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ABSTRACT OF THE DISSERTATION

Constraint-Based Learning of Interventional Markov Equivalence

Classes on High-Dimensional Data

by

Hao Wang

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2022

Professor Qing Zhou, Chair

Directed Acyclic Graphs (DAGs) are a powerful tool to model the network of dependencies

among variables. They provide a basis for causal discovery, and have been widely used

in many fields, especially biology. Unfortunately, structure learning is quite non-trivial for

DAG. One major difficulty is that some DAGs are unidentifiable with observational data

only, and undirected edges cannot be resolved to directed edges.

The opportunity to apply interventions motivates interest in the smaller interventional

Markov equivalence class. In this dissertation, we discuss how to modify the classic PC algo-

rithm for causal discovery so that it can be used safely on interventional data. We introduce

invariance relations on conditional distributions with different intervention targets that pro-

vide a powerful rule for edge orientation. There are several advantages of this rule: first, it

does not require the Gaussian distribution assumption, instead a general structural equation

model (SEM) of DAG is sufficient; second, it works for both (structural) intervention and

soft intervention. Finally, we can merge some data blocks with different interventions for

edge orientation.
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A new constraint-based method is proposed to recover the interventional essential graph

from the CPDAG (or called as observational essential graph) based on the invariance rule. We

also establish consistency guarantees for both an interventional PC and an edge orientation

algorithm under a sparse high-dimensional setting. Such high-dimensional consistency results

are rarely seen in this area. It is also worthwhile to emphasize that the constraints on the

family of interventions throughout this dissertation are mild. Finally, simulations are used

to show the effectiveness of our method.

iii



The dissertation of Hao Wang is approved.

Arash A. Amini

Hongquan Xu

Mark S. Handcock

Qing Zhou, Committee Chair

University of California, Los Angeles

2022

iv



To my parents.

I am feeling your love every moment.

v



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Structural Equation Model (SEM) . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Markov Equivalence Class (MEC) . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Experimental Intervention . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Skeleton Learning on Observational Data . . . . . . . . . . . . . . . . . . . . 15

3 Learning skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Difficulty with Interventional Data . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Skeleton Learning on Interventional Data . . . . . . . . . . . . . . . . . . . . 20

4 From Skeleton to I-Essential Graph . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Interventional Essential Graph and Reversible Edges . . . . . . . . . . . . . 22

4.2 Edge Orientation with Experimental Data . . . . . . . . . . . . . . . . . . . 29

4.3 Extend to A General Intervention Target . . . . . . . . . . . . . . . . . . . . 32

4.4 Proof of Section 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 High-Dimensional Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 High-Dimensional Consistency of Algorithm 1 . . . . . . . . . . . . . . . . . 46

5.3 High-Dimensional Consistency of Algorithm 3 . . . . . . . . . . . . . . . . . 49

vi



6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 Single Edge Orientation Simulation . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Interventional Essential Graph Recovery . . . . . . . . . . . . . . . . . . . . 58

6.3 Implement Edge Orientation on GES . . . . . . . . . . . . . . . . . . . . . . 64

7 Proofs of Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1 Some Ancillary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2 High-Dimensional Consistency of Algorithm 1 . . . . . . . . . . . . . . . . . 73

7.3 Derive the Test Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.4 High-Dimensional Consistency of Algorithm 3 . . . . . . . . . . . . . . . . . 78

8 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vii



LIST OF FIGURES

2.1 An example of the essential graph and compelled/reversible edges. . . . . . . . . 10

2.2 DAGs in the Markov equivalence class. . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 An example of the Markov equivalence class and the effect of intervention. . . . 12

2.4 Graph difference between structural and soft intervention while Fi = do. . . . . 14

3.1 The intervention blocks an active trail i→ c1 → j in G. . . . . . . . . . . . . . . 19

4.1 Four configurations of strongly protected arrow i→ j. . . . . . . . . . . . . . . 22

4.2 Neighborhood behavior of vertex j. . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 An example of the essential graph. . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 An example of the edge orientation with intervention. . . . . . . . . . . . . . . . 29

4.5 An example of the difference from intervention. . . . . . . . . . . . . . . . . . . 29

4.6 Three cases of common linked node in i→ j with intervened i. . . . . . . . . . . 30

4.7 Example about common child with intervention. . . . . . . . . . . . . . . . . . . 33

4.8 Undirected edge i− j with one common parent s1 and one common linked node s2. 36

4.9 The interventional graphs with I. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.10 The descendant of collider in trail connecting i and j. . . . . . . . . . . . . . . . 38

4.11 Three cases of the neighboring triangle node s. . . . . . . . . . . . . . . . . . . . 39

4.12 Introduce auxiliary node f to represent intervention on i. . . . . . . . . . . . . . 40

4.13 Example for non-hidden common child node m. . . . . . . . . . . . . . . . . . . 41

5.1 Common parent node in i→ j with different intervention targets. . . . . . . . . 49

5.2 Example about path cut off by intervention. . . . . . . . . . . . . . . . . . . . . 50

viii



5.3 Intervene on node i while j → i. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1 Type I and type II error with different α ∈ {0.1, 0.05, 0.001}. . . . . . . . . . . . 58

6.2 Accuracy performance when two tests are combined. . . . . . . . . . . . . . . . 58

6.3 The DAG used for data generation with p = 9. . . . . . . . . . . . . . . . . . . . 59

6.4 The DAG used for data generation with p = 17. . . . . . . . . . . . . . . . . . . 60

6.5 The DAG used for data generation with p = 49. . . . . . . . . . . . . . . . . . . 61

6.6 The comparison of methods with p = 9. . . . . . . . . . . . . . . . . . . . . . . 62

6.7 The comparison of methods with p = 17. . . . . . . . . . . . . . . . . . . . . . . 63

6.8 The comparison of methods with p = 49. . . . . . . . . . . . . . . . . . . . . . . 63

6.9 Implement edge orientation on GES output. . . . . . . . . . . . . . . . . . . . . 65

ix



LIST OF TABLES

6.1 Configurations of Structure Recovery Simulations. . . . . . . . . . . . . . . . . . 60

6.2 Numerical results of structure learning with PC, Int-PC, Int-PC+EO and GIES. 64

6.3 Numerical results of structure learning with GES and GES+EO. . . . . . . . . . 65

x



ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Professor Qing Zhou, for his continuous

support and guidance throughout my Ph.D. studies. Thanks so much for giving me this

opportunity to start a wonderful journey. And it is impossible for me to reach the destination

without his help. What I have learned from him is beyond knowledge, also kindness, patience

and enthusiasm. I would be more diligent and do better if I had the second chance.

I am also very grateful to have Professors Mark S. Handcock, Hongquan Xu and Arash

A. Amini in my committee for their comments and suggestions. I can still remember the

first year of my graduate study in their classes.

xi



VITA

2012–2016 B.S. in Mathematics, Tsinghua Univeristy, Beijing, China

2016–present Ph.D. student in Statistics, UCLA, Los Angeles, USA

xii



CHAPTER 1

Introduction

Directed acyclic graphs (DAGs) are commonly discussed in causal inference, for example

[SGS00] or [Pea00], as the parents of one vertex in the graph could be recognized as ’causes’

and the arrows naturally represent the ’causal relations’. Learning the structure of the DAG

from data is a core problem in this field, but it’s quite challenging. One difficulty is the

number of DAGs grows superexponentially as the number of nodes increases; see [Rob77].

Another difficulty is that, for multivariate Gaussian distribution, some DAGs have exactly

the same behaviors in probability, which means they are unidentifiable under general setting;

see the criterion for Markov equivalence class (MEC) in [VP90] or [AMP97].

A number of approaches for structure learning has been developed in the past few years,

and which can be classified as constraint-based or score-based. PC algorithm is a well-known

representative of the constraint-based methods. The popular PC algorithm proposed by

[SG91] can estimate the completed partially directed acyclic graph (CPDAG) from observa-

tional data by considering the conditional independence sets implied from data; and [KB07]

establish theoretical guarantees for the PC algorithm under the sparse and high-dimensional

setting. With the high-dimensional consistency results, also its scalable algorithm compu-

tation in real world, the PC algorithm and its variants are widely implemented to sparse

high-dimensional datasets. The advantage of the PC algorithm is straightforward and in-

tuitive: sparsity allows the PC algorithm to finish structure learning with limited number

of conditional independence tests, even the number of variables grows fastly with the data

sample size.
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The second approach of structure learning is score-based, and in which some score func-

tion has be constructed and the method would find the estimation of DAG by optimizing

the score function over the possible space of DAGs or CPDAGs. The Greedy Equivalence

Search (GES) ([CM02]) conducts greedy search to optimize the score function with for-

ward and backward phases. GES is a popular algorithm over the score-based methods, and

[CM02] also proves its consistency under the classic setting (fixed number of variables) with

the BIC score. Recently, [NHM18] proves the consistency results of GES also its variant

under sparse high-dimensional setting. Another theoretical result around the score-based

method is [GB13] proves the the high-dimensional consistency of DAG structure learning

with ℓ0-penalized maximum likelihood estimation, however, there is no algorithm to imple-

ment this method due to the ℓ0 penalty. The main difficulty around score-based methods is

the quick growth of search space size as the number of vertices increases, which challenging

both computation in practice and theoretical proof. Considering this, some optimization

methods are also introduced into this field ([BEd08], [YAZ20]).

As mentioned in the first paragraph, observational data has its limitation in identifiability.

It could be a large pain point in causal inference if some of interests is still left as undirected

edges in the estimated CPDAG. Intervention suggested by [Pea00] and [SGS00] can somehow

overcome this kind of limitation of observational data. With the help of intervention, some

undirected edges in CPDAG become identifiable. [HB12] introduce a series of concepts to

interventional case, such as the interventional Markov equivalence class and I-essential graph.

DAGs among the same (interventional) Markov equivalence class are unidentifiable. And we

can learn the power of intervention by comparing the difference between observational MEC

and the corresponding interventional MEC. The interventional MEC should be smaller than

MEC if intervention can provide useful information on edge orientation. In other words, the

interventional MEC is a more precise partition over the space of DAGs.

In this case, graph structure learning will target to the interventional MEC, and the ideal

output of structure learning algorithm with interventional data is the I-essential graph GI
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instead of the CPDAG (or called as essential graph). Even the true DAG G can be recovered,

if the intervention family is well-designed such that the intervention MEC only contains one

DAG, i.e. I-essential graph equals to the true underlying DAG, GI = G.

About the learning of interventional MEC, one approach is to extend the existing score-

based methods to interventional dataset. For example, [HB12] shows that the Greedy Equiv-

alence Search (GES) can also be applied to interventional data, and then build the Greedy

Interventional Equivalence Search (GIES). They provides some simulation results to eval-

uate the GIES, but lack of theoretical results. And [HB15] introduces Gaussian likelihood

framework for interventional data and derives the classic version consistency of the BIC crite-

rion for estimating the interventional MEC. Different to these score-based methods, [HG08]

designs a constraint-based method to recover I-essential graph. They find the MEC from

observational data first, and then orient undirected edges via intervention experiments by

testing the invariance between pre- and post-intervention distributions.

In this dissertation, we focus on constraint-based method to approach the I-essential

graph. There are three main contributions of this work. First, this dissertation discusses

how to extend the traditional PC algorithm to interventional dataset: we conduct conditional

independence test for every interventional data block and determine the existence of edge

based on all these test results. Second, we introduce the invariance relations on conditional

distributions with different intervention targets, which provides a powerful rule for edge

orientation. And furthermore, we can merge some data blocks to enhance the power of

tests based on the invariance rule. Finally, in this work, we induces the high-dimensional

consistency results for both skeleton recovery and edge orientation. Thus we can guarantee

the consistency of the whole framework, interventional PC algorithm plus edge orientation,

with mild assumptions.

One motivation for this work is the advantage of constraint-based method. There are two

aspects of this advantage. The score optimization is more like a black-box, and constraint-

based method can provide some information during the learning process. Considering the

3



expensive experimental data, it is ideal to combine the structure learning method and inter-

vention design together, which could get some help from constraint-based method. Secondly,

it is highly non-trivial to extend existing theoretical results of score-based methods to the

interventional case, especially under high-dimensional setting. To the best of our knowledge,

this work provides rarely seen consistency results for structure learning with interventional

data.

The most related existing work is from [HG08], as both their method and our work rely

on two stages for structure learning: recover skeleton and then do edge orientation, but our

focuses are quite different. They start from the estimated CPDAG and mainly focus on the

framework of active learning, lack of details of edge orientation and no consistency results.

For edge orientation, they only discussed single node intervention and the corresponding sim-

ple intervention family. It is worthwhile to emphasize that our work makes mild constraints

on the intervention, and our method can applied to those interventions on multiple nodes,

also complicated intervention family I.

The rest of the dissertation is organized as follows. In Chapter 2, we introduce some

background knowledge of DAG with notations used throughout this dissertation, and the

motivation of interventions. A brief introduction of PC algorithm can be found in Section

2.5. In Chapter 3, we discuss the difficulty of skeleton learning with interventional data,

and then extend the original PC algorithm to interventional case. Chapter 4 focuses on the

edge orientation and contains the main work of this dissertation. In Section 4.1, we describe

the neighborhood behavior of the reversible edges in the essential graph, which provides the

intuition to create edge orientation rule also several useful lemma. In Section 4.2, we start

from the simple case to introduce how to conduct edge orientation with the invariance rule on

conditional distributions, and then extend our work to more general case in Section 4.3. In

Chapter 5, some assumptions are introduced to make the consistency guarantees possible in

the high-dimensional setting. Simulations are posted in Chapter 6 to evaluate the methods

introduced in this dissertation. Appendix of proofs for consistency results can be found in

4



Chapter 7. Finally, a brief summary and discussion about future work is in Chapter 8.
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CHAPTER 2

Preliminaries

2.1 Graphs

A graph G can be represented by (V,E), where V = [p] := {1, 2, . . . , p} is the vertex set

and E ⊂ V × V is the edge set consisting of some ordered pairs of vertices. In this work,

the vertex set V is identified with a set of random variables X1, . . . , Xp. If (i, j) ∈ E and

(j, i) /∈ E, the edge between Xi and Xj is directed, represented by an arrowhead as Xi → Xj;

if (i, j) ∈ E also (j, i) ∈ E, the edge between Xi and Xj is undirected, denoted as Xi −Xj.

A graph is (un)directed if all edges of the graph are (un)directed, while a partially directed

graph contains both directed and undirected edges.

We use Xi ↔ Xj to represent the edge between Xi and Xj, no matter it is directed (in

any direction) or undirected, and we say Xi and Xj are adjacent. Given a graph G = (V,E),

suppose there is a sequence {k0, k1, . . . , km} such that k0 = i and km = j: if for every

l = 0, . . . ,m − 1, we have Xkl ↔ Xkl+1
, then we say Xk0 , . . . , Xkm form a trail between Xi

and Xj of length m; if for every l = 0, . . . ,m − 1, we have Xkl → Xkl+1
or Xkl − Xkl+1

,

then we say Xk0 , . . . , Xkm form a path between Xi and Xj of length m. A path is directed

if there exists at least one directed edge. A cycle in G is a path that starts and ends at

the same vertex, i.e. Xi, . . . , Xk where Xi = Xk, and a graph is acyclic if there is no cycle.

We call a graph as a directed acyclic graph (DAG) if it is directed and acyclic. We call a

graph a partially directed acyclic graph (PDAG) if it is acyclic and contains both directed

and undirected edges.
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Given a subset A ⊂ V , we say the subgraph GA = (A,EA), with EA = E ∩ (A × A),

is an induced graph by A. A graph G1 = (V1, E1) is larger than a graph G2 = (V2, E2), i.e.

G2 ⊂ G1, if V2 ⊂ V1 and E2 ⊂ E1. The graph theoretic union is defined as ∪Gi = (∪Vi,∪Ei).

Let G be a DAG. If Xi → Xs ← Xj, and Xi and Xj are not adjacent in DAG G, then

we say the ordered triple of vertices, (Xi, Xs, Xj), forms a v-structure in graph. Vertex Xs

is called as a collider on a trail if there exists Xi → Xs ← Xj for some vertices Xi and Xj

on the trail. Notice that it doesn’t require Xi and Xj are non-adjacent when the collider is

defined. The collider in a v-structure is sometimes called unshielded collider. If there exists

a directed path Xi, . . . , Xj, then we say Xi is an ancestor of Xj and Xj is a descendant of Xi.

We use Ancestor(j) to denote Xj’s ancestors, and for convenience, let j ∈ Ancestor(j). A

trail Xk0 ↔ · · · ↔ Xkm is active given a vertex set S ⊂ V if (1) Xkl or one of its descendants

are in S whenever there is a collider Xkl in Xkl−1
→ Xkl ← Xkl+1

; (2) no other node along the

trail is in S; otherwise, we say the trail is inactive or blocked by S. Given X ,Y ,S three sets

of nodes in G, we say X and Y are d−separated by S if there is no active trail between any

nodeX ∈ X and Y ∈ Y given S. An ordering π of the verticesX1, X2, . . . , Xp is a topological

ordering relative to G if whenever we have Xi → Xj ∈ E, then i ≺ j in the ordering π. Given

a graph G = (V,E) and a vertex s ∈ V , the neighborhood of vertex s, denoted by ne(s), is

the set of all vertices adjacent to s, i.e. ne(s) = {a ∈ V |(a, s) ∈ E or (s, a) ∈ E}.

For a partial directed acyclic graph (PDAG) G, the acyclicity constraint implies the

PDAG can be decomposed into several disjoint chain components {Ki}i=1,...,m; see section

(2.2.3) in [KFB09]: let K1,K2, . . . ,Km be a disjoint partition of the vertex set V such that (1)

the induced graph GKi
contains no directed edges and (2) for any pair X ∈ Ki and Y ∈ Kj

with i < j, an edge between X and Y can only be directed as X → Y . And a PDAG is also

called a chain graph.

An undirected graph is chordal if any loop Xi1 − Xi1 − · · · − Xik − Xi1 for k ≥ 4 has

a chord that is an edge connecting Xi and Xj for two nonconsecutive nodes Xi, Xj. The

skeleton of a graph G = (V,E) is its underlying undirected graph, i.e. Gske = (V,Eske) with

7



Eske = {(i, j)|(i, j) ∈ E or (j, i) ∈ E}. A graph is said to be chordal if its skeleton is chordal.

2.2 Structural Equation Model (SEM)

As mentioned in Section 1, causal relations among random variables can be represented by

arrows in DAG G. Here we use the well-known structural equation model (SEM) to interpret

the causal effects contained in DAGs. Suppose there is a true causal DAG G = (V,E) with

vertex set [p] = {1, 2, . . . , p}. Upon its graph structure, a Gaussian DAG model can be

represented as a linear structural equation model,

Xj =
∑

k∈pa(j)

βkjXk + εj, j = 1, 2, . . . , p, (2.1)

where ε1, ε2, . . . , εp are independent and εj ∼ N (0, ω2
j ). Here pa(j) represents the parent

node set of j, and βkj ̸= 0 only if (k, j) ∈ E. The coefficient βkj represents the causal effect

of Xk on Xj. The SEM (2.1) defines a joint Gaussian distribution for

X = (X1, X2, . . . , Xp) ∼ Np(0,Σ), (2.2)

such that its probability density f(·) factorises,

f(x) =

p∏
j=1

f(xj|xpa(j)). (2.3)

Consider an n× p data matrix X with i.i.d. rows generated from the SEM (2.1),

X = XB+ E, (2.4)

where B = (βkj)p×p is the coefficient matrix and E represents the noise matrix whose rows

are i.i.d. from Np(0,Ω) with Ω = diag(ω2
1, ω

2
2, . . . , ω

2
p). Equation (2.4) can be treated as a

8



matrix expression of (2.1), and leads to

Σ = (I−B)−TΩ(I−B)−1,

an identity that expresses the covariance matrix Σ in terms of SEM parameters in (2.4).

2.3 Markov Equivalence Class (MEC)

Given a DAG G and a density f(·), we say the distribution f(·) is faithful to the graph G if

for every triple of disjoint sets X ,Y ,S ⊂ V ,

XX ⊥ XY |XS ⇐⇒ S d-separates X and Y in G.

Let D(G) represent the set of all d-separation relations in G. Then we say G1 and G2 are

Markov equivalent if D(G1) = D(G2). Use notation ∼ to denote the Markov equivalence, i.e.

G1 ∼ G2 if G1 and G2 are Markov equivalent.

Definition 1. Given a DAG G, the Markov equivalence class (MEC) of G, denoted by [G],

is the set of DAGs that are equivalent to G, that is, [G] = {G̃ : G̃ ∼ G}.

From graph structure perspective, more practically, two DAGs G1 and G2 are Markov

equivalent if and only if they have the same skeleton and the same v-structures.

Markov equivalence sets a huge challenge for causal graph structure learning. DAGs in

the same equivalence class imply exactly the same set of condition independence statements,

which means in general it is impossible to distinguish the structures of equivalent DAGs from

observational data only. For Gaussian linear SEM, all DAGs within the Markov equivalence

class will have the same likelihood function such that they are non-identifiable. The essential

graph, also known as CPDAG, helps us to understand the limitation of observational data

in graph structure learning:

9



Definition 2. Given a DAG G, its essential graph (or CPDAG) is Gess = ∪G̃∈[G]G̃.

To represent an equivalence class, there are two types of edges defined in a DAG G: (1)

a directed edge i→ j is compelled in G if for every DAG G̃ equivalent to G, the edge i→ j

exists in G̃; (2) if an edge is not compelled in G, then it is reversible. Now we can give

another definition of the completed PDAG.

Definition 3. The CPDAG of an equivalence class is the PDAG consisting of a directed edge

for every compelled edge in the equivalence class, and an undirected edge for every reversible

edge in the equivalence class.

For example, in Figure 2.1, to keep the existing v-structure 2→ 4← 3, both 2→ 4 and

3 → 4 are irreversible; then the direction 5 → 4 is not allowed, as avoiding to induce new

v-structure. In other words, edges 2 → 4, 3 → 4, 4 → 5 are compelled, as it will change the

v-structure in DAG G if the direction of any one of these edges has been reversed. Meanwhile,

edges 1 → 2 and 1 → 3 are reversible, since both 2 → 1 → 3 and 2 ← 1 ← 3 exist in the

Markov equivalence class [G]. Notice that it does not mean that there exists 2 → 1 ← 3

when we say ’both 1→ 2 and 1→ 3 are reversible’.

1

2

4

3

5

(a) Essential Graph Gess.

1

2

4

3

5

(b) DAG G.

Figure 2.1: An example of the essential graph and compelled/reversible edges.

Here we also list all DAGs according to the essential graph (a) in Figure 2.1, as an instance

for the Markov equivalence class. There are three DAGs represented by the essential graph in

Figure 2.2. Consider those DAGs having the same skeleton, i.e. 1−2, 1−3, 2−4, 3−4, 4−5,

the total number of such DAGs are 25 − 2 = 30.
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4
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(a) Essential Graph Gess.

1

2

4

3

5

(b) DAG G1.

1

2

4

3

5

(c) DAG G2.

1

2

4

3

5

(d) DAG G3.

Figure 2.2: DAGs in the Markov equivalence class.

2.4 Experimental Intervention

Some edges would remain undirected in the essential graph, which obscures the causal inter-

pretation of the edges. That is the motivation to introduce experimental interventions. In

an experiment, the process of intervention forces one or several nodes to take values from an

external distribution fint(·), independent of the original joint distribution. A typical example

of intervention, for instance, could be gene knockout or knockdown experiments in biology.

Let I ⊂ [p] denote the intervention target, i.e. the set of intervened nodes. Let XI =

(XI
1 , X

I
2 , . . . , X

I
p ) be the random vector X under intervention I, whose distribution is given

by a modified SEM (2.1):

XI
j =


Uj, if j ∈ I,∑

k∈pa(j) βkjX
I
k + εj, if j /∈ I,

(2.5)

where Uj is a random variable that defines the distribution ofXj when it is under intervention.

Notice that the equation (2.6) requires some independence assumptions on the intervention

11



variables UI : (1) for any j ∈ I, Uj is independent of {εk, k /∈ I}; (2) Ui, i ∈ I are mutually

independent. The intervention considered here is classified as stochastic intervention; cf.

[KHN04]. Then (2.3) can be modified as,

f I(x) =
∏

j∈[p]\I

f(xj | xpa(j))
∏
j∈I

fUj
(xj), (2.6)

where f I(·) is the joint density under the intervention target I.

Meanwhile, assuming the intervention variables are Gaussian with mean 0, i.e. Ui ∼

N (0, τ 2i ) for any i ∈ I, the random vector XI preserves normality,

XI ∼ Np(0,Σ
I), (2.7)

where ΣI is the modified covariance matrix under intervention target I. Equation (2.5) can

be rewritten into an interventional matrix expression similar to (2.4), and furthermore the

interventional covariance matrix ΣI can be found; for details see [HB15].

A modified graph is also induced after intervention. Intervention on XI will effectively re-

move all arrows pointing to nodes XI , and we denote the modified graph by GI . For instance,

consider a DAG with two nodes in Figure 2.3. Since G1 and G2 are Markov equivalent, it is

impossible to distinguish these two without the help of intervention. Suppose we intervene

on node 2, i.e. I = {2}, then Figure 2.3(d,e) shows that the arrow 1 → 2 will be cut off in

GI1 , but 2 → 1 is not changed in graph GI2 . This difference between two graphs GI1 and GI2
after intervention enlightens the development of learning methods using interventional data.

1 2

(a) Essential Graph.

1 2

(b) G1.

1 2

(c) G2.
1 2

(d) GI1 .

1 2

(e) GI2 .

Figure 2.3: An example of the Markov equivalence class and the effect of intervention.
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It may be convenient to treat intervention as an additional variable in the DAG G. Defin-

ing Fj as intervention onXj, the parents ofXj is augmented to pa(j)∪{Fj} in the augmented

graph with the following conditional distribution:

f(xj | xpa(j), Fj) =


f(xj | xpa(j)), Fj = idle;

fUj
(xj), Fj = do(Xj = Uj).

(2.8)

Here, do(Xj = Uj) is the do-operator [Pea00], denoting the intervention that forces Xj be

Uj; idle means no intervention is applied on Xj. To understand the effect from intervention

target I, sometimes it is better to investigate the augmented graph with auxiliary variables

{Fm}m∈I .

In general, experimental data collection is not limited to only one intervention target, and

often there will be a family of intervention targets, I = {I1, I2, . . . IB}. Here B is the number

of intervention targets in the family I, i.e. B = |I|. Recall the definition of D(G). For any

intervention graph GI , let D(GI) represent the set of all d-separation statements in GI . Then

the interventional Markov equivalence can be defined by considering the d-separation sets

for the family of targets I.

Definition 4. Given a family of intervention targets I, we say two Markov equivalent DAGs

G1 and G2 are I-Markov equivalent, denoted by G1 ∼I G2, if D(GI1) = D(GI2) for all I ∈ I.

There are other equivalent ways to define Markov equivalence, also I-Markov equivalence,

see [HB12] Section 2.2 for more details. By Definition 4, interventional Markov equivalence

requires that intervention graphs are always observational Markov equivalent over the family

of targets, and from the graph structure perspective, if G1 ∼I G2 then GI1 and GI2 have the

same skeleton and the same v-structures for all I ∈ I. Extend Definition 1 to interventional

case:

Definition 5. Given a DAG G, and a family of intervention targets I, the I-Markov equiv-

alence class (MEC) of G is the set of graphs [G]I = {G̃ : G̃ ∼I G}.
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Up to now, the interventions mentioned in this section will make the intervened variable

independent of its original causes. In other words, the interventions will destroy the arrows

pointing to the intervened node, i.e. changing the structure of the original DAG. That’s why

this kind of intervention is referred as the structural intervention. Some other names are like

surgical, ideal, or independent intervention. Sometimes the intervention is not that strong,

or not ideal in the experiment. There is another weaker form of the intervention called as

soft intervention.

The soft intervention will not affect the structure of DAG, which instead changes the

conditional distributions among intervened node and its parents, i.e. the parameters of

f(xj|xpa(j)). Someone refers this kind of intervention as the parametric intervention, and

other names are: partial, conditional or dependent intervention. Similar to (2.8), the condi-

tional distribution for soft intervention can be defined as:

f(xj | xpa(j), Fj) =


f(xj | xpa(j)), Fj = idle;

f̃(xj | xpa(j)), Fj = do,

(2.9)

where f(xj | xpa(j)) ̸= f̃(xj | xpa(j)). As the soft intervention does not change the structure,

the augmented graph for post-intervention is also different; see Figure 2.4 as an example.

[Ebe07] has a good summary of the different kinds of interventions.

Fi s

i j

(a) no intervention

Fi s

i j

(b) intervention

Fi s

i j

(c) soft intervention

Figure 2.4: Graph difference between structural and soft intervention while Fi = do.

The main focus of this dissertation will be put on the structural intervention, and we al-

ways refer to the structural intervention when we say intervention. Some concepts defined for

structural intervention may not be extended to the soft intervention, for example, I-Markov
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equivalence. In Definition 4, I-Markov equivalence is defined based on the d-separation

sets, however soft intervention cannot provide extra information to change the d-separation

relations as it will not affect the graph structure.

It is seen that the design of intervention target family I plays an important role in the

definition of I-Markov equivalence. We do not want to impose restrictive constraints on I in

this work. Our methods apply to any type of intervention target family, I = {I1, I2, . . . , IB}.

A general n×p data matrix X generated under I consists of a number of data blocks Xi with

ni rows and p columns for i = 1, 2, . . . , B. Each row within the same block Xi is drawn i.i.d.

from N (0,Σi), but data rows from different blocks are not identically distributed. Here after

Σi corresponds to ΣIi in (2.7) to simplify the notation. An observational data block if exists

could be treated as I = {∅} for notation consistency. To make it easier to understand, the

general setting of data under a family of intervention targets I = {I1, I2, . . . IB} throughout

this dissertation can be represented as:

X =


X1

X2

...

XB

 ∼

N (0,Σ1)

N (0,Σ2)
...

N (0,ΣB)

 with
B∑
i=1

ni = n.

The goal of this work is to learn the MEC [G]I from the data X.

2.5 Skeleton Learning on Observational Data

To recover the true causal DAG G, we first find its skeleton Gske. Given the vertex set V ,

a complete undirected graph can be constructed, with an undirected edge between every

pair of vertices. A general strategy of skeleton recovery is to eliminate some edges from

the complete graph, leading to Eske usually much smaller than the edge set of the complete
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graph if G is sparse.

Any edge in skeleton can be detected with conditional independence constraints, as under

faithfulness assumption,

there is an edge between nodes Xi and Xj ⇐⇒ Xi ̸⊥ Xj | XS for any S ⊂ V \{i, j}; (2.10)

see [SGS00] for details. The rule in (2.10) can be applied to skeleton recovery naively, by

checking conditional independencies given all S ⊂ V \{i, j}. However, it faces the challenges

of computational effectiveness and the reliability of high order conditional independence test,

especially for high-dimensional case.

The PC algorithm [SG91] develops a better approach to test all these conditional inde-

pendence relations effectively. In PC algorithm, different to (2.10), we start the conditional

independence test from empty conditioning set, i.e. |S| = 0, and increase |S| gradually.

Another difference is PC algorithm only considers the subset of neighborhood as the set of

variables conditioned, i.e. S ⊂ ne(i)\{j}.

Algorithm 1 shows the population level PC algorithm. Suppose we have oracle informa-

tion on conditional independencies, i.e. line 11 in Algorithm 1 guaranteed, then the output

of PC algorithm is the true skeleton of the DAG G; see [KB07]. We summarize one useful

result in Lemma 1 below. Lemma 1 can help us bound the number of tests required during

skeleton recovery with PC algorithm.

Lemma 1. Given a DAG G with faithfulness distribution. The population level PC algorithm

constructs the true skeleton of the G. And the maximal reached value of l: m∗ ∈ {s − 1, s},

here s = maxi∈1,...,p |ne(i)|.

With the help of the separation sets recorded in Algorithm 1, the second part of the PC

algorithm extends the skeleton to CPDAG through several criteria, which is also well-known

as the Meek’s rule, see Algorithm 2.
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Algorithm 1 The PC algorithm (skeleton estimation)
1: INPUT: vertex Set V , conditional independence information
2: OUTPUT: estimated skeleton Gske, seperation set S
3: from the complete undirected graph G̃
4: l = −1; G = G̃
5: repeat
6: l = l + 1
7: repeat
8: select an ordered pair of nodes i, j that are adjacent in G such that |ne(i)\{j}| ≥ l
9: repeat

10: choose (new) S ⊂ ne(i)\{j} with |S| = l.
11: if i and j are conditionally independent given S then
12: delete edge i, j
13: denote this new graph by G
14: save S in S(i, j) and S(j, i)
15: end if
16: until edge i, j is deleted or all S ⊂ ne(i)\{j} with |S| = l have been chosen
17: until all ordered pairs of adjacent variables i and j such that |ne(i)\{j}| ≥ l and

S ⊂ ne(i)\{j} with |S| = l have been tested for conditional independence
18: until for each ordered pair of adjacent nodes i, j: |ne(i)\{j}| < l

Algorithm 2 extending the skeleton to the essential graph (or called as CPDAG)
1: INPUT: skeleton Gske, separation sets S
2: OUTPUT: essential Graph Gess
3: for all pairs of nonadjacent variables i, j with common neighbour k do
4: if k /∈ S(i, j) then
5: replace i− k − j in Gske by i→ k ← j
6: end if
7: orient more edges through the following rules:
8: R1 orient j − k into j → k whenever there is an arrow i → j such that i and k are

nonadjacent
9: R2 orient i− j into i→ j whenever there is a chain i→ k → j

10: R3 orient i− j into i→ j whenever there are two chains i− k → j and i− l → j such
that k and l are nonadjacent

11: R3 orient i− j into i→ j whenever there are two chains i− k → l and k → l → j such
that k and l are nonadjacent
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CHAPTER 3

Learning skeleton

3.1 Difficulty with Interventional Data

The main difficulty is from interventional data, and such influence performs quite compli-

catedly. Suppose there is an edge i → j in a DAG G. Then the arrow will disappear in

the corresponding interventional graph GI if node j is intervened, i.e. j ∈ I. To test the

existence of edge between node i and j, either i or j under intervention could make the

conclusion unreliable, since the direction remains unknown in skeleton recovery step.

Definition 6. If there exists an intervention design I ∈ I such that I ∩ {i, j} = ∅, we say

the correlation between node i and j is accessible under I.

Intervention I will not change the existence of edge i−j in skeleton recovery if I∩{i, j} =

∅, but the estimated CPDAG may be influenced as Meek’s rule relies on the separating set.

In PC algorithm, we increase the separating set size gradually to find the minimal S∗ such

that:

Xi ⊥ Xj|XS ⇐⇒ S d-separate i and j ⇐⇒ all trails between i and j are blocked by S.

Thus for any k ∈ S∗, there are three possible cases · · · → k → · · · , · · · ← k ← · · · and

· · · ← k → · · · . Notice it is possible that a separating set contains the collider of a v-structure,

however the minimal separating set S∗ will not include any collider.

Suppose Sij is a minimal separating set for node i and j: if node k in i ← k → j is
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intervened, the minimal separating set Sij is still valid (nothing happens in this case); if

node k in i → k ← j is intervened, the minimal separating set Sij is still valid (the trail is

already blocked by collider); if node k in an open trail i→ k → j is intervened, the minimal

separating set is Sij\{k} (intervention cuts off the trail). Thus the last case may result in a

smaller separating set, and finally the vertex k will be recognized as a collider and incorrect

v−structure i→ k ← j could be added into CPDAG.

i jc1

c2

(a) True DAG.

i jc1

c2

(b) Intervene on c1.

Figure 3.1: The intervention blocks an active trail i→ c1 → j in G.

For example, in Figure 3.1, the intervention on c1 blocks the active trail i → c1 → j

in G such that there is only one active trail left in the interventional graph G{c1}. In this

simple case, they are leading to different separating sets Sij, {c1, c2} for (a) and {c2} for

(b). Suppose we have both observational and interventional data, i.e. I = {∅, {c1}}, and

the true skeleton can still be recovered by the power of observational data. While applying

Meek’s rule, with the separating set Sij = {c2}, i− c1 − j will be identified as a v-structure

i → c1 ← j since the common neighbor c1 /∈ S. Thus we may recognize {c1} as a collider

incorrectly by Meek’s rule, if we don’t make a calibration on the separating set. And we can

choose the largest minimal separating set for calibration to avoid this issue, if there are more

than one minimal separating sets corresponding to different interventional data blocks.

Meanwhile, the change of structure from intervention actually makes nodes in each data

block has its own corresponding partial correlation, which means we cannot treat interven-

tional data as a whole to calculate the partial correlation. Intuitively, such mixture data

could be regarded as a whole drawn from an average distribution, but which is helpless to

establish the theory.
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3.2 Skeleton Learning on Interventional Data

Under Gaussian assumption, the conditional independence test (2.10) is equivalent to testing

the partial correlation ρi,j|S . Generally, there are three methods to calculate the partial

correlation: linear regression, inverse of covariance matrix and incursive method. Here we

choose linear regression: to test Xi ̸⊥ Xj | XS , regress Xj on Xi with XS and the coefficient

of Xi determines the conditional independence. More details on the relation between partial

neighborhood regression coefficient and conditional independence will be discussed in the

latter section; see (5.5).

As discussed in the previous section, the interventional setting over data blocks could

affect the coefficient of regression. Even those nodes not involved in the regression can

still make a huge impact, which means it is hard to merge some blocks and do fewer tests.

Consider this, we do regression within each block given specific intervention. For the re-

labeled family of intervention targets I(i,j) = {I1, I2, . . . , IB(i,j)
} with B(i,j) = |I(i,j)|, where

I(i,j) is the set of intervention targets that are informative with respect to edge i − j, i.e.

I(i,j) = {I ∈ I | I ∩ {i, j} = ∅}, we use Hk
ij|S to represent Xj ∼ Xi +XS on data block XIk

and the corresponding underlying linear model,

Hk
ij|S : Xj = βk

ij|SXi + βk
Sj|SXS + εkij|S with εkij|S ∼ N (0, (σk

ij|S)
2), (3.1)

for k = 1, 2, . . . , B(i,j). The reason we define a new notation I(i,j) here instead of using I

directly is that from Definiton 6 some intervention blocks may be infeasible to conduct PC

algorithm, actually I(i,j) ⊂ I and B(i,j) ≤ |I|.

To determine a single coefficient of linear regression nonzero or not, it is a classic question
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that we can use the t−statistic,

T k
ij|S =

β̂k
ij|S

skij|S

√(
(Xk

ij|S)
TXk

ij|S

)−1

ii

: if |T k
ij|S | ≥ αn we accept βk

ij|S ̸= 0, (3.2)

where skij|S is an unbiased estimator of σk
ij|S , a well-known result from linear regression,

skij|S = SSRk
ij|S/(n

k
ij|S − pkij|S), (3.3)

here αn is the critical value of test andXk
ij|S is the design matrix. In equation (3.3), SSRk

ij|S is

the Residual Sum of Squares defined from linear regression, and p is the number of predictors.

Lemma 2. If nodes i and j are blocked by S in G and I ∩ {i, j} = ∅, then i and j are also

blocked by S in GI .

Algorithm 1 shows the main part of PC algorithm given by [KB07], in which PC algorithm

repeatedly selects the subset S from the neighbor of node i, i.e. S ⊂ Adj(G, i)\{j}, and

remove edge i− j from the estimated skeleton once the conditional independence test shows

Xi ⊥ Xj | XS . Under interventional data setting, as discussed in Section 3.1, it’s challenging

to conduct the conditional independence test over interventional blocks. So based on Lemma

2 and t−statistic (3.2), we can combine these tests to determine the conditional independence

between i and j given S, that is,

If |T k
ij|S | ≤ αn for all k = 1, . . . , B(i,j) then we accept H0 : ρij|S = 0; (3.4)

otherwise, reject H0. Now we replace the line 11 in Algorithm 1 with (3.4) also (3.2) to

conduct the conditional independence test with finite samples generated by intervention.
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CHAPTER 4

From Skeleton to I-Essential Graph

4.1 Interventional Essential Graph and Reversible Edges

Definition 7 ([AMP97], Definition 3.3). Let G be a graph. An arrow i→ j ∈ G is strongly

protected ∈ G if i→ j occurs in at least one of the following four configurations as an induced

subgraph of G:

s

i j

(a)

s

i j

(b)

s

i j

(c)

s1s2

i j

(d)

Figure 4.1: Four configurations of strongly protected arrow i→ j.

The configurations of strongly protected arrow in Definition 7 guarantee that the direction

of this kind of arrow is irreversible. In configuration (a), it would induce new v-structure

s → i ← j if the direction of arrow i → j has been reversed; in (b), it would eliminate

the existing v-structure i → j ← j; in (c), it would lead to a loop; in (d), to avoid new

v-structure s1 → i← s2, there must exist i→ s1 or i→ s2, then the reversal of i→ j would

create a loop. The strongly protected arrow shows the status of compelled edges of DAG G.

And we have the following lemma based on this.

Lemma 3 ([AMP97], Theorem 4.1). Gess is essential graph for some DAG G if and only if

Gess satisfies the following four conditions.
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(1) Gess is a chain graph.

(2) Every chain component of Gess is chordal.

(3) The configuration a→ b− c does not occur as an induced subgraph of Gess.

(4) Every arrow a→ b ∈ Gess is strongly protect in Gess.

As mentioned in its original paper [AMP97], Lemma 3 depicts the characterization of

essential graph precisely. Since an essential graph G is a chain graph, let K1, . . . ,Km be a

disjoint partition of G. Then in essential graph G, every reversible edge must belong to some

chain component Kl and if |Kl| ≥ 3, the reversible edge might be an edge of some triangle.

For reversible edge i − j ∈ Kl, if there exists a directed edge k → i, then k → j, otherwise

the configuration k → i− j occurs; and also k → s for any other s ∈ Kl, since Kl is a chordal

and there always exists a trail from i to s.

For a reversible edge i − j in the essential graph Gess, the neighborhood of vertex i or

j can be characterized with the help of Lemma 3. Without loss of generality, focus on j’s

neighborhood ne(j). If there exists s ∈ ne(j) with direction s → j, s must be a common

parent of i− j in Gess, otherwise the configuration k → i− j occurs, shown as Figure 4.2(b).

A common parent s of i− j must belong to the upstream chain component, i.e. if i− j ∈ Kl

and s ∈ Kt then t < l.

If s ∈ ne(j) belongs to the downstream chain component, it can be a common child of

i− j or child of j only, shown as Figure 4.2(c, e). Intervention on vertices from downstream

cannot affect i− j, in this case they are not our interests.

The most complicated case is that s ∈ ne(j) is in the same chain component with i− j.

Since s ∈ ne(j), s must be connected with j through an undirected edge. If s is also

connected with i, s is a common linked node forming a triangle (i, j, s), respective to Figure

4.2(a); and define lk(ij) for the set of common linked nodes, see definition 8(b). If s is not

connected to i, s can be a single linked node within ne(j), see Figure 4.2(d), which is the

simple case. Another case is there exists a trail between s and i even though no direct edge
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connecting them. Because the trail connecting s and i belongs to one chain component, the

loop i− j − · · · − i consists of two or several triangles, see Figure 4.2(f) as an example.

To formalize case (f), we say a vertex s is a neighboring triangle node of j if (1) s−j ∈ Gess
(2) there exists an undirected trail from i to s of length ≥ 2 and not passing j. Based on this

definition, Figure 4.2(f) actually shows a specific case in which the trail contained starting

from i to s has length 2 exactly.

Definition 8. For a reversible edge i− j in the essential graph Gess, define:

• (a) the common parent set of i− j as

cp(ij) = {s ∈ V | s→ i, s→ j in Gess};

• (b) the common linked set of i− j as

lk(ij) = {s ∈ V | s− i, s− j in Gess};

• (c) the blocker set of i− j as

Lij = cp(ij) ∪ lk(ij).

Proposition 4. Given a reversible edge i − j in the essential graph Gess, a neighborhood

node s ∈ ne(j) must belong to one of following configurations:

• (a) s is a common linked node, i.e. s ∈ lk(ij);

• (b) s is a common parent node, i.e. s ∈ cp(ij);

• (c) s is a common child node, i.e. s ∈ {s ∈ V | i→ s, j → s in Gess};
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• (d) s is a single linked node, i.e.

s ∈ {s ∈ V | j − s and i− j − s is the only undirected trail between i and s in Gess};

• (e) s is a single child node, i.e.

s ∈ {s ∈ V | j → s and there is no i→ s in Gess};

• (f) s is a neighboring triangle node, i.e.

s ∈ {s ∈ V | j − s and there exists an undirected trail from i to s

of length ≥ 2 not passing j in Gess}.

s

i j

(a) common linked

s

i j

(b) common parent

s

i j

(c) common child

i j s

(d) single linked

i j s

(e) single child

o

i j

s

(f) neighboring triangle

Figure 4.2: Neighborhood behavior of vertex j.

Figure 4.2 lists all the possible cases of ne(j) by enumeration, where lk(ij) and cp(ij) are

our interests also their union Lij; see Definition 8. Notice that trail i−o−s−j in Figure 4.2(f)

also goes through vertex o, which is a part of lk(ij). Consider the true underlying DAG G,

all trails connecting i and j can be classifed to three cases: (1) the direct connection i↔ j

itself; (2) the trail is inactive given empty observed set; (3) the trail is active given empty

observed set. If the trail belongs to case (3), it must pass through Lij. That is the motivation
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of methods around Lij introduced in next section, also the reason why other nodes can be

ignored in the discussion.

Lemma 5. Let Gess be the essential graph of a DAG G and i− j be a reversible edge of Gess.

Then, any trail connecting i and j of length ≥ 2 is blocked by empty set if the trail does not

pass through Lij.

Lemma 6. Let Gess be the essential graph of a DAG G and i− j be a reversible edge of Gess.

Then, any trail connecting i and j of length ≥ 2 is blocked by Lij if the trail does not pass

through Lij and the direction of edge i− j is i→ j.

Lemma 5 and 6 shows the good property on reversible edge i− j in the essential graph,

and Lij plays an important role in this discussion. All trails not passing through Lij are

blocked by empty set, and will not be activated by Lij if the direction is i → j. In other

words, only those trails that passes through Lij should be added into consideration when

determining the d-separation relations in DAG G.

Lemma 7. Let Gess be the essential graph of a DAG G and i− j be a reversible edge of Gess.

Then any neighboring triangle node s defined in Proposition 4 must be a common child of

o− j if the direction of edge i− j is i→ j. Here o is the closest node to s on the undirected

trail i− · · · − o− s.

Lemma 7 ensures the neighboring triangle node s is not the parent of node j in DAG G

if the direction is i → j. And s is in the downstream of i − j, thus the intervention on s

cannot affect the reversible edge i− j.

For instance, an essential graph G = K1 ∪K2 ∪K3 ∪K4 = {1, 2, 3} ∪ {4, 5, 6} ∪ {7} ∪ {8}

in Figure 4.3. And for any reversible edge i− j we can define Lij, still in Figure 4.3,

L12 = L13 = ∅, L45 = {2, 3, 6}, L46 = {2, 3, 5}, L56 = {2, 3, 4},
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6 8 7

Figure 4.3: An example of the essential graph.

and all reversible edges could be classified into two classes: (1) |Lij| = 0 (2) |Lij| ̸= 0. If the

reversible edge with |Lij| = 0, in this case, it can be in the root chain component K1 under

some chain component partition K1, . . . ,Km. To describe the I-Markov equivalence class,

we give the definition of I-essential graph GI at first:

Definition 9 ([HB12], Definition 11). The I-essential graph GI associated with G and I is

the graph

GI = ∪G′∈[G]IG
′
,

that is, GI is the smallest graph larger than every G ′ ∈ [G]I.

Recall [G]I represents the I-Markov equivalence class of graph G and the union is graph

theoretic union. Under this definition, GI is a subset of Gess, and its difference shows the

power of the family of targets I. [HB12] extend the characterization of essential graph in

Lemma 3 to the interventional case; see Lemma 8 below about I-essential graph.

Lemma 8 ([HB12], Theorem 18). GI is I-essential graph for some DAG D if and only if

(1) GI is a chain graph;

(2) Every chain component of GI is chordal;

(3) No induced subgraph of the form a→ b− c;

(4) Every arrow a→ b ∈ GI is I-strongly protected in GI;
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(5) GI has no line a− b for which there exists some I ∈ I such that |I ∩ {a, b}| = 1.

An arrow i → j is I-strongly protected if there exists I ∈ I such that |{i, j} ∩ I| = 1

or the arrow satisfies one of four configurations mentioned in Definition 7. The difference

between the definition of ’strongly protected’ and ’I-strongly protected’ is from the power

of intervention. The intervention can guarantee new identifiable edge orientation. In other

words, some new irreversible arrows would be brought into GI by the intervention, besides

those strongly protected arrows. Hence I-strongly protected arrows can be understood as

the combination of irreversible edges brought from intervention and the irreversible edges

given by graph structure itself.

Lemma 8 motivates us to approach the I-essential graph sequentially. Given essential

graph Gess and the intervention family I, define edge set

EI = {(i, j); i < j, i− j ∈ Gess|∃I ∈ I such that |I ∩ {i, j}| = 1}, (4.1)

which contains all the undirected edges can be determined with interventional data. In

practice, our algorithm can infer the edge direction for EI one by one, and apply Meek’s

rule to get the I-essential graph GI after all edges in EI are done.

The first row of Figure 4.4 shows three DAGs that are observationally Markov equivalent,

as they, G1,G2 and G3, have the same skeleton and a single v-structure 2 → 4 ← 3. Now

suppose G1 is the true DAG, which is targeted to recover from interventional data. For family

of targets I1 = {2}, edge 1−2 can be oriented, i.e. EI1 = {(1, 2)} defined in (4.1). With the

help of I1, there is a partition over three DAGs: [G1]I1 = {G1,G2} and [G2]I1 = {G3}, also

G1,I1 in Figure 4.4(e) is the I-essential graph corresponding to the interventional Markov

equivalence class [G2]I1 .

The true DAG G is indistinguishable with single intervention on {2}. To enhance the

power of intervention, if {3} is also intervened, now [G1]I1 can be partitioned more precisely;

check the difference between G{3}1 and G{3}2 in Figure 4.4. Let I2 = {{2}, {3}}, then [G1]I2 =
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(a) Gess.
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(b) G1.

1 2

3 4

(c) G2.

1 2

3 4

(d) G3.

1 2

3 4

(e) G1,I1 .

1 2

3 4

(f) G{2}1 .

1 2

3 4

(g) G{2}2 .

1 2

3 4

(h) G{2}3 .

1 2

3 4

(i) G1,I2 .

1 2

3 4

(j) G{3}1 .

1 2

3 4

(k) G{3}2 .

1 2

3 4

(l) G{3}3 .

Figure 4.4: An example of the edge orientation with intervention.

{G1}. In other words, we can find the true DAG G1 with the family of targets I2, i.e.

G1,I1 = G1. The edge set EI2 = {(1, 2), (1, 3)} and can be oriented sequentially in practice.

4.2 Edge Orientation with Experimental Data

To determine the direction of reversible edges, one preferred way is to test the difference

from intervention. Figure 4.5 gives an example to show this difference. And the motivation

s1 s2 s3

i j

(a) True DAG.

s1 s2 s3

i j

(b) Intervene on i.

s1 s2 s3

i j

(c) Intervene on j.

Figure 4.5: An example of the difference from intervention.

of our algorithm comes from one observation: if the true direction is i→ j, the intervention
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of node j will damage the local neighborhood of node j, but the intervention of node i will

not.

Assume i → j and i is under intervention, consider the common linked node, i.e. (a) in

Figure 4.2, there are three possible cases in the true underlying DAG: case (a) and (c) still

hold the graph structure in Figure 4.6, which implies the conditional relations and correlation

coefficients are invariant under intervention. Since the intervention cut the trail i ← s → j

in case (b), still seeking for some invariant quantity under intervention, conditioning on node

s is a good choice, as conditioning can be regarded as a blocking operation.

s

i j

(a) s is common child.

s

i j

(b) s is common parent.

s

i j

(c) s : i→ s→ j.

Figure 4.6: Three cases of common linked node in i→ j with intervened i.

We assume the joint distribution for X is defined by a set of SEMs with a DAG G, as in

Section 2.2.

Theorem 9. Consider a reversible edge i − j in an essential graph Gess. Suppose the

underlying DAG is G. If the edge direction is i → j in G, then the conditional distribution

[Xj | Xi, {Xs, s ∈ Lij}] is invariant after intervention on Xi.

From Theorem 9, to orient the direction of reversible edge, it suffices to check whether the

conditional distribution [Xj | Xi, {Xs, s ∈ Lij}] has changed under intervention. It is hard

to compare conditional distributions directly, so corresponding partial regression coefficients

can be a good substitute, as the invariant conditional distribution ensures the invariant

regression.

If Xi is under intervention in some intervention target,

Hobs,j∼i : Xj ∼ Xi,obs +XLij
, Hint,j∼i : Xj ∼ Xi,int +XLij

,

30



the first regression Hobs,j∼i uses observational data block, while the second one using inter-

ventional block with I = {i}. To represent the underlying linear equation, we always use

subscript 0 in all notations related to Hobs,j∼i and 1 for Hint,j∼i, and we use L to replace Lij

for simplicity,

Xj = β0,ijXi,obs + β0,LjXL + ε0,ij, Xj = β1,ijXi,int + β1,LjXL + ε1,ij,

with the invariant conditional distributions guaranteed by Theorem 9. Then the null hy-

pothesis,

H0 : Xi → Xj =⇒ H0 : β0,ij = β1,ij and var(ε0,ij) = var(ε1,ij), (4.2)

now we transfer the orientation problem to a two-sample test about the partial coefficients

of neighborhood linear regression.

To test the null hypothesis (4.2), the test statistics can be used is,

Ti→j =
β̂0,ij − β̂1,ij

sp,ij

√(
XT

0,ijX0,ij

)−1

ii
+
(
XT

1,ijX1,ij

)−1

ii

∼ tn1,ij+n2,ij−2pij , (4.3)

in (4.3),

sp,ij =

√
(n0,ij − pij)s20,ij + (n1,ij − pij)s21,ij

n0,ij + n1,ij − 2pij
, pij = |L|+ 1,

and Section 7.3 gives all details about the test statistics derivation. Then the direction of

edge can be determined through,

if |Ti→j| > α so H0 is rejected, (4.4)

here α is the critical value of test. If H0 is rejected, the alternative hypothesis leads to a
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different conditional distribution under intervention, based on above discussion also Theorem

9, we can orient Xi −Xj as Xi ← Xj in this case.

Remark 1. It’s not enough to use common parents only as regressors in the neighborhood

linear regression, as possibly there may be some common parents in DAG G hidden as common

linked nodes in the essential graph Gess, and the ignorance of such hidden common parents

is unacceptable. Notice that it is crucial to condition on all the common parents.

Remark 2. It is worthwhile to mention that, if j is under intervention with i → j, the

partial regression coefficient βGj

ij|Lij
= 0 may not hold, even no edge between i and j exists

under intervention. Suppose s is a hidden common child of i− j, coefficient βGj

ij|s is nonzero

because conditioning on s activates the trial i→ s← j.

4.3 Extend to A General Intervention Target

In previous section, we introduce the intuition of our method under single intervention, i.e.

only one node of {i, j} is intervened. Move to the general case, as we have no constraint on

the intervention target, some intervention target will be ’bad’ for our algorithm. Obviously,

the data block with intervention target Ik that both Xi and Xj are under intervention, that

is |Ik ∩ {i, j}| = 2, cannot provide any information about the reversible edge i− j.

Meanwhile, the node set [p] can be separated to three parts by i− j corresponding to one

typological sort: the upstream of i− j, the midstream between i− j and the downstream of

i−j. Intervention on the nodes of downstream could be safe in the most cases, since it cannot

influence the joint density of [Xi, Xj, XL] at all. The one special case is the common child

hidden in L, but which is avoidable in practice. Compared to downstream, intervention on

upstream will not change the structure of induced subgraph, and our interest, the conditional

density [Xj | Xi, XL] also keeps invariant.

Figure 4.7 shows a different case: if intervention target Ik contains any node from lk(ij),

i.e. |Ik ∩ lk(ij)| ̸= 0, this intervention can endanger the coefficient comparison in the regres-
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sion Xj ∼ Xi +Xs while the s ∈ lk(ij) is actually the common child node in the true DAG.

And those common child nodes hidden in the essential graph prevents us merging such kind

of blocks, since the [Xj | Xi, Xs] has changed over block 1 and 2.

s

i j

(a) Essential Graph.

s

i j

(b) True DAG.
s

i j

(c) Block 1 with I = {i}.

s

i j

(d) Block 2 with I = {i, s}.

Figure 4.7: Example about common child with intervention.

To solve this difficulty, use lk(ij) to classify and merge different intervention targets.

Recall our algorithm, to judge one undirected edge i − j, we need to run regressions Xj ∼

Xi+Xcp(ij)+Xlk(ij) over two paired data design matrices. Start from the most natural case,

in which we can construct a pair of two design matrices that have no intersection with lk(ij).

Here define two index sets,

Sobs = {k ∈ [B] | Ik ∩ {i, j} = ∅, Ik ∩ lk(ij) = ∅},

Sint = {k ∈ [B] | Ik ∩ {i, j} = {i}, Ik ∩ lk(ij) = ∅}.
(4.5)

If Sobs ̸= ∅ and Sint ̸= ∅, we can merge all data blocks indexed in Sobs to construct the

observational design matrix, that isX0,ij in (4.3), similarly constructX1,ij with Sint. Actually,

data block with intervention target Ik ∈ Sobs, |Ik| ̸= 0 can be regarded as ’purely observational

data’, and which implies that such kind of data blocks can be merged with the observational

block Ik = ∅ if there is. That’s important to include observational data into this merge step

as generally data block with Ik = ∅ has the largest sample size.

Due to the flexibility of intervention family I, one or both of (Sobs, Sint) defined in (4.5)
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could be empty. In this case, if we still plan to do edge orientation, for any Lsub ⊂ lk(ij),

Sobs = {k ∈ [B] | Ik ∩ {i, j} = ∅, Ik ∩ lk(ij) = Lsub},

Sint = {k ∈ [B] | Ik ∩ {i, j} = {i}, Ik ∩ lk(ij) = Lsub},
(4.6)

such that Sobs ̸= ∅ and Sint ̸= ∅, our algorithm still works on this dataset. The intuition

of (4.6) is that some intervention targets can ensure the same local environment around

undirected edge i− j such that it is still possible to approach the difference from intervened

node i only. Notice that Lsub can be empty, and which implies (4.5) is a special case of (4.6).

Theorem 10. For a reversible edge i − j and corresponding Lij in an essential graph Gess.

Suppose the underlying DAG is G. If the edge direction is i → j in G. Given the family

of interventional targets I, for any Lsub ⊂ lk(ij), if we can find (Sobs, Sint) defined in (4.6),

then the following conclusions hold:

(a) [Xj | Xi, {Xs, s ∈ Lij}] is invariant over interventions {Ik, k ∈ Sobs}, which we denote

as [Xj | Xi, {Xs, s ∈ Lij}]obs.

(b) [Xj | Xi, {Xs, s ∈ Lij}] is invariant over interventions {Ik, k ∈ Sint}, which we denote

as [Xj | Xi, {Xs, s ∈ Lij}]int;

(c) [Xj | Xi, {Xs, s ∈ Lij}]obs is the same as [Xj | Xi, {Xs, s ∈ Lij}]int.

Remark 3. The proofs of both Theorems 9 and 10 are based on the graph structure, and no

assumption on the joint distribution is involved in the invariance rule. The invariance rule

does not need Gaussian assumption, just a general SEM according to a DAG. Therefore, we

can apply this rule to other distributions, even discrete case.

Remark 4. It’s preferred to compare two coefficients instead of testing zero or nonzero of

marginal correlation ρij. Both Theorems 9 and 10 can be extended to the soft interventional

case, as the d-separation discussion among the proofs still works for the soft intervention.
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Due to high-dimensional setting and sparsity, the danger set lk(ij) would be much smaller

than the edge set [p]. Consider this, the merge step can be very useful such that both X0,ij

and X1,ij have adequate data samples. In practice, since observational data is cheap and

common, it is ideal to conduct the comparison based on (4.5). But still we are not preferred

to set any constraint on the intervention family I in this dissertation, and also to ensure the

integrity of the theoretical result, (4.6) is introduced.

In this case, given interventional target I and undirected edge i − j, the crucial step is

to search any Lsub ⊂ lk(ij) satisfied (4.6) such that both Sobs and Sint are nonempty. It

is possible that we can’t establish any test, if there is no feasible pair of (Sobs,Sint) given

specific interventional target I. Meanwhile, sometimes there are more than one Lsub ⊂ lk(ij)

can be found, and in this case multiple tests can be conducted for edge orientation. Number

the pairs of (Sk
obs,Sk

int) with k = 1, 2, . . . , K where K is the total number of such pairs. And

similar to (3.2), to handle multiple tests,

Xi → Xj =⇒ βk
0,ij = βk

1,ij and var(εk0,ij) = var(εk1,ij) for each (Sk
obs,Sk

int),

with k = 1, 2, . . . , K. The number of such tests K should be quite limited, and for simplicity

the rest of this dissertation will focus on the case having only one test, especially for the

consistency proof part; check Section 5.3 for details. Now we can give Algorithm 3 to

summarize the method introduced in this section.

The Algorithm 3 conducts only one side of the edge orientation, as it is always testing

the invariance relations after intervention on Xi. For reversible edge i−j, obviously not only

Xj ∼ Xi+XLij
, the reversal one Xi ∼ Xj+XLij

can also be used for the edge orientation. At

the population level, these two tests should be consistent, which means one always rejects H0

while another not. Sometimes we don’t have various enough intervention targets. In practice,

the orientation can be decided from one side regression only, or remain as an undirected edge

in result if two tests are inconsistent. And in this case, the orientation rule in lines 5-12 of
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Algorithm 3 Recover the Interventional Essential Graph (Population)
1: INPUT: essential graph Gess, intervention target I
2: OUTPUT: estimated I-Essential graph ĜI
3: repeat
4: select a pair of nodes (i, j) from edge set EI defined in (4.1)
5: if for (i, j), there exists a qualified pair (Sobs,Sint) satisfied rule (4.6) then
6: run regression Xj ∼ Xi,obs +XLij

on merged block indexed by Sobs
7: run regression Xj ∼ Xi,int +XLij

on merged block indexed by Sint
8: if β0,ij = β1,ij then
9: orient i− j as i→ j

10: else
11: orient i− j as j → i
12: end if
13: else
14: continue.
15: end if
16: until all undirected edges have been tested.

Algorithm 3 needs to be revised slightly to include the criteria for two tests.

To make it easier for understanding, Figure 4.8 serves as an example on how to implement

algorithm 3 in practice. There is one common parent and one common linked node in

Figure 4.8, and the family of intervention targets is I = {∅, {i}, {i, s1}, {s2}, {i, s1, s2}}.

Figure 4.9 shows all interventional graphs.

s1 s2

i j

(a) Essential Graph.

s1 s2

i j

(b) True DAG.

Figure 4.8: Undirected edge i− j with one common parent s1
and one common linked node s2.

Then there exists two possible pairs of (Sobs,Sint) considering lk(ij) = {s2}. The first

one is (S(1)
obs,S

(1)
int) = ({1}, {2, 3}), and another is (S(2)

obs,S
(2)
int) = ({4}, {5}). For (S(1)

obs,S
(1)
int), we

can merge data blocks X2 and X3, corresponding to I2 = {i} and I3 = {i, s1}, to prepare

interventional data blockX
(1)
1,ij, implied by S(1)

int = {2, 3}; observational data blockX
(1)
0,ij is just
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X1 as S(1)
obs = {1}. Finally conduct the partial neighborhood regressions Xj ∼ Xi+Xs1 +Xs2

on both X
(1)
0,ij and X

(1)
1,ij, and make the edge orientation based on the results from test (4.2).

s1 s2

i j

(a) I1 = ∅.

s1 s2

i j

(b) I2 = {i}.

s1 s2

i j

(c) I3 = {i, s1}.
s1 s2

i j

(d) I4 = {s2}.

s1 s2

i j

(e) I5 = {i, s1, s2}.

Figure 4.9: The interventional graphs with I.

We can construct another test on (S(2)
obs,S

(2)
int) separately. Observational data block X

(2)
0,ij

is X4, and interventional data block X
(2)
1,ij is X5 given (S(2)

obs,S
(2)
int) = ({4}, {5}). In practice,

edge orientation can admit the consistent result only, and abandon this attempt to leave the

edge remain undirected if two test results are inconsistent as expected.

4.4 Proof of Section 4

Proof of Lemma 5. It suffices to show that all the trails not passing through Lij will have

at least one collider. Based on Proposition 4, the trail must go though the node in case (c,

d, e) if not passing via Lij. For the common child case (c), it is trivial as s is collider in

i → s ← j. For (d) and (e), there are three possible cases of node s: i → j → s, i ← j →

s, i ← j ← s. We use i → j → s as an example to show why the trail connecting i and j

passing through s cannot avoid collider. First, the trail connecting i and j must look like

i→ j → s→ · · · as collider s is not preferred; then it will create a loop if there is no collider

in i → j → s → · · · ↔ i. So there must be a collider in the trail. Similar discussion for

i← j → s and i← j ← s.
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Proof of Lemma 6. Due to Lemma 5, all the trails not passing through Lij will have at least

one collider, and the collider itself cannot be in Lij. Thus it suffices to show that there exists

at least one collider, and any descendants of which are not included in Lij, , as d-separation

requires all colliders meet the rule.

In this case, we can focus on the first collider in trail j · · · → c ← · · · i, i.e. the nearest

collider to j. Let dashed line represent the connection between two vertices with trail of

length ≥ 1. In Figure 4.10, s ∈ Lij is the descendant of collider c and the direction between

i and j is i→ j.

s

ji

c

(a) s is the descendant.

s

ji

c

(b) i→ s and j → s.

s

ji

c

(c) i→ c and j → c.

Figure 4.10: The descendant of collider in trail connecting i and j.

Considering the trail between j and c, the arrow must point away from j in this trail

to avoid new v-structure i → j ← · · · . As c is the nearest collider to j, there is no more

colliders in the trail j → · · · → c, which means c is the descendant of j. Now the direction

of s and j must be j → s to avoid cycle among s, j and c. Then i→ s to avoid cycle among

i, j and s.

Right now we show s must be a hidden common child in Lij. Suppose c→ · · · → s1 → s,

it requires s1 ∈ ne(i) ∩ ne(j) such that there is no v-structures i→ s← s1 and j → s← s1.

Then we can repeat the discussion of last paragraph on vertex s1 to show that s1 is also the

common child of i and j. Finally, c is the common child of i and j in G.

Vertices i, j and s belong to one chain component in Gess. Recall the definition of chain

graph, it is impossible that i → c and j → c are visible in Gess. In other words, c is the
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hidden common child of i and j, i.e. c ∈ Lij. It implies contradiction as we have assumed

that the trail does not pass through Lij.

Proof of Lemma 7. Recall the formulation of neighboring triangle node. If the length of

undirected edge connecting i with s equals to 2, i.e. i − o − s, Figure 4.11 shows that s

is the common child of o and j. Once i → j, there must be j → s to avoid inducing new

v−structure (i, j, s); set o → s to avoid a loop o → j → s in case (a) and to avoid new

v−structure (i, o, s) in case (b, c). Thus s is the common child of o − s while i → j in all

cases.

o

i j

s

(a) i← o→ j

o

i j

s

(b) i→ o→ j

o

i j

s

(c) i→ o← j

Figure 4.11: Three cases of the neighboring triangle node s.

Furthermore, for the general case, suppose the undirected edge connecting i and s with

length k + 1 ≥ 3, the trail can be represented as i − · · · − ok − ok+1 − s. First, it is trivial

to show j → s as avoiding new v-structure i → j ← s. Then assume the statement is true

for k, ok+1 is the common child of ok and j. If s is not the common child of ok+1 and s,

there must be an edge between ok and s in the essential graph to eliminate possible new

v-structure ok → ok+1 ← s. In this case, there exists an undirected trail i− · · ·− ok− s with

length k. Contradict! Thus ok+1 is the common child of ok and j, and the whole statement

is true.

Proof of Theorem 9. We regard intervention on Xi as an additional parent Fi for Xi, and

denote this parent variable as node Fi in the graph. Based on Lemma 5, all trails with length

≥ 3 connecting Fi and j must go through s if the trail is active. Consider this, without loss

of generality, we simplify the whole problem to three cases; see Figure 4.12.
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Fi s

i j

(a) s is common child.

Fi s

i j

(b) s is common parent.

Fi s

i j

(c) s : i→ s→ j.

Figure 4.12: Introduce auxiliary node f to represent intervention on i.

It is easy to see that {i, s} d-separates Fi and j in Fig 4.12(b); and both i and {i, s}

d-separate Fi and j in Fig 4.12(a)(c). Return to the general case, given DAG G augmented

with additional node Fi, all trails between Fi and j are inactive, and they are blocked by

{i} ∪ Lij. Thus we have Xj independent of Fi given Xi, {Xs, s ∈ Lij}, which implies that

the conditional distribution [Xj|Xi, {Xs, s ∈ Lij}] is invariant after intervention on Xi.

Proof of Theorem 10. Add additional parent variables {fm}m∈I for {Xm}m∈I correspond-

ing to the intervention target I. And meanwhile there is an augmented graph with nodes

{fm}m∈I . Consider the trail fm → · · · ↔ s↔ j in the underlying true DAG G, s must be in

the ne(j).

Then for any s ∈ ne(j) but s /∈ Lij, recall the discussion in Section 4.1, s can be one

of the four cases: (1) single child of j; (2) common child of j; (3) single linked node of j;

(4) neighbored triangle node of j. For (1) and (2), it is trivial that the trail will look like

fm → · · · ↔ s ← j, which is blocked by some v-structure in the trail, if the observed set

S = ∅. Consider the observed set S = {i} ∪Lij, it is possible that the v-structure collider is

included in S such that the trail is activated. Assume s0 ∈ S = {i} ∪ Lij is the collider in

the trail, it is easy to find:

fm → · · · → s0 ← s← j is active given S ⇐⇒ fm → · · · → s0 ← j is active given S, (4.7)

notice that if LHS exists, there must have a trail in the RHS of (4.7), since s0 ∈ S ⊂ ne(j)

and s0 → j would lead to a loop. Actually (4.7) shows that we can simplify the discussion
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to the trails go through {i} ∪ Lij, which is the topic in the next paragraph. For (3) and (4),

rely on Lemma 7, the trail will still look like fm → · · · ↔ s← j, similarly to (1) and (2).

Next focus on the trails like fm → · · · ↔ s ↔ j with s ∈ {i} ∪ Lij. If s ∈ pa(j), then

by local Markov property, pa(j) blocks all trails from fm to j. If s ∈ {i} ∪ Lij − pa(j), s

must be a child of j in the true underlying DAG G. In other words, only if s ∈ lk(ij) ∈ Lij

and actually s is a hidden common child, the trail could be active given the observed set

S = {i} ∪ Lij.

Based on the discussion above, given the observed set S = {i} ∪ Lij, any trail like

fm → · · · ↔ s ↔ j would be blocked by S unless s is a hidden common child node. Thus

to determine fm and j is d-separated or not given S in the augmented graph, it suffices to

check the status of trail via hidden common child nodes.

Consider node m /∈ Lij, assume fm → m → s ← j is active given observed s; see

Figure 4.13(a). However it is illegal graph, as it contains two v-structures m → s ← j and

m→ s← i. Both will lead to the directed edge j → s in the essential graph. If we eliminate

v-structures by connecting m to both i and j, then m ∈ Lij conflicts the assumption; see

Figure 4.13(b).

Actually m can only be a hidden common child to make the trail active, since observed

m would block the trail like fm → m→ j. It is a stronger result but we cannot distinguish

any hidden common child from the essential graph in practice, thus let’s focus on lk(ij).

fm m s

i j

(a) illegal graph.

fm m s

i j

(b) no v-structure.

Figure 4.13: Example for non-hidden common child node m.

Finally, we already show there is no active trail between fm and j given the separated
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set S = {i} ∪ Lij for any m /∈ lk(ij). In order words, if i→ j, then

Xj ⊥ Fm | {Xi, Xs, s ∈ Lij},

for any m /∈ lk(ij). Return to the definition of Sobs,

Xj ⊥ Fm | {Xi, Xs, s ∈ Lij, FLsub
= do(L∗

sub), Flk(ij)−Lsub
= idle}, (4.8)

for any m /∈ lk(ij) where L∗
sub denotes the intervened values.

Now (4.8) suffices to prove the result in (a). To prove (b),

Xj ⊥ Fi | {Xi, Xs, s ∈ Lij, FLsub
= do(L∗

sub), Flk(ij)−Lsub
= idle}, (4.9)

actually (4.9) is a special case of (4.8), and no additional comment is required, as the trail

like fi → i→ j is blocked by {i} trivially.

Base on the definition of (Sobs, Sint) defined in (4.6), we can combine (a) and (b) to get

result in (c).
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CHAPTER 5

High-Dimensional Consistency

Let us revisit notations defined in Section 2 before moving to the consistency results. A

Gaussian DAG model can be represented as a linear structural equation model,

Xj =
∑

k∈pa(j)

βkjXk + εj, j = 1, 2, . . . , p, (5.1)

where ε1, ε2, . . . , εp are independent and εj ∼ N (0, ω2
j ). Here pa(j) represents the parent

node set of j, and βkj ̸= 0 only if (k, j) ∈ E. The coefficient βkj represents the causal effect

of Xk on Xj. The SEM (5.1) defines a joint Gaussian distribution for,

X = (X1, X2, . . . , Xp) ∼ Np(0,Σ), (5.2)

Our methods apply to any type of intervention target family, I = {I1, I2, . . . , IB}. A

general n× p data matrix X generated under I consists of a number of data blocks Xi with

ni rows and p columns for i = 1, 2, . . . , B. Each row within the same block Xi is drawn i.i.d.

from N (0,Σi), but data rows from different blocks are not identically distributed. Here Σi

corresponds to ΣIi in (5.2) to simplify the notation. An observational data block if exists

could be treated as I = {∅} for notation consistency. To make it easier to understand, the

general setting of data under a family of intervention targets I = {I1, I2, . . . IB} is:
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X =


X1

X2

...

XB

 ∼

N (0,Σ1)

N (0,Σ2)
...

N (0,ΣB)

 with
B∑
i=1

ni = n.

And now we can start the discussion on consistency results.

5.1 Assumptions

Some assumptions are required to establish the theoretical results under the sparse high-

dimensional settings.

Assumption 1. Dimension assumption: p = O(na) with some non-negative constant a ≥ 0.

For a ≥ 1, we have a high-dimensional setting of p≫ n.

Assumption 2. Sparsity assumption:

s = max
i∈1,...,p

|ne(Xi)| = O(n1−b), with constant 1/2 < b ≤ 1.

Assumption 3. There is a uniform upper bound of diagonal entries over all covariance

matrices:

max
i=1,...,B

{
max

j=1,...,p

(
Σi
)
jj

}
≤ σ̄2. (5.3)

The upper bound on diagonal entries in (5.3) can be used as an upper bound on var(Xi).

Suppose the interventional distribution is N (0, τ 2) for some intervened node, it’s easy to see

assumption 3 also bounds the variation of intervened value.

44



Assumption 4. There is a uniform lower bound of the minimal eigenvalue over all covari-

ance matrices:

min
i=1,...,B

{
λmin

(
Σi
)}
≥ σ2

∗, (5.4)

here λmin(·) represents the minimal eigenvalue.

Assumption 4 provides a uniform lower bound for variance of noise in neighborhood linear

regression, see details in proof chapter, and also implies a lower bound for marginal variance

var(Xi) and the variance of interventional variable τ .

Definition 10. Strong Faithfulness with respect to the SEM (2.1): infi,j,S{|ρi,j|S| : ρij|S ̸=

0} ≥ cn for cn = Ω(n−d), where the constant d ∈ (0, b/2).

Strong faithfulness assumption reveals the signal strength contained in a network. One

intuition is the weak signal strength will cause the failure of structure recovery. That’s

why many researchers relies on this assumption, especially in discussion of consistency: PC

algorithm [KB07], GES [NHM18]. [GB13] substitute strong faithfulness with beta-min con-

dition, which requires a part of edges with enough signal strength. This dissertation does

not require the original version of strong faithfulness, in this case it is listed as a definition

not assumption for reference here.

Since we always use partial regression coefficients instead of partial correlation coefficients,

it is worthwhile to mention that,

βij|S = ρij|S
σji|S
σij|S

=⇒ ρij|S = βij|S
σij|S
σji|S

, (5.5)

here σ2
ij|S is the conditional variance,

σ2
ijS = Var(Xi | Xj, XS) =⇒ σ2

ij|S is the variance of noise in Xi ∼ Xj +XS ,
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see Section 5.1.3 in [Lau96], here βij|S represents the coefficient of Xj in regression Xi ∼

Xj +XS . Then with Assumption 4 and 10,

βij|S = ρij|S
σji|S
σij|S

=⇒ |βij|S | ≥ ψn = cnσ∗/σ, (5.6)

therefore ψ−1
n = O(nd).

5.2 High-Dimensional Consistency of Algorithm 1

To ensure the interventional PC algorithm can recover every edge in the graph skeleton, as

discussed in Section 3.1, also Definition 6, there is one assumption about the intervention

design:

Assumption 5. For any (i, j), the correlation between node i and j is accessible under the

family of targets I.

Even the edge between i and j is accessible under I, it still cannot guarantee the success

of edge detection. We hope at least one design I ∈ I could keep the signal strength for node

i and j, that is, the strong faithfulness bound given in Assumption 10 still hold in graph G{I}
under intervention I. Let ρIij|S represent the partial correlation with intervention design I,

to estimate the whole skeleton, we give the following assumption on interventional target:

Assumption 6. For any (i, j, S) with ρij|S ̸= 0, there exists an intervention target I ∈ I

such that |ρIij|S| ≥ cn = Ω(n−d), where the constant d ∈ (0, (b− q)/2).

This assumption guarantees that strong faithfulness is preserved under intervention. It

could be satisfied naturally by adding observational data, i.e. ∅ ∈ I, which often happens in

the real life as observational data is always cheaper and much easier to collect compared to

interventional data. Assumption 6 contains an interventional version of strong faithfulness

assumption, which avoids some extreme intervention target. For example, if intervention
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target I = [p], i.e. all nodes intervened, in this case no information about the graph structure

could still remain in the data. A similar assumption is proposed in [HB15], in which they

impose faithfulness assumption for all intervention targets. Here, in Assumption 6, we

don’t require a uniform strong faithfulness assumption over all intervention targets, instead

assuming for any (i, j,S) there exists at least one feasible intervention target, which plays

an important role in judgement of edge i− j.

To understand the constant value d, the smaller d means the stronger signal required for

the graph structure learning. Assumption 6 shows that two constants can affect the range of

d. For big b and small q, the weaker signal strength is acceptable, as upper bound (b− q)/2

has been lifted. It meets intuition that the sparser graph with less number of interventions

can lead to an easier task for structure learning.

Consider the probability of error when testing correlation ρij|S in (3.4):

P (Eij|S) = P (EI
ij|S) + P (EII

ij|S) = P
(
|T k

ij|S | ≥ αn, ∃k | ρij|S = 0
)
+ P

(
|T k

ij|S | ≤ αn, ∀k | ρij|S ̸= 0
)
.

(5.7)

For the first term in (5.7),

P (EI
ij|S) = P

(
|T k

ij|S | ≥ αn, ∃k | ρij|S = 0
)

= P
(
|T k

ij|S | ≥ αn, ∃k | βk
ij|S = 0, ∀k

)
= 1− P

(
|T k

ij|S | ≤ αn, ∀k | βk
ij|S = 0, ∀k

)
= 1−

B(i,j)∏
k=1

P
(
|T k

ij|S | ≤ αn | βk
ij|S = 0

)
≤ 1− (1−∆)B(i,j) ≤ |I|∆. (5.8)

Let ∆ represent a uniform bound such that P
(
|T k

ij|S | ≥ αn | βk
ij|S = 0

)
≤ ∆ exists for

any k. The bound derived in (5.8) motivates a constraint for the number of intervention
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blocks:

Assumption 7. The sample size of each intervention block, nk ≿ n1−q, for all k = 1, . . . , B.

This implies that B ≾ nq for 0 < q < b, where B is the number of intervention blocks.

For the second term in (5.7),

P (EII
ij|S) = P

(
|T k

ij|S | ≤ αn, ∀k | ρij|S ̸= 0
)
= P

(
|T k

ij|S | ≤ αn, ∀k | βk
ij|S ̸= 0, ∃k

)
, (5.9)

here Assumption 6 implies that there always exists k such that βk
ij|S ̸= 0 once ρij|S ̸= 0

is nonzero, which induces the second equality in (5.9) as the conditioning set is the same.

For every (i, j,S), the intervention design ensures correlation satisfying strong faithfulness

is crucial in discussion. Here we use the superscript small o to mark all the notations related

this intervention design and corresponding block. For example, T o
ij|S is the t-statistic in this

data block, and similarly for other notations, then the Type II error,

P (EII
ij|S) ≤ P

(
|T o

ij|S | ≤ αn | βo
ij|S ̸= 0

)
, (5.10)

and the bound of (5.10) requires 0 < d < (b− q)/2 in Assumption 10, which is stricter than

the common assumption 0 < d < b/2 in some exsiting results.

We can conclude the consistency result of algorithm 1 by bounding the errors of all tests

with assumptions introduced in the last and this section. It is worth to mention that the

consistency result keeps valid in both fixed p and high dimensional setting.

Theorem 11. Under assumption 1-7, let Ĝske be the output of algorithm 1. Then there

exists a sequence αn →∞ such that,

lim
n→∞

P (Ĝske = Gske) = 1,

Gske is the skeleton of graph G.
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Remark 5. The correctness of Algorithm 2 totally depends on the skeleton and separation

sets [Mee95], which means the high-dimensional consistency of Algorithm 1 also guarantees

the CPDAG recovery, since all randomness is included in Theorem 11.

5.3 High-Dimensional Consistency of Algorithm 3

In Section 4.3, the node set [p] can be separated to three parts by i− j corresponding to one

typological sort: the upstream of i− j, the midstream between i− j and the downstream of

i−j. Intervention on the nodes of downstream could be safe in the most cases, since it cannot

influence the joint density of [Xi, Xj, XL] at all. The one special case is the common child

hidden in L, but which is avoidable in practice. Compared to downstream, intervention on

upstream will not change the structure of induced subgraph, and our interest, the conditional

density [Xj|Xi, XL] also keeps invariant. But the joint density may be impacted hugely by

this kind of intervention, for instance, we choose the simplest upstream node, a common

parent:

s

i j

(a) Observational Graph.

s

i j

(b) Block 1, I1 = {i}.

s

i j

(c) Block 2, I2 = {i, s}.

Figure 5.1: Common parent node in i→ j with different intervention targets.

In Figure 5.1, we do regress Xj ∼ Xi+Xs. If (a) is true, the conditional distribution [Xj |

Xi, Xs] will be invariant in (b) and (c), which implies the regression coefficients and variance

of regression noise would keep exactly the same over interventional blocks {i}, {i, s}, thus it

is reasonable to merge these two data blocks together; see Theorem 10. The potential danger

difficulty in theoretical analysis of the least-squares estimator β̂ is about the intervention

on node Xs, suppose Xs ∼ N (0, τ 2s ), the joint density of [Xi, Xj, Xs] would be different

given different τs. The most straightforward impact is that we cannot treat the rows in
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blocks I1 = {i} and I2 = {i, s} as identical data samples. Let N (0,Σ{i}) represent the

interventional distribution in block I1 and N (0,Σ{i,s}) for I2, generally Σ{i} and Σ{i,s} are

different covariance matrices.

From another perspective, if we set τs as an extreme large value, the whole local system

would be more variant than before. It brings a challenge in the coefficient test, since the

power of test is related to the variance of estimated coefficients. The variance in distribution

of β̂j|i,s will change due to different τs.

To eliminate the impact from upstream intervention nodes, one way is to set the inter-

ventional distribution N (0, τ 2s ) with τ ss = var(Xs), i.e. the intervention should keep the

variance magnitude on intervened node s. In practice, someone can estimate var(Xs) from

purely observational data and then conduct the experiments. Then consider the theoretical

part, now two covariance matrices Σ{i} and Σ{i,s} are the same.

Figure 5.2 shows another different case about the effect while intervening on the node

from cp(ij). Compared to single intervention on {i}, in block 2 with {i, s2}, the extra

intervention on s2 will affect the covariance matrix of joint density [Xj, Xi, Xs1 , Xs2 ], as

the cov(j, s1) changed. This impact cannot be corrected by adjusting the interventional

distribution on Xs1 or Xs2 , which introduced in last paragraph has its own limit.

s1 s2

i j

(a) Essential Graph.

s1 s2

i j

(b) True DAG.
s1 s2

i j

(c) Block 1 with I = {i}.

s1 s2

i j

(d) Block 2 with I = {i, s2}.

Figure 5.2: Example about path cut off by intervention.

However in Figure 5.2 we can still merge block 1 with block 2 as the conditional distri-
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bution [Xj | Xi, Xs1 , Xs2 ] keeps invariant. To ensure the power of test in (4.3) is still at a

good stage, mild assumption is set on the covariance matrix of each block, since intuitively

any single block with extreme value can harm the whole test on the merged bigger block; see

assumption (4). Furthermore, check Lemma 12 about details on how to bound
(
XTX

)−1

jj
, a

key part of our test statistic, with mixture data.

Figure 5.1 and Figure 5.2 focus on the upstream of i − j, i.e. the interaction between

common parent node with intervention; the midstream of i− j has the similar behavior, as

the path is i→ s→ j and s is the parent of j. To solve this difficulty, also considering rows

of our design matrix in regression are independent but not identical, Lemma 12 is introduced

to handle such mixture data.

Lemma 12. Suppose random matrix X ∈ Rn×d has C submatrices and each submatrix Xi

is drawn from the Σi-Gaussian ensemble with ni ≥ d,

X =


X1

X2

...

XC

 ∼

N (0,Σ1)

N (0,Σ2)
...

N (0,ΣC)

 with
C∑
i=1

ni = n,

then for all 1 > δ > 0,

P

(√
(XTX)−1

jj ≥
2

σ∗δ
√
n

)
≤ Ce−n∗(1−δ)2/2 for j = 1, . . . , d, (5.11)

here σ∗ = mini=1,...,C{γmin(
√
Σi)} and n∗ = mini=1,...,C{ni}.

Remark 6. A relatively less number of submatrices can provide tighter probability bound as

the number C shown in (5.11). This could be satisfied as we already discussed how to ensure

the data sample identical by choosing good intervention variables in practice, for example,

set the interventional distribution as N (0, τ 2s ) with τ ss = var(Xs). A constant number C is

preferred which doesn’t vary as n increases. But it is actually not the pain point for the
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proof of consistency, as exp(−n∗(1− δ)2/2) in (5.11) will dominate the bound such that the

probability decays to zero quickly. Notice that C cannot equal to n. If each row of the data

matrix has its own intervention such that C = n and then n∗ = 1, the probability bound in

(5.11) is meaningless.

Remark 7. This lemma requires a uniform lower bound about minimal eigenvalues over

all covariance matrices, which implies a constraint on the magnitude of variance for those

interventional distributions in Assumption 4.

Algorithm 3 can orient reversible edge in the essential graph Gess only if there exists a

qualified pair (Sobs,Sint) satisfied rule (4.6) under the family of intervention targets I. Define

edge set:

ẼI = {(i, j); i < j, i− j ∈ Gess | ∃(Sobs,Sint) satisfied rule (4.6)}, (5.12)

here ẼI contains all edges feasible to orient by Algorithm 3. Compare ẼI with EI defined

in (4.1), generally ẼI ⊆ EI without any constraint on I.

Assumption 8. Given the family of targets I, ẼI = EI in the essential graph Gess.

Finally, for consistency result, we focus on single test, i.e. assuming that we can always

establish the test based on (4.5). To prove the consistency, let ζij represent the fraction of

data used in regression Xj ∼ Xi+XLij
where Lij is determined by the neighborhood of i− j

in the essential graph Gess then,

ζijn = ζ0,ijn+ ζ1,ijn = n0,ij + n1,ij.

Ideally ζij can equal to one.
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Assumption 9. Consider essential graph Gess, given the family of targets I,

ζ0,ij ∧ ζ1,ij ≥ ζ =⇒
√
ζ0,ijζ1,ij√

ζ0,ij +
√
ζ1,ij
≥
√
ζ2/(
√
1 +
√
1) = ζ/2, (5.13)

for any (i, j) ∈ EI and set ζ ≿ n−q, where the constant q ∈ (0, 1).

Remark 8. Equation (5.13) reveals two perspectives about the sample size of two design

matrices: (1) Both ζ0,ij and ζ1,ij should be large enough. (2) It’s better to have the closer

ζ0,ij and ζ1,ij leading to balanced sample sizes if the sum ζij is constant as the optimal split

is to maximize the ratio
√
ζ0,ij(ζij − ζ0,ij)/

√
ζ0,ij

√
(ζij − ζ0,ij).

Assumption 9 requires constant q to control the magnitude of the sample size. We use

the consistent notation with Assumption 7, as both of them are focused on the sample size.

There is no real constraint on the range of constant q given in the Assumption 9, but actually

this constant should be considered together with d in Assumption 10.

Assumption 10. (Bounds on the gaps of partial correlations between pre- and post-intervention)

For each (Sobs,Sint) defined in 4.6, let ρ0,ij|L represent the partial correlation corresponding

to Sobs and use ρ1,ij|L for Sint,

inf
i,j,L
{
∣∣|ρ0,ij|L| − |ρ1,ij|L|∣∣} ≥ cn, (5.14)

for cn = Ω(n−d), where the constant d ∈ (0, (1− q)/2).

In (4.2), it is shown that the partial regression coefficients would be invariant with i→ j

when regressing Xj on Xi, i.e. β0,ij = β1,ij. Consider the null hypothesis is not true, if j → i,

the magnitude of |β0,ij−β1,ij| is crucial as it represents the signal strength of this intervention.

If there is no hidden common child added into the regression, all trials connecting i and j will

be blocked by L such that β1,ij equals to 0. In this case, the strong faithfulness assumption

will guarantee a trivial bound for the absolute value of difference, i.e. Assumption 10.
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s

i j

(a) Observational block.

s

i j

(b) Intervention {i}.

Figure 5.3: Intervene on node i while j → i.

However, if any hidden common child is added into the regression, there is one active trail

between i and j since the common child is conditioned, which means now β1,ij is nonzero.

In this case, the bound of signal strength is non-trivial. Figure 5.3 shows this issue for

instance, in which the coefficient β1,ij of regression Xj ∼ Xi+Xs on interventional block (b)

is nonzero.

To bound the signal, without loss of generality, assume both β0,ij and β1,ij are positive:

|β0,ij − β1,ij| =
∣∣∣∣ρ0,ij|sσ0,ji|sσ0,ij|s

− ρ1,ij|s
σ1,ji|s
σ1,ij|s

∣∣∣∣ ≥ ∣∣∣∣ρ0,ij|sσ∗σ − ρ1,ij|s σσ∗
∣∣∣∣ , (5.15)

furthermore as ρij = 0 in the interventional graph,

ρ1,ij|s =
ρij − ρisρsj√

1− ρ2is
√

1− ρ2sj
= −ρ0,is|jρ0,sj|i,

then (5.15),

|β0,ij − β1,ij| ≥
∣∣∣∣∣∣ρ0,ij|s∣∣ σ∗σ − ∣∣ρ0,is|jρ0,sj|i∣∣ σσ∗

∣∣∣∣ , (5.16)

(5.16) is the simplest case with three nodes.

The general intuition of Assumption 10 is the direct cause of the j → i in the graph should

be stronger than other causes via trails like i→ s← j. And (5.16) shows that this actually

works for the simplest case, if we assume ρ0,ij|s, ρ0,is|j and ρ0,sj|i have the same magnitude,

as all of them are smaller than 1. However, it is not trivial to give explicit expression of the

54



partial correlations for the general case. We still choose to list this Assumption 10 as (5.14).

Another potential gap is the role of σ and σ∗ in (5.15), and we suppose it can be ignored for

asymptotic results.

Now we can give our main result for this section.

Theorem 13. Under assumptions 1-4 and 8-10, let ĜI be the output of algorithm 3. Then

there exists a sequence αn →∞ such that,

lim
n→∞

P (ĜI = GI) = 1,

where GI is the interventional essential graph.

Actually in proof of Theorem 13, we set αn = O(n1/2−d−q/2) to show the consistency

results. And for proof, it is hard to give a precise estimation of the number of reversible

edges. Since we start from CPDAG, one acceptable upper bound is ps/2, which is the worst

case that all edges are reversible. Then we need to do at most ps/2 × 2 = ps times of

regressions. In practice, the actual number of tests will be much smaller than ps.
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CHAPTER 6

Simulation Results

6.1 Single Edge Orientation Simulation

Algorithm 3 introduced in previous chapter could be simplified to a single edge orientation

solution, i.e. focus on only one reversible edge instead of the recovery of the whole interven-

tional essential graph. To show the power of Algorithm 3 also the efficiency of test statistics

in (4.3), this simulation would prepare 1000 undirected edges for edge orientation, then

the simulation can calculate the error or accuracy of the test based on the results of 1000

runnings.

For data generation, the first step is to build the adjacency matrix A of the graph. To

ensure the randomness of the graph structure, here the entry ofA is drawn from the Bernoulli

distribution Bernoulli(s) and all upper triangle including diagonal entries are set to zero

to meet the DAG requirements. Then, corresponding to generated adjacency matrix A, we

can prepare the coefficient matrix B, and finally collect data samples using SEM introduced

in (2.1).

Here are some parameters:

• p = 20, s = 4/p = 0.2;

• βij ∼ Unif ((−0.8,−0.1) ∪ (0.1, 0.8));

• the sample size set is n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100};

• the noise distribution is ϵi ∼ N (0, 0.1) in SEM (2.1);
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• the intervention distribution is τi ∼ N (0, 0.1) if some node is intervened.

Once we generate a graph, immediately we can find its CPDAG or essential graph, only

some reversible edges are left to be oriented. It is hard to give a precise estimation of

the number of reversible edges in one CPDAG, but simulation shows that this number is

relatively small due to the graph sparsity. Generally, we can only get several reversible

edges from one randomly generated graph. Considering this, in this simulation we are using

many randomly generated DAGs with different graph structures to ensure there are 1000

undirected edges in the simulation. It is preferred to have different graph structures as it

can show the edge orientation rule works under various circumstances.

The last setting is the intervention family I, here we include the single interventions on

all nodes also with purely observational data:

I = {∅, {1}, {2} . . . , {20}} ,

this intervention family guarantees that any reversible edge i − j can be oriented with our

algorithm. And given i − j with true direction i → j, there are two directions of tests for

edge orientation, and one shows the Type I error of edge orientation while another is referred

to the Type II error.

Figure 6.1 meets our expectations about the test statistics in (4.3). The choice of α can

control Type I error, and Type II error will decay quickly as sample size increases.

As the intervention family I given in this section includes single intervention target

for each node, we can conduct two edge orientation tests for every undirected edge. For

example, consider the undirected edge i − j, let us orient edge by checking the invariance

relation between pre- and post-intervention on node i first, and then implement on node j.

If both results are consistent and correct according to the true DAG structure, we will count

this edge orientation as a success. Based on this, we calculate the ratio of successes over

N = 1000 runs, and referred as accuracy in Figure 6.1.
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Figure 6.1: Type I and type II error with different α ∈ {0.1, 0.05, 0.001}.
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Figure 6.2: Accuracy performance when two tests are combined.

6.2 Interventional Essential Graph Recovery

We discuss how to modify the classic PC algorithm in section 3 and suggest Algorithm 1 to

recover the skeleton from interventional data. Then Algorithm 3 makes it possible to find

the interventional essential graph. Combine these algorithms together,

Fullly-Connected Graph int-PC−−−→ Skeleton Meek’s rule−−−−−−→ CPDAG EO−−→ I-Essential Graph,
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here we use int-PC to represent our intervention PC algorithm, and EO for edge orientation

step.

To build the theory, multiple tests are required to ensure the test reliable. However, in

practice, the limit of multiple tests is the sample size of each intervention data block would

be quite limited, even though we prove the consistency of the int-PC algorithm. To increase

the sample size, in this simulation, int-PC algorithm will remove any data blocks that either

node i or node j is under intervention while determining the existence of edge i − j, and

merge all other blocks.

It is tough to generate data for this simulation, as the edge orientation requires there

exists intervention target feasible for the undirected edge. In our practice, the number of

undirected edges remained in the CPDAG is quite limited if we create the graph structure

randomly. Consider this, in this section, we design three DAG structures and corresponding

intervention families to evaluate the performance of algorithms.

Table 6.1 shows the configurations of simulations in this section. This design meets two

expectations to show the power of edge orientation: there are enough undirected edges in the

CPDAG; and the intervention family can help us orient them as many as possible. Actually,

among our configurations, all the edges in the CPDAGs are undirected. And intervention

makes the I-essential graph is the same as the true DAG.
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(a) True DAG.
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(b) Essential Graph.

Figure 6.3: The DAG used for data generation with p = 9.
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p num of blocks total sample size graph structure intervention family
simulation 1 9 6 6*50 Figure 6.3 {{1}, {2}, {3, 4},

{6, 8}, {5, 7, 9}, ∅}
simulation 2 17 10 10*50 Figure 6.4 {{1}, {2}, {3}, {4,

6}, {5, 7}, {8, 10},
{9, 11}, {12, 14,
16}, {13, 15, 17},
∅}

simulation 3 49 26 26*20 Figure 6.5 {{1}, {2}, {3}, {4,
6}, {5, 7}, {8,
10}, {9, 11}, {12,
14, 16}, {13, 15,
17}, {18}, {19},
{20, 22}, {21, 23},
{24, 26}, {25, 27},
{28, 30, 32}, {29,
31, 33}, {34}, {35},
{36, 38}, {37, 39},
{40, 42}, {41, 43},
{44, 46, 48}, {45,
47, 49}, ∅}

Table 6.1: Configurations of Structure Recovery Simulations.
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(b) Essential Graph.

Figure 6.4: The DAG used for data generation with p = 17.

Here are two tuning parameters, one αpc is used in int-PC algorithm and another αeo
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Figure 6.5: The DAG used for data generation with p = 49.

works for edge orientation. In this simulation, we choose the int-PC parameters from αpc ∈

{0.1, 0.01, 0.005, 0.001, 0.0005, 0.0001} and set edge orientation parameter as αeo = 0.05. No-

tice that the score-based method GES we used for comparison has no tuning parameter.

Performance metrics are calculated by comparing the estimated ĜI with the true I-

essential graph GI . P is the number of edges in the estimated graph. TP is the number

of true positive edges, corresponding to consistent edges between the estimated I-essential

graph and the true I-essential graph. FP counts the number of edges in the estimated graph

but not in the true skeleton. Inversely, M counts the number of edges in the true I-essential

graph but not in the skeleton of estimated graph. R is the number of reversed edges, and

it includes two kinds of edges: (1) the directions of edge are inconsistent between true and

estimated graph; or (2) the edge remains undirected in the estimated (true) graph, but has

its direction in the true (estimated) graph. Notice undirected edge will be counted twice

into these metrics.

Then structural Hamming distance (SHD) and Jaccard index (JI) can be defined to

evaluate the overall performance of graph structure learning:

SHD = R + FP + M, JI = TP/(s + P − TP),
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where s the number of edges in the true I-essential graph. A lower SHD or a higher JI

indicates better performance of the estimation results. TRP and FPR are defined as

TPR = TP/s, FPR = (R + FP)/P.
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Figure 6.6: The comparison of methods with p = 9.

From Figure 6.6, 6.7 and 6.8, edge orientation works well over these three plots. The gap

between the green box (int-PC) and blue box (int-PC+EO) shows the power of the edge

orientation. However, GIES shows better performance with p = 9 and p = 17. The main

reason is that GIES as a score-based method can over-perform PC algorithm in the skeleton

and CPDAG recovery step when the number of variables are limited. As we mentioned in

Section 1, the score-based method may meet difficulty to handle the huge search space when

we increase the number of variables.

In Figure 6.8, we use the DAG with p = 49, and the SHD of GIES is much lower than

int-PC plus EO, as Table 6.2 shows GIES has more false positives. Compared to GIES,

constraint-based methods are more conservative at this time when introducing new edges
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Figure 6.7: The comparison of methods with p = 17.
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Figure 6.8: The comparison of methods with p = 49.

into the estimated results. Notice that the main trend and performance of boxes in these

Figures are dominated by skeleton recovery, instead of the edge orientation. If we cannot
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get the high quality estimation of skeleton, there is no space for the edge orientation.

method P TP R FP M TPR FPR SHD JI

p = 9

PC 12.48 5.31 7.03 0.14 2.46 0.44 0.58 9.63 0.28
Int-PC. 12.89 5.78 7.06 0.05 2.10 0.48 0.56 9.21 0.30

Int-PC + EO 10.65 5.58 5.02 0.05 2.10 0.47 0.48 7.17 0.34
GIES 12.30 11.04 0.63 0.63 0.33 0.92 0.10 1.59 0.84

p = 17

PC 23.94 11.02 12.59 0.33 4.53 0.46 0.54 17.45 0.30
Int-PC. 25.23 12.32 12.72 0.19 4.13 0.51 0.51 17.04 0.36

Int-PC + EO 21.10 11.98 8.94 0.18 4.13 0.50 0.43 13.25 0.37
GIES 25.63 20.95 1.76 2.92 1.29 0.87 0.18 5.97 0.74

p = 49

PC 21.00 9.68 10.39 0.93 9.73 0.40 0.54 21.05 0.27
Int-PC. 21.37 10.00 10.55 0.82 9.75 0.42 0.53 21.12 0.28

Int-PC + EO 17.15 8.72 7.68 0.75 9.75 0.36 0.49 18.18 0.27
GIES 63.72 16.78 4.48 42.47 2.74 0.70 0.73 49.69 0.24

Table 6.2: Numerical results of structure learning with PC, Int-PC, Int-PC+EO and GIES.

6.3 Implement Edge Orientation on GES

Figure 6.6 and 6.7 shows that the score-based learning has some advantages when the num-

ber of variables is relatively small. Also observational data is generally cheaper than the

experimental data in the real world practice. Based on this, since our edge orientation

method can be used independently of the PC algorithm. In this section, we implement the

GES algorithm on observational data first, and then implement our EO on the estimated

CPDAG.

The graph structure and parameter settings are the same as the simulation 2 in Table

6.1. The only difference is: we increase the sample size of observational block for GES to

learn the CPDAG. The size of each interventional block is 100 and observational block is

1000.

From both Figure 6.9 and Table 6.3, the edge orientation finishes its job quite well.

Edge orientation decreases the SHD and increases the JI, both of which indicate the better
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Figure 6.9: Implement edge orientation on GES output.

method P TP R FP M TPR FPR SHD JI

p = 17
GES 31.52 17.63 11.92 1.97 1.93 0.73 0.43 15.82 0.47

GES + EO 24.41 17.54 5.12 1.75 1.93 0.73 0.28 8.80 0.58

Table 6.3: Numerical results of structure learning with GES and GES+EO.

performance of GES+EO.

65



CHAPTER 7

Proofs of Consistency

7.1 Some Ancillary Results

The neighborhood linear regression is widely used in this dissertation, the first part of this

section will show some results about this. Consider regression,

Xj ∼ Xi +XS =⇒ Xj = βij|SXi + βSi|SXS + εij|S with εij|S ∼ N (0, (σij|S)
2), (7.1)

notice that {i} ∪ {j} ∪ S ⊂ [p]. In this dissertation, multiple regressions are used to treat

different interventional blocks. Here we use superscript k to distinguish different regressions:

Xk
j ∼ Xk

i +Xk
S =⇒ Xk

j = βk
ij|SX

k
i + βk

Si|SX
k
S + εkij|S with εkij|S ∼ N (0, (σk

ij|S)
2). (7.2)

For any p × p matrix A and a set K ⊂ [p], we define the new |K| × |K| matrix AK by

extracting rows and columns from matrix A corresponding to K. Someone prefers to call AK

as the principal submatrix of A. Suppose each row of the whole data matrix is drawn from

multivariate Gaussian distribution N (0,Σ), then the design matrix of regression in (7.1)

with 1 + |S| columns has the following properties.

Lemma 14. Each row of the design matrix of regression in (7.1) also follows multivariate

Gaussian distribution, and its covariance matrix is Σ{i}∪S .

Proof of Lemma 14. Properties of multivariate Gaussian distribution from probability the-
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ory.

Lemma 15. The covariance matrix Σ{i}∪S satisfies

λmin

(
Σ{i}∪S

)
≥ λmin (Σ) ,

furthermore, back to the context of this dissertation, over all interventional targets in I,

λmin

(
Σk

{i}∪S
)
≥ λmin

(
Σk
)
≥ σ2

∗,

with the help of assumption 4.

Proof of Lemma 15. A well-known result in linear algebra shows that,

λmin(A) ≤ λl(AK) ≤ λmax(A) l = 1, . . . , |K|, (7.3)

so all eigenvalues of the the principal submatrix are located within the [λmin, λmax]. And it

is suffice to show Lemma 14 from the properties of multivariate Gaussian distribution.

Lemma 16. Consider neighborhood linear regression defined in (7.2), there is a uniform

lower bound of noise variance σk
ij|S for any (i, j,S) over the whole intervention family I,

min
k=1,...,B

(
min
(i,j,S)

σij|S

)
≥ σ∗,

here σ∗ is defined in assumption 4.

Proof of Lemma 16. When regressing Xj onto the variables Xi +XS , the Least-Square pop-

ulation regression coefficient vector is,

β̃ = argmin
β∈R1+|S|

E(Xj −X{i}∪Sβ)
2 = argmin

β∈R2+|S|:βjj=0

E(Xj −X{i}∪{j}∪Sβ)
2,
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using βkj to represent the partial regression coefficient corresponding to Xk. Then the

corresponding population residual standard variance can be defined as,

σij|S = [E(Xj −X{i}∪{j}∪S β̃)
2]1/2.

Since for β̃ ∈ R2+|S| with β̃jj = 0, define β̂ such that β̂jj = 1 and β̂kj = −β̃kj if k ̸= j,

E(Xj −X{i}∪{j}∪S β̃)
2 = E(X{i}∪{j}∪S β̂)

2

=β̂TE
(
XT

{i}∪{j}∪SX{i}∪{j}∪S
)
β̂ ≥ λ2min

(
Σ{i}∪{j}∪S

)
∥β̂∥2 ≥ σ2

∗, (7.4)

and extend (7.4) to the general case,

min
k=1,...,B

(
min
(i,j,S)

σij|S

)
≥ σ∗.

.

Lemma 17. Consider neighborhood linear regression defined in (7.1), there is a uniform

upper bound of noise variance σk
ij|S for any (i, j,S) over the whole intervention family I,

max
k=1,...,B

(
max
(i,j,S)

σij|S

)
≤ σ̄,

here σ̄ is defined in assumption 3.

Proof of Lemma 17. Define S(i,S) = {i} ∪ S, obviously,

S(i,S1) ⊂ S(i,S2) =⇒ σij|S1 ≥ σij|S2 ,

since any β satisfied for S(i,S1) is also feasible for S(i,S2). Then,

∅ ⊂ S(i,S) ⊂ ne(j) =⇒ σij|S ≤ (EX2
j )

1/2 ≤ σ̄,
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here Xj ∼ N (0, σ2
j ) or N (0, τ 2j ), the marginal distribution of single node Xj.

Lemma 18. Suppose tr follows a t distribution with r degree of freedom. Then for any

δ > 0,

P (|tr| ≥ δ) ≤ 2e−δ2/4 + e−r/16.

Proof of Lemma 18. Use the property of t distribution, for any constant 1 > c > 0,

P (|tr| ≥ δ) = P (
|Z|√
χ2
r/r
≥ δ)

=P (
|Z|√
χ2
r/r
≥ δ, χ2

r/r ≥ c) + P (
|Z|√
χ2
r/r
≥ δ, χ2

r/r ≤ c)

=P (
|Z|√
χ2
r/r
≥ δ, χ2

r/r ≥ c) + P (
|Z|√
χ2
r/r
≥ δ | χ2

r/r ≤ c)P (χ2
r/r ≤ c)

≤P (|Z| ≥ c1/2δ) + P (χ2
r ≤ cr),

for the first term, use the classic normal tail bound,

P (|Z| ≥ c1/2δ) ≤ 2e−cδ2/2,

then from Lemma 1 in [LM00]:

P (χ2
r − r ≤ −2

√
r
√
x) ≤ e−x =⇒ P (

χ2
r

r
≤ 1− 2

√
x

r
) ≤ e−x. (7.5)

Modified for our problem,

P (χ2
r ≤ cr) ≤ e−r(1−c)2/4,

set c = 1/2 to get the final result.

Here some basic knowledge about random matrix would be helpful.
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Definition 11. (Σ-Gaussian ensemble) A random matrix X ∈ Rn×d is drawn from the Σ-

Gaussian ensemble if its each row xTi is drawn i.i.d from a multivariate Gaussian distribution

N (0,Σ).

Someone may prefer to call the associated sample covariance Σ̂ = 1
n
XTX as Wishart

matrix. The eigenvalues of Σ̂,

γj(Σ̂) =
(
σj(X)/

√
n
)2 for j = 1, . . . , d,

here σj(X) represents the j-th singular value of X. And

γmax(Σ̂) ≥ Σ̂jj for j = 1, . . . , d,

i.e. the largest eigenvalue could be used as an upper bound for diagonal entries.

Lemma 19. Suppose random matrix X ∈ Rn×d is drawn from the Σ-Gaussian ensemble

with d ≤ n1−b here b is defined in assumption 2, then for all 1 > δ > 0,

P

(√
Σ̂−1

jj ≥
2

σ∗δ

)
≤ e−n(1−δ)2/2 for j = 1, . . . , d,

with sufficient large n, here Σ̂ = 1
n
XTX as Wishart matrix and σ∗ = γmin(

√
Σ).

Proof of Lemma 19. First from Theorem 6.1 in [Wai19], we know: for n ≥ d,

P

(
σmin(X)√

n
≤ γmin(

√
Σ)(1− δ)−

√
trace(Σ)

n

)
≤ e−nδ2/2,

here σmin(X) is the minimum singular value. Then,

P

(
1

σmin(X)/
√
n
≥ 1

γmin(
√
Σ)(1− δ)−

√
trace(Σ)/n

)
≤ e−nδ2/2,
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with diagonal entry upper bound τ 2,
√

trace(Σ)/n ≤
√
dτ 2/n ≤ n−b/2τ ,

P

(
1

σmin(X)/
√
n
≥ 1

σ∗(1− δ)− n−b/2τ

)
≤ e−nδ2/2.

Replace δ as 1− δ for convenience,

P

(
1

σmin(X)/
√
n
≥ 1

σ∗δ − n−b/2τ

)
≤ e−n(1−δ)2/2,

for n large enough such that n−b/2τ ≤ σ∗δ/2,

P

(
1

σmin(X)/
√
n
≥ 2

σ∗δ

)
≤ e−n(1−δ)2/2 =⇒ P

 1√
γmin(Σ̂)

≥ 2

σ∗δ

 ≤ e−n(1−δ)2/2, (7.6)

finally as the Wishart matrix Σ̂ = XtX/n,

P

(√
γmax(Σ̂−1) ≥ 2

σ∗δ

)
≤ e−n(1−δ)2/2 =⇒ P

(√
Σ̂−1

jj ≥
2

σ∗δ

)
≤ e−n(1−δ)2/2,

for any j = 1, . . . , d.

To deal with multiple blocks in Algorithm 2, here we give another version of Lemma 19,

which may be loose but still helpful to bound the mixed Wishart matrix.

Lemma 20. Suppose random matrix X ∈ Rn×d has C submatrices and each submatrix Xi

is drawn from the Σi-Gaussian ensemble with d ≤ n1−b
i here b is defined in assumption 2,

X =


X1

X2

...

XC

 ∼

N (0,Σ1)

N (0,Σ2)
...

N (0,ΣC)

 with
C∑
i=1

ni = n,
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then for all 1 > δ > 0,

P

(√
(XTX)−1

jj ≥
2

σ∗δ
√
n

)
≤ Ce−n∗(1−δ)2/2 for j = 1, . . . , d,

here σ∗ = mini=1,...,C{γmin(
√
Σi)} and n∗ = mini=1,...,C{ni}.

Proof of Lemma 20. From (7.6), we have for any submatrix Xi,

P

(
1

σmin(Xi)/
√
ni

≥ 2

σ∗δ

)
≤ e−ni(1−δ)2/2 =⇒ P

(
γmin(X

T
i Xi) ≤

1

4
σ2
∗δ

2ni

)
≤ e−ni(1−δ)2/2,

by Weyl’s inequality,

γmin

(
C∑
i=1

XT
i Xi

)
≥

C∑
i=1

γmin
(
XT

i Xi

)
,

then,

P

(
γmin

(
C∑
i=1

XT
i Xi

)
≤ 1

4
σ2
∗δ

2n

)
≤ P

(
C∑
i=1

γmin
(
XT

i Xi

)
≤ 1

4
σ2
∗δ

2n

)

≤ P

(
C⋃
i=1

{
γmin

(
XT

i Xi

)
≤ 1

4
σ2
∗δ

2ni

})
≤

C∑
i=1

P

(
γmin

(
XT

i Xi

)
≤ 1

4
σ2
∗δ

2ni

)
≤ Ce−n∗(1−δ)2/2,

here n∗ = n1 ∧ n2 ∧ · · · ∧ nC . With the property of Wishart matrix,

P

(
γmin

(
XTX

)
≤ 1

4
σ2
∗δ

2n

)
≤ Ce−n∗(1−δ)2/2 =⇒ P

(√
γmax

(
(XTX)−1) ≥ 2

σ∗δ
√
n

)
≤ Ce−n∗(1−δ)2/2,

finally we find the bound for diagonal entries,

P

(√
(XTX)−1

jj ≥
2

σ∗δ
√
n

)
≤ Ce−n∗(1−δ)2/2 for j = 1, . . . , d.
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7.2 High-Dimensional Consistency of Algorithm 1

In Section 5.2, superscript o is introduced in (5.10) to label the interventional block which

meets Assumption 10. For notation simplicity, we discard superscript o in this section’s

discussion. But let us keep in mind that we are always working on the block satisfying

Assumption 10.

Define event Eij|S ,

Eij|S =

{
|βij|S |

sij|S

√((
Xij|S

)T
Xij|S

)−1

jj

≥ ψnσ∗

4
√
2σ̄
n1/2−q/2

}
,

here ψn satisfies mini,j,S:βij|S ̸=0 |βij|S | ≥ ψn = O(n−d) in (5.6), thus we can rewrite,

Eij|S =

{
|βij|S |

sij|S

√((
Xij|S

)T
Xij|S

)−1

jj

≥ κn

}
, (7.7)

with

κn =
σ∗

4
√
2σ̄
n1/2−q/2−d = O(n1/2−q/2−d).

To prove the results in this section, we will use Lemma 19 and 20. Recall Assumption 4,

as the covariance matrix of interventional graph Σi is PSD for i = 1, . . . , B,

min
i=1,...,B

{
λmin

(√
Σi
)}
≥ σ∗, (7.8)

we can use σ∗ in Lemma 19 and 20. It is somehow abuse of notation when σ∗ occurs in this

dissertation, but which is always referred to the uniform lower bound of eigenvalues.
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Lemma 21. For any i, j and S,

|βij|S |

sij|S

√((
Xij|S

)T
Xij|S

)−1

jj

≥ σ∗

4
√
2σ̄
n1/2−q/2−d,

with the probability at least 1− exp(−(n1−q − s− 1)/8)− exp(−n1−q/8).

Proof of Lemma 21. For any i, j and S,

P

(
√
nijsij|S

√((
Xij|S

)T
Xij|S

)−1

jj
≥ NM

)
≤ P

(
sij|S ≥ N

)
+ P

(√
nij

((
Xij|S

)T
Xij|S

)−1

jj
≥M

)
.

For the first term,

(nij − pij|S)(sij|S)2

σ2
ij|S

∼ χ2
nij−pij|S

,

then with assumption 3,

P
((
sij|S

)2 ≥ N2
)
= P

(
χ2
nij−pij|S

/(nij − pij|S) ≥ N2/σ2
ij|S

)
≤ P

(
χ2
nij−pij|S

/(nij − pij|S) ≥ N2/σ̄2
)
.

Now recall the χ2
n concentration,

P (χ2
n/n ≥ 1 + t) ≤ e−nt/8 for t ≥ 1, (7.9)

thus set N =
√
2σ̄ in (7.9),

P
((
sij|S

)2 ≥ 2σ̄2
)
≤ P

(
χ2
nij−pij|S

/(nij − pij|S) ≥ 2
)
≤ e−(nij−pij|S)/8 ≤ e−(n1−q−s−1)/8,

notice here pij|S = |S|+ 1 ≤ s+ 1 from Lemma 1.
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For the second part, recall the definition of Wishart matrix,

√(
Σ̂ij|S

)−1

jj
=

√
nij

((
Xij|S

)T
Xij|S

)−1

jj
,

set M = 4/σ∗,

P

(√
nij

((
Xij|S

)T
Xij|S

)−1

jj
≥ 4/σ∗

)
= P

(√(
Σ̂ij|S

)−1

jj
≥ 4/σ∗

)
≤ e−nij/8 ≤ e−n1−q/8,

(7.10)

the inequality in (7.10) could be guaranteed by Lemma 19. Finally combine two parts,

P

(
√
nijsij|S

√((
Xij|S

)T
Xij|S

)−1

jj
≥ 4
√
2σ̄/σ∗

)
≤ e−(n1−q−s−1)/8 + e−n1−q/8,

which suffices to finish this proof.

Proof of Theorem 11. For any i, j and S,

P (Eij|S) = P (EI
ij|S ∪ EII

ij|S) = P (EI
ij|S) + P (EII

ij|S),

from the discussion in main context, for the first term, Type I error,

P (EI
ij|S) ≤

B(i,j)∑
k=1

P
(
|T k

ij|S | ≥ αn | βk
ij|S = 0

)
≤ B · P (|tn1−q−s| ≥ αn) , (7.11)

the last inequality in (7.11) is guaranteed by Assumption 7 and the property of t-statistics.

For the Type II error, for notation simplicity,

V =
|βij|S |

sij|S

√((
Xij|S

)T
Xij|S

)−1

jj

, (7.12)
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introduce V to rewrite the t-test error and event defined in (7.7),

Eij|S = {V ≥ κn},

and,

P (EII
ij|S) ≤P

(∣∣Tij|S∣∣ ≤ αn | βij|S ̸= 0
)
≤ P

(∣∣Tij|S − V∣∣ ≥ V − αn

)
= P

(∣∣∣tnij−pij|S

∣∣∣ ≥ V − αn

)
.

Consider event Eij|S defined in (7.7),

P (Eij|S) = P (EI
ij|S) + P (EII

ij|S) ≤ P (EI
ij|S) + P (EII

ij|S | Eij|S) + P (Ecij|S),

if we set αn = κn/2 = O(n1/2−q/2−d) and based on the definition of event Eij|S ,

P (EI
ij|S) ≤ B · P (|tn1−q−s| ≥ κn/2), P (EII

ij|S | Eij|S) ≤ P (|tn1−q−s| ≥ κn/2), (7.13)

then finally apply the tail bound of t distribution in Lemma 18 to (7.13),

P (EI
ij|S) + P (EII

ij|S | Eij|S) ≤(B + 1)
(
exp(−κ2n/16) + exp(−(n1−q − s)/16)

)
. (7.14)

Combine results in (7.14) and Lemma 21,

P (Eij|S) ≤nq exp(−n1−q−2d/16) + nq exp(−(n1−q − s)/16)

+ exp(−(n1−q − s− 1)/16) + exp(−n1−q/8), (7.15)

the RHS of (7.15) is dominated by O(−n1−q−2d). The number of tests required for skeleton
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recovery in PC algorithm can be bounded with Lemma 1, therefore,

P (Error) ≤ ps+2 sup
i,j,S

P (Eij|S)

≾ exp(q log(n) + (s+ 2) log(p)− n1−q−2d)

= exp(q log(n) + a(n1−b + 2) log(n)− n1−q−2d)→ 0,

as q < b and d < (b− q)/2 defined in Assumption 6 and 7.

7.3 Derive the Test Statistics

In edge orientation step, for each reversible edge, there are two regressions:

Hobs,j∼i : Xj = β0,ijXi,obs + β0,LjXL + ε0,ij, ε0,ij ∼ N(0, σ2
0,ij),

Hint,j∼i : Xj = β1,ijXi,int + β1,LjXL + ε1,ij, ε1,ij ∼ N(0, σ2
1,ij),

with the linear regression coefficients,

β̂0,ij ∼ N(β0,ij, σ
2
0,ij(X

T
0,ijX0,ij)

−1
ii ), β̂1,ij ∼ N(β1,ij, σ

2
1,ij(X

T
1,ijX1,ij)

−1
ii ).

Thus,

β̂0,ij − β̂1,ij ∼ N(β0,ij − β1,ij, σ2
0,ij(X

T
0,ijX0,ij)

−1
ii + σ2

1,ij(X
T
1,ijX1,ij)

−1
ii ),

meanwhile,

(nm,ij − pij)s2m,ij

σ2
m,ij

∼ χ2
nm,ij−pij

and here s2m,ij =
SSRm,ij

(nm,ij − pij)
for m = 0, 1,
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if under H0, which means β0,ij = β1,ij and σ0,ij = σ1,ij = σij then,

β̂0,ij − β̂1,ij
σij

√
(XT

0,ijX0,ij)
−1
ii + (XT

1,ijX1,ij)
−1
ii

∼ N(0, 1),

and,

{(n0,ij − pij)s20,ij + (n1,ij − pij)s21,ij}/σ2
ij ∼ χ2

n0,ij+n1,ij−2pij
.

Finally,

T =
β̂0,ij − β̂1,ij

sp,ij

√
(XT

0,ijX0,ij)
−1
ii + (XT

1,ijX1,ij)
−1
ii

∼ tn0,ij+n1,ij−2pij ,

here

sp,ij =

√
(n0,ij − pij)s20,ij + (n1,ij − pij)s21,ij

n0,ij + n1,ij − 2pij
.

7.4 High-Dimensional Consistency of Algorithm 3

First we define E1i∼j,

E1i→j = {sp,ij ≤
√
2σ̄}, (7.16)

and E2i∼j,

E2i→j =

{√(
XT

0,ijX0,ij

)−1

ii
+
(
XT

1,ijX1,ij

)−1

ii
≤ 1

σ∗
√
ζn

}
. (7.17)
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Lemma 22. For any i, j and constant N ≥ 2σ̄2,

sp,ij ≤
√
N,

with probability at least 1− exp(−(ζn− 2s)(N/σ̄2 − 1)/8).

Proof of Lemma 22. From the independence of data,

(n0,ij − pij)(s0,ij)2/(σ0,ij)2 + (n1,ij − pij)(s1,ij)2/(σ1,ij)2 ∼ χ2
n0,ij+n1,ij−2pij

,

then,

P (sp,ij ≥
√
N) = P (

√
(n0,ij − pij)(s0,ij)2 + (n1,ij − pij)(s1,ij)2

n0,ij + n1,ij − 2pij
≥
√
N)

= P (

√
(n0,ij − pij)(s0,ij)2 + (n1,ij − pij)(s1,ij)2

n0,ij + n1,ij − 2pij
/σ̄ ≥

√
N/σ̄)

≤ P (

√
(n0,ij − pij)(s0,ij)2/(σ0,ij)2 + (n1,ij − pij)(s1,ij)2/(σ1,ij)2

n0,ij + n1,ij − 2pij
≥
√
N/σ̄)

= P (
χ2
n0,ij+n1,ij−2pij

n0,ij + n1,ij − 2pij
≥ N/σ̄2),

since σ̄ ≥ σm,ij for m = 1, 2 and any i, j from Lemma 17. Now recall the χ2
n concentration,

P (χ2
n/n ≥ 1 + t) ≤ e−nt/8 for t ≥ 1, (7.18)

thus for any constant N ≥ 2σ̄2,

P (sp,ij ≥
√
N) ≤ exp(−(ζijn− 2pij)(N/σ̄

2 − 1)/8) ≤ exp(−(ζn− 2s)(N/σ̄2 − 1)/8),
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so finally,

P (sp,ij ≤
√
N) ≥ 1− exp(−(ζn− 2s)(N/σ̄2 − 1)/8),

here ζ in defined in Assumption 9.

Proposition 23. For any i, j,

sp,ij ≤
√
2σ̄,

with probability at least 1− exp(−(ζn− 2s)/8).

Proof of Proposition 23. Set N = 2σ̄2 in Lemma 22.

Lemma 24. For any i, j,

√(
XT

0,ijX0,ij

)−1

ii
+
(
XT

1,ijX1,ij

)−1

ii
≤ 2

σ∗δ
√
ζn
,

with probability at least

1− 2C exp(−ζn(1− δ)2/2),

any 1 > δ > 0.

Proof of Lemma 24. With inequality
√
a+ b ≤

√
a+
√
b for a, b ∈ R+,

P

(√(
XT

0,ijX0,ij

)−1

ii
+
(
XT

1,ijX1,ij

)−1

ii
≥ 2

σ∗δ

√
n0,ij +

√
n1,ij

√
n0,ijn1,ij

)
≤ P

(√(
XT

0,ijX0,ij

)−1

ii
≥ 2

σ∗δ
√
n0,ij

)
+ P

(√(
XT

1,ijX1,ij

)−1

ii
≥ 2

σ∗δ
√
n1,ij

)
,
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thus with Lemma 12,

P

(√(
XT

0,ijX0,ij

)−1

ii
+
(
XT

1,ijX1,ij

)−1

ii
≤ 2

σ∗δ

√
ζ0,ij +

√
ζ1,ij√

nζ0,ijζ1,ij

)
≥ 1− 2C exp(−ζn(1− δ)2/2),

finally use assumption 9,

P

(√(
XT

0,ijX0,ij

)−1

ii
+
(
XT

1,ijX1,ij

)−1

ii
≤ 2

σ∗δ
√
ζn

)
≥ 1− 2C exp(−ζn(1− δ)2/2).

Proposition 25. For any i, j,

√(
XT

0,ijX0,ij

)−1

ii
+
(
XT

1,ijX1,ij

)−1

ii
≤ 1

σ∗
√
ζn
,

with probability at least 1− 2C exp(−ζn/8).

Proof of Proposition 25. Set δ = 1/2 in Lemma 24.

Now we can move to the main result of this section. Recall the test statistics,

Ti→j =
β̂0,ij − β̂1,ij

sp,ij ·
√(

XT
0,ijX0,ij

)−1

ii
+
(
XT

1,ijX1,ij

)−1

ii

,

for the notation simplicity, here we introduce a new notation W ,

W =
√(

XT
0,ijX0,ij

)−1

ii
+
(
XT

1,ijX1,ij

)−1

ii
,

then the test statistics can be expressed as,

Ti→j =
β̂0,ij − β̂1,ij
sp,ij · W

.
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Also the event sets defined in (7.16) and (7.17) are,

E1i→j = {sp,ij ≤
√
2σ}, E2i→j =

{
W ≤ 1

σ∗
√
ζn

}
.

Proof of Theorem 13. The error of single test for edge orientation on (i, j,L) is,

P (Ei→j) =P (E
I
i→j ∪ EII

i→j)

=P (EI
i→j) + P (EII

i→j)

=P (|Ti→j| ≥ αn | β0,ij = β1,ij and σ0,ij = σ1,ij)

+ P (|Ti→j| ≤ αn | β0,ij ̸= β1,ij and σ0,ij ̸= σ1,ij). (7.19)

The type I error of (7.19),

P (EI
i→j) ≤ P (|Ti→j| ≥ αn | β0,ij = β1,ij and σ0,ij = σ1,ij) ≤ P

(
|tn0,ij+n1,ij−pij | ≥ αn

)
,

(7.20)

and Type II error of (7.19),

P (EII
i→j) =P (|Ti→j| ≤ αn | β0,ij ̸= β1,ij and σ0,ij ̸= σ1,ij)

=P

(∣∣∣∣∣ β̂0,ij − β̂1,ijsp,ij · W

∣∣∣∣∣ ≤ αn

)

=P

(∣∣∣∣∣(β̂0,ij − β0,ij)− (β̂1,ij − β1,ij)
W

∣∣∣∣∣ ≥ |β1,i∼j − β2,i∼j|
W

− αnsp,ij

)
.

One important trick here:

(β̂0,ij − β0,ij)− (β̂1,ij − β1,ij)√
(σ0,ij)2

(
XT

0,ijX0,ij

)−1

ii
+ (σ1,ij)2

(
XT

1,ijX1,ij

)−1

ii

∼ N (0, 1),
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and σ0,ij ∧ σ0,ij ≤ σ̄ from Lemma 17,

P (EII
i→j) =P

(∣∣∣∣∣(β̂0,ij − β0,ij)− (β̂1,ij − β1,ij)
σ̄W

∣∣∣∣∣ ≥ |β1,i∼j − β2,i∼j|
σ̄W

− αnsp,ij/σ̄

)

≤P

∣∣∣∣∣∣ (β̂0,ij − β0,ij)− (β̂1,ij − β1,ij)√
(σ0,ij)2

(
XT

0,ijX0,ij

)−1

ii
+ (σ1,ij)2

(
XT

1,ijX1,ij

)−1

ii

∣∣∣∣∣∣ ≥ |β0,ij − β1,ij|σ̄W
− αnsp,ij/σ̄

)

=P

(
|Z| ≥ |β0,ij − β1,ij|

σ̄W
− αnsp,ij/σ̄

)
, (7.21)

here Z represents the standard normal distribution N (0, 1) in (7.21).

Based on the definitons of E1i→j and E2i→j in (7.4),

P (EII
i→j | E1i→j ∩ E2i→j) ≤P

(
|Z| ≥ |β0,ij − β1,ij|

σ̄W
− αnsp,ij/σ̄

)
≤P

(
|Z| ≥ |β0,ij − β1,ij|σ∗

√
ζ

σ̄

√
n−
√
2αn

)
,

the Type II error conditioning on E1i→j ∩ E2i→j. Then from Assumption 10,

P (EII
i→j | E1i→j ∩ E2i→j) ≤ P (|Z| ≥ ψnσ∗

√
ζ

σ̄

√
n−
√
2αn),

next the bound of the Type II error,

P (EII
i→j) ≤ P (EII

i→j | E1i→j ∩ E2i→j) + P ({E1i→j}c) + P ({E2i→j}c), (7.22)

the last two probability we have given bounds in Proposition 23 and 25,

P ({E1i→j}c) ≤ exp(−(ζn− 2s)/8), P ({E2i→j}c) ≤ 2C exp(−ζn/8). (7.23)
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Consider ζ ≳ O(n−q), then from (7.4) we have,

P ({E1i→j}c) + P ({E2i→j}c) ≾ exp(−n1−q). (7.24)

For the Type I error in (7.20),

P (|tn0,ij+n1,ij−pij | ≥ αn) ≤ exp(−α2
n/4) +

1

2
exp(−(ζn− s)/16)), (7.25)

with the help of Lemma 18.

Then for the first term in (7.22), set αn = ηn
√
n with ancillary factor ηn,

P

(
|Z| ≥ ψnσ∗

√
ζ

σ̄

√
n−
√
2αn

)
= P

(
|Z| ≥ (

ψnσ∗
√
ζ

σ̄
−
√
2ηn)
√
n

)
,

so the constraint on ηn is,

ηn <
ψnσ∗

√
ζ√

2σ̄
.

We can set,

ηn =
ψnσ∗

√
ζ

2
√
2σ̄

= O(n−d−q/2) =⇒ αn = O(n1/2−d−q/2), (7.26)

then,

P

(
|Z| ≥

(
ψnσ∗

√
ζ

σ̄
−
√
2ηn

)√
n

)
= P

(
|Z| ≥ ψnσ∗

√
ζ

2σ̄

√
n

)
≤ 2 exp(−κ2nn/2),

here κn = ψnσ∗
√
ζ/2σ̄ = O(n−d−q/2). So summarize the result of this part,

P (EII
i→j | E1i→j ∩ E2i→j) ≾ exp(−n1−2d−q). (7.27)
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Take α set in (7.26) into (7.25),

P (|tn0,ij+n1,ij−pij | ≥ αn) ≾ exp(−n1−2d−q). (7.28)

Finally combine (7.19), (7.20), (7.22), (7.24), (7.27) and (7.28), we can get,

sup
i,j

P (Ei→j) ≾ exp(−n1−2d−q),

as there are at most ps/2 reversible edges in the essential graph,

P (Error) ≤ ps · sup
i,j

P (Ei→j) ≾ ps · exp(−n1−2d−q)

≾ exp(−n1−2d−q + (a− b+ 1) log(n))→ 0,

the result is alway true when 1− 2d− q > 0.
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CHAPTER 8

Summary and Discussion

8.1 Main Contributions

In this dissertation, the main target is to build a constraint-based method for structure

learning from interventional data. Intervention provides the motivation that we can approach

more precise estimation of graph structure beyond the traditional observational method.

Meanwhile, intervention also sets some challenges for our work. For the graph structure,

intervention will remove some arrows from the DAG; and from probability perspective, the

joint distribution needs to modify after intervention. In this case, this dissertation is always

facing multiple graphs and distributions. One straightforward difficulty is: the sample is

independent but not always identical, which means it is not that trivial to find help from

the existing results in probability theory. And besides these, similar to other work in this

area, the number of DAGs in the search space also the complexity of graph structure itself

will increase superexponentially as the number of nodes increases.

To overcome these difficulties, this work introduces two stages for the graph structure

learning. For the first stage, to recover the skeleton of graph, this dissertation discusses how

to extend the original PC algorithm to the interventional case. And correspondingly, some

conditions are given to guide the intervention family design such that the algorithm can find

the true skeleton. And in Section 4.1, this work provides a throughout description of the

neighborhood of the reversible edge in the essential graph. And based on the intuition, we

show and prove the invariance relations between intervention targets; see Theorem 9 and
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10. Then furthermore, one edge orientation method is introduced by testing the invariance

relations. It is worthwhile to emphasize that there are mild assumptions on the intervention

family we discuss this part of work. We are not working on the single intervention, instead

our methods can handle very complicated intervention family. And another contribution for

edge orientation is: inspired by Theorem 10, we design a rule to merge intervention blocks

while conducting the tests.

Next, a major work of this dissertation is to show the consistency results of our structure

learning method under the sparse high-dimensional settings. Such kind of results are rarely

seen in this area. And some assumptions given in this part are also quite innovative, and I

do believe it can provide some good learning for interventional method; see Assumption 6

and 10. For the theoretical part, we give clear and explicit formulas of the test statistics we

used for structure learning for the Gaussian graph.

Finally, simulation results are provided to evaluate the performance of the structure

learning methods built in this work. Even though we focus on the two stages of graph

structure learning, we can still decouple the edge orientation with the skeleton recovery in

practice. In Section 6.3, GES plus EO shows better performance than GES only. If we

have good estimation of the skeleton, the edge direction can be implemented without the

PC algorithm. That is a good advantage of this kind of constraint-based method.

8.2 Future Directions

One potential improvement is to extend the theoretical part in this dissertation from Gaus-

sian to other probability distributions. Edge orientation on the discrete case is an attractive

direction, as it can be widely applied to many datasets in the real world. Different to the

Gaussian graph assumption, we can assume the variables in the graph follow binomial or

multinomial distribution. As mentioned in Remark 3, Theorem 10 can be applied to the dis-

crete case with no change required. The difficulty is: in this work, we test the coefficient of
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regressions, the result of which infers the invariance of conditional distribution. For discrete

case, it is not a good idea to implement linear regression. G-test (or equivalently likelihood

ratio test) could be helpful to solve the discrete case, however many technical details are still

waiting to confirm.

Besides the discrete case, another approach is to extend this work to sub-Gaussian distri-

bution. Even though we derive the test statistics based on the Gaussian distribution, it may

still work for sub-Gaussian variables, as the behavior of probability tail is so similar in sub-

Gaussian. We have strong confidence that this method can be applied to the sub-Gaussian

case in practice. But it is not easy to provide similar theoretical results. In Chapter 7,

we derive a tail bound for t-distribution, and work on the Gaussian ensemble. Many exist-

ing results on Gaussian distribution cannot be extended to sub-Gaussian, especially those

high-dimensional tail bound.

There are some other possible directions in this area. We mentioned in introduction

chapter that [GB13] proves the the high-dimensional consistency of DAG structure learn-

ing with ℓ0-penalized maximum likelihood estimation. It is also attractive to use maximum

likelihood score on intervention case. Since we show in this dissertation that the behavior

of conditional distributions can be quite different between the interventions, which will also

affect the maximum likelihood intuitively. Another interesting direction is about the inter-

vention design. For graph structure learning, intervention design is crucial and deterministic.

As the experimental data could be expensive, it will provide huge benefit if we can design

the optimal interventions containing the maximum amount of information such that the

learning algorithm can approach better I-essential graph; see [LKD18], [ZM22]. Recently,

some researchers, for example [SWU20] and [CP22], focus on the graph structure learning

with unknown or uncertain interventions, which is also an interesting and popular topic in

this area.
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