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Abstract 

Many psychologically interesting tasks (e.g., reading, lexical 
decision, semantic categorisation and synonym judgement) 
require the manipulation of semantic representations. To 
produce a good computational model of these tasks, it is 
important to represent semantic information in a realistic 
manner. This paper aimed to find a method for generating 
artificial semantic codes, which would be suitable for 
modelling semantic knowledge. The desired computational 
criteria for semantic representations included: (1) binary 
coding; (2) sparse coding; (3) fixed number of active units in 
a semantic vector; (4) scalable semantic vectors and (5) 
preservation of realistic internal semantic structure. Several 
existing methods for generating semantic representations 
were evaluated against the criteria. The correlated occurrence 
analogue to the lexical semantics (COALS) system (Rohde, 
Gonnerman & Plaut, 2006) was selected as the most suitable 
candidate because it satisfied most of the desired criteria. 
Semantic vectors generated from the COALS system were 
converted into binary representations and assessed on their 
ability to reproduce human semantic category judgements 
using stimuli from a previous study (Garrard, Lambon Ralph, 
Hodges & Patterson, 2001). Intriguingly the best performing 
sets of semantic vectors included 5 positive features and 15 
negative features. Positive features are elements that encode 
the likely presence of a particular attribute whereas negative 
features encode its absence. These results suggest that 
including both positive and negative attributes generates a 
better category structure than the more traditional method of 
selecting only positive attributes. 

Keywords: semantics; semantic representations; neural 
networks; computational modelling; connectionist models. 

Introduction 

Computational models are frequently used to simulate 

human behavioural data and help understand the underlying 

cognitive processes. Any type of computational model 

requires decisions to be made about what representation 

scheme to use. Semantic representations are particularly 

important for models of many linguistic processes including 

spoken and written language.This paper aims to find a 

method of generating semantic representations, which can 

fulfil a set of requirements derived from the constraints 

imposed by incorporating semantic knowledge within a 

large-scale connectionist model. A list of criteria that we 

considered essential for sophisticated and efficient 

simulation using a connectionist model includes: (1) Binary 

coding: a binary coding scheme is essential for use in 

connectionist models because the models consist of many 

neuron-like units whose activation values vary between 0 

and 1. The models are trained to match their activation 

values to predefined targets, which need to be at the extreme 

ends of the possible activations; (2) Sparse coding: a sparse 

coding scheme is one in which an item is represented by 

using a small number of active units in each vector. A 

sparse representation is attractive from a computational 

viewpoint because it allows efficient computation. By 

controlling sparseness, the redundancy of a code can be 

minimized and learning is generally fast and relatively easy. 

Importantly, it is likely to reflect the natural structure of the 

representation system in the brain; (3) Fixed number of 

active units in each vector: the idea of using a fixed number 

of active units in each semantic vector is not common in 

most existing coding schemes. However, it has an advantage 

that this coding is uniform and it makes sense to think about 

how similar items are by measuring the Euclidian distance 

between them – if items have different numbers of features 

then measuring Euclidian distance does not give a good 

indication of similarity (Furber, Bainbridge, Cumpstey & 

Temple, 2004). For connectionist models, there is a 

particular reason to want to adopt a fixed number of active 

units, which is that only the active units can contribute to 

activation in later layers. Units with a zero level of 

activation do not propagate information in the network and 

therefore do not generate any weight updates in response to 

the error signal; (4) Scalable semantic vectors: to keep the 

simulations computationally tractable, it is important to 

keep the size of semantic vectors manageable. Vector size is 

an important design consideration because it determines 

how many units in the model are needed for modelling 

semantic knowledge. Given a code length n, it has a 

maximum theoretical number of items that it can code for, 

which is 2
n
. The capacity increases dramatically as the code 

length grows. Thus, the selection of the vector length also 

needs to consider the number of items to be represented; (5) 

Preservation of inherent semantic structure: the most 

important criterion is that the semantic vectors can support 

human-like semantic classifications. They need to preserve 
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the inherent semantic structure of the lexicon. Words which 

are semantically similar should be represented by vectors 

that are relatively close in the semantic space; by contrast, 

semantically unrelated words should tend to be far from 

each other. Preserving these semantic relationships will 

allow for the possibility of modelling tasks like 

categorization and synonym judgment, which are commonly 

used to probe semantic effects. 

Review of existing semantic representation schemes 

Several semantic representation schemes have been 

proposed either for behavioural studies or for use in 

computational modelling (Dilkina, McClelland & Plaut, 

2008; Harm & Seidenberg, 2004; Plaut, 1997; Rogers, 

Lambon Ralph, Garrard, Bozeat, McClelland, Hodges & 

Patterson, 2004). These schemes are based on different 

techniques and there does not seem to be a consensus view 

as to how to produce a set of representations. It is therefore 

important to review these competing coding schemes from a 

modelling perspective using the criteria described above. 

 

Feature Norms One traditional method is to obtain the 

feature norms through experiments (e.g., McRae, Cree, 

Seidenberg & McNorgan, 2005). In these experiments, 

subjects are given a list of words and asked to write down 

attributes about each word. To categorise the attributes and 

make proper constraints on subjects’ responses, some 

lexical relations such as “is” and “has” are used to prompt 

subjects to list the features of the stimulus word. The most 

commonly listed features for a particular word are then 

considered as the core semantic attributes for that word. The 

collected attributes for an item can be easily converted into 

binary codes with the presence of an attribute coded as “1” 

and the absence as “0”. Controlling for sparseness is not so 

easy, but it may be possible to rank the features by the 

number of subjects that identified them, and use this as a 

method for deciding which features to drop. Moreover, this 

method is not very flexible and practically can only be used 

for a small set of words.   

 

Arbitrary Features Another way to generate semantic 

representations is to use random features. Features for a 

word are assigned randomly but the assignments may still 

respect broader aspects of semantic knowledge such as 

category knowledge. For example, the words within the 

same category can be designed to share more features than 

words belonging to different categories. This method has 

been applied to various computational studies designed to 

capture abstract semantic properties including simulations 

of lexical decision (e.g., Plaut, 1997) and semantic 

impairment (e.g., Rogers et al., 2004). The features for an 

item are assigned manually and are binary codes. The 

control of sparseness can be achieved by adjusting the 

fraction of the number of active units in a vector over the 

code length. The fixed number of active units in a vector is 

also controllable. In addition, the size of vector length is 

scalable and determined by the modellers. Although this 

coding scheme is good for producing coarsely structured 

semantic representations, it is not easily scalable and it 

would be very difficult to generate an artificial semantic 

structure that can capture the complexity found in human 

semantics. 

 

Co-occurrence Statistics Semantic representations can also 

be derived from very large text corpora by evaluating which 

words appear in similar types of documents or co-occur 

within a fixed window. Several semantic representation 

schemes have been developed on the basis of this statistical 

co-occurrence including Latent Semantic Analysis (LSA) 

(e.g., Landauer, Foltz & Laham, 1998), Hyperspace 

Analogue to Language (HAL) (e.g., Lund & Burgess, 1996) 

and Correlated Occurrence Analogue to Lexical Semantics 

(COALS) (Rohde et al., 2006). These methods are all based 

on similar ideas but they are slightly different in the ways 

they collect data and deal with the high-dimensional co-

occurrence matrices. LSA derives vectors based on a 

collection of segmented documents in which the number of 

occurrences of a word in various types of documents is 

computed as an element in the high-dimensional co-

occurrence matrix. The dimensionality of the matrix is then 

reduced by using Singular Value Decomposition (SVD) 

while preserving the semantic relations between words as 

much as possible. Unlike LSA, the derivations in both HAL 

and COALS are based on words co-occurring within a fixed 

window in an un-segmented document. The key differences 

between these three systems are in their ways of expressing 

the tendency of two words to co-occur: LSA computes the 

cosines between the vectors of two words, HAL uses 

distance measure and COALS uses the correlation measure. 

In addition, HAL reduces the dimensionality of the matrices 

by eliminating all but the few thousand columns with the 

largest variant values, which is different from the SVD 

technique adopted by both LSA and COALS (see Rohde et 

al., 2006 for more detailed comparisons). 

The semantic vectors generated by reducing a high-

dimensional matrix are typically real-value vectors but 

COALS also provides binary-valued vectors. For the other 

two systems, however, it is relatively easy to convert the 

real values to binary values by thresholding. The vectors 

with values greater than a certain level are replaced with the 

value “1” and all others are replaced with the value “0”. 

Sparse coding can be enforced by adjusting the threshold 

level used when converting real-value vectors into binary. 

Similarly, the fixed number of active units in a vector can be 

designed by modellers during the binarization process by 

restricting the number of 1’s to the top n elements of the 

vector. By using the co-occurrence statistics, the sizes of 

semantic vectors for lexical items are scalable, which is 

particularly suitable for the computational modellers 

seeking a set of representations with low computational cost. 

The key advantage of this scheme is that it should be able to 

generate realistic semantic codes for any word lists of any 

length provided that the latent semantic information 

contained in the structure of large corpora is sufficiently 
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detailed and can be extracted efficiently. 

 

WordNet WordNet is an online semantic database, which 

was developed by Miller in 1990. Information in WordNet 

is organised by many synonymous sets. These sets are 

linked by their lexical relations such as “is a”or “is part of” 

relations. A unique feature of WordNet is that it provides 

multiple word senses, which can be obtained from the 

database separately while other semantic systems do not 

distinguish between word senses. Similar to the feature 

norms, the attributes generated from WordNet have direct 

semantic interpretations. The semantic vectors generated by 

WordNet are binary to represent the presence and the 

absence of attributes, and generally rather sparse. But the 

number of semantic features for each word is not fixed and 

the range could be very wide. The size of the semantic 

vectors is less flexible because the size depends on how 

words relate to each other within the word list of interest. As 

a general rule the longer the list of lexical items to be coded 

the longer resultant semantic vector. Since the vectors are, 

directly derived from many synonymous sets in Word Net 

based on the researchers’ semantic knowledge, the semantic 

structure is likely to be well preserved. 

Table 1 summarises the results of these evaluations. Among 

these, COALS appears to be the best choice because it 

satisfied most of the criteria than other systems. 

 

Table 1: Summary of the evaluations of different semantic 

representation schemes 

 

 

Method 

The correlated occurrence analogue to the lexical semantics 

(COALS) system (Rohde et al., 2006) is designed to be very 

flexible. Although two of the criteria (i.e., sparse coding and 

fixed number of active units) are outside the scope of the 

original COALS system, they could be easily achieved by 

manipulating the semantic vectors generated from the 

system. However, it is crucial to examine whether the 

semantic codes generated from COALS preserve enough 

semantic structure that they can be used to predict the 

human semantic data. In addition it is important to 

investigate the best method of transforming the COALS 

vectors into binary codes. To generate binary vectors Rohde 

and colleagues simply set negative components to 0 and 

positive components to 1 based on the original real-valued 

vector from the SVD. This means that information 

contained in negative parts of the vector is lost. Thus the 

questions asked here are whether negative components also 

contribute to a good semantic similarity structure and, if so, 

what is the optimum number of positive and negative 

features required to produce a best fit to human data. The 

following sections describe how to generate semantic 

vectors based on COALS in a way that satisfies all the 

criteria discussed previously. We then go on to compare the 

performance of the vectors on a semantic categorisation task 

using human data taken from Garrard et al.’s (2001) 

categorisation study. 

Generating Semantic Vectors based on COALS 

To explore whether negative components were as important 

as positive components, a binarization process of coding 

both positive and negative components were used. A 100-

dimensional semantic vector was generated for all items in 

the Garrard et al.’s (2001) word list except one item 

“watering can”, which was discarded because the system did 

not support the compound words. The 100-dimensional 

vector was duplicated to create two 100-dimensional vectors 

with the first 100 dimensions coding the positive elements 

and the second 100 dimensions coding the negative 

elements. The two 100-dimensional vectors were combined 

into a 200-dimensional semantic vector. The first half of the 

200-dimensional vector contained only the positive 

components and the second half of the 200-dimensional 

vector contained only the absolute values of negative 

components. Assuming the best number of positive and 

negative components is n and m respectively then the top n 

values of the first half of the combined vector and the top m 

values of the second half of the vector were selected as the 

key features. All the selected features were set to 1 and 

others are 0. This resulted in a 200-dimensional binary 

vector with the property that matching elements from the 

two halves of this vector (e.g., the 1
st
 and 101

st
 elements) 

code for the same feature and have a special relationship 

whereby if one is on then the other must be off. (Note: both 

paired vectors can be off indicating that neither the presence 

nor the absence of this feature is particularly important to 

the meaning of the item.) 

Testing Procedure 

To determine the usefulness of the binary semantic codes 

we examined the relationship between the category 

structures derived from the artificially generated sets of 

semantic vectors and human data taken from Garrard et al.’s 

(2001) study. In their study, Garrard and colleagues asked 

subjects to categorise items into a living thing group and 

nonliving thing group. On a finer scale, the living thing 

group can be divided into animals, birds and fruit and the 

nonliving thing group also can be subdivided into household 

objects, tools and vehicles. There were in total 6 subgroups. 

Semantic vectors for 61 items in the Garrard et al.’s (2001) 

list were generated using the method described above. Each 

vector had a length of 200. The n features of the first half of 
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the semantic vector represent the important positive features 

and the m features of the second half of the semantic vector 

indicate the important negative features. The numbers of 

positive features (n) and negative features (m) were varied 

to determine the optimum values of n and m. 

Evaluation of semantic vectors 

Two parameters based on semantic distances between words 

can be used to evaluate the match with the semantic 

structure in the human data: distance validity index (DVI) 

and distance ratio (DR). DVI counts the number of groups 

where the within group distance (i.e., the averaged 

Euclidean distance between items in the same group) is 

smaller than all the between group distances (i.e., the 

averaged Euclidean distance between items in the different 

groups). The larger the value of DVI the better the semantic 

categories have been partitioned. This is rather coarse 

measure of semantic structure and for this data the value of 

DVI ranges from 1 to 6 (i.e., the number of subgroups). The 

expected best value is DVI=6 indicating that all the within 

group distances are smaller than between group distances. 

DR computes the average of all the distance ratios. The 

distance ratio is the sum of between group distances to the 

sum of within group distances. Ideally there will be a larger 

between group distance and a smaller within group distance 

so that DR should be as large as possible. It should be noted 

that the value of DR is also positively correlated with the 

total number of features within a vector because it is 

computed on the basis of the Euclidean distance. The 

distance for the vectors having more features is generally 

larger than that for the vectors having less features. This 

indicates that DR is only a useful comparator for code sets 

with the same number of features. 

Thus far we have tacitly assumed that the subgroups will 

be exactly the same as those from human data. However, 

even if a set of semantic codes can be shown to have a DVI 

of 6 and a high DR, it cannot be guaranteed that all its items 

would actually be categorized into the correct groups based 

solely on their intrinsic correlations. To evaluate this we 

needed to test whether the clustering results based on the 

intrinsic correlations among semantic vectors were similar 

to semantic categories from human data. We tested this by 

using the adjusted rand index (ARI) (Hubert & Arabie, 

1985). ARI is commonly used to measure the similarity 

between two different ways of partitioning a set of items. To 

compare the partitions of human data and the artificial 

semantic codes, ARI counts the number of agreements and 

disagreements between them. It ranges from 0 to 1, with 0 

indicating the two partitions are completely different and 

with 1 indicating the two partitions are exactly the same. 

    All three indices (DVI, DR and ARI) were used to 

evaluate the semantic vectors. The maximum number of 

active features including positive and negative in a semantic 

vector was set to 40 and the minimum was 10. Thus, the 

population sparseness ranged from 0.05 to 0.2. The numbers 

of positive (n) and negative (m) features varied in a 

complementary manner which was dependent on the total 

active features (t). To find out what were the optimum 

numbers of n and m, 24 different combinations of positive 

and negative features were assessed by using the three 

indices: DVI, DR and ARI. The evaluations were performed 

in two steps. The first step was to compare different sets of 

semantic vectors based on the predefined categories by 

choosing the combinations with a DVI of 6 and using the 

DR score to select the top candidates within groups with the 

same number of features. The second step was to use the 

ARI score as an independent additional test to confirm that 

the candidate with the highest ARI was also one of the 

possible candidates from the first step. 

Results 

Searching the best semantic vectors 

Table 2 shows the results of the six candidates from 24 sets 

of semantic codes with different combinations of positive 

and negative features, in which they had the maximum 

possible number of DVI (6). The set with 5 positive and 15 

negative features (ID 2) had the largest value of ARI. This 

set was one of those with the maximum value of DVI and 

the value of DR for this set was also larger than that for 

other candidate sets with the same total number of features. 

These results suggest that for this application a set of 

semantic vectors with 5 positive features and 15 negative 

features best captures the semantic categories generated 

from human data. It is also interesting to note that among 

the top candidates ID 1 was the only one with only positive 

features and its ARI was much lower than that for all the 

other possible candidates. The differences between ARI for 

the top candidate and for the two other candidates (ID 3 and 

ID 5) which included both positive and negative features 

were relatively small, suggesting that the exact number of 

positive and negative features may not be critical. However 

the majority of candidate codes (4/6) did have more 

negative than positive features. 

 

Table 2: Results of searching the best semantic vectors 

 

 
To further test the significance of including negative 

codes, 20 sets of semantic codes for each of three groups 

(positive, neutral and negative-biased) were generated. Each 

set had the same number of features, ranging from 10 to 48. 

In the positive group, the vector included only positive 
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features whereas the vector in the neutral group had an 

equal number of positive and negative features. In the 

negative-biased group, the vector had more negative than 

positive features with a ratio of 3:1. One-tailed paired t-tests 

were conducted to compare both the neutral and negative-

biased groups to the positive group, where the three indices 

were used as dependent variables. As predicted, the DVIs 

and ARIs of the neutral and negative-biased groups were 

significantly higher than that for the positive group (Table 

3). For the DRs, the difference between the negative-biased 

and the positive groups was not significant while there was 

a significantly lower mean DR for the neutral group than for 

the positive group. The comparison between the negative-

bias and neutral groups showed that both DVI and DR were 

higher for the negative-biased group than for the neutral 

group and there was no difference in their ARIs. Overall the 

results demonstrated the negative-biased group was superior 

to both the positive and neutral groups, confirming that the 

inclusion of negative codes is important to capturing the 

way semantic knowledge is represented in humans. 

 

Table 3: Results of Significance Tests 

 

 

Hierarchical Clustering Analysis 

Figure 1 shows the hierarchical clustering based on the 

optimum vectors indicated in Table 2.  

The y axis shows the Jaccard’s distance, a measure of 

similarity between words. The lower the value the more 

similar the clusters are. The semantic vectors can accurately 

represent the semantic categories at a coarse scale, which 

means that the living things and nonliving things are well 

separated. To compare the clustering results with human 

data collected by Garrard et al. (2001), the items in Figure 1 

were coloured according to its category in the human 

semantic data. This clearly shows whether the clustering 

results were consistent with human categories. Ideally, 

items with the same colour would be clustered together, 

indicating the items are clustered into the same group as in 

the human category. Most of the items are correctly 

clustered. However there are a few interesting exceptions, 

for example, the word “chicken” was clustered into the fruit 

category (items coloured in purple) based on the artificial 

semantic codes, while it should have been clustered into the 

bird category (Orange). Presumably this is because in many 

texts the word “chicken” might more frequently co-occur 

with other food (including fruit) in the kitchen context so 

this category might be more accurately described as food. 

Within the nonliving things, it appears that the broader 

category of tool is well distinguished from the vehicle group 

but the boundaries between tools and household items is 

less clear. It is likely that most of the tools and household 

objects tend to occur in a similar context in the text so it 

would be difficult to differentiate them in a fine scale by 

using the co-occurrence statistic approach. 

General Discussion 

Several schemes for generating semantic codes have been 

reviewed in this paper with a focus on the requirements of 

computational modelling. The primary aim was to 

determine an appropriate system for representing semantic 

knowledge, which could be used for a large-scale 

computational modelling of semantic related tasks.  

 

 

Figure 1: Hierarchical cluster analysis of 61 words based on the 200-dimensional semantic vectors with 5 positive and 15 

negative features. (Items coloured base on human categories: Animal (Red), Birds (Orange), Fruit (Purple), Tool (Green), 

H’hold (Dark Blue),Vehicles (Purple)). 
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The desired computational criteria were as follows:  (1) 

binary coding; (2) sparse coding; (3) fixed number of active 

units in a vector; (4) scalable vectors; (5) preservation of 

inherent semantic structure. The COALS system (Rohde et 

al., 2006) provided the best fit to the criteria. The original 

COALS system discretizes the real-valued vectors based 

only on the positive components. However, we evaluated 

codes with varying numbers of positive and negative 

features by comparing the semantic categories generated 

from the artificial semantic codes with human category data 

from Garrard et al.’s (2001) study. The results showed that a 

set of semantic vectors having 5 positive and 15 negative 

features could best account for the human semantic 

categories. It was perhaps surprising that the best binary 

vectors found here had more negative features than positive 

features (i.e., 15 negative features v.s. 5 positive features). 

This is at variance with the prevalent assumption that only 

positive components should be used to construct semantic 

codes. Positive features reveal what attributes are likely to 

be present; in contrast, the negative features provide 

information about what attributes are likely to be absent. So 

this result implies that knowledge of the absence of features 

(e.g., knowing that washing machines cannot walk) is as 

important as knowledge of positive features. Given both of 

these types of information, it is possible to separate 

categories on the basis of their distance in the semantic 

space, as the optimisation results shown in Table 2. Further 

significance tests reveal that there was a clear trend for 

semantic vectors containing both positive and negative 

features to show a more human-like semantic structure, 

suggesting that this may be a generally applicable principle. 

Overall the best performing set of semantic vectors matched 

the human categorisation data quite well. Further work may 

be conducted to investigate the performance of the present 

semantic codes on other types of semantic tasks (e.g., 

synonym judgement) for a more complete evaluation. 

In addition, there are some inherent limitations of using 

these semantic vectors. The first is that the semantic features 

are not interpretable because they only encode the semantic 

regularities among word meanings. What exactly the feature 

represents is difficult to interpret. But this is only a problem 

in applications where a direct interpretation of features is 

required. Another limitation is that it can generate good 

semantic vectors for most of the uninflected words but it 

could be difficult to properly account for the deeper 

meaning of words like morphological regularities (e.g., 

bake/baker) (Harm, 2002), which would require some 

additional coding. 

To summarise, a novel semantic representation scheme 

was produced based on modifications to the COALS system. 

This was evaluated against human categorisation data, and 

the resultant coding scheme was able to reproduce the 

human data quite closely. The key finding was that the 

negative features, which indicate what attributes definitely 

do not belong to a lexical item, were at least as important as 

the positive features. The semantic system developed here 

can be applied to generate semantic codes for a larger word 

list used to train more sophisticated computational models. 
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