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ABSTRACT OF THE DISSERTATION

Stated Skein Theory and Double Affine Hecke Algebra Representations

by

Raymond Alexander Dzintars Matson

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, September 2024

Dr. Peter Samuelson, Chairperson

In this thesis, we explore the representation theory of double affine Hecke alge-

bras (DAHAs) through the lens of stated skein theory. Over the past decade, there have

been several works establishing robust connections between skein algebras and DAHAs.

Particularly, Samuelson proved that a spherical subalgebra of the type A1 DAHA can be

realized as a quotient of the Kauffman bracket skein algebra of the torus with boundary,

Kq(T
2 \D2). Since the A1 double affine Hecke algebra is Morita equivalent to its spherical

subalgebra, discovering modules for Kq(T
2 \D2) immediately provides us with modules for

the A1 DAHA.

Stated skein theory enhances traditional Kauffman bracket skein theory by incor-

porating the boundary components of manifolds, thereby offering additional properties such

as excision that enrich the algebraic structure. Furthermore, Kauffman bracket skein alge-

bras embed into their stated counterparts, showing that stated skein algebras are extensions

of Kauffman bracket skein algebras. We use this extended framework to further develop

the representation theory of the A1 DAHA.
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After identifying generators for the stated skein algebra of T 2 \D2, we embed this

algebra into a quantum 6-torus and leverage the nice representation-theoretic properties

of quantum tori to construct a module of Laurent polynomials. Additionally, as T 2 is the

boundary of any knot complement, we discuss how to construct a more topologically-defined

module from various knots and provide an explicit example for the unknot. This approach

builds upon the ideas of Berest and Samuelson, who showed that there exists a natural

DAHA action on the Kauffman bracket skein module of knot complements.
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Chapter 1

Introduction

The inception of double affine Hecke algebras (DAHAs) is credited to Ivan Chered-

nik [14], who used certain properties of DAHAs to solve the Macdonald conjectures. Mac-

donald polynomials, which are intrinsically related to quantum physics, have led to DAHAs

finding applications across numerous fields, including string theory, operator theory, homo-

logical algebra, Harish-Chandra theory, gauge theory, Fourier analysis, mirror symmetry,

quantum topology, and even the Langlands program.

In 1962, Freeman Dyson conjectured that the constant term of a certain Laurent

polynomial in n variables is given by

CT

∏
i ̸=j

(1− xix
−1
j )k

 =
(nk)!

(k!)n

for k ∈ Z≥0 (Conjecture B in [20]). Here, “CT” refers to the function that extracts the

constant term of the Laurent polynomial.

Ian Macdonald later generalized this conjecture in 1982 [43] to a root system

generalization. Specifically, let g be a finite-dimensional (real or complex) reductive Lie
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algebra, h ⊂ g its Cartan subalgebra, and R ⊂ h∗ a corresponding reduced root system.

Macdonald conjectured that

CT

 ∏
α∈R+

k∏
i=1

(
1− qi−1e−α

) (
1− qieα

) =
l∏

i=1

[
kdi
k

]
,

where l = dim(h), eα is the formal exponential corresponding to α ∈ R, {d1, d2, · · · , dl}

are the fundamental degrees of R (by this we mean the fundamental invariants of W , the

Weyl group of R), and

[
n

k

]
are the Gaussian binomial coefficients (see Section 2.2 for the

definition of Gaussian binomial coefficients).

Furthermore, Macdonald extended this conjecture to affine root systems by in-

troducing an additional parameter t ∈ C∗, leading to his famous Constant Term (q, t)-

Conjecture:

1

|W |
CT

∏
n≥0

∏
α∈R

1− qneα

1− qnteα

 =
∏
n≥0

l∏
i=1

(1− qnt)
(
1− qn+1tdi−1

)
(1− qn+1) (1− qntdi)

.

This was proved in 1995 by Ivan Cherednik [13], using the representation theory of double

affine Hecke algebras.

Since then, extensive work has been done to better understand double affine Hecke

algebras from various perspectives. However, much remains to be explored regarding the

representation theory of DAHAs. This thesis approaches DAHAs through the lens of quan-

tum topology, particularly further exploring the connections between the representation

theory of DAHAs and the representation theory of skein algebras of tori. When viewed

appropriately, the Kauffman bracket skein algebra of a torus with boundary (or simply a

punctured torus) is Morita equivalent to the A1 double affine Hecke algebra.

In the 1980s, Vaughan Jones discovered what is now known as the Jones polyno-

mial, a knot invariant derived from von Neumann algebras, which was further simplified by
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Louis Kauffman’s introduction of the Kauffman bracket. This polynomial invariant for links

in 3-dimensional space paved the way for the development of skein modules, first introduced

by Józef Przytycki in 1987 [50] and independently by Vladimir Turaev in 1988 [59]. These

modules serve as 3-manifold invariants, capturing information about the manifold based on

the kind of knot theory and algebraic structures that manifold admits. For example, the

Kauffman bracket skein algebra uses links and crossing relations to forge a comprehensive

algebraic framework. These algebras have become a cornerstone in quantum topology, con-

necting knot theory with quantum gravity and furthering our understanding of quantum

field theories. For a far better explanation of the history and development of skein theory

than I could ever give, see [49].

In recent years, Thang T. Q. Lê and others have laid substantial groundwork for

a particular generalization of Kauffman bracket skein algebras, known as stated skein alge-

bras. These algebras coincide with Kauffman bracket skein algebras when the corresponding

manifold lacks a boundary. One of the main benefits this generalization offers is an excision

property that enables gluing and splitting by leveraging the boundary components. Stated

skein algebras encompass their corresponding Kauffman bracket skein algebras and are, in

general, significantly larger objects to work with. The primary question explored in this

thesis is whether we can extract more interesting representations of DAHAs through the

framework of stated skein algebras.

Chapter 2 of this thesis provides a thorough background of the setting, includ-

ing a discussion on the origin of diagrammatically-defined modules, their utility, and the

representation-theoretic data they offer. We also define the A1 double affine Hecke algebra

3



along with its spherical subalgebra, and examine its relationship with the Kauffman bracket

skein algebra of T 2 \D2, as well as the corresponding stated skein algebra. While our defi-

nition of stated skein algebras differs slightly from the conventional definition found in the

literature, we demonstrate that both models are naturally isomorphic.

Given that stated skein algebras are larger than Kauffman bracket skein algebras,

we review common algebraic techniques to convert modules over the stated skein algebra

into modules over the spherical A1 DAHA. In Chapter 3, we first get our hands dirty and

classify all simple closed curves based at the boundary of T 2 \D2. Using this classification,

we then explicitly compute the generators for the main algebra we care about, the stated

skein algebra of the torus with boundary and one marking. Once the generators for this

algebra have been established, we then proceed to define modules over it.

Chapter 4 briefly explains and employs an embedding technique introduced by Lê

and Yu in [42], where we map our stated skein algebra into a quantum 6-torus. Since the

representation theory of quantum tori is well-known and behaves quite nicely, this approach

allows us to compute representations for our algebra and, consequently, our double affine

Hecke algebra. Notably, we uncover how our algebra acts non-trivially on the vector space

of complex Laurent polynomials in four variables.

Chapter 5 expands upon a well-known module structure for Kauffman bracket

skein algebras. For a 3-manifoldM with boundary ∂M , the Kauffman bracket skein module

of M naturally becomes a module over the Kauffman bracket skein algebra of ∂M . The

module action is defined by gluing ∂M × [0, 1] into the boundary and “pushing” any curves

in ∂M × [0, 1] into M . We begin by exploring a more geometrically-centered understanding

4



of skein algebras, particularly in relation to knot theory and quantizations of character

varieties, and discuss how knot complements induce modules over the Kauffman bracket

skein algebra of the torus. We then define and explore how these structures can be upgraded

to stated skein algebras and stated skein modules.

5



Chapter 2

Background

2.1 Categorical Framework

We begin by discussing the categorical setting for our categories of interest. We

will introduce a more concrete example of these definitions in section 2.3. However, it will

be beneficial to introduce the proper language of these objects first.

Definition 2.1.1. A monoidal category, C, is a K-linear category equipped with

1. a bifunctor ⊗ : C × C −! C written as (a, b) 7! a⊗ b called the monoidal product or

tensor product,

2. an object 1 ∈ C called the monoidal unit,

3. a natural isomorphism α : (−⊗−) ⊗ − −! − ⊗ (−⊗−) called the associator, with

components αA,B,C : (A⊗B)⊗ C −! A⊗ (B ⊗ C),

4. natural isomorphisms λ : 1⊗− −! − and ρ : −⊗ 1 −! − called the left unintor and

right unitor, with respective components λA : 1⊗A −! A and ρA : A⊗ 1 −! A

6



such that for all A,B,C,D ∈ C, the following diagrams commute.

A⊗ (B ⊗ (C ⊗D))

A⊗ ((B ⊗ C)⊗D) (A⊗B)⊗ (C ⊗D)

(A⊗ (B ⊗ C))⊗D ((A⊗B)⊗ C)⊗D

idA ⊗αB,C,D αA,B,C⊗D

αA,B⊗C,D αA⊗B,C,D

αA,B,C ⊗ idD

(A⊗ 1)⊗B A⊗ (1⊗B)

A⊗B

αA,1,B

idA ⊗λB

ρA ⊗ idB

If the α, λ, and ρ are all identity maps, then we say that C is strict.

If D is a category enriched over the monoidal category C, then we require that ⊗

be a C-enriched functor, and α and λ be C-enriched natural transformations. When this

happens we say the monoidal structure is compatible with the enrichment.

An effective way of to think about the following categorical definitions is by using

a diagrammatic interpretation, which will be discussed in greater detail later in section

2.4. This interpretation is typically reserved for strict categories, however, it’s a useful tool

to better understand the properties trying to be expressed in these definitions. For now,

just imagine these morphisms as (oriented) strings connecting their corresponding sources

and targets. If we want to consider a map between monoidal product of objects, we can

instead consider multiple strings next to each other, possibly being weaved together in

some way, and composition is attaching strings on top of each other. For example, a map

A⊗B ! C ⊗D might look something like

A B

C D

⊗

⊗

7



I will incorporate pictures of the diagrammatic interpretations throughout this section and

use the convention that morphisms move upwards.

Definition 2.1.2. An object X∗ in C is said to be a left dual of X if there exist morphisms

evX : X∗ ⊗ X ! 1 and coevX : 1 ! X ⊗ X∗, called the evaluation and coevaluation

respectively, such that the following diagrams commute.

X (X ⊗X∗)⊗X X∗ X∗ ⊗ (X ⊗X∗)

X X ⊗ (X∗ ⊗X) X∗ (X∗ ⊗X)⊗X∗

coev⊗ idX

idX αX,X∗,X

idX∗ ⊗ coev

idX∗ α−1
X∗,X,X∗

idX ⊗ ev

ev⊗ idX∗

Definition 2.1.3. Similarly, an object X∗ in C is said to be a right dual of X if there exist

morphisms evX : X ⊗X∗ ! 1 and coevX : 1 ! X∗ ⊗X such that the following diagrams

commute.

X X ⊗ (X∗ ⊗X) X∗ (X∗ ⊗X)⊗X∗

X (X ⊗X∗)⊗X X∗ X∗ ⊗ (X ⊗X∗)

idX ⊗ coev

idX α−1
X,X∗,X

coev⊗ idX∗

idX∗ αX∗,X,X∗

ev⊗ idX

idX∗ ⊗ ev

These commuting diagrams are often called the “zigzag identites”.

= =

= =

Figure 2.1: The zigzag identities can
be understood as curved strings being
straightened out.

When an object has a dual, evaluation and coevaluation maps can be pictori-

ally represented using cups and caps, as the notion of duals corresponds to reversing the

8



orientation of our strings. In figure 2.1, the top left picture corresponds to the identity

(idX ⊗ ev) ◦αX,X∗,X ◦ (coev⊗ idX) = idX for left duals, while the bottom right corresponds

to (idX∗ ⊗ ev) ◦ αX∗,X,X ◦ (coev⊗ idX∗) = idX∗ for right duals.

Remark 2.1.4. It’s hopefully clear that if X∗ is a left dual of an object X, then X is a right

dual of X∗ and in any monoidal category, 1 is equal to its left and right duals. Moreover,

left and right duals are unique up to a unique isomorphism.

Remark 2.1.5. Changing the order of tensor products, when possible, switches left duals

and right duals. Therefore, for any statement concerning right duals there corresponds a

symmetric statement about left duals.

Remark 2.1.6. Some texts use the notation ∗X for right duals to distinguish between the

two. However, we won’t need to worry about this distinction too much in this thesis and

so we will not use this notation.

Definition 2.1.7. An object in a monoidal category is called rigid if it has left and right

duals. A monoidal category C is called rigid if every object of C is rigid.

For those that have never seen the definition of a rigid category before, you should

think of this as merely saying each object has a well-defined dual that acts exactly as we

expect it to. A quick example is the category of finite dimensional complex vector spaces

FdVectC, where V
∗ := HomC(V,C) and

ev : V ⊗ V ∗ ! C coev : C! V ∗ ⊗ V

(v, φ) 7! φ(v) k 7! k ·
∑
i∈I

φi ⊗ vi

9



where {vi}i∈I is a basis for V and {φi}i∈I is the dual basis such that φi(vj) = δi,j (the usual

evaluation map that we all know and love).

Definition 2.1.8. A monoidal category, C, is braided if for every pair of objects X,Y ∈ C,

there is a natural isomorphism BX,Y : X ⊗ Y ! Y ⊗X such that for all X,Y, Z ∈ C, the

following hexagonal diagrams commute.

X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(X ⊗ Y )⊗ Z Y ⊗ (Z ⊗X)

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z)

BX,Y ⊗Z

αY,Z,XαX,Y,Z

BX,Y ⊗idZ
αY,X,Z

idY ⊗BX,Z

(X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

X ⊗ (Y ⊗ Z) (Z ⊗X)⊗ Y

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y

BX⊗Y,Z

α−1
Z,X,Yα−1

X,Y,Z

idX ⊗BY,Z α−1
X,Z,Y

BX,Z⊗idY

=

X Y Z X Y Z

=

X Y Z X Y Z

Figure 2.2: A graphical interpretation of the hexagonal identities.

These isomorphisms are called braidings and should be thought of as a commutivity

constraint. When BY,X ◦BX,Y = idX⊗Y for every X,Y ∈ C, we call C a symmetric monoidal

category. When understanding a symmetric monoidal category diagrammatically, we often

10



drop the “depth” to the braidings as BX,Y and BY,X are inverse to each other.

X Y

=

X Y

=

X Y

Figure 2.3: A graphical interpre-
tation of a symmetric braiding.

As the setting of this work revolves around quantum groups, you can reasonably expect our

braidings to lack symmetric properties.

Definition 2.1.9. A twist on a rigid braided monoidal category is a natural isomorphism

from the identity functor to itself, with components θX : X ! X such that for all X,Y ∈ C

the following identities hold.

θX⊗Y = (θX ⊗ θY ) ◦BY,X ◦BX,Y (2.1)

θX∗ = (θX)
∗

7! =

Figure 2.4: A graphical interpretation of a twist.

The graphical interpretation of a twist involves thickening up the string and cre-

ating a full twist in the now “ribbon”, distinguishing it from the identity map. This is

graphically equivalent to creating a loop instead.1

1You can verify this for yourself by grabbing the ends of a belt, giving it a full twist, slowly bringing the
ends together, and watching your prop unravel into a loop.

11



Remark 2.1.10. Given any two objects X,Y ∈ C, we also have the alternative equality

θX⊗Y = BY,X ◦BX,Y ◦ (θX ⊗ θY ) .

Figure 2.5 sketches a diagrammatic proof of how these identities are equivalent. These

equalities follow from the naturality of the braidings and of the twists. For clarity, note

that the first two pictures correspond to the compositions BY,X ◦ BX,Y ◦ (θX ⊗ θY ) and

BY,X ◦ (idY ⊗θX)◦BX,Y ◦ (idX ⊗θY ), respectively. The last picture corresponds to the right

hand side of equation 2.1. For more details see section 14.3.1 in [34].

= = = =

Figure 2.5: Equivalent identities for categorical twists.

We can now provide the definition of a ribbon category.

Definition 2.1.11. A ribbon category, C, is a rigid braided monoidal category equipped

with a twist such that for all X ∈ C,

(θX ⊗ IdX∗) ◦ coev = (IdX ⊗θX∗) ◦ coev .

You can read more about these kinds of categories in detail in [11, 21, 34, 44].
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Lastly, we descend from the level of categories to the level of algebras in order to

provide a few other useful definitions.

Definition 2.1.12. A bialgebra over a field K is a tuple (A,µ, ι,∆, ε) such that (A,µ, ι) is

an algebra over K, (A,∆, ε) is a coalgebra over K, and the following diagrams commute.

A⊗A K⊗K A⊗A

A K A

ε⊗ε

µ ∼

ι⊗ι

ε ι

∆

A⊗A A⊗A⊗A⊗A

A⊗A A⊗A⊗A⊗A

∆⊗∆

∆◦µ id⊗τ⊗id

µ⊗µ

K

A

K

ι

id

ε

Definition 2.1.13. A coalgebra is said to be cocommutative if τ ◦∆ = ∆, where τ is the

transposition map τ : a⊗ b 7! b⊗ a.

Incorporating specific additional structure upgrades a bialgebra to a Hopf algebra,

which is a primary object of interest throughout this work.

Definition 2.1.14. A Hopf algebra, A, is a bialgebra equipped with a K-linear map, S :

A! A, called the antipode map, such that the following diagrams commute.

A A⊗A

A A⊗A

∆

ι◦ε id⊗S

µ

A A⊗A

A A⊗A

∆

ι◦ε S⊗id

µ

Although not every bialgebra is a Hopf algebra, it’s a simple and quick exercise to

show that these commuting diagrams force S to be unique, when it does exist.

Definition 2.1.15. Let A be a Hopf algebra. We define A-Rep to be the category whose

objects are finite dimensional A-modules and morphisms are A-module homomorphisms.
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2.2 Quantum Groups

When we first start learning about multiplication in mathematics, everything we

concerned ourselves with would always commute. For example 7 · 3 is the same as 3 · 7. As

we progress in our mathematical journeys, we eventually learn about certain objects that

don’t commute at all, like matrices or free groups. When attempting to multiply matrices

of different dimensions, AB may not even be well-defined where as BA might be. Quantum

commuting lies somewhere in-between. Roughly speaking, we say A and B q-commute if

AB = qBA for some q ∈ C×. The idea is as we limit q ! 1, we get back full commutivity.

Using this notion, we can take an algebra and throw in some q’s to try to give it

a quantum deformation. For example, take the free algebra in two variables C⟨X,Y ⟩. If

we want X and Y to commute in this algebra, we need to additionally quotient out by the

ideal generated by XY − Y X. We often refer to this algebra as a torus to indicate that

both X and Y are commutative and invertible. In order to “deform” or “quantize” this

object, we slightly change this quotient to be XY − qY X for some q ∈ C× instead and can

now say that X and Y q-commute.

Unfortunately, there is no universally accepted definition for the term quantum

group. However, there are some generally agreed upon properties that that these objects

should contain. In particular, quantum groups should include deformations of particular

objects that relate to algebraic groups. The main examples most mathematicians tend to

care about are quantum Lie groups.

Unless specified otherwise, this thesis will exclusively use C as the underlying ring

and q ∈ C×. However, it should be noted that much of this story can be adapted for any
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Noetherian domain, R, and using the ring R[q±1] or a localization of it over polynomials

in q.

A quantum Lie group is a non-commutative, non-cocommutative Hopf algebra,

Uq(g), which is a deformation of the universal enveloping algebra, U(g). We will primarily

be working with the Lie algebra g = sl2(C) in this thesis. Fix an element q ∈ C× and

suppose it’s not a root of unity.2 The corresponding quantized enveloping algebra is defined

as

Uq (sl2) =
C
[
E,F,K±1

]
KEK−1 = q2E

KFK−1 = q−2F

[E,F ] =
K −K−1

q − q−1


The set of monomials {F sKnEr} with r, s ∈ N and n ∈ Z forms a PBW basis for Uq(sl2) (see

Theorem 1.5 in [32] for details). As we can grade a free algebra using arbitrary degrees for

each generator, we typically consider deg(E) = 1, deg(F ) = −1, and deg(K) = deg(K−1) =

0, giving this algebra a Z-grading. In particular, a monomial F sKnEr would have degree

r − s.

In the theory of quantized enveloping algebras, there are many parallels to for-

mulas found in the theory of universal enveloping algebras. In particular, we often replace

the traditional binomial coefficients with their quantum counterparts, known as Gaussian

2Many of the results throughout this work fail when q is a root of unity. Although many people study
these kinds of problems at roots of unity, we will not consider this case as it is quite a different beast to
work with.
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binomial coefficients. For any m ∈ N, we first define

[m] =
qm − q−m

q − q−1
and [m]! = [1][2] · · · [m]

with [0]! = 1. The Gaussian binomial coefficients are then defined as:

[
m

k

]
=

[m]!

[k]![m− k]!
.

This notation will be used throughout the remainder of this section.

As is the general trend for sl2-modules, we can think of F and E as raising and

lowering operators, while K can be thought of, in some sense, as a diagonalizable operator

since it’s invertible. It turns out that whenM is a finite dimensional Uq(sl2)-module, E and

F must act as raising and lowering operators and so M must be fully torsion. Thus, when

M is finite dimensional, there are always integers r, s > 0 such that ErM = F sM = 0.

Moreover, any finite dimensional Uq(sl2)-module is a direct sum of all of its weight spaces

and all the weights are of the form ±qn for some n ∈ Z. For further details, see [32].

Theorem 2.2.16 (2.6 in [32]). For every integer n ≥ 0, there exists a simple Uq(sl2)-module,

L(n,+), with basis {m0, · · · ,mn} such that for all 0 ≤ i ≤ n

Kmi = qn−2imi,

Fmi =


mi+1, if i < n

0, if i = n

Emi =


[i][n+ 1− i]mi−1, if i > 0

0, if i = 0
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as well as a simple Uq(sl2)-module, L(n,−), with basis {m′
0, · · · ,m′

n} such that

Km′
i = −qn−2im′

i,

Fm′
i =


m′
i+1, if i < n

0, if i = n

Em′
i =


−[i][n+ 1− i]m′

i−1, if i > 0

0, if i = 0

Every simple Uq(sl2)-module of dimension n+1 is isomorphic to either L(n,+) or

L(n,−), giving us a full classification of Uq(sl2)-Rep (see [11, 32]). These two modules are

isomorphic if and only if the underlying base field has characteristic 2. Although L(n,+) is

not isomorphic to L(n,−) in our case as we’re working over C, we will only consider L(n,+)

and just keep a note in the back untouched recesses of our minds that there are actually

two of them. Furthermore, we will condense and abuse notation by using L(n) in place of

L(n,+) throughout. L(n) are analogues of highest-weight modules of sl2.

A quick observation shows us that the smallest module where E, F , and K don’t

act trivially is L(1). The two dimensional module L(1) is often called the standard rep-

resentation or fundamental representation of Uq(sl2) as it comes from the particular two

dimensional representation ρ : Uq(sl2)! End(V ) defined by

ρ(K) =

q 0

0 q−1

 ρ(F ) =

0 0

1 0

 ρ(E) =

0 1

0 0

 ,

which matches up with the module structure of L(1) defined above.
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Km0 = qm0 Km1 = q−1m1

Fm0 = m1 Fm1 = 0

Em0 = 0 Em1 = m0

Clearly, this representation is closely related to the standard representation of U(sl2), i.e.

sl2(C).

ρ(h) =

1 0

0 −1

 ρ(f) =

0 0

1 0

 ρ(e) =

0 1

0 0


It follows from the fact that Uq(sl2) is a Hopf algebra that the category of finite-

dimensional Uq(sl2) representations is closed under tensor products. In particular, we have

that

L(n)⊗ L(m) ∼=
min{m,n}⊕
k=0

L(m+ n− 2k). (2.2)

By equation 2.2, we get that L(2) ⊂ L(2) ⊕ L(0) ∼= L(1) ⊗ L(1) and L(m + 1) ⊂ L(m +

1) ⊕ L(m − 1) ∼= L(m) ⊗ L(1). By induction, every finite dimensional Uq(sl2)-module can

be embedded inside a sufficiently high enough tensor power of L(1). Specifically, for any

non-negative integer n, L(n) ⊂ L(1)⊗n. With the appropriate projector, we can always

take this tensor power and project onto the corresponding component we are interested in.

For this reason, L(1) is called a tensor generator in this category. Specifically, we have

particular inclusion and projection maps that intertwine the action of Uq(sl2). Recall that
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{m0,m1, · · · ,mn} is a basis for L(n). These inclusions and projections are

ιn : L(n) ↪! L(1)⊗n (2.3)

mk 7!

[
n

k

]−1 ∑
(ε1,··· ,εk)∈{0,1}n,∑n

ℓ=1 εℓ=k

q

∑
i<j

δεi,εj+1

mε1 ⊗ · · · ⊗mεn

πn : L(1)⊗n ↠ L(n) (2.4)

(mε1 ⊗ · · · ⊗mεn) 7! q

∑
i<j

−δεi+1,εj

m∑n
k=1 εk

.

One can check that the operator pn = ιn◦πn, which is often called the Jones-Wenzl projector,

satisfies pn ◦ pn = pn, and so this is indeed a projector.3

2.3 Ribbon Hopf Algebras

We mentioned before that Uq(sl2) is a non-commutative non-cocommutative Hopf

algebra. The algebra structure is clear and the rest of its Hopf structure is as follows:

∆(E) = E ⊗ 1 +K ⊗ E ε(E) = 0 S(E) = K−1E

∆(F ) = F ⊗K−1 + 1⊗ F ε(F ) = 0 S(F ) = −FK

∆(K) = K ⊗K ε(K) = 1 S(K) = K−1

Throughout this section, we will be using sumless Sweedler notation: ∆(u) =

u(1) ⊗ u(2). This also means that we may also write something like u(3) without further

explanation as Uq(sl2) is coassociative and so (id⊗∆) ◦∆ = (∆⊗ id) ◦∆.

3The definitions provided here for πn and ιn were translated from Frenkel and Khovanov’s work in [24]
to better fit our notation.
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Let M and N be Uq(sl2)-modules, u ∈ Uq(sl2), m ∈M , and n ∈ N . Uq(sl2) has a

natural action on the tensor product, M ⊗N , defined using the coproduct:

u · (m⊗ n) := ∆(u) · (m⊗ n),

making M ⊗ N a Uq(sl2)-module as well. Additionally, M∗ := HomC(M,C), can also be

made into a (left) Uq(sl2)-module by the action

(u · f)(m) = f (S(u) ·m) .

We can look at M∗ as the left and right dual of M . However, both corresponding

evaluation homomorphisms can’t be as simple as plugging m ∈M into f ∈M∗ as Uq(sl2) is

not cocommutative. In particular, the map f ⊗m! f(m) is a homomorphism of Uq(sl2)-

modules, however, m⊗ f 7! f(m) is not a homomorphism in general.

For a moment, let’s suppose this is a Uq(sl2)-module homomorphism and prod

the situation a bit to see what happens. When we combine these actions and consider the

evaluation map corresponding to the left dual, we see that

u · ev (f ⊗m) = ev (u · f ⊗m))

= ev
(
u(1)f ⊗ u(2)m

)
= u(1)f(u(2) ·m)

= f(S(u(1))u(2)m)

= f ((µ ◦ (S ⊗ id) ◦∆)(u) ·m) .
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However, when we repeat this for the right dual we get

u · ev (m⊗ f) = ev (u ·m⊗ f))

= ev
(
u(1)m⊗ u(2)f

)
= u(2)f(u(1) ·m)

= f(S(u(2))u(1)m)

= f ((µ ◦ (S ⊗ id) ◦ τ ◦∆)(u) ·m) .

Since τ ◦ ∆ ̸= ∆, we encounter a contradiction. Furthermore, the uniqueness of

S means that the complications arising from the lack of cocommutativity in Uq(sl2) cannot

be easily remedied. However, this should be viewed as a feature rather than a bug, as

quantum groups were intentionally created to exhibit this defect. Moreover, if we instead

define our evaluation map to be m⊗ f 7! f(K−1m), this does work as a proper evaluation

map compatible with the Uq(sl2) action. Although the map τ : M∗ ⊗M ! M ⊗M∗ is

not a proper Uq(sl2)-module homomorphism, there must exist an isomorphism when M is

finite dimensional by a simple dimension counting argument. This observation indicates

that Uq(sl2)-Rep must be braided but not symmetric.

Definition 2.3.17. A quasitriangular Hopf algebra is a is a pair (A,R) where A is a Hopf

algebra and R ∈ A⊗A such that R is invertible and

(∆⊗ id)R = R13R23

(id⊗∆)R = R13R12

(τ ◦∆)(a) = R(∆(a))R−1
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for all a ∈ A where τ denotes the transposition map τ : a⊗ b 7! b⊗ a and Rij is the tensor

triple with R in the ith and jth factors and 1 in the other.

A Hopf algebra being quasitriangular corresponds to the “braiding” in the notion

of a braided monoidal category. In particular, R is one of the isomorphisms that provides

this braiding. While R is not unique in general, we will demonstrate how to compute a

family of examples in Uq(sl2).

First define θn = (−1)nq−n(n−1)/2 (q−q−1)n

[n]! Fn⊗En, where [n]! =
(
qn−q−n

q−q−1

)
· · ·

(
q−q−1

q−q−1

)
and suppose M and N are finite dimensional Uq(sl2)-modules. Define the linear transfor-

mation θ : M ⊗ N ! M ⊗ N as the finite sum4 of operators θ =
∑

n≥0 θn. For example,

if M = N = L(1), then M ⊗ N is 4 dimensional. Since E2M = F 2M = 0, we get that

θ = 1 ⊗ 1 − (q − q−1)F ⊗ E. Furthermore, we can express θ as the following matrix with

respect to the basis described in theorem 2.2.16, {m0 ⊗m0,m0 ⊗m1,m1 ⊗m0,m1 ⊗m1}.

θ =



1 0 0 0

0 1 0 0

0 q−1 − q 1 0

0 0 0 1


.

All weights of finite dimensional Uq(sl2)-modules are of the form ±qn for n ∈ Z.

Therefore, all weights for all objects in Uq(sl2)-Rep lie in Λ̃ = {±qn | n ∈ Z}. Define a

map f : Λ̃× Λ̃! C× such that f(λ1, λ2) = λ1f(λ1, q
2λ2) = λ2f(q

2λ1, λ2) for all λ1, λ2 ∈ Λ̃

and consider the bilinear map f̃ :M ⊗N !M ⊗N defined as f̃(m⊗ n) = f(λ1, λ2)m⊗ n

where Km = λ1m and Kn = λ2n (see chapters 2 and 3 in [32] for more details).

4Although this is not technically a finite sum, we consider it as such as E and F must act nilpotently on
finite dimensional modules.
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Suppose f(q, q) = q−1. Then our formulas for f imply that f(q, q−1) = qf(q, q) =

1 = f(q−1, q) and f(q−1, q−1) = q−1. Thus, f̃(m0 ⊗ m0) = f̃(m1 ⊗ m1) = q−1 and

f̃(m0 ⊗m1) = f̃(m1 ⊗m0) = 1 and so we get a matrix representation

θ ◦ f̃ =



q−1 0 0 0

0 1 0 0

0 q−1 − q 1 0

0 0 0 q−1


.

The mapR = θ◦f̃◦τ :M⊗N ! N⊗M is a nontrivial Uq(sl2)-module isomorphism.

This is called an R-matrix and is a braiding that we’ve been looking for, making Uq(sl2)-Rep

a rigid braided monoidal category.

Definition 2.3.18. A ribbon Hopf algebra is a triple (A,R, v) consisting of a quasitriangular

Hopf algebra (A,R) and a central invertible v ∈ A such that

S(v) = v

ε(v) = 1

v2 = µ(S ⊗ id)(R21) · S (µ(S ⊗ id)(R21))

∆(v) = (R21R12)
−1(v ⊗ v)

We call v the universal twist of A. For any X ∈ A-Rep, the twist θv : X ! X is

defined as θv(x) = v · x and can be thought of as multiplication by v. Since a is invertible,

θv is an isomorphism and thus is clearly compatible with BY,X ◦BX,Y : X ⊗ Y ! X ⊗ Y in

the sense of equation 2.1. This brings us to the following theorem

Theorem 2.3.19 (3.2 in [60]). Let A be a ribbon Hopf algebra. Then the category of finite

dimensional A-modules, A-Rep, is a ribbon category.
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Once again using Uq(sl2) as our example, we have (partially) outlined that Uq(sl2)-

Rep possesses the following properties:

• Monoidal: The tensor product of Uq(sl2)-modules is itself a Uq(sl2)-module.

• Rigid: Every object in Uq(sl2)-Rep has a left and right dual equipped with proper

evaluation and coevaluation maps.

• Braided: We can construct R-matrices on these tensor products.

• Twist: There exists an element θ ∈ Uq(sl2), that acts on the irreducible representation

of highest weight λ as scaling by the constant −q−⟨λ,λ⟩/2−⟨λ,ρ⟩ where ρ ∈ h such that

⟨αi, ρ⟩ = (αi, αi)/2, where {αi} is the usual basis for h∗.5

Therefore, Uq(sl2)-Rep is actually a ribbon category! For more in-depth information about

quantum groups and their representations, see [32, 34, 44].

2.4 Skein Modules

Skein modules arose from the search for particular invariants in low-dimensional

topology and representation theory. We construct these objects by considering embeddings

of links and tangles in a manifold and imposing certain algebraic conditions on them, known

as skein relations. The idea is to form a module or algebra where the basis elements are

isotopy classes of knots and links inside the manifold, and the relations reflect specific

topological or algebraic properties. In this way, skein modules can be thought of as a

5We’ll eventually only care about the scaling factor −q−3/2, which will be reparameterized to −q−3.
Computing θ becomes messy and so this computation was left out. However, it’s not too much work to find
this θ using SageMath.
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generalization of knot polynomials. They arise naturally in the study of the representation

theory of quantum groups and provide a rich, unifying framework for investigating knots,

character varieties, and representations.

Before we define a skein module, we will first explain the foundations of these

relations and the algebraic properties we aim to better understand.

Definition 2.4.20. A ribbon, or coupon, in a 3-manifold, M , is a smooth embedding of

[0, 1] × [0, 1] into M . The image of
{
1
2

}
× [0, 1] is called the core of the ribbon and the

images of [0, 1]× {0} and [0, 1]× {1} are the bases of the ribbon.

We often do not draw the “thickness” of these ribbons since it often suffices to

only draw the core. We are able to avoid losing this extra information as long as there

are no half-twists in the ribbon. In particular, we are able to observe and distinguish any

full twists in the tangle by using loops in their place. Thus, we will equivalently say that

=

Figure 2.6: A blackboard framing of a tangle.

these tangles are equipped with a framing in these situations. A framing of a tangle, T , is

a continuous assignment of a vector to each point of T , which is not tangent at that point.

We additionally impose the condition that the framings may not include half-twists. We

say a framed tangle in Σ × I has a blackboard framing if the entire framing is embedded

orthogonally to Σ. Every framed link in Σ× I is isotopic to one with a blackboard framing

25



U V W

X Y

A

B

f

gh

Figure 2.7: An example of a C-colored ribbon graph embedded into a cylinder

(see figure 2.6). Thus, we may represent ribbons or framed links in Σ× I as link diagrams

in Σ.

A ribbon graph (sometimes called fat graph) is a directed graph whose edges are

ribbons and vertices are coupons. Given a category, C, a C-colored graph of a ribbon graph

is an assignment of objects in C to each ribbon and an assignment of morphisms in C to

each coupon, compatible with the assigned objects on the adjacent ribbons.6

Let C be a C-linear ribbon category and let M be the filled-in cylinder depicted

in figure 2.7. Consider the oriented C-colored ribbon graph, Γ, where A, B, U , V , W ,

X, Y are all objects in C. As we introduce maps in C diagrammatically, we will use the

convention that everything is read as moving upwards. Note that we could have just as easily

chosen downwards instead, but we need to make some choice so that we may talk about

composition of Homs as stacking cylinders. Since we’re using the convention of moving

upwards, composition in C is seen as stacking compatible cylinders vertically on top of one

6Technically, objects are assigned to beginning and ends of ribbons, and the identity map is assigned to
(untwisted) ribbons.
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another. At every introduced vertex/coupon, we have a morphism, which we’ve labeled as

f , g, and h, that are, once again, moving upwards. The domains of these morphisms are

based on the objects immediately below their vertices and codomains as objects immediately

above, both read left to right (the induced orientation of the coupon’s bases, [0, 1] × {0}

and [0, 1] × {1}). If a ribbon’s orientation doesn’t flow in the upwards direction, then we

consider the object coloring the ribbon as the corresponding dual object instead. This is

well-defined as every ribbon category is also rigid. Therefore, the morphisms in our example

are defined as

f : X ! A∗ ⊗B

g : B ! V ⊗W

h : A∗ ⊗ Y ! U∗.

With this particular labeling, we are identifying our ribbon graph Γ as an element

of Hom (X ⊗ Y, U∗ ⊗ V ⊗W ) via the following theorem. The point of this is to allow us

to use a diagrammatic approach to better understand C. In particular, diagrams allow

us to express some very complicated formulas in a way that can be intuitively easier to

understand.

Theorem 2.4.21 (2.5 in [52]). Let A = (A,R, v) be a ribbon Hopf algebra over a field of

characteristic 0 and let E be the corresponding category of (A-Rep)-colored ribbon graphs,

where A-Rep is the category of finite dimensional representations of A. There exists a

unique covariant functor

RT : E ! A-Rep
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such that

1. RT transforms any decoration in E into the corresponding A-module,

2. RT transforms each graph Γ into the corresponding homomorphism,

3. RT preserves tensor products, i.e. RT (Γ1 ⊗ Γ2) = RT (Γ1)⊗RT (Γ2),

4. RT maps V to the homomorphism V ∗ ⊗ V ! C defined by f ⊗ x 7! f(x),

5. RT maps V to the homomorphism V⊗V ∗ ! C defined by x⊗f 7! f
(
v−1µ(S ⊗ id)(R21)x

)
,

6. RT maps to the R-matrix homomorphism.

See [52] for more details.

The Reshetikhin-Turaev functor, RT , was originally defined only for the case where

M = I × I × I, a cylinder. However, we can attempt to use this definition on an arbitrary

3-manifold by imposing the local relations between morphisms that are in the kernel of the

RT functor. Specifically, letM be any 3-manifold and consider all possible C-colored ribbon

graphs that can be embedded into M . By restricting to an embedded cylinder within M ,

we can then realize the Reshetikhin-Turaev functor as a map from the space of C-spanned

C-colored ribbon graphs in the embedded cylinder to the appropriate Hom set. For instance,

in the previous example we have

RT : C[Γ] −! Hom(X ⊗ Y,U ⊗ V ⊗W )

The fact that RT is well-defined is mostly only dependent on C being a ribbon category.

For any classical Lie algebra g, Uq(g)-Rep is a ribbon category that satisfies the above
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requirements for Theorem 2.4.21. Therefore, the Reshetikhin-Turaev functor says that we

can understand the category Uq(g)-Rep pictorially. In particular, maps in this category can

be represented by (a linear combination of) ribbon graphs.

Definition 2.4.22. Given an oriented 3-manifold,M , and a Lie algebra, g, the correspond-

ing skein module is

Skg,q(M) := C⟨closed ribbon graphs in M⟩/ ∼RT ,

where ∼RT is defined locally on every embedded I × I × I and q ∈ C×.

The equivalence relation, ∼RT , are the relations that are picked up through the

functor RT . This definition is purposefully vague, due to the fact that the relations are

dependent on the category.

When mathematicians define skein modules in the literature, it is important to

remember that the given relations are not arbitrary rules that happen to match with A-

Rep. Rather, they are the consequences of the structure and properties of that category. For

example, when we restrict ourselves to the case of g = sl2, our graphical calculus becomes

greatly simplified. Firstly, since the fundamental representation, L(1), is a tensor generator

of Uq(sl2)-Rep, L(1) is the only label we need to consider, allowing us to drop the labeling

entirely. Secondly, thanks to quantum Schur-Weyl duality, we can remove any trivalent

coupons, meaning we only need to consider links. Finally, the self-duality of L(1) allows us

to remove any edge orientations on our ribbon graphs.

Although the first and third simplifications may be clear, the second one is a bit

more complicated. It’s important to understand why we don’t need to consider trivalent

coupons in the sl2 case, since trivalent and other n-valent coupons are necessary in other
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cases. For example, consider the subcategory of Uq(sl2)-Rep tensor generated by the adjoint

representation, L(2) (this ends up corresponding to PGL2). Using 2.2, we see that L(0)⊕

L(2) ⊕ L(4) ∼= L(2) ⊗ L(2), giving us maps π′2 : L(2) ⊗ L(2) ! L(2) and ι′2 : L(2) !

L(2)⊗ L(2). This implies that we need to use trivalent coupons in this scenario.

π′2

L(2) ⊗ L(2)

L(2)

ι′2

L(2) ⊗ L(2)

L(2)

So why is this not needed in the sl2 case?

Since Uq(sl2)-Rep is tensor generated by L(1), any map in this category can be

understood by pre-composing and post-composing with the proper inclusion and projection

maps described in (2.3) and (2.4). For example, if M , M ′, and N are finite dimensional

Uq(sl2)-modules, extending a map between N and M ⊗M ′ might look something like the

following picture.

N

M M ′

· · ·
L(1)⊗ · · · ⊗ L(1)

· · ·

L(1)⊗ · · · ⊗ L(1)

In the classical case, Schur-Weyl duality says that the algebra of intertwining

operators of V ⊗m that commute with the action of the algebra U (gln) is generated by
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the permutation of adjacent pairs in the tensor product. However, in the quantum case of

Uq(sl2), maps that permute tensor products of modules, like τ , aren’t necessarily module

homomorphisms and so we need to upgrade to something more complex. The correct setting

is to replace the Sm-action with a H(Sm)-action, where H(Sm) is the corresponding Hecke

algebra.

Definition 2.4.23. The Hecke algebra, H(Sn), is the complex associative algebra with

generators T1, · · · , Tn−1 and relations

TiTj = TjTi if |i− j| > 1,

TiTi+1Ti = Ti+1TiTi+1,

(Ti − q)(Ti + q−1) = 0.

Remark 2.4.24. If we specialize q = 1, we get back the symmetric group algebra. There-

fore, the Hecke algebra, H(Sn), is a deformation of C[Sn], and is why we use this notation.

Remark 2.4.25. It may seem like each generator, Ti, does not have an inverse in H(Sn)

a priori. However, expanding the last relation provides us with a closed form of its inverse,

proving its existence.

1 = T 2
i − qTi + q−1Ti

⇒ T−1
i = Ti − (q − q−1)

Remark 2.4.26. The last two relations of the Hecke algebra are equivalent to solutions for

YBE.
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Theorem 2.4.27 (12.3.10 in [11]). Suppose m,n > 1 and consider the module L(n−1)⊗m.

There is a functor from H(Sm)-Rep to the subcategory of Uq(sln)-Rep consisting of modules

isomorphic to an irreducible component of L(1)⊗m defined by

J :M 7!M ⊗H(Sm) L(n− 1)⊗m

where the Uq(sln)-module structure is the natural structure induced by L(n− 1)⊗m.

In particular, this functor is essentially surjective and thus every endomorphism

in the algebra EndUq(sln) (L(n− 1)⊗m) can be understood using a representation of H(Sm).

Moreover, if m ≤ n, then J is also injective, making J an equivalence of categories.

One would hope that the action of the Hecke algebra has a diagrammatic interpre-

tation nice enough to not have any n-valent coupons for n ≥ 3. Unfortunately, the Hecke

algebra does not have to play nicely and the lack of n-valent coupons is not true in general.

However, a particular algebra that is diagrammatic very nice and has all of the properties

that we could ask for is the Temperley-Lieb algebra.

Definition 2.4.28. The Temperley-Lieb algebra, TLn(δ), where δ ∈ C×, is a unital asso-

ciative algebra over C with generators U1, · · · , Un−1 and defining relations

U2
i = δUi

UiUi±1Ui = Ui

UiUj = UjUi for |i− j| > 1.

See figure 2.8 for a graphical example of multiplying two elements in TL5(δ).

In this example, multiplication is understood as vertical stacking and any closed loop is

replaced by the distinguished scaling factor, δ.
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·

=

= δ

Figure 2.8: Multiplication in TLn(δ) corresponds to vertical concatenation.

TLn(δ) can be realized as the algebra of intertwining operators acting on the

Uq(sl2)-module L(1)⊗n, as follows:

Ui 7! id⊗(i−1)⊗(coev ◦ ev)⊗ id⊗(n−i−1),

where ev : L(1) ⊗ L(1) ! L(0) and coev : L(0) ! L(1) ⊗ L(1). Notice how these maps

correspond to the evaluation and coevalutaion maps defined for rigid categories. Therefore,

the diagrammatic interpretations of coev and ev correspond to cups and caps.

coev ◦ ev =

In particular, TLn can be diagrammatically understood without any crossings and without

any trivalent coupons (see figure 2.8). Moreover, the following proposition relates the Hecke

algebra with a corresponding Temperley-Lieb algebra.
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Proposition 2.4.29. There is a surjective algebra homomorphism

H(Sm)↠ TLm(−q − q−1)

Ti 7! q + Ui.

When m = 2, this is an algebra isomorphism.

Proof. Call this map φ and notice that φ is a well-defined map as

φ(TiT
−1
i ) = (q + Ui)(q

−1 + Ui)

= 1 + (q + q−1)Ui + U2
i

= 1

φ(TiTi+1Ti) = (q + Ui)(q + Ui+1)(q + Ui)

= q3 + q2Ui + q2Ui+1 + qUiUi+1 + qUi+1Ui + q2Ui + qU2
i + UiUi+1Ui

= q3 + q2(Ui + Ui+1) + q(UiUi+1 + Ui+1ti)

= φ(Ti+1TiTi+1)

φ(TiTj) = (q + Ui)(q + Uj)

= (q + Uj)(q + Ui)

= φ(TjTi)

for |i − j| > 1. As this is an algebra homomorphism and φ(Ti − q) = Ui for all i, φ is

surjective.

If n = 2, then both algebras only have one generator. Thus, the relations are

greatly simplified and both algebras are two dimensional. For any a, b ∈ C, if

0 = φ(aT + b) = a(q + U) + b
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then a = b = 0 as {1, U} is a basis for TL2

(
−q − q−1

)
and so φ is injective. This clearly

fails for even just n = 3 by a dimension counting argument.

Therefore, the Hecke algebra will always surject onto the Temperley-Lieb algebra.

It turns out that when working in the setting of Uq(sl2), TLm(−q − q−1) accounts for

the entire algebra EndUq(sl2) (L(1)
⊗m), just like the Hecke algebra. As TLm doesn’t use

trivalent coupons and this completely overlaps with the action of H(Sm), quantum Schur-

Weyl duality says Uq(sl2)-Rep doesn’t need to consider them either.

Remark 2.4.30. Note that coupons are usually used when discussing skein categories or

specifically A-Rep itself. When focusing on particular skein modules, many works will drop

the coupons altogether and just use traditional vertices instead, a convention that we’ll be

following for the rest of this thesis.

Note: The previous definition that we used for the quantized universal enveloping

algebra, Uq(sl2), follows the fairly standard convention found in most textbooks. However,

in skein theory, mathematicians often reparameterize q to q2 for convenience. It’s important

to note that for the remainder of this work, we will adopt this reparameterization as well.

Uq (sl2) =
C
[
E,F,K±1

]
KEK−1 = q4E

KFK−1 = q−4F

[E,F ] =
K −K−1

q2 − q−2


This adjustment simplifies notation, reducing the need for fractional powers of q and limiting

us to using at worst q1/2.
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2.5 Kauffman Bracket Skein Algebras

When in the case of g = sl2, the R-matrix (the braiding) has a sum decomposition

that can be somewhat understood as a constant times the identity map and another constant

times an evaluation map composed with a coevaluation map. This diagrammatically looks

like the following.

L(1) L(1)∗

L(1) L(1)∗

⊗

⊗

= q

L(1) L(1)∗

L(1) L(1)∗

⊗

⊗

+ q−1

L(1) L(1)∗

L(1) L(1)∗

⊗

⊗

Similarly, as ribbon categories are rigid categories, we can also compute eval ◦ coeval and

find

= −q2−q−2.

These two relations create what are called the Kauffman bracket skein relations.

One might consider the implications of extending these relations to 3-manifolds

beyond R2×I. Such extensions gives rise to skein modules, which notably, in the case of sl2,

results in the Kauffman bracket skein module. These modules have proven to be quite im-

portant in noncommutative geometry, knot theory, and, of course, quantum representation

theory.
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As mentioned in section 2.4, we will always use a blackboard framing for our curves

(see figure 2.6) and avoid using half-twists. Moreover, using the above relations, we can

explicitly compute both framing relations:

= q + q−1

= q + q−1(−q2 − q−2)

= −q−3

= q + q−1

= q(−q2 − q−2) + q−1

= −q3

Definition 2.5.31. The Kauffman bracket skein module, Kq(M), of an oriented 3-manifold,

M , is the C-module generated by isotopy classes of framed unoriented links in M , modulo

the following two local relations.

= q + q−1

(R1) Skein Relation

= (−q2 − q−2)

(R2) Trivial Knot Relation
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If additionally M = Σ× I, then we can define the multiplication of two diagrams,

α · α′, by stacking α above α′ along the interval I. For example, if M is a thickened torus,

multiplying the longitude and meridian together results in the following diagram.

α

·

α′

=

αα′

While Kauffman bracket skein modules are technically only defined for 3-manifolds,

we often use the shorthand Kq(Σ) to refer to Kq(Σ× [0, 1]) for a surface Σ. This notation

also conveys to the reader that there is more than just the module structure—it includes

the additional algebra structure defined by stacking.

One particular example that we’re interested in is the Kauffman bracket skein

algebra of the torus, Kq(T
2). In general, the simple curves on T 2 can be classified up to

homotopy by their “slope.” More specifically, when r, s ∈ Z are relatively prime, we define

(r, s) to be the unoriented simple closed curve in T 2 that is the image of the line y = r
sx

under the natural projection from R2 to T 2.

The algebra Kq(T
2) has been studied quite heavily and thus has an explicit basis.

Let Tn(x) be the nth Chebyshev polynomial, defined recursively where T0(x) = 2, T1(x) = x,

and Tn+1 = xTn − Tn−1. Define (r, s)T to be the evaluation of Td on the (r/d, s/d)-curve

where r, s ∈ Z and d = gcd(r, s).

Theorem 2.5.32 ([26]). The set {(r, s)T }r,s∈Z/ ∼ where (r, s)T ∼ (−r,−s)T is a basis for

Kq(T
2).

38



2.6 Stated Skein Algebras

The main restriction of Kauffman bracket skein modules is that they are only de-

fined using links. Whenever one works with links, it’s natural to ask whether the framework

can be extended to tangles as well. Moreover, in the definition of Kq(M), the boundary of

M doesn’t play any crucial part, and hence we have Kq(M) ∼= Kq(M̊). In [38], Thang Lê

reinterpreted the quantum trace maps in [8] by introducing stated skein modules, which ad-

dressed how to incorporate both tangles and boundary components to establish an excision

property for these modules.

Definition 2.6.33. A marked 3-manifold is a pair (M,N ) where M is a compact oriented

3-manifold with (possibly empty) boundary ∂M , and N ⊂ ∂M are oriented arcs called

markings.

Remark 2.6.34. The orientation of the marking provides the points on this arc with a

natural ordering.

Definition 2.6.35. A marked surface is a pair (Σ,P) where Σ is a compact oriented surface

with (possibly empty) boundary ∂Σ, and P ⊂ ∂Σ is a finite set, called the set of marked

points.

The associated marked 3-manifold (M,N ) is defined byM = Σ×I and its markings

N = P × I.

Definition 2.6.36. A stated N -tangle is a pair (α, s) where α is a compact 1-dimensional

unoriented submanifold with a framing such that ∂α = α∩N and s is a map s : ∂α! {±}.

39



The decorations of these states at each endpoint correspond to our two basis

vectors in the fundamental representation of Uq(sl2), L(1). Once again, as L(1) is self-dual,

we don’t have to worry about orientations of these tangles.

Definition 2.6.37. The stated skein module of (M,N ), denoted S (M,N ), is the quotient

of the free module spanned by isotopy classes of stated N -tangles subject to the following

local relations.

= q + q−1

(R1) Skein Relation

= (−q2 − q−2)

(R2) Trivial Knot Relation

− +
= q−1/2

(R3) Trivial Arc Relation 1

− −
= 0 =

+ +

(R4) Trivial Arc Relation 2

+ −
= q−2

− +
+ q1/2

(R5) State Exchange Relation

Using relations (R1)−(R5) we can easily find the following state exchange relation,

and hence get every state exchange relation.

+ −
= q2

− +
+ q−1/2

It’s also not too hard to see that for any ν ∈ {±}, (R5) is equivalent to the following

height exchange relations.
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ν ν
= q

ν ν

− +
= q−1

− +

+ −
= q−3

+ −
+ q−3/2

(
q2 − q−2

)
(R6) Height Exchange Relation

Lastly, we can also quickly find all trivial arc relations. Below are the trivial arc

relations corresponding to different states, (R3).

+ −
= −q5/2

− +
= q1/2

+ −
= −q−5/2

− +
= q−1/2

The first and fourth diagrams, as well as the second and third diagrams, differ by a twist,

which introduces a multiplicative factor of −q−3. For consistency and convenience, through-
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out this thesis, we adopt Lê’s notation from [38] for these constants. That is,

C+
+ = 0,

C−
+ = −q−5/2,

C+
− = q−1/2,

C−
− = 0.

Analogous to the Kauffman bracket, if M = Σ × I and N = P × I for P ⊂ ∂Σ,

then we can define an C-algebra structure on the C-module S (M,P) by defining products

αα′ to be stacking α above α′, subject to the same 5 relations.

α

·

α′

=

αα′

The Kauffman bracket skein module is functorial in the sense that Kq(−) is a co-

variant functor from the category of oriented 3-manifolds with isotopy classes of embeddings

as morphisms to the category of C-modules. Thus, each embedding, f :M ↪!M ′, induces

a module homomorphism of Kauffman bracket skein modules, f∗ : Kq(M) ! Kq(M
′), by

f∗[α] = [f(α)] for any framed link α. Similarly, the stated skein algebra S (−) is also func-

torial. However, the domain of this functor is the category of marked 3-manifolds where

our embeddings preserve marking orientations. Indeed, each embedding, f : (M,N ) ↪!

(M ′,N ′), induces a similar homomorphism, f∗ : S (M,N )! S (M ′,N ′), by f∗[α] = [f(α)]

for any stated tangle α.

Since framed links exist in stated skein modules due to relations (R5) and (R6), we

get that Kq(M) ↪! S (M,N ). This is consistent with the functoriality of our skein modules
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since N can be empty and S (−) can be restricted to the same functor on the category of

oriented 3-manifolds, making Kq(−)! S (−) a natural transformation.

The main reason stated skein modules were created was due to the splitting theo-

rem. This theorem allows us to analyze skein algebras through smaller (hopefully simpler)

pieces, at the cost of more complexity. As important as this result is, the splitting theorem

is not particularly relevant for this thesis, and so it will not be discussed here any further.

You can read more details on this theorem in [19, 38, 41].

Since the stated skein modules can be thought of as generalizations of Kauffman

bracket skein modules, there are important distinctions to consider that make the stated

case more difficult to work with. For example, it is clear from relation (R1) that when

q = ±1, Kq(Σ× I) is a commutative algebra. However, due to our additional relations, in

particular (R6), S (M,N ) is only commutative at q = 1 when N is nonempty. Moreover,

Kq(M) ∼= K−q(M) as algebras (see [3]). However, this clearly can’t be true in the stated

case due to this lack of commutivity. Furthermore, there is additional information to keep

track of when working in the stated case. Specifically, we need to keep track of not only

the states but also the the heights of each tangle at each marking or marked point.

2.7 The Conventional Model

The definitions of stated skein algebras given above differ slightly from the more

common ones found in the literature. Our approach to stated tangles is somewhat closer

to the notion of ideal arcs described in [19, 42] (see also Definition 2.7.40). In this section,

we will first introduce the conventional definitions and then demonstrate that they are
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isomorphic to our definitions, showing that they can be understood in essentially the same

way.

The following definitions are primarily taken from [19] and [38]. However, they

have been very slightly modified to fit in our framework. In particular, given a surface,

Σ, the corresponding 3-manifold is typically taken as Σ× (0, 1) in the literature. However,

it will be important for us to consider Σ × [0, 1] instead as this extra information will be

important for us later.

Definition 2.7.38. Let Σ′ be a (possibly punctured) oriented surface with (possibly empty)

boundary, and P ⊂ ∂Σ′ be a finite nonempty set such that every connected component of

∂Σ′ has at least one point in P. Then Σ = Σ′ \ P is called a punctured bordered surface.

Remark 2.7.39. Following the notation from definition 2.7.38, Σ′ is always uniquely de-

termined by its punctured bordered surface, Σ.

Definition 2.7.40. An ideal arc on Σ is an immersion α : [0, 1]! Σ′ such that α(0), α(1) ∈

P and the restriction of α onto (0, 1) is an embedding into Σ.

Definition 2.7.41. A connected component of ∂Σ is called a boundary edge.

Definition 2.7.42. Let (s, t) ∈ Σ × [0, 1]. The height of (s, t) is t and we say a vector at

(s, t) is vertical if it is parallel to s× [0, 1].

Definition 2.7.43. Let Σ be a punctured bordered surface. A stated ∂Σ-tangle is a tu-

ple, (α, s) where α ⊂ Σ × [0, 1] is an unoriented, framed, compact, properly embedded

1-dimensional submanifold such that

• at every point in ∂α = α ∩ (∂Σ× [0, 1]) the framing is vertical,
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• for every boundary edge b ⊂ Σ, ∂α ∩ (b× [0, 1]) have distinct heights,

and s is a map s : ∂α! {±}.

Just as before, we only consider isotopy classes of these stated ∂Σ-tangles. There-

fore, isotopies of stated ∂Σ-tangles are required to preserve the height order.

Definition 2.7.44. The stated skein algebra of a punctured bordered surface, denoted

S pb(Σ) or S pb(Σ′), is the C-module freely spanned by isotopy classes of stated ∂Σ-tangles

modulo the following local relations.

= q + q−1

(Rpb1 ) Skein Relation

= (−q2 − q−2)

(Rpb2 ) Trivial Knot Relation

− +
= q−1/2

(Rpb3 ) Trivial Arc Relation 1

− −
= 0 =

+ +

(Rpb4 ) Trivial Arc Relation 2

+ −
= q−2

− +
+ q1/2

(Rpb5 ) State Exchange Relation

Definition 2.7.45. A stated ∂Σ-tangle, α, is said to be in generic position if the natural

projection π : Σ × [0, 1] ! Σ restricts to an embedding of α, except for the possibility of

transverse double points in the interior of Σ.

Each stated ∂Σ-tangle is isotopic to one in generic position. Furthermore, we can

define a C-algebra structure on S pb(Σ) by defining products α · α′ to be stacking α above

α′, just as before, and isotoping the new diagram to be in generic position.
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Definition 2.7.46. Let Σ be a punctured bordered surface and o be an orientation of ∂Σ,

which may differ from the orientation inherited from Σ. We say a ∂Σ-tangle diagram, D,

is o-ordered if for each boundary component, the points of ∂D increase when traversing in

the direction of o.

Every ∂Σ-tangle can be presented, after an appropriate isotopy, by an o-ordered

∂Σ-tangle diagram. Figure 2.9 shows examples of o-ordered ∂Σ-tangle diagrams (without

states) when our surface is a torus with boundary.

· =

Figure 2.9: A product of o-ordered (stateless) ∂Σ-diagram where Σ′ = T 2 \D2 and o has a
clockwise orientation.

Theorem 2.7.47 (Theorem 2.11 in [38]). Let Σ be a punctured bordered surface and o an

orientation of ∂Σ. Define B(o,Σ) be the set of of all isotopy classes of increasingly stated,

o-ordered, simple ∂Σ-tangle diagrams. Then B(o,Σ) is a C-basis of S pb(Σ).

Definition 2.7.48. Let Σ′ be a surface with boundary and Σ = Σ′\P be the corresponding

punctured bordered surface. We say a ∂Σ-orientation, o, is consistent if o can be extended

to ∂Σ′. That is, the direction of orientations on adjacent boundary edges agree for every

boundary component.
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Figure 2.10: The right punctured bordered surface has a consistent orientation while the
left does not.

Proposition 2.7.49. Let Σ′ be a surface with boundary and Σ = Σ′ \ P be the corre-

sponding punctured bordered surface. There exists an algebra isomorphism ϕo : S pb(Σ)
∼
−!

S (Σ′,P).

Proof. Let o be a consistent orientation on ∂Σ. By theorem 2.7.47, B(o,Σ) is a basis for

S pb(Σ). Let D ∈ B(o,Σ) be a fixed representative in its isotopy class.

Define ι : Σ× [0, 1] ↪! Σ′ × [0, 1] to be the natural embedding and define

pri : Σ
′ × [0, 1]! Σ′ × {i}! Σ′ × [0, 1]

pri : Σ× [0, 1]! Σ× {i}! Σ× [0, 1]

to be the natural projection maps composed with their natural embeddings for any i ∈ [0, 1].

Notice that (pr0 ◦ ι) (D) is simple as D was simple and in generic position.

Endow P × [0, 1] with its natural orientation induced by the [0, 1] component. For

every boundary edge, b ⊂ ∂Σ′, isotope the endpoints of (pr0 ◦ ι) (D) on b×{0} along o and

along the orientation of P × [0, 1] so that all endpoints lie on P(0, 1). Call this new tangle

diagram D′.

+

−

∂Σ×{0}

P × [0, 1]

⇝

+−

∂Σ×{0}

P × [0, 1]
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At this point, it is not clear if D′ is still simple, now with respect to Σ′. However, we can

still canonically identify D′ as some element of S (Σ′,P).

Define ϕo(D) = D′ for each D ∈ B(o,Σ) and extend linearly. Notice that ϕo is

well-defined as D′ is unique up to isotopy and ϕo respects the relations (R
pb
1 )−(Rpb5 ) through

the corresponding relations (R1)− (R5). Moreover, as relative heights are preserved, this is

actually an algebra homomorphism as well.

Now let α′ ∈ S (Σ′,P) be a fixed representative of its isotopy class and endow Σ

with the orientation o. Isotope the endpoints of α in each summand in the reverse direction

of the orientations of P × [0, 1] and ∂Σ× {0} until each endpoint lies entirely on ∂Σ× {0}.

Since o is consistent, this is well-defined.

+−

∂Σ×{0}

P × [0, 1]

⇝
+

−

∂Σ×{0}

P × [0, 1]

We can now view this new object, call it α̃′, as living entirely on Σ × [0, 1]. Finally,

define α := pr1/2(α̃
′) and isotope α so that it is generic and o-ordered. Therefore, we can

canonically identify α as an element in S pb(Σ).

Pointwise define ψo(α
′) = α for each α′ ∈ S (Σ′,P). Clearly (ψo ◦ ϕo)(α) = α and

(ϕo ◦ ψo)(α
′) = α′ for all α ∈ S pb(Σ) and α′ ∈ S (Σ′,P) and hence ϕo is bijective.

Definition 2.7.50. Let o be a consistent orientation on ∂Σ. We say a D ∈ S (Σ′) is

o-simple if D is simple and ψo(D) is simple.

Proposition 2.7.51. Every simple diagram in S (Σ′) can be written as a linear combination

of increasingly stated, o-simple ∂Σ′-tangle diagrams.
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Proof. It suffices to only check for two adjacent endpoints on a single marked point. Firstly,

notice that if the diagram is simple, we only need to consider two cases, depending on the

orientation, o, of the adjacent boundary.

ψo

 µ ν

 =
µ ν

ψo

 µ ν

 =
µ ν

ψo

 µ ν

 =
ν µ

ψo

 µ ν

 =
ν µ

When the adjacent boundary orientation is clockwise, locally we get that

ϕo ◦ ψo

 µ ν

 = ϕo

 ν µ



= ϕo

q Cµν + q−1

ν µ



= q Cµν + q−1

ν µ
.

If the orientation is instead counterclockwise, then we get that

ϕo ◦ ψo

 µ ν

 = ϕo

 ν µ



= ϕo

q ν µ
+ (q−1)(−q3)Cνµ



= q
µ ν

− q2Cνµ .
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From here, we can use the state exchange relations, (R5), to make the diagram

increasingly stated, which does not change height orders or simplicity conditions.

Theorem 2.7.52. The set of all isotopy classes of increasingly stated, o-simple ∂Σ′-tangle

diagrams forms a C-basis for S (Σ′,P).

Proof. This directly follows from Propositions 2.7.49 and 2.7.51.

Note: Unless specified otherwise, if we denote the stated skein algebra without

specifying the markings or marked points (e.g., S (M)), we assume that there is exactly

one marking or marked point on its boundary. Additionally, the boundary of M should be

obvious. I will always clarify beforehand if there is an exception to this convention, however,

it should be clear from the context of which it’s given.

2.8 Spherical Double Affine Hecke Algebra

As discussed in section 2.4, we introduced the Hecke algebra, H(Sn), as a defor-

mation of C[Sn], the symmetric group algebra. In general, Hecke algebras can be defined

over any Coxeter group. More specifically, we want to think of our Hecke algebras as defor-

mations of a Weyl group algebra, C[W ]. Given a finite dimensional semisimple Lie algebra,

g, the jump from Hecke algebra to affine Hecke algebras (AHA) and then to double affine

Hecke algebras (DAHA) can be roughly understood as deformations of

Hecke  ! W
AHA  ! W ⋉ P∨

DAHA  ! W ⋉ (P ⊕ P∨)

where P and P∨ are weight and coweight lattices.
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The construction of a DAHA can be done by starting with a quantum torus over

P ⊕ P∨, where the q-commuting coefficients are defined through a symplectic pairing, ω,

between P and P∨. If we think of P and P∨ as Zn, then the corresponding quantum torus

is generated by X±1
1 , · · · , X±1

n , Y ±1
1 , · · · , Y ±1

n with relations XλY µ = qω(λ,µ)Y µXλ, where

Xλ :=
∏
iX

λi
i and Y µ :=

∏
j Y

µj
j for λ ∈ P and µ ∈ P∨. For now, we’ll denote this quantum

torus as T2n
ω . In general, the Weyl group action on P and P∨ corresponds to permutations

of the Xi and Yi in T2n
ω . When g = sl2, the Weyl group action corresponds to simultaneously

inverting X and Y . This action gives an embedding, W ↪! Out
(
T2n
ω

) ∼= SP2n(Z), which in

turn determines the extension

0 −! T2n
ω −! Hq,t=1 −! C[W ] −! 0.

As we deform Hq,t=1 using the formal parameter t, we simultaneously deform the group

algebra C[W ] into its Hecke algebra, using t ∈ C× as the distinguished parameter now

instead of q.

Let’s now specialize to the case we are concerned with in this thesis. When g = sl2,

P and P∨ are both isomorphic to Z and W ∼= Z/2Z ∼= S2. Therefore, H(W ) has a single

generator, T , and single relation, (T − t)(T + t−1) = 0, making it a 2-dimensional algebra.

Hence, the corresponding A1 DAHA is precisely the following.

Definition 2.8.53. Define Hq,t to be the algebra generated by X±1, Y ±1, and T , subject

to the relations

TXT = X−1, TY −1T = Y, XY = q2Y XT 2, (T − t)(T + t−1) = 0.

Remark 2.8.54. When t = 1, our last relation gives us T 2 = 1 and thus XY = q2Y X, the

same relation found in the quantum torus, T2
ω.
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Definition 2.8.55. Assume t ̸= ±i and let e ∈ Hq,t be the idempotent (T + t−1)/(t+ t−1).

The corresponding spherical subalgebra of Hq,t is defined as the two-sided ideal SHq,t :=

eHq,te.

Our spherical DAHA inherits its additive and multiplicative structure from Hq,t.

However, 1 is no longer the multiplicative identity but rather e is.

Remark 2.8.56. Hq,t is not commutative, even at the limit q = 1. However, the spherical

subalgebra SHq,t is commutative at q = 1.

Remark 2.8.57. In the limit t = 1, SHq,t is isomorphic to the Weyl-invariant subalgebra

of T2
ω.

Remark 2.8.58. This particular spherical DAHA specialized to q = t = 1 is isomorphic to

the ring of functions on the moduli space of flat SL2-connections on a two-torus, T 2.

Lemma 2.8.59 (Lemma 2.24 in [54]). Suppose t2q−2−t−2q2 is invertible. ThenHq,teHq,t =

Hq,t and SHq,t is Morita equivalent to Hq,t via the functors

Hq,t -Mod! SHq,t -Mod SHq,t -Mod! Hq,t -Mod

M 7! eM M 7! Hq,te⊗SHq,t M.

Therefore, if we want to better understand the representation theory of Hq,t, it is

sufficient to understand the representation theory of SHq,t. Furthermore, it was shown in

[54] that SHq,t is isomorphic to a slightly modified version of the Kauffman bracket skein

algebra of the punctured torus.

Definition 2.8.60. For any surface Σ, let Kq,t(Σ \D2) be the modified Kauffman bracket

skein module defined as the quotient of Kq(Σ \D2) by the relation
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= (−q2t−2 − q−2t2) ·

.

In other words, this is exactly the same as the usual Kauffman bracket skein alge-

bra, Kq(Σ \D2), except we have the additional relation where a loop around the boundary

can be removed at the cost of the constant −q2t−2 − q−2t2.

Remark 2.8.61. Since the identity component of the diffeomorphism group of a surface

acts transitively, choosing a different disk to remove corresponds to isomorphic algebras.

Therefore, we don’t need to specify where the disk we removed is located.

When Σ = T 2, the torus, notice that in the limit t = 1 we get Kq,t=1(T
2 \D2) ∼=

Kq(Σ) as algebras. Therefore, setting t = 1 can be interpreted as filling in the disk and just

considering the closed torus without the resulting boundary.

Theorem 2.8.62 (3.9 in [54]). The algebras Kq,t(T
2 \D2) and SHq,t are isomorphic.
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Chapter 3

The Stated Skein Algebra of the

Torus with Boundary

There are three main facts from the previous sections that I would like to highlight:

1. There is a natural embedding, Kq(T
2\D2) ↪! S (T 2\D2), from the Kauffman bracket

skein algebra of T 2 \D2 to the stated skein algebra of T 2 \D2.

2. There is an algebra isomorphism, SHq,t
∼
−! Kq,t(T

2\D2), from the A1 spherical double

affine Hecke algebra to the modified Kauffman bracket skein algebra of T 2 \D2.

3. The A1 double affine Hecke algebra, Hq,t, is Morita equivalent to it’s spherical subal-

gebra, SHq,t.

Together, these facts give us the central idea and guiding principle of this work: modules

over S (T 2 \D2) provide us with modules for SHq,t, and therefore for the A1 DAHA, Hq,t.

Consider the following diagram of algebras.
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Kq(T
2 \D2) S (T 2 \D2)

Kq,t(T
2 \D2) SHq,t

∼

There is no obvious direct map between S (T 2 \D2) and SHq,t. However, a module over

S (T 2\D2) can be turned (by restricting the skein algbera) into a module over Kq(T
2\D2).

From here we can use the functor

Kq,t(T
2 \D2)⊗Kq(T 2\D2) − : Kq(T

2 \D2) -Mod −! Kq,t(T
2 \D2) -Mod (3.1)

to create SHq,t-modules from these Kq(T
2 \ D2)-modules. This is known as extension of

scalars and is the left adjoint to the restriction functor.1 We will explore a few different

kinds of modules over S (T 2 \ D2) in later chapters, but before we can discuss this, we

should first better understand the algebra S (T 2 \D2).

3.1 S (T 2 \D2) Notation

In this section we will show that the algebra S (T 2 \ D2) with one marking is

generated by the twelve elements B = {X1,0(µ1, ν1), X2,0(µ2, ν2), X3,0(µ3, ν3) | µi, νi ∈

{±}}, where

X1,0(µ1, ν1) =
µ1 ν1

X2,0(µ2, ν2) = µ2
ν2

X3,0(µ3, ν3) =
µ3 ν3 .

The second subscript will be more thoroughly explained in section 3.2.

1Given a map of rings, f : R ! S, there is also a right adjoint to the corresponding restriction functor,
known as coextension of scalars, which turns Hom(S,M) in the category of R-Mod into an S-module by
(s · g)(s′) := g(s′s).
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Definition 3.1.63. A curve is simple if it does not contain any self crossings. Similarly, a

∂S-tangle diagram is simple if it does not contain any self crossings on the interior of S

and has no trivial component.

As we are working with isotopy classes of curves and isotopy classes of tangles, in

general, we call α simple if there exists a representative of α that is simple.

Definition 3.1.64. A closed component of a ∂S-tangle diagram is trivial if it bounds

an open disk in S. A tangle component is trivial if it can be homotoped, relative to its

endpoints, into a single marking.

Definition 3.1.65. A boundary curve is a simple closed curve that is parallel to a boundary

edge.

Definition 3.1.66. A parallel tangle is one that can be homotoped, relative to its endpoints,

to a boundary edge.

An example of a parallel tangle in S (T 2 \D2) with one marking is

µ ν

as it can clearly be homotoped to the boundary.

Let Y1, Y2, and Y3 be the meridian, longitude, and (1,1)-curve, respectively, and

consider the stated skein algebra generated by B. Using the state-exchange relation, we

56



can express each Yi in this algebra as

Yi = q1/2Xi,0(+,−)− q−5/2Xi,0(−,+)

for i mod 3. Moreover, we can interchange heights using the proper height exchange rela-

tion.

= q1/2
+ −

−q−5/2
− +

Figure 3.1: Expressing Y1 as stated ∂(T 2 \D2)-tangles using the state exchange relation

As we’re only considering S (T 2 \ D2) with a single marking, there is only one

simple parallel tangle and one boundary curve. The boundary curve can be expressed

completely in terms of Yis and constants, as a quick calculation shows that

= qY1Y2Y3 − q2Y 2
1 − q−2Y 2

2 − q2Y 2
3 + q2 + q−2,

and for any µ, ν ∈ {±},

µ ν = qY1Y2X3,0 (µ, ν)− q2X1,0 (µ, ν)Y1 − q−2X2,0 (µ, ν)Y2 − q2X3,0 (µ, ν)Y3 − Cνµ.

The details of this calculation can be found in A.3 of the appendix. Therefore, the rest of

this section is devoted to checking that we can generate all nonparallel tangles and non-

boundary curves.

57



There is clearly a 4-to-1 correspondence between any simple stateless ∂
(
T 2 \D2

)
-

tangle and simple stated ∂
(
T 2 \D2

)
-tangles. Therefore, we will disregard the states in the

following lemmas, as the proofs are independent of the possible states. Additionally, we will

overlook relative heights along our marking, as we can readily obtain all possible heights

using (R6) alongside Y1, Y2, and Y3.

3.2 Half-Twists Around the Boundary

Before presenting our results, it is necessary to first explain the significance of

the second index, r, in Xi,r(µ, ν). While simple closed (non-boundary) curves on the torus

(with boundary) are conventionally classified by their slopes, which are numbers in Q ∪ 1
0 ,

one might expect a similar classification for our tangles, considering that each tangle must

start and end at the same marking. However, this analogy breaks down when considering

tangles with what we’ll call “twists” around the boundary.

For instance, if we trace along the path of X3,0 and introduce a twist around the

boundary just before reaching the marking, we get a different element back.

⇝

As these twists resemble half Dehn twists around the boundary, we distinguish these twists

by indexing over 1
2Z instead of Z. In particular, Xi,r is a full Dehn twist of Xi,r−1. The
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following examples illustrate X1,r for various choices of r ∈ 1
2Z.

X1,−1
X1,− 1

2
X1,0

X1, 1
2

X1,1

Remark 3.2.67. The distinction between two tangles with different numbers of twists be-

comes apparent when comparing these to fundamental groups with different base points.

Let x be a point on the boundary of T 2 \ D2, p be a point in the interior of T 2 \ D2,

and define Sim
(
T 2 \D2, z

)
as the subset of simple elements2 in π1

(
T 2 \D2, z

)
. Although

there exists an isomorphism between the fundamental groups with different base points,

φ : π1
(
T 2 \D2, x

) ∼
−! π1

(
T 2 \D2, p

)
, it is not necessarily true that φ

(
Sim(T 2 \D2, x)

)
=

Sim
(
T 2 \D2, p

)
. In fact, we instead observe a strict inclusion φ

(
Sim(T 2 \D2, x)

)
⊊

Sim
(
T 2 \D2, p

)
, as partially demonstrated in figure 3.2. The set of simple closed curves in

π1(T
2 \D2) has already been classified in [6, 15] using cyclic reduction of words. However,

this is unfortunately only under the subtle assumption that our base point is not on the

boundary and so we will need to do additional work to fill in the gaps.

Base point p Base point x

Figure 3.2: Left: a simple element with the base point off of the boundary. Right: after
making a change of base point, it is no longer simple.

2An element of a fundamental group is simple if it has a representative that does not contain any self-
intersections.
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3.3 Generators of S (T 2 \D2)

Given any marked surface, S, Lê shown in [38] (Theorem 2.7.47) that the set of all

isotopy classes of increasingly stated, simple ∂S-tangle diagrams forms a basis for S (S).

Therefore, our approach will be to first classify all possible simple (stateless) tangles in

T 2 \D2 that start and end on x ∈ ∂
(
T 2 \D2

)
and then demonstrate that all basis elements

are contained in the subalgebra generated by {X1,0(µ1, ν1), X2,0(µ2, ν2), X3,0(µ3, ν3)} for all

µi, νj ∈ {±}.

In theorem 3.3.68, we classify a large class of closed curves by their slope and

number of twists. We construct this classification by covering a neighborhood of ∂
(
T 2 \D2

)
with an annulus and proceed to use a Seifert-Van Kampen-style approach to calculate the

slope outside the annulus as well as determine the number of twists inside the annulus.

To clean things up a bit, we’ll introduce some more notation. We will denote the

following set of tuples as

I :=

{
(p, q, r) ∈ Z× Z× 1

2
Z | gcd(p, q) = 1

}/
∼

where (p, q, r) ∼ (−p,−q, r). Additionally, for any x ∈ T 2 \ D2, define Ωx to be the set

of isotopy classes of simple unoriented closed non-parallel curves that begin and end on x.

Any time we refer to a representative or an isotopic representative of an element in Ωx, we

are always assuming that this representative begins and ends at the point x.
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Theorem 3.3.68. Let x ∈ ∂
(
T 2 \D2

)
. There exists a bijection fA : I −! Ωx.

Proof. We will construct fA by first constructing a map, f̃A, from I to Ω̃x, the set of simple

closed unoriented non-parallel curves that begin and end on x, and then projecting onto

the corresponding set of isotopy classes of curves.

I Ω̃x

Ωx

f̃A

fA
πiso

We’ll first introduce some definitions. Let ε > 0 be sufficiently small. Define

Bε(m,n) to be the open ball of radius ε at point (m,n) ∈ R2, Eε := R2\
(⋃

(m,n)∈Z2 Bε(m,n)
)
,

and Φε to be the restriction of the identity map on R2 to Eε, composed with the obvious

covering map.

Φε : Eε −! T 2 \D2

Let A := Φε

(
Eϵ \ E2ε

)
be the closed annulus and define ∂A := ∂A \ ∂(T 2 \D2), the “outer

boundary”. ∂A will constantly serve as a reference point throughout the rest of this proof

and is the dividing bridge between the {p, q} and {r} in the tuple.

Choose any triple (p, q, r) ∈ I. Let γp,q be the graph of the function y = p
qx in

R2 (or x = 0 when q = 0) and consider γ0 := Φε (γp,q) ∩
(
T 2 \A

)
. Since γp,q has constant

slope, the two endpoints of γ0 must lie on ∂A as antipodal points.

γp,q

y1

y2
∂A

Let x0 be the unique point on ∂A without a unique geodesic to x through A. Let
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x1, x2 ∈ ∂A be the midpoints between x0 and its antipodal counterpart, labeled in clockwise

order from x0, and let c1 be the geodesic path from x1 to x within A.

x1 x2

x0

xc1

We’ll assume y1 and y2 are labeled such that y1 is closer to x1 on ∂A. If they are

both the same distance away from x1, then we must be in the case some yi = x0, as y1 and

y2 are antipodal points. If this happens, label this yi (the south pole) as y1 and label the

other (the north pole) as y2. Let γi be the geodesic paths (containing their endpoints) on

∂A from yi to xi. This should correspond to a clockwise path when p
q is a positive slope or

equal to 1
0 , and a counterclockwise path when p

q is a negative slope.3 Define δ := γ0⊔γ1⊔γ2

and notice that this is simple.

x1 x2

x1
x2γ1

γ2

x1

x2
γ1

γ2

Figure 3.3: Left: When (p, q) = (0, 1) we get y1 = x1 and y2 = x2 and so each γi is trivial.
Middle: When γ0 has a positive slope, we trace out a geodesic path clockwise from yi to xi.
Right: When γ0 has a negative slope we move counterclockwise instead.

3Our choice of clockwise rotation when the slope is 1
0
was made for notational convenience outside of this

proof. Alternatively, one could instead use a counterclockwise rotation by swapping the labels y1 and y2.
The difference between these classifications results in a shift of r by 1/2 whenever (p, q) = (1, 0).
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Recall that the mapping class group, Mod (Σ), of a surface, Σ, is the group of

isotopy classes of elements of Homeo+(Σ, ∂Σ), which pointwise-fix ∂Σ. Also recall that the

mapping class group of the annulus is Mod(A) = ⟨σ⟩ where σ is the clockwise Dehn twist

along the curve ς, parallel to the boundaries.

ς

σ

For r ∈ 1
2Z, notice that there is a unique decomposition, r = r1+r2

2 , such that r1,r2 ∈ Z and

r1 − r2 ∈ {0, 1}. Let α1 = σr1c1 and consider this curve in A.

Define B to be the filled-in square with corners labeled {v1, v2, v3, v4}, indexed

clockwise, and edges labeled {e1, e2, e3, e4} such that ei has endpoints vi and vi+1 for i

mod 4, and let z be a point on the interior of e4.

v1

v2 v3

v4

e1

e2

e3

e4

z

Take gα1 : B ! A to be the quotient map such that

• gα1(e1) = gα1(e3) = α1,

• gα1(v2) = gα1(v3) = x,

• gα1(v1) = gα1(v4) = x1,

• gα1(z) = x2,
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• and canonically identifies e4 to ∂A and e2 to ∂
(
T 2 \D2

)
.

Using a pullback of the induced metric on T 2 \D2, if r2 = r1−1 define β2 to be the geodesic

path in B from z to v2 and to be the geodesic path from z to v3 if r2 = r1. Finally, let

α2 := gα1(β2). Then the curve α := δ ∪ α1 ∪ α2 is a simple tangle with endpoints on x. We

now finally define f̃A(p, q, r) = α and fA(p, q, r) = [α].

The rest of this proof is primarily devoted to showing fA is surjective.

(
0, 1, 12

) Φε(γ0,1)
−−−−−!

⊔
{γ1,γ2}
−−−−−−!

⋃
{α1,α2}
−−−−−−!

[α]
−!

(
1, 1, 12

) Φε(γ1,1)
−−−−−!

⊔
{γ1,γ2}
−−−−−−!

⋃
{α1,α2}
−−−−−−!

[α]
−!

Figure 3.4: Example of fA
(
0, 1, 12

)
and fA

(
1, 1, 12

)

Define A, ∂A, x0, x1, x2, and c1 as before. Let η be a smooth radial vector field

on a neighborhood of A, denoted N(A), such that

• For all y ∈ N(A) \A, η(y) is tangent to the geodesic within N(A) from y to ∂A

• η is zero outside of N(A),

• and for all y ∈ ∂A, the vector η(y) is normal to ∂A and points inwards.

Define

Ψ :
(
T 2 \D2

)
\A ∼−−! T 2 \ {p} ↪! T 2
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to be the homeomorphism that flows along η, and therefore restricts to the identity on

T 2 \N(A), followed by its canonical embedding into T 2.

∂A

∼
p

Consider any curve in Ωx and select a simple representative, α, such that |α ∩ ∂A| =

2 and Ψ (α \ (A ∩ α)) has constant slope. Since we required α to be simple, if α lies entirely

within A, it must either be parallel to the boundary of T 2 \ D2 or null-homotopic, and

therefore not in Ωx. As all simple unoriented closed curves on the torus are classified as

(p, q)-curves, where (p, q) ∼ (−p,−q) and p and q are coprime, we can uniquely associate a

(p, q) pair to the closed curve Ψ (α \ (A ∩ α)) ∪ {p}.

p

Figure 3.5: Turning the tangle, α, in the complement of A into a closed curve on the torus
via Ψ. This example becomes a curve in T 2 with classification (2, 3)

Identify α with a map, α : [0, 1]! T 2 \D2, such that α(0) = α(1) = x. Label the

points {y1, y2} = α∩∂A and their preimages as t′i := α−1(yi), assuming t′1 < t′2. If (p, q) is a

positive slope, then let γi be the geodesics on ∂A from yi to xi, rotating clockwise. If these

geodesics intersect each other then we can swap the labels yi by changing the orientation
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x1
x2γ1

γ2

x1

x2
γ1

γ2

Figure 3.6: Left: Example of a curve with a positive slope. Right: Example with a negative
slope.

of α to avoid this. If (p, q) is a negative slope then let γi be the geodesics on ∂A from

yi to xi, rotating counterclockwise, once again changing the orientation of α if needed. If

(p, q) = (1, 0), the same slope as the longitude, then let γi be the geodesics on ∂A from yi

to xi, rotating clockwise. Finally, if (p, q) = (0, 1) then yi = xi and γi is trivial for each i.

Isotope α inside A so that for some 0 < t1 < t′1 and 1 > t2 > t′2, α satisfies:

• α(ti) = xi,

• α([t1, t
′
1]) = γ1,

• α([t′2, t2]) = γ2,

• α([t′1, t
′
2]
⊔
{0, 1}) remains unchanged,

• α is transverse with itself at α(0) and α(1).

y1

y2

y1

y2

We can now focus on the region within the annulus, A, and just α([0, t1] ⊔ [t2, 1]).
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x1
x2

c1A

Consider the corresponding restriction, α̂ : [0, t1] ∪ [t2, 1] ! A, of α and further

restrict this into its two components, α̂1 : [0, t1] ! A, and α̂2 : [t2, 1] ! A. Since the

mapping class group of the annulus is isomorphic to Z, α̂1 must be isotopic to σr1,αc1 for

some r1,α ∈ Z.

If we cut A along α̂1, the resulting picture is a square. Since α̂2 is a path from

α̂(t2) to x and since α̂(t2) lies on ∂A and is distinct from α̂(t1), there are exactly two possible

ways α̂ can be simple up to isotopy.

α̂1(t1) x α̂2(t2) cut

α̂1(t1) α̂1(t1)
α̂2(t2)

x x

Let v1 = α̂′
1(0) and v2 = α̂′

2(1), the corresponding tangent vectors, using the

induced orientation from α’s domain.4 Since α is transverse with itself at α(0) and α(1),

we must have that det(v1v2) ̸= 0. Finally, define

r2,α =


r1,α if det(v1v2) > 0

r1,α − 1 if det(v1v2) < 0

(3.2)

4We may assume α is parameterized by arclength so that these vectors are never zero.
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and let r =
r1,α+r2,α

2 which is clearly an element of 1
2Z, providing us with the last entry in

the tuple.5 Notice that this representative of α is clearly equivalent to f̃A(p, q, r) outside of

A and isotopic inside of A as the decomposition of r into r1,α and r2,α is unique. Therefore,(
πiso ◦ f̃A

)
(p, q, r) = [α] and so this map is surjective.

Finally, suppose fA(p, q, r) = fA(p
′, q′, r′) = [α]. First notice that α’s geometric

intersection number with a fixed meridian and fixed longitude away from x are invariant

under isotopy. As these intersection numbers correspond to p and q respectively, p = p′ and

q = q′. Notice that f̃A(p, q, r) ∩ ∂A must completely agree with f̃A(p
′, q′, r′) ∩ ∂A as well as

they are equivalent on T 2 \A and therefore [f̃A(p, q, r)] = [f̃A(p
′, q′, r′)] on A. Because they

agree up to isotopy and since r =
r1,α+r2,α

2 and r′ =
r′1,α+r

′
2,α

2 have unique decompositions,

r = r′. Thus (p, q, r) = (p′, q′, r′) and so fA is bijective.

Lemma 3.3.69. If α ∈ S (S) is a tangle and γ ∈ S (S) is a closed curve such that the

geometric intersection number of α and γ is 1, then 1
q2−q−2 [α, γ]q resolves to a Dehn twist

of α along γ and −1
q2−q−2 [α, γ]q−1 = 1

q2−q−2 [γ, α]q is the corresponding Dehn twist in the

opposite direction.

Proof. Suppose α and γ intersect exactly once. Then locally, we have

[α, γ]q = qαγ − q−1γα

= q

α

γ

− q−1

α

γ

5If x1 were located somewhere else on ∂A, it might seem more natural to define r2,α as r1,α +1 when the
determinant is positive and as r1,α when it’s negative. However, using equation (3.2) instead of this for the
definition of r2,α, merely corresponds to a 1

2
shift in this 1

2
Z-torsor and does not violate any assumptions.

Furthermore, if we had chosen σ to be the counterclockwise Dehn twist instead, we would, among other
things, want to define r2,α as r1,α when the determinant is positive and as r1,α + 1 when it’s negative.
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= q2 + − − q−2

=
(
q2 − q−2

)

giving us our result. Noticing that [b, a]q = −[a, b]q−1 , we get 1
q2−q−2 [γ, α]q =

−1
q2−q−2 [α, γ]q−1

is the Dehn twist in the opposite direction.

Lemma 3.3.70. As an algebra, the set {X1,0(µ1, ν1), X2,0(µ2, ν2), X3,0(µ3, ν3)} for all µi, νj ∈

{±} generates any
{
Q ∪ 1

0

}
-sloped tangle in S

(
T 2 \D2

)
with 0 ∈ 1

2Z twists.

Proof. Recall that

∣∣∣∣∣∣∣∣det
a c

b d


∣∣∣∣∣∣∣∣ = n if and only if the (a, b)-curve and the (c, d)-curve (or

(c, d)-tangle) have a geometric intersection number of n. Consider the (non-homomorphic)

map of G-sets, σ : GL2(Z) ! Z2 defined by A 7! A ·

1
1

. Suppose p and q are coprime.

If they are not coprime then the (p, q, 0)-tangle intersects itself and can be resolved into

curves and ∂(T 2 \ D2)-tangles with Q
⋃ 1

0 slopes. We’ll also assume that 0 < q < p (the

proof is symmetric for negative slopes and when q > p).

By Lemma 1 in [26], we can decompose p and q into u + w = p and v + z = q

such that det

u w

v z

 = ±1 with 0 < w < p, 0 < u < p− 1, and v, z > 0, for p ≥ 3. Thus

for

p
q

 ∈ Z2, there exists an inverse, σ−1

p
q

 =

u w

v z

. We then find the inverse
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of the second column, σ−1

w
z

, and repeat until we get

p′
q′

 for q′ < p′ ≤ 2. Using

Lemma 3.3.69, each step in the reverse process of this algorithm corresponds to a Dehn

twist, ±1
q2−q−2 [Yj ,−]q±1 , along some Yj-curve corresponding to the first column.

Finally, note that the (2, 1)-tangle is equal to 1
q2−q−2 [Y1, X3,0(µ, ν)]q.

Example 3.3.71. To illustrate the application of this algorithm, let’s examine the (5,3)-

tangle with states µ and ν, which we’ll denote as X̃(µ, ν). The matrices of interest in this

example are

σ

0 1

1 0

 =

1

1

 , σ

1 1

0 1

 =

2

1

 , σ

2 1

1 1

 =

3

2

 , σ

3 2

2 1

 =

5

3

 .

Thus, we get the following series of Dehn twists

−1

(q2 − q−2)6

[[
Y3,

[
Y1, [Y2, Y1]q−1

]
q

]
q−1

,
[
Y1, [Y2, X1,0(µ, ν)]q−1

]
q

]
q

= X̃(µ, ν).

Theorem 3.3.72. B generates S
(
T 2 \D2

)
as an algebra.

Proof. A short calculation shows that

Xi,k+1(µ, ν) =
1

(q2 − q−2)3

[
Yi+1,

[
Yi, [Yi−1, Xi,k(µ, ν)]q

]
q

]
q

(3.3)

Xi,k−1(µ, ν) =
1

(q2 − q−2)3

[[
[Xi,k(µ, ν), Yi+1]q , Yi

]
q
, Yi−1

]
q

(3.4)

for i mod 3 and µ, ν ∈ {±}. Using this result and Lemma 3.3.70, we can construct any

(p, q, r)-tangle. By Theorem 2.7.52, the set of all isotopy classes of increasingly stated,

o-simple ∂(T 2 \ D2)-tangle diagrams forms a basis for S
(
T 2 \D2

)
. Since every simple

non-parallel tangle can be expressed as a (p, q, r)-tangle, every simple ∂
(
T 2 \D2

)
-tangle
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diagram can be written as a linear combination of products of these (p, q, r)-tangles and

powers of our single parallel tangle. Thus, the stated skein algebra generated by B spans

the entire space.

Remark 3.3.73. Since we have the relation

X3,0(µ, ν) =
1

q2 − q−2

[
X1,0(µ, ν), q

1/2X2,0(+,−)− q−5/2X2,0(−,+)
]
q
,

we don’t technically need to include X3,0(µ, ν) to generate S (T 2 \D2). We only need the

eight elements {Xi,0(µ, ν) | µ, ν ∈ {±}, i ∈ {1, 2}}. However, as with Kq(T
2\D2), it is often

more notationally convenient to include X3,0(µ, ν) as well.

3.4 Relation to Factorization Homology

Alekseev-Grosse-Schomerus moduli algebras (AGS algebras) are deformations of

representation varieties of Σ \D2 for some surface Σ, via the Fock-Rosly Poisson structure.

It was shown in both [22] and [36] that these AGS algebras are isomorphic as Oq(SL2)-

comodule algebras to S (Σ \D2), the corresponding stated skein algebra with one marking

on the boundary created by removing D2.

Internal skein algebras (also known as internal endomorphism algebras), denoted

AΣ\D2 , were explored in [4, 9, 30] using factorization homology and were also shown to be

isomorphic to corresponding AGS algebras in [4]. It was stated in [30] and [41] and made

more explicit in [40] that AΣ\D2 should be isomorphic to S (Σ \D2) with one marking as

Oq(SL2)-comodule algebras, tying together factorization homology and stated skein theory.

Using only skein theory, Häıoun proved in [31] that S (Σ \ D2) (with one marking) is

isomorphic to its corresponding internal skein algebra as Oq(SL2)-comodule algebras.
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Moving to our specific case, it was shown in [4, 9] that the algebra AT 2\D2 , and

therefore S (T 2 \ D2), is isomorphic as an Oq(SL2)-comodule algebra to the algebra of

quantum differential operators, Dq(SL2) ∼= Uq(sl2)⋉Oq(SL2), which they called the elliptic

double and is a subalgebra of the Heisenberg double of Uq(sl2). In [30], Gunningham,

Jordan, and Safronov provided an explicit presentation for this algebra: Uq(sl2)⋉Oq(SL2)

is generated by a11, a
1
2, a

2
1, a

2
2, b

1
1, b

1
2, b

2
1, b

2
2, subject to the relations

R21A1R12A2 = A2R21A1R12

R21B1RB2 = B2R21B1R

R21B1RA2 = A2R21B1R
−1
21

1 = a11a
2
2 − q2a12a

2
1,

1 = b11b
2
2 − q2b12b

2
1,

where

A1 =

a11 a12

a21 a22

⊗ Id, B1 =

b11 b12

b21 b22

⊗ Id,

A2 = Id⊗

a11 a12

a21 a22

 , B2 = Id⊗

b11 b12

b21 b22

 ,

and R = R12 is the R matrix over L(1) ⊗ L(1). These generators correspond to the same

generators just discussed.
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X1,0(+,+) 7! a22 X2,0(+,+) 7! b22

X1,0(+,−) 7! a12 X2,0(+,−) 7! b12

X1,0(−,+) 7! a21 X2,0(−,+) 7! b21

X1,0(−,−) 7! a11 X2,0(−,−) 7! b11

However, multiplication in these two algebras are defined a bit differently and so the relations

on S (T 2 \D2) aren’t going to be the same on the nose. In particular, the product structure

inDq(SL2) is an associative braided product (called the covariantised product in [44]) which

corresponds to a transmutation of Oq(SL2), the Hopf dual of Uq(sl2). You can read more

about transmutation in [44] and for great pictures and details on how it relates to stated

skein algebras, see Lê and Sikora’s preprint [40].

µ2 ν2 µ1 ν1 µ2 µ1 ν2 ν1

Figure 3.7: Very roughly speaking, the left is multiplication in S (T 2 \ D2) and right is
multiplication in the “transmutated” version.

Note that when viewing S (T 2 \ D2) with this braided product as our multipli-

cation, the generators {X1,0(µ1, ν1), X2,0(µ2, ν2) | µi, νi ∈ {±}} agree with these relations

under the identification above. Therefore, this is a concrete example of the relationship

between factorization homology and stated skein algebras. For a more in-depth explanation

of this relationship, please refer to [4, 30, 31, 40]. These details, although quite interesting,

are not directly relevant to the main discussion in this work and will not be discussed here.
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3.5 Towards a PBW Basis

It would be ideal and highly advantageous if we could additionally find a PBW

basis for S
(
T 2 \D2

)
. Sadly, establishing the basis for this algebra has proven to be quite

challenging, primarily due to the rapid escalation of calculations. The main hurdle lies in

identifying all the relations required for such a presentation, as is often the case in such

endeavors.

Unfortunately, attempting to use similar techniques used in the Kauffman bracket

case has not been fruitful. While we have the relation 1
q2−q−2 [Yi, Yi+1]q = Yi+2 just as the

Kauffman bracket case, computing an analogous relation on tangles instead yields 3.3 and

3.4, indicating the possible need to consider these half-twists when establishing a basis.

Paradoxically, we also have the equality

Yi = q1/2Xi,r(+,−)− q−5/2Xi,r(−,+) (3.5)

for all r ∈ 1
2Z, further complicating things. Note that this also extends to all (p, q)-curves

and their corresponding (p, q, r)-tangles.

For any r ∈ 1
2Z, let γp,q,r be a simple ∂

(
T 2 \D2

)
-tangle corresponding to the tuple

(p, q, r) from Theorem 3.3.68. An interesting note is that for any r, s ∈ 1
2Z, resolving any

crossings in the product of γp,q,rγp,q,s will always result in a sum of simple tangles containing

a summand element in γ r+s
2

when r+s
2 ∈ 1

2Z and an element in γ ⌊r+s⌋
2

γ ⌈r+s⌉
2

when r+s
2 /∈ 1

2Z.

Conjecture 3.5.74. The product of stateless simple tangles, γp,q,r and γp,q,s, always

resolves to a polynomial of closed (p, q)-curves, parallel tangles, parallel closed curves,

γ
p,q,

⌊r+s⌋
2

, and γ
p,q,

⌈r+s⌉
2

.
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In particular, if s = r± 1
2 , the product can always be drawn without any crossings.

Although this observation may give off the sense of a grading, the presence of this averaging

formula precludes it from being classified as such. Furthermore, it, of course, could not

constitute a decomposition of our algebra either, as illustrated by equation 3.5, which

demonstrates the absence of linear independence among these if we tried to make them

direct summands. As far as I am aware, there are no comparable examples in the existing

literature of this phenomenon to serve as a reference point.

Another possible route is to employing the embedding technique described in Sec-

tion 4.1 and studying the image of S (T 2 \D2). Although some progress has been made,

extracting useful patterns from this embedding is particularly arduous. Notably, the image

of seemingly simple tangle elements quickly becomes unwieldy in size as r ∈ 1
2Z moves

further away from 0 (see Appendix A.2 for an example).

For convenience and further use, I have calculated, and partially verified using a

computer program (Appendix B.1), all 16 commuting relations among X1,k and X2,k for all

states. Note that these calculations assume both tangles share the same number of twists

with respect to our classification in Theorem 3.3.68. I have also added the full calculation

for the longest calculation (in the case of 0 twists around the boundary) in Appendex

A.1. Here, X̃3,k(µ, ν) corresponds to the (1,−1)-tangle with k twists and Ỹ3 is the closed

(1,−1)-curve.
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X1,k(+,+)X2,k(+,+) = q2X2,k(+,+)X1,k(+,+)

X1,k(+,+)X2,k(+,−) = q−2X2,k(+,−)X1,k(+,+) + q−3/2(q2 − q−2)X3,k(+,+)

X1,k(+,+)X2,k(−,+) = q−2X2,k(−,+)X1,k(+,+)

X1,k(+,+)X2,k(−,−) = q−6X2,k(−,−)X1,k(+,+) + q−3/2(q2 − q−2)X3,k(−,+)

X1,k(+,−)X2,k(+,+) = q6X2,k(+,+)X1,k(+,−)− q7/2(q2 − q−2)X2,k(+,+)Y1

− q5/2(q2 − q−2)
(
q2X̃3,k(+,+) + q−2X̃3,k− 1

2
(+,+)

)
X1,k(+,−)X2,k(+,−) = q2X2,k(+,−)X1,k(+,−) + (q2 − q−2)Ỹ3

− q−1/2(q2 − q−2)
(
qX̃3,k(+,−) +X2(+,−)Y1 − q−1X3(+,−)

)
X1,k(+,−)X2,k(−,+) = q2X2,k(−,+)X1,k(+,−)− q−1/2(q2 − q−2)X̃3,k− 1

2
(−,+)

X1,k(+,−)X2,k(−,−) = q−2X2,k(−,−)X1,k(+,−) + q−3/2(q2 − q−2)X3,k(−,−)

X1,k(−,+)X2,k(+,+) = q6X2,k(+,+)X1,k(−,+)− q5/2(q2 − q−2)X̃3,k− 1
2
(+,+)

X1,k(−,+)X2,k(+,−) = q2X2,k(+,−)X1,k(−,+)− q1/2(q2 − q−2)X̃3,k(−,+)

X1,k(−,+)X2,k(−,+) = q2X2,k(−,+)X1,k(−,+)

X1,k(−,+)X2,k(−,−) = q−2X2,k(−,−)X1,k(−,+)

X1,k(−,−)X2,k(+,+) = q10X2,k(+,+)X1,k(−,−)− q13/2(q2 − q−2)
(
q4X3,k(−,+) + q−4X̃3,k(+,−)

)
− q11/2(q2 − q−2)

(
q3X̃3,k− 1

2
(−,+) + q−3X̃3,k− 1

2
(+,−)

)
− q7(q2 − q−2)(q3 + q−3)Ỹ3,k

X1,k(−,−)X2,k(+,−) = q6X2,k(+,−)X1,k(−,−)

− q5/2(q2 − q−2)
(
qX2,k(−,−)Y1 + (q2 + q−2)X̃3,k(−,−)

)
X1,k(−,−)X2,k(−,+) = q6X2,k(−,+)X1,k(−,−)− q7/2(q2 − q−2)X̃3,k− 1

2
(−,−)

X1,k(−,−)X2,k(−,−) = q2X2,k(−,−)X1,k(−,−)
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Chapter 4

Representations from Quantum

Tori

4.1 Embedding Into Quantum Tori

Definition 4.1.75. Given an anti-symmetric integral n×n matrix Q, the associated quan-

tum torus is defined as

Tn(Q) :=
C
[
x±1
1 , · · · , x±1

n

](
xixj = qQijxjxi

)
and the corresponding quantum plane is

Tn+(Q) :=
C [x1, · · · , xn](
xixj = qQijxjxi

) .
We will often drop the Q in Tn(Q) and Tn+(Q) to shorten notation. Clearly, Tn+ is

an Ore domain and Tn is an Ore localization is Tn+.

Lê and Yu proved that there exist embeddings Tr+
ψE
↪−! S (S)

φE
↪−! Tr, where r is

the Gelfand-Kirillov dimension of S (S) and ψE and φE are algebra homomorphisms. Both
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of these embeddings depend on a quasitriangulation of S, denoted E , and are discussed

extensively in [42]. Bonahon and Wong constructed a similar map in [8] where Tr would

instead be rational functions in skew-commuting variables associated to the square roots of

the shear coordinates of Chekhov and Fock’s enhanced quantum Teichmüller space. Fur-

thermore, Bonahon and Wong demonstrated that a change in quasitriangulation induces

an algebra isomorphism between the respective Teichmüller spaces, which can also be un-

derstood as a change of shear coordinates.

Let (Σ,P) be a marked surface and S the corresponding punctured bordered

surface. Define r(Σ,P) = r(S) to be 0 if S is the sphere with no or one ideal point, 1 if S

is the sphere with two ideal points, 2 if S is the closed torus, and 3|P| − 3χ(S) otherwise,

where χ(S) is the Euler characteristic of S. Lê and Yu showed in [41] that the Gelfand-

Kirillov dimension of S (S) is r(S). Equivalently, r can also be defined as the cardinality

of the maximal collection of non-isotopic ideal arcs E = E
⊔
Ê∂ =

(
E̊
⊔
E∂

)⊔
Ê∂ , where

E̊ are the ideal arcs not parallel to any boundary components, E∂ are the ideal arcs that

are parallel to boundary components, and Ê∂ is a copy of E∂ . Each e ∈ E corresponds to

a generator, xe, of Tr+. The anti-symmetric integral matrix for Tr+ is defined using the

anti-symmetric function

Q(a, b) = #
b a

−#
a b

for a, b ∈ E

Q(a, b̂) = −#
b a

−#
a b

for a ∈ E , b ∈ E∂

Q(â, b̂) = −Q(a, b) for a, b ∈ E∂ .
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and canonically identifying the entries of Q as Qa,b = Q(a, b). By #
i j

we mean

the number of times a half edge of i and a half edge j meet at the same ideal point with i

following j in the clockwise order.

We define ψE as sending each generator to the corresponding diagram (possibly

scaled by some q±1/2) where the diagram has positive states if e ∈ E and is a bad arc if

e ∈ Ê∂ . For example, if both of endpoints of e end on the same ideal point, ψE sends e to

the diagram

7!



q−1/2

+ +
if e ∈ E

q1/2
+ − if e ∈ Ê∂ .

where the q±1/2 scalar is introduced so that xe is reflection invariant, which follows by the

(R6) relation. Therefore, in this example, we have
+ +

7! q1/2xe and
+ − 7!

q−1/2xê as φE is an algebra homomorphism.

The stated skein algebra has the property that for every α ∈ S (S), there is some

monomial m(x1, · · · , xr) ∈ Tr+ such that ψE (m(x1, · · · , xr))α ∈ Im(ψE). Because these are

algebra homomorphisms and since (φE ◦ ψE)(xe) = xe, we can explicitly find where any

element in our skein algebra is mapped to using the following trick

φE(α) = m−1(x1, · · · , xr)m(x1, · · · , xr)φE(α) = m−1(x1, · · · , xr)φE(ψE(m(x1, · · · , xr))α),

where S (S) is viewed as the canonical T r+-module induced by ψE , m · α := ψE(m)α.
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4.2 The Quantum 6-Torus

We will now perform this calculation for when S = T 2 \D2, with a single marked

point on the boundary. Let E be the quasitriangulation of T 2 \D2 shown in figure 4.1. Note

Figure 4.1: A quasitriangulation of T 2 \D2

that as T 2 \ D2 does not contain any punctures, E is a full triangulation of T 2 \ D2. We

will correspond our variables, xi, to edges of E in the following way.

x1 x2 x3

x4 x5 x6
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Here x5 corresponds to the single edge in E∂ and x6 corresponds to our extra copy of x5 in

Ê∂ . Using the anti-symmetric function, we find our Q to be

Q =



0 2 2 −2 0 −4

−2 0 −2 −4 0 −4

−2 2 0 −2 0 −4

2 4 2 0 0 −4

0 0 0 0 0 0

4 4 4 4 0 0



.

Therefore, we are embedding our stated skein algebra, S
(
T 2 \D2

)
, into a quan-

tum 6-torus. This quantum torus is not simple as it has nontrivial center (see proposition

1.3 in [45]) when viewed as a complex twisted group algebra over the free abelian group of

rank 6. However, we still need to consider the entire quantum 6-torus as S (T 2 \D2) has a

GK-dimension of 6.

Let y1, y2, y3 ∈ S (T 2 \D2) be the diagrams corresponding to the meridian, longi-

tude, and (1, 1)-curve as closed curves, respectively. Then we can use this quasitriangulation,

E , to find the image of y1 in φE . Note the I’m not expressing the states in these diagrams

as all of the states for these calculations will be positive.

ψE(x2x4x3) · y1 =

q
−3/2
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=

q
−3/2



=

q
−3/2



q + q−1



=

q
−3/2



q + q−1



=

q
−3/2



q + + q−2



= q−3/2

q + + q−2



= q−3/2

q + + q−1 + q−3



= q−3/2

q + q + q−4 + q−3
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where the last equality comes from the height exchange relation, (R6). Thus,

φE(y1) = (x2x4x3)
−1(x2x4x3)φE(y1) = (x2x4x3)

−1φE(ψE(x2x4x3)y1)

= qx−1
3 x−1

4 x−1
2 x2x4x2 + qx−1

3 x−1
4 x−1

2 x2x
2
1 + q−4x−1

3 x−1
4 x−1

2 x1x3x5 + q−3x−1
3 x−1

4 x−1
2 x23x4

= q−1x2x
−1
3 + q−1x−1

2 x3 + qx21x
−1
3 x−1

4 + q2x1x
−1
2 x−1

4 x5.

One can similarly calculate where y2, y3, and the boundary curve get mapped to under φE

(see A.2 in the appendix). Hence φE maps these diagrams as follows.

Proposition 4.2.76. Suppose φE : S (T 2 \ D2) ↪! Tn is the algebra homomorphism

defined as above. Let y1, y2, y3 ∈ S (T 2 \D2) be the meridian, longitude, and (1, 1)-curve

respectively and ∂ the boundary curve . Then

y1 7! q−1x2x
−1
3 + q−1x−1

2 x3 + qx21x
−1
3 x−1

4 + q2x1x
−1
2 x−1

4 x5

y2 7! qx1x
−1
3 + qx−1

1 x3 + q−1x−1
1 x2x

−1
3 x4

y3 7! q−1x1x
−1
4 + q−1x−1

1 x4 + q−1x−1
1 x−1

2 x23 + x−1
2 x3x

−1
4 x5

∂ 7! q−2x−1
2 x4 + q−2x2x

−1
4 + qx−1

1 x3x
−1
4 x5 + qx1x

−1
3 x−1

4 x5 + q−3x−1
1 x−1

3 x4x5

+ q3x1x
−1
2 x−1

3 x5 + q−1x−1
1 x2x

−1
3 x5 + q−1x−1

1 x−1
2 x3x5 + q2x−1

2 x−1
4 x25

In particular, the images of yi satisfy the commutation relations

(
q2 − q−2

)−1
[φE(yi), φE(yi+1)]q = φE(yi+2)

for i mod 3 and

φE(∂) = qφE(y1)φE(y2)φE(y3)− q2φE(y1)
2 − q−2φE(y2)

2 − q2φE(y3)
2 + q2 + q−2.
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4.3 A Module of Laurent Polynomials

Proposition 4.3.77. Let Tn(Q) be the quantum torus of n generators,
K⟨x±1

1 ,··· ,x±1
n ⟩

xixj=q
Qi,jxjxi

, where

Q is the corresponding skew-symmetric integral matrix. If k is the number of non-central

generators of Tn and q
Qi,j
2 ∈ K for all i, j, then the commutative ring K[y±1

1 , · · · , y±1
k−1] has

a well defined Tn-module structure. In particular, if the first k generators, {x1, · · · , xk}, are

our non-commutative generators, then for each i ∈ {1, · · · , k − 1} and m ∈ {k + 1, · · · , n},

the operators

xi · f(y1, y2, · · · , yk−1) := yif(q
Qi,1/2y1, q

Qi,2/2y2, · · · , qQi,k−1/2yk−1)

xk · f(y1, y2, · · · , yk−1) := f(qQk,1y1, q
Qk,2y2, · · · , qQk,k−1yk−1)

xm · f(y1, y2, · · · , yk−1) := f(y1, y2, · · · , yk−1).

define a Tn-module.

Proof. Our relations xixj = qQi,jxjxi hold as for all i, j ∈ {1, · · · , k − 1}

xixj · f(y1, · · · , yk−1) = q
Qi,j
2 yiyjf(q

Qj,1+Qi,1
2 y1, · · · , q

Qj,k−1+Qi,k−1
2 yk−1)

= qQi,jxjxi · f(y1, · · · , yk−1)

xixk · f(y1, · · · , yk−1) = yif(q
Qi,1
2

+Qk,1y1, · · · , q
Qi,k−1

2
+Qk,k−1yk−1)

= qQi,kxkxi · f(y1, · · · , yk−1).

Clearly, for anym,m′ ∈ {k+1, · · · , n} we have xixm·f(y1, · · · , yk−1) = xmxi·f(y1, · · · , yk−1)

and xmxm′ · f(y1, · · · , yk−1) = xmxm′ · f(y1, · · · , yk−1).

By this proposition, the ring of Laurent polynomials in 4 variables is a module

over our quantum 6-torus, T6. Since S
(
T 2 \D2

)
↪! T6, the following actions endow
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C[x±1, y±1, z±1, w±1] with the structure of a S
(
T 2 \D2

)
-module.

x1 · f(x, y, z, w) = xf(x, qy, qz, q−1w) x2 · f(x, y, z, w) = yf(q−1x, y, q−1z, q−2w)

x3 · f(x, y, z, w) = zf(q−1x, qy, z, q−1w) x4 · f(x, y, z, w) = wf(qx, q2y, qz, w)

x5 · f(x, y, z, w) = f(x, y, z, w) x6 · f(x, y, z, w) = f(q4x, q4y, q4z, q4w)

Thus, the actions of y1, y2, y3, and ∂ on this module are (and have been verified via Python

as detailed in B.2)

y1 · f(x, y, z, w) = yz−1f(x, q−1y, q−1z, q−1w) + y−1zf(x, qy, qz, qw)

+ x2z−1w−1f(x, q−1y, qz, q−1w) + xy−1w−1f(x, q−1y, qz, qw)

y2 · f(x, y, z, w) = xz−1f(qx, y, qz, w) + x−1zf(q−1x, y, q−1z, w) + x−1yz−1wf(qx, y, q−1z, w)

y3 · f(x, y, z, w) = xw−1f(q−1x, q−1y, z, q−1w) + x−1wf(qx, qy, z, qw)

+ x−1y−1z2f(q−1x, qy, z, qw) + y−1zw−1f(q−1x, q−1y, z, qw).

∂ · f(x, y, z, w) =
zf

(
x
q2
, y
q2
, z
q2
, w

)
xw

+
zf

(
x, y, z, q2w

)
xy

+
wf

(
q2x, q2y, q2z, q2w

)
y

+
wf

(
q2x, y, z, q2w

)
zx

+
yf

(
x
q2
, y
q2
, z
q2
, w
q2

)
w

+
yf

(
x, y

q2
, z
q2
, w

)
zx

+
xf

(
x, y

q2
, z, w

)
wz

+
xf

(
q2x, y, q2z, q2w

)
yz

+
f
(
x, y

q2
, z, q2w

)
yw

where ∂ = qy1y2y3 − q2y21 − q−2y22 − q2y23 + q2 + q−2 is the boundary curve.

Unfortunately, ∂ does not have any eigenvalues due to grade shifts, however, it

does have an invariant subspace, C
[(

x
yz

)±1
,
( y
zx

)±1
,
(
z
xy

)±1
,
(
w
y

)±1
]
. To condense the

notation a bit, let κ = k1 + k2 + k3 + k4 and k = (k1, k2, k3, k4). Note that the following

computation was done by hand and verified via python (once again see B.2).
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∂ ·
∑n

κ=−n
|ki|≤n

ck

(
x
yz

)k1 ( y
zx

)k2 ( z
xy

)k3 (
w
y

)k4
=

∑n
κ=−n
|ki|≤n

ck

[
q2κ

(
x
yz

)k1 ( y
zx

)k2 ( z
xy

)k3+1 (
w
y

)k4−1
+ q2k4

(
x
yz

)k1 ( y
zx

)k2 ( z
xy

)k3+1 (
w
y

)k4
+q2(κ−k4)

(
x
yz

)k1 ( y
zx

)k2 ( z
xy

)k3 (
w
y

)k4−1
+ q−2(κ−k4)

(
x
yz

)k1 ( y
zx

)k2 ( z
xy

)k3 (
w
y

)k4+1

+q2(κ−2k2+k4)
(
x
yz

)k1+1 ( y
zx

)k2 ( z
xy

)k3+1 (
w
y

)k4−1
+ q2(κ−2k2)

(
x
yz

)k1+1 ( y
zx

)k2 ( z
xy

)k3 (
w
y

)k4−1

+q2(k4−2k2)
(
x
yz

)k1+1 ( y
zx

)k2 ( z
xy

)k3 (
w
y

)k4
+ q2(2k1+k4)

(
x
yz

)k1 ( y
zx

)k2+1
(
z
xy

)k3 (
w
y

)k4
+q2(k1−k2−k3+k4)

(
x
yz

)k1 ( y
zx

)k2+1
(
z
xy

)k3 (
w
y

)k4+1
]
=

∑n+2
κ=−(n+1)
|ki|≤n+1

c′k

(
x
yz

)k1 ( y
zx

)k2 ( z
xy

)k3 (
w
y

)k4
Furthermore, our operators y1, y2, and y3 also have invariant subspaces. For

example, C
[(

x
z

)±1
,
(yw
xz

)±1
]
is an invariant subspace with respect to the action of y2 on

this module. To see this, we compute the following.

y2 ·
n∑

k1+k2=−n
|ki|≤n

ck1,k2

(x
z

)k1 (yw
xz

)k2

=

n∑
k1+k2=−n

|ki|≤n

ck1,k2

[
q2k2

(x
z

)k1−1 (yw
xz

)k2
+ q−2k2

(x
z

)k1+1 (yw
xz

)k2
+ q2k1

(x
z

)k1 (yw
xz

)k2+1
]

=
n+1∑

k1+k2=−(n+1)
|ki|≤n+1

c′k1,k2

(x
z

)k1 (yw
xz

)k2

It seems as though the algebra C
[
x±1, y±1, z±1, w±1

]
constitutes a minimal struc-

ture for this type of representation while still allowing for well-defined, nontrivial actions of

the generators of T6(Q). While it is straightforward to introduce additional variables into

this algebra, it would be surprising if the number of variables could be reduced. For this

reason, we give the following conjecture.
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Conjecture 4.3.78. Let Q be the anti-symmetric matrix defined in section 4.2 and suppose

M is a Laurent polynomial algebra with a T6(Q)-module structure such that each xi acts

nontrivially. Then the Gelfend-Kirillov dimension of M is at least 4.

87



Chapter 5

Topologically Defined

Representations

5.1 Knot Invariants

There is another, more geometric, perspective to the story of skein modules that

begins by looking for knot invariants. Let M be a 3-manifold with boundary and consider

the natural inclusion ∂M ↪! M . This inclusion induces a map on fundamental groups,

denoted by α : π1(∂M) ! π1(M), known as the peripheral map. In [61], Waldhausen

demonstrated that the peripheral map serves as a complete invariant for a significant class

of 3-manifolds, namely sufficiently large 3-manifolds. In particular, these kinds of manifolds

include knot complements. This result was further refined by Gordon and Luecke in [28] to

establish it as a knot invariant as well.
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Given a knot K, the knot complement is defined asMK = S3\N(K), where N(K)

is a tubular neighborhood of K. Since the boundary of MK is a torus, the corresponding

peripheral map is α : π1(T
2) ! π1(MK). Notably, π1(Mk) alone is not a complete knot

invariant, as it cannot distinguish between mirrored images of chiral knots. However, the

additional information regarding how the torus embeds into the knot complement allows

for this distinction.

We can study these groups by instead examining the induced maps on their

representations. For any reductive group, G, the set of all G-representations, denoted

Rep(M,G) := Hom(π1(M), G), inherits a natural variety structure from the algebraic va-

riety structure of G. Moreover, the induced map Rep(M,G) ! Rep(∂M,G) descends

to a map on G-character varieties, χ(M,G) ! χ(∂M,G). Here, χ(M,G) is defined as

Rep(M,G)�G, the closed algebraic quotient of the natural conjugation action of G on the

representation variety. Finally, we can instead induce the map onto the coordinate rings

of these character varieties: O (χ(∂M,G)) ! O (χ(M,G)). Equivalently, we can also con-

sider O (Rep(∂M,G))G ! O (Rep(M,G))G, the corresponding map between the algebras

of G-invariant regular functions on Rep(∂M,G) and Rep(M,G). Below is a more visual

depiction of the process just described.

π1(∂M) π1(M)

Rep(∂M,G) Rep(M,G)

χ(∂M,G) χ(M,G)

O (χ(∂M,G)) O (χ(M,G))

α

α∗

α̂

α∗
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So we have taken a map between not necessarily abelian groups and turned it into

a map between commutative algebras, which offers several advantages. At this point, it is

natural to ask whether or not we still have the same precision of knot invariants at this

level. Initially the answer is no. However, it turns out that if we quantize these coordinate

rings, then it is possible to extract this data.

Before we do this, let’s take a moment to figure out what exactly is χ(∂M,G). As

we’re only considering cases when ∂M is the two torus, T 2 = S1 × S1, for any reductive

group, G, χ(∂M,G) = Hom(Z2, G) � G. Let T ⊂ G be a maximal toral subgroup of G,

and let W = N(T )/T be the corresponding Weyl group, where N(T ) is the normalizer

of T in G. Clearly, Rep(T 2, T ) ∼= T × T since the fundamental group of the torus is

Z2. As T is a subgroup of G, there is a natural inclusion of these representation varieties,

Rep(T 2, T ) ↪! Rep(T 2, G).

We can surject Rep(T 2, G) onto its character variety and do the same for T × T

by factoring it through the diagonal action of W . It’s fairly straightforward to see that this

induces a map, Ψ, on these character varieties.

Rep(T 2, T ) T × T Rep(T 2, G)

T × T �W χ(T 2, G)Ψ

It’s natural to expect and hope that Ψ is an isomorphism; however, this is not true

in general. Nonetheless, a chain of results supports us in our specific situation. Thaddeus

proved in [58] that when G is a connected complex reductive algebraic group, the quotient

T × T � W is bijective with the connected component containing the trivial character,

denoted χ0(T
2, G). Moreover, Richardson’s work in [53] implies that if additionally G is
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simply-connected, then the character variety χ(T 2, G) is irreducible as a moduli space, and

thus χ(T 2, G) = χ0(T
2, G). However, similar to normalization maps for cuspidal curves, the

bijectivity of these spaces does not necessarily imply that they are isomorphic as varieties.

Nevertheless, combining these results, Sikora established in [57] that whenever

G is a classical group, i.e. G = GLn(C), SLn(C), SPn(C), or SOn(C), Ψ is indeed an

isomorphism of varieties and hence the induced map on coordinate rings,

Ψ∗ : O (T × T )W −! O
(
χ(T 2, G)

)
is an isomorphism of commutative algebras. As O (T × T )W has been fairly heavily studied

in representation theory, it is beneficial to instead consider the map α∗ : O (T × T )W !

O (χ(M,G)). Moreover, it has interesting non-commutative deformations: spherical DA-

HAs.

Since we’re only working with G = SL2(C), the above results provide us with a

more concrete way of understanding the character variety χ
(
T 2, SL2(C)

)
. In particular,

when G = SL2(C), a quick calculation shows the following.

T =


a 0

0 a−1

 : a ∈ C×


N(T ) =


a 0

0 a−1

 ,

0 −b

b 0

 : a, b ∈ C×


and therefore

W = N(T )/T =


1 0

0 1

 T ,

0 −1

1 0

 T

 ∼= Z/2Z.
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Since π1(T
2) is abelian and has two generators, we obtain the following isomor-

phism.

O
(
Rep(T 2, SL2(C))

) ∼= C⟨X±1, Y ±1⟩
XY − Y X

There is a natural Z/2Z-action, which corresponds to simultaneously inverting X and Y .

Consequently, the ring O
(
χ(T 2, SL2(C))

)
is subalgebra of elements invariant under this

involution.

Returning to the topic of knot invariants, we mentioned that we can recover this

information through the quantization of these coordinate rings. Frohman and Gelca defined

a particular quantization of O
(
Rep(T 2, SL2(C))

)
in [26], which they call the noncommu-

tative torus.

Aq := T2


 0 2

−2 0


 =

C⟨X±1, Y ±1⟩
XY − q2Y X

We can apply the same Z/2Z-action on Aq and look at the corresponding invariant subal-

gebra, denoted A
Z/2Z
q . They then showed that both Kq(T

2) and A
Z/2Z
q are isomorphic as

algebras.

Recall that by Theorem 2.5.32, {(r, s)T }r,s∈Z/ ∼ where (r, s)T ∼ (−r,−s)T forms

a basis for Kq(T
2).

Theorem 5.1.79 (Theorem 4.3 in [26]). The linear map Kq(T
2) ! A

Z/2Z
q defined by

(r, s)T 7! q−sr (Y −sXr + Y sX−r) is an isomorphism of algebras.

Therefore, the meridian and longitude get mapped to X +X−1 and Y + Y −1, re-

spectively. This theorem tells us that Kq(T
2) can be understood as a quantum deformation

of the ring of SL2(C)-invariant regular functions over O
(
Rep(T 2, SL2(C))

)
.
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Moreover, Przytycki and Sikora in [51] (as well as Bullock in [10]) showed that for

any 3-manifold, the specialization of Kq=−1(M) is isomorphic to O (χ(M,SL2(C))) as al-

gebras. Therefore, Kq(M) is a quantization of the commutative algebra O (χ(M,SL2(C))).

Furthermore, whenM is a surface,Kq(M) is a deformation ofKq=−1(M) ∼= O (χ(M,SL2(C)))

in the direction of Goldman’s Poisson bracket.

Recall that the induced map α∗ : O (χ(∂M,G)) ! O (χ(M,G)) is a map be-

tween commutative algebras. Any time we have a map between algebras, we can make

the codomain into a module over the domain using the map. It turns out that this mod-

ule structure remains intact as we quantize both of these algebras. Furthermore, given a

knot, K, the colored Jones polynomial, Jn(K, q), can be extracted from the A
Z/2Z
q -module

structure of Kq(MK). The natural embedding N(K) ⊔MK ↪! S3 induces the pairing

⟨−,−⟩ : Kq

(
S1 ×D2

)
⊗Kq(T 2) Kq (MK)! Kq

(
S3

) ∼= C.

It’s not too hard to see that Kq(S
1 ×D2) ∼= C[u] as vector spaces, and a theorem of Kirby

and Melvin from [35] shows

Jn(K, q) = ⟨Sn−1(u), 1K⟩ .

Here, 1K denotes the empty link in MK and Sn is the nth Chebyshev polynomials, but now

with initial conditions S0(x) = 1, S1(x) = x, and Sn+1 = xSn − Sn−1.

As the Kq(T
2)-module structure of Kq(MK) comes from the peripheral map, we

can geometrically interpret this as isotoping any curves in Kq(MK) away from a neighbor-

hood of ∂Mk and embedding T 2 × I into this neighborhood. These Kq(T
2)-module struc-

tures, as well as their connection with DAHA representations, were examined by Gelca and

Sain in [27] and more thoroughly examined by Berest and Samuelson in [5]. For example,
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when K is the unknot, Mk is the solid torus and so Kq(Mk) ∼= C[u]1K . Let Y1, Y2, and

Y3 be the meridian, longitude, and (1, 1)-curve respectively. Then the action of Kq(T
2) on

Kq(MK) is given by

Y1 · f(u)1K = uf(u)1K ,

Y2 · 1K =
(
−q2 − q−2

)
1K ,

Y3 · 1K = −q−3u1K .

Although it is quite a bit more work, this module structure can been extended

to the knot complement of any knot. In [5], Berest and Samuelson describe the natural

action of the A1 DAHA on these knot complements for the trefoil, the figure eight knot, all

(2, 2p+ 1)-torus knots, and all 2-bridge knots (when q = ±1).

5.2 Knot Complements as S (T 2 \D2)-Modules

Just as Kq(M) can be understood as a quantization of SL2-invariant regular func-

tions on Rep(M,SL2), a similar geometric approach applies to the theory of stated skein

algebra, using the conventional model where Σ is a punctured bordered surface, S pb(Σ).

Let Σ be an oriented surface with boundary, and fix a Riemannian metric on Σ.

Denote UΣ as the unit tangent bundle over Σ, and let pr : UΣ ! Σ be the canonical

projection. The preimage of any point in Σ is a circle equipped with an orientation induced

from that of Σ. For any boundary edge e, and any point x ∈ e, let v ∈ Tx(Σ) be the

unit tangent vector pointing in the direction of the orientation of e. Define θe to be the

half-circle from (x, v) to (x,−v) in the positive direction of its orientation.1

1The choice of x in e does not actually make a difference here.
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Just as Kauffman bracket skein modules come from representation varieties over

fundamental groups, stated skein algebras come from representation varieties over funda-

mental groupoids. Every immersion α : [0, 1]! Σ canonically lifts to the path
(
α(t), α(t)

∥α(t)∥

)
in UΣ and thus any boundary edge, e ⊂ ∂Σ, canonically lifts to ẽ ⊂ ∂ (UΣ). If

∂̃Σ :=
⋃
e⊂∂Σ

ẽ,

then π1(UΣ; ∂̃Σ) is the fundamental groupoid corresponding to a lift of the fundamental

groupoid, π1(Σ, ∂Σ).

Definition 5.2.80. A flat twisted SL2(C)-bundle on Σ is a morphism ρ : π1(UΣ; ∂̃Σ) !

SL2(C) such that ρ(θe) =

0 −1

1 0

 for every boundary edge, e.

Costantino and Lê showed (Lemma 8.2 in [19]) that the set of flat twisted SL2(C)-

bundles on Σ forms an affine algebraic variety, similar to the Kauffman bracket case. In the

following theorem, they established the classical limit of stated skein algebras.

Theorem 5.2.81 (Theorem 8.12 in [19]). When q = 1, the stated skein algebra S (Σ) is

naturally isomorphic to the coordinate ring of flat twisted SL2(C)-bundles on Σ.

We will now extend the action of Kq(T
2) on knot complements to an action of

S (T 2 \D2) on corresponding stated skein modules with one marking. Just as before, the

action of S (T 2\D2) on S (MK) for some knot K should be dictated by the peripheral map,

i.e. S (T 2\D2) should somehow be “glued” to the boundary ofMK . In order to incorporate

the data of our marking, we’ll need to add a marking to the knot complement and identify

both markings in such a way that aligns with a module structure. From now on, we will
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assume that MK has a single marking in its boundary. Define NK : [0, 1] ↪! ∂MK to be

this marking and consider S (MK ,NK).

In order to define this module structure properly, we will need to consider the

“conventional model” for stated skein algebras, S pb(T 2 \D2), where we identify T 2 \D2 as

a punctured bordered surface (see section 2.7 for more information). Let P ∈ ∂
(
T 2 \D2

)
be our ideal point and denote Σ′ :=

(
T 2 \D2

)
\P as the corresponding punctured bordered

surface with clockwise orientation, o, on our boundary edge, ∂Σ′. Identify ∂Σ′ with the

map b : (0, 1)! Σ′ such that the induced orientation from (0, 1) is compatible with o.

P

b

For now, we are understanding this picture as purely topological and are not yet

considering the corresponding skein algebras. Glue T 2 × [0, 1] to the boundary of MK so

that T 2 × {0} is identified with ∂MK via the peripheral embedding, T 2 × {0} ↪! ∂MK . At

this point, it should be the case that and T 2 × (0, 1]
⋂
MK = ∅ and NK is on the interior

of M̃K := MK
⋃(

T 2 × [0, 1]
)
. We can compose embeddings of our thickened punctured

bordered surface

ιK : Σ′ ↪! T 2 ↪! M̃K

such that b([ϵ, 1− ϵ])× {0} is identified with NK for some small ϵ > 0. We will eventually

identify b([ϵ, 1− ϵ])× {1} as the new marking.
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Let α ∈ S pb(Σ′) and D ∈ S (MK). First isotope any closed curves in D away

from the boundary and isotope the endpoints of any stated ∂MK-tangles of D down the

marking to NK

(
(0, 12)

)
.

NK
⇝

NK

Similarly, isotope the endpoints of any stated ∂
(
T 2 \D2

)
-tangles in α, remaining in generic

position while doing so, up to N
(
(12 , 1− ϵ)

)
× [0, 1].

We can extend any stated NK-tangles to end on b×{1} instead of b×{0}. Specif-

ically, let (m, s) be a stated NK-tangle (using definition 2.6.36) and e1, e2 be the endpoints

of m. In addition to lying on NK in MK , we can view e1 and e2 as lying in b× [0, 1] in M̃K .

Define

m̃ = m
⋃
i=1,2

(ei × [0, 1])

where ei × [0, 1] ⊂ b × [0, 1]. Then (m̃, s̃) is a stated ÑK-tangle where s̃(ei × {1}) = s(ei)

and ÑK := ιK(b([ϵ, 1− ϵ])× {1}).

MK Σ′

⇝

MK Σ′

Figure 5.1: Extending the endpoints of tangles (blue) in MK to end on the new boundary
marking (blue and dashed).

In other words, we can identify the stated endpoints of m on NK as living on

b × {0} and then “pull” these endpoints along the [0, 1] component of ∂Σ′ × [0, 1] so that

the endpoints are now on b× {1}.
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Define α · D as the stated ÑK-tangle diagram in S (M̃K , ÑK) consisting of the

union of m̃ for each stated NK-tangle m in D, along with the induced stated ÑK-tangle

diagram, ι∗K(α). Because α is in generic position and any of its endpoints lie on b
(
(12 , 1− ϵ)

)
,

there is no overlap in this union, ensuring that this is a well-defined element in S (M̃K , ÑK).

It is clear that S
(
M̃K , ÑK

)
is isomorphic to S (MK ,NK) as stated skein algebras.

Consequently, α ·D induces a left S pb(Σ′)-module structure on S (MK), and therefore, a

left S (T 2 \D2)-module structure.

5.3 The Unknot Module

In this section, we will attempt to compute the S (T 2 \D2)-module structure for

S (MK) when K is the unknot. However, before we discuss this, we need to clarify a detail

on how we understand T 2 \D2. Since we typically use the “flat” interpretation of the torus

when performing calculations on T 2 \D2, we need to be careful how this interpretation is

identified with the torus with boundary to ensure that the module action is well-defined.

Figure 5.2 provides a visual aid for this identification process.

µ ν
⇝

µ ν
⇝

µ ν ⇝
µν

Figure 5.2: Constructing T 2 \D2 from a square with a disk removed.

First, identify the vertical sides and fold them towards yourself to create a cylinder

(with boundary). Then, identify the top and bottom boundary circles of the cylinder to
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form the torus, as shown in the third image. In figure 5.2, the boundary and marking are on

the side opposite to us, so in the final step, we flip the torus over so that the boundary faces

us. Note that while the marking in the first picture has an orientation pointing towards

the viewer, the orientation in the final picture points away from the viewer. Specifically,

the orientation points inwards, towards the inside of the torus, rather than away from the

torus. This distinction is important when identifying T 2 \ D2 with the boundary of the

knot complement.

Let K ⊂ S3 be the unknot. ThenMK is the solid torus, which is homeomorphic to

the thickened annulus. Therefore, S (MK) is also a C-algebra and its stated skein algebra

(with one marking) is isomorphic to the stated skein algebra of the once punctured monogon.

This algebra is generated by the elements {v+,+, v+,−, v−,+, v−,−} where

vµ,ν =
ν
µ

.

There is a small subtlety in the diagram here: if the endpoints of vµ,ν were to leave the

marking in opposite directions, then we would need to consider half-twists. Since we don’t

want to consider half-twists, we can isotope these tangles so that they always leave the

marking in the same direction.

Using section 5.2, we see that

X1,0(µ, ν) · f = vµ,ν f

X2,0(µ, ν) · 1K = Cνµ 1K

X3,0(µ, ν) · 1K = −q−3 vµ,ν

where 1K is the empty link (the identity) in S (MK), f ∈ S (MK), and Cνµ =
µ ν

.
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Unlike in the Kauffman bracket case (see [5]), the action of X2,0(µ, ν) is not diagonalizable.

For example,

X2,0(−,−) · v+,− = q−5/2(q2 − q−2)v−,−

and so the action is more complicated.

Once again, let 1K be the empty link diagram in S (MK) and f ∈ S (MK). Denote

∂K as the closed curve, parallel to the boundary in MK . Then we have

Y1 · f = ∂K f

Y2 · 1K =
(
−q2 − q−2

)
1K

Y2 · vµ,ν =
(
−q4 − q−4

)
vµ,ν

Y3 · 1K = −q−3 ∂K

∂ · 1K =
(
−q2 − q−2

)
1K

∂ · vµ,ν =
(
−q6 − q−6

)
vµ,ν − (q2 − q−2)2Cνµ∂K

It’s important to note that since S (MK) is only a module over S (T 2 \D2), this

provides only a partial description of the module. Further work is needed in order to get a

full description of this module structure.

5.4 A Note on the Genus Two Surface

We’ve discussed how skein modules of knot complements serve as modules over

the torus. However, as alluded to at the beginning of this chapter, this is just a special

instance of a more broader phenomenon. For any 3-manifold with boundary, M , the as-

sociated Kauffman bracket skein module, Kq(M), has a natural left module structure over
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the Kauffman bracket skein algebra of its boundary, Kq(∂M). This structure is induced by

the homeomorphism

∂M × [0, 1]
⊔

∂M×{0}∼∂M

M ∼=M.

When viewed as a 3-manifold, the boundary of
(
T 2 \D2

)
× [0, 1] is the genus

two surface. Therefore, this suggests that SHq,t can be makde into a module over some

skein module of the genus 2 surface. In [2], Arthamonov and Shakirov proposed a genus

2 generalization for the A1 spherical DAHA, defined in terms of its action on a particular

space. It turns out that the Kauffman bracket skein algebra of the genus two surface seems

to correspond to this algebra.

Let s ∈ C× and let H2 be the genus 2 handlebody. From now on, we will denote

Σg,n as the genus g surface with n punctures and define Σg := Σg,0. Notice that Ks(T
2 \

D2) ∼= Ks(Σ1,1) as the Kauffman bracket skein algebras is only defined with closed curves.

Definition 5.4.82. A triple, (a, b, c), is called admissible if a, b, c ≥ 0, a + b + c is even,

and |a− b| ≤ c ≤ a+ b.

To define their algebra, Arthamonov and Shakirov use six operators, denoted ÔB12 ,

ÔB13 , ÔB23 , ÔA1 , ÔA2 , and ÔA3 , which correspond to the following six closed curves.

A1 7! B12 7!

A2 7! B23 7!

A3 7! B13 7!

101



Specifically, these operators act on C[x±1
12 , x

±1
13 , x

±1
23 ]

Z/2Z3
, the space of Laurent polynomials

in 3 variables invariant under the (Z/2Z)3-action that simultaneously inverts x12, x13, and

x23. Furthermore, this space has a basis given by a family of Laurent polynomials, denoted

{Ψi,j,k}, where (i, j, k) are admissible triples and Ψ0,0,0 = 1.

Definition 5.4.83. Let (i, j, k) be an admissible triple and a, b ∈ {−1, 1}. The Arthamonov

and Shakirov coefficients are

Ca,b(i, j, k) = ab

[
ai+bj+k

2 , a+b+2
2

]
q,t

[
ai+bj−k

2 , a+b2

]
q,t

[i− 1, 2]q,t[j − 1, 2]q,t[
i, a+3

2

]
q,t

[
i− 1, a+3

2

]
q,t

[
j, b+3

2

]
q,t

[
j − 1, b+3

2

]
q,t

where

[n,m]q,t :=
q

n
2 t

m
2 − q−

n
2 t−

m
2

q
1
2 − q−

1
2

.

Definition 5.4.84. The Arthamonov-Shakirov, genus 2 spherical DAHA is the subalgebra

of the endomorphism ring of C[x±1
12 , x

±1
13 , x

±1
23 ]

Z/2Z3
, generated by ÔA1 , ÔA2 , ÔA3 , ÔB12 ,

ÔB13 , and ÔB23 , where

ÔA1Ψi,j,k =
(
qi/2t1/2 + q−i/2t−1/2

)
Ψi,j,k

ÔA2Ψi,j,k =
(
qj/2t1/2 + q−j/2t−1/2

)
Ψi,j,k

ÔA3Ψi,j,k =
(
qk/2t1/2 + q−k/2t−1/2

)
Ψi,j,k

ÔB12Ψi,j,k =
∑

a,b∈{−1,1}

Ca,b(i, j, k)Ψi+a,j+b,k

ÔB13Ψi,j,k =
∑

a,b∈{−1,1}

Ca,b(i, k, j)Ψi+a,j,k+b

ÔB23Ψi,j,k =
∑

a,b∈{−1,1}

Ca,b(j, k, i)Ψi,j+a,k+b.

See [2] for details.
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In particular, this genus 2 spherical DAHA depends on two parameters, q and t.

Using the action of Ks(Σ1,1) and Ks(Σ0,4) on Ks(H2) and the fact that the action of the

skein algebra of a closed surface on the skein module of a handlebody is faithful [Le21],

Cooke and Samuelson showed the following theorem.

Theorem 5.4.85 (Corollary 5.11 in [17]). The t = q = s4 specialization of the Arthamonov-

Shakirov algebra is isomorphic to the skein algebra Ks(Σ2).

More recently, Arthamonov proved in [1] that the one-parameter deformation, the

Arthamonov-Shakirov algebra, of Kq(Σ2) is flat.

As mentioned at the beginning of this section, there is an inclusion

Σ2 ↪! ∂
(
(T 2 \D2)× [0, 1]

)
which induces a Kq(Σ2)-module structure for SHq,t

∼= Kq(T
2 \D2). Roughly speaking, let

a be a closed curve on the genus of Σ2 that gets glued to the boundary (T 2 \D2)× {1}, b

be a closed curve that lives on the other genus, and let α and β be the respective curves

from the induced map. Then to see how these act on some x1x2 ∈ Kq(T
2 \D2) we get

a · (x1x2) = αx1x2

b · (x1x2) = x1x2β

It’s important to note that the algebra structure from Kq(T
2 \D2) does not carry

over and and this is only a module. Although it respects the algebra’s associativity, a ·

(x1x2) = (a · x1)x2, it is not true that (a · x1)x2 = x1(a · x2).

We can construct this structure a bit more explicitly in the following way. Consider

the graph defined by two loops connected by an arc and embed it into S3 in the following
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way.

↪−!

Call this embedded graph G and consider an open tubular neighborhood of G, N(G).

Notice that N(G) is homeomorphic to the filled in genus two surface and S3 \ N(G) is

homeomorphic to T 2 \D2. Therefore, the boundary of T 2 \D2 is Σ2 and so Kq(T
2 \D2)

is a left Kq(Σ2)-module. However, since one of these genera corresponds to the internal

boundary,
(
T 2 \D2

)
× {0}, the action by any tangle solely living on this “inner genus”

corresponds to right multiplication. This is because any curves or elements in the module

Kq(T
2 \D2) must lie in

(
T 2 \D2

)
× (0, 1), and therefore above this boundary.

7−! 7−!

7−! 7−!

7−!

7−!

You may have noticed that we have replaced B13 with a different curve. This change

corresponds to a different set of generators, but a set of generators nonetheless.

This module structure can alternatively be understood through the following fig-

ure.
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The dashed red line corresponds to the inside boundary,
(
T 2 \D2

)
×{0} (the “core” of our

torus). The blue line will correspond to the outside boundary,
(
T 2 \D2

)
×{1}. The purple

line is the connecting arc that corresponds to the removed disk.

We can factor through the module structure as follows. Take the disjoint union of

two tori with boundary and embed them into the genus two surface. Then, embed the genus

two surface into the boundary of T 2 \D2. These embeddings induce maps on corresponding

Kauffman brackets skein algebras.

⊔
↪! ↪! ∂

 × I


S (T 2 \D2)⊗ S (T 2 \D2) −! S (Σ2) −! S (T 2 \D2)

Let α, β, γ ∈ Kq(T
2 \D2). If we view α and β as each lying on a genus of Σ2, then we have

the left action

(α⊗ β) · γ = αγβ.

Let δ be the loop around the boundary. It is central in Kq(T
2 \ D2) and it’s left module

action on Kq(T
2 \D2) (when viewed on Σ2) can be viewed as left or right multiplication in

Kq(T
2 \D2).

If we attempt to extend this action of Kq(Σ2) to S (T 2 \D2), we quickly run into

a problem. By the same logic, the underlying topological structure suggests that the action
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of δ should correspond to multiplication by a central element. However, this is clearly not

the case as δ is no longer central in S (T 2 \D2).

̸=

Therefore, any module structure here would need to be extended in a different

way. One possible remedy could be to introduce a boundary component to Σ2, and shifting

our focus to S (Σ2 \D2) instead. However, there is currently no reason to believe that this

corresponds to a double affine Hecke algebra.
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Appendix A

Diagrammatic Calculations

Throughout all of these calculation, we use positive integers placed at the bot-

tom of the diagrams to indicate the relative height ordering of the tangle endpoints, where

larger values correspond to lower heights. For each diagram, starting from the leftmost

endpoint moving clockwise with respect to our marked point, we assign these integers to

the endpoints. The integers are read from left to right at the bottom, corresponding to this

clockwise order. For example, X1,0(−,−)X2,0(+,+) =

4 2 3 1

+

− +

− where our heights cor-

respond to
4

2 3

1
. We will also use our previous notation of X̃3,0(µ, ν) corresponding

to the the (1,−1)-tangle with 0 twists and Ỹ3 corresponding to the (1,−1)-curve.
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A.1 Commuting Relation for X1,0(−,−) and X2,0(+,+)

X1,0(−,−)X2,0(+,+) =

4 2 3 1

+

− +

− = q

4 3 2 1

+

− +

−

= q4

3 4 2 1

+

− +

− − q5/2(q2 − q−2)X̃3,0(+,−)

= q7

3 4 1 2

+

− +

− − q11/2(q2 − q−2)

1 2

+

− − q5/2(q2 − q−2)X̃3,0(+,−)

= q10X2,0(+,+)X1,0(−,−)− q17/2(q2 − q−2)

1 2

−
+ − q11/2(q2 − q−2)

1 2

+

−

− q5/2(q2 − q−2)X̃3,0(+,−)

= q10X2,0(+,+)X1,0(−,−)− q17/2(q2 − q−2)
(
q3/2Ỹ3,0 + X̃3,− 1

2
(−,+) + q2X3,0(−,+)

)
− q11/2(q2 − q−2)

(
q−3X̃3,− 1

2
(+,−) + q−3/2Ỹ3,0

)
− q5/2(q2 − q−2)X̃3,0(+,−)

= q10X2,0(+,+)X1,0(−,−)− q7(q2 − q−2)(q3 + q−3)Ỹ3,0 − q5/2(q2 − q−2)X̃3,0(+,−)

− (q2 − q−2)
(
q17/2X̃3,− 1

2
(−,+) + q21/2X3,0(−,+) + q5/2X̃3,− 1

2
(+,−)

)
= q10X2,0(+,+)X1,0(−,−)− q21/2(q2 − q−2)X3,0(−,+)− q5/2(q2 − q−2)X̃3,0(+,−)

− q11/2(q2 − q−2)
(
q3X̃3,− 1

2
(−,+) + q−3X̃3,− 1

2
(+,−)

)
− q7(q2 − q−2)(q3 + q−3)Ỹ3,0

= q10X2,0(+,+)X1,0(−,−)− q13/2(q2 − q−2)
(
q4X3,0(−,+) + q−4X̃3,0(+,−)

)
− q11/2(q2 − q−2)

(
q3X̃3,− 1

2
(−,+) + q−3X̃3,− 1

2
(+,−)

)
− q7(q2 − q−2)(q3 + q−3)Ỹ3,0
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A.2 Image of φE

Following the calculations of φE(y1), we can similarly determine the images of

other tangles as well. In particular, we left-multiply each diagram, α, by the image of an

appropriate monomial from T6
+ under ψE , ensuring that the resulting product is expressed

solely in terms of the images of elements from T6
+. Since the composition of injections yields

the identity map on T6
+, we then left-multiply by the inverse monomial in T 6 to explicitly

find φE(α). Unless stated otherwise, every tangle is assumed to have positive states.

A.2.1 Longitude

ψE (x1x3) y2 = q−1

2 1 2 1

= q−1

2 1 2 1

= q−1

2 1


q

2 1

+ q−1

2 1



= q−1


q

4 2 3 1

+ q−1

4 2 1 3
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= q−1


q2

4 2 3 1

+

4 2 3 1

+ q−1

4 2 1 3



= q−1


q3

2 4 3 1

+ q−1

4 3 2 1

+ q−1

4 2 1 3


⇒ φE (y2) = (x1x3)

−1(x1x3)φE (y2) = (x1x3)
−1φE (ψE(x1x3)y2)

= q3x−1
3 x−1

1 x23 + q−1x−1
3 x−1

1 x4x2 + q−1x−1
3 x−1

1 x21

= qx1x
−1
3 + qx−1

1 x3 + q−1x−1
1 x2x

−1
3 x4.

A.2.2 (1, 1)-Curve

ψE (x4x2x1) y3 =


q−3/2

2 1 2 1 2 1



=


q−3/2

2 1 2 1


2 1

114



=


q3/2

2 1 2 1




q

2 1

+ q−1

2 1



=


q−3/2

2 1




q

2 4 1 3

+ q−1

2 1 4 3



=

q
−3/2

2 1



q
2

2 4 1 3

+

2 4 1 3

+ q−1

2 1 4 3



= q−3/2


q2

4 6 3 2 5 1

+

4 6 2 3 5 1

+ q−1

4 3 6 2 1 5



= q−3/2

q
3

4 6 3 2 5 1

+ q

4 6 3 2 5 1

+

4 6 2 3 5 1

+ q−1

4 3 6 2 1 5



= q−3/2

q
7

2 6 4 1 3 5

+ q2

2 6 4 5 3 1

+ q−1

6 4 2 3 5 1

+ q−1

4 3 6 2 1 5


⇒ φE(y3) = (x4x2x1)

−1(x4x2x1)φE(y3) = (x4x2x1)
−1φE (ψE(x4x2x1)y3)

= q7x−1
1 x−1

2 x−1
4 x2x

2
1 + q2x−1

1 x−1
2 x−1

4 x5x1x3 + q−1x−1
1 x−1

2 x23 + q−1x−1
1 x4

= q−1x1x
−1
4 + q−1x−1

1 x4 + q−1x−1
1 x−1

2 x23 + x−1
2 x3x

−1
4 x5.
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A.2.3 (1,−1)-Tangle

ψE (x3)

2 1

= q−1/2

2 4 1 3

= q1/2

2 4 1 3

+ q−3/2

2 4 1 3

= q3/2

2 1 4 3

+ q−5/2

4 2 1 3

⇒ φE(α) = x−1
3 x3φE(α) = x−1

3 φE (ψE(x3)α)

= q5/2x−1
3 x2x4 + q−3/2x−1

3 x21

= q1/2x2x
−1
3 x4 + q5/2x21x

−1
3

A.2.4 X1, 1
2
(+,+)

ψE(x2x3)

2 1

= q−1


2 1 2 1


2 1

= q−1

2 1 2 1 4 3
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= q−1

2 1


q

2 1 4 3

+ q−1

2 1 4 3



=

4 2 1 3 6 5

+ q−2

2 4 1 3 6 5

=

4 2 1 3 6 5

+ q−1

2 4 1 3 6 5

+ q−3

2 4 1 3 6 5

= q−2

6 2 1 4 3 5

+ q−6

6 4 2 1 3 5

+ q−7

4 2 6 3 1 5

⇒ φE(X1, 1
2
) = (x2x3)

−1(x2x3)φE

(
X1, 1

2

)
= (x2x3)

−1φE

(
ψE(x2x3)X1, 1

2

)
= x−1

3 x−1
2 φE

(
q−2x2x4x5 + q−6x21x5 + q−7x1x3x4

)
= q−1/2x−1

3 x4x5 + q11/2x21x
−1
2 x−1

3 x5 + q1/2x1x
−1
2 x4.
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A.2.5 X3, 1
2
(+,+)

ψE(x2)

2 1

= q−1/2

2 1 4 3

= q1/2

2 1 4 3

+ q−3/2

2 1 4 3

= q−3/2

4 2 1 3

+ q−5/2

2 4 1 3

⇒ x−1
2 x2φE

(
X3, 1

2

)
= x−1

2 φE

(
ψE(x2)X3, 1

2

)
= x−1

2 φE

(
q−3/2x1x5 + q−5/2x3x4

)
= x−1

2

(
q−1/2x1x5 + q−3/2x3x4

)
= q3/2x1x

−1
2 x5 + q−3/2x−1

2 x3x4.
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A.2.6 X1,1(+,+)

ψE(x1x4)

2 1

= q−1

2 1 2 1 4 3

= q−1

2 1


q

2 1 4 3

+ q−1

2 1 4 3



=

4 2 1 3 6 5

+ q−2

2 1 4 3 6 5

= q

4 2 1 3 6 5

+ q−1

4 2 1 3 6 5

+ q−1

2 1 4 3 6 5

+ q−3

2 1 4 3 6 5

= q−3

6 4 2 1 3 5

+ q−6

2 6 4 5 3 1

+ q−8

2 6 4 5 3 1

+ q−7

2 4 6 1 5 3

⇒ φE (X1,1(+,+)) = x−1
4 x−1

1 φE (ψE(x1x4)X1,1)

= q−3/2x−1
4 x−1

1 x4x
2
5 + q−11/2x−1

4 x−1
1 x5φE


2 1


φE


2 1
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+ q−15/2x−1
4 x−1

1 x5φE


2 1


φE


2 1



+ q−13/2x−1
4 x−1

1 x4φE


2 1



2

= q1/2x−1
1 x25

+q−7/2x−1
1 x−1

4 x5
(
q−1/2x−1

3 x4x5 + q11/2x21x
−1
2 x−1

3 x5 + q1/2x1x
−1
2 x4

) (
q1/2x2x

−1
3 x4 + q5/2x21x

−1
3

)
+q−11/2x−1

1 x−1
4 x5

(
q−1/2x−1

3 x4x5 + q11/2x21x
−1
2 x−1

3 x5 + q1/2x1x
−1
2 x4

) (
q3/2x1x

−1
2 x5 + q−3/2x−1

2 x3x4
)

+q−9/2x−1
1

(
q−1/2x−1

3 x4x5 + q11/2x21x
−1
2 x−1

3 x5 + q1/2x1x
−1
2 x4

)2

= q1/2x−1
1 x25 + q−7/2x−1

1 x−1
4 x5

(
x2x

−2
3 x24x5 + q8x21x

−2
3 x4x5 + q4x21x

−2
3 x4x5 + q16

x41x
−1
2 x−2

3 x5 + q3x1x
−1
3 x24 + q9x31x

−1
2 x−1

3 x4
)
+ q−11/2x−1

1 x−1
4 x5

(
q3x1x

−1
2 x−1

3 x4x
2
5 + q−2x−1

2 x24x5

+q13x31x
−2
2 x−1

3 x25 + q6x21x
−2
2 x4x5 + q2x21x

−2
2 x4x5 + q−3x1x

−2
2 x3x

2
4

)
+q−9/2x−1

1

(
q−3x−2

3 x24x
2
5 + q9x21x

−1
2 x−2

3 x4x
2
5 + q2x1x

−1
2 x−1

3 x24x5 + q5x21x
−1
2 x−2

3 x4x
2
5

+q21x41x
−2
2 x−2

3 x25 + q12x31x
−2
2 x−1

3 x4x5 + q−2x1x
−1
2 x−1

3 x24x5 + q8x31x
−2
2 x−1

3 x4x5 + qx21x
−2
2 x24

)
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= q1/2x−1
1 x25 + q−7/2x−1

1 x2x
−2
3 x4x

2
5 +

(
q9/2 + q1/2

)
x1x

−2
3 x25 + q25/2x31x

−1
2 x−2

3 x−1
4 x25

+q−1/2x−1
3 x4x5 + q11/2x21x

−1
2 x−1

3 x5 + q3/2x−1
2 x−1

3 x35 + q−7/2x−1
1 x−1

2 x4x
2
5 + q23/2x21x

−2
2 x−1

3 x−1
4 x35

+
(
q1/2 + q−7/2

)
x1x

−2
2 x25 + q−9/2x−2

2 x3x4x5 + q−15/2x−1
1 x−2

3 x24x
2
5 +

(
q9/2 + q1/2

)
x1x

−1
2 x−2

3 x4x
2
5

+
(
q−5/2 + q−13/2

)
x−1
2 x−1

3 x24x5 + q33/2x31x
−2
2 x−2

3 x25 +
(
q15/2 + q7/2

)
x21x

−2
2 x−1

3 x4x5 + q−3/2x1x
−2
2 x24.

A.2.7 X1,− 1
2

ψE(x4) ·

2 1

= q−1/2

2 1

= q1/2

4 3 2 1

+ q−3/2

4 3 2 1

= q3/2

4 2 3 1

+ q1/2

4 2 1 3

⇒ φE(X1,− 1
2
(+,+)) = x−1

4

(
q5/2x1x2 + q3/2x3x5

)
= q−7/2x1x2x

−1
4 + q−1/2x3x

−1
4 x5
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A.2.8 Boundary Curve

ψE(x1) · ∂ = q−1/2

2 1

= q3/2

2 1

+ q−1/2

2 1

+ q−5/2

2 1

⇒ ψE(∂) = x−1
1

[
q3/2

(
q−7/2x1x2x

−1
4 + q−1/2x3x

−1
4 x5

)
+
(
q−1x2x

−1
3 + q−1x−1

2 x3 + qx21x
−1
3 x−1

4

+q2x1x
−1
2 x−1

4 x5
)
x5 + q−5/2

(
q−1/2x−1

3 x4x5 + q11/2x21x
−1
2 x−1

3 x5 + q1/2x1x
−1
2 x4

)]
= q−2x−1

2 x4 + q−2x2x
−1
4 + qx−1

1 x3x
−1
4 x5 + qx1x

−1
3 x−1

4 x5 + q−3x−1
1 x−1

3 x4x5

+ q3x1x
−1
2 x−1

3 x5 + q−1x−1
1 x2x

−1
3 x5 + q−1x−1

1 x−1
2 x3x5 + q2x−1

2 x−1
4 x25.

A.3 Parallel Tangle

There are various ways to compute the parallel tangle corresponding to x5 with

states µ and ν in S (T 2 \D2).

µ ν

Below, we present three analogous equations corresponding to calculating the parallel

boundary closed curve in Kq(T
2 \ D2), denoted ∂. When computing ∂ in Kq(T

2 \ D2),

one would rewrite Y1Y2Y3 without any crossings and rearrange the terms to obtain an ex-

plicit formula for ∂. The method for our parallel tangle is similar, however, with only two
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points in the resulting tangle touching the marking in the boundary, we have the option to

designate exactly one of the meridian, longitude, or (1, 1)-curve to be a tangle instead (i.e.

we substitute a Xi,k(µ, ν) for one of the Yis) and get a slightly different equality back.

X1,0(µ, ν)Y2Y3 =

2 1

= q

2 1

+ q−1

2 1

= q

2 1

+

2 1

+ q−2

2 1

= q

2 1

+ q

2 1

+ q−1

2 1

+ q−1

2 1

+ q−3

2 1

= qX1(µ, ν)Y1 + qX3(µ, ν)Y3 + q−1Cνµ + q−1

2 1

+q−3X2,1/2(µ, ν)Y2

⇒

2 1

= qX1,0(µ, ν)Y2Y3 − q2X1,0(µ, ν)Y1 − q−2X2, 1
2
(µ, ν)Y2 − q2X3,0(µ, ν)Y3 − Cνµ

123



Y1X2,0(µ, ν)Y3 =

2 1

= q

2 1

+ q−1

2 1

= q2

2 1

+

2 1

− q3

2 1

+ q−2

2 1

= q

2 1

+ q

2 1

+ q−1

2 1

+ q−1

2 1

+ q−3

2 1

⇒

2 1

= qY1X2,0(µ, ν)Y3 − q2X1,− 1
2
(µ, ν)Y1 − q−2X2,0(µ, ν)Y2 − q2X3,0(µ, ν)Y3 − Cνµ
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Y1Y2X3,0(µ, ν) =

2 1

= q

2 1

+ q−1

2 1

= q

2 1

+

2 1

+ q−2

2 1

= q

2 1

+ q

2 1

+ q−1

2 1

+ q−1

2 1

+ q−3

2 1

⇒

2 1

= qY1Y2X3,0(µ, ν)− q2X1,0(µ, ν)Y1 − q−2X2,0(µ, ν)Y2 − q2X3,0(µ, ν)Y3 − Cνµ
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When resolving crossings in these calculations, the process is conducted locally

and away from the boundary. As a result, it is possible to initiate the calculation with

Y1Y2X3,k(µ, ν) (likewise X1,k(µ, ν)Y2Y3 or Y1X2,k(µ, ν)Y3) for any k ∈ 1
2Z and substitute

each stated tangle in the diagrams with k twists (or their relative twists) around the bound-

ary. Since µ ν and Cνµ = µ ν correspond to half twists of each other in

either direction, and their coefficients are identical, interchanging their diagrams during the

calculations does not affect the equations. Therefore, we get slightly more general formulas

for our parallel tangle.

Measuring a half twist by using the different equations forX5(µ, ν) =
µ ν :

X5(µ, ν) = qX1,k(µ, ν)Y2Y3 − q2X1,k(µ, ν)Y1 − q−2X2,k+ 1
2
(µ, ν)Y2 − q2X3,k(µ, ν)Y3 − Cνµ

= qY1X2,k(µ, ν)Y3 − q2X1,k− 1
2
(µ, ν)Y1 − q−2X2,k(µ, ν)Y2 − q2X3,k(µ, ν)Y3 − Cνµ

= qY1Y2X3,k(µ, ν)− q2X1,k(µ, ν)Y1 − q−2X2,k(µ, ν)Y2 − q2X3,k(µ, ν)Y3 − Cνµ

⇒ qY1 (X2,kY3 − Y2X3,k) = q2Y1

(
X1,k− 1

2
−X1,k

)
− q−2Y2

(
X2,k −X2,k+ 1

2

)
(
X1,k −X1,k− 1

2

)
Y1 = q−1 (Y1Y2X3,k − Y1X2,kY3)(

X2,k+ 1
2
−X2,k

)
Y2 = q3 (Y1Y2X3,k −X1,kY2Y3)
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Appendix B

Python Code

B.1 Quantum Commuting Relations

1 ’ ’ ’
2 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
3 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ Program Outl ine & Limi ta t i ons ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
4 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
5 I c r ea ted t h i s program to help c a l c u l a t e many r e l a t i o n s pe r t a i n i ng to my

d i s s e r t a t i o n . You can f i nd more in fo rmat ion about gene ra l s t a t ed ske in
modules/ a l g eb ra s in ” Stated Skein Modules o f Marked 3−Manifo lds / Sur faces ,
A Survey” by Thang Le and Tao Yu. This survey paper i s a v a i l a b l e on arx iv
and on Dr . Le ’ s webs i te : https : // l e t u . math . gatech . edu/Papers /Survey . pdf

6

7 The purpose o f t h i s program i s to he lp c a l c u l a t e the q−commuting r e l a t i o n s o f
n o n t r i v i a l s t a t ed t ang l e s on the once marked torus . This program doesn ’ t
support c a l c u l a t i o n s done with more than one marking and major adjustments
w i l l need to be made i f one would l i k e to do t h i s . I t i s , however ,

t h e o r e t i c a l l y qu i t e doable to use t h i s program on any other s u r f a c e with a
s i n g l e marking with minimal coding adjustments .

8 https : // l e t u . math . gatech . edu/Papers /Survey . pdf
9 The l o g i c o f t h i s program goes as f o l l ow s :

10 − Create a l i s t o f a l l p o s s i b l e s t a t e combinat ions
11 − For each s t a t e combination we run through the below algor i thm us ing he ight

exchange r e l a t i o n s and keep track o f the commuting c o s t s
12 − Using sympy va r i ab l e s , each time we perform a he ight exchange we

sub s t i t u t e the exchange co s t i n to that va r i ab l e
13 − Fina l ly , t e l l the user what the equa l i t y comes out to
14 We keep track o f a l l the nece s sa ry in fo rmat ion throughout the proce s s us ing

object−o r i en t ed programming by us ing the endpoints as d i c t i onary−type
a t t r i b u t e s .

15

16 Note that t h i s i s not a complete c a l c u l a t i o n as there are s e v e r a l d i f f e r e n t
v a r i a b l e s that can appear ( in p a r t i c u l a r from exchange r e l a t i o n s from bad
arc s t a t e s ) that are d i f f i c u l t f o r a computer to program without
implementing an ex c e s s i v e number o f edge ca s e s and s p e c i f i c i t y , o f our
mani fo ld . We in s t ead i n s e r t new va r i a b l e s to r ep l a c e these p i c t u r e s and
a l low the user to f i g u r e them out by hand . Assuming that the user wants to
use t h i s program in the f i r s t p lace more than l i k e l y imp l i e s that the re

are enough c a l c u l a t i o n s that need to be found to where t h i s program w i l l
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s t i l l save s i g n i f i c a n t time f o r the user . By r ep l a c i n g these edge ca s e s
with new va r i ab l e s , we ’ re ab le to in co rpo ra t e more g e n e r a l i t y in to t h i s
program so that i t can be used in other ca s e s . This means that the program
i s merely an aid to f i nd i n g these r e l a t i o n s and does not complete ly

compute the commuting r e l a t i o n s .
17 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
18 ’ ’ ’
19

20 import i t e r t o o l s
21 from sympy import ∗
22

23 ’ ’ ’
24 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ Program Var iab l e s ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
25 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ Edit The Fol lowing Parameters I f Needed ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
26 This order l i s t t e l l s us the order o f which we perform our he ight exchange

r e l a t i o n s
27 The order o f each pa i r i n g he lps us i d e n t i f y the r e l a t i v e p o s i t i o n s o f

endpoints . For example , # [ 2 , 3 ] t e l l s us that in the p i c ture , the th i rd
endpoint ( the one in f r on t ) i s l o c a l l y to the r i g h t o f the second where as
[ 3 , 2 ] would t e l l us the th i rd endpoint i s l o c a l l y to the l e f t . # Here

when I say l o c a l I mean l o c a l and canon i ca l .
28 \ /
29 [ 2 , 3 ] −−> \ /
30 2 ‘/ 3
31 The only parameters you should need to ed i t here are the the o rde r s o f the

e lements with in the inner−most l i s t s (NOT the order o f the l i s t s
themse lves ) .

32

33 Example : We want to see how a ‘ boundary−pa r a l l e l ‘ t ang l e and a ‘ meridian ‘
t ang l e commute . Then the he ight swaps should correspond to a middle−l e f t −
r i ght−middle swap :

34

35 1 2 3 4 −−−> 1 3 2 4 −−−> 3 1 2 4 −−−> 3 1 4 2 −−−> 3 4 1 2
36 (32) (21) (34) (23)
37 ( l e f t po s i t i on , r i g h t p o s i t i o n )
38 A po s s i b l e c a l c u l a t i o n order l i s t could be :
39 c a l cu l a t i onOrde rL i s t = [ [ 3 , 2 ] , [ 2 , 1 ] , [ 3 , 4 ] , [ 2 , 3 ] ]
40

41 Below i s a more v i s u a l i n t e r p r e t a t i o n o f what ’ s happening in t h i s
example . The ho r i z on t a l dashed l i n e corresponds to the marking and we ’ re
l ook ing at i t from a s i d e p e r sp e c t i v e . The v e r t i c a l l i n e s correspond to
the ends o f the t ang l e s and the numbered l a b e l i n g s at the bottom keeps
t rack o f them as they move past each other throughout the a lgor i thm . Above
the f i r s t v e r t i c a l l i n e are the l a b e l s correspond to the l o c a l

r e l a t i o n s h i p s o f each endpoint to each other ( as exp la ined above ) . The
l a b e l s LL , L , R, RR correspond to l e f tmost , middle l e f t , middle r i ght , and
r ightmost r e s p e c t i v e l y .

42 L R LL RR
43 | | | | | | | | | | | | | | | |
44 | | | | | | | | | | | | | | | |
45 −−−−−−−−−−−−−−−> −−−−−−−−−−−−−−−> −−−−−−−−−−−−−−−> −−−−−−−−−−−−−−−>
46 1 2 3 4 1 3 2 4 3 1 2 4 3 1 4 2
47

48 In the case o f the once marked torus , you should always be ab le to get every
commutation r e l a t i o n us ing only 4 swaps . In pa r t i c u l a r , we should always
be us ing an order l i s t cor re spond ing to middle−l e f t −r i ght−middle (MLRM)
Therefore , the only parameters you should ever need to ed i t in ‘
c a l cu l a t i onOrde rL i s t ‘ should only be the o rde r s o f the e lements with in the
inner−most l i s t s and NOT the order o f the l i s t s themse lves nor the

e n t r i e s .
49 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
50 ’ ’ ’
51 c a l cu l a t i onOrde rL i s t = [ [ 3 , 2 ] , [ 1 , 2 ] , [ 3 , 4 ] , [ 2 , 3 ] ]
52

53 # ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ Do Not Edit Below ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
54

55 # Symbol d e c l a r a i on s

128



56 g l oba l q
57 q = Symbol ( ’ q ’ , commutative=True )
58 x = Symbol ( ’ x ’ , commutative=False )# x w i l l be our p i c tu r e
59 ’ ’ ’
60 a , b , c , d are add i t i o na l symbols r ep r e s en t i ng o c c a s i o n a l l y a r i s i n g p i c t u r e s with

only two s ta t e s , which appear in bad arc s t a t e exchange r e l a t i o n s .
Depending where the s t a t e s we ’ re l ook ing at are located , we can have up to
6 d i f f e r e n t v a r i a t i o n s and so the two numbers appended onto these

va r i a b l e names help us d i s t i n g u i s h which va r i a t i o n we ’ re dea l i ng with .
61

62 Assuming we ’ re dea l i ng with the MLRM order l i s t , should only need x12 , x34 ,
x14 . Note that s i n c e t h i s a lgor i thm swaps the middle twice , x14 has two
d i f f e r e n t v a r i a t i o n s that can appear . Fee l f r e e to add an add i t i ona l
v a r i a b l e to d i s t i n g u i s h between the two i f you ’d l i k e . I did not r e a l l y
need i t so I didn ’ t add one . Lucki ly , we only need ha l f o f them us ing t h i s
a lgor i thm .

63 ’ ’ ’
64 # a −−> s t a t e s == (+ , +)
65 a12 l = Symbol ( ’ a 12 l ’ , commutative=Fal se )# (∗ , ∗ , −, −)
66 a14 l = Symbol ( ’ a 14 l ’ , commutative=Fal se )# (∗ , −, −, ∗)
67 a34 l = Symbol ( ’ a 34 l ’ , commutative=Fal se )# (− , −, ∗ , ∗)
68 a12 r = Symbol ( ’ a12 r ’ , commutative=False )# (∗ , ∗ , −, −)
69 a14 r = Symbol ( ’ a14 r ’ , commutative=False )# (∗ , −, −, ∗)
70 a14 r = Symbol ( ’ a14 r ’ , commutative=False )# (∗ , −, −, ∗)
71 a34 r = Symbol ( ’ a34 r ’ , commutative=False )# (− , −, ∗ , ∗)
72 # b −−> s t a t e s == (+ , −)
73 b12 l = Symbol ( ’ b12 l ’ , commutative=False )# (∗ , ∗ , −, −)
74 b14 l = Symbol ( ’ b14 l ’ , commutative=False )# (∗ , −, −, ∗)
75 b34 l = Symbol ( ’ b34 l ’ , commutative=False )# (− , −, ∗ , ∗)
76 b12 r = Symbol ( ’ b12 r ’ , commutative=False )# (∗ , ∗ , −, −)
77 b14 r = Symbol ( ’ b14 r ’ , commutative=False )# (∗ , −, −, ∗)
78 b14 r = Symbol ( ’ b14 r ’ , commutative=False )# (∗ , −, −, ∗)
79 b34 r = Symbol ( ’ b34 r ’ , commutative=False )# (− , −, ∗ , ∗)
80 # c −−> s t a t e s == (− , +)
81 c 1 2 l = Symbol ( ’ c 1 2 l ’ , commutative=False )# (∗ , ∗ , −, −)
82 c 1 4 l = Symbol ( ’ c 1 4 l ’ , commutative=False )# (∗ , −, −, ∗)
83 c 3 4 l = Symbol ( ’ c 3 4 l ’ , commutative=False )# (− , −, ∗ , ∗)
84 c12 r = Symbol ( ’ c 12 r ’ , commutative=False )# (∗ , ∗ , −, −)
85 c14 r = Symbol ( ’ c 14 r ’ , commutative=False )# (∗ , −, −, ∗)
86 c14 r = Symbol ( ’ c 14 r ’ , commutative=False )# (∗ , −, −, ∗)
87 c34 r = Symbol ( ’ c 34 r ’ , commutative=False )# (− , −, ∗ , ∗)
88 # d −−> s t a t e s == (− , −)
89 d12 l = Symbol ( ’ d12 l ’ , commutative=False )# (∗ , ∗ , −, −)
90 d14 l = Symbol ( ’ d14 l ’ , commutative=False )# (∗ , −, −, ∗)
91 d34 l = Symbol ( ’ d34 l ’ , commutative=False )# (− , −, ∗ , ∗)
92 d12 r = Symbol ( ’ d12 r ’ , commutative=False )# (∗ , ∗ , −, −)
93 d14 r = Symbol ( ’ d14 r ’ , commutative=False )# (∗ , −, −, ∗)
94 d14 r = Symbol ( ’ d14 r ’ , commutative=False )# (∗ , −, −, ∗)
95 d34 r = Symbol ( ’ d34 r ’ , commutative=False )# (− , −, ∗ , ∗)
96

97 # This d i c t i ona ry i s used only in the ‘ findRepSym ‘ func t i on
98 addi t iona lSymbolDictLe f tFront = {
99 ( ( ’+ ’ , ’+ ’ ) , 1 , 2) : a12 l ,

100 ( ( ’+ ’ , ’+ ’ ) , 1 , 4) : a14 l ,
101 ( ( ’+ ’ , ’+ ’ ) , 3 , 4) : a34 l ,
102 ( ( ’+ ’ , ’− ’ ) , 1 , 2) : b12 l ,
103 ( ( ’+ ’ , ’− ’ ) , 1 , 4) : b14 l ,
104 ( ( ’+ ’ , ’− ’ ) , 3 , 4) : b34 l ,
105 ( ( ’− ’ , ’+ ’ ) , 1 , 2) : c12 l ,
106 ( ( ’− ’ , ’+ ’ ) , 1 , 4) : c14 l ,
107 ( ( ’− ’ , ’+ ’ ) , 3 , 4) : c34 l ,
108 ( ( ’− ’ , ’− ’ ) , 1 , 2) : d12 l ,
109 ( ( ’− ’ , ’− ’ ) , 1 , 4) : d14 l ,
110 ( ( ’− ’ , ’− ’ ) , 3 , 4) : d34 l ,
111 }
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112

113 addit ionalSymbolDictRightFront = {
114 ( ( ’+ ’ , ’+ ’ ) , 1 , 2) : a12 r ,
115 ( ( ’+ ’ , ’+ ’ ) , 1 , 4) : a14 r ,
116 ( ( ’+ ’ , ’+ ’ ) , 3 , 4) : a34 r ,
117 ( ( ’+ ’ , ’− ’ ) , 1 , 2) : b12 r ,
118 ( ( ’+ ’ , ’− ’ ) , 1 , 4) : b14 r ,
119 ( ( ’+ ’ , ’− ’ ) , 3 , 4) : b34 r ,
120 ( ( ’− ’ , ’+ ’ ) , 1 , 2) : c12 r ,
121 ( ( ’− ’ , ’+ ’ ) , 1 , 4) : c14 r ,
122 ( ( ’− ’ , ’+ ’ ) , 3 , 4) : c34 r ,
123 ( ( ’− ’ , ’− ’ ) , 1 , 2) : d12 r ,
124 ( ( ’− ’ , ’− ’ ) , 1 , 4) : d14 r ,
125 ( ( ’− ’ , ’− ’ ) , 3 , 4) : d34 r ,
126 }
127

128

129

130 c l a s s statedEndpoint ( ob j e c t ) :
131 de f i n i t ( s e l f , i n i t i a lDa t a ) :
132 # Create keys f o r our statedEndpoint d i c t i o n a r i e s to make c a l l i n g t h e i r

va lue s e a s i e r
133 f o r key in i n i t i a lDa t a :
134 s e t a t t r ( s e l f , key , i n i t i a lDa t a [ key ] )
135

136 c l a s s statedProduct ( ob j e c t ) :
137 ’ ’ ’
138 Each endpoint o f each f a c t o r in our product has a tag i d e n t i f y i n g i t s

s t a r t i n g po s i t i o n and a value corre spond ing to i t s s t a t e . The cur rent
p o s i t i o n o f each endpoint w i l l be changed throughout the program by
swapping i t s cor re spond ing a t t r i b u t e data . This data s t r u c tu r e has been
con f i gu r ed t h i s way to help with dynamic a c c e s s throughout the a lgor i thm .

139

140 I t i s p o s s i b l e to in s t ead c r ea t e another a t t r i b u t e cor re spond ing to i t s
p o s i t i o n as that ’ s debatably c l e an e r organ i za t i on , however , a c c e s s to the
po s i t i o n seems to get a b i t more compl icated due to how dynamic we need
i t s cur rent p o s i t i o n to be . Using the ‘ swapAttr ‘ f unc t i on when needed
in s t ead seemed l i k e the e a s i e s t workaround .

141 ’ ’ ’
142 de f i n i t ( s e l f , s t a r t S t a t e s ) :
143 # SEP == sta t ed endpoint
144 s e l f . SEP1 = statedEndpoint ({ ” i d e n t i f i e r ” : ”Factor 1 Le f t ” , ” s t a t e ” :

s t a r t S t a t e s [ 0 ] [ 0 ] } )
145 s e l f . SEP2 = statedEndpoint ({ ” i d e n t i f i e r ” : ”Factor 1 Right” , ” s t a t e ” :

s t a r t S t a t e s [ 0 ] [ 1 ] } )
146 s e l f . SEP3 = statedEndpoint ({ ” i d e n t i f i e r ” : ”Factor 2 Le f t ” , ” s t a t e ” :

s t a r t S t a t e s [ 1 ] [ 0 ] } )
147 s e l f . SEP4 = statedEndpoint ({ ” i d e n t i f i e r ” : ”Factor 2 Right” , ” s t a t e ” :

s t a r t S t a t e s [ 1 ] [ 1 ] } )
148 s e l f . expr = x
149

150 de f findSEPAttr ( s e l f , num) :
151 ’ ’ ’
152 Use t h i s func t i on when you want to dynamical ly use one o f the SEP

a t t r i b u t e s . This f unc t i on s takes in an in t ege r , n in {1 ,2 ,3 ,4} , and
r e tu rn s that cor re spond ing s e l f . SEPn ‘ a t t r i b u t e / ob j e c t us ing a d i c t i ona ry
in a switch−case manner .

153 ’ ’ ’
154 sw i t che r = {
155 1 : s e l f . SEP1 ,
156 2 : s e l f . SEP2 ,
157 3 : s e l f . SEP3 ,
158 4 : s e l f . SEP4
159 }
160 re turn sw i t che r . get (num)
161
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162 de f pr intCurrentStatus ( s e l f ) :
163 # This func t i on p r i n t s the cur rent a t t r i b u t e / endpoint in fo rmat ion / s t a tu s

to the user
164 pr in t ( ” Pos i t i on 1 \ tID : ” + s e l f . SEP1 . i d e n t i f i e r + ”\ tS ta t e : ” + s e l f . SEP1

. s t a t e )
165 pr in t ( ” Pos i t i on 2 \ tID : ” + s e l f . SEP2 . i d e n t i f i e r + ”\ tS ta t e : ” + s e l f . SEP2

. s t a t e )
166 pr in t ( ” Pos i t i on 3 \ tID : ” + s e l f . SEP3 . i d e n t i f i e r + ”\ tS ta t e : ” + s e l f . SEP3

. s t a t e )
167 pr in t ( ” Pos i t i on 4 \ tID : ” + s e l f . SEP4 . i d e n t i f i e r + ”\ tS ta t e : ” + s e l f . SEP4

. s t a t e + ”\n” )
168

169 de f swapAttr ( s e l f , pos1 , pos2 ) :
170 # This func t i on swaps two o f the SEP a t t r i b u t e s / ob j e c t s
171 tempAttr = g e t a t t r ( s e l f , ’SEP%d ’ % pos1 )
172 s e t a t t r ( s e l f , ’SEP%d ’ % pos1 , g e t a t t r ( s e l f , ’SEP%d ’ % pos2 ) )
173 s e t a t t r ( s e l f , ’SEP%d ’ % pos2 , tempAttr )
174 de l tempAttr
175 # Returns the complement endpoints that weren ’ t swapped f o r p o s s i b l e bad

arc r e l a t i o n s
176 re turn l i s t ( s e t ( [ 1 , 2 , 3 , 4 ] ) − s e t ( [ pos1 , pos2 ] ) )
177

178 de f findRepSym ( s e l f , complementStates , l e f tF ron tBoo l ) :
179 ’ ’ ’
180 When we must swap he i gh t s o f endpoints with bad arc s ta t e s , an add i t i o na l

term appears , which p i c t o r i a l l y has the two endpoints connected toge the r
ra the r than l y i ng on themarking . The func t i on i d e n t i f i e s which new term
must be added based on the l e f t o v e r s t a t e va lue s and where these s t a t e s
are located , ‘ complementStates ‘ , with r e sp e c t to our p i c tu r e va r i a b l e ‘ x ‘ .
Although t h i s add i t i ona l term can only have 4 p o s s i b l e s t a t e s , the re are

6 = (4 choose 2) va r i an t s per combination o f s t a t e s a long with an
add i t i o na l v a r i a t i o n depending on which endpoint i s l o c a l l y in f r on t ( x2 )
=> up to 48 p o s s i b l e v a r i a t i o n s . Rather than having a bunch o f messy
nested i f statements , we in s t ead use the two d i c t i o n a r i e s ‘
addit iona lSymbolDictLef tFront ‘ and ‘ addit ionalSymbolDictRightFront ‘ , which
i s l o ca t ed out s id e o f any loops and func t i on s f o r memory e f f i c i e n c y .

181 ’ ’ ’
182 i f l e f tF ron tBoo l :
183 re turn addi t iona lSymbolDictLe f tFront . get ( ( ( s e l f . f indSEPAttr (

complementStates [ 0 ] ) . s ta te , s e l f . f indSEPAttr ( complementStates [ 1 ] ) . s t a t e ) ,
complementStates [ 0 ] , complementStates [ 1 ] ) )

184 re turn addit ionalSymbolDictRightFront . get ( ( ( s e l f . f indSEPAttr (
complementStates [ 0 ] ) . s ta te , s e l f . f indSEPAttr ( complementStates [ 1 ] ) . s t a t e ) ,
complementStates [ 0 ] , complementStates [ 1 ] ) )

185

186 de f swapHeights ( s e l f , endpointLeft , endpointRight ) :
187 l e f tEndpo in t = s e l f . f indSEPAttr ( endpo intLe f t )
188 r ightEndpoint = s e l f . f indSEPAttr ( endpointRight )
189 # Is the l e f t endpoint in f r on t o f the r i g h t endpoint ?
190 l e f tF ron tBoo l = False i f endpo intLe f t < endpointRight e l s e True
191 # Find the q−c o e f f i c i e n t co s t o f swapping and whether or not t h i s i s a bad

arc s t a t e
192 qConst , badArc = s e l f . s tateExchangeCoef f ( l e f tEndpo in t . s ta te , r ightEndpoint

. s ta te , l e f tF ron tBoo l )
193 # Swap the endpoint a t t r i b u t e s and return complement endpoints f o r

p o s s i b l e bad arc s t a t e
194 complementStates = s e l f . swapAttr ( endpointLeft , endpointRight )
195 # I f a bad arc s t a t e i s found then we need to add a summand to our

exp r e s s i on
196 i f badArc :
197 summand = q∗∗(−3/2) ∗( q∗∗2 − q∗∗−2)∗ s e l f . findRepSym ( complementStates ,

l e f tF ron tBoo l ) i f qConst == q∗∗−3 e l s e −q ∗∗(3/2) ∗( q∗∗2 − q∗∗−2)∗ s e l f .
findRepSym ( complementStates , l e f tF ron tBoo l )

198 e l s e :
199 summand = 0
200 # Subs t i tu t e updated he ight and co s t s i n to our exp r e s s i on
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201 s e l f . expr = s e l f . expr . subs (x , qConst∗x + summand)
202

203 de f stateExchangeCoef f ( s e l f , s t a t eLe f t , s tateRight , l e f tF ron tBoo l ) :
204 # Does t h i s s t a t e pa i r c o r r e l a t e to a bad arc ? (+,−)
205 badArc = True i f ( s t a t eL e f t == ”+” and s ta teRight == ”−” ) e l s e Fa l se
206 # Find the q−c o e f f i c i e n t based on the s t a t e s
207 i f s t a t eL e f t == stateRight :
208 qConst = q∗∗−1 i f l e f tF ron tBoo l e l s e q
209 e l i f ( s t a t eLe f t , s ta t eR ight ) == ( ’− ’ , ’+ ’ ) :
210 qConst = q i f l e f tF ron tBoo l e l s e q∗∗−1
211 e l i f ( s t a t eLe f t , s ta t eR ight ) == ( ’+’ , ’− ’ ) :
212 qConst = q∗∗−3 i f l e f tF ron tBoo l e l s e q∗∗3
213 e l s e :
214 pr in t ( ”Error : Unknown s t a t e arguments in func t i on ‘ stateExchangeCoef f ‘ . ”

,
215 ”Arguments r e c e i v ed : s t a t eL e f t = ’ ” + s t r ( s t a t eL e f t ) + ” ’ , s ta t eR ight

= ’ ” + s t r ( s ta teR ight ) + ” ’ . ” )
216 pr in t ( ” Please use known s t a t e s only ! ” )
217 qu i t ( )
218 re turn qConst , badArc
219

220 de f calcCommutingRelation ( s e l f , o r d e rL i s t ) :
221 f o r myList in o rd e rL i s t :
222 s e l f . swapHeights (myList [ 0 ] , myList [ 1 ] )
223 re turn s e l f . expr
224

225

226

227

228

229 # Creates a nested tuple , ‘ productStateTuple ‘ , o f a l l 16 p o s s i b l e s t a t e s
230 po s s i b l e S t a t e s = [ ”+” , ”−” ]
231 s tateTuple = l i s t ( i t e r t o o l s . product ( po s s i b l e S t a t e s , p o s s i b l e S t a t e s ) )
232 productStateTuple = l i s t ( i t e r t o o l s . product ( stateTuple , s tateTuple ) )
233

234

235 f o r s ta te sTup le in productStateTuple :
236 myProd = statedProduct ( s ta te sTup le )
237 myProd . calcCommutingRelation ( c a l c u l a t i onOrde rL i s t )
238 pr in t ( ”x1 ( ” + s t r ( s ta te sTup le [ 1 ] [ 0 ] ) + ” , ” + s t r ( s ta te sTup le [ 1 ] [ 1 ] ) + ” ) ∗x2 (

” + s t r ( s ta te sTup le [ 0 ] [ 0 ] ) + ” , ” + s t r ( s ta te sTup le [ 0 ] [ 1 ] ) + ” ) = ” + s t r (
sympify ( expand (myProd . expr ) ) ) )

239

240 ’ ’ ’
241 Since a∗b i s de f ined as a on top o f b and s t a t e s area read from l e f t to r i g h t

( r i g h t on top ) , we swap a and b at the end pr in t statement and keep th ing s
a l i gned throughout the c a l c u l a t i o n s .

242 −− a [ 0 ] −− a [ 1 ] −− b [ 0 ] −− b [ 1 ] −−>
243 ’ ’ ’

code/qCommRel DissVer.py

B.2 Quantum 6-Torus Operators

1 from sympy import ∗
2

3 de f qBracket ( a , b , normal ized=False , operator Input=None ) :
4 ’ ’ ’
5 This func t i on takes in ‘ sympy ‘ elements , ‘ a ‘ and ‘b ‘ , and r e tu rn s t h e i r

cor re spond ing quantum bracket : qab − qˆ(−1)ba . I f ‘ a ‘ and ‘b ‘ are
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ope ra to r s ac t ing on ’ f ’ , then we r equ i r e an input f o r the operator as wel l
, ‘ operatorInput ‘ , and need to t r e a t the arguments as f unc t i on s to a l low
f o r the ope ra to r s to act in the proper order . We a l s o a l low f o r bracket
normal i zat ion , i . e . d i v id e by q ˆ(2) − qˆ(−2) , i f d e s i r ed .

6 Example o f c a l l i n g t h i s func t i on :
7 exp r e s s i on = lambda f : qBracket ( y1 , y2 , normal ized=True , operator Input=f )
8 ’ ’ ’
9 myExpr = q ∗ a (b( operator Input ) ) − q∗∗(−1) ∗ b( a ( operator Input ) ) i f

operator Input e l s e q∗a∗b − q∗∗−1∗b∗a
10 i f normal ized :
11 myExpr = myExpr∗( q∗∗2 − q∗∗−2)∗∗−1
12 re turn myExpr
13

14 # Def ine v a r i a b l e s
15 x , y , z , w, q = symbols ( ’ x y z w q ’ )
16

17 # Def ine a commutative mu l t i v a r i ab l e polynomial
18 f = Function ( ’ f ’ ) (x , y , z , w)
19

20 # Def ine quantum opera to r s
21 x1 = lambda f : x ∗ f . subs ({x : x , y : q ∗ y , z : q ∗ z , w: q∗∗−1 ∗ w})
22 x2 = lambda f : y ∗ f . subs ({x : q∗∗−1 ∗ x , y : y , z : q∗∗−1 ∗ z , w: q∗∗−2 ∗ w})
23 x3 = lambda f : z ∗ f . subs ({x : q∗∗−1 ∗ x , y : q ∗ y , z : z , w: q∗∗−1 ∗ w})
24 x4 = lambda f : w ∗ f . subs ({x : q ∗ x , y : q∗∗2 ∗ y , z : q ∗ z , w: w})
25 x5 = lambda f : f
26 x6 = lambda f : f . subs ({x : q∗∗4 ∗ x , y : q∗∗4 ∗ y , z : q∗∗4 ∗ z , w: q∗∗4 ∗ w})
27 x1inv = lambda f : x∗∗−1 ∗ f . subs ({x : x , y : q∗∗−1 ∗ y , z : q∗∗−1 ∗ z , w: q ∗ w})
28 x2inv = lambda f : y∗∗−1 ∗ f . subs ({x : q ∗ x , y : y , z : q ∗ z , w: q∗∗2 ∗ w})
29 x3inv = lambda f : z∗∗−1 ∗ f . subs ({x : q ∗ x , y : q∗∗−1 ∗ y , z : z , w: q ∗ w})
30 x4inv = lambda f : w∗∗−1 ∗ f . subs ({x : q∗∗−1 ∗ x , y : q∗∗−2 ∗ y , z : q∗∗−1 ∗ z , w:

w})
31 x5inv = lambda f : f
32 x6inv = lambda f : f . subs ({x : q∗∗−4 ∗ x , y : q∗∗−4 ∗ y , z : q∗∗−4 ∗ z , w: q∗∗−4 ∗

w})
33 # Meridian , Longitude , and (1 , 1 )−Curve
34 y1 = lambda f : y∗z∗∗−1∗ f . subs ({x : x , y : q∗∗−1∗y , z : q∗∗−1∗z , w: q∗∗−1∗w}) + y

∗∗−1∗z∗ f . subs ({x : x , y : q∗y , z : q∗z , w: q∗w}) + x∗∗2∗ z∗∗−1∗w∗∗−1∗ f . subs ({x
: x , y : q∗∗−1∗y , z : q∗z , w: q∗∗−1∗w}) + x∗y∗∗−1∗w∗∗−1∗ f . subs ({x : x , y : q
∗∗−1∗y , z : q∗z , w: q∗w})

35 y2 = lambda f : x∗z∗∗−1∗ f . subs ({x : q∗x , y : y , z : q∗z , w: w}) + x∗∗−1∗z∗ f . subs ({
x : q∗∗−1∗x , y : y , z : q∗∗−1∗z , w: w}) + x∗∗−1∗y∗z∗∗−1∗w∗ f . subs ({x : q∗x , y :
y , z : q∗∗−1∗z , w: w})

36 y3 = lambda f : x∗w∗∗−1∗ f . subs ({x : q∗∗−1∗x , y : q∗∗−1∗y , z : z , w: q∗∗−1∗w}) + x
∗∗−1∗w∗ f . subs ({x : q∗x , y : q∗y , z : z , w: q∗w}) + x∗∗−1∗y∗∗−1∗z ∗∗2∗ f . subs ({x
: q∗∗−1∗x , y : q∗y , z : z , w: q∗w}) + y∗∗−1∗z∗w∗∗−1∗ f . subs ({x : q∗∗−1∗x , y : q
∗∗−1∗y , z : z , w: q∗w})

37 # Centra l \ p a r t i a l = qˆ2∗y1∗y2∗y3 − qˆ2∗y1ˆ2 − qˆ−2∗y2ˆ2 − qˆ2∗y3ˆ2 + qˆ2 + q
ˆ−2

38 dee = lambda f : q∗y1 ( y2 ( y3 ( f ) ) ) − q∗∗2∗y1 ( y1 ( f ) ) − q∗∗−2∗y2 ( y2 ( f ) ) − q∗∗2∗y3 (
y3 ( f ) ) + q∗∗2∗ f + q∗∗−2∗ f

code/T6Operators DissVer.py
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