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ABSTRACT

INTRODUCTION 

Poor diet quality is a risk factor for type 2 diabetes and cardiovascular disease. However, 

knowledge of metabolites marking adherence to Dietary Guidelines for Americans (2015 

version; DGA-15) are limited. The goal was to determine a pattern of metabolites associated 

with the Healthy Eating Index-2015 (HEI-2015), which measures adherence to the DGA.

METHODS

The analysis examined 3557 adult men and women from the longitudinal cohort Multi-Ethnic 

Study of Atherosclerosis (MESA), without known cardiovascular disease and with complete 

dietary data. Fasting serum specimens, diet and demographic questionnaires were assessed at 

baseline. Untargeted 1H NMR 1DNMR spectroscopy (600 MHz) was used to generate 

metabolomics and lipidomics. A metabolome-wide association study (MWAS) specified each 

spectral feature as outcomes, HEI-2015 score as predictor, adjusting for age, gender, race, and 

study site in linear regression analyses. Subsequently, hierarchical clustering defined discrete 

groups of correlated NMR features associated with named metabolites and linear regression 

analysis assessed for associations with HEI-2015 total and component scores. 

RESULTS

The sample included 50% women with average age of 63 years, with 40% identifying as White, 

23% Black, 24% Hispanic and 13% Chinese American. The average HEI-2015 score was 66. 

MWAS identified 179 spectral features significantly associated with HEI-2015 score. Cluster 

analysis identified seven clusters representing 4 metabolites; HEI-2015 score was significantly 

associated with all. HEI-2015 score was associated with proline betaine (ß 0.12 [0.02]; p=4.70 E-

13) and was inversely related to proline (ß -0.13 [0.02]; p=4.45 E-14), 1,5 anhydrosorbitol (ß -
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0.08 [0.02]; p=4.37 E-07)  and unsaturated fatty acyl chains (ß 0.08 [0.02]; p=8.98 E-07). Intake 

of total fruit, whole grains and seafood and plant proteins was associated with proline betaine.

CONCLUSIONS

Diet quality was significantly associated with unsaturated fatty acyl chains, proline betaine, 

proline. Further analysis may clarify the link between diet quality, metabolites, and pathogenesis 

of cardiometabolic disease.
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INTRODUCTION

Poor diet quality is independently associated with incidence of cardiovascular disease [1, 

2], cancer[3] and type 2 diabetes (T2D). [4-6] The Healthy Eating Index 2015 (HEI-2015) is a 

measure of diet quality reflecting adherence to the Dietary Guidelines for Americans 2015-2020 

(DGA 2015-2020.[7] The DGA 2015-2020 represents dietary guidance jointly published by the 

US Department of Agriculture and the US Department of Health and Human Services every five 

years, reflecting recommendations for ideal intake by the US Government. An important update 

to the HEI-2015 from earlier versions is a recommendation to limit intakes of both Added Sugars

and Saturated Fats to <10% of energy. 

The identification of small molecules, called metabolites, present in serum, urine or 

tissue, may help to shed light on the phenotypic links between habitual diet quality and disease. 

Diet quality is a complex, long-term exposure, likely affects multiple metabolic processes 

simultaneously, and habitual diet intake may produce a stable metabolic environment that is 

linked with risk for disease. Prior assessments of the HEI-2015 score and associated metabolites 

have been limited to targeted or commonly annotated metabolites, which may not capture the full

metabolome representing consumption of a higher quality diet.[8] Previous work has also 

demonstrated that there may be stronger links between diet-associated circulating metabolites 

and disease than the original association between diet quality and disease outcomes.[9-11] A 

deeper assessment using NMR-based spectral features may allow for a more nuanced assessment

of diet quality, which may support future assessment of diet quality and association with disease.

The objective of this investigation was to determine a pattern of metabolites associated 

with habitual diet quality as represented by the HEI-2015 and its components. This analysis 
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profiled serum untargeted NMR-based metabolomics to gain insight into metabolic features 

associated with high diet quality.

METHODS

Participants

We included 3557 adult men and women, determined through self-reported gender, from 

the Multi-Ethnic Study of Atherosclerosis (MESA) longitudinal cohort study without known 

cardiovascular disease at enrollment visit and with stored serum samples with available NMR-

based COMBInatorial BIOmarkers for subclinical atherosclerosis[12] (COMBI-Bio) 

metabolomic profiling data available for analysis. MESA is a U.S.-based prospective cohort 

study of 6814 participants between the ages of 45 to 84 years recruited at six sites (Baltimore 

City and County, Maryland; Chicago, Illinois; Forsyth County, North Carolina; New York, New 

York; Los Angeles County, California; and St. Paul, Minnesota), designed to investigate the 

development and progression of subclinical atherosclerotic disease. Participants were enrolled 

between 2000-2002,[13] did not have cardiovascular disease at baseline and were purposively 

recruited from four race/ethnicity categories (Black, White, Chinese-American and Hispanic). 

Institutional review board approval was obtained at all participating centers, and all participants 

gave informed consent. 

We included 3663 participants with available metabolomics data from the baseline 

examination. We further excluded 106 with implausible caloric intake (<600 kcal/day or >6000 

kcal/day, in concordance with prior MESA publications[2, 4, 14]), or who were missing two-

thirds or more of diet data. Of these, 3557 participants have available metabolomics measures 

from the baseline examination. 

Data and Biospecimens
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We assessed clinical and demographic data using questionnaires administered at baseline.

Fasting biospecimens were collected at baseline and stored at -80C until analyzed. Participants 

were asked to fast for 12 h, avoid smoking on the morning of the exam, and avoid heavy exercise

12 h before the exam.

Metabolomic Profiling

Nuclear magnetic resonance measurements were carried out according to a previously 

published protocol using serum samples.[15] Briefly, a standard 1H NMR one-dimensional (1D 

NMR) spectrum with water suppression was obtained for each sample, detecting signatures of all

proton containing compounds, including sharp peaks from small molecule species and broad 

peaks from lipoproteins and proteins. Subsequent spectral processing was performed using the 

software TOPSPIN 3.1 (Bruker Biospin, Rheinstetten, Germany). The spectra were 

automatically phased and baseline corrected, and the chemical shifts were calibrated to the 

glucose signal at 5.233ppm. Spectral data were imported into MATLAB [Version 8.3 (R2014a) 

Mathworks Inc., Natick, MA, USA] for further processing, including peak alignment and 

normalization using PQN method.[16] 

The spectral features were annotated using the following spectral information, chemical 

shift (ppm), the coupling constant (J in Hz), the peak multiplicity (singlet, doublet, and 

multiplet), and peak connectivity of the NMR signals from the 1D and 2D NMR spectra [2D 

JRES, cOrrelation SpectroscopY (COSY), tOtal Correlation SpectroscopY (TOCSY), 

Heteronuclear single quantum correlation spectroscopy (HSQC)] and statistical correlation 

methods [STOCSY (Statistical Total Correlation Spectroscopy) and STORM (Subset 
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Optimisation by Reference Matching)].[17] Annotations were also assessed using information 

from available in-house and publicly available spectral databases as well as with published data.

Diet assessment

Usual dietary intake over the past 12 months was assessed at baseline, from a self-

administered 120-item food frequency questionnaire (FFQ) which evaluated diet intake over the 

past year. The MESA FFQ is a modified version of the Insulin Resistance Atherosclerosis Study 

(IRAS) FFQ, which was previously validated in non-Hispanic whites, those of Hispanic ethnicity

and those who identify as Black.[18] The MESA FFQ was modified from that used in IRAS to 

include dietary intake common among  Chinese-Americans. For each food item, participants 

indicated the average serving size and the frequency each food was eaten. Frequency ranged 

from “rare or never” to a maximum of “2+ times per day” for foods and “6+ times per day” for 

beverages. Average daily servings of forty-seven food groups were created using weighted 

recipes from the Nutrition Data System for Research (NDSR) and estimated per 100g of food 

and were used as the basis for creation of the diet score.

HEI-2015 score

The HEI-2015 was designed to align with the 2015-2020 Dietary Guidelines for 

Americans (DGAs).[7] The HEI-2015 contains 13 components, the sum of which totals to a 

maximum score of 100 points. As in HEI-2005 and HEI-2010, each of the components is scored 

on a density basis out of 1,000 calories, with the exception of fatty acids, which is a ratio of 

unsaturated to saturated fatty acids.

There are nine adequacy components: Total Fruits, Whole Fruits, Total Vegetables, 

Greens and Beans, Whole Grains, Dairy, Total Protein Foods, Seafood and Plant Proteins and 

Fatty Acids for which greater consumption is the goal. For four moderation components, we 
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assigned higher scores with minimization of intake for the following food groups: Refined 

Grains, Sodium, Added Sugars, Saturated Fats.

Statistical Analysis

Metabolome-wide Association Study (MWAS): The association of all 30,590 spectral features, 

which were mean-centered and scaled to unit variance, with HEI-2015 score was run using linear

regression models specifying each spectral feature as the outcome in separate models, with 

standard deviation of HEI-2015 score as the predictor, and age (continuous), race (categorical), 

gender (binary), and data collection site (categorical) as covariates. A spectral decomposition 

based on the correlation matrix between all spectra suggested that the effective number of 

independent tests (ENT) was 22,857. Significance for associations between spectral features and 

HEI-2015 score was therefore set at Bonferroni-corrected significance level of P<2.2*10-6 

(.05/22857).

Elastic net regularized regression: To adjust for unreliable parameter estimates that may occur 

when using multiple regression models in the setting of multicollinearity, we performed an 

elastic net regularized regression model to evaluate metabolites that were significant in 

independent analyses. The elastic-net model allowed for a penalized logistic regression on all 

biomarkers simultaneously to identify the metabolites most highly associated with diet pattern 

score. Elastic net regularized regression models were run with HEI-2015 diet score as the 

predictor and spectral features showing a significant association with the HEI-2015 diet score in 

MWAS analysis as the outcomes. Optimal penalty parameters for the penalty value (mixing 

percentage; ) and the strength of the penalty (regularization penalty; λ) were ascertained via the

package 'caret' in R using cross validation. Briefly, data in the full dataset were randomly 

assigned to one of two equal sized datasets. Parameter selection was conducted via resampling of
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models with 100 values of λ chosen according to the caret algorithm. The final selected 

parameters were then applied to analyses on the whole dataset. Optimization was reached via 

feature-wise normalization change in successive coordinate descent iterations. Model 

performance was judged based on root mean square error of approximation (RMSEA), with  

and λ parameters giving rise to the minimum mean cross-validated error used to generate new 

coefficients for the association of spectral features with HEI-2015 score. 

Clustering analysis: Pearson correlations were run between all spectral features with non-zero 

coefficients in the elasticnet regularized regression models, to allow for identification of clusters 

or groups of spectral features. As groups of spectral features showed specific patterns of 

intercorrelations, all spectral features with non-zero coefficients from the regularized regression 

models were subject to hierarchical clustering analysis. Hierarchical clustering analysis was 

conducted using the package ‘NbClust’ in R. Euclidean distance was used to compute the 

dissimilarity matrix, with total within-cluster variance computed using Ward (1963) algorithm to

minimize the total within-cluster variance. The optimal number of clusters was identified using 

the Duda-Hart stopping rule. For clusters with contributions of spectral features from more than 

one annotation, we assigned the metabolite with the most prominent signals. Methanol/proline 

was assigned as proline due to the presence of a coefficient of association of proline with the 

same beta coefficient as Proline/methanol and histidine/proline betaine was assigned as proline 

betaine based on the absence of non-overlapping signals from histidine within that spectral 

feature.

Final Associations between HEI-2015 diet score and metabolomics cluster scores As several 

spectral features may be representative of the same metabolite, to assist in interpretability and 

most accurately represent the presence of individual metabolites, sum scores for all the spectral 
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features within a cluster were created. Based on the annotations assigned to the spectral feature, 

the most likely metabolite or metabolites represented by each cluster score was assigned. Cluster 

scores were highly skewed, thus were winsorized and represented as 4 standard deviations (SDs) 

+/- the mean and transformed using a blom transformation. Associations were analyzed from 

linear regression models with HEI-2015 diet score standardized using z-score as the predictor, 

transformed cluster scores as the outcomes in separate models, and age, gender, race and site of 

data collection as fixed effects and were standardized. Significance was retained as a Bonferroni 

correction for the original number of ENTs in the MWAS (of P<2.2*10-6). For all cluster scores 

significantly associated with HEI-2015, multivariable linear regression models were run with the 

cluster score as the outcomes in separate models, all thirteen components of HEI-2015 score as 

the predictors within the same model, and age, gender, race and site of data collection as fixed 

effects. Significance was set at a Bonferroni correction for 7 tests (.05/7 = P<.007).

RESULTS

The sample of participants self-identified as 50% women, and 13% of participants as 

Black, 23% of Hispanic ethnicity, 24% Chinese American and 40% non-Hispanic white, with a 

mean age of 63 years. (Table 1). Average HEI-2015 score was 66. HEI-2015 score was 

significantly associated with 179 1D-NMR-based spectral features determined through MWAS 

analysis. (Supplemental table 1 and Supplemental Figure 1).

The clustering analysis identified 7 main clusters of metabolomic spectral features each 

identified by a single metabolite or lipid (Table 2 and Supplemental Figure 2). Four out of seven 

clusters contained spectral features annotated to the amino acid proline. A higher HEI-2015 

score, reflecting better diet quality, was associated with a lower abundance of proline (p<0.007, 
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corrected for 7 cluster comparisons). The strongest association was found between HEI-2015 

score and proline betaine (0.12 [0.02]; p=4.70 E-13). 

Intake of specific HEI-2015 components was differentially associated with the defined 

clusters of metabolomic spectral features. (Table 3) The HEI-2015 score component “Total 

Dairy” was associated with four clusters, representing 1,5-anhydrosorbitol and methanol/proline.

Higher intake of dairy products was linked with lower abundance of both metabolites, mirroring 

the findings of total HEI-2015 score and these metabolites. 

Intake of the HEI-2015 component “Total Fruits” had strong, positive associations with 

proline betaine (ß 0.18 [SE=0.02]; p=3.24E-12). Higher intake of Whole Grains (ß 0.05 [SE 

0.01]; p=2.54E-03) and Seafood and Plant Protein (ß 0.08 [SE 0.018]; p=1.05E-03) was also 

associated with higher relative proline betaine abundance. Intake of refined grains was inversely 

associated with methanol/proline, most significantly in cluster 4, (ß -0.08 [0.02] p=7.07E-05). 

(Table 3)

DISCUSSION

In this investigation, diet quality as measured by the HEI-2015 score was associated with 

four metabolites in participants in the MESA cohort study. The strongest associations were 

between higher HEI-2015 score and the amino acid proline betaine, and an inverse association 

with the amino acid proline. Each cluster-associated metabolite was differentially associated with

food groups. Greater intake of Total Fruits, Whole Grains and Seafood and Plant protein was 

associated with higher relative abundance of proline betaine. Intake of dairy products, total 

protein and refined grains was also negatively associated with abundance of proline. 

Diet quality in the United States is low, with an average HEI-2015 score of 59/100 as 

surveyed by NHANES in 2015-2016.[19] Dietary intake representing high diet quality can vary, 
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representing broad food group categories rather than narrow associations with individual foods. 

Examinations of past HEI versions have found associations between a higher HEI score and a 

lower risk of cardiovascular disease and mortality.[20, 21] This finding supports copious 

observational evidence that diets of high quality, generally represented by high intake of fruit, 

vegetable, whole grain and plant-based protein and low intake of added sugars, salt, refined 

carbohydrates and red meat are associated with a lower incidence of chronic cardiometabolic 

disease.[22-25] The metabolic changes and mechanisms that may underlie these associations, 

however, less clear, and the goal was to clarify representative metabolites that may indicate high 

diet quality.

A higher HEI-2015 score, representing better diet quality, was associated with higher 

abundance of proline betaine. Proline betaine is also a biomarker of citrus consumption, [11] 

reflected in this analysis with the positive association between Total Fruit intake and this amino 

acid. In our prior work in the Mediators of Atherosclerosis in South Asians Living in America 

(MASALA) study, consumption of the Fruits, Vegetables, Nuts, Legumes diet pattern, a high-

quality diet pattern, was similarly associated with proline betaine [26]. The DGA and most 

guidelines on diet intake emphasize fruit and vegetable intake as markers of high diet quality. As

intake of fruits and vegetables likely occurs concurrently with other high quality foods, an 

increase in concentration of this metabolite may serve as a general indicator for improved 

consumption of a high-quality diet in the general population. 

 Previous epidemiologic studies have shown poor cardiometabolic risk [27] and insulin 

resistance [28] associated with lower concentrations of betaine in diverse populations. Proline 

betaine and its analogue, glycine betaine, were also associated with lower risk for T2D in the 
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Diabetes Prevention Program and other intervention and cohort studies.[29, 30] Deficiency of 

betaine was additionally linked with increased severity of non-alcoholic fatty liver disease 

(NAFLD).[31]

Betaine is derived from the amino acid glycine, and acts as a methyl donor to allow the 

conversion of homocysteine to methionine. [32] Betaine is also a precursor of TMAO, a possible

marker of cardiometabolic risk[28, 33], and is likely processed by fecal microbiota into this 

compound. In the current analysis, whole grain intake was also associated with proline betaine 

levels. In an investigation in mice, consumption of rye bran increased the diversity of gut 

microbiota and provided a source of glycine betaine, which was metabolized into other betaine 

compounds which remained at high levels in the rye bran-fed group [34]. The presence of 

diverse microbiota from an overall healthful diet may promote higher concentrations of betaine 

and its metabolites throughout the gut and plasma.  Despite these positive observational findings 

and promising preclinical data from animal studies, direct supplementation of betaine in humans 

during a randomized, controlled trial showed only minor improvements in fasting glucose, and 

no changes in dynamic measurements of insulin sensitivity and intrahepatic triglycerides.[35] All

together, this suggests that diet intake including whole grains and cereal fiber may support a 

healthful gut microbial environment allowing for increasing levels of betaine and its metabolites,

associated with lower risk for cardiometabolic disease. A deeper exploration of the choline-

betaine metabolic pathways after whole grain intake may yield insights into the pathogenesis of 

diabetes and NAFLD.

Total HEI-2015 score was inversely associated with the amino acid proline. Increased 

levels of proline have previously been associated with insulin resistance in South Asian and 
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Chinese men of low body mass index, suggesting that this metabolite may reflect metabolic 

differences underlying T2D independent of those caused by obesity.[36] This metabolite has also

been inversely associated with HEI-2015 in a study of African-American and European 

populations,[8] in an analysis restricted to known metabolites. Proline has recently been 

implicated in the gut-brain axis and an indicator for the severity of depression. In a multi-cohort 

analysis, circulating proline had the strongest association of all metabolites with worsened 

depression scores [37]. Those with high proline consumption and high plasma proline levels had 

a preponderance of the gut microbiota species Parabacteroides and Acidaminococcus. 

Interestingly, these gut microbiota species were also associated with higher depression scores. As

we found a lower diet quality was associated with higher circulating proline, the promotion of a 

healthful gut environment through improved diet quality may help explain links between HEI-

2015 score and depression [38].

1,5 anhydrosorbitol (1,5 anhydroglucitol) is a marker of short-term glycemic control, is 

inversely related to glucose concentration, and is used as a validated marker of daily glucose 

changes. In our study, a higher HEI-2015 score was associated with lower 1,5 anhydrosorbitol 

levels. Higher intake of Total Dairy was similarly associated with lower circulating 

concentrations of this metabolite, replicating a finding in normoglycemic individuals in Japan

[39]. It is readily absorbed from a variety of foods and is generally present in stable levels in the 

body as it is excreted almost without metabolism. This metabolite was also indicative of high 

saturated fat intake in in a controlled diet trial of high saturated fat compared with n-6 fatty acids

[40] – higher diet quality in our study is defined by lower saturated fat intake likely leading to 

this finding. However, circulating levels of this metabolite have been shown to decrease with a 

lower intake of overall carbohydrates or lower glycemic index under controlled dietary intake 
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conditions.[41] Lower levels of this metabolite have also been linked with an increase in major 

adverse cardiovascular events [42], however there is a stronger relationship among people with 

diabetes [43]. At a population level, lower intake of saturated fat and higher intake of dairy 

products as components of a higher HEI-2015 score may be reflected as lower 1,5 

anhydrosorbitol levels. In populations with diabetes, however, the effect of glycemic variability 

on this marker likely supercedes changes from diet intake due to competitive inhibition with 

glucose excretion in the renal tubules, and it is not likely to be a good indicator of diet quality in 

this population.

HEI-2015 score was positively associated with unsaturated fatty acyl chains 

(C=CHCH2HC=C). Fatty acyls are one of eight categories of lipids and include many different 

fats. The HEI-2015 component Fatty acids, which represents the ratio of unsaturated to saturated 

fatty acid intake, was associated with higher Cluster 1 (unsaturated fatty acyl) score. The intake 

of unsaturated fatty acids has been linked to improved health outcomes, including omega-3 fatty 

acids and cardiovascular disease.[44] The association of higher HEI-2015 overall score to greater

ratio of unsaturated:saturated fatty acids was in line with expected healthy eating guidelines.

Strengths of this analysis include a longitudinal cohort design with robust habitual dietary

data collection through a comprehensive food frequency questionnaire, characterization of diet in

multiple racial and ethnic groups and comprehensive evaluation of untargeted NMR spectral 

features beyond known metabolites. Despite multiple strengths, we acknowledge that our 

analysis also has limitations. These findings were not externally validated, although our sample 

size and methodology allows for adequate internal validation. This is a cross-sectional analysis 

performed at one time point, and data collected from food frequency questionnaires are subject 

to recall bias. The food frequency questionnaire data collected information on habitual diet 
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intake over the past 12 months, but do not quantify this intake at the time point of blood 

sampling; biomarkers may be affected by more proximate diet intake. The MESA Study food 

frequency questionnaire was modified to include unique Chinese foods and culinary practices, 

but was not validated in this population. Untargeted metabolomics is a broad-based analysis for 

identifying all possible markers as a snapshot of metabolism, and this observational analysis 

cannot establish causal relationships between controlled diet intake and metabolites. Still, our 

characterization of metabolites associated with HEI-2015 remains the first to broadly examine 

NMR spectral features associated with this dietary quality score rather than restricting the 

analysis to known metabolites.

Conclusion

HEI-2015 score was associated with spectral features representing proline betaine, 

proline, 1,5 anhydrosorbitol and fatty acyl chains in the MESA cohort study. These metabolites 

may represent increased whole grain, fruit, dairy and lower saturated fat intake as indicators of 

overall high diet quality. Further investigation into controlled diet intake will help to clarify links

between diet quality and onset of cardiometabolic disease and areas for preventive action.  
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Table 1: Baseline characteristics of MESA cohort participants by Healthy Eating Index 
2015 (HEI-2015) Quartile (N=3557)

Mean (SD) Quartile 1 Quartile 2 Quartile 3 Quartile 4
N 3557 847 880 907 923
Women (%) 1787 (50) 334 403 465 585
Age, years 63 (10) 60 (10) 62 (10) 63 (10) 65 (10)
Race N (%)

White 1428 (40) 337 (40) 318 (36) 368 (41) 405 (44)
Black 830 (23) 229 (27) 208 (24) 178 (20) 215 (23)

Hispanic 838 (24) 148 (17) 221 (25) 260 (29) 209 (23)
Chinese-American 461 (13) 133 (16) 133 (15) 101 (11) 94 (10)

Healthy Eating Index-
2015 Score

66 (8) 56 (4) 64 (2) 69 (1) 76 (4)

BMI (kg/m2) 28 (5) 28 (6) 29 (6) 28 (5) 28 (5)
Diabetes n (%) 470 (13) 99 (14) 114 (13) 136 (15) 121 (13)
Hypertension n (%) 1608 (45) 365 (43) 387 (44) 407 (45) 449 (49)
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Table 2: Associations of Healthy Eating Index-2015 Diet Score with Representative 
Metabolites and Lipids 

Cluster Spectral features Metabolite 
association

Betaa,b SE P

1 2.765603, 2.769304, 
2.769641, 2.770313, 
2.77065

C=CHCH2HC=C 
(fatty acyl chains)

0.08 0.02

8.98 E-07

2 3.100354, 3.10069, 
3.101027, 3.101363

Proline 
betaine/histidine 0.12 0.02

4.70 E-13

3 3.268907 1,5-anhydrosorbitol -0.08 0.02 4.37 E-07
4 3.3261, 3.326437 Proline -0.09 0.02 5.46 E-08
5 3.342249, 3.347968 Methanol/proline -0.10 0.02 4.06 E-10
6 3.34494, 3.345277 Methanol/proline -0.12 0.02 1.63 E-12
7 3.34595, 3.346286 Methanol/proline -0.13 0.02 4.45 E-14

aStandardized estimates
bAdjusted for age, gender, race, and study site 
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Table 3: Associations of HEI2015 component scores with metabolomic cluster scores

Component Cluster Most likely
Annotation

Betaa,b SE P

Total fruit 2 Proline 
betaine/histidine

0.18 0.02 3.25E-12

Whole 
grains

2 Proline 
betaine/histidine

0.05 0.02 2.54E-03

Total dairy 3 1,5-
anhydrosorbitol

-0.06 0.02 1.29E-03

5 Methanol/proline -0.12 0.01 7.31E-10
6 Methanol/proline -0.11 0.01 2.86E-09
7 Methanol/proline -0.13 0.01 1.28E-11

Total 
protein

5 Methanol/proline -0.10 0.03 1.74E-04

6 Methanol/proline -0.11 0.03 3.65E-05
7 Methanol/proline -0.11 0.03 2.42E-05

Seafood 
and plant 
protein

2 Proline 
betaine/histidine

0.08 0.02 1.05E-03

Fatty acid 1 C=CHCH2HC=C 
(fatty acyl chains)

0.02 0.01 3.83E-03

Refined 
grains

5 Methanol/proline -0.07 0.02 7.07E-05

6 Methanol/proline -0.06 0.02 3.12E-04
7 Methanol/proline -0.06 0.02 2.52E-04

aStandardized estimates
bAdjusted for age, gender, race, and study site
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