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Principles of Dataset Versioning: Exploring the Recreation/
Storage Tradeoff

Souvik Bhattacherjee1, Amit Chavan1, Silu Huang2, Amol Deshpande1, and Aditya 
Parameswaran2

1University of Maryland, College Park

2University of Illinois, Urbana-Champaign

Abstract

The relative ease of collaborative data science and analysis has led to a proliferation of many 

thousands or millions of versions of the same datasets in many scientific and commercial domains, 

acquired or constructed at various stages of data analysis across many users, and often over long 

periods of time. Managing, storing, and recreating these dataset versions is a non-trivial task. The 

fundamental challenge here is the storage-recreation trade-off: the more storage we use, the faster 

it is to recreate or retrieve versions, while the less storage we use, the slower it is to recreate or 

retrieve versions. Despite the fundamental nature of this problem, there has been a surprisingly 

little amount of work on it. In this paper, we study this trade-off in a principled manner: we 

formulate six problems under various settings, trading off these quantities in various ways, 

demonstrate that most of the problems are intractable, and propose a suite of inexpensive 

heuristics drawing from techniques in delay-constrained scheduling, and spanning tree literature, 

to solve these problems. We have built a prototype version management system, that aims to serve 

as a foundation to our DataHub system for facilitating collaborative data science. We demonstrate, 

via extensive experiments, that our proposed heuristics provide efficient solutions in practical 

dataset versioning scenarios.

1. INTRODUCTION

The massive quantities of data being generated every day, and the ease of collaborative data 

analysis and data science have led to severe issues in management and retrieval of datasets. 

We motivate our work with two concrete example scenarios.

• [Intermediate Result Datasets] For most organizations dealing with large 

volumes of diverse datasets, a common scenario is that many datasets are 

repeatedly analyzed in slightly different ways, with the intermediate results 

stored for future use. Often, we find that the intermediate results are the same 

across many pipelines (e.g., a PageRank computation on the Web graph is often 

part of a multi-step workflow). Often times, the datasets being analyzed might be 

slightly different (e.g., results of simple transformations or cleaning operations, 
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or small updates), but are still stored in their entirety. There is currently no way 

of reducing the amount of stored data in such a scenario: there is massive 

redundancy and duplication (this was corroborated by our discussions with a 

large software company), and often the computation required to recompute a 

given version from another one is small enough to not merit storing a new 

version.

• [Data Science Dataset Versions] In our conversations with a computational 

biology group, we found that every time a data scientist wishes to work on a 

dataset, they make a private copy, perform modifications via cleansing, 

normalization, adding new fields or rows, and then store these modified versions 

back to a folder shared across the entire group. Once again there is massive 

redundancy and duplication across these copies, and there is a need to minimize 

these storage costs while keeping these versions easily retrievable.

In such scenarios and many others, it is essential to keep track of versions of datasets and be 

able to recreate them on demand; and at the same time, it is essential to minimize the storage 

costs by reducing redundancy and duplication. The ability to manage a large number of 

datasets, their versions, and derived datasets, is a key foundational piece of a system we are 

building for facilitating collaborative data science, called DataHub [12]. DataHub enables 

users to keep track of datasets and their versions, represented in the form of a directed 

version graph that encodes derivation relationships, and to retrieve one or more of the 

versions for analysis.

In this paper, we focus on the problem of trading off storage costs and recreation costs in a 

principled fashion. Specifically, the problem we address in this paper is: given a collection of 

datasets as well as (possibly) a directed version graph connecting them, minimize the overall 

storage for storing the datasets and the recreation costs for retrieving them. The two goals 

conflict with each other — minimizing storage cost typically leads to increased recreation 

costs and vice versa. We illustrate this trade-off via an example.

Example 1: Figure 1(i) displays a version graph, indicating the derivation relationships 

among 5 versions. Let V1 be the original dataset. Say there are two teams collaborating on 

this dataset: team 1 modifies V1 to derive V2, while team 2 modifies V1 to derive V3. Then, 

V2 and V3 are merged and give V5. As presented in Figure 1, V1 is associated with 〈10000, 

10000〉, indicating that V1’s storage cost and recreation cost are both 10000 when stored in 

its entirety (we note that these two are typically measured in different units – see the second 

challenge below); the edge (V1 → V3) is annotated with 〈1000, 3000〉, where 1000 is the 

storage cost for V3 when stored as the modification from V1 (we call this the delta of V3 

from V1) and 3000 is the recreation cost for V3 given V1, i.e, the time taken to recreate V3 

given that V1 has already been recreated.

One naive solution to store these datasets would be to store all of them in their entirety 

(Figure 1 (ii)). In this case, each version can be retrieved directly but the total storage cost is 

rather large, i.e., 10000 + 10100 + 9700 + 9800 + 10120 = 49720. At the other extreme, only 

one version is stored in its entirety while other versions are stored as modifications or deltas 
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to that version, as shown in Figure 1 (iii). The total storage cost here is much smaller (10000 

+ 200 + 1000 + 50 + 200 = 11450), but the recreation cost is large for V2, V3, V4 and V5. 

For instance, the path {(V1 → V3 → V5)} needs to be accessed in order to retrieve V5 and 

the recreation cost is 10000 + 3000 + 550 = 13550 > 10120.

Figure 1 (iv) shows an intermediate solution that trades off increased storage for reduced 

recreation costs for some version. Here we store versions V1 and V3 in their entirety and 

store modifications to other versions. This solution also exhibits higher storage cost than 

solution (ii) but lower than (iii), and still results in significantly reduced retrieval costs for 

versions V3 and V5 over (ii).

Despite the fundamental nature of the storage-retrieval problem, there is surprisingly little 

prior work on formally analyzing this trade-off and on designing techniques for identifying 

effective storage solutions for a given collection of datasets. Version Control Systems (VCS) 

like Git, SVN, or Mercurial, despite their popularity, use fairly simple algorithms 

underneath, and are known to have significant limitations when managing large datasets [1, 

2]. Much of the prior work in literature focuses on a linear chain of versions, or on 

minimizing the storage cost while ignoring the recreation cost (we discuss the related work 

in more detail in Section 6).

In this paper, we initiate a formal study of the problem of deciding how to jointly store a 

collection of dataset versions, provided along with a version or derivation graph. Aside from 

being able to handle the scale, both in terms of dataset sizes and the number of versions, 

there are several other considerations that make this problem challenging.

• Different application scenarios and constraints lead to many variations on the 

basic theme of balancing storage and recreation cost (see Table 1). The variations 

arise both out of different ways to reconcile the conflicting optimization goals, as 

well as because of the variations in how the differences between versions are 

stored and how versions are reconstructed. For example, some mechanisms for 

constructing differences between versions lead to symmetric differences (either 

version can be recreated from the other version)— we call this the undirected 
case. The scenario with asymmetric, one-way differences is referred to as 

directed case.

• Similarly, the relationship between storage and recreation costs leads to 

significant variations across different settings. In some cases the recreation cost 

is proportional to the storage cost (e.g., if the system bottleneck lies in the I/O 

cost or network communication), but that may not be true when the system 

bottleneck is CPU computation. This is especially true for sophisticated 

differencing mechanisms where a compact derivation procedure might be known 

to generate one dataset from another.

• Another critical issue is that computing deltas for all pairs of versions is typically 

not feasible. Relying purely on the version graph may not be sufficient and 

significant redundancies across datasets may be missed.
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• Further, in many cases, we may have information about relative access 
frequencies indicating the relative likelihood of retrieving different datasets. 

Several baseline algorithms for solving this problem cannot be easily adapted to 

incorporate such access frequencies.

We note that the problem described thus far is inherently “online” in that new datasets and 

versions are typically being created continuously and are being added to the system. In this 

paper, we focus on the static, off-line version of this problem and focus on formally and 

completely understanding that version. We plan to address the online version of the problem 

in the future. The key contributions of this work are as follows.

• We formally define and analyze the dataset versioning problem and consider 

several variations of the problem that trade off storage cost and recreation cost in 

different manners, under different assumptions about the differencing 

mechanisms and recreation costs (Section 2). Table 1 summarizes the problems 

and our results. We show that most of the variations of this problem are NP-Hard 

(Section 3).

• We provide two light-weight heuristics: one, when there is a constraint on 

average recreation cost, and one when there is a constraint on maximum 

recreation cost; we also show how we can adapt a prior solution for balancing 

minimum-spanning trees and shortest path trees for undirected graphs (Section 

4).

• We have built a prototype system where we implement the proposed algorithms. 

We present an extensive experimental evaluation of these algorithms over several 

synthetic and real-world workloads demonstrating the effectiveness of our 

algorithms at handling large problem sizes (Section 5).

2. PROBLEM OVERVIEW

In this section, we first introduce essential notations and then present the various problem 

formulations. We then present a mapping of the basic problem to a graph-theoretic problem, 

and also describe an integer linear program to solve the problem optimally.

2.1 Essential Notations and Preliminaries

Version Graph—We let  = {Vi}, i = 1, …, n be a collection of versions. The derivation 

relationships between versions are represented or captured in the form of a version graph: 

ℊ( , ℰ). A directed edge from Vi to Vj in ℊ( , ℰ) represents that Vj was derived from Vi 

(either through an update operation, or through an explicit transformation). Since branching 

and merging are permitted in DataHub (admitting collaborative data science), ℊ is a DAG 

(directed acyclic graph) instead of a linear chain. For example, Figure 1 represents a version 

graph ℊ, where V2 and V3 are derived from V1 separately, and then merged to form V5.

Storage and Recreation—Given a collection of versions , we need to reason about the 

storage cost, i.e., the space required to store the versions, and the recreation cost, i.e., the 

time taken to recreate or retrieve the versions. For a version Vi, we can either:
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• Store Vi in its entirety: in this case, we denote the storage required to record 

version Vi fully by Δi,i. The recreation cost in this case is the time needed to 

retrieve this recorded version; we denote that by Φi,i. A version that is stored in 

its entirety is said to be materialized.

• Store a “delta” from Vj : in this case, we do not store Vi fully; we instead store 

its modifications from another version Vj. For example, we could record that Vi 

is just Vj but with the 50th tuple deleted. We refer to the information needed to 

construct version Vi from version Vj as the delta from Vj to Vi. The algorithm 

giving us the delta is called a differencing algorithm. The storage cost for 

recording modifications from Vj, i.e., the size the delta, is denoted by Δj,i. The 

recreation cost is the time needed to recreate the recorded version given that Vj 

has been recreated; this is denoted by Φj,i.

Thus the storage and recreation costs can be represented using two matrices Δ and Φ: the 

entries along the diagonal represent the costs for the materialized versions, while the off-

diagonal entries represent the costs for deltas. From this point forward, we focus our 

attention on these matrices: they capture all the relevant information about the versions for 

managing and retrieving them.

Delta Variants—Notice that by changing the differencing algorithm, we can produce 

deltas of various types:

• for text files, UNIX-style diffs, i.e., line-by-line modifications between versions, 

are commonly used;

• we could have a listing of a program, script, SQL query, or command that 

generates version Vi from Vj ;

• for some types of data, an XOR between the two versions can be an appropriate 

delta; and

• for tabular data (e.g., relational tables), recording the differences at the cell level 

is yet another type of delta.

Furthermore, the deltas could be stored compressed or uncompressed. The various delta 

variants lead to various dimensions of problem that we will describe subsequently.

The reader may be wondering why we need to reason about two matrices Δ and Φ. In some 

cases, the two may be proportional to each other (e.g., if we are using uncompressed UNIX-

style diffs). But in many cases, the storage cost of a delta and the recreation cost of applying 

that delta can be very different from each other, especially if the deltas are stored in a 

compressed fashion. Furthermore, while the storage cost is more straightforward to account 

for in that it is proportional to the bytes required to store the deltas between versions, 

recreation cost is more complicated: it could depend on the network bandwidth (if versions 

or deltas are stored remotely), the I/O bandwidth, and the computation costs (e.g., if 

decompression or running of a script is needed).
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Example 2: Figure 2 shows the matrices Δ and Φ based on version graph in Figure 1. The 

annotation associated with the edge (Vi, Vj) in Figure 1 is essentially 〈Δi,j, Φi,j〉, whereas the 

vertex annotation for Vi is 〈Δi,i, Φi,i〉. If there is no edge from Vi to Vj in the version graph, 

we have two choices: we can either set the corresponding Δ and Φ entries to “−” (unknown) 

(as shown in the figure), or we can explicitly compute the values of those entries (by running 

a differencing algorithm). For instance, Δ3,2 = 1100 and Φ3,2 = 3200 are computed explicitly 

in the figure (the specific numbers reported here are fictitious and not the result of running 

any specific algorithm).

Discussion—Before moving on to formally defining the basic optimization problem, we 

note several complications that present unique challenges in this scenario.

• Revealing entries in the matrix: Ideally, we would like to compute all pairwise Δ 

and Φ entries, so that we do not miss any significant redundancies among 

versions that are far from each other in the version graph. However when the 

number of versions, denoted n, is large, computing all those entries can be very 

expensive (and typically infeasible), since this means computing deltas between 

all pairs of versions. Thus, we must reason with incomplete Δ and Φ matrices. 

Given a version graph ℊ, one option is to restrict our deltas to correspond to 

actual edges in the version graph; another option is to restrict our deltas to be 

between “close by” versions, with the understanding that versions close to each 

other in the version graph are more likely to be similar. Prior work has also 

suggested mechanisms (e.g., based on hashing) to find versions that are close to 

each other [18]. We assume that some mechanism to choose which deltas to 

reveal is provided to us.

• Multiple “delta” mechanisms: Given a pair of versions (Vi, Vj), there could be 

many ways of maintaining a delta between them, with different Δi,j, Φi,j costs. 

For example, we can store a program used to derive Vj from Vi, which could take 

longer to run (i.e., the recreation cost is higher) but is more compact (i.e., storage 

cost is lower), or explicitly store the UNIX-style diffs between the two versions, 

with lower recreation costs but higher storage costs. For simplicity, we pick one 

delta mechanism: thus the matrices Δ, Φ just have one entry per (i, j) pair. Our 

techniques also apply to the more general scenario with small modifications.

• Branches: Both branching and merging are common in collaborative analysis, 

making the version graph a directed acyclic graph. In this paper, we assume each 

version is either stored in its entirety or stored as a delta from a single other 

version, even if it is derived from two different datasets. Although it may be 

more efficient to allow a version to be stored as a delta from two other versions 

in some cases, representing such a storage solution requires more complex 

constructs and both the problems of finding an optimal storage solution for a 

given problem instance and retrieving a specific version become much more 

complicated. We plan to further study such solutions in future.

Matrix Properties and Problem Dimensions—The storage cost matrix Δ may be 

symmetric or asymmetric depending on the specific differencing mechanism used for 
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constructing deltas. For example, the XOR differencing function results in a symmetric Δ 

matrix since the delta from a version Vi to Vj is identical to the delta from Vj to Vi. UNIX-

style diffs where line-by-line modifications are listed can either be two-way (symmetric) or 

one-way (asymmetric). The asymmetry may be quite large. For instance, it may be possible 

to represent the delta from Vi to Vj using a command like: delete all tuples with age > 60, 

very compactly. However, the reverse delta from Vj to Vi is likely to be quite large, since all 

the tuples that were deleted from Vi would be a part of that delta. In this paper, we consider 

both these scenarios. We refer to the scenario where Δ is symmetric and Δ is asymmetric as 

the undirected case and directed case, respectively.

A second issue is the relationship between Φ and Δ. In many scenarios, it may be reasonable 

to assume that Φ is proportional to Δ. This is generally true for deltas that contain detailed 

line-by-line or cell-by-cell differences. It is also true if the system bottleneck is network 

communication or I/O cost. In a large number of cases, however, it may be more appropriate 

to treat them as independent quantities with no overt or known relationship. For the 

proportional case, we assume that the proportionality constant is 1 (i.e., Φ = Δ); the problem 

statements, algorithms and guarantees are unaffected by having a constant proportionality 

factor. The other case is denoted by Φ ≠ Δ.

This leads us to identify three distinct cases with significantly diverse properties: (1) 

Scenario 1: Undirected case, Φ = Δ; (2) Scenario 2: Directed case, Φ = Δ; and (3) 

Scenario 3: Directed case, Φ ≠ Δ.

Objective and Optimization Metrics—Given Δ, Φ, our goal is to find a good storage 

solution, i.e., we need to decide which versions to materialize and which versions to store as 

deltas from other versions. Let ℘ = {(i1, j1), (i2, j2), …} denote a storage solution. ik = jk 

indicates that the version Vik is materialized (i.e., stored explicitly in its entirety), whereas a 

pair (ik, jk), ik ≠ jk indicates that we store a delta from Vik to Vjk.

We require any solution we consider to be a valid solution, where it is possible to reconstruct 

any of the original versions. More formally, ℘ is considered a valid solution if and only if 

for every version Vi, there exists a sequence of distinct versions Vl1, …, Vlk = Vi such that 

(il1, il1 ), (il1, il2 ), (il2, il3), …, (ilk−1, ilk) are contained in ℘ (in other words, there is a 

version Vl1 that can be materialized and can be used to recreate Vi through a chain of 

deltas).

We can now formally define the optimization goals:

• Total Storage Cost (denoted ): The total storage cost for a solution ℘ is simply 

the storage cost necessary to store all the materialized versions and the deltas: 

= Σ(i,j)∈℘ Δi,j.

• Recreation Cost for Vi (denoted ℛi): Let Vl1, …, Vlk = Vi denote a sequence that 

can be used to reconstruct Vi. The cost of recreating Vi using that sequence is: 

Φl1,l1 + Φl1,l2 + … + Φlk−1,lk. The recreation cost for Vi is the minimum of these 

quantities over all sequences that can be used to recreate Vi.
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Problem Formulations—We now state the problem formulations that we consider in this 

paper, starting with two base cases that represent two extreme points in the spectrum of 

possible problems.

Problem 1 (Minimizing Storage): Given Δ, Φ, find a valid solution ℘ such that  is 

minimized.

Problem 2 (Minimizing Recreation): GivenΔ, Φ, identify a valid solution ℘ such that ∀i, 

Ri is minimized.

The above two formulations minimize either the storage cost or the recreation cost, without 

worrying about the other. It may appear that the second formulation is not well-defined and 

we should instead aim to minimize the average recreation cost across all versions. However, 

the (simple) solution that minimizes average recreation cost also naturally minimizes ℛi for 

each version.

In the next two formulations, we want to minimize (a) the sum of recreation costs over all 

versions (Σi ℛi), (b) the max recreation cost across all versions (maxi ℛi), under the 

constraint that total storage cost  is smaller than some threshold β. These problems are 

relevant when the storage budget is limited.

Problem 3 (MinSum Recreation): GivenΔ; Φ and a threshold β, identify ℘ such that  ≤ 

β, andΣi ℛi is minimized.

Problem 4 (MinMax Recreation): GivenΔ, Φ and a threshold β, identify ℘ such that  ≤ 

β, and maxi ℛi is minimized.

The next two formulations seek to instead minimize the total storage cost  given a 

constraint on the sum of recreation costs or max recreation cost. These problems are relevant 

when we want to reduce the storage cost, but must satisfy some constraints on the recreation 

costs.

Problem 5 (Minimizing Storage(Sum Recreation)): Given Δ, Φ and a threshold θ, identify 

℘ such that Σi ℛi ≤ θ, and  is minimized.

Problem 6 (Minimizing Storage(Max Recreation)): Given Δ, Φ and a threshold θ, 
identify ℘ such that maxi ℛi ≤ θ, and  is minimized.

2.2 Mapping to Graph Formulation

In this section, we’ll map our problem into a graph problem, that will help us to adopt and 

modify algorithms from well-studied problems such as minimum spanning tree construction 

and delay-constrained scheduling. Given the matrices Δ and Φ, we can construct a directed, 

edge-weighted graph G = (V, E) representing the relationship among different versions as 

follows. For each version Vi, we create a vertex Vi in G. In addition, we create a dummy 

vertex V0 in G. For each Vi, we add an edge V0 → Vi, and assign its edge-weight as a tuple 

〈Δi,i, Φi,i〉. Next, for each Δi,j ≠ ∞, we add an edge Vi → Vj with edge-weight 〈Δi,j, Φi,j〉.

Bhattacherjee et al. Page 8

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The resulting graph G is similar to the original version graph, but with several important 

differences. An edge in the version graph indicates a derivation relationship, whereas an 

edge in G simply indicates that it is possible to recreate the target version using the source 

version and the associated edge delta (in fact, ideally G is a complete graph). Unlike the 

version graph, G may contain cycles, and it also contains the special dummy vertex V0. 

Additionally, in the version graph, if a version Vi has multiple in-edges, it is the result of a 

user/application merging changes from multiple versions into Vi. However, multiple in-

edges in G capture the multiple choices that we have in recreating Vi from some other 

versions.

Given graph G = (V, E), the goal of each of our problems is to identify a storage graph Gs = 

(Vs, Es), a subset of G, favorably balancing total storage cost and the recreation cost for each 

version. Implicitly, we will store all versions and deltas corresponding to edges in this 

storage graph. (We explain this in the context of the example below.) We say a storage graph 

Gs is feasible for a given problem if (a) each version can be recreated based on the 

information contained or stored in Gs, (b) the recreation cost or the total storage cost meets 

the constraint listed in each problem.

Example 3: Given matrix Δ and Φ in Figure 2(i) and 2(ii), the corresponding graph G is 

shown in Figure 3. Every version is reachable from V0. For example, edge (V0, V1) is 

weighted with 〈Δ1,1, Φ1,1〉 = 〈10000, 10000〉; edge 〈V3, V5〉 is weighted with 〈Δ3,5, Φ3,5〉 = 

〈800, 2500〉. Figure 4 is a feasible storage graph given G in Figure 3, where V1 and V3 are 

materialized (since the edges from V0 to V1 and V3 are present) while V2, V4 and V5 are 

stored as modifications from other versions.

After mapping our problem into a graph setting, we have the following lemma.

Lemma 1: The optimal storage graph Gs = (Vs, Es) for all 6 problems listed above must be a 

spanning tree T rooted at dummy vertex V0 in graph G.1

Recall that a spanning tree is a tree where every vertex is connected and reachable, and has 

no cycles. For Problems 1 and 2, we have the following observations. A shortest path tree is 

defined as a spanning tree where the path from root to each vertex is a shortest path between 

those two in the original graph: this would be simply consist of the edges that were explored 

in an execution of Dijkstra’s shortest path algorithm.

Lemma 2: The optimal storage graph Gs for Problem 1 is a minimum spanning tree of 

Grooted at V0, considering only weights Δi,j.

Lemma 3: The optimal storage graph Gs for Problem 2 is a shortest path tree of G rooted at 

V0, considering only weights Φi,j.

1We refer the reader to the extended version for proofs.
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2.3 ILP Formulation

We present an ILP formulation of the optimization problems described above. Here, we take 

Problem 6 as an example; other problems are similar. Let xi,j be a binary variable for each 

edge (Vi, Vj) ∈ E, indicating whether edge (Vi, Vj) is in the storage graph or not. 

Specifically, x0,j = 1 indicates that version Vj is materialized, while xi,j = 1 indicates that the 

modification from version i to version j is stored where i ≠ 0. Let ri be a continuous variable 

for each vertex Vi ∈ V, where r0 = 0; ri captures the recreation cost for version i (and must 

be ≤ θ).

minimize Σ(Vi, Vj )∈Exi,j × Δi,j, subject to:

1 Σi xi,j = 1, ∀j

2 rj − ri ≥ Φi,j if xi,j = 1

3 ri ≤ θ, ∀i

Lemma 4: Problem 6 is equivalent to the optimization problem described above.

Note however that the general form of an ILP does not permit an if-then statement (as in (2) 

above). Instead, we can transform to the general form with the aid of a large constant C. 

Thus, constraint 2 can be expressed as follows:

Where C is a “sufficiently large” constant such that no additional constraint is added to the 

model. For instance, C here can be set as 2*θ. On one hand, if xi,j = 1 ⇒ Φi,j +ri−rj ≤ 0. On 

the other hand, if xi,j = 0 ⇒ Φi,j + ri − rj ≤ C. Since C is “sufficiently large”, no additional 

constraint is added.

3. COMPUTATIONAL COMPLEXITY

In this section, we study the complexity of the problems listed in Table 1 under different 

application scenarios.

Problem 1 and 2 Complexity—As discussed in Section 2, Problem 1 and 2 can be 

solved in polynomial time by directly applying a minimum spanning tree algorithm 

(Kruskal’s algorithm or Prim’s algorithm for undirected graphs; Edmonds’ algorithm [35] 

for directed graphs) and Dijkstra’s shortest path algorithm respectively. Kruskal’s algorithm 

has time complexity O(E log V ), while Prim’s algorithm also has time complexity O(E log 

V ) when using binary heap for implementing the priority queue, and O(E + V log V ) when 

using Fibonacci heap for implementing the priority queue. The running time of Edmonds’ 

algorithm is O(EV ) and can be reduced to O(E + V log V ) with faster implementation. 

Similarly, Dijkstra’s algorithm for constructing the shortest path tree starting from the root 

has a time complexity of O(E log V ) via a binary heap-based priority queue implementation 

and a time complexity of O(E + V log V ) via Fibonacci heap-based priority queue 

implementation.
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Next, we’ll show that Problem 5 and 6 are NP-hard even for the special case where Δ = Φ 
and Φ is symmetric. This will lead to hardness proofs for the other variants.

Triangle Inequality—The primary challenge that we encounter while demonstrating 

hardness is that our deltas must obey the triangle inequality: unlike other settings where 

deltas need not obey real constraints, since, in our case, deltas represent actual modifications 

that can be stored, it must obey additional realistic constraints. This causes severe 

complications in proving hardness, often transforming the proofs from very simple to fairly 

challenging.

Consider the scenario when Δ = Φ and Φ is symmetric. We take Δ as an example. The 

triangle inequality, can be stated as follows:

where p, q, w ∈ V and p ≠ q ≠ w. The first inequality states that the “delta” between two 

versions can not exceed the total “deltas” of any two-hop path with the same starting and 

ending vertex; while the second inequality indicates that the “delta” between two versions 

must be bigger than one version’s full storage cost minus another version’s full storage cost. 

Since each tuple and modification is recorded explicitly when Φ is symmetric, it is natural 

that these two inequalities hold.

Problem 6 Hardness—We now demonstrate hardness.

Lemma 5: Problem 6 is NP-hard when Δ = Φ and Φ is symmetric.

Proof: Here we prove NP-hardness using a reduction from the set cover problem. Recall that 

in the set cover problem, we are given m sets S = {s1, s2, …, sm} and n items T = {t1, t2, … 

tn}, where each set si covers some items, and the goal is to pick k sets ℱ ⊂ S such that 

∪{F∈ℱ}F = T while minimizing k.

Given a set cover instance, we now construct an instance of Problem 6 that will provide a 

solution to the original set cover problem. The threshold we will use in Problem 6 will be (β 
+ 1)α, where β, α are constants that are each greater than 2(m + n). (This is just to ensure 

that they are “large”.) We now construct the graph G(V, E) in the following way; we display 

the constructed graph in Figure 5. Our vertex set V is as follows:

• ∀si ∈ S, create a vertex si in V.

• ∀ti ∈ T, create a vertex ti in V.

• create an extra vertex v0, two dummy vertices v1, v2 in V.

We add the two dummy vertices simply to ensure that v0 is materialized, as we will see later. 

We now define the storage cost for materializing each vertex in V in the following way:

• ∀si ∈ S, the cost is α.
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• ∀ti ∈ T, the cost is (β + 1)α.

• for vertex v0, the cost is α.

• for vertex v1, v2, the cost is (β + 1)α.

(These are the numbers colored blue in the tree of Figure 5(b).) As we can see above, we 

have set the costs in such a way that the vertex v0 and the vertices corresponding to sets in S 
have low materialization cost, while the other vertices have high materialization cost: this is 

by design so that we only end up materializing these vertices. Our edge set E is now as 

follows.

• we connect vertex v0 to each si with weight 1.

• we connect v0 to both v1 and v2 each with weight βα.

• ∀si ∈ S, we connect si to tj with weight βα when tj ∈ si, where α = |V|.

It is easy to show that our constructed graph G obeys the triangle inequality.

Consider a solution to Problem 6 on the constructed graph G. We now demonstrate that that 

solution leads to a solution of the original set cover problem. Our proof proceeds in four key 

steps:

Step 1: The vertex v0 will be materialized, while v1, v2 will not be materialized. 
Assume the contrary—say v0 is not materialized in a solution to Problem 6. Then, 

both v1 and v2 must be materialized, because if they are not, then the recreation cost 

of v1 and v2 would be at least α(β + 1) + 1, violating the condition of Problem 6. 

However we can avoid materializing v1 and v2, instead keep the delta to v0 and 

materialize v0, maintaining the recreation cost as is while reducing the storage cost. 

Thus v0 has to be materialized, while v1, v2 will not be materialized. (Our reason for 

introducing v1, v2 is precisely to ensure that v0 is materialized so that it can provide 

basis for us to store deltas to the sets si.)

Step 2: None of the ti will be materialized. Say a given ti is materialized in the 

solution to Problem 6. Then, either we have a set sj where sj is connected to ti in 

Figure 5(a) also materialized, or not. Let’s consider the former case. In the former 

case, we can avoid materializing ti, and instead add the delta from sj to ti, thereby 

reducing storage cost while keeping recreation cost fixed. In the latter case, pick any 

sj such that sj is connected to ti and is not materialized. Then, we must have the delta 

from v0 to sj as part of the solution. Here, we can replace that edge, and materialized 

ti, with materialized sj, and the delta from sj to ti: this would reduce the total storage 

cost while keeping the recreation cost fixed. Thus, in either case, we can improve the 

solution if any of the ti are materialized, rendering the statement false.

Step 3: For each si, either it is materialized, or the edge from v0 to si will be part of 
the storage graph. This step is easy to see: since none of the ti are materialized, either 

each si has to be materialized, or we must store a delta from v0.

Step 4: The sets si that are materialized correspond to a minimal set cover of the 
original problem. It is easy to see that for each tj we must have an si such that si 

covers tj, and si is materialized, in order for the recreation cost constraint to not be 
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violated for tj. Thus, the materialized si must be a set cover for the original problem. 

Furthermore, in order for the storage cost to be as small as possible, as few si as 

possible must be materialized (this is the only place we can save cost). Thus, the 

materialized si also correspond to a minimal set cover for the original problem.

Thus, minimizing the total storage cost is equivalent to minimizing k in set cover problem.

Problem 5 Hardness—We now show that Problem 5 is NP-Hard as well. The general 

philosophy is similar to the proof in Lemma 5, except that we create c dummy vertices 

instead of two dummy vertices v1, v2 in Lemma 5, where c is sufficiently large—this is to 

once again ensure that v0 is materialized. The detailed proof can be found in the extended 

technical report [13].

Lemma 6: Problem 5 is NP-Hard when Δ = Φ and Φ is symmetric.

Since Problem 4 swaps the constraint and goal compared to Problem 6, it is similarly NP-

Hard. (Note that the decision versions of the two problems are in fact identical, and therefore 

the proof still applies.) Similarly, Problem 3 is also NP-Hard. Now that we have proved the 

NP-hard even in the special case where Δ = Φ and Φ is symmetric, we can conclude that 

Problem 3, 4, 5, 6, are NP-hard in a more general setting where Φ is not symmetric and Δ ≠ 

Φ, as listed in Table 1.

Hop-Based Variants—In the extended technical report, we also consider the variant of 

the problem where Δ ≠ Φ but the recreation cost Φij is the same for all pairs of versions, and 

a version recreation cost is simply the number of hops or delta operations to reconstruct the 

version. The reason why this hop-based variant is interesting is because it is related to a 

special case of the d-MinimumSteinerTree problem, namely the d-MinimumSpanningTree 
problem, i.e., identifying the smallest spanning tree where the diameter is bounded by d. 

There has been some work on the d-MinimumSpanningTree problem [11, 17, 24], including 

demonstrating hardness for d-MinimumSpanningTree (using a reduction from SAT), and 

also demonstrating hardness of approximation.

Since the hop-based variant is a special case of the last column of Table 1, this indicates that 

Problem 6 for the most general case is similarly hard to approximate; we suspect similar 

results hold for the other problems as well. It remains to be seen if hardness of 

approximation can be demonstrated for the variants in the second and third last columns.

4. PROPOSED ALGORITHMS

As discussed in Section 2, our different application scenarios lead to different problem 

formulations, spanning different constraints and objectives, and different assumptions about 

the nature of Φ, Δ.

Given that we demonstrated in the previous section that all the problems are NP-Hard, we 

focus on developing efficient heuristics. In this section, we present two novel heuristics: 

first, in Section 4.1, we present LMG, or the Local Move Greedy algorithm, tailored to the 

case when there is a bound or objective on the average recreation cost: thus, this applies to 
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Problems 3 and 5. Second, in Section 4.2, we present MP, or Modified Prim’s algorithm, 

tailored to the case when there is a bound or objective on the maximum recreation cost: thus, 

this applies to Problems 4 and 6. We present two variants of the MP algorithm tailored to 

two different settings.

Then, we present two algorithms — in Section 4.3, we present an approximation algorithm 

called LAST, and in Section 4.4, we present an algorithm called GitH which is based on Git 

repack. Both of these are adapted from literature to fit our problems and we compare these 

against our algorithms in Section 5. Note that LAST does not explicitly optimize any 

objectives or constraints in the manner of LMG, MP, or GitH, and thus the four algorithms 

are applicable under different settings; LMG and MP are applicable when there is a bound or 

constraint on the average or maximum recreation cost, while LAST and GitH are applicable 

when a “good enough” solution is needed. Furthermore, note that all these algorithms apply 

to both directed and undirected versions of the problems, and to the symmetric and 

unsymmetric cases.

The pseudocodes for the algorithms can be found in our extended technical report [13].

4.1 Local Move Greedy Algorithm

The LMG algorithm is applicable when we have a bound or constraint on the average case 

recreation cost. We focus on the case where there is a constraint on the storage cost 

(Problem 3); the case when there is no such constraint (Problem 5) can be solved by 

repeated iterations and binary search on the previous problem.

Outline—At a high level, the algorithm starts with the Minimum Spanning Tree (MST) as 

GS, and then greedily adds edges from the Shortest Path Tree (SPT) that are not present in 

GS, while GS respects the bound on storage cost.

Detailed Algorithm—The algorithm starts off with GS equal to the MST. The SPT 

naturally contains all the edges corresponding to complete versions. The basic idea of the 

algorithm is to replace deltas in GS with versions from the SPT that maximize the following 

ratio:

This is simply the reduction in total recreation cost per unit addition of weight to the storage 

graph GS.

Let ξ consists of edges in the SPT not present in the GS (these precisely correspond to the 

versions that are not explicitly stored in the MST, and are instead computed via deltas in the 

MST). At each “round”, we pick the edge euv ∈ ξ that maximizes ρ, and replace previous 

edge eu′v to v. The reduction in the sum of the recreation costs is computed by adding up the 

reductions in recreation costs of all w ∈ GS that are descendants of v in the storage graph 

(including v itself). On the other hand, the increase in storage cost is simply the weight of 
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euv minus the weight of eu′v. This process is repeated as long as the storage budget is not 

violated. We explain this with the means of an example.

Example 4: Figure 6(a) denotes the current GS. Node 0 corresponds to the dummy node. 

Now, we are considering replacing edge e14 with edge e04, that is, we are replacing a delta to 

version 4 with version 4 itself. Then, the denominator of ρ is simply Δ04 − Δ14. And the 

numerator is the changes in recreation costs of versions 4, 5, and 6 (notice that 5 and 6 were 

below 4 in the tree.) This is actually simple to compute: it is simply three times the change 

in the recreation cost of version 4 (since it affects all versions equally). Thus, we have the 

numerator of ρ is simply 3 × (Φ01 + Φ14 − Φ04).

Complexity—Our overall complexity is O(|V |2). We provide details in the technical report.

Access Frequencies—Note that the algorithm can easily take into account access 

frequencies of different versions and instead optimize for the total weighted recreation cost 

(weighted by access frequencies). The algorithm is similar, except that the numerator of ρ 
will capture the reduction in weighted recreation cost.

4.2 Modified Prim’s Algorithm

Next, we introduce a heuristic algorithm based on Prim’s algorithm for Minimum Spanning 

Trees for Problem 6 where the goal is to reduce total storage cost while recreation cost for 

each version is within threshold θ; the solution for Problem 4 is similar.

Outline—At a high level, the algorithm is a variant of Prim’s algorithm, greedily adding the 

version with smallest storage cost and the corresponding edge to form a spanning tree T. 

Unlike Prim’s algorithm where the spanning tree simply grows, in this case, even if an edge 

is present in T, it could be removed in future iterations. At all stages, the algorithm 

maintains the invariant that the recreation cost of all versions in T is bounded within θ.

Detailed Algorithm—At each iteration, the algorithm picks the version Vi with the 

smallest storage cost to be added to the tree. Once this version Vi is added, we consider 

adding all deltas to all other versions Vj such that their recreation cost through Vi is within 

the constraint θ, and the storage cost does not increase. Each version maintains a pair l(Vi) 

and d(Vi): l(Vi) denotes the marginal storage cost of Vi, while d(Vi) denotes the total 

recreation cost of Vi. At the start, l(Vi) is simply the storage cost of Vi in its entirety.

We now describe the algorithm in detail. Set X represents the current version set of the 

current spanning tree T. Initially X = ∅. In each iteration, the version Vi with the smallest 

storage cost (l(Vi)) in the priority queue PQ is picked and added into spanning tree T. When 

Vi is added into T, we need to update the storage cost and recreation cost for all Vj that are 

neighbors of Vi. Notice that in Prim’s algorithm, we do not need to consider neighbors that 

are already in T. However, in our scenario a better path to such a neighbor may be found and 

this may result in an update. For instance, if edge 〈Vi, Vj〉 can make Vj ’s storage cost 

smaller while the recreation cost for Vj does not increase, we can update p(Vj) = Vi as well 

as d(Vj), l(Vj) and T. For neighbors Vj ∉ T, we update d(Vj), l(Vj), p(Vj) if edge 〈Vi, Vj〉 can 

make Vj ’s storage cost smaller and the recreation cost for Vj is no bigger than θ.
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Example 5: Say we operate on G given by Figure 7, and let the threshold θ be 6. Each 

version Vi is associated with a pair 〈l(Vi), d(Vi)〉. Initially version V0 is pushed into priority 

queue. When V0 is dequeued, each neighbor Vj updates < l(Vj), d(Vj) > as shown in Figure 

9 (a). Notice that l(Vi), i ≠ 0 for all i is simply the storage cost for that version. For example, 

when considering edge (V0, V1), l(V1) = 3 and d(V1) = 3 is updated since recreation cost (if 

V1 is to be stored in its entirety) is smaller than threshold θ, i.e., 3 < 6. Afterwards, version 

V1, V2 and V3 are inserted into the priority queue. Next, we dequeue V1 since l(V1) is 

smallest among the versions in the priority queue, and add V1 to the spanning tree. We then 

update < l(Vj), d(Vj) > for all neighbors of V1, e.g., the recreation cost for version V2 will be 

6 and the storage cost will be 2 when considering edge (V1, V2). Since 6 ≤ 6, (l(V2), d(V2)) 

is updated to (2, 6) as shown in Figure 9 (b); however, < l(V3), d(V3) > will not be updated 

since the recreation cost is 3 + 4 > 6 when considering edge (V1, V3). Subsequently, version 

V2 is dequeued because it has the lowest l(V2), and is added to the tree, giving Figure 9 (b). 

Subsequently, version V3 are dequeued. When V3 is dequeued from PQ, (l(V2), d(V2)) is 

updated. This is because the storage cost for V2 can be updated to 1 and the recreation cost 

is still 6 when considering edge (V3, V2), even if V2 is already in T as shown in Figure 9 (c). 

Eventually, we get the final answer in Figure 9 (d).

Complexity—The complexity of the algorithm is the same as that of Prim’s algorithm, i.e., 

O(|E| log |V|).

4.3 LAST Algorithm

Here, we sketch an algorithm from previous work [21] that enables us to find a tree with a 

good balance of storage and recreation costs, under the assumptions that Δ = Φ and Φ is 

symmetric.

Sketch—The algorithm, which takes a parameter α as input, starts with a minimum 

spanning tree and does a depth-first traveral (DFS) on it. When visiting Vi during the 

traversal, if it finds that the recreation cost for Vi exceeds α× the cost of the shortest path 

from V0 to Vi, then this current path is replaced with the shortest path to the node. It can be 

shown that the total cost of the resulting spanning tree is within (1+2=(α − 1)) times the cost 

of minimum spanning tree in G. Even though the algorithm was proposed for undirected 

graphs, it can be applied to the directed graph case but without any comparable guarantees. 

We refer the reader to the full version for more details and pseudocode [13].

Example 6: Figure 10 (a) is the minimum spanning tree (MST) rooted at node V0 of G in 

Figure 8. The approximation threshold α is set to be 2. The algorithm starts with the MST 

and conducts a depth-first traversal in the MST from root V0. When visiting node V2, d(V2) 

= 3 and the shortest path to node V2 is 3, thus 3 < 2 × 3. We continue to visit node V2 and 

V3. When visiting V3, d(V3) = 8 > 2 × 3 where 3 is the shortest path to V3 in G. Thus, d(V3) 

is set to be 3 and p(V3) is set to be node 0 by replacing with the shortest path 〈V0, V3〉 as 

shown in Figure 10 (b). Afterwards, the back-edge < V3, V1 > is traversed in MST. Since 3 

+ 2 < 6, where 3 is the current value of d(V3), 2 is the edge weight of (V3, V1) and 6 is the 

current value in d(V1), thus d(V1) is updated as 5 and p(V1) is updated as node V3. At last 

node V4 is visited, d(V4) is first updated as 7. Since 7 < 2 × 4, lines 9–11 are not executed. 
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Figure 10 (c) is the resulting spanning tree of the algorithm, where the recreation cost for 

each node is under the constraint and the total storage cost is 3 + 3 + 2 + 2 = 10.

Complexity—The complexity of the algorithm is O(|E| log |V |). Further details can be 

found in the technical report.

4.4 Git Heuristic

This heuristic is an adaptation of the current heuristic used by Git and we refer to it as GitH. 

We sketch the algorithm here and refer the reader to the extended version for more details 

[13]. GitH uses two parameters: w (window size) and d (max depth).

We consider the versions in an non-increasing order of their sizes. The first version in this 

ordering is chosen as the root of the storage graph and has depth 0 (i.e., it is materialized). 

At all times, we maintain a sliding window containing at most w versions. For each version 

Vi after the first one, let Vl denote a version in the current window. We compute: 

, where dl is the depth of Vl (thus deltas with shallow depths are preferred 

over slightly smaller deltas with higher depths). We find the version Vj with the lowest value 

of this quantity and choose it as Vi’s parent (as long as dj < d). The depth of Vi is then set to 

dj +1. The sliding window is modified to move Vl to the end of the window (so it will stay in 

the window longer), Vj is added to the window, and the version at the beginning of the 

window is dropped.

Complexity—The running time of the heuristic is O(|V | log |V | + w|V |), excluding the 

time to construct deltas.

5. EXPERIMENTS

We have built a prototype version management system, that will serve as a foundation to 

DataHub [12]. The system provides a subset of Git/SVN-like interface for dataset 

versioning. Users interact with the version management system in a client-server model over 

HTTP. The server is implemented in Java, and is responsible for storing the version history 

of the repository as well as the actual files in them. The client is implemented in Python and 

provides functionality to create (commit) and check out versions of datasets, and create and 

merge branches. Note that, unlike traditional VCS which make a best effort to perform 

automatic merges, in our system we let the user perform the merge and notify the system by 

creating a version with more than one parent.

Implementation—In the following sections, we present an extensive evaluation of our 

designed algorithms using a combination of synthetic and derived real-world datasets. Apart 

from implementing the algorithms described above, LMG and LAST require both SPT and 

MST as input. For both directed and undirected graphs, we use Dijkstra’s algorithm to find 

the single-source shortest path tree (SPT). We use Prim’s algorithm to find the minimum 

spanning tree for undirected graphs. For directed graphs, we use an implementation [3] of 

the Edmonds’ algorithm [35] for computing the min-cost arborescence (MCA). We ran all 
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our experiments on a 2.2GHz Intel Xeon CPU E5-2430 server with 64GB of memory, 

running 64-bit Red Hat Enterprise Linux 6.5.

5.1 Datasets

We use four data sets: two synthetic and two derived from real-world source code 

repositories. Although there are many publicly available source code repositories with large 

numbers of commits (e.g., in GitHub), those repositories typically contain fairly small 

(source code) files, and further the changes between versions tend to be localized and are 

typically very small; we expect dataset versions generated during collaborative data analysis 

to contain much larger datasets and to exhibit large changes between versions. We were 

unable to find any realistic workloads of that kind.

Hence, we generated realistic dataset versioning workloads as follows. First, we wrote a 

synthetic version generator suite, driven by a small set of parameters, that is able to generate 

a variety of version histories and corresponding datasets. Second, we created two real-world 

datasets using publicly available forks of popular repositories on GitHub. We describe each 

of the two below.

Synthetic Datasets—Our synthetic dataset generation suite2 takes a two-step approach to 

generate a dataset that we sketch below. The first step is to generate a version graph with the 

desired structure, controlled by the following parameters:

• number of commits, i.e., the total number of versions.

• branch interval and probability, the number of consecutive versions after which a 

branch can be created, and probability of creating a branch.

• branch limit, the maximum number of branches from any point in the version 

history. We choose a number in [1, branch limit] uniformly at random when we 

decide to create branches.

• branch length, the maximum number of commits in any branch. The actual 

length is a uniformly chosen integer between 1 and branch length.

Once a version graph is generated, the second step is to generate the appropriate versions 

and compute the deltas. The files in our synthetic dataset are ordered CSV files (containing 

tabular data) and we use deltas based on UNIX-style diffs. The previous step also annotates 

each edge (u, v) in the version graph with edit commands that can be used to produce v from 

u. Edit commands are a combination of one of the following six instructions – add/delete a 

set of consecutive rows, add/remove a column, and modify a subset of rows/columns.

Using this, we generated two synthetic datasets (Figure 11):

• Densely Connected (DC): This dataset is based on a “flat” version history, i.e., 

number of branches is high, they occur often and have short lengths. For each 

version in this data set, we compute the delta with all versions in a 10-hop 

distance in the version graph to populate additional entries in Δ and Φ.

2Our synthetic dataset generator may be of independent interest to researchers working on version management.
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• Linear Chain (LC): This dataset is based on a “mostly-linear” version history, 

i.e., number of branches is low, they occur after large intervals and have longer 

lengths. For each version in this data set, we compute the delta with all versions 

within a 25-hop distance in the version graph to populate Δ and Φ.

Real-world datasets—We use 986 forks of the Twitter Bootstrap repository and 100 

forks of the Linux repository, to derive our real-world workloads. For each repository, we 

checkout the latest version in each fork and concatenate all files in it (by traversing the 

directory structure in lexicographic order). Thereafter, we compute deltas between all pairs 

of versions in a repository, provided the size difference between the versions under 

consideration is less than a threshold. We set this threshold to 100KB for the Twitter 

Bootstrap repository and 10MB for the Linux repository. This gives us two real-world 

datasets, Bootstrap Forks (BF) and Linux Forks (LF), with properties shown in Figure 11.

5.2 Comparison with SVN and Git

We begin with evaluating the performance of two popular version control systems, SVN 

(v1.8.8) and Git (v1.7.1), using the LF dataset. We create an FSFS-type repository in SVN, 

which is more space efficient than a Berkeley DB-based repository [4]. We then import the 

entire LF dataset into the repository in a single commit. The amount of space occupied by 

the db/revs/directory is around 8.5GB and it takes around 48 minutes to complete the import. 

We contrast this with the naive approach of applying a gzip on the files which results in total 

compressed storage of 10.2GB. In case of Git, we add and commit the files in the repository 

and then run a git repack -a -d –depth=50 –window=50 on the repository3. The size of the 

Git pack file is 202 MB although the repack consumes 55GB memory and takes 114 minutes 

(for higher window sizes, Git fails to complete the repack as it runs out of memory).

In comparison, the solution found by the MCA algorithm occupies 516MB of compressed 

storage (2.24GB when uncompressed) when using UNIX diff for computing the deltas. To 

make a fair comparison with Git, we use xdiff from the LibXDiff library [7] for computing 

the deltas, which forms the basis of Git’s delta computing routine. Using xdiff brings down 

the total storage cost to just 159 MB. The total time taken is around 102 minutes; this 

includes the time taken to compute the deltas and then to find the MCA for the 

corresponding graph.

The main reason behind SVN’s poor performance is its use of “skip-deltas” to ensure that at 

most O(log n) deltas are needed for reconstructing any version [8]; that tends to lead it to 

repeatedly store redundant delta information as a result of which the total space requirement 

increases significantly. The heuristic used by Git is much better than SVN (Section 4.4). 

However as we show later (Fig. 12), our implementation of that heuristic (GitH) required 

more storage than LMG for guaranteeing similar recreation costs.

3Unlike git repack, svnadmin pack has a negligible effect on the storage cost as it primarily aims to reduce disk seeks and per-version 
disk usage penalty by concatenating files into a single “pack” [5, 6].
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5.3 Experimental Results

Directed Graphs—We begin with a comprehensive evaluation of the three algorithms, 

LMG, MP, and LAST, on directed datasets. Given that all of these algorithms have 

parameters that can be used to trade off the storage cost and the total recreation cost, we 

compare them by plotting the different solutions they are able to find for the different values 

of their respective input parameters. Figure 12(a–d) show four such plots; we run each of the 

algorithms with a range of different values for its input parameter and plot the storage cost 

and the total (sum) recreation cost for each of the solutions found. We also show the 

minimum possible values for these two costs: the vertical dashed red line indicates the 

minimum storage cost required for storing the versions in the dataset as found by MCA, and 

the horizontal one indicates the minimum total recreation cost as found by SPT (equal to the 

sum of all version sizes).

The first key observation we make is that, the total recreation cost decreases drastically by 

allowing a small increase in the storage budget over MCA. For example, for the DC dataset, 

the sum recreation cost for MCA is over 11 PB (see Table 11) as compared to just 34TB for 

the SPT solution (which is the minimum possible). As we can see from Figure 12(a), a space 

budget of 1.1×the MCA storage cost reduces the sum of recreation cost by three orders of 

magnitude. Similar trends can be observed for the remaining datasets and across all the 

algorithms. We observe that LMG results in the best tradeoff between the sum of recreation 

cost and storage cost with LAST performing fairly closely. An important takeaway here, 
especially given the amount of prior work that has focused purely on storage cost 
minimization (Section 6), is that: it is possible to construct balanced trees where the 
sum of recreation costs can be reduced and brought close to that of SPT while using 
only a fraction of the space that SPT needs.

We also ran GitH heuristic on the all the four datasets with varying window and depth 

settings. For BF, we ran the algorithm with four different window sizes (50, 25, 20, 10) for a 

fixed depth 10 and provided the GitH algorithm with all the deltas that it requested. For all 

other datasets, we ran GitH with an infinite window size but restricted it to choose from 

deltas that were available to the other algorithms (i.e., only deltas with sizes below a 

threshold); as we can see, the solutions found by GitH exhibited very good total recreation 

cost, but required significantly higher storage than other algorithms. This is not surprising 

given that GitH is a greedy heuristic that makes choices in a somewhat arbitrary order.

In Figures 13(a–b), we plot the maximum recreation costs instead of the sum of recreation 

costs across all versions for two of the datasets (the other two datasets exhibited similar 

behavior). The MP algorithm found the best solutions here for all datasets, and we also 

observed that LMG and LAST both show plateaus for some datasets where the maximum 

recreation cost did not change when the storage budget was increased. This is not surprising 

given that the basic MP algorithm tries to optimize for the storage cost given a bound on the 

maximum recreation cost, whereas both LMG and LAST focus on minimization of the 

storage cost and one version with high recreation cost is unlikely to affect that significantly.

Undirected Graphs—We test the three algorithms on the undirected versions of three of 

the datasets (Figure 14). For DC and LC, undirected deltas between pairs of versions were 
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obtained by concatenating the two directional deltas; for the BF dataset, we use UNIX diff 

itself to produce undirected deltas. Here again we observe that LMG consistently 

outperforms the other algorithms in terms of finding a good balance between the storage cost 

and the sum of recreation costs. MP again shows the best results when trying to balance the 

maximum recreation cost and the total storage cost. Similar results were observed for other 

datasets but are omitted due to space limitations.

Workload-aware Sum of Recreation Cost Optimization—In many cases, we may be 

able to estimate access frequencies for the various versions (from historical access patterns), 

and if available, we may want to take those into account when constructing the storage 

graph. The LMG algorithm can be easily adapted to take such information into account, 

whereas it is not clear how to adapt either LAST or MP in a similar fashion. In this 

experiment, we use LMG to compute a storage graph such that the sum of recreation costs is 

minimal given a space budget, while taking workload information into account. The worload 

here assigns a frequency of access to each version in the repository using a Zipfian 

distribution (with exponent 2); real-world access frequencies are known to follow such 

distributions. Given the workload information, the algorithm should find a storage graph that 

has the sum of recreation cost less than the index when the workload information is not 

taken into account (i.e., all versions are assumed to be accessed equally frequently). Figure 

15 shows the results for this experiment. As we can see, for the DC dataset, taking into 

account the access frequencies during optimization led to much better solutions than 

ignoring the access frequencies. On the other hand, for the LF dataset, we did not observe a 

large difference.

Running Times—Here we evaluate the running times of the LMG algorithm. Recall that 

LMG takes MST (or MCA) and SPT as inputs. In Fig. 16, we report the total running time 

as well as the time taken by LMG itself. We generated a set of version graphs as subsets of 

the graphs for LC and DC datasets as follows: for a given number of versions n, we 

randomly choose a node and traverse the graph starting at that node in breadth-first manner 

till we construct a subgraph with n versions. We generate 5 such subgraphs for increasing 

values of n and report the average running time for LMG; the storage budget for LMG is set 

to three times of the space required by the MST (all our reported experiments with LMG use 

less storage budget than that). The time taken by LMG on DC dataset is more than LC for 

the same number of versions; this is because DC has lower delta values than LC (see Fig. 

11) and thus requires more edges from SPT to satisfy the storage budget.

On the other hand, MP takes between 1 to 8 seconds on those datasets, when the recreation 

cost is set to maximum. Similar to LMG, LAST requires the MST/MCA and SPT as inputs; 

however the running time of LAST itself is linear and it takes less than 1 second in all cases. 

Finally the time taken by GitH on LC and DC datasets, on varying window sizes range from 

35 seconds (window = 1000) to a little more than 120 minutes (window = 100000); note 

that, this excludes the time for constructing the deltas.

In summary, although LMG is inherently a more expensive algorithm than MP or LAST, it 

runs in reasonable time on large input sizes; we note that all of these times are likely to be 

dwarfed by the time it takes to construct deltas even for moderately-sized datasets.
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Comparison with ILP solutions—Finally, we compare the quality of the solutions 

found by MP with the optimal solution found using the Gurobi Optimizer for Problem 6. We 

use the ILP formulation from Section 2.3 with constraint on the maximum recreation cost 

(θ), and compare the optimal storage cost with that of the MP algorithm (which resulted in 

solutions with lowest maximum recreation costs in our evaluation). We use our synthetic 

dataset generation suite to generate three small datasets, with 15, 25 and 50 versions denoted 

by v15, v25 and v50 respectively and compute deltas between all pairs of versions. Table 2 

reports the results of this experiment, across five θ values. The ILP turned out to be very 

difficult to solve, even for the very small problem sizes, and in many cases, the optimizer did 

not finish and the reported numbers are the best solutions found by it.

As we can see, the solutions found by MP are quite close to the ILP solutions for the small 

problem sizes for which we could get any solutions out of the optimizer. However, 

extrapolating from the (admittedly limited) data points, we expect that on large problem 

sizes, MP may be significantly worse than optimal for some variations on the problems (we 

note that the optimization problem formulations involving max recreation cost are likely to 

turn out to be harder than the formulations that focus on the average recreation cost). 

Development of better heuristics and approximation algorithms with provable guarantees for 

the various problems that we introduce are rich areas for further research.

6. RELATED WORK

Perhaps the most closely related prior work is source code version systems like Git, 

Mercurial, SVN, and others, that are widely used for managing source code repositories. 

Despite their popularity, these systems largely use fairly simple algorithms underneath that 

are optimized to work with modest-sized source code files and their on-disk structures are 

optimized to work with line-based diffs. These systems are known to have significant 

limitations when handling large files and large numbers of versions [2]. As a result, a variety 

of extensions like git-annex [9], git-bigfiles [10], etc., have been developed to make them 

work reasonably well with large files.

There is much prior work in the temporal databases literature [14, 31, 26, 34] on managing a 

linear chain of versions, and retrieving a version as of a specific time point (called snapshot 
queries) [29]. [15] proposed an archiving technique where all versions of the data are 

merged into one hierarchy. It was not, however, a full-fledged version control system 

representing an arbitrarily graph of versions. Snapshot queries have recently also been 

studied in the context of array databases [32, 30] and graph databases [22]. Seering et al. 

[30] proposed an MST-like technique for storing an arbitrary tree of versions in the context 

of scientific databases. They also proposed several heuristics for choosing which versions to 

materialize given the distribution of access frequencies to historical versions. Several 

databases support “time travel” features (e.g., Oracle Flashback, Postgres [33]). However, 

those do not allow for branching trees of versions. [19] articulates a similar vision to our 

overall DataHub vision; however, they do not propose formalisms or algorithms to solve the 

underlying data management challenges.
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There is also much prior work on compactly encoding differences between two files or 

strings in order to reduce communication or storage costs. In addition to standard utilities 

like UNIX diff, many sophisticated techniques have been proposed for computing 

differences or edit sequences between two files (e.g., xdelta [25], vdelta [20], vcdiff [23], 

zdelta [36]). That work is largely orthogonal and complementary to our work.

Many prior efforts have looked at the problem of minimizing the total storage cost for 

storing a collection of related files (i.e., Problem 1). These works do not typically consider 

the recreation cost or the tradeoffs between the two. Quinlan et al. [28] propose an archival 

“deduplication” storage system that identifies duplicate blocks across files and only stores 

them once for reducing storage requirements. Zhu et al. [37] present several optimizations 

on the basic theme. Douglis et al. [18] present several techniques to identify pairs of files 

that could be efficiently stored using delta compression even if there is no explicit derivation 

information known about the two files; similar techniques could be used to better identify 

which entries of the matrices Δ and Φ to reveal in our scenario. Burns and Long [16] present 

a technique for in-place reconstruction of delta-compressed files using a graph-theoretic 

approach. That work could be incorporated into our overall framework to reduce the 

memory requirements during reconstruction. We refer the reader to a recent survey [27] for a 

more comprehensive coverage of this line of work.

7. CONCLUSIONS AND FUTURE WORK

Large datasets and collaborative and iterative analysis are becoming a norm in many 

application domains; however we lack the data management infrastructure to efficiently 

manage such datasets, their versions over time, and derived data products. Given the high 

overlap and duplication among the datasets, it is attractive to consider using delta 

compression to store the datasets in a compact manner, where some datasets or versions are 

stored as modifications from other datasets; such delta compression however leads to higher 

latencies while retrieving specific datasets. In this paper, we studied the trade-off between 

the storage and recreation costs in a principled manner, by formulating several optimization 

problems that trade off these two in different ways and showing that most variations are NP-

Hard. We also presented several efficient algorithms that are effective at exploring this trade-

off, and we presented an extensive experimental evaluation using a prototype version 

management system that we have built. There are many interesting and rich avenues for 

future work that we are planning to pursue. In particular, we plan to develop online 

algorithms for making the optimization decisions as new datasets or versions are being 

created, and also adaptive algorithms that reevaluate the optimization decisions based on 

changing workload information. We also plan to explore the challenges in extending our 

work to a distributed and decentralized setting.

Acknowledgments

This research was supported by NSF Grants IIS-1319432 and IIS-1513407, grant 1U54GM114838 awarded by 
NIGMS through funds provided by the trans-NIH Big Data to Knowledge (BD2K) initiative, a Google Faculty 
Research Award, and an IBM Faculty Award.

Bhattacherjee et al. Page 23

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. http://git.kernel.org/cgit/git/git.git/tree/Documentation/technical/pack-heuristics.txt.

2. http://comments.gmane.org/gmane.comp.version-control.git/189776.

3. http://edmonds-alg.sourceforge.net/.

4. http://svn.apache.org/repos/asf/subversion/trunk/notes/fsfs.

5. http://svnbook.red-bean.com/en/1.8/
svn.reposadmin.maint.html#svn.reposadmin.maint.diskspace.fsfspacking.

6. http://svn.apache.org/repos/asf/subversion/trunk/notes/fsfs-improvements.txt.

7. http://www.xmailserver.org/xdiff-lib.html.

8. http://svn.apache.org/repos/asf/subversion/trunk/notes/skip-deltas.

9. https://git-annex.branchable.com/.

10. http://caca.zoy.org/wiki/git-bigfiles.

11. Bar-Ilan J, Kortsarz G, Peleg D. Generalized submodular cover problems and applications. 
Theoretical Computer Science. 2001; 250(1):179–200.

12. Bhardwaj A, Bhattacherjee S, Chavan A, Deshpande A, Elmore A, Madden S, Parameswaran A. 
DataHub: Collaborative data science & dataset version management at scale. CIDR. 2015

13. Bhattacherjee S, Chavan A, Huang S, Deshpande A, Parameswaran A. Principles of Dataset 
Versioning: Exploring the Recreation/Storage Tradeoff. ArXiv e-prints. May.2015 

14. Bolour A, Anderson TL, Dekeyser LJ, Wong HKT. The role of time in information processing: a 
survey. SIGMOD Rec. 1982

15. Buneman P, Khanna S, Tajima K, Tan WC. Archiving scientific data. ACM Transactions on 
Database Systems (TODS). 2004; 29(1):2–42.

16. Burns R, Long D. In-place reconstruction of delta compressed files. In. PODC. 1998

17. Charikar M, Chekuri C, Cheung T-y, Dai Z, Goel A, Guha S, Li M. Approximation algorithms for 
directed steiner problems. J Alg. 1999

18. Douglis F, Iyengar A. Application-specific delta-encoding via resemblance detection. USENIX 
ATC. 2003

19. Gatterbauer W, Suciu D. Managing structured collections of community data. CIDR. 2011

20. Hunt J, Vo K, Tichy W. Delta algorithms: An empirical analysis. ACM Trans Softw Eng Methodol. 
1998

21. Khuller S, Raghavachari B, Young N. Balancing minimum spanning trees and shortest-path trees. 
Algorithmica. 1995; 14(4):305–321.

22. Khurana U, Deshpande A. Efficient snapshot retrieval over historical graph data. ICDE. 2013:997–
1008.

23. Korn D, Vo K. Engineering a differencing and compression data format. USENIX ATC. 2002

24. Kortsarz G, Peleg D. Approximating shallow-light trees. SODA. 1997

25. MacDonald, J. PhD thesis. UC Berkeley; 2000. File system support for delta compression. 

26. Ozsoyoglu G, Snodgrass R. Temporal and real-time databases: a survey. IEEE TKDE. Aug; 1995 
7(4):513–532.

27. Paulo J, Pereira J. A survey and classification of storage deduplication systems. ACM Comput 
Surv. Jun; 2014 47(1):11:1–11:30.

28. Quinlan S, Dorward S. Venti: A new approach to archival storage. FAST. 2002

29. Salzberg B, Tsotras V. Comparison of access methods for time-evolving data. ACM Comput Surv. 
1999; 31(2)

30. Seering A, Cudre-Mauroux P, Madden S, Stonebraker M. Efficient versioning for scientific array 
databases. ICDE. 2012

31. Snodgrass R, Ahn I. A Taxonomy of Time in Databases. SIGMOD. 1985

32. Soroush E, Balazinska M. Time travel in a scientific array database. ICDE. 2013:98–109.

33. Stonebraker M, Kemnitz G. The Postgres next generation database management system. 
Communications of the ACM. 1991; 34(10):78–92.

Bhattacherjee et al. Page 24

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://git.kernel.org/cgit/git/git.git/tree/Documentation/technical/pack-heuristics.txt
http://comments.gmane.org/gmane.comp.version-control.git/189776
http://edmonds-alg.sourceforge.net/
http://svn.apache.org/repos/asf/subversion/trunk/notes/fsfs
http://svnbook.red-bean.com/en/1.8/svn.reposadmin.maint.html#svn.reposadmin.maint.diskspace.fsfspacking
http://svnbook.red-bean.com/en/1.8/svn.reposadmin.maint.html#svn.reposadmin.maint.diskspace.fsfspacking
http://svn.apache.org/repos/asf/subversion/trunk/notes/fsfs-improvements.txt
http://www.xmailserver.org/xdiff-lib.html
http://svn.apache.org/repos/asf/subversion/trunk/notes/skip-deltas
https://git-annex.branchable.com/
http://caca.zoy.org/wiki/git-bigfiles


34. Tansel, A.Clifford, J.Gadia, S.Jajodia, S.Segev, A., RS, editors. Temporal Databases: Theory, 
Design, and Implementation. 1993. 

35. Tarjan RE. Finding optimum branchings. Networks. 1977; 7(1):25–35.

36. Trendafilov D, Memon N, Suel T. zdelta: An efficient delta compression tool. Technical report. 
2002

37. Zhu B, Li K, Patterson R. Avoiding the disk bottleneck in the data domain deduplication file 
system. FAST. 2008

Bhattacherjee et al. Page 25

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
(i) A version graph over 5 datasets – annotation 〈a, b〉 indicates a storage cost of a and a 

recreation cost of b; (ii, iii, iv) three possible storage graphs
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Figure 2. 
Matrices corresponding to the example in Figure 1 (with additional entries revealed beyond 

the ones given by version graph)
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Figure 3. 
Graph G
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Figure 4. 
Storage Graph Gs
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Figure 5. 
Illustration of Proof of Lemma 5
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Figure 6. 
Illustration of Local Move Greedy Heuristic
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Figure 7. 
Directed Graph G
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Figure 8. 
Undirected Graph G
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Figure 9. 
Illustration of Modified Prim’s algorithm in Figure 7

Bhattacherjee et al. Page 34

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Illustration of LAST on Figure 8
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Figure 11. 
Dataset properties and distribution of delta sizes (each delta size scaled by the average 

version size in the dataset).
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Figure 12. 
Results for the directed case, comparing the storage costs and total recreation costs
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Figure 13. 
Results for the directed case, comparing the storage costs and maximum recreation costs
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Figure 14. 
Results for the undirected case, comparing the storage costs and total recreation costs (a–c) 

or maximum recreation costs (d)
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Figure 15. 
Taking workload into account leads to better solutions
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Figure 16. 
Running times of LMG
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	Abstract
	1. INTRODUCTION
	Example 1: Figure 1(i) displays a version graph, indicating the derivation relationships among 5 versions. Let V1 be the original dataset. Say there are two teams collaborating on this dataset: team 1 modifies V1 to derive V2, while team 2 modifies V1 to derive V3. Then, V2 and V3 are merged and give V5. As presented in Figure 1, V1 is associated with 〈10000, 10000〉, indicating that V1’s storage cost and recreation cost are both 10000 when stored in its entirety (we note that these two are typically measured in different units – see the second challenge below); the edge (V1 → V3) is annotated with 〈1000, 3000〉, where 1000 is the storage cost for V3 when stored as the modification from V1 (we call this the delta of V3 from V1) and 3000 is the recreation cost for V3 given V1, i.e, the time taken to recreate V3 given that V1 has already been recreated.One naive solution to store these datasets would be to store all of them in their entirety (Figure 1 (ii)). In this case, each version can be retrieved directly but the total storage cost is rather large, i.e., 10000 + 10100 + 9700 + 9800 + 10120 = 49720. At the other extreme, only one version is stored in its entirety while other versions are stored as modifications or deltas to that version, as shown in Figure 1 (iii). The total storage cost here is much smaller (10000 + 200 + 1000 + 50 + 200 = 11450), but the recreation cost is large for V2, V3, V4 and V5. For instance, the path {(V1 → V3 → V5)} needs to be accessed in order to retrieve V5 and the recreation cost is 10000 + 3000 + 550 = 13550 > 10120.Figure 1 (iv) shows an intermediate solution that trades off increased storage for reduced recreation costs for some version. Here we store versions V1 and V3 in their entirety and store modifications to other versions. This solution also exhibits higher storage cost than solution (ii) but lower than (iii), and still results in significantly reduced retrieval costs for versions V3 and V5 over (ii).Despite the fundamental nature of the storage-retrieval problem, there is surprisingly little prior work on formally analyzing this trade-off and on designing techniques for identifying effective storage solutions for a given collection of datasets. Version Control Systems (VCS) like Git, SVN, or Mercurial, despite their popularity, use fairly simple algorithms underneath, and are known to have significant limitations when managing large datasets [1, 2]. Much of the prior work in literature focuses on a linear chain of versions, or on minimizing the storage cost while ignoring the recreation cost (we discuss the related work in more detail in Section 6).In this paper, we initiate a formal study of the problem of deciding how to jointly store a collection of dataset versions, provided along with a version or derivation graph. Aside from being able to handle the scale, both in terms of dataset sizes and the number of versions, there are several other considerations that make this problem challenging.•Different application scenarios and constraints lead to many variations on the basic theme of balancing storage and recreation cost (see Table 1). The variations arise both out of different ways to reconcile the conflicting optimization goals, as well as because of the variations in how the differences between versions are stored and how versions are reconstructed. For example, some mechanisms for constructing differences between versions lead to symmetric differences (either version can be recreated from the other version)— we call this the undirected case. The scenario with asymmetric, one-way differences is referred to as directed case.•Similarly, the relationship between storage and recreation costs leads to significant variations across different settings. In some cases the recreation cost is proportional to the storage cost (e.g., if the system bottleneck lies in the I/O cost or network communication), but that may not be true when the system bottleneck is CPU computation. This is especially true for sophisticated differencing mechanisms where a compact derivation procedure might be known to generate one dataset from another.•Another critical issue is that computing deltas for all pairs of versions is typically not feasible. Relying purely on the version graph may not be sufficient and significant redundancies across datasets may be missed.•Further, in many cases, we may have information about relative access frequencies indicating the relative likelihood of retrieving different datasets. Several baseline algorithms for solving this problem cannot be easily adapted to incorporate such access frequencies.We note that the problem described thus far is inherently “online” in that new datasets and versions are typically being created continuously and are being added to the system. In this paper, we focus on the static, off-line version of this problem and focus on formally and completely understanding that version. We plan to address the online version of the problem in the future. The key contributions of this work are as follows.•We formally define and analyze the dataset versioning problem and consider several variations of the problem that trade off storage cost and recreation cost in different manners, under different assumptions about the differencing mechanisms and recreation costs (Section 2). Table 1 summarizes the problems and our results. We show that most of the variations of this problem are NP-Hard (Section 3).•We provide two light-weight heuristics: one, when there is a constraint on average recreation cost, and one when there is a constraint on maximum recreation cost; we also show how we can adapt a prior solution for balancing minimum-spanning trees and shortest path trees for undirected graphs (Section 4).•We have built a prototype system where we implement the proposed algorithms. We present an extensive experimental evaluation of these algorithms over several synthetic and real-world workloads demonstrating the effectiveness of our algorithms at handling large problem sizes (Section 5).
	Example 1: Figure 1(i) displays a version graph, indicating the derivation relationships among 5 versions. Let V1 be the original dataset. Say there are two teams collaborating on this dataset: team 1 modifies V1 to derive V2, while team 2 modifies V1 to derive V3. Then, V2 and V3 are merged and give V5. As presented in Figure 1, V1 is associated with 〈10000, 10000〉, indicating that V1’s storage cost and recreation cost are both 10000 when stored in its entirety (we note that these two are typically measured in different units – see the second challenge below); the edge (V1 → V3) is annotated with 〈1000, 3000〉, where 1000 is the storage cost for V3 when stored as the modification from V1 (we call this the delta of V3 from V1) and 3000 is the recreation cost for V3 given V1, i.e, the time taken to recreate V3 given that V1 has already been recreated.One naive solution to store these datasets would be to store all of them in their entirety (Figure 1 (ii)). In this case, each version can be retrieved directly but the total storage cost is rather large, i.e., 10000 + 10100 + 9700 + 9800 + 10120 = 49720. At the other extreme, only one version is stored in its entirety while other versions are stored as modifications or deltas to that version, as shown in Figure 1 (iii). The total storage cost here is much smaller (10000 + 200 + 1000 + 50 + 200 = 11450), but the recreation cost is large for V2, V3, V4 and V5. For instance, the path {(V1 → V3 → V5)} needs to be accessed in order to retrieve V5 and the recreation cost is 10000 + 3000 + 550 = 13550 > 10120.Figure 1 (iv) shows an intermediate solution that trades off increased storage for reduced recreation costs for some version. Here we store versions V1 and V3 in their entirety and store modifications to other versions. This solution also exhibits higher storage cost than solution (ii) but lower than (iii), and still results in significantly reduced retrieval costs for versions V3 and V5 over (ii).Despite the fundamental nature of the storage-retrieval problem, there is surprisingly little prior work on formally analyzing this trade-off and on designing techniques for identifying effective storage solutions for a given collection of datasets. Version Control Systems (VCS) like Git, SVN, or Mercurial, despite their popularity, use fairly simple algorithms underneath, and are known to have significant limitations when managing large datasets [1, 2]. Much of the prior work in literature focuses on a linear chain of versions, or on minimizing the storage cost while ignoring the recreation cost (we discuss the related work in more detail in Section 6).In this paper, we initiate a formal study of the problem of deciding how to jointly store a collection of dataset versions, provided along with a version or derivation graph. Aside from being able to handle the scale, both in terms of dataset sizes and the number of versions, there are several other considerations that make this problem challenging.•Different application scenarios and constraints lead to many variations on the basic theme of balancing storage and recreation cost (see Table 1). The variations arise both out of different ways to reconcile the conflicting optimization goals, as well as because of the variations in how the differences between versions are stored and how versions are reconstructed. For example, some mechanisms for constructing differences between versions lead to symmetric differences (either version can be recreated from the other version)— we call this the undirected case. The scenario with asymmetric, one-way differences is referred to as directed case.•Similarly, the relationship between storage and recreation costs leads to significant variations across different settings. In some cases the recreation cost is proportional to the storage cost (e.g., if the system bottleneck lies in the I/O cost or network communication), but that may not be true when the system bottleneck is CPU computation. This is especially true for sophisticated differencing mechanisms where a compact derivation procedure might be known to generate one dataset from another.•Another critical issue is that computing deltas for all pairs of versions is typically not feasible. Relying purely on the version graph may not be sufficient and significant redundancies across datasets may be missed.•Further, in many cases, we may have information about relative access frequencies indicating the relative likelihood of retrieving different datasets. Several baseline algorithms for solving this problem cannot be easily adapted to incorporate such access frequencies.We note that the problem described thus far is inherently “online” in that new datasets and versions are typically being created continuously and are being added to the system. In this paper, we focus on the static, off-line version of this problem and focus on formally and completely understanding that version. We plan to address the online version of the problem in the future. The key contributions of this work are as follows.•We formally define and analyze the dataset versioning problem and consider several variations of the problem that trade off storage cost and recreation cost in different manners, under different assumptions about the differencing mechanisms and recreation costs (Section 2). Table 1 summarizes the problems and our results. We show that most of the variations of this problem are NP-Hard (Section 3).•We provide two light-weight heuristics: one, when there is a constraint on average recreation cost, and one when there is a constraint on maximum recreation cost; we also show how we can adapt a prior solution for balancing minimum-spanning trees and shortest path trees for undirected graphs (Section 4).•We have built a prototype system where we implement the proposed algorithms. We present an extensive experimental evaluation of these algorithms over several synthetic and real-world workloads demonstrating the effectiveness of our algorithms at handling large problem sizes (Section 5).
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	2.2 Mapping to Graph Formulation
	Example 3: Given matrix Δ and Φ in Figure 2(i) and 2(ii), the corresponding graph G is shown in Figure 3. Every version is reachable from V0. For example, edge (V0, V1) is weighted with 〈Δ1,1, Φ1,1〉 = 〈10000, 10000〉; edge 〈V3, V5〉 is weighted with 〈Δ3,5, Φ3,5〉 = 〈800, 2500〉. Figure 4 is a feasible storage graph given G in Figure 3, where V1 and V3 are materialized (since the edges from V0 to V1 and V3 are present) while V2, V4 and V5 are stored as modifications from other versions.After mapping our problem into a graph setting, we have the following lemma.Lemma 1: The optimal storage graph Gs = (Vs, Es) for all 6 problems listed above must be a spanning tree T rooted at dummy vertex V0 in graph G.11We refer the reader to the extended version for proofs.Recall that a spanning tree is a tree where every vertex is connected and reachable, and has no cycles. For Problems 1 and 2, we have the following observations. A shortest path tree is defined as a spanning tree where the path from root to each vertex is a shortest path between those two in the original graph: this would be simply consist of the edges that were explored in an execution of Dijkstra’s shortest path algorithm.Lemma 2: The optimal storage graph Gs for Problem 1 is a minimum spanning tree of Grooted at V0, considering only weights Δi,j.Lemma 3: The optimal storage graph Gs for Problem 2 is a shortest path tree of G rooted at V0, considering only weights Φi,j.
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	2.3 ILP Formulation
	Lemma 4: Problem 6 is equivalent to the optimization problem described above.Note however that the general form of an ILP does not permit an if-then statement (as in (2) above). Instead, we can transform to the general form with the aid of a large constant C. Thus, constraint 2 can be expressed as follows:Where C is a “sufficiently large” constant such that no additional constraint is added to the model. For instance, C here can be set as 2*θ. On one hand, if xi,j = 1 ⇒ Φi,j +ri−rj ≤ 0. On the other hand, if xi,j = 0 ⇒ Φi,j + ri − rj ≤ C. Since C is “sufficiently large”, no additional constraint is added.
	Lemma 4



	3. COMPUTATIONAL COMPLEXITY
	Problem 1 and 2 Complexity—As discussed in Section 2, Problem 1 and 2 can be solved in polynomial time by directly applying a minimum spanning tree algorithm (Kruskal’s algorithm or Prim’s algorithm for undirected graphs; Edmonds’ algorithm [35] for directed graphs) and Dijkstra’s shortest path algorithm respectively. Kruskal’s algorithm has time complexity O(E log V ), while Prim’s algorithm also has time complexity O(E log V ) when using binary heap for implementing the priority queue, and O(E + V log V ) when using Fibonacci heap for implementing the priority queue. The running time of Edmonds’ algorithm is O(EV ) and can be reduced to O(E + V log V ) with faster implementation. Similarly, Dijkstra’s algorithm for constructing the shortest path tree starting from the root has a time complexity of O(E log V ) via a binary heap-based priority queue implementation and a time complexity of O(E + V log V ) via Fibonacci heap-based priority queue implementation.Next, we’ll show that Problem 5 and 6 are NP-hard even for the special case where Δ = Φ and Φ is symmetric. This will lead to hardness proofs for the other variants.Triangle Inequality—The primary challenge that we encounter while demonstrating hardness is that our deltas must obey the triangle inequality: unlike other settings where deltas need not obey real constraints, since, in our case, deltas represent actual modifications that can be stored, it must obey additional realistic constraints. This causes severe complications in proving hardness, often transforming the proofs from very simple to fairly challenging.Consider the scenario when Δ = Φ and Φ is symmetric. We take Δ as an example. The triangle inequality, can be stated as follows:where p, q, w ∈ V and p ≠ q ≠ w. The first inequality states that the “delta” between two versions can not exceed the total “deltas” of any two-hop path with the same starting and ending vertex; while the second inequality indicates that the “delta” between two versions must be bigger than one version’s full storage cost minus another version’s full storage cost. Since each tuple and modification is recorded explicitly when Φ is symmetric, it is natural that these two inequalities hold.Problem 6 Hardness—We now demonstrate hardness.Lemma 5: Problem 6 is NP-hard when Δ = Φ and Φ is symmetric.Proof: Here we prove NP-hardness using a reduction from the set cover problem. Recall that in the set cover problem, we are given m sets S = {s1, s2, …, sm} and n items T = {t1, t2, … tn}, where each set si covers some items, and the goal is to pick k sets ℱ ⊂ S such that ∪{F∈ℱ}F = T while minimizing k.Given a set cover instance, we now construct an instance of Problem 6 that will provide a solution to the original set cover problem. The threshold we will use in Problem 6 will be (β + 1)α, where β, α are constants that are each greater than 2(m + n). (This is just to ensure that they are “large”.) We now construct the graph G(V, E) in the following way; we display the constructed graph in Figure 5. Our vertex set V is as follows:•∀si ∈ S, create a vertex si in V.•∀ti ∈ T, create a vertex ti in V.•create an extra vertex v0, two dummy vertices v1, v2 in V.We add the two dummy vertices simply to ensure that v0 is materialized, as we will see later. We now define the storage cost for materializing each vertex in V in the following way:•∀si ∈ S, the cost is α.•∀ti ∈ T, the cost is (β + 1)α.•for vertex v0, the cost is α.•for vertex v1, v2, the cost is (β + 1)α.(These are the numbers colored blue in the tree of Figure 5(b).) As we can see above, we have set the costs in such a way that the vertex v0 and the vertices corresponding to sets in S have low materialization cost, while the other vertices have high materialization cost: this is by design so that we only end up materializing these vertices. Our edge set E is now as follows.•we connect vertex v0 to each si with weight 1.•we connect v0 to both v1 and v2 each with weight βα.•∀si ∈ S, we connect si to tj with weight βα when tj ∈ si, where α = |V|.It is easy to show that our constructed graph G obeys the triangle inequality.Consider a solution to Problem 6 on the constructed graph G. We now demonstrate that that solution leads to a solution of the original set cover problem. Our proof proceeds in four key steps:Step 1: The vertex v0
will be materialized, while v1, v2
will not be materialized. Assume the contrary—say v0 is not materialized in a solution to Problem 6. Then, both v1 and v2 must be materialized, because if they are not, then the recreation cost of v1 and v2 would be at least α(β + 1) + 1, violating the condition of Problem 6. However we can avoid materializing v1 and v2, instead keep the delta to v0 and materialize v0, maintaining the recreation cost as is while reducing the storage cost. Thus v0 has to be materialized, while v1, v2 will not be materialized. (Our reason for introducing v1, v2 is precisely to ensure that v0 is materialized so that it can provide basis for us to store deltas to the sets si.)Step 2: None of the ti will be materialized. Say a given ti is materialized in the solution to Problem 6. Then, either we have a set sj where sj is connected to ti in Figure 5(a) also materialized, or not. Let’s consider the former case. In the former case, we can avoid materializing ti, and instead add the delta from sj to ti, thereby reducing storage cost while keeping recreation cost fixed. In the latter case, pick any sj such that sj is connected to ti and is not materialized. Then, we must have the delta from v0 to sj as part of the solution. Here, we can replace that edge, and materialized ti, with materialized sj, and the delta from sj to ti: this would reduce the total storage cost while keeping the recreation cost fixed. Thus, in either case, we can improve the solution if any of the ti are materialized, rendering the statement false.Step 3: For each si, either it is materialized, or the edge from v0
to si will be part of the storage graph. This step is easy to see: since none of the ti are materialized, either each si has to be materialized, or we must store a delta from v0.Step 4: The sets si that are materialized correspond to a minimal set cover of the original problem. It is easy to see that for each tj we must have an si such that si covers tj, and si is materialized, in order for the recreation cost constraint to not be violated for tj. Thus, the materialized si must be a set cover for the original problem. Furthermore, in order for the storage cost to be as small as possible, as few si as possible must be materialized (this is the only place we can save cost). Thus, the materialized si also correspond to a minimal set cover for the original problem.Thus, minimizing the total storage cost is equivalent to minimizing k in set cover problem.Problem 5 Hardness—We now show that Problem 5 is NP-Hard as well. The general philosophy is similar to the proof in Lemma 5, except that we create c dummy vertices instead of two dummy vertices v1, v2 in Lemma 5, where c is sufficiently large—this is to once again ensure that v0 is materialized. The detailed proof can be found in the extended technical report [13].Lemma 6: Problem 5 is NP-Hard when Δ = Φ and Φ is symmetric.Since Problem 4 swaps the constraint and goal compared to Problem 6, it is similarly NP-Hard. (Note that the decision versions of the two problems are in fact identical, and therefore the proof still applies.) Similarly, Problem 3 is also NP-Hard. Now that we have proved the NP-hard even in the special case where Δ = Φ and Φ is symmetric, we can conclude that Problem 3, 4, 5, 6, are NP-hard in a more general setting where Φ is not symmetric and Δ ≠ Φ, as listed in Table 1.Hop-Based Variants—In the extended technical report, we also consider the variant of the problem where Δ ≠ Φ but the recreation cost Φij is the same for all pairs of versions, and a version recreation cost is simply the number of hops or delta operations to reconstruct the version. The reason why this hop-based variant is interesting is because it is related to a special case of the d-MinimumSteinerTree problem, namely the d-MinimumSpanningTree problem, i.e., identifying the smallest spanning tree where the diameter is bounded by d. There has been some work on the d-MinimumSpanningTree problem [11, 17, 24], including demonstrating hardness for d-MinimumSpanningTree (using a reduction from SAT), and also demonstrating hardness of approximation.Since the hop-based variant is a special case of the last column of Table 1, this indicates that Problem 6 for the most general case is similarly hard to approximate; we suspect similar results hold for the other problems as well. It remains to be seen if hardness of approximation can be demonstrated for the variants in the second and third last columns.
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