
UC Berkeley
UC Berkeley Previously Published Works

Title
Principles of Dataset Versioning: Exploring the Recreation/Storage Tradeoff

Permalink
https://escholarship.org/uc/item/9j11c770

Authors
Bhattacherjee, Souvik
Chavan, Amit
Huang, Silu
et al.

Publication Date
2015-08-01

DOI
10.14778/2824032.2824035

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9j11c770
https://escholarship.org/uc/item/9j11c770#author
https://escholarship.org
http://www.cdlib.org/

Principles of Dataset Versioning: Exploring the Recreation/
Storage Tradeoff

Souvik Bhattacherjee1, Amit Chavan1, Silu Huang2, Amol Deshpande1, and Aditya
Parameswaran2

1University of Maryland, College Park

2University of Illinois, Urbana-Champaign

Abstract

The relative ease of collaborative data science and analysis has led to a proliferation of many

thousands or millions of versions of the same datasets in many scientific and commercial domains,

acquired or constructed at various stages of data analysis across many users, and often over long

periods of time. Managing, storing, and recreating these dataset versions is a non-trivial task. The

fundamental challenge here is the storage-recreation trade-off: the more storage we use, the faster

it is to recreate or retrieve versions, while the less storage we use, the slower it is to recreate or

retrieve versions. Despite the fundamental nature of this problem, there has been a surprisingly

little amount of work on it. In this paper, we study this trade-off in a principled manner: we

formulate six problems under various settings, trading off these quantities in various ways,

demonstrate that most of the problems are intractable, and propose a suite of inexpensive

heuristics drawing from techniques in delay-constrained scheduling, and spanning tree literature,

to solve these problems. We have built a prototype version management system, that aims to serve

as a foundation to our DataHub system for facilitating collaborative data science. We demonstrate,

via extensive experiments, that our proposed heuristics provide efficient solutions in practical

dataset versioning scenarios.

1. INTRODUCTION

The massive quantities of data being generated every day, and the ease of collaborative data

analysis and data science have led to severe issues in management and retrieval of datasets.

We motivate our work with two concrete example scenarios.

• [Intermediate Result Datasets] For most organizations dealing with large

volumes of diverse datasets, a common scenario is that many datasets are

repeatedly analyzed in slightly different ways, with the intermediate results

stored for future use. Often, we find that the intermediate results are the same

across many pipelines (e.g., a PageRank computation on the Web graph is often

part of a multi-step workflow). Often times, the datasets being analyzed might be

slightly different (e.g., results of simple transformations or cleaning operations,

This work is licensed under the Creative Commons Attribution-NonCommercialNoDerivs 3.0 Unported License. To view a copy of
this license, visit http://creativecommons.org/licenses/byncnd/3.0/.

HHS Public Access
Author manuscript
Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

Published in final edited form as:
Proceedings VLDB Endowment. 2015 August ; 8(12): 1346–1357. doi:10.14778/2824032.2824035.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/byncnd/3.0/

or small updates), but are still stored in their entirety. There is currently no way

of reducing the amount of stored data in such a scenario: there is massive

redundancy and duplication (this was corroborated by our discussions with a

large software company), and often the computation required to recompute a

given version from another one is small enough to not merit storing a new

version.

• [Data Science Dataset Versions] In our conversations with a computational

biology group, we found that every time a data scientist wishes to work on a

dataset, they make a private copy, perform modifications via cleansing,

normalization, adding new fields or rows, and then store these modified versions

back to a folder shared across the entire group. Once again there is massive

redundancy and duplication across these copies, and there is a need to minimize

these storage costs while keeping these versions easily retrievable.

In such scenarios and many others, it is essential to keep track of versions of datasets and be

able to recreate them on demand; and at the same time, it is essential to minimize the storage

costs by reducing redundancy and duplication. The ability to manage a large number of

datasets, their versions, and derived datasets, is a key foundational piece of a system we are

building for facilitating collaborative data science, called DataHub [12]. DataHub enables

users to keep track of datasets and their versions, represented in the form of a directed

version graph that encodes derivation relationships, and to retrieve one or more of the

versions for analysis.

In this paper, we focus on the problem of trading off storage costs and recreation costs in a

principled fashion. Specifically, the problem we address in this paper is: given a collection of

datasets as well as (possibly) a directed version graph connecting them, minimize the overall

storage for storing the datasets and the recreation costs for retrieving them. The two goals

conflict with each other — minimizing storage cost typically leads to increased recreation

costs and vice versa. We illustrate this trade-off via an example.

Example 1: Figure 1(i) displays a version graph, indicating the derivation relationships

among 5 versions. Let V1 be the original dataset. Say there are two teams collaborating on

this dataset: team 1 modifies V1 to derive V2, while team 2 modifies V1 to derive V3. Then,

V2 and V3 are merged and give V5. As presented in Figure 1, V1 is associated with 〈10000,

10000〉, indicating that V1’s storage cost and recreation cost are both 10000 when stored in

its entirety (we note that these two are typically measured in different units – see the second

challenge below); the edge (V1 → V3) is annotated with 〈1000, 3000〉, where 1000 is the

storage cost for V3 when stored as the modification from V1 (we call this the delta of V3

from V1) and 3000 is the recreation cost for V3 given V1, i.e, the time taken to recreate V3

given that V1 has already been recreated.

One naive solution to store these datasets would be to store all of them in their entirety

(Figure 1 (ii)). In this case, each version can be retrieved directly but the total storage cost is

rather large, i.e., 10000 + 10100 + 9700 + 9800 + 10120 = 49720. At the other extreme, only

one version is stored in its entirety while other versions are stored as modifications or deltas

Bhattacherjee et al. Page 2

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to that version, as shown in Figure 1 (iii). The total storage cost here is much smaller (10000

+ 200 + 1000 + 50 + 200 = 11450), but the recreation cost is large for V2, V3, V4 and V5.

For instance, the path {(V1 → V3 → V5)} needs to be accessed in order to retrieve V5 and

the recreation cost is 10000 + 3000 + 550 = 13550 > 10120.

Figure 1 (iv) shows an intermediate solution that trades off increased storage for reduced

recreation costs for some version. Here we store versions V1 and V3 in their entirety and

store modifications to other versions. This solution also exhibits higher storage cost than

solution (ii) but lower than (iii), and still results in significantly reduced retrieval costs for

versions V3 and V5 over (ii).

Despite the fundamental nature of the storage-retrieval problem, there is surprisingly little

prior work on formally analyzing this trade-off and on designing techniques for identifying

effective storage solutions for a given collection of datasets. Version Control Systems (VCS)

like Git, SVN, or Mercurial, despite their popularity, use fairly simple algorithms

underneath, and are known to have significant limitations when managing large datasets [1,

2]. Much of the prior work in literature focuses on a linear chain of versions, or on

minimizing the storage cost while ignoring the recreation cost (we discuss the related work

in more detail in Section 6).

In this paper, we initiate a formal study of the problem of deciding how to jointly store a

collection of dataset versions, provided along with a version or derivation graph. Aside from

being able to handle the scale, both in terms of dataset sizes and the number of versions,

there are several other considerations that make this problem challenging.

• Different application scenarios and constraints lead to many variations on the

basic theme of balancing storage and recreation cost (see Table 1). The variations

arise both out of different ways to reconcile the conflicting optimization goals, as

well as because of the variations in how the differences between versions are

stored and how versions are reconstructed. For example, some mechanisms for

constructing differences between versions lead to symmetric differences (either

version can be recreated from the other version)— we call this the undirected
case. The scenario with asymmetric, one-way differences is referred to as

directed case.

• Similarly, the relationship between storage and recreation costs leads to

significant variations across different settings. In some cases the recreation cost

is proportional to the storage cost (e.g., if the system bottleneck lies in the I/O

cost or network communication), but that may not be true when the system

bottleneck is CPU computation. This is especially true for sophisticated

differencing mechanisms where a compact derivation procedure might be known

to generate one dataset from another.

• Another critical issue is that computing deltas for all pairs of versions is typically

not feasible. Relying purely on the version graph may not be sufficient and

significant redundancies across datasets may be missed.

Bhattacherjee et al. Page 3

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• Further, in many cases, we may have information about relative access
frequencies indicating the relative likelihood of retrieving different datasets.

Several baseline algorithms for solving this problem cannot be easily adapted to

incorporate such access frequencies.

We note that the problem described thus far is inherently “online” in that new datasets and

versions are typically being created continuously and are being added to the system. In this

paper, we focus on the static, off-line version of this problem and focus on formally and

completely understanding that version. We plan to address the online version of the problem

in the future. The key contributions of this work are as follows.

• We formally define and analyze the dataset versioning problem and consider

several variations of the problem that trade off storage cost and recreation cost in

different manners, under different assumptions about the differencing

mechanisms and recreation costs (Section 2). Table 1 summarizes the problems

and our results. We show that most of the variations of this problem are NP-Hard

(Section 3).

• We provide two light-weight heuristics: one, when there is a constraint on

average recreation cost, and one when there is a constraint on maximum

recreation cost; we also show how we can adapt a prior solution for balancing

minimum-spanning trees and shortest path trees for undirected graphs (Section

4).

• We have built a prototype system where we implement the proposed algorithms.

We present an extensive experimental evaluation of these algorithms over several

synthetic and real-world workloads demonstrating the effectiveness of our

algorithms at handling large problem sizes (Section 5).

2. PROBLEM OVERVIEW

In this section, we first introduce essential notations and then present the various problem

formulations. We then present a mapping of the basic problem to a graph-theoretic problem,

and also describe an integer linear program to solve the problem optimally.

2.1 Essential Notations and Preliminaries

Version Graph—We let = {Vi}, i = 1, …, n be a collection of versions. The derivation

relationships between versions are represented or captured in the form of a version graph:

ℊ(, ℰ). A directed edge from Vi to Vj in ℊ(, ℰ) represents that Vj was derived from Vi

(either through an update operation, or through an explicit transformation). Since branching

and merging are permitted in DataHub (admitting collaborative data science), ℊ is a DAG

(directed acyclic graph) instead of a linear chain. For example, Figure 1 represents a version

graph ℊ, where V2 and V3 are derived from V1 separately, and then merged to form V5.

Storage and Recreation—Given a collection of versions , we need to reason about the

storage cost, i.e., the space required to store the versions, and the recreation cost, i.e., the

time taken to recreate or retrieve the versions. For a version Vi, we can either:

Bhattacherjee et al. Page 4

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• Store Vi in its entirety: in this case, we denote the storage required to record

version Vi fully by Δi,i. The recreation cost in this case is the time needed to

retrieve this recorded version; we denote that by Φi,i. A version that is stored in

its entirety is said to be materialized.

• Store a “delta” from Vj : in this case, we do not store Vi fully; we instead store

its modifications from another version Vj. For example, we could record that Vi

is just Vj but with the 50th tuple deleted. We refer to the information needed to

construct version Vi from version Vj as the delta from Vj to Vi. The algorithm

giving us the delta is called a differencing algorithm. The storage cost for

recording modifications from Vj, i.e., the size the delta, is denoted by Δj,i. The

recreation cost is the time needed to recreate the recorded version given that Vj

has been recreated; this is denoted by Φj,i.

Thus the storage and recreation costs can be represented using two matrices Δ and Φ: the

entries along the diagonal represent the costs for the materialized versions, while the off-

diagonal entries represent the costs for deltas. From this point forward, we focus our

attention on these matrices: they capture all the relevant information about the versions for

managing and retrieving them.

Delta Variants—Notice that by changing the differencing algorithm, we can produce

deltas of various types:

• for text files, UNIX-style diffs, i.e., line-by-line modifications between versions,

are commonly used;

• we could have a listing of a program, script, SQL query, or command that

generates version Vi from Vj ;

• for some types of data, an XOR between the two versions can be an appropriate

delta; and

• for tabular data (e.g., relational tables), recording the differences at the cell level

is yet another type of delta.

Furthermore, the deltas could be stored compressed or uncompressed. The various delta

variants lead to various dimensions of problem that we will describe subsequently.

The reader may be wondering why we need to reason about two matrices Δ and Φ. In some

cases, the two may be proportional to each other (e.g., if we are using uncompressed UNIX-

style diffs). But in many cases, the storage cost of a delta and the recreation cost of applying

that delta can be very different from each other, especially if the deltas are stored in a

compressed fashion. Furthermore, while the storage cost is more straightforward to account

for in that it is proportional to the bytes required to store the deltas between versions,

recreation cost is more complicated: it could depend on the network bandwidth (if versions

or deltas are stored remotely), the I/O bandwidth, and the computation costs (e.g., if

decompression or running of a script is needed).

Bhattacherjee et al. Page 5

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Example 2: Figure 2 shows the matrices Δ and Φ based on version graph in Figure 1. The

annotation associated with the edge (Vi, Vj) in Figure 1 is essentially 〈Δi,j, Φi,j〉, whereas the

vertex annotation for Vi is 〈Δi,i, Φi,i〉. If there is no edge from Vi to Vj in the version graph,

we have two choices: we can either set the corresponding Δ and Φ entries to “−” (unknown)

(as shown in the figure), or we can explicitly compute the values of those entries (by running

a differencing algorithm). For instance, Δ3,2 = 1100 and Φ3,2 = 3200 are computed explicitly

in the figure (the specific numbers reported here are fictitious and not the result of running

any specific algorithm).

Discussion—Before moving on to formally defining the basic optimization problem, we

note several complications that present unique challenges in this scenario.

• Revealing entries in the matrix: Ideally, we would like to compute all pairwise Δ

and Φ entries, so that we do not miss any significant redundancies among

versions that are far from each other in the version graph. However when the

number of versions, denoted n, is large, computing all those entries can be very

expensive (and typically infeasible), since this means computing deltas between

all pairs of versions. Thus, we must reason with incomplete Δ and Φ matrices.

Given a version graph ℊ, one option is to restrict our deltas to correspond to

actual edges in the version graph; another option is to restrict our deltas to be

between “close by” versions, with the understanding that versions close to each

other in the version graph are more likely to be similar. Prior work has also

suggested mechanisms (e.g., based on hashing) to find versions that are close to

each other [18]. We assume that some mechanism to choose which deltas to

reveal is provided to us.

• Multiple “delta” mechanisms: Given a pair of versions (Vi, Vj), there could be

many ways of maintaining a delta between them, with different Δi,j, Φi,j costs.

For example, we can store a program used to derive Vj from Vi, which could take

longer to run (i.e., the recreation cost is higher) but is more compact (i.e., storage

cost is lower), or explicitly store the UNIX-style diffs between the two versions,

with lower recreation costs but higher storage costs. For simplicity, we pick one

delta mechanism: thus the matrices Δ, Φ just have one entry per (i, j) pair. Our

techniques also apply to the more general scenario with small modifications.

• Branches: Both branching and merging are common in collaborative analysis,

making the version graph a directed acyclic graph. In this paper, we assume each

version is either stored in its entirety or stored as a delta from a single other

version, even if it is derived from two different datasets. Although it may be

more efficient to allow a version to be stored as a delta from two other versions

in some cases, representing such a storage solution requires more complex

constructs and both the problems of finding an optimal storage solution for a

given problem instance and retrieving a specific version become much more

complicated. We plan to further study such solutions in future.

Matrix Properties and Problem Dimensions—The storage cost matrix Δ may be

symmetric or asymmetric depending on the specific differencing mechanism used for

Bhattacherjee et al. Page 6

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

constructing deltas. For example, the XOR differencing function results in a symmetric Δ

matrix since the delta from a version Vi to Vj is identical to the delta from Vj to Vi. UNIX-

style diffs where line-by-line modifications are listed can either be two-way (symmetric) or

one-way (asymmetric). The asymmetry may be quite large. For instance, it may be possible

to represent the delta from Vi to Vj using a command like: delete all tuples with age > 60,

very compactly. However, the reverse delta from Vj to Vi is likely to be quite large, since all

the tuples that were deleted from Vi would be a part of that delta. In this paper, we consider

both these scenarios. We refer to the scenario where Δ is symmetric and Δ is asymmetric as

the undirected case and directed case, respectively.

A second issue is the relationship between Φ and Δ. In many scenarios, it may be reasonable

to assume that Φ is proportional to Δ. This is generally true for deltas that contain detailed

line-by-line or cell-by-cell differences. It is also true if the system bottleneck is network

communication or I/O cost. In a large number of cases, however, it may be more appropriate

to treat them as independent quantities with no overt or known relationship. For the

proportional case, we assume that the proportionality constant is 1 (i.e., Φ = Δ); the problem

statements, algorithms and guarantees are unaffected by having a constant proportionality

factor. The other case is denoted by Φ ≠ Δ.

This leads us to identify three distinct cases with significantly diverse properties: (1)

Scenario 1: Undirected case, Φ = Δ; (2) Scenario 2: Directed case, Φ = Δ; and (3)

Scenario 3: Directed case, Φ ≠ Δ.

Objective and Optimization Metrics—Given Δ, Φ, our goal is to find a good storage

solution, i.e., we need to decide which versions to materialize and which versions to store as

deltas from other versions. Let ℘ = {(i1, j1), (i2, j2), …} denote a storage solution. ik = jk

indicates that the version Vik is materialized (i.e., stored explicitly in its entirety), whereas a

pair (ik, jk), ik ≠ jk indicates that we store a delta from Vik to Vjk.

We require any solution we consider to be a valid solution, where it is possible to reconstruct

any of the original versions. More formally, ℘ is considered a valid solution if and only if

for every version Vi, there exists a sequence of distinct versions Vl1, …, Vlk = Vi such that

(il1, il1), (il1, il2), (il2, il3), …, (ilk−1, ilk) are contained in ℘ (in other words, there is a

version Vl1 that can be materialized and can be used to recreate Vi through a chain of

deltas).

We can now formally define the optimization goals:

• Total Storage Cost (denoted): The total storage cost for a solution ℘ is simply

the storage cost necessary to store all the materialized versions and the deltas:

= Σ(i,j)∈℘ Δi,j.

• Recreation Cost for Vi (denoted ℛi): Let Vl1, …, Vlk = Vi denote a sequence that

can be used to reconstruct Vi. The cost of recreating Vi using that sequence is:

Φl1,l1 + Φl1,l2 + … + Φlk−1,lk. The recreation cost for Vi is the minimum of these

quantities over all sequences that can be used to recreate Vi.

Bhattacherjee et al. Page 7

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Problem Formulations—We now state the problem formulations that we consider in this

paper, starting with two base cases that represent two extreme points in the spectrum of

possible problems.

Problem 1 (Minimizing Storage): Given Δ, Φ, find a valid solution ℘ such that is

minimized.

Problem 2 (Minimizing Recreation): GivenΔ, Φ, identify a valid solution ℘ such that ∀i,

Ri is minimized.

The above two formulations minimize either the storage cost or the recreation cost, without

worrying about the other. It may appear that the second formulation is not well-defined and

we should instead aim to minimize the average recreation cost across all versions. However,

the (simple) solution that minimizes average recreation cost also naturally minimizes ℛi for

each version.

In the next two formulations, we want to minimize (a) the sum of recreation costs over all

versions (Σi ℛi), (b) the max recreation cost across all versions (maxi ℛi), under the

constraint that total storage cost is smaller than some threshold β. These problems are

relevant when the storage budget is limited.

Problem 3 (MinSum Recreation): GivenΔ; Φ and a threshold β, identify ℘ such that ≤

β, andΣi ℛi is minimized.

Problem 4 (MinMax Recreation): GivenΔ, Φ and a threshold β, identify ℘ such that ≤

β, and maxi ℛi is minimized.

The next two formulations seek to instead minimize the total storage cost given a

constraint on the sum of recreation costs or max recreation cost. These problems are relevant

when we want to reduce the storage cost, but must satisfy some constraints on the recreation

costs.

Problem 5 (Minimizing Storage(Sum Recreation)): Given Δ, Φ and a threshold θ, identify

℘ such that Σi ℛi ≤ θ, and is minimized.

Problem 6 (Minimizing Storage(Max Recreation)): Given Δ, Φ and a threshold θ,
identify ℘ such that maxi ℛi ≤ θ, and is minimized.

2.2 Mapping to Graph Formulation

In this section, we’ll map our problem into a graph problem, that will help us to adopt and

modify algorithms from well-studied problems such as minimum spanning tree construction

and delay-constrained scheduling. Given the matrices Δ and Φ, we can construct a directed,

edge-weighted graph G = (V, E) representing the relationship among different versions as

follows. For each version Vi, we create a vertex Vi in G. In addition, we create a dummy

vertex V0 in G. For each Vi, we add an edge V0 → Vi, and assign its edge-weight as a tuple

〈Δi,i, Φi,i〉. Next, for each Δi,j ≠ ∞, we add an edge Vi → Vj with edge-weight 〈Δi,j, Φi,j〉.

Bhattacherjee et al. Page 8

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The resulting graph G is similar to the original version graph, but with several important

differences. An edge in the version graph indicates a derivation relationship, whereas an

edge in G simply indicates that it is possible to recreate the target version using the source

version and the associated edge delta (in fact, ideally G is a complete graph). Unlike the

version graph, G may contain cycles, and it also contains the special dummy vertex V0.

Additionally, in the version graph, if a version Vi has multiple in-edges, it is the result of a

user/application merging changes from multiple versions into Vi. However, multiple in-

edges in G capture the multiple choices that we have in recreating Vi from some other

versions.

Given graph G = (V, E), the goal of each of our problems is to identify a storage graph Gs =

(Vs, Es), a subset of G, favorably balancing total storage cost and the recreation cost for each

version. Implicitly, we will store all versions and deltas corresponding to edges in this

storage graph. (We explain this in the context of the example below.) We say a storage graph

Gs is feasible for a given problem if (a) each version can be recreated based on the

information contained or stored in Gs, (b) the recreation cost or the total storage cost meets

the constraint listed in each problem.

Example 3: Given matrix Δ and Φ in Figure 2(i) and 2(ii), the corresponding graph G is

shown in Figure 3. Every version is reachable from V0. For example, edge (V0, V1) is

weighted with 〈Δ1,1, Φ1,1〉 = 〈10000, 10000〉; edge 〈V3, V5〉 is weighted with 〈Δ3,5, Φ3,5〉 =

〈800, 2500〉. Figure 4 is a feasible storage graph given G in Figure 3, where V1 and V3 are

materialized (since the edges from V0 to V1 and V3 are present) while V2, V4 and V5 are

stored as modifications from other versions.

After mapping our problem into a graph setting, we have the following lemma.

Lemma 1: The optimal storage graph Gs = (Vs, Es) for all 6 problems listed above must be a

spanning tree T rooted at dummy vertex V0 in graph G.1

Recall that a spanning tree is a tree where every vertex is connected and reachable, and has

no cycles. For Problems 1 and 2, we have the following observations. A shortest path tree is

defined as a spanning tree where the path from root to each vertex is a shortest path between

those two in the original graph: this would be simply consist of the edges that were explored

in an execution of Dijkstra’s shortest path algorithm.

Lemma 2: The optimal storage graph Gs for Problem 1 is a minimum spanning tree of

Grooted at V0, considering only weights Δi,j.

Lemma 3: The optimal storage graph Gs for Problem 2 is a shortest path tree of G rooted at

V0, considering only weights Φi,j.

1We refer the reader to the extended version for proofs.

Bhattacherjee et al. Page 9

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.3 ILP Formulation

We present an ILP formulation of the optimization problems described above. Here, we take

Problem 6 as an example; other problems are similar. Let xi,j be a binary variable for each

edge (Vi, Vj) ∈ E, indicating whether edge (Vi, Vj) is in the storage graph or not.

Specifically, x0,j = 1 indicates that version Vj is materialized, while xi,j = 1 indicates that the

modification from version i to version j is stored where i ≠ 0. Let ri be a continuous variable

for each vertex Vi ∈ V, where r0 = 0; ri captures the recreation cost for version i (and must

be ≤ θ).

minimize Σ(Vi, Vj)∈Exi,j × Δi,j, subject to:

1 Σi xi,j = 1, ∀j

2 rj − ri ≥ Φi,j if xi,j = 1

3 ri ≤ θ, ∀i

Lemma 4: Problem 6 is equivalent to the optimization problem described above.

Note however that the general form of an ILP does not permit an if-then statement (as in (2)

above). Instead, we can transform to the general form with the aid of a large constant C.

Thus, constraint 2 can be expressed as follows:

Where C is a “sufficiently large” constant such that no additional constraint is added to the

model. For instance, C here can be set as 2*θ. On one hand, if xi,j = 1 ⇒ Φi,j +ri−rj ≤ 0. On

the other hand, if xi,j = 0 ⇒ Φi,j + ri − rj ≤ C. Since C is “sufficiently large”, no additional

constraint is added.

3. COMPUTATIONAL COMPLEXITY

In this section, we study the complexity of the problems listed in Table 1 under different

application scenarios.

Problem 1 and 2 Complexity—As discussed in Section 2, Problem 1 and 2 can be

solved in polynomial time by directly applying a minimum spanning tree algorithm

(Kruskal’s algorithm or Prim’s algorithm for undirected graphs; Edmonds’ algorithm [35]

for directed graphs) and Dijkstra’s shortest path algorithm respectively. Kruskal’s algorithm

has time complexity O(E log V), while Prim’s algorithm also has time complexity O(E log

V) when using binary heap for implementing the priority queue, and O(E + V log V) when

using Fibonacci heap for implementing the priority queue. The running time of Edmonds’

algorithm is O(EV) and can be reduced to O(E + V log V) with faster implementation.

Similarly, Dijkstra’s algorithm for constructing the shortest path tree starting from the root

has a time complexity of O(E log V) via a binary heap-based priority queue implementation

and a time complexity of O(E + V log V) via Fibonacci heap-based priority queue

implementation.

Bhattacherjee et al. Page 10

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Next, we’ll show that Problem 5 and 6 are NP-hard even for the special case where Δ = Φ
and Φ is symmetric. This will lead to hardness proofs for the other variants.

Triangle Inequality—The primary challenge that we encounter while demonstrating

hardness is that our deltas must obey the triangle inequality: unlike other settings where

deltas need not obey real constraints, since, in our case, deltas represent actual modifications

that can be stored, it must obey additional realistic constraints. This causes severe

complications in proving hardness, often transforming the proofs from very simple to fairly

challenging.

Consider the scenario when Δ = Φ and Φ is symmetric. We take Δ as an example. The

triangle inequality, can be stated as follows:

where p, q, w ∈ V and p ≠ q ≠ w. The first inequality states that the “delta” between two

versions can not exceed the total “deltas” of any two-hop path with the same starting and

ending vertex; while the second inequality indicates that the “delta” between two versions

must be bigger than one version’s full storage cost minus another version’s full storage cost.

Since each tuple and modification is recorded explicitly when Φ is symmetric, it is natural

that these two inequalities hold.

Problem 6 Hardness—We now demonstrate hardness.

Lemma 5: Problem 6 is NP-hard when Δ = Φ and Φ is symmetric.

Proof: Here we prove NP-hardness using a reduction from the set cover problem. Recall that

in the set cover problem, we are given m sets S = {s1, s2, …, sm} and n items T = {t1, t2, …

tn}, where each set si covers some items, and the goal is to pick k sets ℱ ⊂ S such that

∪{F∈ℱ}F = T while minimizing k.

Given a set cover instance, we now construct an instance of Problem 6 that will provide a

solution to the original set cover problem. The threshold we will use in Problem 6 will be (β
+ 1)α, where β, α are constants that are each greater than 2(m + n). (This is just to ensure

that they are “large”.) We now construct the graph G(V, E) in the following way; we display

the constructed graph in Figure 5. Our vertex set V is as follows:

• ∀si ∈ S, create a vertex si in V.

• ∀ti ∈ T, create a vertex ti in V.

• create an extra vertex v0, two dummy vertices v1, v2 in V.

We add the two dummy vertices simply to ensure that v0 is materialized, as we will see later.

We now define the storage cost for materializing each vertex in V in the following way:

• ∀si ∈ S, the cost is α.

Bhattacherjee et al. Page 11

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• ∀ti ∈ T, the cost is (β + 1)α.

• for vertex v0, the cost is α.

• for vertex v1, v2, the cost is (β + 1)α.

(These are the numbers colored blue in the tree of Figure 5(b).) As we can see above, we

have set the costs in such a way that the vertex v0 and the vertices corresponding to sets in S
have low materialization cost, while the other vertices have high materialization cost: this is

by design so that we only end up materializing these vertices. Our edge set E is now as

follows.

• we connect vertex v0 to each si with weight 1.

• we connect v0 to both v1 and v2 each with weight βα.

• ∀si ∈ S, we connect si to tj with weight βα when tj ∈ si, where α = |V|.

It is easy to show that our constructed graph G obeys the triangle inequality.

Consider a solution to Problem 6 on the constructed graph G. We now demonstrate that that

solution leads to a solution of the original set cover problem. Our proof proceeds in four key

steps:

Step 1: The vertex v0 will be materialized, while v1, v2 will not be materialized.
Assume the contrary—say v0 is not materialized in a solution to Problem 6. Then,

both v1 and v2 must be materialized, because if they are not, then the recreation cost

of v1 and v2 would be at least α(β + 1) + 1, violating the condition of Problem 6.

However we can avoid materializing v1 and v2, instead keep the delta to v0 and

materialize v0, maintaining the recreation cost as is while reducing the storage cost.

Thus v0 has to be materialized, while v1, v2 will not be materialized. (Our reason for

introducing v1, v2 is precisely to ensure that v0 is materialized so that it can provide

basis for us to store deltas to the sets si.)

Step 2: None of the ti will be materialized. Say a given ti is materialized in the

solution to Problem 6. Then, either we have a set sj where sj is connected to ti in

Figure 5(a) also materialized, or not. Let’s consider the former case. In the former

case, we can avoid materializing ti, and instead add the delta from sj to ti, thereby

reducing storage cost while keeping recreation cost fixed. In the latter case, pick any

sj such that sj is connected to ti and is not materialized. Then, we must have the delta

from v0 to sj as part of the solution. Here, we can replace that edge, and materialized

ti, with materialized sj, and the delta from sj to ti: this would reduce the total storage

cost while keeping the recreation cost fixed. Thus, in either case, we can improve the

solution if any of the ti are materialized, rendering the statement false.

Step 3: For each si, either it is materialized, or the edge from v0 to si will be part of
the storage graph. This step is easy to see: since none of the ti are materialized, either

each si has to be materialized, or we must store a delta from v0.

Step 4: The sets si that are materialized correspond to a minimal set cover of the
original problem. It is easy to see that for each tj we must have an si such that si

covers tj, and si is materialized, in order for the recreation cost constraint to not be

Bhattacherjee et al. Page 12

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

violated for tj. Thus, the materialized si must be a set cover for the original problem.

Furthermore, in order for the storage cost to be as small as possible, as few si as

possible must be materialized (this is the only place we can save cost). Thus, the

materialized si also correspond to a minimal set cover for the original problem.

Thus, minimizing the total storage cost is equivalent to minimizing k in set cover problem.

Problem 5 Hardness—We now show that Problem 5 is NP-Hard as well. The general

philosophy is similar to the proof in Lemma 5, except that we create c dummy vertices

instead of two dummy vertices v1, v2 in Lemma 5, where c is sufficiently large—this is to

once again ensure that v0 is materialized. The detailed proof can be found in the extended

technical report [13].

Lemma 6: Problem 5 is NP-Hard when Δ = Φ and Φ is symmetric.

Since Problem 4 swaps the constraint and goal compared to Problem 6, it is similarly NP-

Hard. (Note that the decision versions of the two problems are in fact identical, and therefore

the proof still applies.) Similarly, Problem 3 is also NP-Hard. Now that we have proved the

NP-hard even in the special case where Δ = Φ and Φ is symmetric, we can conclude that

Problem 3, 4, 5, 6, are NP-hard in a more general setting where Φ is not symmetric and Δ ≠

Φ, as listed in Table 1.

Hop-Based Variants—In the extended technical report, we also consider the variant of

the problem where Δ ≠ Φ but the recreation cost Φij is the same for all pairs of versions, and

a version recreation cost is simply the number of hops or delta operations to reconstruct the

version. The reason why this hop-based variant is interesting is because it is related to a

special case of the d-MinimumSteinerTree problem, namely the d-MinimumSpanningTree
problem, i.e., identifying the smallest spanning tree where the diameter is bounded by d.

There has been some work on the d-MinimumSpanningTree problem [11, 17, 24], including

demonstrating hardness for d-MinimumSpanningTree (using a reduction from SAT), and

also demonstrating hardness of approximation.

Since the hop-based variant is a special case of the last column of Table 1, this indicates that

Problem 6 for the most general case is similarly hard to approximate; we suspect similar

results hold for the other problems as well. It remains to be seen if hardness of

approximation can be demonstrated for the variants in the second and third last columns.

4. PROPOSED ALGORITHMS

As discussed in Section 2, our different application scenarios lead to different problem

formulations, spanning different constraints and objectives, and different assumptions about

the nature of Φ, Δ.

Given that we demonstrated in the previous section that all the problems are NP-Hard, we

focus on developing efficient heuristics. In this section, we present two novel heuristics:

first, in Section 4.1, we present LMG, or the Local Move Greedy algorithm, tailored to the

case when there is a bound or objective on the average recreation cost: thus, this applies to

Bhattacherjee et al. Page 13

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Problems 3 and 5. Second, in Section 4.2, we present MP, or Modified Prim’s algorithm,

tailored to the case when there is a bound or objective on the maximum recreation cost: thus,

this applies to Problems 4 and 6. We present two variants of the MP algorithm tailored to

two different settings.

Then, we present two algorithms — in Section 4.3, we present an approximation algorithm

called LAST, and in Section 4.4, we present an algorithm called GitH which is based on Git

repack. Both of these are adapted from literature to fit our problems and we compare these

against our algorithms in Section 5. Note that LAST does not explicitly optimize any

objectives or constraints in the manner of LMG, MP, or GitH, and thus the four algorithms

are applicable under different settings; LMG and MP are applicable when there is a bound or

constraint on the average or maximum recreation cost, while LAST and GitH are applicable

when a “good enough” solution is needed. Furthermore, note that all these algorithms apply

to both directed and undirected versions of the problems, and to the symmetric and

unsymmetric cases.

The pseudocodes for the algorithms can be found in our extended technical report [13].

4.1 Local Move Greedy Algorithm

The LMG algorithm is applicable when we have a bound or constraint on the average case

recreation cost. We focus on the case where there is a constraint on the storage cost

(Problem 3); the case when there is no such constraint (Problem 5) can be solved by

repeated iterations and binary search on the previous problem.

Outline—At a high level, the algorithm starts with the Minimum Spanning Tree (MST) as

GS, and then greedily adds edges from the Shortest Path Tree (SPT) that are not present in

GS, while GS respects the bound on storage cost.

Detailed Algorithm—The algorithm starts off with GS equal to the MST. The SPT

naturally contains all the edges corresponding to complete versions. The basic idea of the

algorithm is to replace deltas in GS with versions from the SPT that maximize the following

ratio:

This is simply the reduction in total recreation cost per unit addition of weight to the storage

graph GS.

Let ξ consists of edges in the SPT not present in the GS (these precisely correspond to the

versions that are not explicitly stored in the MST, and are instead computed via deltas in the

MST). At each “round”, we pick the edge euv ∈ ξ that maximizes ρ, and replace previous

edge eu′v to v. The reduction in the sum of the recreation costs is computed by adding up the

reductions in recreation costs of all w ∈ GS that are descendants of v in the storage graph

(including v itself). On the other hand, the increase in storage cost is simply the weight of

Bhattacherjee et al. Page 14

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

euv minus the weight of eu′v. This process is repeated as long as the storage budget is not

violated. We explain this with the means of an example.

Example 4: Figure 6(a) denotes the current GS. Node 0 corresponds to the dummy node.

Now, we are considering replacing edge e14 with edge e04, that is, we are replacing a delta to

version 4 with version 4 itself. Then, the denominator of ρ is simply Δ04 − Δ14. And the

numerator is the changes in recreation costs of versions 4, 5, and 6 (notice that 5 and 6 were

below 4 in the tree.) This is actually simple to compute: it is simply three times the change

in the recreation cost of version 4 (since it affects all versions equally). Thus, we have the

numerator of ρ is simply 3 × (Φ01 + Φ14 − Φ04).

Complexity—Our overall complexity is O(|V |2). We provide details in the technical report.

Access Frequencies—Note that the algorithm can easily take into account access

frequencies of different versions and instead optimize for the total weighted recreation cost

(weighted by access frequencies). The algorithm is similar, except that the numerator of ρ
will capture the reduction in weighted recreation cost.

4.2 Modified Prim’s Algorithm

Next, we introduce a heuristic algorithm based on Prim’s algorithm for Minimum Spanning

Trees for Problem 6 where the goal is to reduce total storage cost while recreation cost for

each version is within threshold θ; the solution for Problem 4 is similar.

Outline—At a high level, the algorithm is a variant of Prim’s algorithm, greedily adding the

version with smallest storage cost and the corresponding edge to form a spanning tree T.

Unlike Prim’s algorithm where the spanning tree simply grows, in this case, even if an edge

is present in T, it could be removed in future iterations. At all stages, the algorithm

maintains the invariant that the recreation cost of all versions in T is bounded within θ.

Detailed Algorithm—At each iteration, the algorithm picks the version Vi with the

smallest storage cost to be added to the tree. Once this version Vi is added, we consider

adding all deltas to all other versions Vj such that their recreation cost through Vi is within

the constraint θ, and the storage cost does not increase. Each version maintains a pair l(Vi)

and d(Vi): l(Vi) denotes the marginal storage cost of Vi, while d(Vi) denotes the total

recreation cost of Vi. At the start, l(Vi) is simply the storage cost of Vi in its entirety.

We now describe the algorithm in detail. Set X represents the current version set of the

current spanning tree T. Initially X = ∅. In each iteration, the version Vi with the smallest

storage cost (l(Vi)) in the priority queue PQ is picked and added into spanning tree T. When

Vi is added into T, we need to update the storage cost and recreation cost for all Vj that are

neighbors of Vi. Notice that in Prim’s algorithm, we do not need to consider neighbors that

are already in T. However, in our scenario a better path to such a neighbor may be found and

this may result in an update. For instance, if edge 〈Vi, Vj〉 can make Vj ’s storage cost

smaller while the recreation cost for Vj does not increase, we can update p(Vj) = Vi as well

as d(Vj), l(Vj) and T. For neighbors Vj ∉ T, we update d(Vj), l(Vj), p(Vj) if edge 〈Vi, Vj〉 can

make Vj ’s storage cost smaller and the recreation cost for Vj is no bigger than θ.

Bhattacherjee et al. Page 15

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Example 5: Say we operate on G given by Figure 7, and let the threshold θ be 6. Each

version Vi is associated with a pair 〈l(Vi), d(Vi)〉. Initially version V0 is pushed into priority

queue. When V0 is dequeued, each neighbor Vj updates < l(Vj), d(Vj) > as shown in Figure

9 (a). Notice that l(Vi), i ≠ 0 for all i is simply the storage cost for that version. For example,

when considering edge (V0, V1), l(V1) = 3 and d(V1) = 3 is updated since recreation cost (if

V1 is to be stored in its entirety) is smaller than threshold θ, i.e., 3 < 6. Afterwards, version

V1, V2 and V3 are inserted into the priority queue. Next, we dequeue V1 since l(V1) is

smallest among the versions in the priority queue, and add V1 to the spanning tree. We then

update < l(Vj), d(Vj) > for all neighbors of V1, e.g., the recreation cost for version V2 will be

6 and the storage cost will be 2 when considering edge (V1, V2). Since 6 ≤ 6, (l(V2), d(V2))

is updated to (2, 6) as shown in Figure 9 (b); however, < l(V3), d(V3) > will not be updated

since the recreation cost is 3 + 4 > 6 when considering edge (V1, V3). Subsequently, version

V2 is dequeued because it has the lowest l(V2), and is added to the tree, giving Figure 9 (b).

Subsequently, version V3 are dequeued. When V3 is dequeued from PQ, (l(V2), d(V2)) is

updated. This is because the storage cost for V2 can be updated to 1 and the recreation cost

is still 6 when considering edge (V3, V2), even if V2 is already in T as shown in Figure 9 (c).

Eventually, we get the final answer in Figure 9 (d).

Complexity—The complexity of the algorithm is the same as that of Prim’s algorithm, i.e.,

O(|E| log |V|).

4.3 LAST Algorithm

Here, we sketch an algorithm from previous work [21] that enables us to find a tree with a

good balance of storage and recreation costs, under the assumptions that Δ = Φ and Φ is

symmetric.

Sketch—The algorithm, which takes a parameter α as input, starts with a minimum

spanning tree and does a depth-first traveral (DFS) on it. When visiting Vi during the

traversal, if it finds that the recreation cost for Vi exceeds α× the cost of the shortest path

from V0 to Vi, then this current path is replaced with the shortest path to the node. It can be

shown that the total cost of the resulting spanning tree is within (1+2=(α − 1)) times the cost

of minimum spanning tree in G. Even though the algorithm was proposed for undirected

graphs, it can be applied to the directed graph case but without any comparable guarantees.

We refer the reader to the full version for more details and pseudocode [13].

Example 6: Figure 10 (a) is the minimum spanning tree (MST) rooted at node V0 of G in

Figure 8. The approximation threshold α is set to be 2. The algorithm starts with the MST

and conducts a depth-first traversal in the MST from root V0. When visiting node V2, d(V2)

= 3 and the shortest path to node V2 is 3, thus 3 < 2 × 3. We continue to visit node V2 and

V3. When visiting V3, d(V3) = 8 > 2 × 3 where 3 is the shortest path to V3 in G. Thus, d(V3)

is set to be 3 and p(V3) is set to be node 0 by replacing with the shortest path 〈V0, V3〉 as

shown in Figure 10 (b). Afterwards, the back-edge < V3, V1 > is traversed in MST. Since 3

+ 2 < 6, where 3 is the current value of d(V3), 2 is the edge weight of (V3, V1) and 6 is the

current value in d(V1), thus d(V1) is updated as 5 and p(V1) is updated as node V3. At last

node V4 is visited, d(V4) is first updated as 7. Since 7 < 2 × 4, lines 9–11 are not executed.

Bhattacherjee et al. Page 16

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10 (c) is the resulting spanning tree of the algorithm, where the recreation cost for

each node is under the constraint and the total storage cost is 3 + 3 + 2 + 2 = 10.

Complexity—The complexity of the algorithm is O(|E| log |V |). Further details can be

found in the technical report.

4.4 Git Heuristic

This heuristic is an adaptation of the current heuristic used by Git and we refer to it as GitH.

We sketch the algorithm here and refer the reader to the extended version for more details

[13]. GitH uses two parameters: w (window size) and d (max depth).

We consider the versions in an non-increasing order of their sizes. The first version in this

ordering is chosen as the root of the storage graph and has depth 0 (i.e., it is materialized).

At all times, we maintain a sliding window containing at most w versions. For each version

Vi after the first one, let Vl denote a version in the current window. We compute:

, where dl is the depth of Vl (thus deltas with shallow depths are preferred

over slightly smaller deltas with higher depths). We find the version Vj with the lowest value

of this quantity and choose it as Vi’s parent (as long as dj < d). The depth of Vi is then set to

dj +1. The sliding window is modified to move Vl to the end of the window (so it will stay in

the window longer), Vj is added to the window, and the version at the beginning of the

window is dropped.

Complexity—The running time of the heuristic is O(|V | log |V | + w|V |), excluding the

time to construct deltas.

5. EXPERIMENTS

We have built a prototype version management system, that will serve as a foundation to

DataHub [12]. The system provides a subset of Git/SVN-like interface for dataset

versioning. Users interact with the version management system in a client-server model over

HTTP. The server is implemented in Java, and is responsible for storing the version history

of the repository as well as the actual files in them. The client is implemented in Python and

provides functionality to create (commit) and check out versions of datasets, and create and

merge branches. Note that, unlike traditional VCS which make a best effort to perform

automatic merges, in our system we let the user perform the merge and notify the system by

creating a version with more than one parent.

Implementation—In the following sections, we present an extensive evaluation of our

designed algorithms using a combination of synthetic and derived real-world datasets. Apart

from implementing the algorithms described above, LMG and LAST require both SPT and

MST as input. For both directed and undirected graphs, we use Dijkstra’s algorithm to find

the single-source shortest path tree (SPT). We use Prim’s algorithm to find the minimum

spanning tree for undirected graphs. For directed graphs, we use an implementation [3] of

the Edmonds’ algorithm [35] for computing the min-cost arborescence (MCA). We ran all

Bhattacherjee et al. Page 17

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

our experiments on a 2.2GHz Intel Xeon CPU E5-2430 server with 64GB of memory,

running 64-bit Red Hat Enterprise Linux 6.5.

5.1 Datasets

We use four data sets: two synthetic and two derived from real-world source code

repositories. Although there are many publicly available source code repositories with large

numbers of commits (e.g., in GitHub), those repositories typically contain fairly small

(source code) files, and further the changes between versions tend to be localized and are

typically very small; we expect dataset versions generated during collaborative data analysis

to contain much larger datasets and to exhibit large changes between versions. We were

unable to find any realistic workloads of that kind.

Hence, we generated realistic dataset versioning workloads as follows. First, we wrote a

synthetic version generator suite, driven by a small set of parameters, that is able to generate

a variety of version histories and corresponding datasets. Second, we created two real-world

datasets using publicly available forks of popular repositories on GitHub. We describe each

of the two below.

Synthetic Datasets—Our synthetic dataset generation suite2 takes a two-step approach to

generate a dataset that we sketch below. The first step is to generate a version graph with the

desired structure, controlled by the following parameters:

• number of commits, i.e., the total number of versions.

• branch interval and probability, the number of consecutive versions after which a

branch can be created, and probability of creating a branch.

• branch limit, the maximum number of branches from any point in the version

history. We choose a number in [1, branch limit] uniformly at random when we

decide to create branches.

• branch length, the maximum number of commits in any branch. The actual

length is a uniformly chosen integer between 1 and branch length.

Once a version graph is generated, the second step is to generate the appropriate versions

and compute the deltas. The files in our synthetic dataset are ordered CSV files (containing

tabular data) and we use deltas based on UNIX-style diffs. The previous step also annotates

each edge (u, v) in the version graph with edit commands that can be used to produce v from

u. Edit commands are a combination of one of the following six instructions – add/delete a

set of consecutive rows, add/remove a column, and modify a subset of rows/columns.

Using this, we generated two synthetic datasets (Figure 11):

• Densely Connected (DC): This dataset is based on a “flat” version history, i.e.,

number of branches is high, they occur often and have short lengths. For each

version in this data set, we compute the delta with all versions in a 10-hop

distance in the version graph to populate additional entries in Δ and Φ.

2Our synthetic dataset generator may be of independent interest to researchers working on version management.

Bhattacherjee et al. Page 18

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• Linear Chain (LC): This dataset is based on a “mostly-linear” version history,

i.e., number of branches is low, they occur after large intervals and have longer

lengths. For each version in this data set, we compute the delta with all versions

within a 25-hop distance in the version graph to populate Δ and Φ.

Real-world datasets—We use 986 forks of the Twitter Bootstrap repository and 100

forks of the Linux repository, to derive our real-world workloads. For each repository, we

checkout the latest version in each fork and concatenate all files in it (by traversing the

directory structure in lexicographic order). Thereafter, we compute deltas between all pairs

of versions in a repository, provided the size difference between the versions under

consideration is less than a threshold. We set this threshold to 100KB for the Twitter

Bootstrap repository and 10MB for the Linux repository. This gives us two real-world

datasets, Bootstrap Forks (BF) and Linux Forks (LF), with properties shown in Figure 11.

5.2 Comparison with SVN and Git

We begin with evaluating the performance of two popular version control systems, SVN

(v1.8.8) and Git (v1.7.1), using the LF dataset. We create an FSFS-type repository in SVN,

which is more space efficient than a Berkeley DB-based repository [4]. We then import the

entire LF dataset into the repository in a single commit. The amount of space occupied by

the db/revs/directory is around 8.5GB and it takes around 48 minutes to complete the import.

We contrast this with the naive approach of applying a gzip on the files which results in total

compressed storage of 10.2GB. In case of Git, we add and commit the files in the repository

and then run a git repack -a -d –depth=50 –window=50 on the repository3. The size of the

Git pack file is 202 MB although the repack consumes 55GB memory and takes 114 minutes

(for higher window sizes, Git fails to complete the repack as it runs out of memory).

In comparison, the solution found by the MCA algorithm occupies 516MB of compressed

storage (2.24GB when uncompressed) when using UNIX diff for computing the deltas. To

make a fair comparison with Git, we use xdiff from the LibXDiff library [7] for computing

the deltas, which forms the basis of Git’s delta computing routine. Using xdiff brings down

the total storage cost to just 159 MB. The total time taken is around 102 minutes; this

includes the time taken to compute the deltas and then to find the MCA for the

corresponding graph.

The main reason behind SVN’s poor performance is its use of “skip-deltas” to ensure that at

most O(log n) deltas are needed for reconstructing any version [8]; that tends to lead it to

repeatedly store redundant delta information as a result of which the total space requirement

increases significantly. The heuristic used by Git is much better than SVN (Section 4.4).

However as we show later (Fig. 12), our implementation of that heuristic (GitH) required

more storage than LMG for guaranteeing similar recreation costs.

3Unlike git repack, svnadmin pack has a negligible effect on the storage cost as it primarily aims to reduce disk seeks and per-version
disk usage penalty by concatenating files into a single “pack” [5, 6].

Bhattacherjee et al. Page 19

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5.3 Experimental Results

Directed Graphs—We begin with a comprehensive evaluation of the three algorithms,

LMG, MP, and LAST, on directed datasets. Given that all of these algorithms have

parameters that can be used to trade off the storage cost and the total recreation cost, we

compare them by plotting the different solutions they are able to find for the different values

of their respective input parameters. Figure 12(a–d) show four such plots; we run each of the

algorithms with a range of different values for its input parameter and plot the storage cost

and the total (sum) recreation cost for each of the solutions found. We also show the

minimum possible values for these two costs: the vertical dashed red line indicates the

minimum storage cost required for storing the versions in the dataset as found by MCA, and

the horizontal one indicates the minimum total recreation cost as found by SPT (equal to the

sum of all version sizes).

The first key observation we make is that, the total recreation cost decreases drastically by

allowing a small increase in the storage budget over MCA. For example, for the DC dataset,

the sum recreation cost for MCA is over 11 PB (see Table 11) as compared to just 34TB for

the SPT solution (which is the minimum possible). As we can see from Figure 12(a), a space

budget of 1.1×the MCA storage cost reduces the sum of recreation cost by three orders of

magnitude. Similar trends can be observed for the remaining datasets and across all the

algorithms. We observe that LMG results in the best tradeoff between the sum of recreation

cost and storage cost with LAST performing fairly closely. An important takeaway here,
especially given the amount of prior work that has focused purely on storage cost
minimization (Section 6), is that: it is possible to construct balanced trees where the
sum of recreation costs can be reduced and brought close to that of SPT while using
only a fraction of the space that SPT needs.

We also ran GitH heuristic on the all the four datasets with varying window and depth

settings. For BF, we ran the algorithm with four different window sizes (50, 25, 20, 10) for a

fixed depth 10 and provided the GitH algorithm with all the deltas that it requested. For all

other datasets, we ran GitH with an infinite window size but restricted it to choose from

deltas that were available to the other algorithms (i.e., only deltas with sizes below a

threshold); as we can see, the solutions found by GitH exhibited very good total recreation

cost, but required significantly higher storage than other algorithms. This is not surprising

given that GitH is a greedy heuristic that makes choices in a somewhat arbitrary order.

In Figures 13(a–b), we plot the maximum recreation costs instead of the sum of recreation

costs across all versions for two of the datasets (the other two datasets exhibited similar

behavior). The MP algorithm found the best solutions here for all datasets, and we also

observed that LMG and LAST both show plateaus for some datasets where the maximum

recreation cost did not change when the storage budget was increased. This is not surprising

given that the basic MP algorithm tries to optimize for the storage cost given a bound on the

maximum recreation cost, whereas both LMG and LAST focus on minimization of the

storage cost and one version with high recreation cost is unlikely to affect that significantly.

Undirected Graphs—We test the three algorithms on the undirected versions of three of

the datasets (Figure 14). For DC and LC, undirected deltas between pairs of versions were

Bhattacherjee et al. Page 20

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

obtained by concatenating the two directional deltas; for the BF dataset, we use UNIX diff

itself to produce undirected deltas. Here again we observe that LMG consistently

outperforms the other algorithms in terms of finding a good balance between the storage cost

and the sum of recreation costs. MP again shows the best results when trying to balance the

maximum recreation cost and the total storage cost. Similar results were observed for other

datasets but are omitted due to space limitations.

Workload-aware Sum of Recreation Cost Optimization—In many cases, we may be

able to estimate access frequencies for the various versions (from historical access patterns),

and if available, we may want to take those into account when constructing the storage

graph. The LMG algorithm can be easily adapted to take such information into account,

whereas it is not clear how to adapt either LAST or MP in a similar fashion. In this

experiment, we use LMG to compute a storage graph such that the sum of recreation costs is

minimal given a space budget, while taking workload information into account. The worload

here assigns a frequency of access to each version in the repository using a Zipfian

distribution (with exponent 2); real-world access frequencies are known to follow such

distributions. Given the workload information, the algorithm should find a storage graph that

has the sum of recreation cost less than the index when the workload information is not

taken into account (i.e., all versions are assumed to be accessed equally frequently). Figure

15 shows the results for this experiment. As we can see, for the DC dataset, taking into

account the access frequencies during optimization led to much better solutions than

ignoring the access frequencies. On the other hand, for the LF dataset, we did not observe a

large difference.

Running Times—Here we evaluate the running times of the LMG algorithm. Recall that

LMG takes MST (or MCA) and SPT as inputs. In Fig. 16, we report the total running time

as well as the time taken by LMG itself. We generated a set of version graphs as subsets of

the graphs for LC and DC datasets as follows: for a given number of versions n, we

randomly choose a node and traverse the graph starting at that node in breadth-first manner

till we construct a subgraph with n versions. We generate 5 such subgraphs for increasing

values of n and report the average running time for LMG; the storage budget for LMG is set

to three times of the space required by the MST (all our reported experiments with LMG use

less storage budget than that). The time taken by LMG on DC dataset is more than LC for

the same number of versions; this is because DC has lower delta values than LC (see Fig.

11) and thus requires more edges from SPT to satisfy the storage budget.

On the other hand, MP takes between 1 to 8 seconds on those datasets, when the recreation

cost is set to maximum. Similar to LMG, LAST requires the MST/MCA and SPT as inputs;

however the running time of LAST itself is linear and it takes less than 1 second in all cases.

Finally the time taken by GitH on LC and DC datasets, on varying window sizes range from

35 seconds (window = 1000) to a little more than 120 minutes (window = 100000); note

that, this excludes the time for constructing the deltas.

In summary, although LMG is inherently a more expensive algorithm than MP or LAST, it

runs in reasonable time on large input sizes; we note that all of these times are likely to be

dwarfed by the time it takes to construct deltas even for moderately-sized datasets.

Bhattacherjee et al. Page 21

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Comparison with ILP solutions—Finally, we compare the quality of the solutions

found by MP with the optimal solution found using the Gurobi Optimizer for Problem 6. We

use the ILP formulation from Section 2.3 with constraint on the maximum recreation cost

(θ), and compare the optimal storage cost with that of the MP algorithm (which resulted in

solutions with lowest maximum recreation costs in our evaluation). We use our synthetic

dataset generation suite to generate three small datasets, with 15, 25 and 50 versions denoted

by v15, v25 and v50 respectively and compute deltas between all pairs of versions. Table 2

reports the results of this experiment, across five θ values. The ILP turned out to be very

difficult to solve, even for the very small problem sizes, and in many cases, the optimizer did

not finish and the reported numbers are the best solutions found by it.

As we can see, the solutions found by MP are quite close to the ILP solutions for the small

problem sizes for which we could get any solutions out of the optimizer. However,

extrapolating from the (admittedly limited) data points, we expect that on large problem

sizes, MP may be significantly worse than optimal for some variations on the problems (we

note that the optimization problem formulations involving max recreation cost are likely to

turn out to be harder than the formulations that focus on the average recreation cost).

Development of better heuristics and approximation algorithms with provable guarantees for

the various problems that we introduce are rich areas for further research.

6. RELATED WORK

Perhaps the most closely related prior work is source code version systems like Git,

Mercurial, SVN, and others, that are widely used for managing source code repositories.

Despite their popularity, these systems largely use fairly simple algorithms underneath that

are optimized to work with modest-sized source code files and their on-disk structures are

optimized to work with line-based diffs. These systems are known to have significant

limitations when handling large files and large numbers of versions [2]. As a result, a variety

of extensions like git-annex [9], git-bigfiles [10], etc., have been developed to make them

work reasonably well with large files.

There is much prior work in the temporal databases literature [14, 31, 26, 34] on managing a

linear chain of versions, and retrieving a version as of a specific time point (called snapshot
queries) [29]. [15] proposed an archiving technique where all versions of the data are

merged into one hierarchy. It was not, however, a full-fledged version control system

representing an arbitrarily graph of versions. Snapshot queries have recently also been

studied in the context of array databases [32, 30] and graph databases [22]. Seering et al.

[30] proposed an MST-like technique for storing an arbitrary tree of versions in the context

of scientific databases. They also proposed several heuristics for choosing which versions to

materialize given the distribution of access frequencies to historical versions. Several

databases support “time travel” features (e.g., Oracle Flashback, Postgres [33]). However,

those do not allow for branching trees of versions. [19] articulates a similar vision to our

overall DataHub vision; however, they do not propose formalisms or algorithms to solve the

underlying data management challenges.

Bhattacherjee et al. Page 22

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

There is also much prior work on compactly encoding differences between two files or

strings in order to reduce communication or storage costs. In addition to standard utilities

like UNIX diff, many sophisticated techniques have been proposed for computing

differences or edit sequences between two files (e.g., xdelta [25], vdelta [20], vcdiff [23],

zdelta [36]). That work is largely orthogonal and complementary to our work.

Many prior efforts have looked at the problem of minimizing the total storage cost for

storing a collection of related files (i.e., Problem 1). These works do not typically consider

the recreation cost or the tradeoffs between the two. Quinlan et al. [28] propose an archival

“deduplication” storage system that identifies duplicate blocks across files and only stores

them once for reducing storage requirements. Zhu et al. [37] present several optimizations

on the basic theme. Douglis et al. [18] present several techniques to identify pairs of files

that could be efficiently stored using delta compression even if there is no explicit derivation

information known about the two files; similar techniques could be used to better identify

which entries of the matrices Δ and Φ to reveal in our scenario. Burns and Long [16] present

a technique for in-place reconstruction of delta-compressed files using a graph-theoretic

approach. That work could be incorporated into our overall framework to reduce the

memory requirements during reconstruction. We refer the reader to a recent survey [27] for a

more comprehensive coverage of this line of work.

7. CONCLUSIONS AND FUTURE WORK

Large datasets and collaborative and iterative analysis are becoming a norm in many

application domains; however we lack the data management infrastructure to efficiently

manage such datasets, their versions over time, and derived data products. Given the high

overlap and duplication among the datasets, it is attractive to consider using delta

compression to store the datasets in a compact manner, where some datasets or versions are

stored as modifications from other datasets; such delta compression however leads to higher

latencies while retrieving specific datasets. In this paper, we studied the trade-off between

the storage and recreation costs in a principled manner, by formulating several optimization

problems that trade off these two in different ways and showing that most variations are NP-

Hard. We also presented several efficient algorithms that are effective at exploring this trade-

off, and we presented an extensive experimental evaluation using a prototype version

management system that we have built. There are many interesting and rich avenues for

future work that we are planning to pursue. In particular, we plan to develop online

algorithms for making the optimization decisions as new datasets or versions are being

created, and also adaptive algorithms that reevaluate the optimization decisions based on

changing workload information. We also plan to explore the challenges in extending our

work to a distributed and decentralized setting.

Acknowledgments

This research was supported by NSF Grants IIS-1319432 and IIS-1513407, grant 1U54GM114838 awarded by
NIGMS through funds provided by the trans-NIH Big Data to Knowledge (BD2K) initiative, a Google Faculty
Research Award, and an IBM Faculty Award.

Bhattacherjee et al. Page 23

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

References

1. http://git.kernel.org/cgit/git/git.git/tree/Documentation/technical/pack-heuristics.txt.

2. http://comments.gmane.org/gmane.comp.version-control.git/189776.

3. http://edmonds-alg.sourceforge.net/.

4. http://svn.apache.org/repos/asf/subversion/trunk/notes/fsfs.

5. http://svnbook.red-bean.com/en/1.8/
svn.reposadmin.maint.html#svn.reposadmin.maint.diskspace.fsfspacking.

6. http://svn.apache.org/repos/asf/subversion/trunk/notes/fsfs-improvements.txt.

7. http://www.xmailserver.org/xdiff-lib.html.

8. http://svn.apache.org/repos/asf/subversion/trunk/notes/skip-deltas.

9. https://git-annex.branchable.com/.

10. http://caca.zoy.org/wiki/git-bigfiles.

11. Bar-Ilan J, Kortsarz G, Peleg D. Generalized submodular cover problems and applications.
Theoretical Computer Science. 2001; 250(1):179–200.

12. Bhardwaj A, Bhattacherjee S, Chavan A, Deshpande A, Elmore A, Madden S, Parameswaran A.
DataHub: Collaborative data science & dataset version management at scale. CIDR. 2015

13. Bhattacherjee S, Chavan A, Huang S, Deshpande A, Parameswaran A. Principles of Dataset
Versioning: Exploring the Recreation/Storage Tradeoff. ArXiv e-prints. May.2015

14. Bolour A, Anderson TL, Dekeyser LJ, Wong HKT. The role of time in information processing: a
survey. SIGMOD Rec. 1982

15. Buneman P, Khanna S, Tajima K, Tan WC. Archiving scientific data. ACM Transactions on
Database Systems (TODS). 2004; 29(1):2–42.

16. Burns R, Long D. In-place reconstruction of delta compressed files. In. PODC. 1998

17. Charikar M, Chekuri C, Cheung T-y, Dai Z, Goel A, Guha S, Li M. Approximation algorithms for
directed steiner problems. J Alg. 1999

18. Douglis F, Iyengar A. Application-specific delta-encoding via resemblance detection. USENIX
ATC. 2003

19. Gatterbauer W, Suciu D. Managing structured collections of community data. CIDR. 2011

20. Hunt J, Vo K, Tichy W. Delta algorithms: An empirical analysis. ACM Trans Softw Eng Methodol.
1998

21. Khuller S, Raghavachari B, Young N. Balancing minimum spanning trees and shortest-path trees.
Algorithmica. 1995; 14(4):305–321.

22. Khurana U, Deshpande A. Efficient snapshot retrieval over historical graph data. ICDE. 2013:997–
1008.

23. Korn D, Vo K. Engineering a differencing and compression data format. USENIX ATC. 2002

24. Kortsarz G, Peleg D. Approximating shallow-light trees. SODA. 1997

25. MacDonald, J. PhD thesis. UC Berkeley; 2000. File system support for delta compression.

26. Ozsoyoglu G, Snodgrass R. Temporal and real-time databases: a survey. IEEE TKDE. Aug; 1995
7(4):513–532.

27. Paulo J, Pereira J. A survey and classification of storage deduplication systems. ACM Comput
Surv. Jun; 2014 47(1):11:1–11:30.

28. Quinlan S, Dorward S. Venti: A new approach to archival storage. FAST. 2002

29. Salzberg B, Tsotras V. Comparison of access methods for time-evolving data. ACM Comput Surv.
1999; 31(2)

30. Seering A, Cudre-Mauroux P, Madden S, Stonebraker M. Efficient versioning for scientific array
databases. ICDE. 2012

31. Snodgrass R, Ahn I. A Taxonomy of Time in Databases. SIGMOD. 1985

32. Soroush E, Balazinska M. Time travel in a scientific array database. ICDE. 2013:98–109.

33. Stonebraker M, Kemnitz G. The Postgres next generation database management system.
Communications of the ACM. 1991; 34(10):78–92.

Bhattacherjee et al. Page 24

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://git.kernel.org/cgit/git/git.git/tree/Documentation/technical/pack-heuristics.txt
http://comments.gmane.org/gmane.comp.version-control.git/189776
http://edmonds-alg.sourceforge.net/
http://svn.apache.org/repos/asf/subversion/trunk/notes/fsfs
http://svnbook.red-bean.com/en/1.8/svn.reposadmin.maint.html#svn.reposadmin.maint.diskspace.fsfspacking
http://svnbook.red-bean.com/en/1.8/svn.reposadmin.maint.html#svn.reposadmin.maint.diskspace.fsfspacking
http://svn.apache.org/repos/asf/subversion/trunk/notes/fsfs-improvements.txt
http://www.xmailserver.org/xdiff-lib.html
http://svn.apache.org/repos/asf/subversion/trunk/notes/skip-deltas
https://git-annex.branchable.com/
http://caca.zoy.org/wiki/git-bigfiles

34. Tansel, A.Clifford, J.Gadia, S.Jajodia, S.Segev, A., RS, editors. Temporal Databases: Theory,
Design, and Implementation. 1993.

35. Tarjan RE. Finding optimum branchings. Networks. 1977; 7(1):25–35.

36. Trendafilov D, Memon N, Suel T. zdelta: An efficient delta compression tool. Technical report.
2002

37. Zhu B, Li K, Patterson R. Avoiding the disk bottleneck in the data domain deduplication file
system. FAST. 2008

Bhattacherjee et al. Page 25

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
(i) A version graph over 5 datasets – annotation 〈a, b〉 indicates a storage cost of a and a

recreation cost of b; (ii, iii, iv) three possible storage graphs

Bhattacherjee et al. Page 26

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Matrices corresponding to the example in Figure 1 (with additional entries revealed beyond

the ones given by version graph)

Bhattacherjee et al. Page 27

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Graph G

Bhattacherjee et al. Page 28

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Storage Graph Gs

Bhattacherjee et al. Page 29

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Illustration of Proof of Lemma 5

Bhattacherjee et al. Page 30

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
Illustration of Local Move Greedy Heuristic

Bhattacherjee et al. Page 31

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
Directed Graph G

Bhattacherjee et al. Page 32

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8.
Undirected Graph G

Bhattacherjee et al. Page 33

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9.
Illustration of Modified Prim’s algorithm in Figure 7

Bhattacherjee et al. Page 34

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10.
Illustration of LAST on Figure 8

Bhattacherjee et al. Page 35

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 11.
Dataset properties and distribution of delta sizes (each delta size scaled by the average

version size in the dataset).

Bhattacherjee et al. Page 36

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 12.
Results for the directed case, comparing the storage costs and total recreation costs

Bhattacherjee et al. Page 37

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 13.
Results for the directed case, comparing the storage costs and maximum recreation costs

Bhattacherjee et al. Page 38

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 14.
Results for the undirected case, comparing the storage costs and total recreation costs (a–c)

or maximum recreation costs (d)

Bhattacherjee et al. Page 39

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 15.
Taking workload into account leads to better solutions

Bhattacherjee et al. Page 40

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 16.
Running times of LMG

Bhattacherjee et al. Page 41

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bhattacherjee et al. Page 42

Ta
b

le
 1

Pr
ob

le
m

 V
ar

ia
tio

ns
 W

ith
 D

if
fe

re
nt

 C
on

st
ra

in
ts

, O
bj

ec
tiv

es
 a

nd
 S

ce
na

ri
os

.

St
or

ag
e

C
os

t
R

ec
re

at
io

n
C

os
t

U
nd

ir
ec

te
d

C
as

e,
 Δ

 =
 Φ

D
ir

ec
te

d
C

as
e,

 Δ
 =

 Φ
D

ir
ec

te
d

C
as

e,
 Δ

 ≠
 Φ

Pr
ob

le
m

 1
m

in
im

iz
e

{
}

ℛ
i <

 ∞
, ∀

i
PT

im
e,

 M
in

im
um

 S
pa

nn
in

g
T

re
e

Pr
ob

le
m

 2
 <

 ∞
m

in
im

iz
e

{m
ax

{ℛ
i|1

 ≤
 i

≤
n}

}
PT

im
e,

 S
ho

rt
es

t P
at

h
T

re
e

Pr
ob

le
m

 3
 ≤

 β
N

P-
ha

rd
, L

A
ST

 A
lg

or
ith

m
†

N
P-

ha
rd

, L
M

G
 A

lg
or

ith
m

Pr
ob

le
m

 4
 ≤

 β
m

in
im

iz
e

{m
ax

{ℛ
i|1

 ≤
 i

≤
n}

}
N

P-
ha

rd
, M

P
A

lg
or

ith
m

Pr
ob

le
m

 5
m

in
im

iz
e

{
}

N
P-

ha
rd

, L
A

ST
 A

lg
or

ith
m

†
N

P-
ha

rd
, L

M
G

 A
lg

or
ith

m

Pr
ob

le
m

 6
m

in
im

iz
e

{
}

m
ax

{ℛ
i|1

 ≤
 i

≤
n}

 ≤
 θ

N
P-

ha
rd

, M
P

A
lg

or
ith

m

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bhattacherjee et al. Page 43

Ta
b

le
 2

C
om

pa
ri

ng
 I

L
P

an
d

M
P

so
lu

tio
ns

 f
or

 s
m

al
l d

at
as

et
s,

 g
iv

en
 a

 b
ou

nd
 o

n
m

ax
 r

ec
re

at
io

n
co

st
, θ

 (
in

 G
B

)

St
or

ag
e

C
os

t
(G

B
)

v1
5

θ
0.

20
0.

21
0.

22
0.

23
0.

24

IL
P

0.
36

0.
36

0.
22

0.
22

0.
22

M
P

0.
36

0.
36

0.
23

0.
23

0.
23

v2
5

θ
0.

63
0.

66
0.

69
0.

72
0.

75

IL
P

2.
39

1.
95

1.
50

1.
18

1.
06

M
P

2.
88

2.
13

1.
7

1.
18

1.
18

v5
0

θ
0.

30
0.

34
0.

41
0.

54
0.

68

IL
P

1.
43

1.
10

0.
83

0.
66

0.
60

M
P

1.
59

1.
45

1.
06

0.
91

0.
82

Proceedings VLDB Endowment. Author manuscript; available in PMC 2017 July 25.

	Abstract
	1. INTRODUCTION
	Example 1: Figure 1(i) displays a version graph, indicating the derivation relationships among 5 versions. Let V1 be the original dataset. Say there are two teams collaborating on this dataset: team 1 modifies V1 to derive V2, while team 2 modifies V1 to derive V3. Then, V2 and V3 are merged and give V5. As presented in Figure 1, V1 is associated with 〈10000, 10000〉, indicating that V1’s storage cost and recreation cost are both 10000 when stored in its entirety (we note that these two are typically measured in different units – see the second challenge below); the edge (V1 → V3) is annotated with 〈1000, 3000〉, where 1000 is the storage cost for V3 when stored as the modification from V1 (we call this the delta of V3 from V1) and 3000 is the recreation cost for V3 given V1, i.e, the time taken to recreate V3 given that V1 has already been recreated.One naive solution to store these datasets would be to store all of them in their entirety (Figure 1 (ii)). In this case, each version can be retrieved directly but the total storage cost is rather large, i.e., 10000 + 10100 + 9700 + 9800 + 10120 = 49720. At the other extreme, only one version is stored in its entirety while other versions are stored as modifications or deltas to that version, as shown in Figure 1 (iii). The total storage cost here is much smaller (10000 + 200 + 1000 + 50 + 200 = 11450), but the recreation cost is large for V2, V3, V4 and V5. For instance, the path {(V1 → V3 → V5)} needs to be accessed in order to retrieve V5 and the recreation cost is 10000 + 3000 + 550 = 13550 > 10120.Figure 1 (iv) shows an intermediate solution that trades off increased storage for reduced recreation costs for some version. Here we store versions V1 and V3 in their entirety and store modifications to other versions. This solution also exhibits higher storage cost than solution (ii) but lower than (iii), and still results in significantly reduced retrieval costs for versions V3 and V5 over (ii).Despite the fundamental nature of the storage-retrieval problem, there is surprisingly little prior work on formally analyzing this trade-off and on designing techniques for identifying effective storage solutions for a given collection of datasets. Version Control Systems (VCS) like Git, SVN, or Mercurial, despite their popularity, use fairly simple algorithms underneath, and are known to have significant limitations when managing large datasets [1, 2]. Much of the prior work in literature focuses on a linear chain of versions, or on minimizing the storage cost while ignoring the recreation cost (we discuss the related work in more detail in Section 6).In this paper, we initiate a formal study of the problem of deciding how to jointly store a collection of dataset versions, provided along with a version or derivation graph. Aside from being able to handle the scale, both in terms of dataset sizes and the number of versions, there are several other considerations that make this problem challenging.•Different application scenarios and constraints lead to many variations on the basic theme of balancing storage and recreation cost (see Table 1). The variations arise both out of different ways to reconcile the conflicting optimization goals, as well as because of the variations in how the differences between versions are stored and how versions are reconstructed. For example, some mechanisms for constructing differences between versions lead to symmetric differences (either version can be recreated from the other version)— we call this the undirected case. The scenario with asymmetric, one-way differences is referred to as directed case.•Similarly, the relationship between storage and recreation costs leads to significant variations across different settings. In some cases the recreation cost is proportional to the storage cost (e.g., if the system bottleneck lies in the I/O cost or network communication), but that may not be true when the system bottleneck is CPU computation. This is especially true for sophisticated differencing mechanisms where a compact derivation procedure might be known to generate one dataset from another.•Another critical issue is that computing deltas for all pairs of versions is typically not feasible. Relying purely on the version graph may not be sufficient and significant redundancies across datasets may be missed.•Further, in many cases, we may have information about relative access frequencies indicating the relative likelihood of retrieving different datasets. Several baseline algorithms for solving this problem cannot be easily adapted to incorporate such access frequencies.We note that the problem described thus far is inherently “online” in that new datasets and versions are typically being created continuously and are being added to the system. In this paper, we focus on the static, off-line version of this problem and focus on formally and completely understanding that version. We plan to address the online version of the problem in the future. The key contributions of this work are as follows.•We formally define and analyze the dataset versioning problem and consider several variations of the problem that trade off storage cost and recreation cost in different manners, under different assumptions about the differencing mechanisms and recreation costs (Section 2). Table 1 summarizes the problems and our results. We show that most of the variations of this problem are NP-Hard (Section 3).•We provide two light-weight heuristics: one, when there is a constraint on average recreation cost, and one when there is a constraint on maximum recreation cost; we also show how we can adapt a prior solution for balancing minimum-spanning trees and shortest path trees for undirected graphs (Section 4).•We have built a prototype system where we implement the proposed algorithms. We present an extensive experimental evaluation of these algorithms over several synthetic and real-world workloads demonstrating the effectiveness of our algorithms at handling large problem sizes (Section 5).
	Example 1: Figure 1(i) displays a version graph, indicating the derivation relationships among 5 versions. Let V1 be the original dataset. Say there are two teams collaborating on this dataset: team 1 modifies V1 to derive V2, while team 2 modifies V1 to derive V3. Then, V2 and V3 are merged and give V5. As presented in Figure 1, V1 is associated with 〈10000, 10000〉, indicating that V1’s storage cost and recreation cost are both 10000 when stored in its entirety (we note that these two are typically measured in different units – see the second challenge below); the edge (V1 → V3) is annotated with 〈1000, 3000〉, where 1000 is the storage cost for V3 when stored as the modification from V1 (we call this the delta of V3 from V1) and 3000 is the recreation cost for V3 given V1, i.e, the time taken to recreate V3 given that V1 has already been recreated.One naive solution to store these datasets would be to store all of them in their entirety (Figure 1 (ii)). In this case, each version can be retrieved directly but the total storage cost is rather large, i.e., 10000 + 10100 + 9700 + 9800 + 10120 = 49720. At the other extreme, only one version is stored in its entirety while other versions are stored as modifications or deltas to that version, as shown in Figure 1 (iii). The total storage cost here is much smaller (10000 + 200 + 1000 + 50 + 200 = 11450), but the recreation cost is large for V2, V3, V4 and V5. For instance, the path {(V1 → V3 → V5)} needs to be accessed in order to retrieve V5 and the recreation cost is 10000 + 3000 + 550 = 13550 > 10120.Figure 1 (iv) shows an intermediate solution that trades off increased storage for reduced recreation costs for some version. Here we store versions V1 and V3 in their entirety and store modifications to other versions. This solution also exhibits higher storage cost than solution (ii) but lower than (iii), and still results in significantly reduced retrieval costs for versions V3 and V5 over (ii).Despite the fundamental nature of the storage-retrieval problem, there is surprisingly little prior work on formally analyzing this trade-off and on designing techniques for identifying effective storage solutions for a given collection of datasets. Version Control Systems (VCS) like Git, SVN, or Mercurial, despite their popularity, use fairly simple algorithms underneath, and are known to have significant limitations when managing large datasets [1, 2]. Much of the prior work in literature focuses on a linear chain of versions, or on minimizing the storage cost while ignoring the recreation cost (we discuss the related work in more detail in Section 6).In this paper, we initiate a formal study of the problem of deciding how to jointly store a collection of dataset versions, provided along with a version or derivation graph. Aside from being able to handle the scale, both in terms of dataset sizes and the number of versions, there are several other considerations that make this problem challenging.•Different application scenarios and constraints lead to many variations on the basic theme of balancing storage and recreation cost (see Table 1). The variations arise both out of different ways to reconcile the conflicting optimization goals, as well as because of the variations in how the differences between versions are stored and how versions are reconstructed. For example, some mechanisms for constructing differences between versions lead to symmetric differences (either version can be recreated from the other version)— we call this the undirected case. The scenario with asymmetric, one-way differences is referred to as directed case.•Similarly, the relationship between storage and recreation costs leads to significant variations across different settings. In some cases the recreation cost is proportional to the storage cost (e.g., if the system bottleneck lies in the I/O cost or network communication), but that may not be true when the system bottleneck is CPU computation. This is especially true for sophisticated differencing mechanisms where a compact derivation procedure might be known to generate one dataset from another.•Another critical issue is that computing deltas for all pairs of versions is typically not feasible. Relying purely on the version graph may not be sufficient and significant redundancies across datasets may be missed.•Further, in many cases, we may have information about relative access frequencies indicating the relative likelihood of retrieving different datasets. Several baseline algorithms for solving this problem cannot be easily adapted to incorporate such access frequencies.We note that the problem described thus far is inherently “online” in that new datasets and versions are typically being created continuously and are being added to the system. In this paper, we focus on the static, off-line version of this problem and focus on formally and completely understanding that version. We plan to address the online version of the problem in the future. The key contributions of this work are as follows.•We formally define and analyze the dataset versioning problem and consider several variations of the problem that trade off storage cost and recreation cost in different manners, under different assumptions about the differencing mechanisms and recreation costs (Section 2). Table 1 summarizes the problems and our results. We show that most of the variations of this problem are NP-Hard (Section 3).•We provide two light-weight heuristics: one, when there is a constraint on average recreation cost, and one when there is a constraint on maximum recreation cost; we also show how we can adapt a prior solution for balancing minimum-spanning trees and shortest path trees for undirected graphs (Section 4).•We have built a prototype system where we implement the proposed algorithms. We present an extensive experimental evaluation of these algorithms over several synthetic and real-world workloads demonstrating the effectiveness of our algorithms at handling large problem sizes (Section 5).
	Example 1

	2. PROBLEM OVERVIEW
	2.1 Essential Notations and Preliminaries
	Version Graph
	Storage and Recreation
	Delta Variants
	Example 2

	Discussion
	Matrix Properties and Problem Dimensions
	Objective and Optimization Metrics
	Problem Formulations
	Problem 1 (Minimizing Storage)
	Problem 2 (Minimizing Recreation)
	Problem 3 (MinSum Recreation)
	Problem 4 (MinMax Recreation)
	Problem 5 (Minimizing Storage(Sum Recreation))
	Problem 6 (Minimizing Storage(Max Recreation))

	2.2 Mapping to Graph Formulation
	Example 3: Given matrix Δ and Φ in Figure 2(i) and 2(ii), the corresponding graph G is shown in Figure 3. Every version is reachable from V0. For example, edge (V0, V1) is weighted with 〈Δ1,1, Φ1,1〉 = 〈10000, 10000〉; edge 〈V3, V5〉 is weighted with 〈Δ3,5, Φ3,5〉 = 〈800, 2500〉. Figure 4 is a feasible storage graph given G in Figure 3, where V1 and V3 are materialized (since the edges from V0 to V1 and V3 are present) while V2, V4 and V5 are stored as modifications from other versions.After mapping our problem into a graph setting, we have the following lemma.Lemma 1: The optimal storage graph Gs = (Vs, Es) for all 6 problems listed above must be a spanning tree T rooted at dummy vertex V0 in graph G.11We refer the reader to the extended version for proofs.Recall that a spanning tree is a tree where every vertex is connected and reachable, and has no cycles. For Problems 1 and 2, we have the following observations. A shortest path tree is defined as a spanning tree where the path from root to each vertex is a shortest path between those two in the original graph: this would be simply consist of the edges that were explored in an execution of Dijkstra’s shortest path algorithm.Lemma 2: The optimal storage graph Gs for Problem 1 is a minimum spanning tree of Grooted at V0, considering only weights Δi,j.Lemma 3: The optimal storage graph Gs for Problem 2 is a shortest path tree of G rooted at V0, considering only weights Φi,j.
	Example 3
	Lemma 1
	Lemma 2
	Lemma 3

	2.3 ILP Formulation
	Lemma 4: Problem 6 is equivalent to the optimization problem described above.Note however that the general form of an ILP does not permit an if-then statement (as in (2) above). Instead, we can transform to the general form with the aid of a large constant C. Thus, constraint 2 can be expressed as follows:Where C is a “sufficiently large” constant such that no additional constraint is added to the model. For instance, C here can be set as 2*θ. On one hand, if xi,j = 1 ⇒ Φi,j +ri−rj ≤ 0. On the other hand, if xi,j = 0 ⇒ Φi,j + ri − rj ≤ C. Since C is “sufficiently large”, no additional constraint is added.
	Lemma 4

	3. COMPUTATIONAL COMPLEXITY
	Problem 1 and 2 Complexity—As discussed in Section 2, Problem 1 and 2 can be solved in polynomial time by directly applying a minimum spanning tree algorithm (Kruskal’s algorithm or Prim’s algorithm for undirected graphs; Edmonds’ algorithm [35] for directed graphs) and Dijkstra’s shortest path algorithm respectively. Kruskal’s algorithm has time complexity O(E log V), while Prim’s algorithm also has time complexity O(E log V) when using binary heap for implementing the priority queue, and O(E + V log V) when using Fibonacci heap for implementing the priority queue. The running time of Edmonds’ algorithm is O(EV) and can be reduced to O(E + V log V) with faster implementation. Similarly, Dijkstra’s algorithm for constructing the shortest path tree starting from the root has a time complexity of O(E log V) via a binary heap-based priority queue implementation and a time complexity of O(E + V log V) via Fibonacci heap-based priority queue implementation.Next, we’ll show that Problem 5 and 6 are NP-hard even for the special case where Δ = Φ and Φ is symmetric. This will lead to hardness proofs for the other variants.Triangle Inequality—The primary challenge that we encounter while demonstrating hardness is that our deltas must obey the triangle inequality: unlike other settings where deltas need not obey real constraints, since, in our case, deltas represent actual modifications that can be stored, it must obey additional realistic constraints. This causes severe complications in proving hardness, often transforming the proofs from very simple to fairly challenging.Consider the scenario when Δ = Φ and Φ is symmetric. We take Δ as an example. The triangle inequality, can be stated as follows:where p, q, w ∈ V and p ≠ q ≠ w. The first inequality states that the “delta” between two versions can not exceed the total “deltas” of any two-hop path with the same starting and ending vertex; while the second inequality indicates that the “delta” between two versions must be bigger than one version’s full storage cost minus another version’s full storage cost. Since each tuple and modification is recorded explicitly when Φ is symmetric, it is natural that these two inequalities hold.Problem 6 Hardness—We now demonstrate hardness.Lemma 5: Problem 6 is NP-hard when Δ = Φ and Φ is symmetric.Proof: Here we prove NP-hardness using a reduction from the set cover problem. Recall that in the set cover problem, we are given m sets S = {s1, s2, …, sm} and n items T = {t1, t2, … tn}, where each set si covers some items, and the goal is to pick k sets ℱ ⊂ S such that ∪{F∈ℱ}F = T while minimizing k.Given a set cover instance, we now construct an instance of Problem 6 that will provide a solution to the original set cover problem. The threshold we will use in Problem 6 will be (β + 1)α, where β, α are constants that are each greater than 2(m + n). (This is just to ensure that they are “large”.) We now construct the graph G(V, E) in the following way; we display the constructed graph in Figure 5. Our vertex set V is as follows:•∀si ∈ S, create a vertex si in V.•∀ti ∈ T, create a vertex ti in V.•create an extra vertex v0, two dummy vertices v1, v2 in V.We add the two dummy vertices simply to ensure that v0 is materialized, as we will see later. We now define the storage cost for materializing each vertex in V in the following way:•∀si ∈ S, the cost is α.•∀ti ∈ T, the cost is (β + 1)α.•for vertex v0, the cost is α.•for vertex v1, v2, the cost is (β + 1)α.(These are the numbers colored blue in the tree of Figure 5(b).) As we can see above, we have set the costs in such a way that the vertex v0 and the vertices corresponding to sets in S have low materialization cost, while the other vertices have high materialization cost: this is by design so that we only end up materializing these vertices. Our edge set E is now as follows.•we connect vertex v0 to each si with weight 1.•we connect v0 to both v1 and v2 each with weight βα.•∀si ∈ S, we connect si to tj with weight βα when tj ∈ si, where α = |V|.It is easy to show that our constructed graph G obeys the triangle inequality.Consider a solution to Problem 6 on the constructed graph G. We now demonstrate that that solution leads to a solution of the original set cover problem. Our proof proceeds in four key steps:Step 1: The vertex v0
will be materialized, while v1, v2
will not be materialized. Assume the contrary—say v0 is not materialized in a solution to Problem 6. Then, both v1 and v2 must be materialized, because if they are not, then the recreation cost of v1 and v2 would be at least α(β + 1) + 1, violating the condition of Problem 6. However we can avoid materializing v1 and v2, instead keep the delta to v0 and materialize v0, maintaining the recreation cost as is while reducing the storage cost. Thus v0 has to be materialized, while v1, v2 will not be materialized. (Our reason for introducing v1, v2 is precisely to ensure that v0 is materialized so that it can provide basis for us to store deltas to the sets si.)Step 2: None of the ti will be materialized. Say a given ti is materialized in the solution to Problem 6. Then, either we have a set sj where sj is connected to ti in Figure 5(a) also materialized, or not. Let’s consider the former case. In the former case, we can avoid materializing ti, and instead add the delta from sj to ti, thereby reducing storage cost while keeping recreation cost fixed. In the latter case, pick any sj such that sj is connected to ti and is not materialized. Then, we must have the delta from v0 to sj as part of the solution. Here, we can replace that edge, and materialized ti, with materialized sj, and the delta from sj to ti: this would reduce the total storage cost while keeping the recreation cost fixed. Thus, in either case, we can improve the solution if any of the ti are materialized, rendering the statement false.Step 3: For each si, either it is materialized, or the edge from v0
to si will be part of the storage graph. This step is easy to see: since none of the ti are materialized, either each si has to be materialized, or we must store a delta from v0.Step 4: The sets si that are materialized correspond to a minimal set cover of the original problem. It is easy to see that for each tj we must have an si such that si covers tj, and si is materialized, in order for the recreation cost constraint to not be violated for tj. Thus, the materialized si must be a set cover for the original problem. Furthermore, in order for the storage cost to be as small as possible, as few si as possible must be materialized (this is the only place we can save cost). Thus, the materialized si also correspond to a minimal set cover for the original problem.Thus, minimizing the total storage cost is equivalent to minimizing k in set cover problem.Problem 5 Hardness—We now show that Problem 5 is NP-Hard as well. The general philosophy is similar to the proof in Lemma 5, except that we create c dummy vertices instead of two dummy vertices v1, v2 in Lemma 5, where c is sufficiently large—this is to once again ensure that v0 is materialized. The detailed proof can be found in the extended technical report [13].Lemma 6: Problem 5 is NP-Hard when Δ = Φ and Φ is symmetric.Since Problem 4 swaps the constraint and goal compared to Problem 6, it is similarly NP-Hard. (Note that the decision versions of the two problems are in fact identical, and therefore the proof still applies.) Similarly, Problem 3 is also NP-Hard. Now that we have proved the NP-hard even in the special case where Δ = Φ and Φ is symmetric, we can conclude that Problem 3, 4, 5, 6, are NP-hard in a more general setting where Φ is not symmetric and Δ ≠ Φ, as listed in Table 1.Hop-Based Variants—In the extended technical report, we also consider the variant of the problem where Δ ≠ Φ but the recreation cost Φij is the same for all pairs of versions, and a version recreation cost is simply the number of hops or delta operations to reconstruct the version. The reason why this hop-based variant is interesting is because it is related to a special case of the d-MinimumSteinerTree problem, namely the d-MinimumSpanningTree problem, i.e., identifying the smallest spanning tree where the diameter is bounded by d. There has been some work on the d-MinimumSpanningTree problem [11, 17, 24], including demonstrating hardness for d-MinimumSpanningTree (using a reduction from SAT), and also demonstrating hardness of approximation.Since the hop-based variant is a special case of the last column of Table 1, this indicates that Problem 6 for the most general case is similarly hard to approximate; we suspect similar results hold for the other problems as well. It remains to be seen if hardness of approximation can be demonstrated for the variants in the second and third last columns.
	Problem 1 and 2 Complexity
	Triangle Inequality
	Problem 6 Hardness
	Lemma 5
	Proof

	Problem 5 Hardness
	Lemma 6

	Hop-Based Variants

	4. PROPOSED ALGORITHMS
	4.1 Local Move Greedy Algorithm
	Outline
	Detailed Algorithm
	Example 4

	Complexity
	Access Frequencies

	4.2 Modified Prim’s Algorithm
	Outline
	Detailed Algorithm
	Example 5

	Complexity

	4.3 LAST Algorithm
	Sketch
	Example 6

	Complexity

	4.4 Git Heuristic
	Complexity

	5. EXPERIMENTS
	Implementation—In the following sections, we present an extensive evaluation of our designed algorithms using a combination of synthetic and derived real-world datasets. Apart from implementing the algorithms described above, LMG and LAST require both SPT and MST as input. For both directed and undirected graphs, we use Dijkstra’s algorithm to find the single-source shortest path tree (SPT). We use Prim’s algorithm to find the minimum spanning tree for undirected graphs. For directed graphs, we use an implementation [3] of the Edmonds’ algorithm [35] for computing the min-cost arborescence (MCA). We ran all our experiments on a 2.2GHz Intel Xeon CPU E5-2430 server with 64GB of memory, running 64-bit Red Hat Enterprise Linux 6.5.
	Implementation

	5.1 Datasets
	Synthetic Datasets
	Real-world datasets

	5.2 Comparison with SVN and Git
	5.3 Experimental Results
	Directed Graphs
	Undirected Graphs
	Workload-aware Sum of Recreation Cost Optimization
	Running Times
	Comparison with ILP solutions

	6. RELATED WORK
	7. CONCLUSIONS AND FUTURE WORK
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Table 1
	Table 2

