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Abstract

Methods to Generate Consistent Distributed Aerodynamic Loads Under Uncertainty

by

Aaron Burkhead

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Davis

Professor Mohamed Hafez, Chair

The proper construction of aerodynamic databases to support an ascent vehicle during the

development phases, and flight, is a difficult task. It encompasses many different flight

regimes and several types of aerodynamic coefficient data. The focus of this work addresses

integrated force and moment, line load, and surface pressure aerodynamic databases cov-

ering the ascent phase of the vehicles flight. In particular, the work deals with a missing

component in the uncertainty quantification of these databases, in which existing processes

are able to estimate integrated aerodynamic coefficient uncertainty, however estimating an

equivalent uncertainty for corresponding distributed loads is not done. The phrase "dis-

tributed loads" is used to refer to both line load and surface pressure data, as opposed to

the scalar-valued integrated aerodynamic coefficients. The primary motivation of this work

was to create a method that could generate uncertain distributed loads that are consistent

with the quantified uncertainty in the integrated aerodynamic coefficients, while also being

consistent with the statistical distributions of known data. A brief motivation and outline

is included, before Chapter 2 introduces required background concepts. The methods devel-

oped for this work are described in Chapter 3 along with a brief survey of similar published

works. The methods are validated and tested in a simulated uncertainty scenario, using
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both line load and surface pressure data, which are presented in Chapter 4. These results

showed that the method using a multivariate normal copula was the most successful of the

presented methods. Discussions of the performance of the methods in the various results

is also included in Chapter 4, with summarizing conclusions and future work included in

Chapter 5.
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Chapter 1

Motivation and Outline

The motivation for this dissertation stems from the challenges encountered during the engi-

neering work of the Space Launch System (SLS), in particular the challenges of constructing

aerodynamic databases that cover the ascent phase of the vehicle. The types of databases

discussed in this work are integrated force and moment, line load, and surface pressure

databases. The details of line loads are described in Section 2.1. Line loads and sur-

face pressures are both representations of the distributed loading on the vehicle and are

thus sometimes collectively referred to as distributed loads in this work. The aerodynamic

databases are constructed and given to users in other domains that require aerodynamic

data to perform their analysis on the vehicle. For example, the databases can be used with

Marshall’s Aerospace Vehicle Representation in C (MAVERIC), that allows for a six degree

of freedom simulation of vehicle ascent with a Monte Carlo capability to allow for uncer-

tain properties such as atmosphere, winds, propulsion, navigation, aerodynamics, and mass

properties.

In general these aerodynamic databases can cover many different vehicle flight regimes,

but this work focuses on those covering the ascent phase. The ascent phase begins shortly

after the vehicle clears the launch tower and extends to the first staging event [47]. The range

of Mach numbers bounding this phase of flight is from sub-transonic to high supersonic. In

addition to varying the Mach number, a variety of values for angle of attack and angle

of sideslip must be considered in order to envelope the likely flight trajectories the vehicle

may experience. Attempting to provide aerodynamic data across this wide range of speeds
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and flight orientations requires data from a large number of Computational Fluid Dynamics

(CFD) simulations. For example, the SLS ascent database products are primarily built from

data taken from thousands of Reynolds-Averaged Navier-Stokes (RANS) CFD simulations.

These databases are queried at a given point of the independent variables, such as Mach,

angle of attack, and angle of sideslip, and output an interpolated response based on the data

used to construct it. In the case of the line load and surface pressure databases, the data to

construct the database is taken only from CFD simulations. However, the integrated force

and moment database also includes data from wind tunnel tests. The wind tunnel data is

considered high-fidelity data and is critical to include when it is available.

Each aerodynamic database should include an uncertainty model [7] that quantifies the

uncertainty that goes into its calculated output. In the case of the integrated force and

moment database, the task of blending the experimental and CFD data is quantified in the

uncertainty model [19]. The idea being that instead of a single deterministic output from the

databases, the output accounting for the uncertainty will instead be a statistical distribution

of many possible outputs. The key challenge arises due to the other databases of interest,

the line load and surface pressure databases, providing separate but still dependent outputs.

The outputs are separate in the sense that the aerodynamic databases are distinct products

based on their respective data types, so the integrated force and moment database is a

separate product than the line load database. The dependency of the outputs can be seen

as requiring that the output of the line load database at a given point needs to integrate

to match the output from the force and moment database at the same point. The issue

of this dependency also needs to hold true in the case of an uncertain output from those

databases. On top of maintaining this integral consistency, the additional challenge is to

generate uncertain line loads, and/or surface pressures, that corresponds to the quantified

uncertainty in the integrated force and moment database. Investigations in developing the

proper manner in which to generate these uncertain distributed loads are the focus of the

included work.

The motivation for this work can be summarized by examining the following hypotheti-

cal scenario. An engineer looking at the loading on the vehicle is given a force and moment

database, including uncertainty, from an aerodynamics team. The engineer generates an
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integrated normal force coefficient on the vehicle at the 3-sigma bound of the uncertainty,

assume the uncertainty model provided follows a normal distribution. Then, the loads en-

gineer wishes to know the surface pressure distribution on the vehicle that generated this

normal force. Being able to provide this surface pressure, from a well founded procedure, is

the core motivation underlying the included work.

1.1 Outline

Chapter 2 introduces the required background ideas that this work builds off of. Section

2.1 covers the concept of a line load and its definitions. Then, Section 2.2 discusses ascent

vehicle aerodynamic databases with specific focus on the development process for NASA’s

Space Launch System vehicle aerodynamic databases. A brief introduction to uncertainty

quantification is included in Section 2.3 in order to display how the ideas presented in this

work are a novel progression of the field. Section 2.4 mentions applying uncertainty methods

specifically to aerodynamic databases. Finally, Section 2.5 describes the uncertainty in

distributed loads that is addressed by the methods in Chapter 3.

In Chapter 3 there is a brief discussion of existing and related work included in Section

3.1. The different methods developed for addressing distributed load uncertainty within

aerodynamic databases are described in Section 3.2 and Section 3.3. Section 3.2 includes

the Re-sampling method which is only feasible to be applied to line load data. Section

3.3 discusses the copula-based methods that can be applied to both line load and surface

pressure data.

Chapter 4 includes the results, and corresponding discussions, from the various tests

performed on the methods introduced in Chapter 3. Select figures do not add significantly

to the discussions of the results and are instead included in A for the sake of completeness.

The results are from performing the validation test, a leave-one-out error estimation, and

a simulated uncertainty test. The validation test is an attempt to ensure each method

can generate distributed loads that are governed by the distribution of the known data.

The leave-one-out error estimation approximates the error of each method when generating

distributed loads at known data points. The simulated uncertainty test uses each method in
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a modeled uncertainty scenario as actual Space Launch System data cannot be used without

sanitization. Section 4.1 mentions the procedure for generating the data set that is used in

the results contained within this chapter. Section 4.2 and 4.3 contain the various results using

line load and surface pressure data respectively. Finally, Chapter 5 includes a distillation of

the conclusions generated by this work and mentions potential avenues for future research

work.
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Chapter 2

Introduction

The development process of an ascent vehicle typically requires a complex organization of

teams that can focus on specific aspects of the vehicle. One important aspect of this analysis

is investigating the aerodynamics of the vehicle. Historically, this area would heavily focus

on wind tunnel testing but the advancement of Computational Fluid Dynamics (CFD) has

allowed for computer simulations to provide results that are not feasible to do experimentally.

An important set of aerodynamic results, that involve both physical and computational

results, are contained in aerodynamic force and moment databases. It is important to include

results from both experiment and CFD as each data source has advantages and disadvantages

so the combination will hopefully provide a more complete answer. These databases provide

an estimate of the integrated force and moment coefficients on the vehicle over a space of

potential flight conditions parameters such as Mach, angle of attack, angle of sideslip. There

is a related database that provides the surface pressures on a large number of discretized

points on the vehicle, over the same flight condition space. A more compact version of the

surface pressure database is the line load database. Line loads can be viewed as a projection

of these surface pressures onto a 1-dimensional array. These line loads can be estimated by

dividing the vehicle into axial slices and calculating the load on each slice [13]. All these

aerodynamic databases are constructed from data at discrete points in the parameter space

of interest and can provide output at any requested parameter point by an interpolation

method.

As mentioned prior, the force and moment database can contain both wind tunnel exper-
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iment and CFD simulation results. It is prohibitively expensive to completely measure line

loads or surface pressures in a physical experiment and thus physical wind tunnel results are

not included in these two databases. The differences between the databases becomes impor-

tant when quantifying the uncertainty in their respective outputs. The force and moment

database will have to include uncertainty stemming from experimental sources in addition

to computational sources. As the forces and moments are scalar quantities, it is much more

simple to utilize a relatively complete uncertainty treatment. Thus, with the force and mo-

ment databases having the uncertainty quantified, and including high value experimental

results, the task is then to somehow incorporate this uncertainty into the line load and sur-

face pressure databases. The challenge is then not only how to incorporate the quantified

force and moment uncertainty, but also that the relationship between integrated value and

distributed loads need to be maintained. The following sections in this chapter will build up

the required background knowledge in order to understand the proposed solutions to these

challenges contained in this work. First, the relationship between integrated and distributed

load is defined in Section 2.1.

2.1 Line Loads

The discussion below utilizes the notation presented in [13]. The force and moment aero-

dynamic coefficients discussed follow the SLS coordinate system conventions and are given

in the body axis coordinate system. Figure 2.1 show a diagram comparing the body axis

and missile axis coordinate systems. The figure shows the six integrated aerodynamic force

and moment coefficients that are used throughout this work. The axial force CA, normal

force CN , side force CY , rolling moment CLL, pitching moment CLM , and yawing moment

CLN . The "L" in the moment notations stands for little and are sometimes referred to using

the alternative notations of Cl, Cm, and Cn, representing the rolling, pitching, and yawing

moments respectively. Finally, the figure also includes a visual comparison between the angle

of attack α and angle of sideslip βp against the total angle of attack αp and roll angle ϕp.

The following discussion presents the line load relationships using normal force cN(x)

and pitching moment coefficients cm(x). However, near identical relationships exist between

6



Figure 2.1: Definition of SLS coordinate systems [55]

side force cY (x) and yawing moment cn(x). The line load notations for the two remaining

aerodynamic coefficients are axial force cA(x) and rolling moment cl(x), these two coefficients

do not have an equivalent relationship and are independent. Each CFD simulation results

in an integrated normal force coefficient CN and the corresponding line load profile cN(x),

which gives the distribution of the normal force along the length of the vehicle. Likewise,

the pitching moment Cm and its corresponding line load profile cm(x) are similarly defined.

For convenience a single flight condition, or set of values for α, β, and M , is denoted by r.

CN = CN(r) cN = cN(x, r) (2.1)

Cm = Cm(r) cm = cm(x, r) (2.2)

The line load profiles must integrate to equal the integrated loads, taking x1 and x2 to
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be the coordinate of the nose and tail of the vehicle respectively, the integration constraints

are written as follows.

CN =

∫ x2

x1

cN(x)dx Cm =

∫ x2

x1

cm(x)dx (2.3)

Due to this integral relation, an alternate notation is sometimes used in this work to

refer to cN and cm. These alternate forms are dCN

dx
and dCm

dx
, respectively. There is also a

relationship between the line load normal force and pitching moment distributions. Taking

the moments to be calculated about a moment reference point xMRP , the relationship is as

follows.

cm(x) =
xMRP − x

Lref

cN(x) (2.4)

Typically, these equations are written replacing the axial coordinate x with a non-

dimensionalized version x̂=x/Lref , such that

cm(x̂) = (x̂MRP − x̂)cN(x̂) (2.5)

CN =

∫ x̂2

x̂1

cN(x̂)dx̂ (2.6)

Cm =

∫ x̂2

x̂1

(x̂MRP − x̂)cN(x̂)dx̂. (2.7)

A similar relationship exists between the side force CY and the yawing moment Cn. The

axial force CA and rolling moment Cℓ are independent.

The line load data set used is built from the results of 29 unique CFD simulations. Each

line load is discretized into points at axial coordinates x̂1, x̂2, ..., x̂n along the length of the

vehicle. It is convenient to represent each line load as an array cN,i, shown below, the i

being the case index corresponding to the CFD simulation results ran with the array of

flight conditions ri.
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cN,i =


cN,i,1

cN,i,2

...

cN,i,n

 =


cN(x̂1, ri)

cN(x̂2, ri)
...

cN(x̂n, ri)

 (2.8)

2.2 Aerodynamic Databases

The development of the aerodynamic databases referenced to in this work is well documented

and there are many published works from members of the SLS aerodynamics team. The

databases described in these published works will be followed as the primary source for a

modern and practical approach to constructing aerodynamic databases for ascent vehicles.

After the successful first launch of the SLS Block 1 configuration during the Artemis I

mission, a great deal of validation work has been done to justify the approaches taken

to develop the SLS aerodynamic databases. These validations against actual flight data

justifies following the SLS aerodynamic team’s overall approach to aerodynamic databases.

One such validation is that of the aerodynamic force and moment database by Shea et al.

[62]. The result of which showed similar trends in ascent from Mach 0.2 up to Mach 3.5,

with the largest discrepancy being axial force coefficient. This discrepancy is explained as

being due to the difficulty reconstructing the axial force from the flight data where the

relatively small aerodynamic force must be extracted from the overall vehicle thrust. Shea

et al. recommended that no updates are required to future SLS force and moment databases

based on their flight data comparisons. Another recent validation study is of the SLS ascent

surface pressure databases against flight instrumentation data, shown by Meeroff et al. [47].

There were several points on the vehicle where the CFD and flight data did not match,

primarily due to the thermal effects and geometry near those points being modeled with low

accuracy. However, the overall comparisons strongly validate the choice of CFD methods

used in the SLS Block 1 ascent surface pressure database.

As an ascent vehicle experiences many different flight phases during its operation, differ-

ent aerodynamic databases are constructed to optimize for representing each different phase.

Thus, the regimes of the vehicle’s flight are typically split up into separate groups of aerody-
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namic databases. Each group containing individual databases that provide different output

data such as force and moments, line loads, or surface pressures. Examples of the regimes

that separate aerodynamic database groups focus on are the liftoff and transition period of

the flight [19], the booster separation event [46], and the ascent phase [63]. The booster

separation databases are particularly challenging and computationally expensive databases

to generate. The challenges stem from the complex aerodynamic environment that occurs

during booster separation as well as the high dimensional independent variable parameter

space required [8]. The independent variables need to account for the orientation of the

center-body, the relative position and orientations of the boosters, and the thrust levels of

various engines. Recent work by Lee et al. [37] shows that there may be opportunities

to reduce the dimensionality of the independent variable space by removing those which

have little effect on vehicle or booster forces and moments. However, even using these rec-

ommended dimension reductions, a booster separation database would still need to include

eleven independent variable parameters.

The databases covering the ascent phase are chosen to be the focus of this research.

There are essentially three different types of ascent aerodynamic databases, providing the

integrated forces and moments, the line loads, and the surface pressures on the vehicle during

ascent. There is a potential use case for a database that addresses the aerodynamic loading

on the vehicle’s protuberances, however this is not addressed in this work. The surface

pressure and viscous components of the discrete force and moment data is taken from the

CFD simulation results [14] and is used as the base data for all three types. As mentioned

previously, the integrated force and moments also includes data from wind tunnel tests

[61]. There is also promising work in developing pressure sensitive paint methodologies for

extracting the surface pressure data directly from wind tunnel experiments [57, 65, 64]. The

comparison of steady surface pressures from RANS CFD to those from pressure sensitive

paint in [45] indicated predicted pressure differences in areas of high geometric curvature

and a failure to record experimental data in the locations between the boosters and the

center body of the vehicle. These pressure sensitive paint methods also do not capture skin

friction which is a contributing factor to line loads [56].

The details of developing the force and moment ascent database for SLS Block 1B Crew
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configuration [63] is used as a reference to explore the details of these types of databases. The

methods used were based off previous methods developed for the Ares I ascent database [28]

and SLS Block 1 Crew configuration [55]. The database is developed using a combination of

wind tunnel and CFD results. The wind tunnel force and moment data was recorded using

a 1.3% scale model of the SLS Block 1B Crew with several modelled protuberances. Two

interconnected wind tunnels located at NASA Ames, the 11-Foot Transonic Wind Tunnel and

9- by 7-Foot Supersonic Wind Tunnel, were used to cover Mach ranges of 0.3 to 1.3 and 1.6 to

2.5 respectively. The NASA Langley Unitary Plan Wind Tunnel was used to cover the higher

Mach numbers ranging from 2.5 to 4.5. The CFD data was taken from simulations using

NASA’s solver FUN3D at conditions that matched both the wind tunnel tests and the full-

scale flight conditions. The output from the database is essentially a query to the response

surfaces built from the CFD data at full-scale flight conditions with an included quantified

uncertainty bound for each output coefficient. The specifics of the uncertainty quantification

developed for this, and similar, aerodynamic databases are considered in Section 2.4. First,

a brief background discussion about uncertainty quantification is provided in Section 2.3.

2.3 Uncertainty Quantification

Uncertainty Quantification Background

The task of uncertainty quantification is an aspect of finding a solution to an engineering

problem that is becoming increasingly researched [10] [24]. The motivation being to attempt

to provide the most complete prediction from a model, one that identifies and includes un-

certainties, so that any engineering decisions based on that prediction can be as well-justified

as possible. The maturation of the field and the increase in computational capabilities has

allowed for the development of more comprehensive uncertainty quantification approaches.

The best uncertainty quantification approach will depend on the characteristics of the prob-

lem and motivation behind its solution. A complete discussion of uncertainty quantification

is not possible as the field is far too large, however it is possible to get a high level view

of the motivating problems and a basic sampling of a few common methods. Before dis-

cussing different uncertainty quantification methodologies, it is useful to discuss the sources
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of uncertainty.

Uncertainty Sources

Sources of uncertainty are often broken into two categories, aleatoric and epistemic. The dis-

tinction between the two is defined by Jakeman et al. [29] as follows. Aleatoric uncertainty

is uncertainty driven by the inherent variation of the system under consideration, it is irre-

ducible. Epistemic uncertainty represents a lack of knowledge in any phase or activity of the

modeling process. Acquiring additional knowledge could be gained in principle and would al-

low this uncertainty to be reduced. While differentiating these aid in discussing uncertainty,

in practice categorizing an uncertainty can be difficult. Der Kiureghian and Ditlevsen [34]

include a discussion that attempts to establish an uncertainty framework where these two

uncertainty categories can be defined consistently. While the examples in the paper are from

risk and reliability analysis, the conclusions presented are general enough to apply to most

engineering settings. The conclusion presented by the paper is that all uncertainties are the

same lack of knowledge and only make sense when considering from the perspective of a given

engineering model. The separating between aleatoric and epistemic is a choice made by the

model designer and indicates which uncertainties could be reduced, epistemic, and which are

less likely to be reduced in the near term, aleatoric. Thus, the proper way to address these

sources of uncertainty for a given problem typically depends on the methodology being used.

Methods applicable to epistemic uncertainty are less commonly researched. Jakeman et

al. [29] argue that probabilistic representations of epistemic uncertainty with well-defined

probability distributions is inappropriate as it imposes unjustified structure on the influence

of these inputs. The authors suggest limiting this imposed structure by using alternative

uncertainty quantification approaches based on evidence theory [51], possibility theory [16],

or interval analysis [67]. Evidence theory is closely related to probability theory and estimates

cumulative belief and plausibility functions that represent the uncertainty in a model output.

Its representation of uncertainty approaches the probabilistic representation as the amount

of information about the model input data increases [51]. Possibility theory is closely related

to fuzzy set theory and utilizes two descriptions of likelihood, necessity and possibility, to

characterize the uncertainty in function evaluations [27]. Interval theory uses only upper
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and lower bounds on the uncertain inputs to a model to generate similar interval bounds on

the model output [48]. The proper choice of method is problem dependent and is based on

the amount of information available to characterize the uncertainty.

Methods addressing aleatoric uncertainty tend to be the focus of more research effort, with

generalized polynomial chaos (gPC) being a popular sampling-based approach. It is built on

the 1938 work on chaos by Weiner [71], with Ghanem and Spanos [21] generally credited with

introducing the basic approach to engineering applications, followed by Xiu and Karniadakis

[75] generalizing the approach. Solving for the coefficients in a polynomial chaos model is

typically broken into intrusive and non-intrusive approaches. The intrusive approach requires

manipulations of the governing equations, with the best-known method from this approach

being the stochastic Galerkin method discussed in [22]. The non-intrusive approaches don’t

require a potentially complex manipulation of a problem’s governing equations. Examples

of this approach are sparse quadrature [32] and stochastic collocation [40]. The core idea

is that one can represent a random variable as a function of a random vector by using a

polynomial basis that is orthogonal to the distribution of this random vector. An in depth

mathematical description of this can be seen in [15]. This representation of a random variable

is the response gPC and its coefficients are solved for by using either an invasive or non-

invasive approach mentioned prior. Once a sufficient gPC approximation is calculated it is an

analytical representation of the output of interest in terms of the random uncertain inputs.

Thus, practically all statistical information for the output can be estimated. This style of

uncertainty problem is known as forward propagation. This is one of two common uncertainty

quantification archetypes, the other common archetype being backward propagation.

Uncertainty Propagation

Forward propagation refers to the process of quantifying the uncertainty in the outputs of

a model or system due to uncertain inputs. Lee and Chen [38] performed a study compar-

ing several forward propagation approaches. This includes the aforementioned Polynomial

Chaos method as well as the full factorial numerical integration method and the univariate

dimension reduction method. The former attempting to estimate the statistical moments of

the output of interest using an appropriate quadrature formula for direct numerical integra-
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tion. The latter approximating a multivariate function with multiple univariate functions

which can be used to calculate multivariate statistical moments. Another family of methods

to handle forward propagation are Monte Carlo based methods [76], [31]. These methods

have the advantages of being non-intrusive, flexible, and simple to implement. However,

they are slow to converge, O(N− 1
2 ) with N being the number of function evaluations. Thus

the overall cost of the method greatly depends on how expensive each function evaluation

is to run. There are approaches to try and reduce the cost. Quasi-Monte Carlo [6] employs

low-discrepancy sequences, such as a Sobol sequence, in order to improve the convergence

rate to O(N−1). Multilevel Monte Carlo methods [23] reduce the computational cost by

performing the majority of function evaluations at a low accuracy and incorporating a small

amount of high accuracy evaluations. A closely related method is Multi-fidelity Monte Carlo

[20]. This approach is a generalization of the multilevel idea where a majority of function

evaluations are taken from low-fidelity models, typically models with known simplifications

or neglected physical effects to drive down cost. An example of this for a CFD application

would be using cheaper 2-dimensional simulations or inviscid flow solvers instead of a fully

3-dimensional direct numerical simulation of Navier-Stokes.

The problem framework for backward propagation, sometimes referred to as inverse un-

certainty quantification or an inverse problem, is where output results from a trusted source

are compared with outputs from a model. The trusted source can be any sort of data

considered higher fidelity in comparison to the model output, such as data from physical

experiments. These comparisons are used to quantify, and ideally reduce, the bias and pa-

rameter uncertainty in the model. A large portion of the recent research in this area is

focused on applications for machine learning and neural network training processes. A key

issue with an inverse problem is that they are generally ill-posed, in that small perturbations

in the data may lead to large errors in the inversion estimates [4]. An extensive survey of

existing backwards uncertainty propagation methods, applied to uncertainty in inputs to nu-

clear system thermal-hydraulics codes, can be found in work by Wu et al. [74]. The authors

compare and evaluate 12 different inverse uncertainty methods to quantify the uncertainties

of input parameters to their system thermal-hydraulics codes based on experimental data.

Wu et al. identify three different groups of inverse uncertainty quantification (IUQ) methods:
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frequentist, Bayesian, and empirical. "Frequentist IUQ tries to identify most likely param-

eter values, with which the TH model can reproduce the experimental data. Bayesian IUQ

targets at finding parameter uncertainties that can explain the disagreement between model

and data, typically with MCMC sampling. Empirical IUQ seeks parameter uncertainties

with which the model predictions can envelop the measurement data to a desired level."

Regularization methods are one type of approach to solve these inverse problems at the

heart of the frequentist perspective to backwards propagation [2]. For example, start with

a canonical example of an ill-posed inverse problem Ku = f , with K having an unbounded

inverse. The general approach is to find some parametric approximation to the linear oper-

ator K with better stability properties. The next solution approach is to utilize a Bayesian

framework, which is a natural fit with the problem style. In these methods, such as in [41],

the unknown model parameter is modelled as a random variable and additional information

from output observations update its probabilistic description. The last solution approach

is the empirical approach. An example of an approach in this group is the non-parametric

clustering method developed in [68], which applies a multi-dimensional clustering technique

based on comparing model error samples with the Kruskall-Wallis test.

2.4 Database Uncertainty

There are several published works on uncertainty quantification methods that are specifi-

cally applied to the aerodynamic databases developed to support the SLS. The uncertainty

quantification of the SLS Block 1B Crew integrated force and moment database can be seen

in the work by Shea et al. [63]. The total uncertainty in [63] is built up by combining quan-

tified uncertainties from the two data sources, wind tunnel data and CFD data. The total

uncertainty, Ufinal, is the root-sum-square of the quantified uncertainty sources multiplied

by an additional factor of safety of 1.05. All the different quantified uncertainty sources are

briefly discussed here in order to get an idea of the database uncertainties that are explicitly

addressed. UDBM accounts for smoothing, fitting, or averaging the source data in order to

construct the final database. Utst which estimated how well the database predicted test data

that was left out of the construction of the database. UG2F which was intended to cover
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uncertainties due to sting and wall interference in the wind tunnel, OML differences between

the wind tunnel and flight OMLs, Reynolds number effects, and plume effects. UWTcorr

which accounted for corrections applied to raw balance data. Ubal which accounted for bal-

ance calibration fit error in the balance used for measuring the forces and moments in the

wind tunnel tests. Urpt which accounted for experimental error in the wind tunnel data due

to repeatability. The total uncertainty is an estimate to the amount of uncertainty included

in an integrated force and moment value output from the database. This quantified uncer-

tainty step for the integrated force and moment data, or an similar equivalent quantification

step, is assumed to be done before the methods discussed in Chapter 3 are then used.

The uncertainty quantification of an ascent booster separation database is shown in [8].

A similar breakdown of the contribution of each quantified uncertainty term is presented,

with the database interpolation term contributing the largest uncertainty to the boosters

forces and moments. This can be seen as a direct consequence of the high dimensionality of

the independent variable space. The dominance of the interpolation uncertainty lead to the

work by Lee et al. [36]. Lee aimed to reduce specifically the interpolation error by using a

data-driven approach to selecting which points in the independent variable parameter space

should be studied by CFD and experiments. In addition, the parameter spaces were skewed

according to the covariance of the independent variables observed in a set of simulated

trajectories.

2.5 Distributed Load Uncertainty

The methods discussed in Chapter 3 become relevant once all the ascent aerodynamic

databases have been constructed and an estimated uncertainty in the integrated force and

moment database has been quantified. The goal of these methods does not fall under the

typical scope of work addressed in existing uncertainty quantification literature. Uncertainty

quantification is typically concerned with forward propagation of a set of uncertain indepen-

dent variables in order to quantify their impacts on dependent quantities of interest. Forward

propagation in an aerodynamic database scenario is not practical as it would be prohibitively

expensive and the contribution of each source of uncertainty is typically not known. In the
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scenario addressed in this work, the step of quantifying the uncertainty has already been per-

formed on the integrated force and moment database and the goal is to attempt to generate

uncertain distributed loads that correspond with this uncertainty. This goal aligns closer to

that of the inverse problems solved with backwards propagation of uncertainty, but it does

not completely fit within these approaches either.

The core motivation behind this goal, comes from the SLS aerodynamic databases devel-

opment procedure, in which the integrated force and moment database contains high-fidelity

wind tunnel data and the distributed load databases do not. The objective is essentially

attempting to incorporate the uncertainty that is quantified on the high-fidelity integrated

forces and moments onto an estimated uncertainty for the distributed loads. There are pub-

lished attempts to develop methods that address this task in [13, 73]. In depth analysis of

these existing published works are discussed further in Chapter 3.

However, the primary aspect that these early attempts are missing is that they generate

their uncertain distributed loads without considering the spatial relationships contained in

the CFD data. These spatial relationships can be approximately represented by calculating

the covariance matrix of the distributed load data. However, the covariance only captures

linear relationships between the spatial locations implied by the distributed loads. In or-

der to more completely capture any possible non-linear relationships, the full probability

distribution function of the known distributed data should be considered. The probability

distribution function of the distributed load data is taken to be a statistical representation of

the physics driven spatial relationships captured within the known CFD data. Generating a

line load that does not follow the probability distribution function is then at risk of violating

the underlying physics. This risk is the primary motivation for attempting to preserve these

relationships, along with the idea that a generated uncertain distributed load that follows the

spatial relationships is more valid than an uncertain distributed load that does not. In other

words, following these spatial relationships restricts the possible distributed load shapes to

those seen in the CFD data and are thus more physically realistic than distributed loads

generated through a procedure that does not consider these relationships. Since there are

infinitely many possible distributed loads that can be generated for a given integrated value,

or values, it is important to be able to justify that the method used to generated uncertain
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loads is not arbitrarily chosen. The absolute justification would be checking if the flow fields

that would produce the distributed loads obey the governing equations used in the CFD. An

approach that could do this is an avenue for future research but restricting the generated

distributed load distributions to the known CFD distributions is currently taken as a small

step towards that eventual goal.

A test needs to be used to determine if the distributed loads that are generated for the

uncertainty estimation follows the probability distribution of the known CFD data. Two-

sample tests are statistical tests that can be used for this purpose. These tests determine if

there is a statistically significant difference between two different distributions by comparing

samples drawn from each. There are several of these tests to choose from when comparing

univariate samples, such as the Kolmogorov-Smirnov test [66]. However, the use of statistical

two-sample tests to compare high dimensional data is an active area of research, and the line

loads and surface pressures are certainly considered high dimensional data.

The two-sample test chosen in this work is the test developed by Gretton et al., the

Maximum Mean Discrepancy (MMD) two-sample test [25], [26]. This test is commonly used

in machine learning work and there is an extensive list of published research works that

have implemented it successfully [39, 70, 54]. It compares samples drawn from two different

distributions by finding a smooth function that has large values on the points drawn from

one distribution and small values on points drawn from the other. The differences between

the mean function values on the two samples are used as the test statistic. Gretton et al.

describe three potential non-parametric two-sample tests in [26] but the one used in this

work is the third test that is based on the asymptotic distribution of the maximum mean

discrepancy test statistic. The recommendation of Gretton et al. to use a kernel bandwidth

equal to the median distance between points in the aggregate of the data to be compared

and the bootstrapping approach to determine the critical score are both followed when the

MMD test is used in this work.

As mentioned prior this type of high-dimensional testing is an active area of research

and there are alternative different approaches to the one selected. An example would be the

work in [18], which used kernel Fisher discriminant analysis to provide them a consistent

nonparametric test statistic for two-sample testing. There is also continued development on
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improving the maximum mean discrepancy two-sample test itself, such as the work in [42]

that uses kernels parameterized by deep neural networks in order to maximize testing power.

Validation Test

As described in Section 2.5, the goal for the methods developed in this work, described in

Chapter 3, are to generate distributed loads that follow the probability distribution of the

distributed loads from the CFD data. The test used to compare is the previously discussed

Maximum Mean Discrepancy two-sample test. However, if the methods are applied to an

uncertain integrated force and moment at a single point the resulting distributed loads are

not expected to match the overall distribution of the CFD data. It should be restricted to a

limited space of the distributed load probability distribution corresponding to the uncertain

integrated value bounds. Instead of attempting to test this limited space, the validation test

used in this work is as follows. First, Nd values are drawn from the integrated forces and

moments data, with equal probability and no replacements. Nd was set to 100 for both the

line load and surface pressure validation test. Then, the method will generate a distributed

load that integrates to each of these drawn values. The resulting collection of distributed

loads are then tested, with the Maximum Mean Discrepancy two-sample test, against the

known distributed loads to determine if the difference between the generated distribution and

the known distribution is statistically significant. A significance level of 0.05 is chosen for this

validation test. This level is the chosen upper bound on the probability of falsely rejecting

that the two samples come from the same distribution [26]. If the method can generate

distributed loads that pass this validation test then it is considered validated as a method

that can generate distributed loads that follow the known distributed load distributions

from CFD. The validated method can then be used with confidence to generate distributed

loads for an uncertain integrated force and moment at a single point, such as is done in the

simulated uncertainty examples in Chapter 4.
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Chapter 3

Methods

3.1 Existing Related Works

The previous works by Dalle et al. [13] initially investigated the approach of generating

uncertain line loads by using their developed adjustment procedure. Their core idea is to

find a method to adjust known line load data so that the resulting line load integrates to

a chosen target force and moment. To do this, the authors first used the singular value

decomposition of a matrix including all the line loads at a given Mach number, referred

to as a snapshot matrix. This is done in order to extract the left singular vectors of the

snapshot matrix and use these as orthonormal basis vectors to construct their adjustments.

The adjustments are then calculated by setting up an optimization problem and solving it

via the method of Lagrangian multipliers.

The optimization problem seeks to find an adjustment using a linear combination of the

left singular vectors such that the adjustment integrates to a target integrated force, and

moment, in some cases. The "cost" of using each of the left singular vectors in the optimiza-

tion problem is chosen to be a function inversely proportional to their respective singular

values. This cost is included in a squared sum of the linear combination coefficients in order

to bound the potential magnitude of these coefficients. The authors suggests implementing

the idea of an adjustment profile at each Mach number in order to save computation time

if the process was to be implemented in a practical setting. This essentially means that one

adjustment mode shape is calculated for a target force or moment value set to one. These
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adjustment profiles can then be scaled from unity to any target force or moment and applied

easily. This approach was then later applied to surface pressures directly in a later work

[12]. The adjustment procedure remains essentially the same as in the line load work, with

some slight linear algebra optimizations in order to minimize the additional cost of working

with the much larger surface pressure data.

An example of the application of this adjustment method in an uncertainty setting is given

as well. The basic idea is, given statistical representations of uncertain integrated forces and

moments, target integrated values can be drawn and the method can then generate line

loads, and surface pressures, that integrate to the target values. The collection of generated

distributed loads are then considered to be the uncertain line loads, or surface pressures, that

correspond to the uncertain integrated forces and moments. This overall idea of the using a

method to generate uncertain distributed loads according to draws from uncertain integrated

values is carried on into the methods presented in Chapter 3. However, one issue with the

approach of Dalle et al. is that the adjustment profile is only dependent on Mach number.

Once it is calculated, it applies the same adjustment mode over the whole angle of attack

and angle of sideslip parameter space. It is constraining the possible spatial uncertainty

in the distributed loads to the same locations whether the vehicle is flying at high angles

or at very low angles. Another issue is that the adjustment profile is strictly a result of a

numerical optimization procedure and is not required to follow the spatial relationships that

can be observed in the CFD data. In other words the adjustments satisfy the optimization

procedure but there’s not guarantee that they obey the physics underlying the results seen

in the CFD data. The methods presented later in this chapter will address both of these

issues.

There are related works from other members of the SLS team such as Wignall et al.

[72]. The underlying adjustment approach presented in this work is quite similar to that in

[13]. However, the process is described from the perspective of calculating the eigenvalue

and eigenvectors of covariance matrices from the CFD data. It uses a different cost function

in the optimization process but the overall adjustment procedure is the same. The approach

thus suffers the similar underlying issues as in [13] of determining the line load from an

optimization procedure. However, one change of note is that Wignall allows their line load
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generation model to vary with angle of attack and angle of sideslip.

The author goes on in future work to integrate their method in a more complete treatment

of database uncertainty [73]. The total uncertainty in the line loads is presented as a root-

sum-square of standard deviations from model form and data fusion uncertainties. The

model form uncertainty stems from the interpolation error in using the model, estimated

by a Leave-One-Out approach. The data fusion uncertainty arises from using the model

to propagate the uncertainty in the integrated force and moment database. The additional

development to incorporate the method’s uncertainty into the overall quantified database

uncertainty is a necessary step in order to provide a complete uncertainty model with the

aerodynamic databases. This step of accounting for the model error by leave-one-out error

estimation is included in the results shown in Chapter 4.

3.2 Resampling Method

An initial attempt at generating uncertain line loads that follow the statistical relationships

is shown in [5]. The method begins by utilizing the Singular Value Decomposition (SVD)

in order to generate the basis vectors which are then used to construct new potential line

loads. The known CFD line load arrays are stacked into a snapshot matrix. For example,

the snapshot matrix for the normal force profiles cN,i would be CN =
[
cN,1, cN,2, . . . , cN,n

]
.

This matrix has the dimensions n× nc, with n being the number of axial slices in each line

load and nc being the number of line load cases. Before performing the SVD, the average

value over the nc cases for each axial line load slice is subtracted from CN . The resulting

matrix, C′
N , represents a line load perturbation matrix and is the matrix on which the SVD

is performed as

SVD(C′
N) = UNΣNV

T
N . (3.1)

The columns of the left singular vector UN contain the orthonormal bases that will be

used to construct the line load dispersion. The number of bases resulting from this depends

on nc; it will provide up to nc orthonormal bases. The number of orthonormal bases kept

for the next step will be labeled κ, however all nc bases were kept for the results shown in

Chapter 4. First, the κ selected basis vectors from UN are used to build a linear estimation
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to each of the nc line loads used in the snapshot perturbation matrix C′
N . This is done by

solving the linear system below for the coefficients ωi, where the matrix ŨN contains the κ

bases vector columns kept from UN .

ŨNωi = cN,i (3.2)

The result is nc arrays of κ coefficients, that can be stacked into a κ × nc matrix, Ω. This

procedure can be seen as equivalent to Ω=ΣNV
T
N when κ=nc. The next step is to generate

line load dispersions using coefficients that follow the joint distribution of the coefficients in

Ω. With the goal being to use these coefficients as a lower dimensional proxy for the full

joint distribution of the known line load data.

In order to achieve this, the first coefficient is separated from the rest of the κ−1 co-

efficients. It will be used later in order to match the target integrated coefficient for the

generated line load. Next, a novel draw for the κ−1 coefficients from their joint distribution

can be made by using an approach that effectively samples from a Gaussian Kernel Density

Estimate (GKDE) [59] of the distribution. To start, a uniform weighting is assigned to each

of the nc columns in the known coefficient matrix Ω and a column of known coefficients

is randomly chosen. Then a small perturbation is created for these κ−1 coefficients. The

perturbation is generated by sampling a centered multivariate normal distribution with a

scaled covariance matrix. This covariance matrix Υ is calculated by multiplying a scalar,

effectively the equivalent to the GKDE bandwidth, by the covariance matrix of the known

coefficient values. The newly generated coefficient can then be estimated by,

ω∗
j = ωj + δωj (3.3)

δωj ∼ N (0,Υ). (3.4)

Where ωj is the randomly selected coefficient vector from the known data, and ω∗
j is the

resulting new draw that approximately follows the distribution of the known coefficients.

Next, the first coefficient that was left out of this process is used so that the resulting line

load when multiplying the SVD bases by these coefficients will equal the target integrated

value. In order to do this, the resulting integrated value of ω∗
j using all but the unused

first coefficient is estimated. Then the difference between this value and the target is used
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to algebraically solve for the first coefficient. However, the relationships between the first

coefficient and the rest must be enforced somehow as they are neglected during the algebraic

solving procedure. In order to approximate these relationships, the two-dimensional joint

distributions between the first coefficient and the remaining κ−1 coefficients are estimated

by GKDE. Then the probability density of the κ−1 coefficient pairs, each pair containing

the first coefficient and one of the remaining κ−1 coefficients, is estimated. If any of these

probability densities are below a set filter level pmin, then the results are filtered out and the

process is repeated from the start with a new initial randomly drawn sample of coefficients

ω∗
j until the minimum probability density level is achieved.

It is relatively straightforward to extend the approach to simultaneously match a target

integrated force and moment. In this case, two coefficients are solved algebraically and

remaining κ−2 coefficients are drawn from the GKDE sampling procedure described prior.

The force and moment from using the κ−2 coefficients is estimated and the first and second

coefficients are solved for by using the remaining differences in integrated force and moment.

Then the unenforced relationships between the first, second, and the rest of the coefficients

must be addressed. The distributions of the coefficient triplets, each triplet being the first,

second, and one of the remaining coefficients, are estimated by GKDE. Much the same as

before, the probability density for these triples are estimated and tested against a chosen

filter level pmin. If there is a probability density below the filter level, the entire coefficient

generation process is repeated until all probability densities are above the filter level. The first

and second coefficients, corresponding to SVD bases with large singular values, are chosen

to be algebraically solved as they have the greatest potential to change the integrated value

while still being contained by the coefficient’s joint distribution.

3.3 Copula-based Methods

The method is described as it would be applied to surface pressures, as line loads can be

viewed as a simplified version of the surface pressure problem. This is because the line loads

are smaller arrays and require fewer constraints on their integrated values when compared

to surface pressures. Similarly to the work in the previous section and in [13] and [5], the
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dispersion method begins by essentially performing Principal Component Analysis (PCA) on

the surface pressure data. The PCA procedure is repeated here for completeness, however it is

the same description provided at the start of Section 3.2. The description of the new aspects

of the copula-based method’s procedure starts after the coefficient matrix Ω is calculated.

First, the Singular Value Decomposition is utilized in order to generate the basis vectors

which are then used to construct new potential surface pressures. The 29 surface pressure

arrays are stacked into a snapshot matrix. For example, the snapshot matrix for the normal

force profiles cN,i would be CN =
[
cN,1, cN,2, ..., cN,n

]
. This matrix has the dimensions

n× nc, with n being the number of axial slices in each line load and nc being the number of

line load cases.

Before performing the SVD, the average over the nc cases for each surface pressure point

is subtracted from CN . The resulting matrix, C′
N , represents a surface pressure perturbation

matrix and is the matrix on which the SVD is performed, as shown below

SVD(C′
N) = UNΣNV

T
N . (3.5)

The columns of UN contain the orthonormal bases that will be used to construct the

surface pressure dispersion. The number of bases resulting from this depends on nc; it will

provide up to nc orthonormal bases. The number of orthonormal bases kept for the next

step will be labeled κ, however all nc bases were kept for the results shown in Chapter 4.

First, the κ selected basis vectors from UN are used to build a linear estimation to each

of the nc surface pressures used in the snapshot perturbation matrix C′
N . This is done by

solving the linear system below for the coefficients ωi, where the matrix ŨN contains the κ

bases vector columns kept from UN .

ŨNωi = cN,i (3.6)

The result is nc arrays of κ coefficients, that can be stacked into a κ×nc matrix, Ω. If κ=nc,

the coefficients Ω can be found directly from the product of ΣNV
T
N . The next step is to

generate surface pressure dispersions using coefficients that follow the joint distribution of the

coefficients in Ω. With the goal being to use these coefficients as a lower dimensional proxy

for the full joint distribution of the known surface pressure data. A test of the credibility of

this assumption is investigated in the various validation test results shown in Chapter 4.
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After the coefficients Ω are found, the next step is to use them in order to generate new

surface pressures that could come from the distribution implied by the known data while

also integrating to given target forces and moments. The statistical concept of a copula [50]

motivates a method to achieve this. A copula is effectively a decomposition of a multivariate

statistical distribution into a multivariate distribution containing the dependence structure

between the variables and univariate marginal distributions for each variable. Start with a

random vector (y1, y2, ..., yd), with a continuous marginal cumulative distribution function

(cdf) in each dimension Fi(y) = P (yi < y). Applying the marginal cdfs to the random vector

results in

(u1, u2, ..., ud) = (F1(y1), F2(y2), ..., Fd(yd)), (3.7)

with each ui uniformly distributed on [0, 1]. The copula of the random vector (y1, y2, ..., yd)

is then the joint cumulative distribution function C(u1, u2, ..., ud). Similarly, the probability

density function of the random vector can be written as

p(y1, y2, . . . , yd) = c(F1(y1), . . . , Fd(y2))p1(y1), . . . , pd(yd). (3.8)

Where c(F1(y1), . . . , Fd(y2)) is the probability density function of the copula C and pi

is the probability density of the i-th variable yi [30]. In this use case, the copula is used

in order to pseudo-randomly draw variables from the distribution underlying the random

vector. The process to draw a new random vector sample x∗ simply takes a random sample

from the copula u∗ = (u∗
1, u

∗
2, ..., u

∗
d) and applies the inverse marginal cdfs F−1

i as

x∗ = (F−1
1 (u∗

1), F
−1
2 (u∗

2), ..., F
−1
d (u∗

d)). (3.9)

Applying this sampling process to the coefficients Ω to draw a new coefficient sample ω∗

is done by first approximating the copula of Ω. This is done with a multivariate Gaussian

distribution N (0, σ), with σ being the estimated covariance matrix of Ω. A sample is drawn

from ω′ ∼ N (0, σ), then the marginal cdfs of N (0, σ) are applied to ω′ resulting in ωu. This

new sample is bound by the interval [0, 1] but maintains the dependence structure of N (0, σ),

and thus approximately the dependence structure of Ω.
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Finally, the inverse marginal cdfs of Ω are applied in each dimension to approximately

recover a novel coefficient sample ω∗ = (F−1
1 (ωu

1 , F
−1
2 (ωu

2 , ..., F
−1
d (ωu

d )). The integral of the

surface pressure generated from the new coefficient sample can be any value. Since the goal

is to generate a surface pressure that integrates to target integrated values, then a small

modification can be made the copula. The idea of a conditional copula, as shown in [53], can

be used for this purpose. Assuming the conditioned variable is W , then a copula conditioned

for a given realization of W=w is

p(y1, y2, . . . , yd|w) = c(F1(y1), . . . , Fd(y2)|w)p1(y1|w), . . . , pd(yd|w). (3.10)

In the sampling use case discussed here, the conditioned variables are the target integrated

values, so the conditioned inverse marginal cdfs are now applied as F−1
i (ωu

i |CA, CN , ...). The

conditioning of the copula, which is being modelled with a multivariate normal, results in a

new multivariate normal with a mean and covariance given by [17]

µ̄ = µ1 +Σ12Σ22(a− µ2) (3.11)

Σ̄ = Σ11 +Σ12Σ
−1
22 Σ21. (3.12)

As discussed prior this is imposing a structure on the data by estimating the copula

with a normal distribution. There is another approach that can be taken, however it will be

discussed later in this section.

Drawing samples from this conditioned copula will now result in surface pressures that are

normally distributed about the target integrated values. The inverse conditioned marginal

cdfs used are based off using Gaussian kernel density estimation to approximate the joint

probability distribution p(ωi, CA, CN , ..., CLN). The nc known cases are used in the con-

struction of these kernel density estimates, as well as 100 cases from the 5000 radial basis

function sampled values. The nc known cases are given a weight of 5, so they have a impact

on the output probability density estimate than the 100 sampled data. The sampled data is

included to better fill out the data space. The bandwidths used in these inverse conditioned

marginal cdfs are a free parameter. The choice of kernel function can also be considered

free parameter, however the bandwidth generally affects the output to a much larger degree.
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There exists rule of thumb calculations to set the bandwidths [60] or methods based on

criteria such as cross-validation [58]. However, the optimal choice for choosing a bandwidth

is an ongoing field of research.

The approach used for selecting the bandwidths in this work was motivated by the val-

idation test discussed in Section 2.5. The idea being that while generating a line load for

a known value, as the bandwidth converges to zero, the most probable generated line load

should converge to the known line load. In other words, the method should output a dis-

tributed load very similar to the known distributed load if the target integrated values match

a known case. This assumes that the copula is a decent approximation to the multivariate

relationship it is representing. However, a kernel density estimate with a vanishingly small

bandwidth has no capability to estimate the probability density of values beyond those that

are used in its construction. The bandwidth cannot be too large either as the bandwidth

increases, the overlapping nature of the kernel density estimates means that, for a known

target integrated value, the most probable line load will likely be different than the corre-

sponding known line load. The objective in creating a procedure to select the bandwidths

for the copula methods was thus to balance the issues that arise when it is too small or too

large.

The chosen bandwidth selection procedure is described as follows. Each bandwidth,

corresponding to each of the κ coefficients, is initiated at 0.6. This is slightly larger than the

values suggested by the rule of thumb estimates mentioned prior. Then for each coefficient

ωi, the initialized bandwidth is used to estimate a kernel density such as p̃i(ωi, Ci, Cj), with

Ci and Cj being an integrated force and its corresponding moment respectively. The p̃i is

then conditioned on each of the nc known values for Ci and Cj. On each of the conditioned

p̃i, the most probable value of ωi is estimated and if it is not within 0.1 percent of the known

ωi the bandwidth is decreased by 0.01 and the process is repeated. The lower limit set on

the possible value of each bandwidth is 0.05. Once the bandwidths are found, the result is a

κ×nc matrix of bandwidths based on the known integrated values. The high-level view of this

procedure is to gradually reduce the amount of overlapping data due to a large bandwidth

until the known coefficient has the highest probability density when p̃i is conditioned on

the corresponding known integrated values. The idea is then to linearly interpolate these
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bandwidths to estimate a set of bandwidths for any target integrated values. A floor is put

on the bandwidths output from the interpolation as too small of a bandwidth value caused

issues with the inverse conditioned marginal distribution estimation. The floor depends on

whether line load or surface pressure data is being used, with the floors used being 0.05

and 0.125 respectively. The difference in values is due to the increase in dimensions that

are conditioned when using surface pressure data. This method has obvious potential issues

with extrapolation, however the line load generation method in general is not intended to

be used as an extrapolation tool for integrated values beyond those seen in the known data.

Once the bandwidths have been estimated, the conditioned probability distribution,

p(ωi|CA, CN , ..., CLN), can be numerically estimated by sampling p over the domain of values

of ωi with fixed values for the integrated coefficients CA, CN , etc. Using Gaussian Kernel Den-

sity estimation on this 7 dimensional data distribution is pushing the limits of the technique.

Previous work suggests 6 dimensional data as the upper limit for an effective application

of the technique [59], however recent work suggests it can perform poorly in as few as 4

dimensions [69]. It is possible to get around this dimensionality problem by conditioning the

inverse marginal cdfs on a smaller subset of the integrated aerodynamic coefficients. This

leaves the unconditioned variables to vary somewhat freely, however this may be acceptable

since there are correlations between say CN and CLM and conditioning on one will have an

affect on the values the other can take. The rotational moment CLL is also quite small and

not a large factor in the data set used for this work so leaving it out of the conditioning step

could be justified. However, the work presented here simply uses the 7-dimensional data as

mentioned prior. In the case of line loads, there are only a maximum of 2 constraints, a force

and moment pair, and thus there is no similar issue with high dimensionality.

Since many samples can be drawn for a single target integrated force and moment, there

is an open decision to make about how to select a sample to output. There are two criteria

that seem reasonable, the first is to choose the sample with the smallest error to the target

integrated coefficients. A tolerance on this error could also be set and if the best sample has

an error above the tolerance then a small correction can be applied using the adjustment

mode ideas in [13]. If the error is small enough the correction to the coefficients should also

be small enough to maintain statistical consistency. The other reasonable criteria could be

29



to select the sample that has the highest probability of being drawn, which can be estimated

by Equation 3.8. However, for the case of using a multivariate normal for the copula, the

c(F1(y1), . . . , Fd(y2)) term in Equation 3.10 is neglected. This assumption essentially assigns

each draw from the copula an equal probability density and thus relies on the pi(yi) marginals

to differentiate the probability densities. The estimation of the copula joint probability

density is a high dimensional problem and is thus not a reasonable use case of Gaussian

Kernel Density estimation. It falls into high-dimensional density estimation, which is an

active area of research, and motivated the possible alternative method to handling the copula

that will be discussed soon. Since this is a probabilistic model, using the most probable

sample as the output seems to be the most appropriate output criteria. However, in a well

constructed model, the error to integrated values and probability density of the samples

would be correlated to some degree. As a sanity check for the model, if it is sampled at an

integrated force and moment value that was included in the data it was constructed with,

then, given a large number of samples, the distributed load corresponding to that integrated

force and moment value should be output. Following this logic, a natural model form error

estimation method would be a leave-one-out style approach of generating the most probable

model output at left out integrated values and measuring the distributed load error to the

actual known distributed load.

Outside of stretching the dimensional limitations of gaussian kernel density estimation

in the marginal conditioned distributions, the other aspect of this approach that may be an

issue is using a multivariate normal copula. This is essentially imposing a linear correlation

relationship structure to the copula as an approximation to the true relationships. Bayesian

Sequential Partitioning (BSP) [43] is an approach that can be taken as an alternative to

imposing structure in the copula. The basic motivation of BSP is to estimate the probabil-

ity density of high dimensional data by essentially adaptively generating a non-equispaced

histogram of the data. The histogram is algorithmically generated by a binary partitioning

scheme, using sequential importance sampling [35], where the best partition is chosen by the

partition score
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score(m) = log(π(m)) = −βj + log
B(n1 + α, . . . , nj + α)

B(α, . . . , α)
−

j∑
ps=1

nps log(|νps|). (3.13)

Where α and β are parameter constants, νps and nps are the volume and number of data

points in the partition subregion ps. The sequential importance sampling attempts a certain

number of trial cuts before choosing the best scoring cut, in the results shown in Chapter 4

the number of trial cuts was set to 100 in all cases. The score is based off minimizing the

Kullback-Leibler divergence (KLD) between the actual and estimated probability density

from the partition. It can be shown [44] that the log of the posterior distribution π(m) of a

sample partition is a linear function of the KLD between the actual and estimated densities,

with a negative slope. So in order to minimize the KLD, the partition with the largest

log(π(m)) is chosen. The result from the bsp algorithm allows for a probability density

estimate of some data sample x to be calculated as

p(x) ≈ 1

N
× nj

hj

. (3.14)

Where N is the total number of data samples, and nj is the data count in bin volume hj.

Thus, the BSP is able to give an estimate of the sample which has the largest probability

density. An equally important aspect, for the described method of generating distributed

loads, is the ability to sample from the copula. It is a simple task to sample from the partition

generated by BSP. Take a simple 1-dimensional histogram as a very simple case equivalent

to the BSP partition. In order to sample from the histogram, one would randomly choose

a histogram bin with the probability of drawing proportional to the fraction of known data

within it. Then draw from a uniform distribution with lower and upper bounds matching

that of the bounds of the drawn histogram bin. Effectively giving equal probability to draw

any value within the bin bounds. This same process can be done to the high-dimensional

BSP partition, however, the added dimensionality of the bins can cause accuracy issues.

For example, take a highly correlated 2-dimensional data set. BSP can only take vertical or

horizontal cuts on the 2-dimensional space and as such will likely have highly correlated data

within each partition subregion. In perfectly correlated data this would amount to a diagonal

line going through the partition subregion. Sampling from this subregion by assigning equal
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probability to any location within it effectively misses the strong correlation. This could be

avoided by generating a huge number of subregions in the partition but for a practical case

the computation will be stopped far before then.

In order to try and account for this issue, instead of assigning equal probability across the

subregion, a sampling procedure similar to the approach taken in the Resampling method,

described by Equation 3.3 in Section 3.2, can be used. The procedure will give high probabil-

ity to possible values close to known values within the subregion and decreasing probability

to possible values as distance from known values increases. The bandwidth used for this pro-

cedure was set to a fixed value of 0.1. In addition, a random draw is limited to the bounding

values in each dimension of the partition it is contained in. For example, if the drawing

procedure generates a two-dimensional array where the first dimension is larger than the

first dimension bound in its associated partition, then the value in the first dimension of the

array is lowered to the max bound of the partition. This addresses the issue that the draws

are generated using a perturbation that has no knowledge of the domain it is supposed to

be contained within and can easily generate draws that are outside this domain.

3.4 Methods Discussion

The results presented in Chapter 4 are separated into two types of distributed load data, line

load or surface pressure data. The methods presented thus far can theoretically be applied

to either of these two types of data. However, the Resampling method from Section 3.2

exhibited issues when applied to line load data that motivated its exclusion from the surface

pressure results. In particular, the conditional distribution check step is not expected to

be feasible with the higher dimensional restraints required by surface pressure data. In

order to generate surface pressures, there would now be six integrated force and moment

coefficients that must be considered simultaneously. The Resampling method essentially

checks each of its generated distributed loads against several conditional distributions. The

number of variables these distributions are conditioned on is the number of integrated force

and moment coefficients that are to be matched. Thus these distributions are conditioned

on six variables for surface pressures data. The issue is the vanishing probability that the
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generated surface pressures will pass these conditioned distribution checks. The Resampling

method performs well enough using line load data as there is only one or two variables that

need to be conditioned simultaneously. Even in the case of line load data, the number of

failed conditional distribution checks increased from 10 to 1000 when increasing from one

to two conditioned variables. This quickly growing number of failures when just increasing

the constraints from one to two motivated the development of the copula-based methods

presented in Section 3.3. As mentioned prior, it also disqualified the Resampling method

from being applied to surface pressure data.

In addition to resolving these surface pressure issues, the copula-based methods offer

another distinct advantage over the Resampling method. The copula methods have the

built-in capability of easily approximating the probability density of the distributed loads

they generate. This capability allows one to be able to approximate which of the generated

distributed loads is most likely for the given integrated coefficient targets. When generating

distributed loads at a known integrated value, it is a reasonable conclusion that the most

probable should be the same as the corresponding known distributed load. In other words,

the methods should generate the known distributed load for known integrated coefficients.

In order to enforce this an external approach would be required in order to approximate

the probability densities of the Resampling method’s output distributed loads. Considering

the two discussed factors, the copula-based methods appear to be the stronger candidate

methods, however the Resampling method is still included as an exploration of alternate

approaches.

The main contribution that this work provides is a method for generating distributed

loads that correspond to integrated loads under uncertainty. There exists methods that

attempt to do this, as discussed in Section 3.1, however these do not accommodate the

spatial relationships that exist in distributed load data. The methods provided in this

chapter utilize the statistical distributions of known distributed loads in order to ground the

generated distributed loads, with the goal being to preserve the spatial relationships that

exist in the known data. The Maximum Mean Discrepancy two-sample test is used in order

to quantify the distance between the statistical distributions of the generated and known

distributed loads.
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Chapter 4

Results

4.1 Data Set

Even though this work is motivated by and follows the development procedures of the SLS

ascent aerodynamic databases, there is no SLS data included in this work. This is because

most of the data produced by the SLS program falls under International Traffic and Arms

Regulations which greatly restricts its publication. Instead, the data used in this work was

taken from CFD simulation results on a generic ascent vehicle geometry. The launch vehicle

geometry selected for study was a hammerhead rocket design [49] with several simple protu-

berances added. Figure 4.1 contains an image of the geometry used in the CFD simulations

that generated the data set used in this work.

This data set used the vehicle angle of attack (α) and angle of sideslip (β) as independent

variables, which were varied over the 29 CFD simulations that were ran. The values (α, β)

were set by fourth level nested Clenshaw-Curtis quadrature points [1] shown in Figure 4.2.

The Mach numbers for all the CFD simulations used in this data set were fixed at M=1.8.

Figure 4.1: Hammerhead geometry used to generate the data set.
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Figure 4.2: α & β values used in the data set.

The FUN3D 13.7 code [3] from NASA Langley Research Center was used to compute the

CFD solutions. The simulations were run steady state with compressible flow. They used

the Spalart-Allmaras turbulence model and Harten-Lax-van Leer-Contact flux construction

with the stencil-based van Albada flux limiter augmented with a heuristic pressure limiter. A

triangular unstructured mesh was used with volume cells generated via Simsys’ unstructured

grid generator software AFLR3. Once the CFD was run, the integrated forces and moments

as well as the line loads were extracted from each case using the "triload" tool [52] from

Chimera Grid Tools [9]. Version 1.0 of the NASA CAPE [11] software was used in both

executing the required CFD simulations and in post-processing the resulting data. Response

surfaces were built using the distributed load data from the 29 CFD solutions. Each line load

is a 101×1 column vector, corresponding to the line load taken from a single CFD solution,

and, similarly, each CFD solution surface pressure is a 402909×1 column vector. The line

load response surface was built directly from the line load data and likewise for the surface

pressures. These response surfaces were built using Gaussian Radial Basis functions with
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bandwidths equal to the average distance between the α and β locations shown in Figure

4.2. The response surfaces were sampled at Ns uniformly distributed points within the CFD

bounds for α and β, i.e. points drawn from U(−0.5, 0.5) for both variables. The Ns=5000

sampled line loads were taken as the full line load data set and the Ns=1000 sampled surface

pressures were taken as the full surface pressure data set for the results presented in this

chapter.

4.2 Line Loads

Validation

The Resampling method from Section 3.2 and the copula-based methods from Section 3.3 are

first applied to line load data. These initial results are to validate these methods using the

test outlined in Section 2.5. The validation test was performed with a simultaneous draw of

300 normal force and pitching moment coefficients from known data cases. First the results

for the Resampling method are shown. A value of pmin=0.01 was used for these results. This

controls the minimum value of probability density the distribution tests described in Section

3.2 need to output in order to consider a generated line load as acceptable. These results

used the all 5000 samples line loads from the data set as the known data.

Figure 4.3 shows the generated line loads in comparison to the known data for both normal

force and pitching moment coefficient. Similar figures containing the other aerodynamic

coefficients are included in Figures A.1 and A.2 in Appendix A. The blue "Data" is the all

the line loads from the known data and the red "Disps." is the generated line loads from

the Resampling method. Not much can be determined from this figure except for it appears

that the generated line loads tend to fill the space of possible values covered by the known

data. Another qualitative observation is that there doesn’t appear to be any sign of the

dispersions exceeding the boundaries the known data.

Figure 4.4 shows dCN

dx̂
and dCm

dx̂
histograms for the 16th, 34th, and 73rd line load slice.

Similar figures containing the other aerodynamic coefficients are included in Figures A.3 and

A.4 in Appendix A. These slices were chosen because previous unsuccessful methods typically

failed to generate line loads that agreed with the known data at these locations. Once again,
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Coefficient Critical Value Score
CA 0.005451 0.005593
Cℓ 0.005978 0.007325
CN 0.007042 0.006229
Cm 0.006937 0.005394
CY 0.007196 0.004720
Cn 0.006392 0.005123

Table 4.1: MMD 2-sample test results on Resampling method generated line loads.

Coefficient Critical Value Score
CA 0.0055192 0.005593
Cℓ 0.006110 0.007325
CN 0.006362 0.006229
CY 0.006545 0.004720

Table 4.2: MMD 2-sample test results on Resampling method generated line load’s Ω coef-
ficients.

the blue "Data" is the histogram of the known line load data at the given slice and the

red "Disps." are the line loads generated by the Resampling method. From a qualitative

analysis the generated line loads do a decent job of covering the known data histogram, and

univariate two-sample tests could provide some quantitative measure of this. However, this

is more of a qualitative look at the performance of the methods and the multivariate MMD

two-sample test is used to assess performance quantitatively.

Table 4.1 shows the MMD two-sample test scores for both the force and moment line

loads. Table 4.2 shows the MMD two-sample test scores for the coefficients Ω. As most are

below the critical value, there is a statistically insignificant difference between the generated

line loads and known line loads distributions for these aerodynamic coefficient line loads.

However, the validation test failed for the axial force and the rolling moment coefficients.

Next, the same validation test was performed for the copula-based methods from Section

3.3. The initial results are for the MVN-Copula method, the method that models the copula

with a multivariate normal distribution. These results compare the 100 generated line loads

from this method against the 29 known CFD data in addition to 100 interpolated data drawn
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(a) dCN

dx̂

(b) dCm

dx̂

Figure 4.3: Re-sample generated dCN

dx̂
and dCm

dx̂
for 300 CN & Cm taken from dataset.
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(a) dCN

dx̂ at x̂ = x̂15 (b) dCm

dx̂ at x̂ = x̂15

(c) dCN

dx̂ at x̂ = x̂33 (d) dCm

dx̂ at x̂ = x̂33

(e) dCN

dx̂ at x̂ = x̂72 (f) dCm

dx̂ at x̂ = x̂72

Figure 4.4: Re-sample dCN

dx̂
and dCm

dx̂
histograms for 300 CN & Cm taken from dataset.
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Coefficient Critical Value Score
CA 0.027928 0.0190488
Cℓ 0.0300154 0.011976
CN 0.032318 0.0119036
Cm 0.0337099 0.0125241
CY 0.0337521 0.0146955
Cn 0.0335387 0.0145765

Table 4.3: MMD 2-sample test results on MVN-Copula generated line loads.

randomly from the 5000 line loads in the data set. This was done so to only compare the

generated line loads with the data actually used in the process of constructing the method.

In addition, in order to avoid extrapolation, the drawn integrated coefficients to be used as

target values were ensured to be within the bounds of the data actually used to construct

the method.

The generated line loads for normal force and pitching moment coefficients are shown

in Figure 4.5. Similar figures containing the other aerodynamic coefficients are included in

Figures A.7 and A.8 in Appendix A. The data used in the construction of the method is

shown in blue and the dispersions are red. Ideally, the red and blue lines should be spread

over a similar area of values and qualitatively that appears to be the case.

Histograms of slices from the generated normal force and pitching moment line loads

are shown in Figure 4.6. Similar figures containing the other aerodynamic coefficients are

included in Figures A.9 and A.10 in Appendix A. The histograms are again another quali-

tative comparison, but an important check that the generated data and the known data are

aligned when looking at a single line load slice at a time. For example, the histogram of the

slice at x̂ = x̂15 shows a decent matching of the minimum and maximum bounds as well as

the location of the modes. An important observation from these histograms is that the slices

are not normally distributed and any hypothetical method that assumes them to be would

be ignoring the true shape of these distributions from the known data. The results in Table

4.3 and 4.4 show that the method passes the validation test in all six of the aerodynamic

coefficients.

Finally, the next results are using the BSP-Copula method from Section 3.3. This method
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(a) dCN

dx̂

(b) dCm

dx̂

Figure 4.5: MVN-Copula generated dCN

dx̂
and dCm

dx̂
for 100 CN & Cm taken from dataset.
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(a) dCN

dx̂ at x̂ = x̂15 (b) dCm

dx̂ at x̂ = x̂15

(c) dCN

dx̂ at x̂ = x̂33 (d) dCm

dx̂ at x̂ = x̂33

(e) dCN

dx̂ at x̂ = x̂72 (f) dCm

dx̂ at x̂ = x̂72

Figure 4.6: MVN-Copula dCN

dx̂
and dCm

dx̂
histograms for 100 CN & Cm taken from dataset.
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Coefficient Critical Value Score
CA 0.0303446 0.0190488
Cℓ 0.0299224 0.0119766
CN 0.0322981 0.0119036
CY 0.033669 0.0146955

Table 4.4: MMD 2-sample test results on MVN-Copula generated line load’s Ω coefficients.

Coefficient Critical Value Score
CA 0.029208 0.029135
Cℓ 0.028897 0.026631
CN 0.032769 0.016083
Cm 0.034305 0.0162716
CY 0.033396 0.0130797
Cn 0.0323513 0.0125448

Table 4.5: MMD 2-sample test results on BSP-Copula generated line loads.

models the copula using a Bayesian Sequential Partitioning approximation to the copula

distribution. Similar to the MVN-Copula method results given prior, these results compare

the 100 generated line loads with this method against the 29 known CFD data in addition

to 100 interpolated data drawn randomly from the 5000 calculated by radial basis functions.

The results included here used partitions with 2000 cuts for each coefficient. Similar to the

previous methods’ results, the generated dispersions are compared against the data used to

construct the method in Figures A.13 - A.15. Histograms of select slices from the generated

line loads are shown in Figures A.16 - A.18. Both sets of figures are included in Appendix

A for completeness, however the conclusions drawn from the qualitative analysis of them do

not differ significantly from the corresponding figures shown for the previous two methods.

The results in Table 4.5 and 4.6 follow a similar trend as in the MVN-Copula method.

The BSP-Copula method in particular was close to not generating a passable axial force line

load score, but it still does pass. Further tweaking of the sampling bandwidth may allow for

optimizing the validation test results and is left as an avenue for future research work.
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Coefficient Critical Value Score
CA 0.0294168 0.029135
Cℓ 0.029727 0.026631
CN 0.034902 0.016083
CY 0.0311131 0.013079

Table 4.6: MMD 2-sample test results on BSP-Copula generated line load’s Ω coefficients.

Discussion

The Resampling method did not pass the validation test for the axial force and rolling

moment coefficients, but did pass for the other four coefficients. The MVN-Copula methods

passed validation for all aerodynamic coefficients, while the BSP-Copula method passed all

coefficients except it nearly failed validation for the axial force coefficient line load. Therefore,

based just on the results of the validation test, the MVN-Copula method is the strongest

performing candidate. Although the BSP-Copula method is close behind with potential to

improve the axial coefficient validation test with some small tweaks. A key take-away from

the validation test is that testing the coefficient or testing the full dimensional line loads

always gave the same result. This gives credence to using the distribution of the singular

value coefficients, Ω, as a low-dimensional proxy to the full line load distribution. It also

justifies the results presented in the next section, containing the surface pressure data, as

only the coefficients could be tested since testing the full surface pressure distribution is not

feasible due to the data having 402909 dimensions.

Leave-One-Out Error Estimation

The Resampling method had difficulty generating a valid line load for some of the left out

cases. For each left out case, 100000 attempts were made to generate a valid line load. If

a valid line load could not be made in that many attempts, the case was skipped and not

included in the error estimates. One case failed to generated in the CN LOO data, with

α=− 0.5 and β=0.5. While one case also case failed in the CY LOO data, with α=0.5 and

β=0.5. These are both located at the corners of the data set parameter space, which may

be factor in them failing. Since these methods are based off the known data and are not
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intended to extrapolate, it is not unexpected that predicting the line loads at the edges of the

data space would be challenging. The Resampling method in particular is relatively strictly

contained to the known data bounds due to the conditional distribution checks to determine

the validity of a generated line load.

Figure 4.7 contains the LOO error results for each aerodynamic coefficient. In order to

get a relative sense of scale, the LOO error is plotted along with the maximum absolute value

of the coefficient at each axial slice. The dCℓ

dx̂
appears to have the largest LOO error across

the axial locations, while dCA

dx̂
is consistently low. No issues stand out immediately from

looking at this figure alone and the results are similar to the MVN-Copula results presented

next.

For the MVN-Copula and BSP-Copula methods, the previously calculated bandwidths

using the full 29 dimensional coefficients was used in the GKDEs even though there is one

fewer coefficient due to the LOO process. A quick examination of optimizing the 28 band-

widths in one leave-one-out case showed only small changes in the bandwidths associated

with the small magnitude singular value bases. Since the high singular value coefficients

showed very little change, it was deemed an acceptable simplification to use the 29 band-

widths optimized with all the data and just use them with the final value truncated. The

LOO errors for the MVN-Copula method, shown in Figure 4.8, seem to be small relative to

the max seen values at each slices. The exception being rolling moment, shown in Figure

4.8b, which was the same result seen in the Resampling method data. This can perhaps be

explained as the known data having very little rolling moment in any solution and the data

then being primarily driven by noise in the CFD solution.

The cost of performing a full leave-one-out error estimation using the BSP-Copula method

is quite computationally expensive. This is due to a new partition needing to be calculated for

each κ−1 dimensional coefficient data. In order to reduce the cost, partitions were generated

using a decreasing number of partition cuts. These partitions were then used to generate 100
dCN

dx̂
and dCm

dx̂
line loads using the BSP-Copula method. The MMD test was run on the output

line loads for each, the results of which are included in Table 4.7 and 4.8. These results seem

to suggest that the MMD test can be passed with a relatively few number of cuts. This

could be because the method used to sample from the partition is relatively robust and that
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(a) dCA

dx̂ (b) dCℓ

dx̂

(c) dCN

dx̂ (d) dCm

dx̂

(e) dCY

dx̂ (f) dCn

dx̂

Figure 4.7: Resampling method leave-one-out errors for 29 known data points, 100k samples
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(a) dCA

dx̂ (b) dCℓ

dx̂

(c) dCN

dx̂ (d) dCm

dx̂

(e) dCY

dx̂ (f) dCn

dx̂

Figure 4.8: MVN-Copula leave-one-out errors for 29 known data points, 100k copula draws
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ncuts 500 1000 2000
Critical Value 0.034102 0.033241 0.029808

Score 0.018199 0.021574 0.016095

Table 4.7: Partition cut number sensitivity MMD 2-sample test results on BSP-Copula
generated Ω coefficients

ncuts 500 1000 2000
CN Critical Value 0.033083 0.033866 0.0323507

CN Score 0.018199 0.021574 0.016095
Cm Critical Value 0.035027 0.036331 0.034111

Cm Score 0.016647 0.017793 0.016189

Table 4.8: Partition cut number sensitivity MMD 2-sample test results on BSP-Copula
generated force and moment line loads.

the largest contribution the partition makes to the overall process, the estimation of the

conditioned joint probability density, is largely outweighed in the total probability density

estimation, Equation 3.10, by the conditioned marginal probability densities. The leave-one-

out error estimates used partitions with 500 cuts, a quarter of the number in the results

shown in the validation section, and the results are shown in Figure 4.9 - 4.11. The error

estimates are quite a bit larger than those from the other methods, indicating poor predictive

performance. One interesting observation is that the errors also appear to be well correlated

with the maximum values for every coefficient, whereas the Resampling and MVN-Copula

methods only exhibited that behavior for the rolling moment coefficient results. There is

potential for this to be improved however, with an initial idea being to increase the number

of cuts in the partition. Even though it can pass the validation with a lower number of

partition cuts doesn’t mean that it’s ability to predict a line load in a leave-one-out fashion

didn’t decrease. Another potential idea is to improve the selection process of the bandwidth

used in the sampling procedure, this is discussed further in Chapter 5. The BSP-Copula

results used significantly fewer draws in each attempt to generate a potential line load, 10

times fewer than the MVN-Copula method, this is due to the MVN-Copula code being much

better optimized for operating with large amounts of data.
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(a) dCA

dx̂ (b) dCℓ

dx̂

Figure 4.9: BSP-Copula leave-one-out errors for 29 known data points, 10k copula draws

(a) dCN

dx̂ (b) dCm

dx̂

Figure 4.10: BSP-Copula leave-one-out errors for 29 known data points, 10k copula draws
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(a) dCY

dx̂ (b) dCn

dx̂

Figure 4.11: BSP-Copula leave-one-out errors for 29 known data points, 10k copula draws

An additional test of note related to the LOO error is the method of bandwidth selection

for the copula based methods’ conditioned marginal distributions. The underlying motivation

in the bandwidth selection procedure is driven by balancing the predictive performance of

novel integrated values and returning the known distributed load at known integrated values.

The leave-one-out test addresses the first aspect, but the performance of the second aspect

was investigated using the MVN-Copula method. The test calculated the average error that

the line load generated from the MVN-Copula method had relative to the known line load for

the 29 known CFD integrated coefficients. The predictive error results for this test are shown

in Figures 4.12 - 4.14, with the leave-one-out error also shown for comparison. The predictive

errors follow generally similar trends with the leave-one-out error across the vehicle, with

the predictive error almost always being smaller than the leave-one-out error. This indicates

that the bandwidth selection process is working as intended and the bandwidths are not

over-fitted to the known data.

Discussion

The LOO error for the Resampling and MVN-Copula method are quite similar, and much

lower than the BSP-Copula method error. The rolling moment error sticks out as having the

largest relative error in all methods but particularly in the Resampling and MVN-Copula
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(a) dCA

dx̂ (b) dCℓ

dx̂

Figure 4.12: MVN-Copula predictive errors for 29 known data points, 100k copula draws

(a) dCN

dx̂ (b) dCm

dx̂

Figure 4.13: MVN-Copula predictive errors for 29 known data points, 100k copula draws

51



(a) dCY

dx̂ (b) dCn

dx̂

Figure 4.14: MVN-Copula predictive errors for 29 known data points, 100k copula draws

results when compared with the other coefficients. This is potentially due to the fact that

the rolling moments, over all the simulated cases, had small magnitudes and correspondingly

small variance, at least partially due to the geometry used being quite symmetric. Therefore,

the differences in rolling moment results between cases are suspected to be primarily driven

by various sources of noise in the CFD solutions. Thus, the methods could be having trouble

generating line loads that are driven by stochastic noise and not related to any effect driven

by flow physics. The axial force coefficient appears to have low relative error even though it

doesn’t pass the validation test for the Resampling and BSP-Copula methods. That means

that these methods can predict with a low overall error but that the generated line loads

don’t follow the distribution of the known data. A potential avenue for future work could

be to investigate this failure of the Resampling method, and near failure of the BSP-Copula

method, to follow the axial force coefficient distribution and potentially adjust the method

in a manner that depends on the coefficient that is being generated.

Another result of note presented in the results of this section is that the BSP-Copula

validation test results varied only slightly with a decreasing number of partition cuts. This,

along with the success of the MVN-Copula method, suggests that the distribution of the

generated line loads are not particularly sensitive to the quality of the estimated joint dis-

tribution modelled in the copula methods. However, restricting the number of partition
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cuts would seemingly decrease the accuracy of the probability density estimation, which in

turn increases the estimated leave-one-out error. This may explain the comparatively large

leave-one-out error that the BSP-Copula method exhibited, however arbitrarily increasing

the number of partition cuts used in the leave-one-out test becomes incredibly computation-

ally expensive. This is primarily due to the cost of calculating a brand new BSP partition

for each of the left out cases.

The bandwidth selection procedure for the copula based methods’ conditioned marginal

distributions is validated by looking at the predictive performance of the MVN-Copula

method. These results did not indicate the bandwidths were over-fitted to the known data.

Simulated Uncertainty

The simulated uncertainty test is performed using either a normal or uniform distribution

in order to model the aleatoric uncertainty in the integrated aerodynamic coefficients. Each

method generates uncertain line loads according to the provided aleatoric uncertainty in

the integrated coefficients. The aleatoric uncertainties were simulated according to C̃i
z,j =

Ci
z(1+ ϵU,j), where Ci

z is the integrated coefficient z from the i−th known data case and ϵU,j

is a value drawn from the aleatoric uncertainty model. The same ϵU,j was used for related

forces and moments, for example one ϵU,j was drawn for normal force and then used to

generate C̃i
N,j and C̃i

LM,j. The ϵU,j are drawn from two different distributions to model the

uncertainty, ϵU=N (0, 0.0333) and ϵU=U(−0.1, 0.1). This is done to compare the difference

in using two commonly assumed aleatoric uncertainty models. The LOO error estimates

from the previous sections are added to these generated line loads and a probability box is

created for each line load slice.

The simulated uncertainty results for the MVN-Copula method is shown in Figure 4.19,

with the figures containing the remaining coefficients included in Figures 4.20 and 4.22 in

Appendix A. These results attempt to show an upper and lower bound on the line load

uncertainty. Figures 4.20 - 4.22 show the probability boxes at several slices in order better

compare the differences between the aleatoric uncertainty model. The comparison between

the two varies pretty significantly depending on the coefficient of interest and the location

of the line load slice. For example there is a relatively large difference in the probability box
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(a) dCN

dx̂ , ϵU=N (0, 0.0333) (b) dCN

dx̂ , ϵU=U(−0.1, 0.1)

(c) dCm

dx̂ , ϵU=N (0, 0.0333) (d) dCm

dx̂ , ϵU=U(−0.1, 0.1)

Figure 4.15: Resampling dCN

dx̂
and dCm

dx̂
simulated uncertainty dispersions for 300 CN & Cm

shape for the rolling moment coefficient line load result shown at x̂ = x̂33 in Figure 4.20d

but at x̂ = x̂15 in Figure 4.20b there is very little difference. The probability box shapes

for related forces and moments are similar, regardless of location, shown for dCN

dx̂
and dCm

dx̂
in

Figure 4.21 and for dCY

dx̂
and dCn

dx̂
in Figure 4.22.

The simulated uncertainty results for the BSP-Copula method is shown in Figures 4.23,

with the figures containing the remaining aerodynamic coefficients in Figures A.19 and A.20

in Appendix A. The consequence of the larger leave-one-out errors can be seen particularly

in Figures 4.23 and A.20. For example the wide gap in potential values around x̂=15 in

these figures is due to this large error dominating over the simulated aleatoric uncertainty.
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(a) dCA

dx̂ at x̂ = x̂15 (b) dCℓ

dx̂ at x̂ = x̂15

(c) dCA

dx̂ at x̂ = x̂33 (d) dCℓ

dx̂ at x̂ = x̂33

(e) dCA

dx̂ at x̂ = x̂72 (f) dCℓ

dx̂ at x̂ = x̂72

Figure 4.16: Resampling dCA

dx̂
and dCℓ

dx̂
probability boxes for simulated uncertainty
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(a) dCN

dx̂ at x̂ = x̂15 (b) dCm

dx̂ at x̂ = x̂15

(c) dCN

dx̂ at x̂ = x̂33 (d) dCm

dx̂ at x̂ = x̂33

(e) dCN

dx̂ at x̂ = x̂72 (f) dCm

dx̂ at x̂ = x̂72

Figure 4.17: Resampling dCN

dx̂
and dCm

dx̂
probability boxes for simulated uncertainty
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(a) dCY

dx̂ at x̂ = x̂15 (b) dCn

dx̂ at x̂ = x̂15

(c) dCY

dx̂ at x̂ = x̂33 (d) dCn

dx̂ at x̂ = x̂33

(e) dCY

dx̂ at x̂ = x̂72 (f) dCn

dx̂ at x̂ = x̂72

Figure 4.18: Resampling dCY

dx̂
and dCn

dx̂
probability boxes for simulated uncertainty
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(a) dCN

dx̂ , ϵU=N (0, 0.0333) (b) dCN

dx̂ , ϵU=U(−0.1, 0.1)

(c) dCm

dx̂ , ϵU=N (0, 0.0333) (d) dCm

dx̂ , ϵU=U(−0.1, 0.1)

Figure 4.19: MVN-Copula dCN

dx̂
and dCm

dx̂
simulated uncertainty dispersions for 100 CN & Cm

The probability boxes in Figure 4.24 - 4.26 show some differences in how the aleatoric

uncertainties were modelled. This is not consistent with the previous method’s results and

is another warning sign to consider that this method was not performing as desired.

Discussion

The simulated uncertainty results, in particular the probability boxes, shows some amount of

variability depending on the method used. Using the different models in aleatoric uncertainty

shouldn’t greatly affect the probability boxes, as integrated coefficient values sampled from
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(a) dCA

dx̂ at x̂ = x̂15 (b) dCℓ

dx̂ at x̂ = x̂15

(c) dCA

dx̂ at x̂ = x̂33 (d) dCℓ

dx̂ at x̂ = x̂33

(e) dCA

dx̂ at x̂ = x̂72 (f) dCℓ

dx̂ at x̂ = x̂72

Figure 4.20: MVN-Copula dCA

dx̂
and dCℓ

dx̂
probability boxes for simulated uncertainty
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(a) dCN

dx̂ at x̂ = x̂15 (b) dCm

dx̂ at x̂ = x̂15

(c) dCN

dx̂ at x̂ = x̂33 (d) dCm

dx̂ at x̂ = x̂33

(e) dCN

dx̂ at x̂ = x̂72 (f) dCm

dx̂ at x̂ = x̂72

Figure 4.21: MVN-Copula dCN

dx̂
and dCm

dx̂
probability boxes for simulated uncertainty
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(a) dCY

dx̂ at x̂ = x̂15 (b) dCn

dx̂ at x̂ = x̂15

(c) dCY

dx̂ at x̂ = x̂33 (d) dCn

dx̂ at x̂ = x̂33

(e) dCY

dx̂ at x̂ = x̂72 (f) dCn

dx̂ at x̂ = x̂72

Figure 4.22: MVN-Copula dCY

dx̂
and dCn

dx̂
probability boxes for simulated uncertainty

61



(a) dCN

dx̂ , ϵU=N (0, 0.0333) (b) dCN

dx̂ , ϵU=U(−0.1, 0.1)

(c) dCm

dx̂ , ϵU=N (0, 0.0333) (d) dCm

dx̂ , ϵU=U(−0.1, 0.1)

Figure 4.23: BSP-Copula dCN

dx̂
and dCm

dx̂
simulated uncertainty dispersions for 100 CN & Cm

the normal and uniform distributions should be quite similar, just distributed differently.

It is suspected that this difference between aleatoric models is due to the low number of

samples taken from each uncertainty model. This is shown to be the case in the surface

pressure probability box results, and that conclusion should be valid for these line load

results as well. There are some large differences in shapes, for the Resampling and BSP-

Copula methods, but that is attributed more to underlying deficiencies present in those

methods. In general, the Resampling method probability boxes shapes are quite different

than the other methods, although the BSP-Copula method has some variance in probability

box shapes as well. The MVN-Copula seems to have a relatively consistent probability box
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(a) dCA

dx̂ at x̂ = x̂15 (b) dCℓ

dx̂ at x̂ = x̂15

(c) dCA

dx̂ at x̂ = x̂33 (d) dCℓ

dx̂ at x̂ = x̂33

(e) dCA

dx̂ at x̂ = x̂72 (f) dCℓ

dx̂ at x̂ = x̂72

Figure 4.24: BSP-Copula dCA

dx̂
and dCℓ

dx̂
probability boxes for simulated uncertainty
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(a) dCN

dx̂ at x̂ = x̂15 (b) dCm

dx̂ at x̂ = x̂15

(c) dCN

dx̂ at x̂ = x̂33 (d) dCm

dx̂ at x̂ = x̂33

(e) dCN

dx̂ at x̂ = x̂72 (f) dCm

dx̂ at x̂ = x̂72

Figure 4.25: BSP-Copula dCN

dx̂
and dCm

dx̂
probability boxes for simulated uncertainty

64



(a) dCY

dx̂ at x̂ = x̂15 (b) dCn

dx̂ at x̂ = x̂15

(c) dCY

dx̂ at x̂ = x̂33 (d) dCn

dx̂ at x̂ = x̂33

(e) dCY

dx̂ at x̂ = x̂72 (f) dCn

dx̂ at x̂ = x̂72

Figure 4.26: BSP-Copula dCY

dx̂
and dCn

dx̂
probability boxes for simulated uncertainty
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shape over the different coefficients.

One of the core motivations for this work can be visualized in the non-normality of many

of these probability boxes, due to the methods maintaining some representation of the known

data distributions. If the bandwidths used in the copula methods were too large than the

probability boxes would be overly smoothed and impose a more normal shape. While, the

Resampling and MVN-Copula probability boxes appear to not be sensitive to the form of

aleatoric uncertainty, the BSP-Copula probability boxes in general show a much greater

sensitivity to the aleatoric uncertainty model, with some probability boxes displaying very

different shapes depending on the aleatoric model. The dispersions shown for the BSP-

Copula gives a clue as to why this could be happening, it appears the line load dispersions

at many points along the vehicle are clustered quite close together. Compared to the other

methods’ dispersions where the dispersions tend to be more spread out in general. This

means the BSP-Copula dispersions do not include many different possible values and the

clustering is manifested in the probability boxes as sharp horizontal movements. It is possible

that the bandwidth used in sampling from the BSP-Copula was too small and didn’t allow

for large enough variance in drawn values. Overall, it is unclear what caused the large

differences between results using the different aleatoric distributions in some of the BSP-

method probability boxes, but it is likely caused by the sampling procedure.

The difference in probability boxes between the Resampling method and the MVN-

Copula method could potentially be explained by looking closely at the differences between

the approaches. The Resampling method essentially just constructs a viable line load while

the MVN-Copula method tries to find the line load with the highest probability density.

This can, and likely is, resulting in the Resampling method providing line loads that have

very small probability density values or in other words providing line loads that are not likely

to occur, according to the statistical model used in the MVN-Copula method. The Resam-

pling method also used 300 samples to construct the probability boxes, whereas the copula

methods used just 100. This is potentially another factor driving the differences between

aleatoric uncertainty distributions that is shown for the copula methods.

Overall it appears the MVN-Copula seemed to perform the best out of all the methods and

is therefore also tested on surface pressure data. The BSP-Copula method results show clear
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issues that could potentially be resolved in order to improve the results. The Resampling

method results are comparable to the MVN-Copula in many respects. However, the failure

to pass validation for two coefficients and the lack of ability to estimate the probability

density estimates of the generated line loads leave it as a less appealing method.

4.3 Surface Pressure

The MVN-Copula-based method from Section 3.3 is next applied to surface pressure data.

As discussed in Section 3.4 the Resampling method from Section 3.2 is not applied to surface

pressure data as the conditional distribution check step is not feasible with this data. The

BSP-Copula method is not applied as the leave-one-out error in the line load data results

was determined to be too large Due to this, and other performance issues, it was deemed

not worth investigating the BSP-Copula method, at least in the form described in Chapter

3, on the surface pressure data.

Validation

The validation test was performed with a simultaneous draw of 100 force and moment coeffi-

cients from known data cases. Figure 4.27 shows histogram comparisons of generated surface

pressures (red) with the known data used in the conditional marginal distribution estimates

(blue). The distributions of the generated data and the known data in these histograms

look to be similar in a qualitative inspection. The histograms at cp,200000 and cp,300000 give a

clear example of the qualitative success of the method to match well with the known data.

These histograms are skewed with easily apparent modes that the generated results are able

to replicate. The generated surface pressures passed the MMD test as shown in Table 4.9.

The surface pressure data only compared the coefficient distributions as the dimensionality

of the data makes the test computationally too expensive. This is justified as the MMD

test results in the line load section show that comparing the coefficient distributions always

had the same concluding results as comparing the line load distributions directly. Although

there is no guarantee the trend will hold for surface pressure data it is not feasible to test

the full dimensional data.
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(a) cp,0 (b) cp,100000

(c) cp,200000 (d) cp,300000

Figure 4.27: MVN-Copula cp histograms for 100 integrated aerodynamic coefficient sets
taken from known dataset.

Coefficient Critical Value Score
cp 0.0260077 0.0192575

Table 4.9: MMD 2-sample test results on MVN-Copula generated surface pressures’ Ω coef-
ficients.
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Figure 4.28: Leave-one-out errors for 29 known data points, 20k copula draws

Leave-One-Out Error Estimation

Figure 4.28 shows the leave-one-out error estimation for each of the 402909 surface pressure

points. The red data is the maximum absolute value seen amongst the nc known cases, the

black data is the error estimate. The dimensionality of the data makes a total visualization of

this data difficult. Figure 4.29 shows the ratio of the leave-one-out error to the max absolute

value of the cp at each index. The scale of the error estimate seems reasonable in general,

however there is always a chance that LOO error will dominate at surface pressure locations

with small absolute magnitudes. However, in the simulated uncertainty results presented

next, the leave-one-out error will be applied to surface pressures that have accounted for an

aleatoric uncertainty. Thus the relative magnitudes of the realized aleatoric uncertainty to

the leave-one-out error is perhaps more indicative of the method’s overall performance.
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Figure 4.29: Ratio of leave-one-out errors to max absolute cp for 29 known data points, 20k
copula draws

Simulated Uncertainty

The simulated uncertainty process is the same as done for the line load case, however the

description is repeated here for completeness. A simulated aleatoric uncertainty is applied

to the integrated coefficients and surface pressures are generated using the copula-based

methods. The aleatoric uncertainties were simulated according to C̃i
z,j = Ci

z(1+ ϵU,j), where

Ci
z is the integrated coefficient z from the i−th known data case and ϵU,j is a value drawn from

the aleatoric uncertainty model. The same ϵU,j was used for related forces and moments, for

example one ϵU,j was drawn for normal force and then used to generate C̃i
N,j and C̃i

LM,j. The

ϵU,j are drawn from two different distributions to model the uncertainty, ϵU=N (0, 0.0333)

and ϵU=U(−0.1, 0.1). This is done to compare the difference in using two commonly assumed
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aleatoric uncertainty models. The LOO error estimates from the previous sections are added

to these generated surface pressures and a probability box is created for each surface pressure

point.

It is not possible to show even a small fraction of the over 400000 probability boxes

generated from this data, but several are included in Figures 4.30 - 4.32. Figure 4.30 shows

the probability boxes for four different surface pressure points along the vehicle. The black

line used the normal distribution uncertainty model, and the blue line used the uniform

distribution. The figures show how the MVN-Copula method allows for spatial dependence

in the uncertain surface pressure realizations of the aleatoric uncertainty in the integrated

coefficients. For some surface pressure points, like those as the one shown in Figure 4.30b, the

LOO error is approximately the same magnitude as the aleatoric uncertainty and both have

similar contributions to the width of the probability box. However, in the case of Figure

4.30a, the aleatoric uncertainty is larger and contributes more to the overall uncertainty

of that surface pressure point. The different aleatoric uncertainty models do show some

differences in the resulting probability boxes depending on the surface pressure locations. For

the included figures, there is not too much difference between the shapes of the probability

boxes, depending just on the aleatoric uncertainty model. This is to be expected since the

draws from the different aleatoric uncertainties are realized in the method as two different

sets of integrated coefficients that have similar minimum and maximum bounds. The normal

distribution could draw values far outside the uniform distribution bounds, however, by

design, the 3-sigma bounds are similar.

Figure 4.31 shows the probability boxes for the four surface pressure points that had the

largest values for the ratio shown in Figure 4.29. The probability boxes for these points

don’t show significantly wider boxes as might be expected due to having the largest relative

errors. Although the largest seen difference between normal and uniform uncertainty occurs

in Figure 4.31b. Figures 4.32 shows the probability boxes for the four surface points that

had the largest leave-one-out error ratio values shown in Figure 4.28. This figure shows

that it doesn’t appear that a large leave-one-out error ratio necessarily corresponds to a

wider probability box. The overall proportions of these probability boxes are impacted

by the balance between the leave-one-out error and the aleatoric uncertainty. This point
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is discussed further in the Discussion section included at the end of the included surface

pressure results.

The differences between the aleatoric models is not expected, it is suspected to be due

to natural probability variances of sampling with a low number of random samples. To

investigate this, the number of drawn uncertain integrated samples was doubled to 400 and

the probability boxes from those results are shown in Figure 4.33. Two probability boxes

from Figures 4.31 and 4.32 were chosen for comparison in this figure, and it appears that the

difference between the two aleatoric model’s probability boxes becomes smaller with a larger

number of random samples. However, there is a still a difference between the two aleatoric

models that is driven by the uniform model being much more likely to draw values near the

bounds of its distribution. This would change with a huge number of samples however, where

now the normal distribution could likely sample a value beyond its three sigma bounds thus

beyond the used uniform distribution’s bounds. The key observation is that the aleatoric

model doesn’t have an impact on the shapes of the probability bounds as the number of

randomly drawn integrated values increases. Therefore, with large enough sampling, the

difference between the probability boxes using different aleatoric models is seen as a result

of the possible minimum and maximum values.

Discussion

The only method used on the surface pressure data was the MVN-Copula method. The

results were promising as it passed the validation test on the coefficients and, as discussed

previously, there is confidence in validating with the coefficient MMD test. The small number

of histograms presented, comparing point-wise distributions of the surface pressures, also

showed a good qualitative agreement between the generated and known surface pressures.

The leave-one-out errors also seem to have reasonably low values even though there are many

more points to consider and the presented figures are quite crowded. The leave-one-out errors

needs to be compared with the range of values generated by the aleatoric uncertainty in order

to understand whether its magnitude is acceptable.

The probability boxes look reasonable, while there does appear to be small differences

between the aleatoric uncertainty models used, this is determined to be driven by the low
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(a) cp,0 (b) cp,100000

(c) cp,200000 (d) cp,300000

Figure 4.30: MVN-Copula cp probability boxes for simulated uncertainty.

number of samples taken from the models. With a large enough number of samples, the

main difference between the aleatoric models is mainly due to the different possible minimum

and maximum values of each aleatoric model. However, this is more of a comparison of the

difference in relative magnitude between the leave-one-out error estimate and the, arbitrarily,

chosen aleatoric model. The probability boxes would look much differently if, for example,

U(−0.01, 0.01) was used in place of U(−0.1, 0.1). In this new case, the leave-one-out error

would be unchanged and would now dwarf the aleatoric uncertainty, thus the probability

boxes would look much wider and square-like. This inspires the question, how realistic is the

chosen aleatoric uncertainty models in a real world database scenario? Unfortunately the
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(a) cp,300021 (b) cp,353737

(c) cp,353736 (d) cp,353765

Figure 4.31: MVN-Copula cp probability boxes for simulated uncertainty for locations of
largest leave-one-out error.
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(a) cp,170853 (b) cp,291356

(c) cp,291355 (d) cp,343283

Figure 4.32: MVN-Copula cp probability boxes for simulated uncertainty for locations of
largest leave-one-out error ratios.
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(a) cp,300021 (b) cp,353737

(c) cp,170853 (d) cp,343283

Figure 4.33: MVN-Copula cp dense probability boxes for simulated uncertainty for select
locations.
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publicly available results for the Space Launch System aerodynamic databases are sanitized

prior to publishing.

There is non-sanitized uncertainty data published in older work dealing with the Ares

I vehicle in [28], but there is no scale to translate these values into percent uncertainties.

The work in [33] provides a comparison of axial force coefficient results across different CFD

solvers, reporting percent differences of around 10 to 20 percent across various mach numbers.

The aleatoric uncertainty used in the simulated uncertainty results in this chapter represents

about a 10 percent uncertainty in each integrated coefficient. Thus it seems like a relatively

conservative test of uncertainty considering that this type of solver-to-solver comparison term

is often included in a total uncertainty term used in aerodynamic databases. For example,

[7] reports a CART3D-to-OVERFLOW comparison term in the authors’ total uncertainty

build up, where this term is never the largest contributor for any aerodynamic coefficient.

This gives confidence that the simulated uncertainty is a conservative test of the method’s

performance in a practical scenario with a complete uncertainty quantification procedure.

Similarly to the line loads, the method is not built to extrapolate out beyond the data

that is used to construct it. This could be an issue if the uncertainty is very large and valid

uncertain draws are far beyond the known data. In this scenario, the best option is to use

a method like that in [13] to generate data. Even though it is essentially a mathematical

construction that could violate physical relationships between locations of the distributed

load data, it will provide an answer that constructed from known data. It is another task to

build a justification in using this generated answer, however this is not going to be discussed

here.

Overall, the MVN-Copula method was relatively successful as an approach that can

generate statistically consistent distributed loads according to uncertain integrated values.

Another interesting capability of the copula-based methods is they are capable of providing

any number of distributed loads at a given integrated coefficient value, including a corre-

sponding estimate for probability density. This allows for the ability to analyze some chosen

number of the generated loads with the largest probability density. For example, the spatial

variance of these distributed loads could be examined to estimate the variability at a given

spatial location in comparison to others.
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Chapter 5

Conclusion and Future Work

The primary motivation of this work was to create a method that could generate uncertain

distributed loads of a launch vehicle. Without uncertain distributed loads, engineers can-

not estimate the probability that a launch vehicle will experience a load that exceeds its

qualifications. In practice, predicting these loads has been done by relying on only nominal

distributed loads and applying a safety factor. The methods investigated in this work at-

tempt to improve on this practice by generating uncertain distributed loads that follow the

statistical distributions implied by the known distributed load data.

In traditional engineering of launch vehicle aerodynamics the uncertainty quantification of

integrated force and moment databases is able to estimate integrated aerodynamic coefficient

uncertainty, however estimating an equivalent uncertainty for corresponding distributed loads

is not done. These referred to distributed loads can take on at least two forms. Line loads

and surface pressures, including skin friction, are the two forms directly addressed in this

work. The surface pressure data allows for a more complete description of the aerodynamic

loading on the vehicle at the cost of being a much larger, and thus computationally expensive,

data set to work with. On the other hand, line loads allow for a more condensed description

of the aerodynamic loading by integrating the surface pressure data over axial slices of the

vehicle. However, this means the line loads don’t allow for the examination of aerodynamic

loading on a specific area of the vehicle, such as on a protuberance for example. The methods

discussed in Chapter 3 attempt to provide the capability to generate distributed loads that

are both consistent with the estimated uncertain integrated loads and consistent with the
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statistical distributions of the known data.

The results shown in Chapter 4 assess the success of the methods being applied to both

line load and surface pressure data, with the MVN-Copula method being the only method

also applied to surface pressure data. The investigated methods are the Resampling, MVN-

Copula, and BSP-Copula methods. The copula methods utilize a statistical idea to model

the dependence of between multi-dimensional random variables, in this case the random

variables are coefficients used to linearly construct uncertain distributed loads. The MVN-

Copula method uses a multi-variate normal distribution to model the copula, with the BSP-

Copula method uses the Bayesian Sequential Partitioning method for this purpose. The

computational time required for the Resampling method to be applied to the surface pres-

sure data was the reasoning for it being omitted. The low performance of the BSP-Copula

method when applied to the line load data was the justification for not applying it to the

surface pressure data. However, the MVN-Copula method was successful when applied to

both line load and surface pressure data. The MVN-Copula had similar leave-one-out er-

ror performance as the Resampling method; however, it also provides an estimate to the

probability density of its generated line loads. Considering these observations, the MVN-

Copula method is the recommended approach to be used for the task of generating uncertain

distributed loads according to uncertainty quantified in integrated loads. Another key con-

clusion was that the surface pressure probability boxes were relatively independent of the

choice of aleatoric uncertainty model, with only difference in the possible drawn extrema

affecting the probability boxes.

The further development of the BSP-Copula method is a potential avenue for future work.

That idea being that more work could be done on establishing a method for determining the

BSP-Copula method’s sampling procedure bandwidth parameter. It is possible that tuning

this parameter could improve the samples generated from this method and allow for the

axial force line load validation test to be passed. An initial idea for this is somehow relating

the size of the partition that is being sampled from into the bandwidth. The motivation

being to more naturally limit the drawn values to be within the drawn partition as the

current method essentially applies floor or ceiling functions to the drawn values. Another

available avenue for future work could be to investigate the near-failure of the BSP-Copula
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method to pass the validation test on the axial force coefficient line loads. It is possible that

the methods could be altered or tuned for the different aerodynamic coefficients in order

to improve performance, at least beyond the process for setting the bandwidths, which are

already variable based on the coefficients.

An additional aspect that could be investigated in the future is due to launch vehicles

with one or more boosters, including SLS, usually maintain separate line loads for the main

center body and each booster. Discussing the rules for dispersing line loads in such a situation

(for example considering how normal and lateral loads on the boosters create rolling moment

loads on the combined stack) could be a fruitful area of future work. However, it should

be noted that using the surface-pressure method can avoid this minefield of potential sign

errors.

Moving forward, a potential extension of this work could be to extend even further from

surface pressure data to using full flow solution fields. The motivation for doing that is so

that the residuals of the generated flow fields could be checked directly against the governing

equations used to generate the known data. This would show that the generated solutions are

valid according to a desired residual tolerance level. It is a stretch however, as the size of the

flow fields would require making data management and storage a consideration. Mathemati-

cal procedures could also become quite computationally costly and time prohibitive. Another

motivation for producing uncertain volume solutions is that many applications that are not

launch vehicle aerodynamics cannot be derived from surface quantities alone. Consider as

just one example an estimate of the mass captured by an airplane engine inlet.

In this work, we have sought to create uncertain distributed loads that match the statistics

of the known loads as completely as possible. To assess this goal for each of the methods,

we have employed various multidimensional statistical tests and were able to meet most or

all of the criteria. It should be noted that for most applications, the use of distributed loads

is to calculate one or more scalars. For example, in the mass flow problem just mentioned

as an application for uncertain volume solutions, the scalar is just mass flow, but estimating

it requires knowledge of the density and velocity solution of a large part of the flow field.

For launch vehicle aerodynamics, there is usually a collection of 20 or more critical loads,

and each of them can be calculated from the distributed loads. A weaker set of success
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criteria would be to match the statistics for these integral loads, which might allow for

simpler methods, and thus might be easier to implement in complex programs. However,

aerodynamicists typically do not know these loads in advance, which depend on the internal

structure of the vehicle. The goal in this work of matching the underlying statistics of the

entire distributed load database, which may have seemed esoteric, is to ensure that users of

the resulting uncertain distributed loads can be sure that the statistics of the scalar critical

indicators will also be correct.
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(a) dCA

dx̂

(b) dCℓ

dx̂

Figure A.1: Re-sample generated dCA

dx̂
and dCℓ

dx̂
for 300 CA & Cℓ taken from dataset.
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(a) dCY

dx̂

(b) dCn

dx̂

Figure A.2: Re-sample generated dCY

dx̂
and dCn

dx̂
for 300 CY & Cn taken from dataset.
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(a) dCA

dx̂ at x̂ = x̂15 (b) dCℓ

dx̂ at x̂ = x̂15

(c) dCA

dx̂ at x̂ = x̂33 (d) dCℓ

dx̂ at x̂ = x̂33

(e) dCA

dx̂ at x̂ = x̂72 (f) dCℓ

dx̂ at x̂ = x̂72

Figure A.3: Re-sample dCA

dx̂
and dCℓ

dx̂
histograms for 300 CA & Cℓ taken from dataset.
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(a) dCY

dx̂ at x̂ = x̂15 (b) dCn

dx̂ at x̂ = x̂15

(c) dCY

dx̂ at x̂ = x̂33 (d) dCn

dx̂ at x̂ = x̂33

(e) dCY

dx̂ at x̂ = x̂72 (f) dCn

dx̂ at x̂ = x̂72

Figure A.4: Re-sample dCY

dx̂
and dCn

dx̂
histograms for 300 CY & Cn taken from dataset.
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(a) dCA

dx̂ , ϵU=N (0, 0.0333) (b) dCA

dx̂ , ϵU=U(−0.1, 0.1)

(c) dCℓ

dx̂ , ϵU=N (0, 0.0333) (d) dCℓ

dx̂ , ϵU=U(−0.1, 0.1)

Figure A.5: Resampling dCA

dx̂
and dCℓ

dx̂
simulated uncertainty dispersions for 300 CA & Cℓ
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(a) dCY

dx̂ , ϵU=N (0, 0.0333) (b) dCY

dx̂ , ϵU=U(−0.1, 0.1)

(c) dCn

dx̂ , ϵU=N (0, 0.0333) (d) dCn

dx̂ , ϵU=U(−0.1, 0.1)

Figure A.6: Resampling dCY

dx̂
and dCn

dx̂
simulated uncertainty dispersions for 300 CY & Cn
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(a) dCA

dx̂

(b) dCℓ

dx̂

Figure A.7: MVN-Copula generated dCA

dx̂
and dCℓ

dx̂
for 100 CA & Cℓ taken from dataset.
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(a) dCY

dx̂

(b) dCn

dx̂

Figure A.8: MVN-Copula generated dCY

dx̂
and dCn

dx̂
for 100 CY & Cn taken from dataset.
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(a) dCA

dx̂ at x̂ = x̂15 (b) dCℓ

dx̂ at x̂ = x̂15

(c) dCA

dx̂ at x̂ = x̂33 (d) dCℓ

dx̂ at x̂ = x̂33

(e) dCA

dx̂ at x̂ = x̂72 (f) dCℓ

dx̂ at x̂ = x̂72

Figure A.9: MVN-Copula dCA

dx̂
and dCℓ

dx̂
histograms for 100 CA & Cℓ taken from dataset.
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(a) dCY

dx̂ at x̂ = x̂15 (b) dCn

dx̂ at x̂ = x̂15

(c) dCY

dx̂ at x̂ = x̂33 (d) dCn

dx̂ at x̂ = x̂33

(e) dCY

dx̂ at x̂ = x̂72 (f) dCn

dx̂ at x̂ = x̂72

Figure A.10: MVN-Copula dCY

dx̂
and dCn

dx̂
histograms for 100 CY & Cn taken from dataset.
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(a) dCA

dx̂ , ϵU=N (0, 0.0333) (b) dCA

dx̂ , ϵU=U(−0.1, 0.1)

(c) dCℓ

dx̂ , ϵU=N (0, 0.0333) (d) dCℓ

dx̂ , ϵU=U(−0.1, 0.1)

Figure A.11: MVN-Copula dCA

dx̂
and dCℓ

dx̂
simulated uncertainty dispersions for 100 CA & Cℓ
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(a) dCY

dx̂ , ϵU=N (0, 0.0333) (b) dCY

dx̂ , ϵU=U(−0.1, 0.1)

(c) dCn

dx̂ , ϵU=N (0, 0.0333) (d) dCn

dx̂ , ϵU=U(−0.1, 0.1)

Figure A.12: MVN-Copula dCY

dx̂
and dCn

dx̂
simulated uncertainty dispersions for 100 CY & Cn
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(a) dCA

dx̂

(b) dCℓ

dx̂

Figure A.13: BSP-Copula generated dCA

dx̂
and dCℓ

dx̂
for 100 CA & Cℓ taken from dataset.
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(a) dCN

dx̂

(b) dCm

dx̂

Figure A.14: BSP-Copula generated dCN

dx̂
and dCm

dx̂
for 100 CN & Cm taken from dataset.
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(a) dCY

dx̂

(b) dCn

dx̂

Figure A.15: BSP-Copula generated dCY

dx̂
and dCn

dx̂
for 100 CY & Cn taken from dataset.

106



(a) dCA

dx̂ at x̂ = x̂15 (b) dCℓ

dx̂ at x̂ = x̂15

(c) dCA

dx̂ at x̂ = x̂33 (d) dCℓ

dx̂ at x̂ = x̂33

(e) dCA

dx̂ at x̂ = x̂72 (f) dCℓ

dx̂ at x̂ = x̂72

Figure A.16: BSP-Copula dCA

dx̂
and dCℓ

dx̂
histograms for 100 CA & Cℓ taken from dataset.
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(a) dCN

dx̂ at x̂ = x̂15 (b) dCm

dx̂ at x̂ = x̂15

(c) dCN

dx̂ at x̂ = x̂33 (d) dCm

dx̂ at x̂ = x̂33

(e) dCN

dx̂ at x̂ = x̂72 (f) dCm

dx̂ at x̂ = x̂72

Figure A.17: BSP-Copula dCN

dx̂
and dCm

dx̂
histograms for 100 CN & Cm taken from dataset.
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(a) dCY

dx̂ at x̂ = x̂15 (b) dCn

dx̂ at x̂ = x̂15

(c) dCY

dx̂ at x̂ = x̂33 (d) dCn

dx̂ at x̂ = x̂33

(e) dCY

dx̂ at x̂ = x̂72 (f) dCn

dx̂ at x̂ = x̂72

Figure A.18: BSP-Copula dCY

dx̂
and dCn

dx̂
histograms for 100 CY & Cn taken from dataset.
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(a) dCA

dx̂ , ϵU=N (0, 0.0333) (b) dCA

dx̂ , ϵU=U(−0.1, 0.1)

(c) dCℓ

dx̂ , ϵU=N (0, 0.0333) (d) dCℓ

dx̂ , ϵU=U(−0.1, 0.1)

Figure A.19: BSP-Copula dCA

dx̂
and dCℓ

dx̂
simulated uncertainty dispersions for 100 CA & Cℓ
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(a) dCY

dx̂ , ϵU=N (0, 0.0333) (b) dCY

dx̂ , ϵU=U(−0.1, 0.1)

(c) dCn

dx̂ , ϵU=N (0, 0.0333) (d) dCn

dx̂ , ϵU=U(−0.1, 0.1)

Figure A.20: BSP-Copula dCY

dx̂
and dCn

dx̂
simulated uncertainty dispersions for 100 CY & Cn
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