 
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are subjected to first mode- proportional lateral forces. In the case of A10-3 and A10-4, the ratio 

of the base shear "strength" at yield in the second versus first mode is 1.16 and 1.10, 

respectively. For A20-3 and A20-4 buildings, this ratio is around 1.3. This is easily observed in 

the x-axis values of story shear distributions plotted in Figure 6.6.6 and Figure 6.6.7. Each figure 

shows a story shear distribution at a given roof displacement for first and second mode lateral 

force vector. The roof displacements are expressed as a factor of yield displacement for a given 

mode n, labeled as Dr,n,y. 

 

  

  
Figure 6.6.6. Story shear profiles for mode 1 and 2, buildings A10-3 and A10-4 and various roof 

drift ratios. 
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Figure 6.6.7. Story shear profiles for mode 1 and 2, buildings A20-3 and A20-4 and various roof 

drift ratios. 
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6.7 GROUND MOTION SELECTION 

The analyses presented in this chapter are investigated at two shaking intensities: design 

earthquake (DE) and maximum considered earthquake (MCE) intensity. Ground motions were 

selected using the PEER Ground Motion Database selection tool (PEER 2014) to match the 5% 

damping ratio smoothed design spectrum of ASCE 7. Because of differences in vibration periods 

between the 10- and the 20-story buildings, the ground motions were different for the two 

building heights, and are selected independently and grouped into two separate bins: Bin 1, used 

for 10-story building nonlinear dynamic analyses, and Bin 2, used for 20-story building 

nonlinear dynamic analyses.  

Each bin contains thirty different ground motions, each of which includes both fault-normal 

and fault-parallel ground acceleration components. Thus, at each hazard level, each building is 

subjected to total of 60 analysis runs – 30 fault-normal and 30 fault-parallel ground motions. All 

of the motions selected occurred in events on strike-slip fault types and some ground motions 

include distinct velocity pulses due to directivity effects. The acceleration records were linearly 

scaled so that the geometric mean of all FN and FP components approximately matches the 

smoothed design spectrum prescribed by ASCE 7 for a given site, between the specified periods 

of interest. For 10-story buildings, the period range was between T2 and 1.5T1 (T1, T2 = first and 

second mode of vibration periods, respectively).  Although factors for linear GM scaling even in 

the range of 3.5-12 have been shown to also provide acceptable average estimates of the 

response (Watson-Lamprey and Abrahamson 2005), the bounding scaling factors for the 

analyses in this chapter were defined to be well below these values at [0.3, 2.2] at DE and [0.45, 

3.3] at MCE.  

6.7.1 BIN 1: GROUND MOTIONS FOR 10-STORY BUILDINGS 

Bin 1 ground motions and respective scale factors are listed in Appendix C. Figure 6.7.1 shows 

the mean response spectra for both FN and FP components, and their geometric mean. Figure 

6.7.2 shows the scatter in the scaled ground motion spectra along with the 50
th

, 84
th

 and 98
th

 

percentile spectrum for both pseudo-acceleration and displacement response spectra and 5% 

damping ratio. 
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Figure 6.7.1. Pseudo-acceleration and displacement design spectra and smoothed mean spectra 

for 30 ground motions at DE and MCE shaking intensities. Unhatched area represents range of 

periods of interest. 
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Figure 6.7.2. Scatter in Bin 1 ground motion spectra at DE level: (a) pseudo-acceleration spectra 

for FN components, (b) pseudo-acceleration spectra for FP components, (c) displacement spectra 

for FN components, and (d) displacement spectra for FP components. 
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6.7.2 BIN 2: GROUND MOTIONS FOR 20-STORY BUILDINGS 

Bin 2 ground motions and respective scale factors are listed in Appendix C. Figure 6.7.3 shows 

the mean response spectra for both FN and FP components, and their geometric mean. Figure 

6.7.4 shows the scatter in the scaled ground motion spectra along with the 50
th

, 84
th

 and 98
th

 

percentile spectrum for both pseudo-acceleration and displacement response spectra and 5% 

damping ratio. 

 

  

  
Figure 6.7.3. Pseudo-acceleration and displacement design spectra and smoothed mean spectra 

for 30 ground motions at DE and MCE shaking intensities. Unhatched area represents range of 

periods of interest. 
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Figure 6.7.4. Scatter of Bin 2 ground motion spectra at DE level: (a) pseudo-acceleration spectra 

for FN components, (b) pseudo-acceleration spectra for FP components, (c) displacement spectra 

for FN components, and (d) displacement spectra for FP components. 

6.8 BUILDING RESPONSE FROM NONLINEAR DYNAMIC ANALYSES 

General response characteristics discussed in this section include: story displacements, story drift 

ratios, absolute floor accelerations, story shears, story moments, and individual column shears. 

For each ground motion analysis run, absolute maxima of these response quantities are logged 

and plotted as a function of the height of the building. The response envelopes are separated into 
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standard deviation are calculated for each group. In the discussion that follows, reference is made 

to various statistical measures of these response quantities, such as the mean of the response 

quantity. Unless otherwise noted, a reported response quantity refers to the maximum of the 

absolute value of the response quantity as logged during an individual ground motion analysis.   
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Story displacements U are normalized by the total height of the building H and represent the 

peak story displacements relative to the ground. Story drift ratios, θ, are defined as the difference 

between the horizontal displacements of the two consecutive stories, normalized by the 

individual story height hi. Floor accelerations A represent the absolute floor accelerations and are 

plotted as normalized with respect to the peak ground acceleration of the corresponding input 

ground motion. Story shear V represents the total shear on a single SMRF and is normalized by 

the seismic weight W carried by a single SMRF (in the configuration of the SMRFs presented in 

this chapter, W represents half of the building seismic weight Wt). Lastly, the story moment M 

represents the total overturning moment acting on a single frame and normalized by W and 

height H, defined previously. 

 

6.8.1 GENERAL RESPONSE CHARACTERISTICS: DISPLACEMENTS 

Figure 6.8.1 and Figure 6.8.2 show mean response envelopes for the 30 ground motions 

responding under design earthquake and maximum considered earthquake shaking intensities. 

The plots also include the story displacement profiles calculated from the ASCE 7 procedure by 

magnifying the story displacement under design seismic forces by a factor Cd = 5.5. Global 

response quantities are almost identical for the two buildings having the same height; mean roof 

drift ratios for building A10-3 are 0.0165 (FN) and 0.011 (FP), while those of building A10-4 are 

0.017 (FN) and 0.012 (FP). Buildings A20-3 and A20-4, respectively, reached the mean roof 

drift ratios of 0.010 under FN and 0.007 under FP ground motion components and DE level of 

shaking. The MCE level responses were roughly 1.5 times those for DE level, as can be seen in 

Figure 6.8.1 and Figure 6.8.2. In all four buildings, the shape of the peak story displacement 

envelopes indicates that most of the displacement builds up in the lower two thirds of the height 

of the buildings, with the top stories having almost uniform peak displacements. This is also 

evident from the story drift ratio envelopes (Figure 6.8.1[b] and [d] and Figure 6.8.2[b] and [d]) 

which confirm that the story drift ratios are largest in the bottom half of the building.  

Peak story drift ratio θ was computed around 0.3H for all four buildings. In the 10-story 

buildings, θ was almost uniform in the bottom third of the building, with the ratio of the peak θ 

to the θ at the base level (first story) equal to 1.08 and 1.18 for FN and FP response components, 

respectively. On other hand, the distribution of story drift ratios in the 20-story building peaks 

out at roughly 0.25-0.3H, but tapers off toward the base of the building, with the ratio of the peak 

story drift to the story drift at the base level equal to 1.55 and 1.70 for the FN and FP response 

components, respectively. Interestingly, both 10-story buildings exhibited much larger story drift 

ratios in comparison with the 20-story buildings. Peak story drift ratios in the 10 story buildings 

were approximately 2.1 (FP) and 3.25 (FN). This is approximately 1.6 times the peak story drift 

ratios computed in the 20-story buildings at DE level of shaking, which were 1.25 (FP) and 2.10 

(FN). 

It is interesting to compare the trends in the story drift distribution to those observed for 20-

story buildings analyzed in Chapter 5, where story drift ratio envelopes exhibited two distinct 

peaks – one occurring around 0.25H, and the other around 0.6H of the building. The reduction in 

beam strength (and stiffness) in the upper building stories, leads to accumulation of larger story 

drift ratios at these levels. Conversely, uniform strength and stiffness of beams along the frame 

height produces smaller relative story drift ratios in the upper half of the building, regardless 

whether the column curtailment is present or not. 
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Figure 6.8.1. Response envelope plots for buildings A10-3 [(a) and (b)] and A10-4 [(c) and (d)]. 
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Figure 6.8.2. Response envelope plots for buildings A20-3 [(a) and (b)] and A20-4 [(c) and (d)]. 
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Figure 6.8.3 and Figure 6.8.4 show the scatter observed in the story drift ratio distribution for 

10- and 20-story buildings, respectively. As can be seen, in 10-story buildings, limited variation 

in peak story drift ratio exists in the top 0.3H of the building height, while the stories in the 

bottom 0.7H exhibit large scatter in the peak story drift ratios, with two fault-normal ground 

motion components causing θ amplitudes in exceedance of 8%. The story drift ratios in the fault-

parallel direction were generally under 6% for the A10-3 and A10-4 building. The two 20-story 

buildings also show the largest θ scatter in the bottom half of the stories. However, the scatter 

present in top floors is larger than what was observed in the top floors of the 10-story buildings.   

 

 
Figure 6.8.3. Scatter in story drift ratio for 10-story buildings at Design Earthquake hazard level: 

(a) A10-3 response in fault normal direction, (b) A10-3 response in fault parallel direction, (c) 

A10-4 response in fault normal direction, (d) A10-4 response in fault parallel direction. 

 

0.00 8.00 16.00
0

0.2

0.4

0.6

0.8

1


i
 (%)

(a)

A10-3 DE level response for FN direction

h
i/
H

0.00 3.00 6.00
0

0.2

0.4

0.6

0.8

1


i
 (%)

(b)

A10-3 DE level response for FP direction

h
i/
H

 

 

individual env.

median

mean

0.00 8.00 16.00
0

0.2

0.4

0.6

0.8

1


i
 (%)

(c)

A10-4 DE level response for FN direction

h
i/
H

0.00 3.00 6.00
0

0.2

0.4

0.6

0.8

1


i
 (%)

(d)

A10-4 DE level response for FP direction

h
i/
H

 

 individual env.

median

mean



168 

 

 

 
 

Figure 6.8.4. Scatter in story drift ratio for 20-story buildings at Design Earthquake hazard level: 

(a) A20-3 response in fault normal direction, (b) A20-3 response in fault parallel direction, (c) 

A20-4 response in fault normal direction, (d) A20-4 response in fault parallel direction. 

Most of the fault-normal components of the ground motions caused peak story drift ratio less 

than 4% (with the exception of one ground motion where both A20-3 and A20-4 reached θ ≈ 8% 

at or below 0.2H), which is less than a half of the story drift demands in the 10-story buildings. 

In the fault-parallel direction, 20-story buildings sustained θ < 3% for all ground motions. For 

the ground motions causing the largest story drift ratio amplitudes, the maximum story drifts 

occur at the base floor and decrease along the height in 10-story buildings. This is not the case in 

the 20-story buildings, where the largest θ amplitudes tend to concentrate around 0.2H of the 

building.  
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6.8.2 GENERAL RESPONSE CHARACTERISTICS: FORCES 

Mean response envelopes for floor accelerations, system (story) shears, and system (story) 

moments for the four buildings subjected to the DE and MCE level earthquake ground motions 

are plotted in Figure 6.8.5 for 10-story buildings and Figure 6.8.6 for 20-story buildings. In 

general, the differences between the DE and MCE level responses are significantly smaller than 

those observed in the displacement responses (story displacements and story drift ratios). 

Floor accelerations reduce in an almost linear fashion along the height, starting from 1PGA 

mean value at the base and a fraction of this value at 0.9H, where there is a sudden increase in 

the floor accelerations at the top floor (Figure 6.8.5 and Figure 6.8.6). MCE-level floor 

acceleration envelopes are almost identical in shape with the DE level envelopes. However, the 

mean floor accelerations reduce by roughly 20% at this stronger level of shaking, compared to 

those occurring at the DE hazard level. 

The buildings of equal heights developed similar level of system shears and moments. At DE 

level of shaking, the respective mean base shears for buildings A10-3 and A10-4 were 0.127W 

and 0.118W in FN direction, and 0.123W and 0.113W in FP direction.  The respective mean base 

shears for buildings A20-3 and A20-4 at DE shaking were 0.095W and 0.099W in FN direction, 

and 0.092W and 0.096W in FP direction. While the base shears in FN direction were generally 

larger, system forces computed in upper half of the buildings for the FP direction exceed those in 

FN direction. In the case of 10-story buildings, the mean story shear at 8
th

 floor during the FP 

response exceeds that in FN direction by roughly 10%. At MCE level, mean base shear 

envelopes were approximately 10% higher for all buildings and in both directions. 

System shear envelope plots in Figure 6.8.5 and Figure 6.8.6 include the shear profiles 

computed with: i) first-mode static pushover analysis (see Section 6.6) at a mean roof drift ratio 

corresponding to the mean envelope for FN direction at DE level, ii) a code-based MRSA 

analysis using strength reduction factor R = 8 with the appropriate base shear amplification 

factors as described in Section 6.4, and iii) an MRSA envelope amplified by a factor Φv, such 

that the shear at the base is equal to that computed with the NRHA at a DE level of shaking. The 

base shear from NRHA used in scaling of the MRSA envelopes is the geometric mean of the 

mean base shears computed in the two orthogonal orientations with respect to the direction of the 

fault generating the ground motion. The story moment envelope plots in Figure 6.8.5 and Figure 

6.8.6 only include the distribution from the first-mode static pushover analysis at the roof 

displacement equivalent to the mean roof drift in the FN direction.  

A small difference in NRHA- computed mean story moment envelopes and the story moment 

distribution from the first-mode static pushover analysis indicates that the mean story moment is 

only slightly affected by the higher mode contribution for the frame buildings analyzed, which is 

most evident in the upper half-height of the buildings. In contrast, large deviation in the 

corresponding shear envelopes from the first-mode proportional distribution can be observed for 

all buildings, suggesting larger presence of higher mode response components (Figure 6.8.5[b] 

and [e] and Figure 6.8.6[b] and [e]). For example, the base overturning moment due to first-

mode static pushover is only 3 to 4% higher than the geometric mean of the DE-level base 

overturning moment for 10- and 20-story buildings, respectively. On other hand, the base shear 

due to first-mode static pushover is 15 to 16% lower than the geometric mean at the DE-level 

response for 10- and 20-story buildings, respectively. 
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Figure 6.8.5. Floor acceleration, story shear, and story moment envelopes for buildings A10-3 

and A10-4. (DE = design earthquake level response envelopes; MCE = maximum considered 

earthquake response envelopes; Pushover = response envelopes under first-mode pushover 

analysis at the roof displacement corresponding to the mean roof displacement from nonlinear 

response history analysis; MRSA = response envelopes obtained from elastic modal response 

spectrum analysis corresponding to design earthquake level forces; Φv = amplification factor 

applied to MRSA shear envelope to match the mean base shear from nonlinear response history 

analysis at design earthquake hazard level) 
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Figure 6.8.6. Floor acceleration, story shear, and story moment envelopes for buildings A20-3 

and A20-4. (DE = design earthquake level response envelopes; MCE = maximum considered 

earthquake response envelopes; Pushover = response envelopes under first-mode pushover 

analysis at the roof displacement corresponding to the mean roof displacement from nonlinear 

response history analysis; MRSA = response envelopes obtained from elastic modal response 

spectrum analysis corresponding to design earthquake level forces; Φv = amplification factor 

applied to MRSA shear envelope to match the mean base shear from nonlinear response history 

analysis at design earthquake hazard level) 
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Story shear computed with elastic MRSA procedure was amplified to match the mean story 

shear envelope at the base. This was accomplished by multiplying all story shears by a factor Φv, 

as labeled in the plots of story shear envelopes (Figure 6.8.5 and Figure 6.8.6). Because MRSA 

accounts for the contribution of the higher modes, the amplified MRSA story shear envelope 

shapes (Figure 6.8.5[b] and [e] and Figure 6.8.6[b] and [e]) resemble more closely the mean 

story shear envelopes than the first-mode pushover envelope discussed earlier (Figure 6.6.6 and 

Figure 6.6.7). However, the story shears computed from the NRHA are not proportional to the 

MRSA story shears, which is particularly evident in the upper half of the stories in all buildings. 

For example, at the DE hazard level, the NRHA- mean shears in the 10-story buildings occurring 

at 0.8H are roughly 1.1 times the amplified MRSA shears, while at the top floor they are 1.3 

times the shears from amplified MRSA. In the 20-story buildings at 0.85H, the DE-level mean 

story shears are 1.2 times the amplified MRSA, and at the top floor they are 1.1 times the 

amplified MRSA shears. 

The deviations in the mean story shear envelopes from the MRSA-developed story shear 

envelopes follow a trend. The latter is identified by observing the individual story shear 

amplification factors plotted as functions of the building height in Figure 6.8.7. The story shear 

amplification factor is defined as the ratio of the mean story shear for a given set of ground 

motions at a given level of shaking intensity (Vi) to the story shear computed with the MRSA 

code-procedure (Vu,MRSA). Plots in Figure 6.8.7 show the variation of the story shear 

amplification factors along the height for both fault-normal and fault-parallel orientations of 

ground motion sets and at both DE and MCE ground shaking intensity levels. As a reference 

point, each plot also shows the Φv factor representing the amount of story shear amplification 

reached at DE level at the base considering the geometric mean of the FN and FP direction, as 

defined earlier.  

Amplification factors follow very similar distribution for all four buildings, as can be seen in 

the individual plots of Figure 6.8.7. They vary between approximately 2.6 and 5.5 depending on 

the floor level and the building height. In the lower 0.5H to 0.6H of each building, the shear 

amplification factors fluctuate between 2.5 and 3.5 about the central value set to the base shear 

amplification factor defined previously. In the upper 0.4H, shear amplification factors diverge 

from Φv and reach the values up to 1.5Φv to 1.8Φv in the top stories. In 10-story buildings, the 

highest shear amplification occurs in the very top floor as is between Vi /Vu,MRSA = 4.2 and 5.5, 

while in the 20-story buildings, the highest shear amplification occurs slightly below the top 

story and is somewhat lower in value (between 3.3 and 4.2) compared to that in the shorter 

buildings. 

For all four buildings responding at a given shaking intensity, the fault-parallel ground motion 

components produce higher story shear amplification in the upper stories, as noted before, while 

the trends reverse in the lower stories. In all cases, shear amplification factors increase with the 

shaking intensity. This difference in the amplification can be quantified in terms of a ratio 

between the mean story shear at MCE and DE level of shaking, which is plotted in Figure 6.8.8 

for all four buildings. In all cases, the additional amplification factor due to stronger shaking 

intensity increases in the top 0.25H to 0.30H of the building height. In the 10-story buildings, the 

ratio of MCE to DE level story shears roughly equals 1.1 along the bottom 0.80H of the 

buildings and increases to about 1.2 in the top floors (see Figure 6.8.8[a] and [b]). Similar trends 

are observed in the 20-story buildings (see Figure 6.8.8[c] and [d]).  
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Figure 6.8.7. Ratio of the mean story shears to the corresponding story shears computed with 

MRSA analysis for buildings: (a) A10-3, (b) A10-4, (c) A20-3, and (d) A20-4. 
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Figure 6.8.8. This is important to account for when estimating shear forces to be used in the 

design of the SMRFs.  

 

  

 
Figure 6.8.8. Ratio of the mean story shears at MCE to the mean story shears at DE for buildings: 

(a) A10-3, (b) A10-4, (c) A20-3, and (d) A20-4. 
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Figure 6.8.9. Story shear envelopes for A20-4 building under FN components of ground motion. 

Response to NGA158IMPVALL.H-AEP causing the largest story shear at 0.5H and 0.8H is 

highlighted in red. 

It is informative to take a closer look at the dynamic response of a single building during a 

single nonlinear response history analysis. As an example, response of building A20-4 to fault-

normal component of NGA158IMPVALL.H-AEP ground motion scaled with factor 2.2 (scaled 

to DE hazard level) is examined. The selected ground motion caused the largest shear at 0.5H 

and 0.8H out of all 30 ground motion analyses for this building in the FN direction. This can be 

seen in Figure 6.8.9, which highlights the story shear envelope corresponding to the selected 

ground motion plotted together with all the peak story shear envelopes computed for FN 

components at DE level of shaking.  

 
Figure 6.8.10. Roof displacement history for A20-4 building under FN component of 

NGA158IMPVALL.H-AEP scaled with factor 2.2. 
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identified in Figure 6.8.10. As evident in Figure 6.8.11 plots, large presence of higher modes 

contribution is evident in all instances, with none of the pictured shear distributions resembling 

the first-mode proportional shear distribution shown in Figure 6.6.7(c). Story shear distributions 

at instances labeled with a, f, g, and h are loosely proportional to the second-mode story shear 

distribution, suggested by the similarity in the force diagram shape to that in Figure 6.6.7(d). For 

reference, the instantaneous story displacement profiles at the six instances are also shown in 

Figure 6.8.12. 

 
Figure 6.8.11. Instantaneous story shear distribution for A20-4 building under FN component of 

NGA158IMPVALL.H-AEP scaled with factor 2.2. 
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Figure 6.8.12. Instantaneous story displacement distribution for A20-4 building under FN 

component of NGA158IMPVALL.H-AEP scaled with factor 2.2. 
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6.8.13 through Figure 6.8.16 also show the story shear envelopes representing 84.1, 97.72, and 

99.86 percentile (mean + 1 standard deviation, mean + 2 standard deviations, and mean + 3 

standard deviations, respectively) and also a maximum shear envelope bounding the story shear 

amplitudes for the 30 ground motions selected. There is generally greater dispersion in the shears 

higher up in the buildings, compared to the shears in the lower stories of the buildings, which is 

most evident in the fault normal direction of all buildings, shown in plots (a) and (c) in Figure 

6.8.13 through Figure 6.8.16.   

A closer examination of coefficients of variation (cv) in story shear along the height of the 

buildings reveals an interesting trend. Figure 6.8.17 and Figure 6.8.18 plot the coefficients of 

variation (defined as a standard deviation divided by the mean of the distribution) for the 10-

story and 20-story buildings, respectively, responding at two different shaking intensities and 

two different ground motion component directions considered. The cv in the bottom 0.60H of all 

buildings is approximately 0.10 or less, while in the top 0.40H it increases to up to 0.30 in the 

FN direction and up to 0.20 in the FP direction. Thus, more scatter is present in the upper floors, 

which are more affected by the higher mode response, as noted before. The scatter seems to have 

little correlation with the shaking intensity at DE and MCE levels, likely because the column 

forces are bounded by the building capacity at these levels of inelastic nonlinear response. 

The magnitudes of coefficients of variation indicate that, for the ground motions studied, an 

amplification factor of 1.1 to 1.3 can result in 34% increase of a safety margin against shear 

failures (from 50
th

 to 84
th

 percentile, or from mean to mean + one standard deviation), compared 

to simply using the mean shear envelopes as the basis of estimating seismic shear demands. In 

the lower stories, where shear forces are the largest, an amplification of 1.2 (approximately 

corresponding to mean + two standard deviations), can result in an increased safety margin 

against 98% of the ground motions selected in this study. This idea will be revisited in the next 

section, where a method of estimating design shear for SMRF columns will be developed. 
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Figure 6.8.13. Story shear scatter for A10-3 building: (a) FN direction, DE level, (b) FP direction, 

DE level, (c) FN direction, MCE level, (d) FP direction, MCE level. 
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Figure 6.8.14. Story shear scatter for A10-4 building: (a) FN direction, DE level, (b) FP direction, 

DE level, (c) FN direction, MCE level, (d) FP direction, MCE level. 
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Figure 6.8.15. Story shear scatter for A20-3 building: (a) FN direction, DE level, (b) FP direction, 

DE level, (c) FN direction, MCE level, (d) FP direction, MCE level. 
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Figure 6.8.16. Story shear scatter for A20-4 building: (a) FN direction, DE level, (b) FP direction, 

DE level, (c) FN direction, MCE level, (d) FP direction, MCE level. 
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Figure 6.8.17. Coefficient of variation in story shear as a function of building height for 10-story 

buildings. 
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Figure 6.8.18. Coefficient of variation in story shear as a function of building height for 20-story 

buildings. 
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factor (R) and minimum base shear amplification factor (discussed in Section 6.4), iv) design 

shear envelopes from ACI 318 corresponding to methods A, B1 and B2 as described in Section 

6.1.1, and v) the design column shear envelope corresponding to NIST GCR 8-917-1 design 

guidelines (described in Section 6.1.2). All quantities shown are normalized with the gross area 

of the column multiplied by 'cf . As can be seen in Figure 6.8.19 through Figure 6.8.22, 

method B2 in some cases results in higher design shear than method A. This happens in the 

upper stories, where columns become smaller and have less flexural capacity than in the lower 

stories, while the beams are designed with the same cross section as those in the lower stories. 

Note that the strong column – weak beam condition spelled out in ACI 318 is still satisfied in 

these locations. It is understood that method A will control the design in this case, as it is 

bounded by the column flexural capacity. 

The shear distributions along the height of the building follow the same trends as was 

observed with the story shear. Peak shear reached in the exterior columns is approximately 0.6 

times that in the interior columns, in all cases. In all buildings, the kinematic interaction between 

the elongating beam and the exterior column of the first floor has a notable effect on the column 

shear at the base. For example, in the A10-4 building, the amplification of mean exterior column 

shear at the base is 1.5 and 1.4 times the amplification of shear in the remaining column 

locations, based on amplifying the MRSA shear envelope for the nonlinear response history 

analyses for FN and FP ground motion direction.  

The impact of beam elongation can be seen in the instantaneous column shear distribution 

along the column height during a nonlinear dynamic response. Figure 6.8.23(a) shows the 

instantaneous column shear distribution at t = 5.45 s during dynamic response to FN component 

of ground motion NGA_158IMPVALL.H-AEP scaled to 2.20. The illustration corresponds to 

the instance when the exterior column on the right in the sketch (colored with blue) reached 

maximum shear forces, during peak first-story displacements. Accompanying this plot are the 

displacement history of the first story (Figure 6.8.23[b]) and also the roof displacement history 

(Figure 6.8.23[c]). 

Based on the results presented in Figure 6.8.19 through Figure 6.8.22, it is evident that some 

of the referenced design methods underestimate the ultimate shear forces developed in the 

columns under the ground motions compatible with the Design Earthquake seismic hazard level. 

The exception is the ACI 318 method A, which corresponds to the columns hinging at both ends 

and is the upper bound for the design shear. This method overestimates the column shears in all 

cases. ACI 318 method A seems to provide the best shear estimate in the interior columns of 10-

story buildings, and in the buildings studied, seems to provide more conservative ultimate shear 

estimate where larger number of bays are present in a SMRF. This is, however opposite of the 

trends seen in the 20-story buildings, where the shear is overestimated by about the same amount 

in both 3-bay and 4-bay configuration (see Figure 6.8.20 and Figure 6.8.22). In interior columns 

of 20-story buildings, ACI 318 method A tends to overestimate design shear by a factor of 4 or 

more. This overestimation is further augmented in exterior columns, because the latter tend to 

carry roughly a half of the shear of the interior columns, while having larger probable moment 

capacity as a result of higher axial loads (under the assumption that the exterior and interior 

columns have approximately equal capacities and the exterior columns are in tension-controlled 

region under the axial loads experienced). 
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Figure 6.8.19. Shear response envelope plots for 10-story buildings under Design Earthquake 

hazard level.  

 

0 2 4 6
0

0.2

0.4

0.6

0.8

1

V
i
 / A

g
f '

c

(a)

h
i /

 H
A10-3 Exterior Column

(DE level)

0 2 4 6 8

V
i
 / A

g
f '

c

(b)

A10-3 Interior Column
(DE level)

 

 
individual env.

mean (FN)

mean (FP)

ACI 318 (A)

ACI 318 (B1)

ACI 318 (B2)

NIST

0 2 4 6
0

0.2

0.4

0.6

0.8

1

V
i
 / A

g
f '

c

(c)

h
i /

 H

A10-4 Exterior Column
(DE level)

0 2 4 6

V
i
 / A

g
f '

c

(d)

A10-4 Interior Column
(DE level)

0 2 4 6

V
i
 / A

g
f '

c

(e)

A10-4 Middle Column
(DE level)

 

 
individual env.

mean (FN)

mean (FP)

ACI-318 A

ACI-318 B1

ACI-318 B2

NIST



187 

 

 

 
 

Figure 6.8.20. Shear response envelope plots for 20-story buildings under Design Earthquake 

hazard level. 
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Figure 6.8.21. Shear response envelope plots for 10-story buildings under Maximum Considered 

Earthquake hazard level.  
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Figure 6.8.22. Shear response envelope plots for 20-story buildings under Maximum Considered 

Earthquake hazard level.  
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upper half of the height in each building. This is especially evident in the interior columns of 20-

story buildings (see Figure 6.8.20 for DE level response and Figure 6.8.22 for MCE level 

response). This overestimation would likely reduce in the buildings where the flexural strength 

of the SMRF beams is reduced along the building height; however, further investigation is 

necessary to draw a more definite conclusion regarding this method. 

Method suggested by NIST GCR 8-917-1 and labeled simply as NIST in Figure 6.8.19 

through Figure 6.8.22 underestimated the mean column shear in all cases by at least 25%. 

However, because this design method was based on MRSA, it resulted in an ultimate shear 

envelope that most closely follows the mean column shear envelopes from NRHA.  

ACI 318 Method A was the only design method which consistently provided a safety margin 

against the increased shear in the base exterior column. Thus, this method is recommended to use 

in the base stories of exterior columns, impacted by the beam elongation. In all other location, 

Method A is deemed overly conservative. 

     
Figure 6.8.23. Instantaneous column shear distribution in building A20-4 under FN component of 

ground motion record NGA_158IMPVALL.H-AEP scaled to 2.20. 
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6.9 ESTIMATING SYSTEM (STORY) SHEAR 

The focus of this section is to develop a method to estimate, within some acceptable level, the 

story shear distribution and amplitude during nonlinear response of the four SMRF buildings 

studied. The objective is to identify the key factors affecting this engineering parameter. 

Although story shear is not directly used in design of reinforced concrete special moment frames, 

it is anticipated that the same general principles affecting this global response quantity will also 

govern the column shear demand. Conveniently, a conceptually sound estimation of the story 

shear will serve as a basis for developing a procedure for establishing the level of shear forces to 

be used for column design. 

As the mean response envelopes in this chapter (and also in Chapter 5) indicate, the level of 

base shear in SMRFs during nonlinear dynamic response is mostly affected by the system 

capacity, or base moment overstrength. This is also evident in the pushover curves where the 

base shear at system yield is multiple times higher than the design base shear. Thus, this quantity 

needs to be an integral part of a design procedure developed. In addition, system shear contains a 

considerable amount of higher mode contribution that seems to have an increased presence in the 

upper stories, as was shown in Figure 6.8.7, and increases with the amplification of the ground 

motion intensity, as was noted in Figure 6.8.8. Hence, the design story shear estimation method 

needs to also consider the shear amplification due to higher modes. Lastly, as shear yielding in 

RC columns can significantly reduce the ductility, the design method developed also needs to 

account for statistical dispersion of shear forces during nonlinear dynamic response of buildings 

(Figure 6.8.13 – Figure 6.8.16) to increase the safety margin against column shear yielding and 

the resulting performance implications. These individual elements affecting the system shear are 

addressed separately in the next three sections. 

6.9.1 SYSTEM BASE OVERSTRENGTH AMPLIFICATION FACTOR: Ω  

The system base overstrength factor Ω is defined as the ratio between the approximate system 

base overturning moment capacity Mb,Ω and the system base overturning moment demand Mb,u 

computed with the MRSA procedure using the appropriate strength reduction factor R and 

minimum base shear amplification factor. For regular buildings studied in this chapter, it is 

computed with the following expression: 
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where Mpr,c,j are the probable moment capacities of the columns at the base under the gravity 

loading considered to act during a seismic event, that is 1.0D + 0.25L, NCol is the total number 

of columns in a SMRF at the base, PT,Ω and PC,Ω are axial forces in exterior columns on tensile 

and compressive side of the SMRF at the base, and LF is the center-to-center distance between 

the external SMRF columns (or frame width).  PT,Ω and PC,Ω are calculated with the following 

expression: 
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In Equations 6.6 and 6.7, Vpr,i is the shear corresponding to development of probable moment 

strengths Mpr,i in beams framing into an exterior column at level i, calculated assuming zero 

gravity loads. Pg,i represents the axial force due to gravity load at level i acting on the tributary 

area of the exterior column. It should be noted that in the Equations 6.6 and 6.7, both Vpr and Pg 

have positive values. The direction of the axial force action when summing the moments about 

the base is taken into account in Equations 6.6 and 6.7. For the four archetype buildings with 

uniform frame bay widths, the sum of the Pg.i terms in Equations 6.6 and 6.7 cancel out when 

plugged into Equation 6.5. However, if the two exterior bays of the frame are of different 

lengths, this will not be the case. 

Using the Equations 6.5 through 6.7, system base overstrength amplification factor Ω was 

calculated for each of the four archetype buildings. These are listed in Table 6.5, alongside the 

flexural overstrength factors as determined per the NIST Design Guide, which was described in 

Section 6.1.2. It is clear that considering the building system overstrength provides a larger 

factor than considering only the total overstrength of the beams framing into a single column. 

Thus, amplifying the MRSA-based design forces with a system overstrength factor Ω, rather than 

the factor Φm as defined in NIST Design Guide, will lead to more conservatism.  

Alternatively, the definition of the flexural overstrength factor Φm as defined in NIST Design 

Guide can be adjusted to provide equal level of conservatism as the system overstrength factor in 

Equation 6.5. This can be done by considering the flexural overstrength of all plastic hinges 

assumed to form in the storng column-weak beam mechanism, i.e., the beams at each joint 

support and the columns at the base of the frame. An adjusted overstrength factor Φm
*
 is 

proposed, as follows: 
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The numerator in Equation 6.8 represents the sum of the probable moment strengths of all 

plastic hinge regions; that is, the probable moment strengths of each column at the base floor 

only, and probable moment strengths of each beam at each end. As before, NCol denotes the 

number of columns and is equal to the number of SMRF bays plus one, while Mpr,c,k signifies 

probable moment capacity of column k at the base only. Term NBm in Equation 6.8 represents 

the total number of beam clear spans in a SMRF. For example, in a 4-bay, 10-story moment 

frame, NBm = 4·10 = 40. Mpr,b,i and Mpr,b,j denote the beam moment capacities at each end of the 

clear span k.  

The denominator in Equation 6.8 is the sum of the moment demands on all plastic hinge 

regions assumed to act in the strong column-weak beam mechanism, due to earthquake loading 

only. That is, terms ME,c, ME,b,i, and ME,b,j are the seismic moment demands calculated using 

code-based analysis (MRSA) and the appropriate strength reduction and minimum base shear 

factors, as defined in Section 6.4. They should not include the contribution of gravity moments 

coming from the load combinations 5 and 7 (Section 6.4). Including the gravity moments in the 

denominator reduces the overstrength factor calculated, the extent of which depends on the 

relative magnitudes of gravity and seismic moments acting on the beams.  
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Table 6.5 lists the factors Φm
*
 calculated per Equation 6.8. As can be seen, the Φm

* adjusted 

factors are almost identical to the overstrength factor Ω calculated with Equation 6.5. Thus, 

either Equation 6.5 or 6.8 can be used to estimate the flexural overstrength of the system. 

 
          Table 6.5. Overstrength factors calculated with different methods. 

  A10-3 A10-4 A20-3 A20-4 

Ω 2.82 2.67 2.43 2.74 

Φm (NIST) 2.58/2.62 2.45/2.5/2.54 2.23/2.20 2.62/2.55/2.48 

Φm
*
 (NIST adjusted) 2.81 2.72 2.45 2.80 

 

6.9.2 HIGHER MODES AMPLIFICATION FACTORS: AD AND ΨV 

The idea of accounting for higher modes nonlinearity in response has been explored before 

through modal pushover analysis (Chopra and Goel 2002, Chopra et al 2004) and also by using 

different strength reduction factors in different modes (Eibl and Keintzel 1990, Calugaru and 

Panagiotou 2011). Priestley (2003) explored a so-called "modified modal response spectrum 

analysis" in conjunction with the direct displacement based design proposed using a strength 

reduction factor proportional to the displacement ductility demand on a substitute system for 

each mode for both structural walls and frames. The study showed that while this method 

resulted in a more accurate estimate of system shears in reinforced concrete walls, it did not 

produce satisfactory results in reinforced concrete frames.  

For completeness, the idea of modifying the MRSA in a similar manner to estimate the story 

shears is explored briefly in this chapter using only two buildings: A10-4 and A20-4. Because 

the objective is to find a simple method to be used in conjunction with the current US code 

prescriptions, rather than investigating ductility demands of substitute structures in each mode, 

here an MRSA analysis has been modified such that first mode is divided by R = 8 (code value) 

and higher modes are reduced by a smaller R factor. Two different cases are explored: one using 

R = 4 in higher modes and the other using R = 5 on higher modes.  

Figure 6.9.1 shows the story shear envelopes computed with the NRHA corresponding to the 

mean, mean +1σ and mean + 2σ for buildings A10-3 (Figure 6.9.1[a] and [b]) and A20-4 (Figure 

6.9.1[c] and [d]). The plots in Figure 6.9.1 also include the story shear envelopes obtained by 

amplifying the story shear from the code-based MRSA using R = 8 and appropriate minimum 

base shear amplification factor required by the code and discussed in Section 6.4 with the system 

overstrength factor Ω. The modified MRSA story shear envelopes calculated using each R = 4 

and R = 5 on all modes except the first mode (for which R = 8 was applied), also shown in the 

plots in Figure 6.9.1, have been amplified with both the minimum base shear amplification factor 

MF and the system overstrength factor Ω.  

In all cases, the story shear envelopes obtained through modified MRSA with the system 

overstrength factor Ω are more representative in shape of those computed in the NRHA. In the 

20-story building, this modified response spectrum analysis using R = 8 in the first mode and R = 

4 in the remaining modes considered (modes 2 through 10) leads to a conservative estimate of 

story shears along all floors for 25 of the ground motions in the FN direction (Figure 6.9.1[c]) 

and 29 ground motions in the FP direction (Figure 6.9.1[d]). The modified MRSA using R = 5 in 

modes 2 through 10 conservatively estimates the mean story shear envelopes for the 20-story 

buildings in both the FN and FP directions. 
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Figure 6.9.1. Using modal response spectrum analysis from code with different strength reduction 

factors in higher modes. 
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In the 10-story building, the modified MRSA leads to slightly less satisfactory estimate of 

story shears. While leading to a more accurate shape of the shear envelopes than code-based 

MRSA, both cases of modified MRSA underestimate the mean shear response, with larger 

strength reduction factor R leading to less conservative estimate. Using an even lower strength 

reduction factor in higher modes (R = 3) for A10-4 building was done for numerical exercise and 

the resulting story shear envelope is plotted in Figure 6.9.1(a) and (b). Clearly, the use of even 

lower strength reduction factor in higher modes resulted in computation of larger story shear 

along all floors of the building, but the shape of the story shear distribution begins to deviate 

from the mean NRHA envelopes largely. As a result, this method does not have the same story 

shear estimation conservatism along all floors, but tends to overestimate the story shear at the 

base and in the upper levels, while having disproportionally smaller overestimation margin 

around mid-height. 

While different modified MRSA analyses may lead to better estimates of story shear forces, 

when adjusted properly, this may not be the most practical approach for design. Most 

commercial structural design software does not have a built-in option of modifying the modal 

response spectrum analysis to introduce the variable strength reduction factors. A design 

engineer wanting to implement any such modifications would face a time-consuming and 

cumbersome task involving manual post-processing. Thus, the principle of modifying the MRSA 

procedure is not pursued further in this study, and a simple solution to account for nonlinearity in 

the higher mode response contribution is sought next. 

Higher mode response contribution affects mostly the base shear and the shears in the upper 

levels of the frame buildings, as was seen in Section 6.8.2, where the shape of the mean story 

shear envelopes from NRHA indicated increased deviations from the story shear envelopes 

computed with the MRSA (Figure 6.8.7) at the top and at the bottom of the buildings. Table 6.6 

shows the base shear amplification factors Φv at each level of shaking for all of the archetype 

buildings studied in both Chapter 5 and Chapter 6. Factors Φv correspond to the ratio between 

the geometric mean of the peak base shears computed for FP and FN directions at a given hazard 

level, to the base shear Vb,u from MRSA. The table also shows the ratio of the total base shear 

amplification Φv and the system overstrength amplification factor Ω. As can be seen, the 

additional amplification of base shear due to higher modes fluctuates between 1.09 and 1.19 at 

DE level, and 1.22 and 1.34 at the MCE level. 

 
Table 6.6. Higher modes base shear amplification factor. 

  A10-3 A10-4 A20-3 A20-4 A20-1 B20-1 B20-2 B20-3 

Ω 2.82 2.67 2.43 2.74 2.15* 2.13* 2.29* 2.31* 

ΦV, DE 3.27 3.17 2.88 2.98 2.43 2.41 2.59 2.63 

ΦV, MCE 3.61 3.48 3.25 3.35 2.78 2.77 2.98 3.03 

ΦV, DE/Ω 1.16 1.19 1.18 1.09 1.13 1.13 1.13 1.14 

ΦV, MCE/Ω 1.28 1.30 1.34 1.22 1.31 1.30 1.30 1.31 

* These overstrength factors were modified from those in Equation 5.4 in Chapter 5 to exclude the contribution 

    of interior columns (in Equation 5.4 labeled as κ). They were calculated using Equation 6.5. 
 

As a basis value for story shear amplification to account for higher mode effects, base 

dynamic amplification factor AD is introduced, that in conjunction with the Ω scales the MRSA-

computed design base shear to base shear that would correspond to the mean envelope from the 
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NRHA for a given seismic hazard. This factor is recommended to be 1.2 for the DE level and 

1.35 for the MCE level. It is, thus, expected, that a mean design base shear at a given shaking 

intensity equals to: 

 

, ,Du b MRSA bV V    6. 9 

 

As the trends observed in Figure 6.8.7 indicate, the amplification of story shears becomes 

much larger than what would be accounted for with the uniform amplification factor AD. Thus, a 

higher mode amplification shape factor Ψv is introduced, which would lead to the following 

expression for a story shear at a level i: 

, ,D Vu i MRSA iV V     6. 10 

 

Figure 6.9.2 plots the ratio of the mean story shear to the mean base shear from the NRHA, as 

a function of the story height, for the four archetype buildings introduced in this chapter, at both 

DE and MCE shaking levels.  The figure suggests that a simplified, piecewise linear variation of 

Ψv with the height of the building follows the trends observed in the NRHA reasonably well. 

Thus, the shape factor is taken as unity in the bottom half of the building, implying that story 

shear higher mode amplification for the stories located between ground and 0.5H is equal to the 

base shear higher mode amplification, AD. For the stories between 0.5H-1.0H, the higher modes 

amplification factor is assumed to linearly increase with height until it reaches the maximum 

value at the top Ψv,N. For the buildings and the ground motions studied, this maximum value is 

taken as 1.4 for the DE level, and 1.6 for MCE level. 
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(a) 

  
(b) 

 
Figure 6.9.2. Higher mode amplification factor shape function for (a) DE and (b) MCE levels. 
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6.9.3 PERCENTILE MODIFICATION FACTOR: χ 

The statistical dispersion of shear forces computed is accounted for with a percentile 

modification factor χ, which is introduced in order to increase the conservatism in estimating the 

design story shear against larger percentile of the ground motions at a given seismic hazard level. 

The percentile modification (adjustment) factor χ is related to the mean design value μ (in this 

case the story shear) and the corresponding coefficient of variation cv as follows: 

 
( ) (1 )m

vm c     6. 11 

 

The term (m), appearing both in the superscript on the left hand side and as a multiplication 

coefficient on the right hand side expression of Equation 6.11, signifies the number of standard 

deviations considered above the mean design value. For example, χ
(1)

 represents the percentile 

modification factor used when one standard deviation above mean is set as the upper limit on the 

design quantity, corresponding to the 84
th

 percentile. 

 
Figure 6.9.3. Simplified coefficient of variation distribution for design shear amplification at (a) 

DE and (b) MCE shaking intensities. 

As was seen in Figure 6.8.17 and Figure 6.8.18, the coefficient of variation cv in story shear is 

almost uniform in the lower 0.6H of the building height for all archetype buildings, tending to a 

peak value of cv = 0.10. The cv increases in an almost linear fashion to a maximum at the very 

top level, which varies between 0.20-0.30, dependent on the building and orientation of GM 

component with respect to fault.  For simplicity, it is proposed to use cv = 0.10 in the bottom 

0.5H of the buildings, and linearly interpolate between cv = 0.10 and cv,max for the stories between 

0.5H-1.0H, as illustrated in Figure 6.9.3. The selected value of cv,max is 0.25 at the DE level and 

0.30 at the MCE level of shaking, which envelopes the actual coefficients of variation computed 

in the NRHA reasonably well.  
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Adopting a piecewise linear function to represent the variation in the cv along the height of the 

building, the percentile modification factor also follows a piecewise linear function, as shown in 

Figure 6.9.4. The plots in this figure represent the χ
(1)

, χ
(2)

, and χ
(3)

, for the DE and MCE levels of 

shaking, and show the values of those percentile modification factors for a given building as a 

function of the story height. The shears at the bottom half of the stories need to be amplified with 

the constant factor χB, while the shears in the upper half of the stories are amplified by different 

factors, depending of the height of the story with respect to the base level. Maximum value of 

percentile modification factor is at the roof and is denoted as χN. 

Because shear yielding in columns is undesirable, it is recommended that the design shear 

envelopes represent at least 90% confidence interval, or mean + 1.29 standard deviations based 

on the results from the NRHA. For this study, two standard deviations (98
th

 percentile) are used; 

however, the design shears can be adjusted at the discretion of a design engineer. 

 
Figure 6.9.4. Percentile modification factor for (a) DE and (b) MCE hazard levels. 
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6.9.4 TOTAL STORY SHEAR AMPLIFICATION FACTOR: ωv 

For the ease of implementation, all of the shear amplification factors introduced in Sections 

6.9.1-6.9.3 are combined into a single story shear amplification factor, denoted here as ωv. That 

is, at any given story level, the total story shear amplification factor ωv is a product of: system 

overstrength factor, Ω, dynamic amplification due to higher modes, ADΨv, and percentile 

adjustment factor, χ. Written in form of an equation: 

 

ωv = ωv,B ,  for hi/H < 0.5 
 

ωv = ωv,B + (ωv,N - ωv,B)(2hi/H - 1),  for hi/H ≥ 0.5 

 

6. 12 

The terms in Equation 6.12 are: 

 

ωv,B = Ω AD ΨvB χB = Ω AD χB 
 

ωv,N = Ω ADΨv,N χN 

 

6. 13 

This concept of using ωv is illustrated in Figure 6.9.5. Applying the design system shear 

amplification factor to system shear at DE level for the A20-4 building and 84
th

 percentile is 

illustrated in Figure 6.9.6. The design story shear envelopes for the four archetype buildings with 

98
th

 percentile at DE level of shaking are shown in Figure 6.9.7.  

 

 
Figure 6.9.5. Proposed story shear amplification factors. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Story shear amplification for MRSA design envelope

total story shear amplification, 
v,i

st
o

ry
 h

e
ig

h
t 

w
.r

.t
. 

b
a
se

 /
 t

o
ta

l 
b

u
il

d
in

g
 h

e
ig

h
t

(h
i 
/ 

 H
)


v,i

 = 
v,B

 + (
v,N

-
v,B

)(2h
i
/H - 1)


v,i

 = 
v,B

system

overstrength

()

higher modes
(

v
A

d
)

percentile

modification

()

  total story

  shear amplification
  design factor 

v

  
v,N

= A
d


N


N

  
v,B

 = A
d


B



201 

 

 
Figure 6.9.6. Shear amplification illustrated on A20-4 building at DE hazard level and 84

th
 

percentile (μ + 1σ). The plot includes both FN and FP peak shear envelopes, plotted in light grey. 

 

 

 

 

 

 

 

 

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
i
 / W

h
i /

 H

 

 

indiv. story shear envelopes

 V
MRSA

V
MRSA

(base overstrength

adjustment)

 A
D


V
V

MRSA

(higher modes adjustment)

A
D


V
V

MRSA

(percentile adjustment)



202 

 

 

 
Figure 6.9.7. Design story shear envelopes for 98

th
 percentile and DE level of shaking. 
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6.10   ESTIMATING ULTIMATE COLUMN SHEAR (Vu) 

In previous section, a simplified method was developed for estimating a design story shear by 

using the code-prescribed MRSA procedure as a basis and multiplying it with the proposed 

amplification factors. The ultimate goal is to estimate the individual column design shear 

envelope. 

In Chapter 5 it was noted that mean column shears are not necessarily in proportion with 

those obtained from MRSA. The MRSA analysis is essentially an elastic analysis with results 

dependent on the user-specified cracked section properties, among other factors. Because it is 

based on elastic elements with decoupled flexural and axial section behavior, the MRSA does 

not account for the effects of axial load-moment interaction in concrete columns.  Column 

stiffness increases with the increased axial load. With increased stiffness, the shear forces 

developed in the exterior columns will be larger in proportion to the interior columns, than what 

they are comparatively if constant flexural stiffness is assumed at all times (such is the case in 

the elastic modeling, or lumped plasticity modeling without explicit representation of steel and 

concrete fibers in cross section).  Thus, applying the same amplification factors used for system 

shear envelope to column shears, would lead to underestimation of exterior column shears (refer 

to Figure 5.6.8 in Chapter 5).  

Let us examine the ratio of mean exterior column shear to mean interior column shear 

envelopes computed from NRHA analysis and compare them to the ratio of the exterior to 

interior column shear from simple MRSA analysis. These ratios are plotted in Figure 6.10.1 and 

Figure 6.10.2 for the four archetype buildings at DE and MCE hazard levels, respectively. For 

reference, all plots show a vertical line representing 1:2 exterior column shear to interior column 

shear ratio (or simply, a ratio of 0.5), assumed in a familiar approximate portal frame analysis. 

As we can see in all plots, the ratio of exterior to interior column shear exceeds that computed in 

the MRSA. Increased level of shaking (MCE level) increases this difference (Figure 6.10.2).  

The ratio between the exterior and interior column shears will depend on relative stiffness of 

beams, columns and also joints, but an acceptable level of generalization can be made. Figure 

6.10.3 plots the ratio of exterior shear magnification to interior shear magnification, labeled as κv 

and defined as κv = Φv,ext/Φv,int, where Φv,ext and Φv,int represent the ratio of the mean column 

shear computed in the NRHA to a column shear from MRSA procedure in exterior and interior 

columns, respectively. As can be seen in the two plots, the values of κv exceed unity along most 

of the height in all four buildings and for both levels of seismic hazard. At DE shaking level, the 

nonlinear shear magnification κv tends to an average value of 1.1, while at MCE level, κv 

increases to about 1.2. For all practical purposes, an exterior shear magnification factor κv = 1.2 

is recommended in design. 

Note that in the base floor, κv reaches amplitudes 30 to 60% higher than the value in the 

second floor columns, indicating the impact of the elongating 1
st
 story SMRF beam on the 

exterior column shear. The trends indicate this impact to worsen with more intense shaking, 

directly owing to the larger amount of beam rotation and hence elongation and larger spectral 

displacement demands. Because the increase in column shear is a kinematic effect, it should be 

treated separately in design. The New Zealand code, NZS3101 (SNZ, 2006) considers the effect 

of beam growth on exterior columns by requiring that columns in regions affected by beam 

growth be designed for the shear demand occurring when the plastic hinges form at both ends of 

the column, which is analogous to Method A of ACI 318 (see Section 6.1.1). 
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Figure 6.10.1. Ratio of mean exterior column shears to mean interior column shears at DE level 

of shaking. 
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Figure 6.10.2. Ratio of mean exterior column shears to mean interior column shears at MCE level 

of shaking. 
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Figure 6.10.3. Exterior column nonlinear response shear magnification at: (a) DE and (b) MCE 

hazard level. 

6.10.1 SUMMARY OF PROPOSED COLUMN SHEAR DESIGN PROCEDURE 

This section provides a summary of a procedure for implementing the proposed method of 

estimating design column shear in reinforced concrete special moment frames. Estimating design 

column shear follows the following steps: 

 

1. Building geometry and loads have been determined and MRSA has been conducted. Beams 

have been completely detailed for flexure and shear (i.e. the final amount and arrangement of 

longitudinal and transverse reinforcement has been selected). All columns have been 

proportioned and detailed for axial force and moment (i.e., the amount and arrangement of 

longitudinal column reinforcement has been selected and finalized). The MRSA-based column 

shears VuMRSA.i have been computed. 

 

2. Calculate probable moment strength of each SMRF column at the base, assuming the axial 

load acting on a column cross section corresponds to gravity load expected to be present in the 

frame during a seismic event, that is, 1.0D + 0.25L. 

 

3. Determine PT and PC on exterior columns, assuming all beams framing into a given column 

have developed plastic hinges at both ends. For simplicity, assume that gravity loads on beams 

do not contribute to the beam shear at the end. In short, at a given story i, each beam applies a 

vertical force Vpr,i = ΣMpr,b,i/lb,i onto a column (lb,i = clear span of the beam). Here ΣMpr,b,i 

signifies the sum of the probable moment strengths acting at each end of a beam at story i.  

 

4. Find Ω using the Equation 6.5.  
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5. Select amplification factor AD = 1.25, and select Ψv,N = 1.4 or 1.6 based on DE or MCE 

level shaking intensity, respectively.  

 

6. Select the percentile bracket and find corresponding percentile modification factor at the 

base (χB) and at the top floor (χ N) using Equation 6.10 and assuming constant cv = 0.10 in the 

lower half of the building, and cv = 0.25 and 0.30 at DE and MCE hazard level, respectively.  

 

7. Determine ωv,b and ωv,N values and use the equation in Figure 6.9.5 to find the story shear 

amplification factor at each story. 

 

8. Interior columns: Multiply the individual column shears, VuMRSA.i, computed with the code-

based MRSA procedure with the corresponding shear amplification factor ωv,i found in previous 

step. This is the column design shear, Vu,i = (ωv,i)VuMRSA.i. 

 

    Exterior columns: Multiply the individual column shears, VuMRSA.i, computed with the code-

based MRSA procedure with both: (a) the corresponding shear amplification factor ωv,i and (b) 

exterior column magnification factor κv = 1.2. That is, the column design shear is Vu,i = 

(κv)(ωv,i)VuMRSA.i. 

 

Note that in lieu of steps 2 through 4, a designer may follow the recommendations of NIST 

GCR 8-917-1 and proceed with steps 5 through 8, as specified. The methods give comparable 

results, as will be demonstrated in the following section. However, it is recommended that Φ 

computed as specified in NIST GCR 8-917-1 be replaced with the adjusted Φm* factor, as 

defined in Equation 6.8. The Φm* factor in Equation 6.8, is based on a system overstrength and 

does not consider the contribution of gravity moments in the overstrength calculation, contrary to 

what is implied in the NIST GCR 8-917-1 guidelines. 

 

6.10.2 COMPARISON OF DESIGN SHEAR ENVELOPES DEVELOPED USING PROPOSED       

METHODS 

Using the design procedure proposed, the design column shear envelops were computed for the 

four archetype buildings at design level earthquake shaking intensity and 98
th

 percentile. These 

have been plotted in Figure 6.10.4 and Figure 6.10.5 along with individual peak column shear 

envelopes for all analysis runs, and corresponding mean shears calculated from NRHA for both 

FN and FP ground motion component orientations. For reference, design shear envelopes 

developed with methods ACI 318 B1 and B2 and NIST GCR 8-917-1 are also plotted. In 

addition, the figure shows the design shear envelope calculated with NIST GCR 8-917-1, which 

has been adjusted with higher mode amplification factor and percentile modification factor as 

recommended in the previous section. 

 As can be seen in all plots, the proposed method provides conservative estimate of ultimate 

column shear in most cases. Modified NIST GCR 8-917-1 procedure shows comparable level of 

conservatism. At the base of exterior columns, both of these methods lead to unconservative 

estimate of the shear because they do not account for the impact of beam elongation at the base. 

Thus, it is recommended to design base story columns assuming column hinging at both ends, 

that is, ACI 318 Method A is recommended. 
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Figure 6.10.4. Comparison of column design shear envelopes for 10-story buildings. 
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Figure 6.10.5. Comparison of column design shear envelopes for 20-story buildings. 
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6.11  CONSIDERATIONS FOR FURTHER INVESTIGATION  

Once the ultimate column shear Vu has been estimated, the design engineer needs to determine 

which amount of the shear to design the transverse reinforcement for (Vs), as explained in 

Section 6.1.1. The highest level of shear in a column determined from the code-based procedure 

most likely occurs in conjunction with the highest column axial load. The amount of axial load 

assumed to act simultaneously with Vu impacts the amount of shear capacity ascribed to concrete 

alone Vc, as indicated in Section 6.1.1.  

Figure 6.11.1 and Figure 6.11.2 show the time variation of axial force versus shear in an 

exterior column during a single response history analysis to FN components of ground motion 

records NGA_879LANDERS.LCN and NGA_1116KOBE.SHI. In all plots, the y-axis represents 

the axial force as a function of time, normalized by Agf'c/20, which is the minimum amount of 

compression required to be able to account for concrete shear capacity Vc in computing the total 

shear capacity of a column, Vn. Consistent with the ACI 318 sign convention, positive N(t) 

corresponds to compression, while negative corresponds to tension. Thus, for design purposes, at 

any instant that N(t) < 1, Vc should be taken as zero and therefore the entire shear demand needs 

to be accommodated by the transverse reinforcement. As can be seen in Figure 6.11.1 and Figure 

6.11.2, the largest shear demand Vu does not necessarily coincide with the N(t) > Agf'c/20. Further 

investigation is necessary in this area.  
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Figure 6.11.1. History of exterior column shear versus axial load during response to FN 

component of ground motion NGA_879LANDERS.LCN. 
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Figure 6.11.2. History of exterior column shear versus axial load during response to FN 

component of ground motion NGA_1116KOBE.SHI. 

6.12  CONCLUSIONS  

Four archetype buildings have been designed and analyzed under 30 different ground motions, 

with each motion represented by acceleration record corresponding to both fault-normal and 

fault-parallel directions, to determine the seismic demand on SMRFs in terms of both system 

shear and individual column shears. Based on the results presented in this chapter, the following 

is concluded: 
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1. Significant difference in story displacements and drifts is present between the fault-

normal and fault-parallel directions of ground motions. While the spectral ordinates of 

FN- ground motion mean spectra are generally 20% higher than those of FP- components 

for the period range of interest, the mean story displacements and drifts are generally 

50% higher in the FN- direction.  

2. FP- ground motion components generally produced higher story and column shears in the 

upper half of the building height for 20-story archetype buildings compared to the FN- 

ground motion components. 

3. For the ground motions selected, story displacements and drifts exhibited large scatter, 

while the story and column shears had less scatter and followed a normal distribution. 

4. Mean story shears followed similar distribution as the shears computed with the code-

based linear elastic MRSA analysis for all four buildings. While the story shears in the 

bottom half of all buildings were roughly 3 times larger than the corresponding MRSA-

based story shears, those in the upper half of the buildings had larger amplification which 

increased with the building height.  

5. Individual column shears exhibited similar level of amplification of MRSA-based values 

as the story shears. The amplification factors, however, were slightly higher (10-20%) in 

the exterior columns, likely owing to the increased flexural column stiffness under axial 

force-moment interaction during the dynamic response. 

6. Current verbiage in ACI 318 code as it pertains to estimation of seismic shear on SMRF 

columns leaves much space for individual interpretation with varying levels of 

(un)conservatism, depending on the choices made by a design engineer.  

7. Method of calculating design column shear presented in NIST GCR 8-917-1 document 

based on amplification of MRSA-based column shears with an average beam plastic 

hinge flexural overstrength factor resulted in unconservative estimate of mean column 

shears for all four buildings. The shear estimate is largely improved if the overstrength 

factor accounts for column plastic hinge flexural capacity and only considers the momet 

demands from seismic loads. 

8. Amplifying the MRSA- story shears with the proposed system base overstrength factor Ω 

and a dynamic amplification factor ADΨv represented by a piecewise-linear function of 

story height w.r.t. ground, provided good estimate of the mean story shears computed 

with the nonlinear response history analysis in all four buildings. Further amplification of 

the story shears by a percentile modification factor χ
(m)

 (which varies between 1.1-1.9 

depending on the hazard level) could result in the story shear estimate conservatism 

against a larger number of ground motion responses. 

9. Amplifying the MRSA- based individual column shears with Ω, ADΨv , χ
(m)

 , and an 

exterior column shear amplification factor κv = 1.1-1.2 where applicable, resulted in the 

conservative estimate of individual seismic column shears in all cases. 
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CHAPTER 7 
7 7 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR 

FUTURE INVESTIGATION 
 

 

The work presented in this dissertation identified two areas of the ACI 318 Code provisions that 

could lead to a design of reinforced concrete special moment resisting frames (SMRFs) with 

performance lower than expected. Namely, the areas of code in need of improvement are the 

transverse reinforcement maximum spacing limit as applied to the plastic hinge regions of SMRF 

beams and the existing methods of calculating the seismic shear demand on columns of special 

moment resisting frames. Supported by the numerical and experimental investigations of the 

behavior of modern reinforced concrete special moment resisting frames and their components, 

this dissertation presents recommendation for enhancement of these two areas of ACI 318 

provisions. 

The problem of maximum hoop spacing limit was examined via testing of two full-scale 

SMRF beam specimens in the laboratory. The specimen design, test setup, results, and relevant 

discussion can be found in Chapter 2. Two beams, nominally identical in size, material 

properties, and amount of longitudinal reinforcement, but differing only in the hoop spacing, 

were subjected to reverse cyclic loading to characterize the response and compare the 

performance. As described in Chapter 2, in addition to the differences in the global force-

deformation relationship, notable differences in local response were observed, providing the 

insight into cyclic behavior of SMRF beams representative in size of those constructed in tall 

buildings. Based on the data obtained in the experimental study reported in Chapter 2, numerical 

model of large SMRF beams was established for use in all numerical simulations for the 

remainder of the dissertation. This model (based on distributed plasticity elements with fiber 

sections) adequately simulated the beam elongation effect, which together with its implications 

on column shear, are presented in Chapter 4. 

The issue of estimating seismic shear demand on SMRF columns was introduced in Chapter 5 

as a part of a broader topic focused on identifying the global (numerically computed) response 

characteristics of four 20-story archetype SMRF buildings and the response sensitivity to design 

alterations such as changing the exterior column size and column curtailment. The column 

seismic shear demand was investigated more systematically in Chapter 6 by means of numerical 

analysis of two 10-story and two 20-story archetype buildings designed for a different 

hypothetical site and thus different seismic hazard level than the buildings studied in Chapter 5. 

Two different suites of 30 ground motions characterized both by fault-normal and fault-parallel 

acceleration records were used in the analysis, with mean response spectra compatible with the 

code-based design spectra for the period range suited for the natural vibration properties of the 

buildings. 
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7.1 KEY FINDINGS 

Concerning the issue of the hoop spacing code requirement in the plastic hinge regions of SMRF 

beams, the experimental study presented in Chapter 2 highlighted the following: 

 

1. The hoop spacing requirements of the 2008 edition of ACI 318 Code investigated were 

found to lead to SMRF beam cyclic response inferior to the expected level of 

performance at the deformation levels consistent with the design seismic hazard (event 

with 10% probability of occurrence in 50 years). 

2. Reducing the hoop spacing has led to an improved performance of the second SMRF 

beam tested, with the beam reaching the displacement ductility 1.9 times the 

displacement ductility exhibited by the beam specimen with the larger hoop spacing. 

Subsequently, a more stringent hoop spacing limit requirement was implemented in the 

2011 ACI 318 Code. 

3. Reduced spacing in the second beam, although resulting in more displacement capacity 

with sustained strength, did not prevent the occurrence of longitudinal bar buckling in 

the plastic hinge region, which was the controlling failure mode in both beam specimens. 

In general, buckling of the longitudinal reinforcement is considered a non-ductile failure 

mode and it is undesirable for the reinforced concrete members to exhibit bar buckling. 

4. The damaged state of the beams observed upon buckling of the longitudinal bars pointed 

to the top crossties disengaging from the longitudinal bars and seismic hooks opening at 

the top of the beams.  

5. The evidence of cracks forming on top of the longitudinal bars not directly supported by 

a vertical crosstie around the time that the instrumentation began registering local 

deformations associated with bar buckling may be a sign that the buckling initiated in 

these bars and not the adjacent bars that were directly braced by a vertical crosstie.  

The studies of characteristics of reinforced concrete SMRFs nonlinear response both 

experimental (Chapter 2) and numerical nature (Chapters 3 through 5) resulted in the following 

findings: 

 

1. Column size and reinforcement area curtailment along the height in multistory SMRF 

buildings lead to concentrations of inelastic deformations during seismic response in the 

floors where the curtailment is made. Keeping the columns uniform in size along the 

height of the building reduces the inelastic deformations above the base floor. 

2. Increasing the size of exterior columns, while keeping the rest of the columns and beams 

unchanged, lead to smaller compressive strains in the column concrete core in 20-story 

tall buildings. Conversely, increasing the exterior column size also led to lower axial 

loads in columns, which can increase a safety margin against column failure in 

compression. 

3. RC beams tend to elongate roughly in proportion with the level of lateral deformation (or 

chord rotation), consistent with the findings of previous research (e.g. Fenwick and 

Megget 1993, Kabeyasawa et al. 2000). The amount of axial elongation within the plastic 
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hinge is approximately equal to θ·h/4 to θ·h/2, where θ indicates chord rotation in radians 

and h is the beam section height. 

4. The elongation of the beam was found to be adequately numerically simulated using 

distributed plasticity beam column element with a fiber section discretization which 

employs hysteretic material models. 

5. Consistent with findings of others (e.g. Fenwick et al. 1996, Kim and MacRae 2004), this 

elongation was found to largely impact the deformation and force demands of columns in 

RC frames. In single story frames deforming in sidesway mode, the column lateral 

deformation demand was increased by up to 50% as a result of the kinematic interaction 

with the axially expanding beam. Among other factors, the level of beam elongation 

impact was found to be dependent on the number of bays in a frame, consistent with 

experimental findings of Kabeyasawa et al. 2000. 

6. Lengthening of RC beams during inelastic deformation cycles is presently not considered 

in the design of SMRFs in the US practice, owing to a common conviction that the post-

tensioned slabs, typically cast uniformly with the SMRF beams, act as a restraint against 

the beam growth. Short numerical exercises showed that the slab post-tensioning stresses 

only marginally reduce the axial beam deformations, and that the column shear is still 

increased notably as a consequence of beam growth. In a single-story four-bay frame, the 

beam elongation increased the exterior column shear by a factor of 1.5 when no PT slab 

was present, while the addition of the PT slab stressed to 400psi compression reduced 

this factor by less than 10%. 

 

Lastly, the investigation of seismic shear demand of columns via series of nonlinear response 

history analyses of eight different archetype buildings designed for different levels of seismic 

hazard resulted in the following observations and findings: 

 

1. ACI 318 recommendations for calculating seismic shear demand on SMRF columns 

reflect the uncertainty on how to calculate the seismic shear demand that would lead to 

acceptable design conservatism while ensuring feasibility of column construction. The 

current code verbiage sets loosely defined guidelines and leaves much room for free 

interpretation. 

2. Depending on how the ACI 318 Code seismic column shear clause is construed, 

dispersed levels of conservatism in seismic shear estimate are observed, ranging from 

overly conservative to plain unsafe. In addition, different interpretations of the code lead 

to inconsistent conservatism in the seismic shear estimates along the building height for 

the eight archetype buildings studied in this dissertation. 

3. The alternative method of estimating seismic shear in SMRF columns presented in NIST 

GCR 8-917-1 results in the most consistent estimate of column shears with those 

observed in the nonlinear response history analyses presented in Chapters 5 and 6. The 

method is based on amplifying column seismic shears obtained from the elastic code-

based procedure by a flexural overstrength factor calculated considering the plastic hinge 

moment strength-to-demand ratio of the SMRF beams framing into a column considered. 

However, although the distributions of peak shears calculated with the NIST Design 

Guidelines follow more closely the NRHA envelopes compared to any of the ACI 318 
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methods, the NIST GCR 8-917-1 method as-is underestimated the DE hazard level 

column shear in the archetype buildings by at least 25%.  

4. The results from NIST GCR 8-917-1 column shear estimation can be improved both of 

the following are implemented: i) a factor reflecting the system flexural overstrength is 

used in lieu of the factor calculated considering only the ratio of the beam plastic hinge 

moment capacity to moment demand, and ii) in calculating this system overstrength 

factor, the moment demand from linear analysis only considers the seismic demand and 

excludes the contribution from other loads (e.g. gravity). The second point was shown to 

impact the results greatly in SMRF buildings where the gravity moment demands on the 

beams comprise a significant portion of ultimate design moment calculated from the 

applicable load combinations. For the four archetype buildings, the impact was the largest 

in shorter buildings where gravity moments exceeded 1/10 of the seismic moment 

demand on the beams. 

5. A proposed method of estimating design column shear that considers system flexural 

overstrength in combination with a dynamic amplification factor, defined with a 

piecewise linear function of the story height, was shown to provide the closest estimate of 

the seismic column shear of all methods considered in this dissertation. A simplification 

can be made by adopting a single value for dynamic shear amplification along the height 

of the building – however, this reduces the amount of conservatism in the upper stories of 

the SMRF buildings. 

6. Adopting a separate shear amplification factor to account for uncertainty in the response 

can increase a safety margin against the shear yielding in SMRF columns. For the 

buildings and the ground motions considered, a factor as low as 1.1 can increase a safety 

margin against column shear yielding in the base stories by 34% at DE level of shaking. 

 

7.2 IMPLICATIONS, LIMITATIONS, AND FUTURE RESEARCH 

The following sections discuss the main implications of the findings presented in Chapters 2-6. 

Relevant figures to support the discourse are repeated in this section for convenience. 

7.2.1 HOOP SPACING REQUIREMENTS FOR LARGE SMRF BEAMS 

Based on the experimental findings on large SMRF beams presented in Chapter 2, 

recommendation was made to reduce the maximum hoop spacing limit set forth in 2008 ACI 

318, which was adopted in 2011 ACI 318 edition. The relevant materials have been originally 

published in a PEER report (Panagiotou et al. 2013) which is freely accessible online.  

While the reduced hoop spacing resulted in increased SMRF beam ductility, the condition of 

the hoops upon the completion of the laboratory tests raised concern that the present multi-piece 

configuration of the hoops (shown in Figure 7.2.1[c]) may not effectively brace the longitudinal 

bars against the outward buckling, as potentially suggested by the crack formation coinciding 

with the bars not directly supported by a vertical crosstie (shown in Figure 7.2.2) around the time 

the buckling initiated. Furthermore, the opening of the seismic hooks visible upon the 

completion of the tests (see Figure 7.2.3) may suggest that seismic hook longer than 6db (db = 

nominal diameter of a crosstie) may be needed to prevent the crosstie from disengaging upon the 
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formation of plastic hinge region in a SMRF beam. Further experimental research is 

recommended in this area. 

 

 

Figure 7.2.1. Typical hoop configurations: (a) single closed hoop; (b) overlapping hoops; and (c) 

stirrups with crossties. 

 

 
 

Figure 7.2.2. Possible buckling of bar with no direct lateral restraint by a vertical crosstie. 
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(a)                                                                        (b)  

 

Figure 7.2.3. Apparent opening of the cap ties observed on top face of the specimens upon 

completion of tests: (a) Beam 1 and (b) Beam 2. 

7.2.2 SEISMIC SHEAR DEMAND ON COLUMNS OF SMRF BUILDINGS 

The results of numerical studies of SMRF buildings presented in Chapters 4-6 lead to several 

important design implications. First, when conducting nonlinear response history analyses as a 

part of the design check to evaluate the seismic forces in SMRF buildings (i.e. when collapse is 

not the focus of investigation), a designing engineer is encouraged to use distributed plasticity 

elements with fiber section discretization for modeling the SMRF beams in order to obtain more 

realistic seismic demands on SMRF columns, and particularly the exterior columns resulting 

from beam elongation phenomenon. The engineer is referred to Chapter 3 for details on the 

modeling strategies in large beams. 

Second, estimating seismic shear demands in columns of SMRF buildings using the ACI 318 

procedure which involves the assumption of plastic hinging mechanism occurring in the beams, 

rather than the columns, does not represent either the spatial distribution or the level of the shear 

forces that the columns may be experiencing during the design earthquake event. As was shown 

in Chapters 5 and 6, peak column shear envelopes computed in nonlinear response history 

analyses are best estimated with the methods based on magnifying the shears from the elastic 

code-prescribed modal response spectrum analysis. Thus, if a design engineer chooses to follow 

the ACI 318 column design shear estimation methods, he/she is encouraged to, at the very least, 

check these design shear values against those calculated with the method proposed in Chapter 6 

and summarized in Figure 7.2.4 for convenience. The base system overstrength factor Ω 

proposed in Chapter 6 can be replaced by the NIST GCR 8-917-1 modified overstrength factor 

Φm*, to include the column moment overstrength and exclude the contribution of the non-

seismic loads to moment demands, as explained in detail in Section 6.9.1.  
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Figure 7.2.4. Flow chart outlining the proposed method for estimating design column shear. 
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It is important to keep in mind that the discussions and the design recommendations presented 

in this dissertation are based on results computed using two-dimensional models of regular 

SMRF buildings with reinforced concrete moment frames located around the perimeter and 

subjected to unidirectional ground motion components acting in the plane of the SMRFs being 

analyzed. Recent findings (Reyes and Kalkan 2012, Kalkan and Kwong 2014) indicated that the 

maximum response of multi-story buildings may occur at the building orientation other than the 

fault-normal and fault-parallel. The effects of multidirectional ground motion (including the 

vertical component) and orientation of the building with respect to fault were not considered in 

the present dissertation but comprise a topic that calls for further investigation.  

In addition, the analysis of buildings with irregular elevation and floor plan is strongly 

recommended. This includes, but is not limited to, the buildings with setbacks, varied bay 

lengths within a single SMRF, and buildings with torsional eccentricities. A 3-dimensional 

analysis of SMRF buildings, especially having perimeter frames joined at the corner (i.e., having 

common corner columns acting as a part of SMRFs in each orthogonal direction) also warrants 

further examination.  
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8 APPENDIX A 
 

 

This appendix contains measurements recorded during the laboratory experiments presented in 

Chapter 2. The measurements include the individual instrumentation readings from LVDTs and 

strain gauges, as well as the manually measured crack widths in beam specimens (Tables A1 and 

A2). Note that the broken instrumentation readings are given a constant zero value and are 

plotted in red. 
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BEAM 1 INSTRUMENTATION RECORDINGS: STRAIN GAUGES 
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BEAM 1 INSTRUMENTATION RECORDINGS: LVDTS 
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0.5

(i
n
.)

V4 (Beam 1)

    0  5000 10000 15000 20000 25000
-0.2

0.0

0.2

(i
n
.)

V5 (Beam 1)

    0  5000 10000 15000 20000 25000
-1.0

0.0

1.0

(i
n
.)

S1 (Beam 1)
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    0  5000 10000 15000 20000 25000
-1.0

0.0

1.0

(i
n
.)

S2 (Beam 1)

    0  5000 10000 15000 20000 25000
-1.0

0.0

1.0

(i
n
.)

S3 (Beam 1)

    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

1.0

(i
n
.)

S4 (Beam 1)

    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

1.0

(i
n
.)

S5 (Beam 1)

    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

(i
n
.)

S6 (Beam 1)
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    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

(i
n
.)

S7 (Beam 1)

    0  5000 10000 15000 20000 25000
-0.2

0.0

0.2

(i
n
.)

S8 (Beam 1)
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BEAM 2 INSTRUMENTATION RECORDINGS: STRAIN GAUGES 
 

 

    0  5000 10000 15000 20000 25000
-0.001

0.000

0.001

0.002

st
ra

in

LTI-OUT(-2) (Beam 2)

    0  5000 10000 15000 20000 25000
-0.002

0.000

0.002

0.004

st
ra

in

LTI-OUT(-1) (Beam 2)

    0  5000 10000 15000 20000 25000
0.000

0.020

0.040

st
ra

in

LTI-OUT(1) (Beam 2)

    0  5000 10000 15000 20000 25000

0.000

0.010

0.020

st
ra

in

LTI-OUT(2) (Beam 2)

    0  5000 10000 15000 20000 25000

0.000

0.010

0.020

0.030

st
ra

in

LTI-OUT(3) (Beam 2)
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    0  5000 10000 15000 20000 25000

0.000

0.010

0.020

st
ra

in

LTI-OUT(4) (Beam 2)

    0  5000 10000 15000 20000 25000
-0.002

0.000

0.002

0.004

st
ra

in

LTI-OUT(5) (Beam 2)

    0  5000 10000 15000 20000 25000

0.000

0.005

0.010

st
ra

in

LTI-IN(-1) (Beam 2)

    0  5000 10000 15000 20000 25000
0.000

0.010

0.020

0.030

st
ra

in

LTI-IN(1) (Beam 2)

    0  5000 10000 15000 20000 25000
0.000

0.010

0.020

st
ra

in

LTI-IN(2) (Beam 2)
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    0  5000 10000 15000 20000 25000
-0.010

0.000

0.010

0.020

0.030

st
ra

in

LTII-IN(1) (Beam 2)

    0  5000 10000 15000 20000 25000
-0.010

0.000

0.010

0.020

0.030

st
ra

in

LTII-IN(2) (Beam 2)

    0  5000 10000 15000 20000 25000

0.000

0.010

0.020

0.030

st
ra

in

LTII-OUT(1) (Beam 2)

    0  5000 10000 15000 20000 25000

0.000

0.010

0.020

0.030

st
ra

in

LTII-OUT(2) (Beam 2)

    0  5000 10000 15000 20000 25000
-0.010

0.000

0.010

0.020

st
ra

in

LTII-OUT(3) (Beam 2)
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    0  5000 10000 15000 20000 25000

0.000

0.010

0.020

st
ra

in

LTII-OUT(4) (Beam 2)

    0  5000 10000 15000 20000 25000
-0.002

0.000

0.002

0.004

st
ra

in

LTII-OUT(5) (Beam 2)

    0  5000 10000 15000 20000 25000
0.000

0.020

0.040

st
ra

in

LTII-IN(1) (Beam 2)

    0  5000 10000 15000 20000 25000
0.000

0.030

0.060

st
ra

in

LTII-IN(2) (Beam 2)

    0  5000 10000 15000 20000 25000
-0.001

0.000

0.001

0.002

st
ra

in

LBI-OUT(-2) (Beam 2)
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    0  5000 10000 15000 20000 25000
-0.002

0.000

0.002

0.004

st
ra

in

LBI-OUT(-1) (Beam 2)

    0  5000 10000 15000 20000 25000
-0.001

0.000

0.001

0.002

st
ra

in

LBI-OUT(1) (Beam 2)

    0  5000 10000 15000 20000 25000
-0.010

0.000

0.010

0.020

0.030

st
ra

in

LBI-OUT(2) (Beam 2)

    0  5000 10000 15000 20000 25000
-0.001

0.000

0.001

0.002

st
ra

in

LBI-OUT(3) (Beam 2)

    0  5000 10000 15000 20000 25000
-0.001

0.000

0.001

0.002

st
ra

in

LBI-OUT(4) (Beam 2)
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    0  5000 10000 15000 20000 25000
-0.001

0.000

0.001

0.002

st
ra

in

LBI-OUT(5) (Beam 2)

    0  5000 10000 15000 20000 25000
-0.003

0.000

0.003

st
ra

in

LBI-IN(-1) (Beam 2)

    0  5000 10000 15000 20000 25000
-0.001

0.000

0.001

0.002

st
ra

in

LBI-IN(1) (Beam 2)

    0  5000 10000 15000 20000 25000
-0.010

0.000

0.010

0.020

0.030

st
ra

in

LBI-IN(2) (Beam 2)

    0  5000 10000 15000 20000 25000
0.000

0.030

0.060

st
ra

in

LBII-OUT(1) (Beam 2)



254 

 

 

    0  5000 10000 15000 20000 25000
0.000

0.001

0.002

st
ra

in

LBII-OUT(2) (Beam 2)

    0  5000 10000 15000 20000 25000
-0.002

0.000

0.002

0.004

st
ra

in

LBII-OUT(3) (Beam 2)

    0  5000 10000 15000 20000 25000
0.000

0.010

0.020

0.030

st
ra

in

LBII-OUT(4) (Beam 2)

    0  5000 10000 15000 20000 25000

0.000

0.002

0.004

st
ra

in

LBII-OUT(5) (Beam 2)

    0  5000 10000 15000 20000 25000
-0.001

0.000

0.001

0.002

st
ra

in

LBII-IN(1) (Beam 2)
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    0  5000 10000 15000 20000 25000
-0.01000

0.00000

0.01000

0.02000

0.03000

st
ra

in

LBII-IN(2) (Beam 2)

    0  5000 10000 15000 20000 25000

0.00000

0.00020

0.00040

st
ra

in

TA1-LEXT (Beam 2)

    0  5000 10000 15000 20000 25000
-0.00003

0.00000

0.00003

0.00006

st
ra

in

TA1-LINT (Beam 2)

    0  5000 10000 15000 20000 25000

0.00000

0.00050

0.00100

st
ra

in

TA1-REXT (Beam 2)

    0  5000 10000 15000 20000 25000
-0.0020

0.0000

0.0020

0.0040

st
ra

in

TA1-RINT (Beam 2)
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    0  5000 10000 15000 20000 25000
0.0000

0.0010

0.0020

st
ra

in

TA2-LEXT (Beam 2)

    0  5000 10000 15000 20000 25000
0.0000

0.0010

0.0020

st
ra

in

TA2-LINT (Beam 2)

    0  5000 10000 15000 20000 25000
-0.0020

0.0000

0.0020

0.0040

st
ra

in

TA2-REXT (Beam 2)

    0  5000 10000 15000 20000 25000
0.0000

0.0010

0.0020

st
ra

in

TA2-RINT (Beam 2)

    0  5000 10000 15000 20000 25000
0.0000

0.0010

0.0020

0.0030

st
ra

in

TB1-LEXT (Beam 2)



257 

 

 

    0  5000 10000 15000 20000 25000
-0.0020

0.0000

0.0020

0.0040

st
ra

in

TB1-REXT (Beam 2)

    0  5000 10000 15000 20000 25000
0.0000

0.0010

0.0020

0.0030

st
ra

in

TB2-LEXT (Beam 2)

    0  5000 10000 15000 20000 25000
0.0000

0.0010

0.0020

0.0030

st
ra

in

TB2-REXT (Beam 2)

    0  5000 10000 15000 20000 25000

0.0000

0.0005

0.0010

st
ra

in

TB3-LEXT (Beam 2)

    0  5000 10000 15000 20000 25000

0.0000

0.0005

0.0010

st
ra

in

TB3-REXT (Beam 2)
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BEAM 2 INSTRUMENTATION RECORDINGS: LVDTS 
 

 

    0  5000 10000 15000 20000 25000
-2.0

0.0

2.0

(i
n

.)
TL1 (Beam 2)

    0  5000 10000 15000 20000 25000
-1.0

0.0

1.0

2.0

(i
n

.)

TL2 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

1.0

(i
n

.)

TL3 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

1.0

(i
n

.)

TL4 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

(i
n

.)

TL5 (Beam 2)
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    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

(i
n
.)

TL6 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.1

0.0

0.1

(i
n
.)

TL7 (Beam 2)

    0  5000 10000 15000 20000 25000
-1.0

0.0

1.0

(i
n
.)

TR1 (Beam 2)

    0  5000 10000 15000 20000 25000
-1.0

0.0

1.0

2.0

(i
n
.)

TR2 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

1.0

(i
n
.)

TR3 (Beam 2)
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    0  5000 10000 15000 20000 25000
-1.0

0.0

1.0

(i
n
.)

TR4 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

(i
n
.)

TR5 (Beam 2)

    0  5000 10000 15000 20000 25000
-2.0

-1.0

0.0

1.0

(i
n
.)

BL1 (Beam 2)

    0  5000 10000 15000 20000 25000
-1.0

0.0

1.0

2.0

(i
n
.)

BL2 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

1.0

(i
n
.)

BL3 (Beam 2)
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    0  5000 10000 15000 20000 25000
-1.0

0.0

1.0

(i
n
.)

BL4 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

(i
n
.)

BL5 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

(i
n
.)

BL6 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

(i
n
.)

BL7 (Beam 2)

    0  5000 10000 15000 20000 25000
-2.0

-1.0

0.0

1.0

(i
n
.)

BR1 (Beam 2)
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    0  5000 10000 15000 20000 25000
-5.0

0.0

5.0

(i
n
.)

BR2 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

1.0

(i
n
.)

BR3 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

(i
n
.)

BR4 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

(i
n
.)

BR5 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

(i
n
.)

V1 (Beam 2)
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    0  5000 10000 15000 20000 25000
-1.0

0.0

1.0

(i
n
.)

V2 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

1.0

(i
n
.)

V3 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.1

0.0

0.1

(i
n
.)

V4 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.0

0.0

0.0

0.0

(i
n
.)

V5 (Beam 2)

    0  5000 10000 15000 20000 25000
-1.0

0.0

1.0

2.0

(i
n
.)

S1 (Beam 2)
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    0  5000 10000 15000 20000 25000
-1.0

0.0

1.0

(i
n
.)

S2 (Beam 2)

    0  5000 10000 15000 20000 25000
-2.0

0.0

2.0

(i
n
.)

S3 (Beam 2)

    0  5000 10000 15000 20000 25000
-1.0

0.0

1.0

(i
n
.)

S4 (Beam 2)

    0  5000 10000 15000 20000 25000
-1.0

0.0

1.0

(i
n
.)

S5 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.2

0.0

0.2

(i
n
.)

S6 (Beam 2)
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    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

(i
n
.)

S7 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.2

0.0

0.2

(i
n
.)

S8 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.5

0.0

0.5

(i
n
.)

H1 (Beam 2)

    0  5000 10000 15000 20000 25000
-0.2

0.0

0.2

(i
n
.)

H2 (Beam 2)
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MEASURED CRACK WIDTHS FOR BEAMS 1 AND 2 
 

Table A1. Beam 1 Crack Widths 

step 
# of 

cycles 

tip displ. 

(mm) 

drift 

ratio 
μΔ 

current 

cycle #  

direction of 

beam tip 

displacement 

max. 

diagonal 

crack 

width 

(mm) 

max.    

vertical 

crack 

width 

(mm) 

max. 

interface 

crack 

width 

(mm) 

1 3 3 0.07 0.1 

1 down       

1 up       

1 zero       

2 3 7 0.18 0.3 

1 down    0.25   

2 up   0.2   

2 zero       

3 3 11 0.28 0.5 

1 down   0.33   

1 up       

1 zero       

4 3 14 0.38 0.8 

1 down    0.6   

1 up       

1 zero       

5 3 31 0.81 1.1 

1 down   1 0.6 

1 up       

1 zero       

6 3 46 1.2 2.1 

1 down  1.5   3 

1 up       

1 zero       

7 1 13 0.33 0.7 1 n/a     2 

8 2 69 1.8 3.2 

1 down 3 2.5 4 

1 up       

1 zero       

9 1 13 0.33 0.7 1 n/a       

10 2 103 2.7 4.2 

1 down 5   5 

1 up 5     

3 zero   2.5   

11 1 13 0.33 0.7 1 n/a       

12 2 139 3.6 6.4 

1 down 25     

1 up       

1 zero       

13 1 13 0.33 0.7 1 n/a       

14 1 194 5.1 8.5 1 n/a       

15 1 13 0.33 0.7 1 n/a       

16 1 210 5.5 11.7 1 n/a       
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Table A2. Beam 2 Crack Widths 

step 
# of 

cycles 

tip 

displ. 

(mm) 

drift 

ratio 
μΔ 

current 

cycle #  

direction of 

beam tip 

displacement 

max. 

diagonal 

crack 

width 

(mm) 

max.    

vertical 

crack 

width 

(mm) 

max. 

interface 

crack 

width 

(mm) 

1 3 3 0.07 0.2 
1 

down   0.08   

up       

3 zero       

2 3 6 0.16 0.3 
1 

down    0.3   

up       

3 zero   0.33   

3 3 11 0.28 0.6 
1 

down 0.2 0.4   

up 0.2 0.4   

3 zero 0.1 0.25   

4 3 15 0.4 0.9 
1 

down  0.3 0.4   

up 0.2 0.3   

3 zero 0.15 0.25   

5 3 33 0.87 1.9 
1 

down 0.5 0.5   

up 0.3 0.5   

3 zero 0.15 0.2   

6 3 46 1.2 2.6 
1 

down  0.6 1   

up 0.6 1.25   

3 zero 0.3 0.5   

7 1 13 0.33 0.7 1 n/a n/a     

8 2 69 1.8 3.9 

1 down 1.5 2   

1 up 0.6 2   

3 zero 1.5 2   

9 1 13 0.33 0.7 1 n/a n/a     

10 2 109 2.9 6.2 

1 down 3 4   

1 up 1.5 3   

3 zero 4 5   

11 1 13 0.33 0.7 1 n/a n/a     

12 2 147 3.9 8.3 

1 down 5 6 11 

1 up 6 8 20 

2 zero 7 15 20 

13 1 13 0.33 0.7 1 
cycle 

omitted 
      

14 1 203 5.3 11.4 1 down 7 9   

15 1 13 0.33 0.7 1 n/a       

16 1 
222  

(-244) 

5.8  

(-6.4) 

12.5  

(-13.7) 
1 n/a       
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9 APPENDIX B 
 

 

Transverse reinforcement volumetric ratios for Chapter 6 archetype buildings are listed below. In 

the tables provided, v signifies the volumetric transverse reinforcement ratio required for shear, 

while conf signifies volumetric transverse reinforcement ratio required for confinement as 

specified in the ACI 318-11 code. The controlling values are highlighted in the tables. 

 

Table B.1. Building A10-3. 

Story 

Exterior Column Interior Column 

v conf v conf 

1 0.0115 0.009 0.0108 0.009 

2 0.0064 0.009 0.0127 0.009 

3 0.0064 0.009 0.0127 0.009 

4 0.0064 0.009 0.0127 0.009 

5 0.0064 0.009 0.0127 0.009 

6 0.0064 0.009 0.0127 0.009 

7 0.0064 0.009 0.0127 0.009 

8 0.0064 0.009 0.0127 0.009 

9 0.0064 0.009 0.0127 0.009 

10 0.0064 0.009 0.0127 0.009 

 

Table B.2. Building A10-4. 

Story 

Exterior Column Interior Column Middle Column 

v conf v conf v conf 

1 0.0104 0.009 0.0138 0.009 0.0138 0.009 

2 0.0066 0.009 0.0132 0.009 0.0132 0.009 

3 0.0066 0.009 0.0132 0.009 0.0132 0.009 

4 0.0066 0.009 0.0132 0.009 0.0132 0.009 

5 0.0066 0.009 0.0132 0.009 0.0132 0.009 

6 0.0066 0.009 0.0132 0.009 0.0132 0.009 

7 0.0066 0.009 0.0132 0.009 0.0132 0.009 

8 0.0066 0.009 0.0132 0.009 0.0132 0.009 

9 0.0066 0.009 0.0132 0.009 0.0132 0.009 

10 0.0066 0.009 0.0132 0.009 0.0132 0.009 
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Table B.3. Building A20-3. 

Story 

Exterior Column Interior Column 

v conf v conf 

1 0.0152 0.009 0.0111 0.009 

2 0.0033 0.009 0.0033 0.009 

3 0.0033 0.009 0.0034 0.009 

4 0.0033 0.009 0.0034 0.009 

5 0.0033 0.009 0.0034 0.009 

6 0.0033 0.009 0.0035 0.009 

7 0.0033 0.009 0.0066 0.009 

8 0.0033 0.009 0.0066 0.009 

9 0.0033 0.009 0.0066 0.009 

10 0.0033 0.009 0.0066 0.009 

11 0.0036 0.009 0.0072 0.009 

12 0.0036 0.009 0.0072 0.009 

13 0.0036 0.009 0.0072 0.009 

14 0.0036 0.009 0.0072 0.009 

15 0.0036 0.009 0.0072 0.009 

16 0.0036 0.009 0.0072 0.009 

17 0.0036 0.009 0.0072 0.009 

18 0.0036 0.009 0.0072 0.009 

19 0.0036 0.009 0.0072 0.009 

20 0.0036 0.009 0.0072 0.009 
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Table B.4. Building A20-4. 

Story 

Exterior Column Interior Column Middle Column 

v conf v conf v conf 

1 0.0150 0.009 0.0125 0.009 0.0123 0.009 

2 0.0062 0.009 0.0092 0.009 0.0091 0.009 

3 0.0062 0.009 0.0124 0.009 0.0091 0.009 

4 0.0062 0.009 0.0124 0.009 0.0092 0.009 

5 0.0062 0.009 0.0124 0.009 0.0092 0.009 

6 0.0062 0.009 0.0124 0.009 0.0124 0.009 

7 0.0062 0.009 0.0124 0.009 0.0124 0.009 

8 0.0062 0.009 0.0124 0.009 0.0124 0.009 

9 0.0062 0.009 0.0124 0.009 0.0124 0.009 

10 0.0062 0.009 0.0124 0.009 0.0124 0.009 

11 0.0086 0.009 0.0171 0.009 0.0171 0.009 

12 0.0086 0.009 0.0171 0.009 0.0171 0.009 

13 0.0086 0.009 0.0171 0.009 0.0171 0.009 

14 0.0086 0.009 0.0171 0.009 0.0171 0.009 

15 0.0086 0.009 0.0171 0.009 0.0171 0.009 

16 0.0086 0.009 0.0171 0.009 0.0171 0.009 

17 0.0086 0.009 0.0171 0.009 0.0171 0.009 

18 0.0086 0.009 0.0171 0.009 0.0171 0.009 

19 0.0086 0.009 0.0171 0.009 0.0171 0.009 

20 0.0086 0.009 0.0171 0.009 0.0171 0.009 
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10 APPENDIX C 
 

 

 

 

Table C.1. Bin 1 ground motion specifics (See Chapter 6). 

GM 

 

NGA#   Year   Event                   Station                       

 

Mag   

 DE 

Scale 

Factor  

 MCE 

Scale 

Factor  

1 1119 1995  Kobe- Japan             Takarazuka                    6.90 0.6540 0.9810 

2 184 1979  Imperial Valley-06      El Centro Diff.Array  6.53 1.1943 1.7915 

3 316 1981  Westmorland             Parachute Test Site           5.90 1.9918 2.9877 

4 185 1979  Imperial Valley-06      Holtville Post Office         6.53 2.1032 3.1548 

5 568 1986  San Salvador            Geotech Investig Center       5.80 0.9732 1.4598 

6 159 1979  Imperial Valley-06      Agrarias                      6.53 2.0139 3.0209 

7 183 1979  Imperial Valley-06      El Centro Array #8            6.53 1.4350 2.1525 

8 169 1979  Imperial Valley-06      Delta                         6.53 1.5698 2.3547 

9 158 1979  Imperial Valley-06      Aeropuerto Mexicali           6.53 2.0269 3.0404 

10 1116 1995  Kobe- Japan             Shin-Osaka                    6.90 1.7612 2.6418 

11 585 1987  Baja California         Cerro Prieto                  5.50 1.0520 1.5780 

12 178 1979  Imperial Valley-06      El Centro Array #3            6.53 2.2000 3.3000 

13 1605 1999  Duzce- Turkey           Duzce                         7.14 0.9256 1.3884 

14 1634 1990  Manjil- Iran            Abhar                         7.37 2.2000 3.3000 

15 721 1987  Superstition Hills-02   El Centro Imp. Co. Cent       6.54 1.6199 2.4299 

16 180 1979  Imperial Valley-06      El Centro Array #5            6.53 1.2566 1.8849 

17 881 1992  Landers                 Morongo Valley                7.28 2.1565 3.2348 

18 1158 1999  Kocaeli- Turkey         Duzce                         7.51 1.2022 1.8033 

19 319 1981  Westmorland             Westmorland Fire Sta          5.90 1.2047 1.8071 

20 171 1979  Imperial Valley-06      EC Meloland Overpass FF       6.53 1.3093 1.9640 

21 879 1992 Landers                 Lucerne                       7.28 1.6033 2.4050 

22 179 1979  Imperial Valley-06      El Centro Array #4            6.53 1.3175 1.9763 

23 174 1979  Imperial Valley-06      El Centro Array #11           6.53 1.8730 2.8095 

24 165 1979  Imperial Valley-06      Chihuahua                     6.53 1.6515 2.4773 

25 181 1979  Imperial Valley-06      El Centro Array #6            6.53 1.2397 1.8596 

26 170 1979  Imperial Valley-06      EC County Center FF           6.53 1.6856 2.5284 

27 2734 1999  Chi-Chi- Taiwan-04      CHY074                        6.20 1.3172 1.9758 

28 1165 1999  Kocaeli- Turkey         Izmit                         7.51 2.2000 3.3000 

29 1602 1999  Duzce- Turkey           Bolu                          7.14 0.8420 1.2630 

30 1176 1999  Kocaeli- Turkey         Yarimca                       7.51 1.3547 2.0321 
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Table C.2. Bin 2 ground motion specifics (See Chapter 6). 

GM 

 

NGA#   Year   Event                   Station                       

 

Mag   

DE 

Scale 

Factor 

MCE 

Scale 

Factor 

1 184 1979  Imperial Valley-06      El Centro Diff.Array  6.53 1.2419 1.8629 

2 169 1979  Imperial Valley-06      Delta                         6.53 1.6012 2.4018 

3 174 1979  Imperial Valley-06      El Centro Array #11           6.53 1.9822 2.9733 

4 182 1979  Imperial Valley-06      El Centro Array #7            6.53 0.8905 1.3358 

5 1605 1999  Duzce- Turkey           Duzce                         7.14 0.9002 1.3503 

6 183 1979  Imperial Valley-06      El Centro Array #8            6.53 1.3904 2.0856 

7 725 1987  Superstition Hills-02   Poe Road (temp)               6.54 1.9827 2.9741 

8 1158 1999  Kocaeli- Turkey         Duzce                         7.51 1.1796 1.7694 

9 179 1979  Imperial Valley-06      El Centro Array #4            6.53 1.2101 1.8152 

10 879 1992  Landers                 Lucerne                       7.28 1.4196 2.1294 

11 1165 1999  Kocaeli- Turkey         Izmit                         7.51 2.1891 3.2837 

12 316 1981  Westmorland             Parachute Test Site           5.90 1.7375 2.6063 

13 728 1987  Superstition Hills-02   Westmorland Fire Sta          6.54 1.8693 2.8040 

14 171 1979  Imperial Valley-06      EC Meloland Overpass FF       6.53 1.1385 1.7078 

15 170 1979  Imperial Valley-06      EC County Center FF           6.53 1.4570 2.1855 

16 900 1992  Landers                 Yermo Fire Station            7.28 1.8146 2.7219 

17 721 1987  Superstition Hills-02   El Centro Imp. Co. Cent       6.54 1.6504 2.4756 

18 723 1987  Superstition Hills-02   Parachute Test Site           6.54 0.7730 1.1595 

19 821 1992  Erzican- Turkey         Erzincan                      6.69 0.8867 1.3301 

20 1116 1995  Kobe- Japan             Shin-Osaka                    6.90 1.9789 2.9684 

21 95 1972  Managua- Nicaragua-01   Managua- ESSO                 6.24 2.2000 3.3000 

22 178 1979  Imperial Valley-06      El Centro Array #3            6.53 2.0716 3.1074 

23 159 1979  Imperial Valley-06      Agrarias                      6.53 2.2000 3.3000 

24 1762 1999  Hector Mine             Amboy                         7.13 2.2000 3.3000 

25 2734 1999  Chi-Chi- Taiwan-04      CHY074                        6.20 1.5936 2.3904 

26 729 1987  Superstition Hills-02   Wildlife Liquef. Array        6.54 1.5206 2.2809 

27 161 1979  Imperial Valley-06      Brawley Airport               6.53 2.2000 3.3000 

28 2114 2002  Denali- Alaska          TAPS Pump Station #10         7.90 0.7485 1.1228 

29 185 1979  Imperial Valley-06      Holtville Post Office         6.53 1.7661 2.6492 

30 158 1979  Imperial Valley-06      Aeropuerto Mexicali           6.53 2.2000 3.3000 

 

 




