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Abstract

The 18F-labeling of unprotected peptides and sugars with a Au(III)-[18F]fluoroaryl complex is 

reported. The chemoselective method generates 18F-labeled S-aryl bioconjugates in an aqueous 

environment in 15 min with high radiochemical yields and displays excellent functional group 

tolerance. This approach utilizes an air and moisture stable, robust organometallic Au(III) complex 

and highlights the versatility of designer organometallic reagents as efficient agents for rapid 

radiolabeling.
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The rapid kinetics and high chemoselectivity of transition-metal-based transformations 

have resulted in major advances in organic synthesis, in particular for the modification 

of complex small molecules.1, 2 In the context of 18F-labeling, significant effort has been 

devoted to the development of transition-metal mediated radiofluorination methods, often 

translated from modern fluorine-19 related approaches.3–5 Importantly, the translation of 

fluorine-19 to fluorine-18 chemistry presents distinct challenges that are non-trivial and 

rigorous optimization is required for smooth translation to radiochemistry.4 Perhaps the most 

notable obstacle is that 18F is in nanomole or lower quantities amongst an excess of other 

reagents. Additionally, chemical modifications must be conducted quickly, ideally within 

minutes, due to the radioactive decay of 18F.

Over the last decade, reports exploiting the redox activity of transition-metals such as Pd, Ni 

and Cu to lower the barrier for C-18F bond formation have surged.3, 4, 6–9 In particular, Cu-

mediated methods have found wide use in the construction of 18F-labeled small molecules 

for positron emission tomography (PET) imaging applications.10, 11 Modern Cu-mediated 

methods have become a truly powerful advancement in radiochemical synthesis, unlocking 

access to radiolabeled constructs that were previously inaccessible. However, metal-based 

modifications employing unprotected peptides for direct radiofluorination processes are 

scarce.12–16

The unique properties of cysteine have stimulated efforts toward the chemoselective 

bioconjugation of this key residue.17, 18 Pioneering work by the Buchwald and Pentelute 

groups demonstrating palladium-mediated cysteine arylation to afford S-aryl bioconjugates 

has encouraged the development of Pd-based strategies for labeling peptides with positron-

emitting radioisotopes, such as 11C or 18F.19–21 In the context of 11C-labeling, Hooker 

and Buchwald utilized a biarylphosphine supported Pd(II)-complex to prepare 11CN-labeled 

unprotected peptides (Figure 1a).22

The Pd-mediated sequential cross-coupling proceeds with initial S-arylation of the cysteine-

containing peptides followed by direct 11C-cyanation. In addition, Neumaier recently 

reported a Pd-mediated cysteine S-arylation using the XantPhos Pd-based cyclometallated 

precatalyst system previously developed by Buchwald23 with 2-[18F]fluoro-5-iodopyridine 

(Figure 1a).16 The radiolabeled aryl iodide was obtained after solid-phase extraction with a 

molar activity of 29 GBq·μmol−1 and could be directly used for bioconjugation. However, 

nonradioactive impurities formed in the initial radiofluorination were shown to impede 

the consecutive S-arylation step. To sequentially perform the protocol and maintain high 

conversion during S-arylation, minimal precursor was used, triggering a modest RCY of 

2-[18F]fluoro-5-iodopyridine.

Recently, Au(III)-aryl oxidative addition complexes supported by the aminophosphine 

Me-DalPhos ligand24 (Me-DalPhos = (Ad2P(o-C6H4)NMe2)) provided rapid access to 
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S-aryl bioconjugates under mild conditions at ambient temperature.25–27 The air-stable 

organometallic Au(III) complexes were prepared in a straightforward one-step synthesis 

from commercial (Me-DalPhos)AuCl with a 3-fold excess of aryl iodides.28 The extremely 

rapid reaction rate of S-arylation for this system (approaching 104 M−1s−1) suggests this 

chemistry can be potentially amenable to transformations where rapid kinetics is critical. 

Importantly, competition experiments revealed superior kinetics for the Au-mediated system 

over the Pd-mediated system, with a ratio of 9:1.25 We therefore hypothesized that an 18F-

labeled Au(III)-aryl oxidative addition complex could be prepared by using a radiolabeled 

aryl iodide such as 4-[18F]fluoroiodobenzene and subsequently used for rapid radiolabeling 

of biomolecules.

Despite differences in the stoichiometry by several orders of magnitude when transitioning 

to fluorine-18, we reasoned that the high efficiency of the oxidative addition and 

the rapid reaction kinetics of the Au(III) arylation could provide a powerful platform 

for the chemoselective radiofluorination of thiols. Here, we report the synthesis of a 

Au(III)-[18F]fluoroaryl complex and its application toward Au-mediated radiofluorination 

of thiol-containing substrates to afford stable S-[18F]fluoroaryl bioconjugates (Figure 1b). 

This approach is, to our knowledge, the first gold-mediated methodology for chemoselective 
18F-labeling of thiol-containing substrates.

We first sought to prepare a radiolabeled aryl iodide that could undergo oxidative 

addition with the (Me-DalPhos)AuCl complex to generate the radiolabeled Au(III)-aryl 

complex, [(Me-DalPhos)Au(4-[18F]fluorobenzene)Cl][SbF6] ([18F]1).25, 28 Synthesis of 

4-[18F]fluoroiodobenzene ([18F]2) was achieved using a one-step radiofluorination protocol 

via a spirocyclic hypervalent iodonium ylide (Table 1).29 Iodonium ylide 3 was prepared and 

subsequently subjected to radiofluorination.30, 31 Preparation of [18F]2 was fully automated 

on the ELIXYS radiochemical synthesis module and conducted using [18F]Et4NF in DMF 

at 120 °C which, after HPLC purification, furnished aryl iodide [18F]2 in 26 ± 8% isolated 

radiochemical yield (RCY), decay-corrected (Table 1).

We next focused on the oxidative addition reaction to yield [18F]1 (Table 1). In contrast to 

4-fluoroiodobenzene, which can be employed at 3-fold excess, 4-[18F]fluoroiodobenzene 

is the limiting reagent that is present in nanomolar or picomolar concentration, 

severely altering the stoichiometry of the oxidative addition step. Formation of [18F]1 
proceeded in 38% ± 27% radiochemical conversion (RCC) upon the treatment of 

4-[18F]fluoroiodobenzene in CH2Cl2 with (Me-DalPhos)AuCl (15 μmol) in the presence 

of AgSbF6 (15 μmol) heated at 55 °C in a sealed vial for 10 min (Table 1, entry 1). Lowering 

the stoichiometry of Au(I) to 9 μmol afforded [18F]1 in 95% ± 7% RCC at 55 °C in 10 

min (Table 1, entry 3). The reaction was also evaluated in DCE at elevated temperatures and 

[18F]1 was obtained in comparable yields albeit at slightly extended reaction times (Table 

1, entries 5–7). Of note, these reactions were performed in a sealed reaction vial with no 

rigorous exclusion of oxygen or water and conducted using commercial, unpurified solvents. 

Precursor 3 showed excellent stability when stored in the dark at −20 °C for up to 18 months 

with no detectable degradation or loss in RCC. The Au(I) complex could be stored on the 

benchtop and the AgSbF6 in the glovebox with exclusion from light for up to 3 months and 

used with no detectable degradation.
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Product identity and purity of [18F]1 were determined by analytical HPLC analysis via 

coinjection with the reference standard. Clean conversion of 4-[18F]fluoroiodobenzene to 

[18F]1 enabled its direct use without the need for HPLC purification. The crude reaction 

mixture was simply filtered and concentrated under mild heating to afford cartridge-isolated 

[18F]1 in 25 mins (relative to [18F]2), which was directly used in subsequent thioarylation 

reactions (Figure S9).

The reactivity of the novel Au(III)-complex, [18F]1, was examined and optimized with 

L-glutathione as a model peptide substrate (Table 2). Initial thioarylation was observed in 

16% ± 13% RCC upon treatment of L-glutathione 4 (16 μmol) with [18F]1 in PBS buffer 

(pH 7.4) at 23 °C in 30 min (Table 2, entry 1). A buffer screen revealed that Tris buffer (pH 

8.0) increased the conversion to 54 ± 16% but the reaction remained sluggish at ambient 

temperature (Table 2, entry 3). Upon slight heating to 35–45 °C, the [18F]fluoroaryl product 

[18F]7 was generated in 93–95% RCC (Table 2, entries 4–5). Attempts to shorten the 

reaction time led to a reduction in yield with a significant drop for reactions under 15 min 

(Table 2, entries 6–8).

From our previous results with peptide conjugation chemistry,32 we predicted that a co-

solvent could further boost the Au(III)-[18F]fluoroaryl solubility and facilitate complete 

reaction conversion. Employing a Tris buffer/methanol (3/1) solvent system improved the 

conversion and provided the [18F]fluoroaryl conjugate [18F]7 in 97% ± 3% RCC in 15 min 

(Table 2, entry 9). Similarly, peptides 5 and 6 also revealed a significant improvement in 

RCC with the new solvent system (Table 2, entries 10–11). High radiolabeling efficiency 

while using low mass amounts of peptide precursor is advantageous in the context of 

radiolabeling expensive peptides with limited availability, and allows for a simplified 

purification process of the 18F-labeled product. With sub-micromolar peptide loading, 18F-

thioarylation was achieved in 70% RCC using 0.71 μmol 4 and in 52% RCC using 0.39 

μmol 4 (Table 2, entries 12–13).

The optimized S-arylation conditions were applied to a series of thiol-containing substrates 

to establish the versatility and scope of our methodology (Figure 2). High chemoselectivity 

for S-arylation of thiol-containing substrates in the presence of a variety of additional 

functional groups was observed in Tris buffer (pH 8.0)/methanol (3/1) within 15 min in 

72–97% RCY. Substrates containing a free carboxylic acid, primary or secondary amine, 

guanidine residue, and thioether functional groups were well tolerated as well as sugar-

based substrates containing free alcohols. Additionally, S-arylation of peptides in which the 

cysteine residue is positioned at the N-terminus ([18F]9) or within an intrachain position 

([18F]10) still maintained high efficiency. Performing the 18F-thioarylation with 3 μmol 

L-glutathione 4, afforded the 18F-labeled conjugate [18F]7 in 97% ± 1% RCY (Figure 2). A 

hexapeptide containing a nucleophilic lysine residue cleanly delivered the S-aryl conjugate 

[18F]8 in 97% ± 4% RCY with 7 μmol precursor loading. Notably, [18F]8 was furnished in 

49% ± 6% RCY when using only 0.62 μmol precursor.

A critical motif utilized for noninvasive PET imaging of angiogenesis is the RGD 

sequence and numerous peptide-based analogues have demonstrated value, including 

clinical benefit.33 The Au(III)-mediated 18F-thioarylation of peptides containing the RGD 
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sequence was successfully executed to provide peptide conjugates [18F]9 and [18F]10 in 

72% ± 11% and 94% ± 5% RCY, respectively. In addition, synthesis of an 18F-labeled β-

amyloid peptide fragment34 was successfully accomplished, using 4 μmol peptide precursor, 

to afford [18F]fluoroaryl conjugate [18F]11 in 77% ± 10% RCY. Finally, the protocol was 

applied to sugar-based substrates to assess compatibility with alternative thiol-containing 

constructs containing free alcohols. Thio-β-D-glucose and thio-β-D-galactose underwent 

efficient [18F]fluoroarylation in MeCN/H2O (1/1) in 93% ± 8% and 88% ± 11% RCY, 

respectively.

Cyclodextrin-based polymers have been used as carrier systems for chemotherapeutics or 

small molecule drugs and their unique properties, such as enhanced solubility, improved 

pharmacokinetics and increased efficacy compared to the small molecules, have garnered 

interest towards utility in biomedical imaging applications.35 For example, a cyclodextrin 

polymer-based nanoparticle containing the chemotherapeutic camptothecin was labeled 

with 64Cu and imaged in tumor-bearing mice to noninvasively determine multi-organ 

pharmacokinetics, whole-body biodistribution and tumor localization.36 Limited examples 

of 18F-labeled β-cyclodextrins in the literature prompted us to investigate our protocol for 

radiofluorination of the cyclic oligosaccharides. The Au(III)-mediated 18F-thioarylation was 

performed with 4 μmol of a thiolated β-cyclodextrin precursor to furnish construct [18F]14 
in 90% ± 5% RCY.

To evaluate the practicality of our approach, S-aryl glutathione conjugate [18F]7 was 

synthesized using 6–8 mCi of [18F]1 and subjected to HPLC purification which afforded 

isolated [18F]7 in 23% ± 5% activity yield in 46 min (relative to [18F]1, non-decay-

corrected, n=3), with >99% radiochemical purity (RCP). The molar activity of [18F]7 was 

2.9 ± 1.8 Ci·μmol−1 (108 ± 68 GBq·μmol−1, n=4). ICP-OES analysis revealed that the 

purified product contained less than 50 ppb of Au (n=3), which is well below the acceptable 

limit for in-human injection.37 The focus of this work is the design, optimization and 

construction of a novel AuIII-[18F]fluoroaryl complex for the 18F-labeling of unprotected 

peptides and sugars. Future work is directly aimed at automating the full protocol and 

conducting PET imaging studies in preclinical mouse models.

In summary, we report a robust Au(III)-[18F]fluoroaryl reagent [18F]1 for the 18F-labeling 

of thiol-containing substrates via S-arylation in aqueous media. To our knowledge, this 

is the first Au-mediated 18F-labeling methodology of unprotected peptides and thiosugars. 

The practical advantages of our method are highlighted by the mild reaction conditions, 

broad substrate scope and rapid reaction kinetics. The oxidative addition complex [18F]1 
was generated in 10 min and directly used to furnish 18F-labeled conjugates in excellent 

chemoselectivity, up to 97% RCY and high molar activity in 15 min. The protocol was 

applied to a diverse range of thiol-containing substrates including unprotected peptides and, 

when using nanomolar peptide loading, good RCYs were achieved. This work expands 

on the growing space of organometallic reagents that are applied towards radiochemical 

modifications which demand rapid reaction rates.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) 11C- and 18F-labeling of unprotected peptides via Pd-mediated S-arylation.16, 22 (b) 

This work, 18F-labeling of unprotected peptides, sugars and β-cyclodextrin via Au-mediated 

S-arylation.
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Figure 2. 
18F-Labeling of peptides via AuIII-mediated S-arylation. Reaction conditions: substrate (5 

mg), [18F]1 (0.5 – 2.0 mCi), Tris buffer pH 8.0 (750 μL), MeOH (250 μL), 35 °C, 15 

min. RCP was calculated by dividing the integrated area of the 18F-labeled product peak 

by the total integrated area of all 18F-labeled peaks, as determined by radio-HPLC. The 

decay-corrected radiochemical yield (RCY) was calculated by dividing final activity of the 

labeled product by starting [18F]1 activity, multiplied by the RCP. Identity of each labeled 

product was confirmed by co-injection with the 19F-reference standard. aSubstrate (3 μmol). 
bSubstrate (0.62 μmol), Tris buffer pH 8.0 (562 μL), MeOH (188 μL). cMeCN (500 μL), 

H2O (500 μL).
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Table 1.

Preparation of AuIII-[18F]Fluoroaryl Complex [18F]1

entry
a Au(I)/AgSbF6 (μmol) solvent time (min) temp. (°C) RCC (%)

b

1 15 DCM 10 55 38 ± 27

2 12 DCM 10 55 49 ± 15

3 9 DCM 10 55 95 ± 7

4 9 DCM 20 55 87 ± 16

5 9 DCE 10 60 87 ± 8

6 9 DCE 10 80 83 ± 15

7 9 DCE 20 80 94 ± 6

a
Conditions: [18F]2 (~500 μCi) per reaction, solvent (1.5 mL).

b
RCC was determined by radio-TLC analysis of complex [18F]1, n > 3 for all entries.
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Table 2.

Thio Arylation of L-Glutathione with AuIII-[18F]Fluoroaryl Complex [18F]1

entry
a solvent system time (min) temp. (°C) RCC (%)

b

1 PBS pH 7.4 30 23 16 ± 13

2 HEPES pH 7.3 30 23 43 ± 18

3 Tris pH 8.0 30 23 54 ± 16

4 Tris pH 8.0 30 35 93 ± 1

5 Tris pH 8.0 30 45 95 ± 1

6 Tris pH 8.0 20 35 72 ± 14

7 Tris pH 8.0 15 35 78 ± 12

8 Tris pH 8.0 10 35 44 ± 1

9 Tris pH 8.0/MeOH, 3/1 15 35 97 ± 3

10 
c Tris pH 8.0/MeOH, 3/1 15 35 97 ± 4

11 
d Tris pH 8.0/MeOH, 3/1 15 35 91 ± 5

12
e Tris pH 8.0/MeOH, 3/1 15 35 70

13
f Tris pH 8.0/MeOH, 3/1 15 35 52

a
Conditions: AuIII complex [18F]1 (~1 mCi) per reaction, L-glutathione 4 (16 μmol), solvent (1 mL).

b
RCC is estimated by radio-HPLC analysis of crude peptide [18F]7, n = 2–6.

c
Peptide = H-Asp-Arg-Lys-Cys-Ala-Thr-NH2 5 (7 μmol).

d
Peptide = H-Cys-Arg-Gly-Asp-NH2 6 (11 μmol).

e
L-glutathione 4 (0.71 μmol), n = 1.

f
L-glutathione 4 (0.39 μmol), n = 1.
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