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An Improved Connectionist Activation Function for
Energy Minimization

Gadi Pinkas"

Dept. of Computer Science
Washington University
St. Louis, MO 63131

Abstract

Symmetric networks that are based on energy
minimization, such as Boltzmann machines or
Hopfield nets, are used extensively for optimiza
tion, constraint satisfaction, and approximation of
NP-hard problems. Nevertheless, finding a global
minimum for the energy function is not guaran
teed, and even a local minimum may take an expo
nential number of steps. We propose an improve
ment to the standard activation function used for
such networks. The improved algorithm guaran
tees that a global minimum is found in linear time
for tree-like subnetworks. The algorithm is uni
form and does not assume that the network is a
tree. It performs no worse than the standard al
gorithms for any network topology. In the case
where there are trees growing from a cyclic sub
network, the new algorithm performs better than
the standard algorithms by avoiding local min
ima along the trees and by optimizing the free
energy of these trees in linear time. The algo
rithm is self-stabilizing for trees (cycle-free undi
rected graphs) and remains correct under various
scheduling demons. However, nouniform protocol
exists to optimize trees under a pure distributed
demon and no such protocol exists for cyclic net
works under central demon.

Introduction

Symmetric networks, such as Hopfield nets, and
Boltzmann machines, mean-field and harmony net
works are widely used for optimization, constraint
satisfaction, and approximation of NP-hard problems
[Hopfield 82], [Hopfield 84], [Hinton, Sejnowski 86],
[Peterson, Hartman 89], [Smolensky 86, page 259].
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These models are characterized by a symmetric ma
trix of weights and a quadratic energy function that
should be minimized. Usually, each unit computes the
gradient of the energy function and updates its own
activation value so that the free energy decreases grad
ually. Convergence to a local minimum is guaranteed,
although in the worst case it isexponential in the num
ber ofunits [Kasif et al. 89], [Papadimitriou et al. 90].

In many cases, the problem at hand is formu
lated as an energy minimization problem and the
best solutions (sometimes the only solutions) are the
global minima [Hopfield, Tank 85],[Ballard et al. 86],
[Pinkas 91]. The desired connectionist algorithm is,
therefore, one that reduces the impact of shallow local
minima and improves the chances of finding a global
minimum. Models such as Boltzmemn machines and
Harmony nets use simulated annealing to escape from
local minima. These models asymptotically converge
to a global minimum, meaning that if the annealing
schedule is slow enough, a global minimum is found.
Nevertheless, such a schedule is hard to find and there
fore, practically, finding a global minimum for such
networks is not guaranteed even in exponential time
(note that the problem is NP-hard).

In this paper, we look at the topology of symmet
ric neural networks. We present an algorithm that
optimizes tree-like subnetworks' in linear time. It is
based on a dynamic programming algorithm presented
in [Dechter et al. 90]. Our adaptation is connectionist
in style; that is, the algorithm can be stated as a sim
ple, uniform activation function [Rumelhart et al. 86],
[Feldman, Ballard 82]. It does not assume the desired
topology (tree) and performs no worse than the stan
dard algorithms for all topologies. In fact, it may be
integrated with many of the standard algorithms in
such a way that if the network happens to have tree
like subnetworks, the new algorithm out-performs the
standard algorithms.

The paper is organized as follows: Section 2 dis-

'The network is characterized by an undirected graph
without cycles; i.e., only one path exists betwreen any two
nodes. The terms cycle-free or unrooted tree are synony
mous in this context.



cusses connectionist energy minimization. Section 3
presents the new algorithm and gives anexample where
it out-performs the standard algorithms. Section 4 dis
cusses convergence under various scheduling demons
and self-stabilization. Section 5 summarizes.

Connectionist energy minimization

Suppose a quadratic energy function of the form

n n

E(Xi x^) = -"^wijX.Xj +
«<> •

Each of the variables X, may have a value of zero or
one (called the activation value), and the task is to
find a zero/one assignment to the variables Xi,...,Xn
that minimizes the energy function. To avoid confusion
with signs, we will consider the equivalent problem of
maximizing the goodness function:

G(Xi,...,X„) =-£(X,,...,X„) = ^wijXiXj+Y,^iXi

In connectionist approaches, we look at the net
work that is generated by assigning a node i for ev
ery variable Xi in the function and by creating a
weighted arc (with weight Wij) between node i and
node j for every term WijXiXj. Similarly, a bias
6i is given to unit i if the term OiXi is in the func
tion. For example, Figure 2-b shows the network that
corresponds to the goodness function E{Xi,..., A'?) =
3A2X3 - A,X3+ 2X3X4 - 2X4X5 - 3X3 - X2 + 2X1.
Each of the nodes is assigned a processing unit and the
network collectively searches for an assignment that
maximizes the goodness. The algorithmthat is repeat
edly executed in each unit/node is called the protocol
or the activation function. A protocol is uniform if all
the units execute it.

We give examples for the discrete Hopfield net
work [Hopfield 82] and the Boltzmann machine
(Hinton, Sejnowski 86], which are twoof the most pop
ular models for connectionist energy minimization:

In the discrete Hopfield model, each unit computes
its activation value using the formula

1 iff Yi, ^i.3^} >
0 otherwise.-{0

For Boltzmann machines, the determination of the
activation value is stochastic ztnd the probability of set
ting the activation value of a unit to one is

P{Xi = 1) = 1/(1-1-where T is
the annealing temperature.

Both approaches may be integrated with our
topology-based algorithm; in other words, nodes that
cannot be identified as parts of a tree-like subnetwork
use one of the standard algorithms.

Key idea

We assume that the model of communication is shared
memory, multi-reader/single-writer, that scheduling is
under a central demon, and that execution is fair. In a
shared memory, multi'reader/single-writer, each unit
has a shared register called the activation register. A
unit may read the content of the registers of all its
neighbors, but write only its own. Central demon
means that the units are activated one at a time in
an arbitrary orderAn execution is said to befair if
every unit is activated infinitely often.

The algorithm identifies parts of the network that
have no cycles (tree-like subnetworks) and optimizes
the free energy on these subnetworks. Once a tree
is identified, it is optimized using an adaptation of a
constraint optimization algorithm for cycle-free graphs
presented in [Dechter et al. 90]. The algorithm be
longs to the family of nonserial dynamic programming
methods [Bertele, Brioschi 72].

Let us assume first that the network is is an un
rooted tree (cycle-free). Any such network may be di
rected into a rooted tree. The algorithm is based on
the observation that given an activation value (0/1)
for a node in a tree, the optimal assignments for all
its adjacent nodes are independent of each other. In
particular, the optimal assignment to the node's de
scendants are independent of the assignments for its
ancestors. Therefore, each node i in the tree may com
pute two values: G? and Gj. Gj is the maximal good
ness contribution of the subtree rooted at t, including
the connection to i's parent whose activation is one.
Similarly, G° is the maximal goodness of the subtree,
including the connection to i's parent whose activation
value is zero. The acyclicity property will sJlow us to
compute each node's G] and Gf as a a simple function
of its children's values, implemented as a propagation
algorithm initiated by the leaves.

Knowing the activation value of its parent and the
values Gj,Gj of all its children, a node can compute
the maximal goodness of its subtree. When the infor
mation reaches the root, it can assign a value (0/1)
that maximizes the goodness of the whole network.
The assignment information propagates now towards
the leaves: knowing the activation value of its parent,
a node can compute the preferred activation value for
itself. At termination (at stable state), the tree is op
timized.

The algorithm has three basic steps:
1) Directing a tree. Knowledge is propagated from
leaves towards the center of the network, so that after
a linear number of steps, every unit in the tree knows

^Standard algorithms need to assume the same condi
tion in order to guarantee convergence to a local minimum
(see [Hopfield 82]). This condition can be relaxed by re
stricting only that adjacent nodes may not be activated at
the same time.



its parent and children.
2) Propagation of goodness values. The values
Gl, G? are propagated from leaves to the root. At
termination, every node knows the maximal goodness
of its subtree, and the appropriate activation value it
should assign, given that of its parent. In particular,
the root can now decide its own activation value so as
to maximize the whole tree.
3) Propagation ofactivation values. Starting with
the root, each node in turn determines its activation
value. After 0(depth of tree) steps, the uniU are in a
stable state, which globally maximizes the goodness.

Each unit's aciivaiion register consists of the fields
Xi (the activation value); G?, G} (the maximal good
ness values); and (^ bit for each of the j
neighbors ofi that indicated which is t's parent).

Directing a tree

The goal ofthis algorithm is to inform every node ofits
role in the network and of its child-parent relationships.
Nodes with a single neighbor identify themselves as
leaves first and then identify their neighbor as a parent
(point to it). Anode whose neighbors all point towards
it identifies itself as a root. A node whose neighbors
all but one point towards it selects the one as a parent.
Finally, a node that has at least two neighbors not
pointing towards it identifies itself as being outside the
tree.

Each unit uses one bit per neighbor to keep the
pointing information: Pj = 1 indicates that node i
sees its jth neighbor as its parent. By looking at Pj,
node » knows whether j is pointing to it.

Identifying tree-like subnetworks in a general net-
work may be done by the following algorithm:

Tree Directing (for unit i):

1. Initialization: If first time, then for all neighbors j,
pj = 0. /* Start with clear pointers (this step is not
needed in trees) */

2. If there is only a single neighbor {j) and PJ = 0,
then pj = 1. /* Aleaf selects its neighbor as parent
if that neighbor doesn't point to it */

3. else, if one and only one neighbor {k) does not point
to I {Pj = 0), then = 1, and, for the rest of the
neighbors, Pj = 0. /* t is the parent */

4. Else, for all neighbors j, Pj = 0. /* Node is either a
root or outside the tree */

In Figure l-(a), we see a cycle-free network after the
tree-directing phase. The numbers on the edges rep
resent the values of the Pj bits. In Figure l-(b), a
tree-like subnetwork is identified inside a cyclic net
work; note that node 5 is not a root, since not all its
neighbors are pointing towards it.

^ n ^ rr

Figure 1: Directing a tree: (a) A tree, (b) A cyclic
graph

Propagation of goodness values
In this phase, every node t computes its goodness val
ues Gj, GJ by propagating these two values from the
leaves to the root (see figure 2).

Cl'2 c5-> Ci-0

U2 C?.2 C|-l- 0 G

- 0 *, = I

Figure 2: (a) Propagating goodness values, (b) Prop
agating activation values

Given a node X,, its parent Xk, and its children
child{i) in the tree, it can be shown, based on the
energy function (1), that the goodness values obey the
following recurrence:

Gf^ = max{ ^ Gj'+ +fliXi).

Consequently, a nonleaf node i computes its goodness
values using the goodness values of its children as fol
lows: If Xk = 0, then i must decide between setting
Xi = 0, obtaining a goodness of Ylj setting



A'i s 1, obtaining a goodness of This
yields

Gf =mai{ ^ ^ Gj+Oi).
j^ehild(%) j€child(,i)

Similarly, when Xt = 1, the choice between Xi = 0
and Xi = 1 yields

G,- = mai{ ^ Gj, ^ Gj + +tfi).
j^ehild(_i) j€cAifd(i)

The initial goodness values for leaf nodes can be ob
tained from the above (no children). Thus,
G? = maz{O,0.), Gj = {0,ty<A: +

For example: If unit 3 in Figure 2 is zero, then the
maximal goodness contributed by node 1 is
Gj = mai;^,e(o.i}{2A'i} =2 and it is obtained at

= 1. Unit 2 (when X3 = 0) contributes G§ =
mazxaCfo.i}{-"-^2} = 0> obtained at X2 = 0, while
Gj = mozxa€{o,i}{3^2 - >^2} = 2 is obtained at
A'j = 1. As for nonlesd" nodes, if X4 = 0, then when
A3 = 0, the goodness contribution will be $2*^2 —
2 -f- 0 = 2, while if A3 = 1, the contribution will be
_3+ Gj = -3 -I- 1+ 2= 0. The maximal contri
bution G3 = 2 is achieved at A3 = 0.

Propagation of activation values
Once a node is assigned an activation value, all its
children can activate themselves so as to maximize the
goodness of the subtrees they control. When such a
value is chosen for a node, its children can evaluate
<Aejr activation values, and the process continues until
the whole tree is assigned.

There are two kinds of nodes that may start the
process: a root which will choose an activation value
to optimize the entire tree, and a non-tree node which
uses a standard activation function.

When a root Xi is identified, it chooses the value 0
if the maximal goodness is G®, while it chooses 1
if the maximal goodness Is J2j summary,
the root chooses its value according to

Otherwise.

In Figure 2,for example, Gs+G^+O = 2 < G5+G3 = 3
and therefore A4 = 0.

An internal node whose parent is k chooses an acti
vation value that maximizes Gj'+u;,-,fcA,A*+^iA,.
The choice therefore, is between G° (when A; = 0)
and Ej yielding:

iff E; Gj + Wi.tXt + fli > Ej Gj
otherwise.

As a special case, a leaf i, chooses Aj —1 iff tuj,* A* >
—^i, which is exactly the discrete Hopfield activation

function for a node with a single neighbor. For exam
ple, in Figure 2, A's = 1since tU4,5A4 = 0 > —65 = —1,
and A3 = 0 since G} +G2+2A4 + 03 = 1+ 2 + 0-3 =
0 < Gj + G° = 2. Figure 2-(b) shows the activation
values obtained by propagating them from the root to
the leaves.

A complete activation function
Interleaving the three algorithms described earlier
achieves the goal of identifying tree-like subnetworks
and maximizes their goodness. In this subsection, we
present the complete algorithm, combining the three
phases while simplifying the computation. The algo
rithm is integrated with the discrete Hopfield activa
tion function; however it can be integrated also with
other activation function (eg. Boltzmann machine).®
Let i be the executing unit, j a non-parent neighbor of
t, and k the parent of i:

Optimizing on Tree-like Subnetworks (unit t):

1. Initialization: If first time, then (Vj) P/ = 0. /*Clear
pointers (needed only for cyclic nets)*/

2. Tree directing: If there exists a single neighbor k, such
that Pjt = 0,

then = 1, and for ail other neighbors j, Pf = 0;
else, for all neighbors, = 0.

3. Computing goodness values:
G? = +«•)•

4. Assigning activation values:
If at least two neighbors are not pointing to », then
/♦use standard activation function (Hopfield) */ A^ =

\ 0 otherwise;
else, /* Node in a tree (including root and leaves) */

1 if + )>-«(.
' \ 0 otherwise.

An example

The example illustrated in Figure 3 demonstrates a
case where a local minimum of the standard algorithms
is avoided. Standard algorithms may enter such lo
cal minimum and stay in a stable state that is clearly
wrong.

The example is a variation on a harmony net
work [Smolensky 86, page 259] and an example from
[McClelland et al. 86, page 22]. The task of the net
work is to identify words from low-level line segments.
Certain patterns of linesegments excite units that rep
resent characters, and certain patterns of characters
excite units that represent words. The linestrokes used

^Note how similar the new activation function b to the
original Hopfield function.
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Figure 3: A Harmony network for recognizing words:
Local minima along the subtrees are avoided

to draw the characters are the input units: Li,..., L5.
The units "N," "S," "A," and "T" represent characters.
The units "able," "nose," "time," and "cart" represent
words, and Hn, Hs, Ha, Ht, Hlj-.-.H"! are hidden units
required by the Harmony model. For example, given
the line segments of the character S, unit L4 is acti
vated (input), and this causes units Hs and "S" to be
activated. Since "NOSE" is the only word that con
tains the character "S," both H2 and the unit "nose"
are also activated and the word "NOSE" is identified.

The network has feedback cycles (symmetric
weights) so that ambiguity among characters or line-
segments may be resolved as a result of identifying a
word. For example, assume that the line segments re
quired to recognize the word "NOSE" appear, but the
character "N" in the input Is blurred and therefore the
setting of unit L2 is ambiguous. Given the rest of the
line segments (e.g., those of the character "S"), the net
work identifies the word "NOSE" and activates units

"nose" and H2. This causes unit "N" to be activated
and so are all of its line segments. Thus the ambiguity
of L2 is resolved.

The network is indeed designed to have a global
minimum when L2, Hn, "N," H2, and "nose" are
all activated; however, standard connectionist algo
rithms may fall into a local minimum when all these
units are zero, generating goodness of 5 —4 = 1.
The correct setting (global minimum) is found by
our tree-optimization protocol (with goodness: 3-1+3-
1+3-1+5-1-4+3-1+5=13). The thick arcs in the upper
network of Figure 3 mark the arcs of a tree-like subnet
work. This tree-like subnetwork Is drawn with pointers
and weights in the lower part of the figure. Node "S"
is not part of the tree and its activation value is set
to one because the line-segments of "S" are activated.
Once "S" is set, the units along the tree are optimized
(by setting them all to one) and the local minimum is

avoided.

Limitations and extensions

We have shown a way to enhance the performance
of connectionist energy minimization networks with
out loosing much of the simplicity of the standard ap
proaches. Our simple algorithm is limited in two ways,
however. First, the central demon (or atomicity of the
protocol) is not a realistic restriction. We would like
the network to work correctly also under a distributed
demon, where any subset of units may be scheduled
for execution at the same time. Second, we would like
the algorithm to be self-stabilizing. It should converge
to a legal, stable state given enough time, even after
noisy fluctuations that cause the units to execute an
arbitrary program state and the registers to have arbi
trary content.

Scheduling demons

Two negative results (presented in [Collin el aJ. 91]
following [Dijkstra 74]) regarding the feasibility of dis
tributed constraint satisfaction, can be extended and
proved for computing the global minimum of energy
functions: (1) No uniform deterministic distributed al
gorithm exists that guarantees a stable global mini
mum under a distributed demon, even for simple chain
like trees, and (2) no uniform deterministic algorithm
exists that guarantees a stable global minima under
a central demon for cyclic networks, even for simple
rings. For proofs see [Pinkas, Dechter 92].

These negative results should not discourage us,
since they rely on obscure infinite sequences of exe
cutions which are unlikely to occur under a truly ran
dom demon. Our algorithm will converge to a global
minimum under a distributed demon in each of the fol
lowing cases: (1) If step 2 of the protocol in section
is atomic; (2) if for every node i and every neighbor
j, node i is executed without j infinitely often; (3) if
one node is unique and acts as a root, that is, does not
execute step 2 (an almost uniform protocol); and (4)
if the network is cyclic.

Self-stabilization

A protocol is self-stabilizing If in any fair execution,
stsu'ting from any input configuration and any program
state, the system reaches a valid stable configuration.

The algorithm in Section is self-stabilizing for cycle-
free networks (trees), and it remains self-stabilizing
under distributed demon if every node executes with
out a neighbor infinitely often or if one node is act
ing as a root. The algorithm is not self-stabilizing
for cyclic networks (see [Pinkas, Dechter 92]) due to its
tree-directing sub-protocol. To solve this problem, we
may use a variation of the self-stabilizing tree-directing
protocol of [Collin et al. 91]. This algorithm remains
self-stabilizing even in cyclic networks, although it is
more complex and requires more space.



Summary

We have shown a uniform self-stabilizing connection-
ist activation function that is guaranteed to find a
global minimum of tree-like symmetric networks in lin
ear time. The algorithm optimizes tree-like subnet
works within general (cyclic) networks. The algorithm
can be extended to be self-stabilizing for all cyclic net
works, but more space will then be needed.

We stated two negative results: (1) Under a pure
distributed demon, no uniform algorithm exists to op
timize even simple chains, and (2) no uniform algo
rithm exists to optimize simple cyclic networks (rings)
even under a central demon. We conjecture that these
negative results are not of significant practical impor
tance, since in truly random scheduling demons the
probability of having such pathological executions ap
proaches zero. Our algorithm remains correct under
a distributed dem<Mi (without atomicity) if some weak
assumptions are made.
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