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Abstract. Small-scale correlations measured in the Lyman-α (Lyα) forest encode information
about the intergalactic medium and the primordial matter power spectrum. In this article,
we present and implement a simple method to measure the 3-dimensional power spectrum,
P3D, of the Lyα forest at wavenumbers k corresponding to small, ∼ Mpc scales. In order
to estimate P3D from sparsely and unevenly distributed data samples, we rely on averaging
1-dimensional Fourier Transforms, as previously carried out to estimate the 1-dimensional
power spectrum of the Lyα forest, P1D. This methodology exhibits a very low computational
cost. We confirm the validity of this approach through its application to Nyx cosmologi-
cal hydrodynamical simulations. Subsequently, we apply our method to the eBOSS DR16
Lyα forest sample, providing as a proof of principle, a first P3D measurement averaged over
two redshift bins z = 2.2 and z = 2.4. This work highlights the potential for forthcoming
P3D measurements, from upcoming large spectroscopic surveys, to untangle degeneracies in
the cosmological interpretation of P1D.
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1 Introduction

The Lyα forest is a well-established observational tool in cosmology. When light from a
distant object travels through a medium containing neutral hydrogen HI, it can undergo
resonant absorption at a specific wavelength λα = 1215.67 Å. The HI component of the
inhomogeneously-distributed intergalactic medium (IGM), located between a distant source
and a terrestrial observer, therefore imprints its observed optical spectrum with the so-called
Lyα forest [1, 2]. Consequently, the spatial distribution of Lyα forest data is composed of
sparse and irregularly distributed lines-of-sight throughout the IGM. This geometry compli-
cates the determination of the Lyα forest 3-dimensional power spectrum, P3D. In this article,
we implement a method to measure P3D which addresses this issue by resorting to Fourier
transforms, exclusively in one dimension along these lines-of-sight.

As a cosmological observable, the Lyα forest is currently the best probe of large scale
structures, at least on a statistical ground, for 2 < z ≲ 4. Within this specific redshift
range, it is expected that the impacts of non-linearities and galaxy feedback on the matter
distribution are less pronounced compared to z ≲ 1.5, which is the main target of current
galaxy surveys [3]. Furthermore, hydrodynamical simulations have demonstrated that, except
for the case of high-column density absorbers, the Lyα forest is produced mostly by the dilute
part of the IGM, associated with under-dense or mildly over-dense regions of the cosmic
web [4, 5]. This makes the Lyα forest sensitive to the matter power spectrum P (k) at small
scales k ∼ Mpc, in a way directly connected to the primordial linear matter power spectrum
at these scales [6, 7].

To study the small-scale matter distribution from Lyα forest observations, an efficient
approach consists of measuring 1-dimensional correlations between absorption intensities
within individual optical spectra of background sources. The statistical estimator of choice
is the Fourier transform of the corresponding correlation function, the 1-dimensional power
spectrum P1D(k∥), where k∥ is the wavenumber associated with the absorber’s coordinate
along a line-of-sight (LOS). Following the initial work by [6, 8], numerous P1D measurements
have been carried out over the past two decades, spanning a wide range of scales and red-
shifts. Some of these measurements have focused on large k∥, with relatively small samples
of high-resolution, high signal-to-noise spectra, e.g. [7, 9–14]. In contrast, some measure-
ments were conducted down to smaller k∥ ∼ 0.1 Mpc−1, e.g. [15–19], relying on the large
statistics achieved by cosmological spectroscopic surveys. Cosmological simulations includ-
ing thermal properties of the IGM allow one to model the Lyα absorption field [20–22].
Since, as explained above, the measured Lyα forest comes from relatively dilute parts of the
IGM, hydrodynamical simulations that do not incorporate small-scale galaxy physics and
rely solely on an empirical photo-ionizing background are considered adequate for modeling
P1D[5], while the effects of galaxies and their feedback are expected to introduce ∼ 1− 10 %
level corrections [23, 24]. The comparison of P1D data with predictions from IGM simu-
lations therefore permitted to infer the thermal properties of the IGM, e.g. [25, 26], while
also constraining the cosmological primordial matter power spectrum. Many works relied on
P1D to either measure, in a relatively model-independent way, the amplitude and slope of
the linear matter power spectrum at scales around k ∼ 1 Mpc−1, e.g. [27–30], or constrain
more specifically the properties of neutrinos [31–33] and dark matter [34–41].

However, P1D only measures correlations between absorption features along individual
lines-of-sight. Since the measured coordinates associated with the absorption field are wave-
lengths, and not physical positions, several physical effects are intertwined, leaving some
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ambiguity in the interpretation of the P1D data. First, the wavelength separations between
absorption features is the result of their velocity difference ∆v, related both to physical sepa-
rations in terms of comoving coordinates, and to velocity flows in the cosmic web associated
with linear redshift-space distortions (RSD), and to non-linear velocity flows of the IGM.
Second, the Lyα absorption field is smoothed on small scales along lines-of-sight, due to a
blend of two very different physical effects: Jeans smoothing and thermal broadening. Jeans
smoothing represents a physical smoothing of the IGM density field, and is due to the cu-
mulative effect of thermal pressure over the cosmic history of the IGM. Thermal broadening
is specific to spectroscopic observations, it is mostly dictated by the local temperature of
the IGM. The variation of P1D as a function of k∥ is impacted by all these effects: disentan-
gling them would improve the sensitivity and robustness of the above-mentioned cosmological
constraints derived from P1D measurements.

Given that correlations transverse to the lines-of-sight are differently affected by these
effects, it is not surprising that the extension of Lyα correlation measurements to three di-
mensions was considered a long time ago [42, 43]. With the advent of the BOSS survey [44], a
large sample of Lyα forests was available with a line-of-sight density of ∼ 15 deg−2. This en-
abled 3D correlation measurements on relatively large scales [45], for which the most relevant
physical processes are RSD and the imprint of the baryon acoustic oscillations (BAO). First
used for BAO measurements [46–48], the Lyα forest 3-dimensional correlation function in real
space, ξ3D(r∥, r⊥), can also be exploited for RSD and the Alcock-Paczynski test [49–51]. On
the other hand, measuring 3D correlations on small scales, i.e. for small angular separations,
is more limited by statistics: although the absolute number of Lyα forest samples observed
in modern surveys is impressive, there are few pairs of Lyα forests with comoving transverse
separation r⊥ ≲ 1Mpc. Even in a particularly dense SDSS field, called Stripe 82, the number
density of measured z > 2.1 quasar spectra is 37 deg−2 [52]: this results in a mean comoving
transverse separation between nearest lines-of-sight of 8h−1Mpc at z = 2.2. Line-of-sight
pairs with significantly smaller angular separations are observed solely due to fluctuations in
the quasar sky distribution. However, the forthcoming spectroscopic surveys are expected to
substantially increase the quasar density, for example the number density of z > 2.1 quasars
for the main DESI sample will be n = 58 deg−2 [53]. Given that the number of pairs scales
like n2, it is foreseeable that large-scale sky surveys will provide a sufficiently large statistical
sample for the assessment of Lyα correlations at small r⊥. Additionally, a small number of
close pairs was observed in [54–56], with transverse separations r⊥ in the 0.1− 1 Mpc range:
the corresponding transverse correlations were used to estimate the Jeans scale.

A natural extension of P1D(k∥) is the 3-dimensional power spectrum P3D(k∥, k⊥) of fluc-
tuations in the Lyα absorption field. P3D can be predicted from cosmological hydrodynamical
simulations, similar to those used to model P1D [57–59], but with different volume require-
ments. Several authors have then proposed analytical and physically motivated approxima-
tions [57, 60, 61], which turned out to fit well the results of full numerical simulations [58].
Therefore, there is a clear path for the interpretation of forthcoming P3D measurements.
However, it is technically not straightforward to estimate P3D from large-scale spectroscopic
surveys. Apart from their large data volumes, Lyα forest samples possess an anisotropic
geometry, involving a regular and dense sampling along individual lines-of-sight, which are
themselves sparsely and randomly distributed over the sky. In [62], a method was proposed
to compute P3D from large samples. This method relies on initially estimating the so-called
cross-spectrum P×, which is a hybrid quantity between P3D and the real-space correlation
function ξ3D. In [62], the measurement of P× is achieved through an optimal quadratic
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estimator, a technique that has already demonstrated success in the realm of Lyα forest
observations for estimating P1D [14, 15, 18]. In this article, we introduce an alternative ap-
proach to estimate P3D. Similarly to the method proposed by [62], we begin by calculating
P× and subsequently derive P3D. However, our technique for estimating P× relies on the
1-dimensional Fast Fourier Transform (FFT). Notably, the FFT method has previously been
employed to compute P1D from extensive samples of surveys like SDSS [16] and DESI [19].
The method presented here can thus be viewed as an extension to those prior works. In our
case, even more importantly than in the case of P1D, one of the notable advantages of utiliz-
ing the 1-dimensional FFT approach is its minimal computational requirements, in addition
to its inherent simplicity.

This article is laid out as follows: in Section 2, we present the basic definitions and
formalism connecting P1D, P× and P3D, and we describe the implementation of our method.
Section 3 demonstrates the performance of the algorithm on realistic hydrodynamical simu-
lations, whose predicted P3D is well-defined. In Section 4, we present an application of the
method using Lyα spectra from the SDSS data, hence providing a first measurement of P3D

based on real data.

2 Method

The fundamental observable quantity for the Lyα forest is F (λ), the ratio of the observed
flux to the unabsorbed (intrinsic) flux of a background source, as a function of the observed
wavelength. In practice, the measured F (λ) is affected by various effects, such as uncertainties
in the source’s continuum, instrumental noise, absorption by metals... We will address these
matters at a later stage, and for now, we will consider that F solely reflects the Lyα absorption
in the dilute IGM. To study the correlated fluctuations in F , we define the δ field, called
density contrast of the Lyα forest, as:

δ(θ, λ) =
F (θ, λ)

F (λ)
− 1 (2.1)

Here θ represents an angular direction in the sky, i.e. a line-of-sight. λ is an observed
wavelength and F (λ) is the sky-averaged value of F at λ, corresponding to the mean IGM
absorption at redshift 1 + z = λ/λα.

While δ fluctuations exhibit a strong non-Gaussian behavior on small scales, the key
statistical information about the density contrast field δ lies in its two-point correlation func-
tion, or equivalently its Fourier transform, the power spectrum. Specifically, the cosmological
details pertaining to the underlying matter density field are fundamentally embedded within
this statistical function, which is the focal point of interest in this study. We define the
correlation function from the ensemble average, as follows:

ξ3D(z, θ,∆λ) ≡ ⟨δ(θi, λi) δ(θj , λj)⟩ (2.2)

Here θ is the angular separation between two directions θi and θj , as the Lyα absorption
field is isotropic as a function of sky coordinates. The radial separation is parameterized
by the two relations: ∆λ = λj − λi and 1 + z = (λi + λj) / 2λα. Alternatively, one can
parameterize the radial separation in terms of ∆v = c ln(λj/λi). Throughout this study, we
will consider Lyα forest samples in a narrow redshift slice, so that in Eqn. 2.2 and subsequent
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equations, z is considered to be identical to its mean ⟨z⟩. Subsequently, P3D is defined as the
3-dimensional Fourier transform of the correlation function:

P3D(z, k⊥, k∥) ≡
∫

d2θ eiθ·k⊥

∫
d∆λ ei∆λk∥ ξ3D(z, θ,∆λ) (2.3)

Given the statistical isotropy of δ, P3D does not depend on the direction of the 2D vector k⊥,
but only on its modulus k⊥. As an observational quantity, P3D has units of deg2 Å (respec-
tively deg2 km s−1), k⊥ has units of deg−1, and k∥ has units of Å−1 (respectively s km−1, if
we use ∆v instead of ∆λ).

Figure 1. Representation of the fundamental geometric principles behind Lyα correlations for the
estimation of P1D and P3D using a 1D FFT approach. The left panel illustrates the P1D measurement,
derived from a set of FFTs of independent lines-of-sight (LOS), δ̃F (k∥). Conversely, the right panel

illustrates the P3D measurement, obtained by correlating 1-dimensional FFTs, namely δ̃F1
and δ̃F2

,
across different lines-of-sight. This illustration also highlights, through bold lines, the delineation of
“chunks” within Lyα forests, which serve as the basis for correlating distinct FFTs.

From a technical standpoint, P3D determines correlations between pixels taken from
distinct quasar spectra, as illustrated in Fig. 1. On the other hand, P1D is obtained by
correlating pixels belonging to the same quasar spectrum. It is therefore defined as the
Fourier transform of the 1-dimensional correlation function ⟨δ(θ, λi)δ(θ, λj)⟩ at fixed θ. It
is worth noting that the P1D can be expressed as a function of the P3D(z, k⊥, k∥) in this
manner:

P1D(z, k∥) =

∫
d2k⊥
(2π)2

P3D(z, k⊥, k∥) (2.4)

2.1 The cross-spectrum

The key element in the approach we propose to measure the P3D, is to first consider a
hybrid quantity between real and Fourier space, referred to as the cross-spectrum P×(z, θ, k∥).
Similarly to P3D, P× quantifies longitudinal correlations in Fourier space. However, for
transverse correlations, instead of being expressed in terms of the perpendicular wavenumber
k⊥, the cross-spectrum resembles a correlation function, being defined as a function of the
real-space angular separations θ between the correlated pixels. To our knowledge, P× was
first introduced in the context of the Lyα forest by [43], and also studied in [62–64]. Here,
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we use the same notation P× as in [43, 62]. However, let us emphasize that P× is unrelated
to the full Fourier space power spectrum computed from the cross-correlations between two
distinct fields. P× can be expressed both as a function of ξ3D or P3D in the following way:

P×(z, θ, k∥) ≡
∫

d∆λ ei∆λk∥ ξ3D(z, θ,∆λ) (2.5)

=

∫
d2k⊥
(2π)2

eiθ·k⊥ P3D(z, k⊥, k∥) (2.6)

The symmetries of the problem, and the assumption that z is fixed, ensure that P× is a real
quantity. Then, P1D as defined in Eqn. 2.4, can be seen as a special case of P×, for null
angular separation:

P1D(z, k∥) = P×(z, θ = 0, k∥) (2.7)

P× is a correlator well-adapted to the geometry of Lyα forest observations. The mea-
sured Lyα absorption “pixels” are aligned along individual lines-of-sight, usually on a com-
mon dense grid of wavelengths: this makes it easy to use the Fourier representation along the
parallel direction. On the other hand, the lines-of-sight are sparsely and inhomogeneously
distributed in sky coordinates, so that a real-space representation of their correlations is more
straightforward.

Defining δ̃(θi, k∥) as the Fourier transform of each individual line-of-sight δ(θi, λ), the
definition given by Eqn. 2.5 implies that:〈

δ̃(θi, k∥) δ̃
∗(θj , k

′
∥)
〉
= 2π δD(k∥ − k′∥) P×(θ, k∥) (2.8)

where δD is the Dirac delta function and θ again represents the angular separation between
the θi and θj directions.

2.2 A fast and simple estimator for P×

Considering Eqn. 2.8, it becomes evident that we can expand the 1-dimensional FFT ap-
proach, which has already been employed to compute P1D as seen in [17, 19], to also compute
P×.

In practice, the starting quantity for our P× measurement at a given redshift z, is a
set of density contrasts δ(θi, λ), extracted from the quasars’ Lyα forests in a data sample.
Importantly, we assume here that all the δi are tabulated on a common regular wavelength
grid:

• A common wavelength binning, which is the case of spectra published e.g. by SDSS
and DESI. If this is not achieved, one would additionally need to handle phase shifts
in the δ̃i δ̃

∗
j products.

• A common wavelength range, centered at (1 + z)λα: indeed, for each pair of lines-of-
sight (i, j), the wavelength ranges of i and j must be the same to compute the products
of Fourier transforms.

A consequence of these requirements is that only a fraction of each quasar’s Lyα forest is
used, depending on each quasar’s redshift, as illustrated in Fig. 1. This, results in a loss of
statistics. However, such a choice was not needed in the case of P1D, e.g. in [17] the density
contrasts δi were computed on “chunks” of Lyα forests defined in each quasar’s rest-frame,
so that all the selected Lyα forest samples contributed to the measurement.
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Employing a Fast Fourier Transform method, we initially perform a 1-dimensional

Fourier transform on all density fields: δ(θi, λ) = δi(λ)
FFT−−−→ δ̃(θi, k∥) = δ̃i(k∥). Follow-

ing this, we calculate the angular separations θij for all possible pairs of lines-of-sight (i, j),
and we bin these angular separations, depending on the angular separation values for which
we intend to calculate P×: an accurate determination of P× is possible only if there is a suffi-
cient number of line-of-sight pairs within each respective bin. For each selected bin, we define
the average angular separation θ as the mean value of θij corresponding to the pairs that
contribute to that specific bin. For a given angular separation bin, considering the sample of
line-of-sight pairs (i, j) falling in this specific bin, we compute all products of 1-dimensional
FFTs, δ̃i δ̃

∗
j . Subsequently, by averaging over all pairs, one can obtain an estimate of P×, as

outlined in Eqn. 2.8. We define our estimator:

P×(θ, k∥) =
〈
ℜ
(
δ̃i(k∥) δ̃

∗
j (k∥)

)〉
(2.9)

Since P× is real, the average of the imaginary parts of δ̃iδ̃
∗
j products is zero: therefore,

to reduce statistical fluctuations we only consider their real parts, ℜ(δ̃iδ̃∗j ), in Eqn 2.9. This
is equivalent to including both (i, j) and (j, i) pairs in the averaging process. In the special
case of identical line-of-sight pairs (i, i), i.e. θ = 0, this product simplifies to computing the
average of |δi|2, which corresponds to the conventional FFT estimator for P1D. As for P1D, a
set of P×(θ, k∥) can be computed separately for different redshift bins, using only Lyα pixels
centered around a mean redshift ⟨z⟩.

The parallel wavenumbers k∥ are dictated by the (common) wavelength grid. In this

context, we assume a constant pixel size, which can be either ∆λpix in Å, or ∆ log λpix.
Defining the number of pixels Npix, the minimum non-zero wavenumber is 2π

Npix
∆λpix. Its

maximum value equals the Nyquist frequency π
∆λpix

.

We derive the statistical error bars and covariance for P× within a specific angular sepa-
ration bin, using the dispersion of individual δiδj measurements. This is identical to the way
it is done for P1D [17]. The underlying assumption is that individual pair measurements (i, j)
are independent of each other. This assumption holds in the context of this study, because we
are considering small angular separations and using relatively low-density Lyα observations
over a substantial portion of the sky: the probability for a line-of-sight (i) to contribute to
two pairs (i, j) and (i, j′) within the same angular separation bin is quite low. Due to the
same reason, we anticipate that the statistical covariance of P× will be minimal between
different angular separation bins. Consequently, it is not taken into account in this study. It
is important to note that if a future work expands the measurement of P× to larger angular
separations, a more refined estimation of the covariance would be essential.

In terms of computational requirements, this method demands very limited resources.
Some computation time is needed to tabulate pairs of lines-of-sight as a function of angular
separations. The subsequent step, which involves computing 1D FFTs for all individual lines-
of-sight, requires a computation time identical to the case of P1D. Overall, as an example,
our computations indicate that it takes only a few minutes, when executed on a single CPU
node of the Perlmutter machine at the NERSC computing center, to compute P× in a single
redshift bin, for the SDSS sample considered in Section 4.

2.3 Noise and resolution

When dealing with real data, given that we are interested in small-scale correlations, the
main instrumental effects that need to be corrected for are the spectroscopic resolution and
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its noise. Although such corrections depend on the considered data set, they are relatively
similar between different instruments. We consider here the case of SDSS spectra, since we
later apply our method to SDSS data sets.

The expression of the measured density contrast for a line-of-sight i, δi(λ), can be
written as a function of the “astrophysical” contrast δi,Lyα(λ) as follows:

δi(λ) = δi,Lyα(λ) ∗Wi(λ,R) + δi,n(λ) (2.10)

In this expression, δi,Lyα is convolved by the kernel function Wi(λ,R) that accounts for the
spectral response of the spectrograph, as well as the sample’s wavelength pixelization. Here,
as in the P1D measurement of [17] using SDSS data, we approximate W by using a mean
resolution parameter R for each measured sample. δi,n(λ) represents noise fluctuations: those
are usually well represented by a Gaussian white noise model, whose amplitude depends on
the considered spectrum. In Fourier space, Eqn. 2.10 becomes:

δ̃i(k∥) = δ̃i,Lyα(k∥)× W̃i(k∥, R) + δ̃i,n(k∥) (2.11)

We define P×,Lyα and P× as the cross-spectra of δi,Lyα(λ) and δi(λ) respectively. We also
define the noise (cross) power spectrum in the following way:

Pn(θ, k∥) = ⟨ℜ(δ̃i,nδ̃∗j,n)⟩ (2.12)

In this expression, similarly to previous expressions, (i, j) pairs are separated by θ. It is then
straightforward to derive P×,Lyα from the observed P×, by employing an equation that is an
extension of the one used for P1D, e.g. in [17]:

P×,Lyα(θ, k∥) =
P×(θ, k∥)− Pn(θ, k∥)〈

W̃i(k∥) W̃j(k∥)
〉 (2.13)

Since the noise is independent of the Lyα signal, all ⟨δ̃i,nδ̃∗j,Lya⟩ vanish. If we neglect the
impact of correlated noise between different measured spectra, we have ⟨δ̃i,nδ̃∗j,n⟩ = 0 for any
pair (i, j) of lines-of-sight with i ̸= j. We will come back to this assumption in the specific
case of SDSS spectra in Section 4.2. In that case, the only non-zero noise correlation terms
are for i = j, therefore we have:

Pn(θ, k∥) =

{
⟨|δ̃i,n|2⟩ if θ = 0

0 if θ > 0
(2.14)

Hence, contrarily to the case of P1D, there is no noise correction to apply for θ > 0.

2.4 From P× to P3D

The measurement of P× itself is of interest, and as we will emphasize in the conclusion, it
could certainly be directly used for cosmological inferences within a full modeling approach.
However, the computation of P×(z, θ, k∥) also allows one to infer P3D. Using Eqn. 2.3, we
have:

P3D(z, k⊥, k∥) =

∫
d2θ eiθ·k⊥ P×(z, θ, k∥) (2.15)

Moving to cylindrical coordinates, the angular symmetry of P× permits this 2D integral to
be simplified to a 1D integral:
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P3D(z, k⊥, k∥) = 2π

∫ ∞

0
dθ J0(k⊥θ) θ P×(z, θ, k∥) (2.16)

Here J0(x) is a first kind Bessel function of order zero, which oscillates while slowly decreasing
as a function of x = k⊥θ.

Following Eqn. 2.16, one straightforward approach for inferring P3D involves performing
numerical integration of P×, which is the technique used in this work. Numerically, since P× is
expected to be a smooth function of θ for the scales of interest, we perform an interpolation
of P× over a finely-spaced grid of θ values, using a smoothing spline fit. This ensures that
we accurately capture the oscillations of the Bessel function J0(x). Using the interpolated
cross-spectrum, we perform the numerical integration using Eqn. 2.16. This integration
can be done only for certain values of k⊥ and k∥. First of all, θmin, the smallest non-
zero angular separation for which we measure P×, dictates the largest perpendicular mode
k⊥,max ∝ 1/θmin. In addition to that, the numerical integration makes sense only if typical
variations of P× as a function of θ take place on scales larger than θmin. In practice, P× is a
rapidly decreasing function of θ since it is a correlation function as a function of transverse
coordinates. Therefore, a simple and somewhat arbitrary criterion we choose is to require
that P×(θmin)/P×(θ = 0) > 0.3. Given that P× decreases faster with θ for larger values of
k∥, this results in a maximal value k∥,max. Using a simple toy model for P×, we estimate that
the systematic error on P3D due to the finite value of θmin is of the order of 20 %, with this
criterion and our chosen integration method.

Within this method, the P3D statistical uncertainties are propagated following a simple
Monte-Carlo approach. Initially, random realizations of P× are drawn according to the
measured P× covariance matrix. Subsequently, the statistical errors on the measured P3D are
given by the dispersion of the random P3D values obtained after numerical integration of the
random P× realizations, according to Eqn. 2.16 as well.

It is evident that there exist more advanced approaches for estimating P3D, such as
implemented in [62]. This will be discussed later in the conclusion. Here we use our simple
numerical integration due to the fact that the choice of an alternative P3D estimator depends
on the strategy used to physically interpret the measurement - a step that we leave for a
future work. We emphasize that regardless of the chosen method, the derivation of P3D from
P× demands negligible computational resources in comparison to the P× computation itself.
Additionally, we highlight that the numerical integration approach is completely model-
independent, which is not the case for other approaches such as the quadratic estimator used
in [62], in which P3D is parameterized using an expansion around a reference model, or even
more using explicit fitting functions such as those of [60].

Units

• When modelling the Lyα forest, for example in the case of simulated data derived from
hydrodynamical simulations detailed in Section 3, with a known background cosmology,
P× and P3D are computed in h−1Mpc and [h−1Mpc]3 respectively. Angular separations
θ are also expressed in h−1Mpc. This allows one to compare measured power spectra to
the “truth” power spectra of the simulations, whose coordinates are given in comoving
Mpc.

• When using real data, it is more appropriate to provide a cosmology-independent mea-
surement, that can be later interpreted within any cosmological model. As already
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mentioned in Section 2, depending on whether the pixel size along lines-of-sight is ex-
pressed in Å or in km s−1 (in the case of a log scale wavelength grid), P× is expressed
in Å or km s−1 units, and P3D is expressed in [deg2 Å] or in [deg2 km s−1].

For reference, in the case of a flat cosmological model with comoving distance Dc(z) in Mpc,
and Hubble rate H(z) in km s−1 Mpc−1, and for data sets at mean redshift z, with c in
km s−1 and λα in Å, the conversion formulae are:

P×[h
−1Mpc] =

hc

λα H(z)
P×[Å] (2.17)

P×[km s−1] =
c

λα (1 + z)
P×[Å] (2.18)

P3D[h
−1Mpc]3 =

( π

180

)2 h3 c
λα

Dc(z)
2

H(z)
P3D[deg

2 Å] (2.19)

3 Validation with hydrodynamical simulations

In this section, we apply the previously outlined method to simulated Lyα absorption fields.
We make use of the output of a cosmological simulation, run with the Nyx software. This
provides tests of our measurement strategy with a realistic Lyα forest model, and more
importantly, a well-defined input P3D.

3.1 Description of the simulations

Simulated Lyα forest samples have been generated over large volumes such as those covered
by large spectroscopic surveys, e.g. in [65, 66]. However, such mock samples are optimized
to mimic large-scale correlations, and do not necessarily reproduce a well-defined small-scale
P3D of the Lyα absorption field. On the other hand, using a simple Gaussian random field
with a known P3D may be unrealistic, since at small scales, the Lyα absorption field is
highly non-Gaussian. We therefore resort to the use of Lyα absorption fields as computed by
cosmological hydrodynamical simulations. Currently, these simulations cannot span over a
cosmological volume equivalent to the one probed by BOSS, but we can compensate for this
limitation by drawing lines-of-sight inside the simulation box with an appropriate density,
ensuring that the statistics of relatively small-separation pairs reasonably matches that of
real data.

Nyx [67, 68] is a cosmological simulation code, solving the evolution of the baryonic
gas coupled to dark matter in the expanding Universe. While dark matter is treated with
an N-body approach, the gas hydrodynamics are solved on a mesh. Nyx is particularly well
adapted to model the Lyα forest, as described in details in [5], and applied in e.g. [59,
69]. The Eulerian, fixed-mesh algorithm turns out to be efficient to model the small-scale
fluctuations of baryon properties in the low-density regions of the cosmic web, where most
of the Lyα absorption signal is produced. The Lyα forest modelling is done by following
electrons, hydrogen and helium species (neutral and ionized), making use of relevant atomic,
heating and cooling processes. Concerning the post-processing of a Nyx simulation, this is
done using the Gimlet software [70]. Gimlet is a C++, MPI-parallel toolkit well adapted to
Nyx outputs [5].

Here we make use of an output (snapshot) from a Nyx simulation that is described in
more details in [71]. The simulation was run starting from z = 200, with Zel’dovich initial
conditions, and cosmological parameters from [72]: Ωb = 0.0487, Ωm = 0.31, H0 = 67.5,
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Figure 2. Slice of the baryon density, temperature, and optical depth in redshift space from the
employed Nyx simulation, with 15363 cells and box size of 150 h−1Mpc. The baryon density and tem-
perature fields are statistically isotropic. For the optical depth field, the horizontal axis corresponds
to the line-of-sight: the effects of IGM temperature, peculiar velocities and redshift space distortions
result in anisotropies of its statistical properties.

ns = 0.96 and σ8 = 0.83. Importantly for the Lyα forest, a spatially uniform UV+X-ray
radiation field is assumed to dictate the ionization state of Hydrogen and Helium, following
the middle reionization scenario of [73]. The simulated cosmological volume is a large cubic
box, 150 h−1Mpc wide, with 15363 gas cells, resulting in a resolution of 98 h−1kpc. This
volume is large enough to draw lines-of-sight with an appropriate number density. Addi-
tionally, the spatial resolution is good enough to physically capture some of the relevant
small-scale features in the Lyα forest. Note that it is not enough to fully resolve the Jeans
scale λJ ∼ 80 h−1kpc, but this is not important for this study: the minimum non-zero an-
gular separation bin θmin we use in mocks with a “realistic” line-of-sight density, and with
SDSS data, corresponds to transverse distances ∼ 0.6 h−1Mpc, much larger than λJ . For
practical reasons we use the simulation output at redshift z = 2.0.

The IGM’s Lyα optical depth τα is numerically calculated in redshift space from simu-
lation outputs using Gimlet, which takes into account a Gaussian thermal line broadening.
A slice of τα, computed in redshift space with respect to the line-of-sight, is shown on the
right-hand side of Fig. 2. We also show the corresponding baryon density and temperature
fields, that were used to compute τα. These density and temperature fields are statistically
isotropic. Nonetheless, the effects of thermal broadening, peculiar velocities and redshift
space distortions have a clear impact on τα, resulting in statistical anisotropies in this field,
with a preferred axis given by the line-of-sight.

3.2 Mock generation

In order to validate our measurement approach, we generate mock line-of-sight samples from
the simulations described in Section 3.1 and perform measurements of P× and P3D. Starting
with the computed τα grid, we derive the transmitted flux fraction grid, F (λ) = e−τα .
Additionally, we compute the corresponding grid of density contrasts δ of the Lyα forest
based on Eqn. 2.1. Following this, a 3D Lyα absorption power spectrum P3D is computed
using Gimlet, which relies numerically on a 3D FFT, well-adapted to the regularly-gridded
δ field. We later refer to this P3D as the “truth”, although it is essential to acknowledge that
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this power spectrum is also altered by numerical effects, stemming from the FFT process, as
well as the effect of cosmic variance due to the finite box size.

Line-of-sight mock samples are finally generated from the δ grid. To create them,
we initially select random floating-point values for the x and y coordinates of each line-of-
sight, and subsequently determine the corresponding δ values along the z-axis. To be more
precise, the δ of each line-of-sight of random x and y coordinates is obtained through a
linear interpolation on the δ grid. This method ensures that the lines-of-sight are randomly
distributed, even when dealing with small angular separations. By construction, the pixels
of individual lines-of-sight are all on the same grid, with a 98 h−1kpc pixel size.

3.3 Results with a reference, high-density and noiseless mock

As a first validation of our pipeline, we build a reference mock sample with 104 lines-of-
sight, which does not include noise nor resolution effects. To compute P× on this mock,
we follow the procedure outlined in Section 2. First, after having computed the transverse
comoving separations, and corresponding angular separations of all possible line-of-sight pairs
in our sample, we choose angular separation bins centered at ⟨θ⟩ = 0◦ (case of P1D), 0.0015

◦,
0.0045◦, 0.008◦, followed by a regular binning of width 0.01◦ ranging from 0.015◦ to 0.35◦, and
finally the two bins 0.45◦ and 0.55◦. The maximum considered value is 0.55◦, equivalently
35 h−1Mpc, much smaller than the size of the simulation box. Then, for each angular
separation bin, we proceed with the measurement of P×(θ, k∥) which is represented in Fig. 3
for selected angular separation bins.

10 1 100 101

k  [h/Mpc]

10 7

10 5

10 3

10 1

101

P ×
 [M
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/h

]

θ= 0.000 Mpc/h
θ= 0.281 Mpc/h
θ= 0.937 Mpc/h
θ= 2.187 Mpc/h
θ= 3.436 Mpc/h
θ= 5.935 Mpc/h
P1D truth

Figure 3. Estimated P×(θ, k∥) from our reference mock of 104 noiseless lines-of-sight drawn from the
150 h−1Mpc Nyx box at z = 2.0. P×(k∥, θ = 0) being the P1D, is compared to the “truth” P1D provided
by Gimlet and represented by a continuous blue line. We rebinned P× values on a logarithmic grid
in k∥. Error bars indicate statistical uncertainties.
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Figure 4. Same as Fig. 3, but representing P× as a function of angular separation θ, i.e. highlighting
the fact that P× is a correlation function as a function of transverse separation. Notably, the trans-
verse correlations in the δ field decrease faster as a function of θ when considering short-wavelength
longitudinal modes (large k∥) with respect to long-wavelength modes.

Initially, we checked that the measured P×(k∥ | θ = 0) is in agreement with the “truth”
P1D computed by Gimlet. For θ > 0, the shape of P×(k∥) is similar to P1D; however
when θ increases, the overall power decreases. Furthermore, there is an attenuation of P×
as a function of k∥ and this effect intensifies at higher θ values. In order to highlight this
feature, Fig. 4 shows the same measurement, but as a correlation, i.e. as a function of θ: as
expected and already highlighted in e.g. [63], the transverse correlations in the δ field decrease
faster when considering short-wavelength longitudinal modes (large k∥) with respect to long-
wavelength modes.

We then derive P3D(k⊥, k∥), for values of k⊥ identical to those tabulated in the “truth”
P3D computed by Gimlet. Fig. 5 presents the computed P3D for selected k⊥ values ranging
from ∼ 0.1 to ∼ 10hMpc−1, as well as the corresponding “truth”. The agreement between
both estimations is very good: this validates our method to estimate P3D for a large range
of (k⊥, k∥). In this ideal setup, the number of line-of-sight pairs used to compute P× is huge,
leading to remarkably small statistical error bars. Nonetheless, it is noteworthy that our
P3D estimator exhibits reduced precision for k⊥ ≳ 10hMpc−1. This maximal value of k⊥ is
dictated by the smallest angular separation bin θ.

In order to physically interpret the measured P3D, we perform a change of coordinates

from Cartesian (k⊥, k∥) to polar (k =
√

k2⊥ + k2∥, µ = k∥/k). We then compute the ratio of

P3D to the (known) linear matter power spectrum PL(k, z = 2) estimated by the CLASS Boltz-
mann solver [74]. This recast of the measurement is shown in Fig. 6. In order to highlight
its interpretation, we fit these points with the analytic function given by Eqn. 3.6 of [60]:
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Figure 5. Estimated P3D(k⊥, k∥) from our reference mock of 104 noiseless lines-of-sight within the
150 h−1Mpc Nyx box at z = 2. Continuous lines show the “truth” P3D provided by Gimlet, estimated
by full 3D FFT of the box field. As in Fig. 3, we rebinned our P3D values on a logarithmic grid in k∥,
and error bars represent statistical uncertainties.

P3D(k, µ)

PL(k)
= b2 (1 + βµ2)2 exp

(
(q1∆

2(k) + q2∆
4(k))

[
1−

(
k

kv

)av

µbv

]
−
(

k

kp

)2
)

(3.1)

In this expression ∆2(k) = k3PL(k)/2π
2. At low k, P3D is in a near-linear regime: its

amplitude is dictated by the bias b and its µ dependence is driven by the linear RSD term
(1 + βµ2)2. Then, the isotropic boost of the power spectrum due to non-linear gravitational
growth is parameterized by the q1 and q2 terms. Line-of-sight broadening produced by non-
linear peculiar velocities and the IGM temperature generates a strongly µ-dependent cutoff
in P3D (kv, av, bv terms). Finally, at large k, the impact of Jeans smoothing is isotropic,
modelled by the exp−(k/kp)

2 term. When leaving all parameters free, we derive from our fit
1 (b, β, q1, q2, kv, av, bv, kp) = (0.043, 1.7, 2.3, − 0.5, 5.3, 0.42, 1.16, 9.4). Importantly,
the recovered P3D is in good agreement with the simulation’s truth, also displayed in Fig. 6.
We notice that for relatively low k ∼ 1.5 − 4 h−1Mpc, our measurement systematically
overestimates P3D for large µ, and underestimates P3D for low µ. This generates a bias
on several parameters when fitting Eqn. 3.1. Still, we compared the fit results from our
measurement to those from gimlet’s “truth”, and found that all parameters are within
1.1σ. More importantly, we also observe that even in the case of this reference mock sample,

1For this fit, the statistical uncertainties and correlations between parameters are large, so their values
should be considered only as indicative.
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the statistical error bars are large when it comes to measure P3D for small values of µ ≲ 0.3.
This is again related to the limited statistics of very small-separation pairs of lines-of-sight.
In spite of these limitations, it is clear that our P3D measurement from this reference mock
allows us to disentangle the different effects included in the model of Eqn. 3.1 - thereby
improving our interpretation of Lyα data, both in terms of precision and robustness.

100 101

k [h/Mpc]

10 2

P 3
D

(k
,µ

) /
 P

L
(k

)

µ = 0.2
µ = 0.4
µ = 0.6
µ = 0.8
P3D truth
Fit (Arinyo-i-Prats model)

Figure 6. Ratio of P3D(k, µ) to the linear matter power spectrum PL(k), computed for 4 values

of µ = k∥/k and as a function of k =
√

k2∥ + k2⊥. Points with error bars represent the measured

P3D from our reference mock, which is also shown in Fig. 5, but in a different coordinate system.
Continuous thin lines represent the simulation “truth” similarly to Fig. 5. Dashed lines are the result
of an 8-parameter fit of the measurement points to Eqn. 3.1, as described in the text.

3.4 Results with realistic mocks

In this section, we assess the performance of our measurement approach using realistic mock
data sets that resemble existing or forthcoming large spectroscopic quasar samples. We specif-
ically take into consideration two crucial factors that inevitably influence the accuracy of our
measurements: instrumental noise and lines-of-sight statistics. A study involving more real-
istic mocks which encompass elements such as astrophysical contaminants and more detailed
instrumental effects, falls beyond the scope of this article.

We first construct a mock sample with the same line-of-sight statistics as in the reference
mock discussed in Section 3.3. However, we inject noise into the measured Lyα density
contrast δ. This noise component is an uncorrelated, Gaussian white noise with standard
deviation σδ = 0.5/

√
∆λ, where ∆λ is the forest pixel size in Å. This particular value aligns

with the typical characteristics of SDSS Lyα samples. To derive P× from this mock sample,
we subtract the noise spectrum Pn when θ = 0, as explained in Section 2.3.
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Next, we construct a mock realization with noise-free δ samples as in the reference mock
detailed in Section 3.3. However, in this case, we opt for a reduced number of lines-of-sight,
specifically selecting 500 lines-of-sight. We choose this number such that the pairs count at
small angular separations resembles those from the SDSS sample given in Table 1 of Section 4.
For instance, this mock contains 70 line-of-sight pairs contributing to the angular separation
bin θ = 0.03◦, i.e. ≃ 1.9 h−1Mpc.
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Figure 7. Comparison of P× measurements from different mock realizations, for 3 angular separation
bins. The continuous lines represent P× from the reference mock, already presented in Fig. 3, with
statistical errors shown by shaded bands. Measurements from mocks with noisy data and with a
reduced density of lines-of-sight are shown by triangle points and stars, respectively. Residuals relative
to the reference mock, with their error bars, are shown in the bottom panel. For visual clarity, data
points are slightly shifted along the horizontal axis.

Figure 7 shows a comparative representation of the estimated P× from these two mock
data sets, in contrast to the reference case of Section 3.3, for three distinct angular separation
bins centered at θ = 0.01◦, 0.03◦ and 0.06◦. Comparing the P× from these more realistic
mocks to the reference P×, we notice that the considered effects result in an increase of
statistical uncertainties in the measurement. More specifically, for the mock sample with
noise, the increase of statistical error bars becomes significant when P× reaches low values:
this is similar to the case of P1D for large k∥. On the other hand, for the mock with less
lines-of-sight, the reduced number of pairs, especially at small angular separations, results in
large statistical fluctuations for all measured values.

As a result of these mock studies, we conclude that measurements of P× for θ > 0
should be feasible with Lyα data from large surveys, but clearly not at the level of precision
of existing P1D measurements.
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4 Application to SDSS quasar spectra

We now move to the application of the method on the largest currently public Lyα forest data
set: the SDSS DR16 quasar spectra. We stress that our goal here is to essentially provide a
proof-of-principle of our pipeline from a real, already well-studied Lyα forest sample. We are
not looking for the most precise measurement possible from this sample, nor do we attempt
any interpretation in terms of IGM physics and cosmology.

4.1 Data sample

The SDSS [75–78], BOSS [44] and subsequent eBOSS [79] surveys provide the largest pub-
licly available optical spectroscopic data set of extragalactic objects to date. This data set
encompasses a large set of Lyα absorption spectra from quasars with redshifts z > 2.1 and
a relatively homogeneous sky distribution spread all over the SDSS footprint, covering ap-
proximately 1/4 of the sky.

In our analysis, we select quasars drawn from the eBOSS DR16Q catalog [80], a com-
ponent of the 16th SDSS data release [81]. Our selection criteria are focused on quasars
with redshift z > 2.1, with no identified broad absorption lines (BAL) nor damped Lyman-α
(DLA) features in their spectra.

We measure Lyα forest fluctuations, δ(λ), from the set of quasar spectra, using the
continuum fitting algorithm implemented in the picca 2 code. This code computes δ from
the measured quasar flux fq(λ) through:

δ(λ) =
fq(λ)

F (z)Cq(λ)
− 1 (4.1)

In this expression, F (z) is the mean IGM transmission at redshift z = λ/λα−1, as previously
defined. Cq is the quasar’s unabsorbed flux, called continuum, and assumed to be a universal
function of the rest-frame wavelength λRF, multiplied by a quasar-dependent correction:
Cq = (aq+bq log λRF)C(λRF). The product F (z)Cq(λ) is determined by an iterative fit. The
continuum fitting procedure is analogous to the approach employed during the eBOSS P1D
measurement in [17]. Specifically, the fitting was done in the rest-frame wavelength range
λRF ∈ [1050− 1180] Å. No weights were applied to individual pixel fluxes fq(λ). Two types
of pixels were masked: those flagged by the SDSS processing pipeline due to e.g. cosmic
rays, and those that correspond to observed wavelengths matching atmospheric emissions
and galactic absorption lines, identically to [17]. Finally, only spectra with a mean SNR per
pixel larger than 1 were used.

The set of δ(λ) obtained from the DR16 sample is similar to the one used in the P1D
measurement of [17]. Since no resampling is performed at the stage of continuum fitting, all
the δ(λ) are pixelized on the SDSS common wavelength grid, equally spaced in logarithmic
scale, with a binning ∆ log λpix = 10−4.

Since our measurement is done separately for different redshift bins as already mentioned
in Section 2.1, our initial step involves extracting subsets of Lyα forests from the common
sample of δ, corresponding to specific redshift bins: for a given redshift z, we define a
wavelength range (λmin − λmax), centered at (1+ z)λα and then, we only select lines-of-sight
whose Lyα forest pixels completely overlap this wavelength interval. The width of this interval
determines the smallest measurable k∥. Additionally, lines-of-sight having masked pixels in

2Package for IGM Cosmological-Correlations Analyses, https://github.com/igmhub/picca
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this wavelength range are discarded. These selections, especially the first one, certainly reduce
the statistics. However they greatly simplify the calculation of cross-correlations δi × δ∗j (k∥)
as emphasized in Section 2.2.

As in [16, 17], given that the spectral binning ∆ log λpix is in logarithmic scale, we
tabulate k∥ in units of km/s, as already described in Section 2.4. The spectroscopic resolution
R is derived for each sample using the picca software, identically to [16]: it is taken from the
spectroscopic pipeline output, and an analytic correction function is applied, depending on
the wavelength and position of the spectrum on the CCD, as described in Section 2.3. This
correction varies from 1 to 10 %, and is defined as [16]:

W (k∥, R) = exp

(
−1

2
(k∥R)2

)
×

sin(k∥∆v/2)

k∥∆v/2
(4.2)

4.2 Measurement

We consider here two redshift bins, for which the statistical sample is particularly abundant.

• The bin z = 2.2: obtained by selecting (λmin, λmax) = (3850, 3930) Å. It includes 38461
Lyα forests covering this wavelength range, each forest containing 89 pixels, spanning
over a comoving distance of ≃ 59 h−1Mpc.

• The bin z = 2.4: obtained by selecting (λmin, λmax) = (4056, 4210) Å. It includes 18653
Lyα forests covering this wavelength range, each forest containing 162 pixels, spanning
over a comoving distance of ≃ 105 h−1Mpc.

The choice of wavelength ranges is made with the intention of aligning the data around the
chosen redshift values while ensuring the exclusion of spectral regions contaminated by sky
lines and calcium H and K galactic absorption lines. Although the sample at z = 2.2 offers
the largest number of lines-of-sight, the z = 2.4 sample is less affected by noise and contains
more pixels per line-of-sight. The width of these spectral segments is sufficiently broad to
enable measurements at k∥ ≳ 0.002 km/s.

To compute P×, we select δi values based on their mean signal-to-noise per pixel SNR,
to be used in the measurement. For P×(θ > 0), we require SNR > 1. It is worth noting that
this criterion is somewhat less stringent compared to the one employed in [17]. However,
our measurement for small, non-zero values of θ, is constrained by limited statistics, and
furthermore, noise is expected to have a reduced impact on the cross-correlations between
distinct lines-of-sight compared to their auto-correlations. To set this threshold, we scanned
over a range of values for the SNR threshold and we observed that the average statistical
uncertainty in the measured P× is roughly optimized for the chosen threshold. In the case
of P×(θ = 0), i.e. P1D, we have more abundant statistics, and in that instance we employ a
more strict criterion: SNR > 4.1 for z = 2.2 and SNR > 3.9 for z = 2.4.

Additionally, in previous works [16, 17], a threshold was applied to each line-of-sight’s
mean spectroscopic resolution, R > 85 km/s. We evaluated the impact of such a threshold on
our measurements and found it to be small in comparison to our statistical uncertainties for
θ > 0. Therefore, we apply this threshold only for P×(θ = 0) in our study. Finally, when we
compute the P×, we take into consideration both uncorrelated noise and resolution effects,
following the procedures detailed in Section 2.3.

The cross-spectra measured in the redshift bins z = 2.2 and 2.4 are given in Fig. 8. The
error bars represent only statistical uncertainties. The published measurement of P1D from
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eBOSS [17], depicted in dotted lines, can be compared to our estimation of P×(θ = 0). A
discrepancy is observed at small values of k∥, and this is expected due to several factors. To
start with, we did not implement a correction due to the continuum fitting. Additionally, we
used the SDSS DR16 data set, whereas [17] relied on the DR14 data set. Furthermore, we
employed a different DLA catalog for masking. Lastly, our measurement includes absorption
features from the Lyα forest, along with a subdominant contribution from metals that we
have not accounted for: metal correlations3 were subtracted using sideband data in [17],
resulting in ≲ 10 % corrections.
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Figure 8. P× measurement from SDSS DR16 data at mean redshifts z = 2.2 (left) and z = 2.4 (right).
Data points are rebinned as a function of k∥ for θ > 0. Error bars are statistical only. The dotted
line represents the published P1D measurement by [17], which includes several additional systematic
corrections. Continuous lines represent a null test carried out by shuffling angular coordinates of
individual lines-of-sight. Note that the inverse of a pixel size in the original SDSS spectra is 0.0145
in s/km unit.

The angular separation bins we choose to compute P× are centered around 0.013◦,
0.01◦, 0.03◦, followed by a regular binning of width 0.01◦ ranging from 0.05◦ to 0.29◦, and
finally 0.35◦, 0.45◦ and 0.55◦. Pair statistics for some of these bins are given in Table 1. The
comparison between the small number of pairs used to compute P× at small non-zero angular
separations and the case where θ = 0 (P1D), highlights how challenging this measurement is.

⟨θ⟩(◦) 0 0.013 0.03 0.065 0.085
⟨θ⟩ (h−1Mpc) 0 0.88 2.08 4.38 5.73

N(z = 2.2) 6848 105 329 342 440
N(z = 2.4) 3438 28 89 78 104

Table 1. Number of line-of-sight pairs for some angular separation bins from the selected SDSS data
samples, at mean redshifts z = 2.2 and z = 2.4. The first separation bin θ = 0 corresponds to the
total number of selected individual lines-of-sight. The conversion of θ values from degrees to comoving
transverse distances in h−1Mpc was done using the reference cosmology given in 3.1 at z = 2.3

.

Nevertheless, our analysis reveals that for both z = 2.2 and 2.4, a clear detection is
found across a range of θ and k∥ values. To confirm this detection, we perform a null test,

3Correlations between Lyα and Si lines are not subtracted, and visible as wiggles in both our measurement
and that of [17].
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which we refer to as the shuffling test. In this test, we permute the angular separations
assigned to each line-of-sight pair. Consequently, the shuffled P× is the result of correlations
between lines-of-sight that are effectively separated by large angular distances over the sky.
The resulting shuffled P× values are depicted as solid lines in Fig. 8: notably, their average
hovers around zero, and it is evident that the distribution of unshuffled P× points differs from
that of the shuffled P×. Moreover, we checked that the measured dispersion of the shuffled
P× points is compatible with our corresponding calculated statistical error bars.

Finally, we infer a P3D from the statistical combination of the P× measurements at
z = 2.2 and 2.4. This is done to improve the statistical significance of the measurement.
The resulting P3D, shown in Fig. 9, therefore corresponds to a measurement at z ≃ 2.3.
Error bars in Fig. 9 represent statistical uncertainties, derived as outlined in Section 2.4.
In addition, given our method of P3D estimation, there are important correlations when
considering measurement points with identical k∥ and nearby k⊥ values. According to our
calculated covariance matrix, the average correlation for pairs of measurements at neighboring
k⊥ values in Fig. 9 is 37 %. Following the prescription introduced in Section 2.4, we compute
P3D for k∥ < k∥,max, where we find k∥,max = 0.009 s/km. This is in line with the observation
that, as it can be seen in Fig. 8, our measurements of P×(θ > 0) are statistically compatible
with zero for k∥ > k∥,max.
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Figure 9. Average P3D measurement from SDSS DR16 data at z ≃ 2.3, derived from the P× mea-
surements at z = 2.2 and z = 2.4. We converted all units to h−1Mpc, using the formulae in 2.4
and the reference cosmology given in 3.1. For illustration, dashed lines represent the P3D model of
Eqn. 3.1, setting β = 1.735 and all other parameters as given in Tables 2 and 3 of [60] (Fiducial
simulation, z = 2.4).

For an illustrative purpose only, we also represent the P3D model curves from Eqn. 3.1,
with parameters matching those of [60] (Tables 2 and 3, Fiducial simulation) at z = 2.4, with
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the exception of the β parameter, which we set to 1.735. The reasonably close alignment
between these curves and the data points shows that our measurement provides physically
sound results.

Correlated sky-subtraction noise
A detailed study of systematic effects on these P× and P3D measurements goes beyond the
scope of this article. Statistical fluctuations are certainly the main limiting factor of the
measurement at this stage. We expect several of the known systematic effects impacting P1D

to have a similar effect on P×.

On the other hand, let us focus here on an effect which was not impacting previous P1D

measurements: the correlated noise between two spectra contributing to a given line-of-sight
pair (i, j). As mentioned in Section 2.3, to compute P×, we assumed ⟨δ̃i,nδ̃∗j,n⟩ = 0 for i ̸= j.
In the case of SDSS Lyα data, noise correlations between nearby lines-of-sight were studied
in details in [48, 82]. Most of the correlations come from the sky subtraction procedure:
all the spectra from a given exposure, located on the same half-plate (spectrograph), are
sky-subtracted with a common sky model. This sky model is obtained from a limited sample
of sky spectra, whose fluctuations are therefore imprinted on all quasar spectra from the
same half-plate. Given the SDSS survey strategy, a large fraction of nearby quasars were
observed in the same exposure. This results in artificial correlations in the δ field for the
transverse separations considered in this study. In [48], this was measured on DR16 data
and parameterized using the following equation:

ξ3D,sky(r∥, r⊥) =
Asky

σsky
√
2π

exp

(
−

r2⊥
2σ2

sky

)
for r∥ = 0, else 0 (4.3)

The parameters are Asky = 9 × 10−3, σsky = 31h−1 Mpc, according to the result of a full
fit of ξ3D in the Lyα forest. Also, this expression is for a binned measurement of ξ3D: the
longitudinal binning ∆r∥ = 4h−1 Mpc corresponds to a velocity bin ∆v = H(z)∆r∥/(1+ z).
From this expression for ξ3D,sky, we therefore derive:

P×,sky(r⊥, k∥) =

√
2π∆v Asky

σsky
exp

(
−

r2⊥
2σ2

sky

)
(4.4)

This is an additive contribution, independent of k∥. It has the same angular dependence
as ξ3D,sky, which is relatively small in our case since σsky ∼ 0.5◦, and we consider angular
separations much smaller than this value. The order of magnitude is P×,sky ∼ 0.3 km/s.
This is a non-negligible contribution, especially for large k∥, which should be considered in
future measurements. In our case, it remains subdominant with respect to statistical errors.
As a cross-check, we performed a data-split test: the angular pair sample was split into
same half-plate, and different half-plate pairs. We found no significant difference between
the P× measurements from both sub-samples. This confirms that this measurement is not
strongly contaminated by correlated sky-subtraction noise.

5 Conclusion and outlook

In this article, we described the implementation of a new approach to measure the small-
scale 3D power spectrum of the Lyα forest, P3D. The method relies on using the cross-power
spectrum P×(θ, k∥), which can be estimated by correlating 1D Fourier transforms, δ̃i(k∥), of
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individual line-of-sight samples according to Eqn. 2.9. This is a straightforward extension
of the 1D FFT method widely used to estimate P1D. Its simplicity, both conceptually and
in terms of numerical execution, is its key advantage. Compared to the quadratic estimator
approach implemented in [62], our method demands significantly less computational time.

We validated our pipeline using simulated samples of Lyα forests, created from a hy-
drodynamical simulation box of size 150 h−1Mpc at z = 2.0. Although the cosmological
volume covered by this simulation sample is small with respect to the SDSS or DESI sur-
veys footprints, it is good enough to measure P3D at the “small” scales considered here. To
strengthen our proof-of-principle, we also applied our method to the eBOSS DR16 Lyα forest
data, for two redshift bins centered at z = 2.2 and z = 2.4. Unlike the case of P1D, the small
number of nearby line-of-sight pairs in the data sets, results in very large statistical error
bars. Still, we were able to measure for the first time P× and P3D for (k∥, k⊥) values in the
∼ 0.1−1h Mpc−1 range. Our measurement fairly compares with analytical formulae derived
from simulations.

The statistical limitation of this measurement contrasts with the case of P1D. Large
Lyα forest samples from upcoming spectroscopic surveys, like DESI [83] and WEAVE [84]
will offer good opportunities to measure P× and P3D: with respect to SDSS, the line-of-sight
density of these surveys is expected to increase by a factor of ∼ 4, so that the pair statistics
at small separation angles will be larger by more than an order of magnitude. This will lead
to a substantial decrease of the statistical uncertainties.

Clearly, the impact of systematic effects on those measurements should be carefully
assessed in future work. However, we expect that these effects will be similar to those affecting
P1D measurements. In some cases, their intensity should naively be smaller than in the case
of P1D. For example, the effect of uncorrelated noise is essentially cancelled out when cross-
correlating different lines-of-sight. Continuum fitting mostly introduces correlations between
δ pixel values along an individual line-of-sight [63], however it may generate “distortion”
effects similar to those encountered in measurements of the 3D correlation function [48].
The same should hold for high-column density systems [85]. One exception is the impact of
correlated noise, since nearby quasars are often observed during the same exposure with large
multi-object spectrographs. In this article we presented an order-of-magnitude estimation of
this effect in the case of SDSS data.

The physical interpretation of P× and P3D measurements is left for future work. There
are several possible approaches to fitting these data to models tightly connected to the way
P3D is inferred from P×:

• The most straightforward approach will involve directly fitting P× using a full mod-
elling, which is essentially a simple extension of that used for P1D alone. This is the most
natural strategy since P× is our primary observable. In particular, the impact of obser-
vational systematic effects will be best understood in separate (θ, k∥) bins. Additionally,
computing P× from hydrodynamical simulation outputs is as easy as computing P1D or
P3D. This approach is also best suited to understand the differences between contribu-
tions of P1D alone and contributions of transverse correlations, to physical constraints
on IGM and cosmological parameters.

• The method used in this article to estimate P3D from P× is a simple and qualitative
approach which is not statistically optimal. It will be possible to infer P3D from P× us-
ing a full likelihood, or quadratic estimator inference, identically to what was pioneered
in [62].
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• Finally, using either P× or P3D, it should be possible to fit analytic formulae that
connect P3D to the linear matter power spectrum such as proposed in [57, 60, 61].
Correlations between fit parameters should be reduced with respect to the case of
P1D alone, thanks to the (k∥, k⊥) dependence of P3D. This should provide a fast, but
hopefully reasonably accurate way to infer the properties of the linear power spectrum
without resorting to a full simulation-based approach.

The interpretation of P× or P3D measurements is expected to disentangle various physical
effects that are at play in the Lyα forest, and that are too degenerate to be robustly sepa-
rated using P1D alone [64]. This is in particular the case of degeneracies between a possible
primordial cut off in the power spectrum, associated for example to a Warm Dark Matter
scenario, and thermal properties of the IGM [86]. We anticipate that, using our method,
precise measurements of P× and P3D are within reach with the upcoming spectroscopic data
from DESI and WEAVE.
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