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ABSTRACT OF THE DISSERTATION

Tropical convective transition diagnostics and the dynamics of convective deep inflow

by

Yi-Hung Kuo

Doctor of Philosophy in Atmospheric and Oceanic Sciences

University of California, Los Angeles, 2021

Professor J. David Neelin, Chair

Moist convection drives much of the circulation and precipitation in Earth’s atmosphere,

especially in the tropics, and thus has far-reaching consequences for human activities. The

parameterization of moist convection in general circulation models (GCMs) remains a major

source of error in these models, highlighting the importance of understanding the physi-

cal processes by which deep convection interacts with larger scales. A physical pathway

contributing to the uncertainty of parameterizations concerns how environment air enters

convective updrafts, i.e., entrainment. This dissertation addresses several aspects of the

physics of convection, including causal pathways by which the environmental water va-

por impacts convection and the implications of this for model parameterizations, related

process-oriented diagnostics for comparing convective processes in GCMs to observations,

and theoretical foundations for a different view of the entrainment process.

First, it has been noted that as the atmospheric column water vapor (CWV) exceeds a

critical threshold, precipitation sharply picks up. This “pickup” has been demonstrated to

be consistent with the lower-free-tropospheric humidity impacting updraft buoyancy—thus

convection—through entrainment. By performing a set of parameter perturbation exper-
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iments in the NCAR Community Earth System Model (CESM), we establish the causal

relationship of the observed transition to deep convection—only when the convective scheme

includes substantial entrainment can the model reproduce the pickup. The change in the

precipitation–CWV relation also leads to a moist troposphere compared with when there is

no entrainment. The reevaporation of convective precipitation is found to have only minor

effects on the pickup.

Second, from observations and reanalyses, we compile and expand the set of statistics

characterizing the transition to deep convection at fast timescales—termed “convective tran-

sition statistics.” Given that the spatial autocorrelation scales of tropospheric temperature

and humidity are greater than that of precipitation, the precipitation–CWV relationship is

robust to spatial resolution up to ∼1° and time-averaging up to ∼6 hours. The critical CWV

at which precipitation starts to pick up increases with bulk tropospheric temperature, while

the corresponding critical column relative humidity (CRH) decreases. This is consistent with

prior entraining plume calculations. The CWV value relative to critical appears to be an

effective predictor of conditional instability (hence precipitation) with only minor geographic

variations in the tropics. The distribution of precipitation intensity drops rapidly for low

CWV, and develops into a robust long-tail distribution for CWV around and above crit-

ical. The robustness of convective transition statistics—especially to the spatial-temporal

resolution—suggests that these are suitable for model diagnostic purposes.

Third, we compared the convective transition statistics calculated using high-frequency

(1-6 hourly) output from a set of GCMs to the observed. Comparing statistics among

models that primarily differ in representations of moist convection suggests that convective

transition statistics can substantially distinguish differences in convective representation and

its interaction with the large-scale flow, while models that differ only in spatial–temporal

resolution, microphysics, or ocean–atmosphere coupling result in similar statistics. Most

of the models simulate some version of the observed sharp pickup of precipitation as well

as that convective onset occurs at higher CWV but at lower column RH as temperature
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increases. However, departures from observations in various aspects of the precipitation–

CWV relationship are also noted in many models.

Lastly, a puzzle regarding entrainment profiles in the vertical is addressed. Observations

and large-eddy simulations has pointed to a “deep-inflow” updraft mass flux structure, in

which mass enters the updraft through a deep layer in the lower troposphere. Looking for

a simple explanation for the observed deep inflow, we investigate the nonlocal response

of vertical velocity field to buoyancy under the anelastic framework. We find that the

vertical structure of response is determined by the horizontal length scales contributing to

the buoyancy structure. For a wide range of conditions relevant for isolated cumulonimbus

and organized systems, the nonlocal dynamics entailing interaction between the buoyant

layer and the surface results in the deep inflow. Furthermore, the largest, most heavily-

precipitating contributions to convection are suggested here to be a simplifying factor for

their representations in convective parameterizations.
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the tropical western Pacific. Here the statistics are calculated using CWV and

precipitation data time-averaged at 15-min (dark red), 1-h (red), 3-h (yellow),

6-h (green), and 24-h (blue) intervals. Conditional precipitation without error

bar indicates a standard error smaller than the marker size. . . . . . . . . . . 58

3.6.1 (a) Joint-PDF of CWV relative to critical and precipitation rate P for the

70-mm q̂sat-bin in the tropical western Pacific compiled using TMIv7.1 CWV,

Reanalysis-2 temperature and PR 2A25 precipitation at 0.25° by treating CWV

and P as continuous variables with bin-width 3 mm, and 0.1 mm h−1 (0.05 for

lowest bin), respectively. (b) Same as in (a), but on a log-log scale. (c) Same as

in (a), but using TMIv7.1 precipitation (0.25°). The colors indicate the values

of CWV relative to wc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
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3.6.2 Color shading: Joint-PDF (units: mm−2 h), on a log10-scale, of CWV relative

to critical and precipitation rate P for the 70-mm q̂sat-bin in the tropical western

Pacific compiled using TMIv7.1 CWV and Reanalysis-2 temperature, PR 2A25

(at 5 km and 0.25°) and TMIv7.1 (at 0.25°, 0.5°, and 1°) precipitation, by

treating CWV and P as continuous variables. The spacing between the joint-

PDF contours is 0.3, i.e., the color advances whenever the joint-PDF doubles

(100.3 ∼ 2). The corresponding precipitation rate (blue solid line), probability

of precipitation (P > 0 mm h−1; orange dots), median (white solid line) and

variance (blue dashed line) of precipitation, all conditioned on CWV, are also

shown for reference. For PR (at 5 km and 0.25°) and TMIv7.1 (0.25°), the

bands at the bottom indicate bins with 0 ≤ P < 0.05 mm h−1. Note that

the minimum nonzero P for raw PR data at 5 km is ∼0.11 mm h−1, and the

TMIv7.1 precipitation at 0.25° is discretized with units 0.1 mm h−1. . . . . . 62

3.6.3 Precipitation rate-weighted Joint-PDF of CWV relative to critical and precipi-

tation rate P , i.e., the precipitation contribution as a function of CWV and P ,

for the 70-mm q̂sat-bin in the tropical western Pacific. (a) linear axes; (b) log-

linear axes; (c) log-log axes. The data correspond to the Joint-PDF of CWV

relative to critical and P in Fig. 3.6.1a, using PR 2A25 precipitation at 0.25°.

The colors indicate the values of CWV relative to wc. . . . . . . . . . . . . . . 64

3.A.1 TMIv7.1 CWV (upper; units: mm) and precipitation rate (lower; units: mm

h−1) for TRMM descending passes on 12 October 2013. In the upper panel,

regions of missing CWV are shown by black. The image in the lower panel is

directly downloaded from the RSS website. The three tropical cyclones, from

left to right, are Phailin, Nari, and Wipha. . . . . . . . . . . . . . . . . . . . . 69

3.A.2 Probability of missing CWV as a function of precipitation rate and q̂sat (colors;

units: mm) for four tropical ocean basins calculated using TMIv7.1 CWV and
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3.A.3 Joint-PDF (log10) of q̂sat and T̂ over tropical oceans calculated using Reanalysis-

2 temperature for 2005. The color advances when the values of the joint-PDF

doubles (100.3 ∼ 2). The gray dashed line represents the linear regression with

slope ∼ 4.9 mm K−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.A.4 Similar to Fig. 3.3.1 of the main text but conditioned on T̂ instead of q̂sat as

the measure of tropospheric temperature. Conditionally averaged precipitation

rate (1st column from left), conditional probability of precipitation (2nd col-

umn), probability density function of all events (3rd column) and precipitating

events only (4th column) as a function of CWV and T̂ (units: K) for four trop-
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(EPac; 2nd row), Atlantic (Atl; 3rd row), and Indian Ocean (Ind; 4th row).

Results are shown using TMIv7.1 data and Reanalysis-2 temperature for the

period of 01 Jun 2002–31 May 2014 compiled at 0.25° (colored markers) and

0.5° (black dots). Underpopulated bins at 0.25° (PDF < 10−5) are indicated by

open circles, and those for 0.5° are omitted. Triangles represent the correspond-

ing q̂sat values. Here, precipitating events are defined by P > 1.05 mm h−1.

The CWV data is gap-filled using nearest available values, and data from pix-

els within 2.5° of land are excluded to avoid potentially erroneous temperature

values arising from spatial interpolation. . . . . . . . . . . . . . . . . . . . . . 73

3.A.5 Convective transition statistics for each ocean basin, as in Fig. 3.A.4 for 0.25°

(colored markers) and 0.5° (dots), but for each T̂ shifted by the corresponding
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dot line, with slope indicated by α. The top row is identical to the bottom row
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3.A.7 Convective transition statistics as in Fig. 3.A.4 for 0.25° (colored markers), but

with CWV gap-filled using Max. The black dots are a duplication of the colored

markers in Fig. 3.A.4 (the statistics for 0.25° with CWV gap-filled using Nearest). 79

3.A.8 Convective transition statistics as in Fig. 3.A.4 for 0.25° (colored markers),

but with CWV gap-filled using Mean. The black dots are a duplication of the

colored markers in Fig. 3.A.4 (the statistics for 0.25° with CWV gap-filled using

Nearest). The 274-K T̂ -bin for WPac requires the additional effort of choosing

a larger Pr to collapse the statistics, which is not done here for illustration

purpose (section 3.A.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
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3.A.10 Convective transition statistics as in Fig. 3.A.55 for 0.25° (colored markers)
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0.5° (black dots), both with CWV gap-filled using Mean. The 274-K T̂ -bin

for WPac requires the additional effort of choosing a larger Pr to collapse the

statistics, which is not done here for illustration purpose (section 3.A.3). . . . 83
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3.A.13 PDF of T̂ on a log10-scale as a function of geographical location calculated
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3.A.14 (a) The probability of CWV exceeding critical (offset by −1.5 mm) as a func-

tion of geographical location, calculated using TMIv7.1 CWV and Reanalysis-2

temperature. (b) The precipitation climatology calculated using TMIv7.1 pre-

cipitation. (c) Same as in (b) but for CWV. (d) The conditional probability

[Prob(cwv > wc − 1.5 mm| P > 0.25 mm h−1)] calculated using TMIv7.1 data

and Reanalysis-2 temperature. Here, (a)-(d) are for the same period 01 Jun

2002–31 May 2014 and resolution 0.25°, and the critical CWV wc(q̂sat) is as in

Fig. 3.3.3 (top center; in the main text) averaged over four basins. . . . . . . . 86

3.A.15 Similar to Fig. 3.3.3 of the main text but with the ground-based precipitation

from the Manus and Nauru ARM sites replaced by the TRMM 3B42 precipita-

tion averaged around the sites (2.25° × 2.25°). (Left) Collapsed conditional pre-

cipitation complied using different datasets, including (i) TMIv7.1 CWV and

precipitation (colored dots) with underpopulated bins plotted as open circles,

(ii) TMIv7.1 CWV and PR 2A25 precipitation (gray dots) excluding underpop-

ulated bins, and (iii) ARM site CWV and 3B42 precipitation (2.25°-averaged)

for Manus (diamonds) and Nauru (squares) Islands in the tropical western Pa-

cific (WPac). Reanalysis-2 temperature is used for (i)-(iii). For (i) and (ii),

bins from all four basins are plotted, with data at 0.25° resolution for 01 Jun

2002–31 May 2014 and coastal regions excluded. For (iii), the curves are shifted

by the corresponding wc given the temperature q̂sat or T̂ ) time series according

the wc-temperature relation for WPac. (Right) Same as in the left panel, but

for conditional probability of precipitation defined by P > 1.05 mm h−1. . . . 88
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4.3.1 Conditionally averaged precipitation rate (a), conditional probability of pre-

cipitation (b), PDFs of all events (c), and PDFs for precipitating events as

a function of CWV and q̂sat (colors; units: mm) (d) for the tropical western

Pacific (20°S-20°N, west of 180°). In (a)-(d), results are using TMIv7.1 precip-

itation rate and CWV and Reanalysis-2 temperature compiled at 1° (colored

markers). Triangles represent corresponding q̂sat values, which indicate where

the column is approximately saturated, and underpopulated bins (PDF< 10−5)

are omitted. (e)-(h) Same statistics as in (a)-(d) but at 0.25° to include more

events, and with the statistics collapsed by shifting CWV for each q̂sat by the

corresponding critical CWV wc from (k), and with the PDFs scaled by values

at wc. (i) Collapsed conditionally averaged precipitation rate at 0.25° as in (e)

but with data from three additional tropical (20°S-20°N) ocean basins (colored

dots) and with TMIv7.1 precipitation rate replaced by PR 2A25 precipitation

rate (gray dots). (j) Same as in (i) but for conditional probability of precipita-

tion [P > 1.05 mm h−1; different from the 0.25-mm h−1 threshold for (b) and

(f)]. (k) Critical CWV wc as a function of q̂sat for the four tropical ocean basins,

with the gray line indicating the q̂sat value where the column is approximately

saturated. (l) Critical column RH defined as wc/q̂sat. In (k)-(l), the values of

wc are calculated by fitting the conditionally averaged precipitation rate in the

range 3-5 mm h−1 using TMIv7.1 data and Reanalysis-2 temperature compiled

at 0.25°. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.1 Same as in Fig. 4.3.1 but compiled using the AM4G9 model output (∼1°,

hourly). Statistics in Figs. 4.3.1a-4.3.1d are reproduced as smaller markers

in (a)-(d) here for visual reference, and critical values in Figs. 4.3.1k-4.3.1l

reproduced in (k)-(l) as gray makers. In (i)-(j), statistics from the four tropical
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4.4.3 Same as in Fig. 4.4.1 but compiled using the CAM5.3 model output (∼1°, hourly).104
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4.5.1 (a) Joint-PDF (color shading; units: mm−2 h), on a log10-scale, of CWV

relative to critical and precipitation rate P for the 74.5-mm q̂sat-bin in the

tropical western Pacific compiled at 1° using the PR 2A25 precipitation rate,

TMIv7.1 CWV and Reanalysis-2 temperature. The color increments corre-

spond to a doubling of the PDF value (100.3 ∼ 2). The ”non-precipitating”

bins (0 ≤ P ≤ 0.05 mm h−1) are enlarged in the vertical along the bottom for

visual clarity. The conditional mean (solid blue), median (solid magenta), vari-

ance (dashed blue), and probability of precipitation (P > 0.05 mm h−1; orange

dots), all as a function of CWV, are also displayed for reference (note separate

y-axes for precipitation and probability; variance is on the same axis as precip-

itation, although in different units). (b) Same as in (a) but with the PR 2A25

precipitation rate replaced by TMIv7.1 precipitation rate. (c)-(f) Same as in

(a) but compiled using the hourly output from the AM4G9, AM4B6, CAM5.3,

and SPCAM, respectively. In (a)-(b), the gray shading represent where the

TMIv7.1 CWV value is capped at 75 mm and is hence unavailable. . . . . . . 117
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6 for visual reference. (b) Same as in (a) but with the PR 2A25 precipitation

rate replaced by TMIv7.1 precipitation rate. (c)-(d) Same as in (a) but for

a relatively cold q̂sat-bin and a relatively warm q̂sat-bin, respectively, compiled
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5.2.1 (a) Mean deep-convective mass flux profiles in the lower troposphere for mesoscale,

less-organized, and all precipitating convective events estimated from radar

wind profiler during the GOAmazon campaign adapted from (Schiro et al.

2018). (b) Theoretical response of convective mass flux to buoyancy tartares of

vertical extent 4 ≤ z ≤ 8 km and varying horizontal diameter D. The tartares

consist of randomly generated small cylindrical bubbles with a 7:3 warm-to-

cold bubble ratio (see Fig. 5.4.1a). The response profiles are the mean within

the diameter D and averaged over an ensemble of 10 tartare realizations, then

normalized using values at z = 3 km. (c) Convective precipitation contribution

(curves) and precipitation rate (markers), for MCS and non-MCS features,

conditioned on convective feature size measured by chord length (blue) and

square root of area (red). The areas under the MCS and non-MCS precipita-

tion contribution curves sum to unity. Feature size is solely based on contiguous

convective precipitation pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.3.1 Cross section of vertical mass flux response (color shading; kg/m2s2) to idealized

buoyancy forcing with constant B = 0.01 m/s2 in cylindrical bubbles of 8-km
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indicate zero response. The colorbar range is chosen to highlight details below

and above the bubbles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3.2 (a) Monochromatic solutions of vertical velocity response (lines) to individual

buoyant layers located at different heights (shadings) with horizontal wave-

length L = 5 km. (b) As in (a), for a deeper layer (red) and varying L. (c) As

in (b), with additional thin layers of negative buoyancy, for vertical mass flux
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5.4.1 (a) A realization of a net-positive buoyancy tartare—an aggregate of stochasti-

cally generated smaller positive (red) and negative (blue) buoyancy elements—

of horizontal diameter D ≈ 10 km and vertical extent 4 ≤ z ≤ 8 km. Buoy-

ancy value within individual element is approximately constant, and of equal

strength for warm and cold elements. The ratio of numbers of warm to cold

elements is set to 7:3. (b) Theoretical response of convective mass flux to an

ensemble of 10 tartare realizations as in (a), for varying D. The average buoy-

ancy over each tartare is rescaled to +0.01 m/s2. Each curve represents the

mean profile within the tartare diameter. (c) As in (a), with vertical extent

2 ≤ z ≤ 10 km and tilt ≈ 27◦ (∆z/∆x ≡ 2). (d) As in (b), but for vertically

tilted tartares as in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.B.1 (a) An idealized buoyancy pattern bh of diameter 1 km (gray contour) and a

realization of stochastically-generated net-positive pattern of diameter ≈ 10

km (color shading). The latter is constructed using 1,000 copies of bh, with

their centers randomly spread within a circle of diameter 10 km, magnitudes

uniformly distributed in [0, 1], and 7:3 positive-to-negative sign ratio. (b) The

Fourier coefficients of bh (gray thick) and 10 realizations of the stochastically-

generated net-positive patterns (colors) for wavenumbers k ≥ 0, ` = 0. The

Fourier coefficient of the pattern in a is indicated by the thick magenta line.

Here, the Fourier coefficients are computed in a 32 km×32 km doubly-periodic

domain, normalized by their values at k = ` = 0. . . . . . . . . . . . . . . . . 159
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CHAPTER 1

Overview

Despite the importance of moist convection in regulating the energy budget of the Earth

system and the impacts on human society—primarily via precipitation or the lack thereof—

the parameterization of moist convection in general circulation models (GCMs) has always

remained a challenging yet fascinating subject, even with recent advances in cloud-resolving

simulations and machine learning techniques. A major physical pathway contributing to the

uncertainty of the representation of moist convection is entrainment—i.e., the process of

environment air mixing into convective updrafts.

Prior studies have demonstrated a clear relationship between precipitation and and lower-

free-tropospheric humidity. This relationship is consistent with the environment temperature

and humidity impacting the buoyancy of convective updrafts via entrainment. However, a

conclusive causal relationship has yet to be established. Adding another piece to the puzzle

is the vertical structure of entrainment. The profiles of entrainment rate and convective

mass flux are closely related (if not mathematically identical), and are central to the for-

mulation of convective parameterizations. Efforts have been made to quantify entrainment.

Recently, primarily via radar wind profiler observations, but consistent with earlier large-

eddy simulations and aircraft measurements, it has been noted that convective updrafts tend

to draw air mass from a deep layer (0∼4 km) through organized inflow under a wide range of

conditions—in contrast with the conventional view of entrainment through localized, small-

scale mixing. This dissertation presents published and to-be-published work addressing these

aspects of the moist convective physics and the entrainment process, organized as follows.
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Chapter 2—through a set of parameter perturbation experiments in the NCAR CESM—

addresses the causality of the observed precipitation–humidity relationship, and investigates

how the environment reacts to different values of entrainment parameters in the deep-

convective parameterization.

Chapter 3 complies and extends the set of statistics characterizing the precipitation–

moisture relationship from observations and reanalyses. The sensitivity of these statistics to

spatial-temporal resolution and instrumentation is examined.

In chapter 4, the observed statistics in chapter 3 are compared with high-frequency (1-6

hourly) output from a set of GCMs as diagnostic tools targeting deep-convective parameter-

izations, going beyond the conventional diagnostics based on performance metrics.

Looking for a simple explanation to the observed deep inflow, chapter 5 studies the

nonlocal response of vertical velocity field to buoyancy under the anelastic framework.
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CHAPTER 2

Tropical convective transition statistics and causality

in the water vapor-precipitation relation

Abstract

Previous work by various authors has pointed to the role of lower-free-tropospheric hu-

midity in affecting the onset of deep convection in the tropics. Empirical relationships

between column water vapor (CWV) and precipitation have been inferred to result from

these effects. Evidence from previous work has included deep convective conditional insta-

bility calculations for entraining plumes, in which the lower-free-tropospheric environment

affects the onset of deep convection due to the differential impact on buoyancy of turbulent

entrainment of dry versus moist air. The relationship between deep convection and water

vapor is, however, a two-way interaction because convection also moistens the free tropo-

sphere. The present chapter adds an additional line of evidence toward fully establishing the

causality of the precipitation-water vapor relationship. Parameter perturbation experiments

using the coupled Community Earth System Model (CESM) with high-time-resolution out-

put are analyzed for a set of statistics for the transition to deep convection, coordinated

with observational diagnostics for the Green Ocean Amazon (GOAmazon) campaign and

tropical western Pacific Atmospheric Radiation Measurement (ARM) sites. For low values

of entrainment in the deep convective scheme, these statistics are radically altered and the

observed pickup of precipitation with CWV is no longer seen. In addition to helping cement

the dominant direction of causality in the fast-time-scale precipitation–CWV relationship,

the results point to impacts of entrainment on the climatology. Because at low entrainment
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convection can fire before tropospheric moistening, the climatological values of relative hu-

midity are lower than observed. These findings can be consequential to biases in simulated

climate and to projections of climate change.

2.1 Introduction

Previous work by various authors has identified relationships between humidity in the lower

free troposphere and the onset of deep convection in the tropics, and entrainment processes

have been hypothesized to be instrumental in explaining these relationships. Analysis of

TOGA COARE data and subsequent modeling studies revealed that intrusions of dry air

above the planetary boundary layer into the Western Pacific warm pool region tend to in-

hibit deep convection locally (Brown and Zhang 1997, Parsons et al. 2000, Redelsperger et al.

2002). The cloud-resolving model (CRM) and single-column model simulations confirmed

the sensitivity of moist convection to mid-tropospheric humidity (Derbyshire et al. 2004). In

the case of weak vertical wind shears, further CRM studies demonstrated that water vapor

in the lower atmosphere is more critical for the onset of deep convection than sea surface

temperature (Tompkins 2001). Over daily and monthly timescales, analysis of data provided

by the Special Sensor Microwave Imager (SSM/I) on board orbiting satellites together with

in situ measurements have revealed connections between column relative humidity (CRH)

in the atmosphere and precipitation (Bretherton et al. 2004, Sobel et al. 2004). Satellite

observations also showed a positive correlation between column water vapor (CWV) and

precipitation anomalies during Madden-Julian oscillation (MJO; Madden and Julian 1971)

events (e.g., Waliser et al. 2009). Analysis of general circulation model (GCM) simulations

found that the gross moist stability (GMS) of the atmosphere tends to lead MJO precipi-

tation, and the GMS reduction ahead of peak MJO precipitation is due mainly to vertical

advection (Benedict et al. 2014). Intercomparisons of GCM simulations have suggested that

the models reproducing the most realistic MJO capture a transition from low-level moisten-
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ing for light precipitation to upper-level moistening for heavy precipitation (Klingaman et al.

2015a,b). A number of studies have also examined various aspects of impacts of entrainment

on model simulations: sensitivity of climatology or MJO metrics to entrainment (e.g., Bech-

told et al. 2008, Zhu and Hendon 2015, Del Genio et al. 2012); the impacts of entrainment

characteristics on large-scale features like double-ITCZ bias in certain GCMs (Mapes and

Neale 2011, Oueslati and Bellon 2013, Hirota et al. 2014); the simulated diurnal cycle (Bech-

told et al. 2004, Del Genio and Wu 2010); the coupling with boundary layer processes (Rio

et al. 2009, Hourdin et al. 2013); the closure assumptions and entrainment representations in

convective parametrizations (Raymond and Blyth 1986, Kuang and Bretherton 2006, Romps

and Kuang 2010); and how the uncertainty of entrainment characteristics can contribute to

the uncertainty in projected climate changes (Sanderson 2011, Sherwood et al. 2014).

On fast (convective) timescales, satellite observations have also revealed an empirical

precipitation-CWV relationship. An outstanding feature of this relationship is the sharp

increase in precipitation rate, referred to as precipitation pickup, which occurs when CWV

exceeds a certain threshold value (Peters and Neelin 2006, Neelin et al. 2009). Also over the

fast timescale, analyses of in situ data collected at DOE Atmospheric Radiation Measure-

ments (ARM; Stokes and Schwartz 1994) sites over both tropical ocean (Nauru and Manus

Islands in the Tropical Western Pacific; Mather et al. 1998) and tropical land [ARM mobile

facility deployed at Manacapuru, Brazil as part of the Green Ocean Amazon (GOAmazon)

campaign; referred to as GOAmazon herein], have revealed associations among the onset

of deep convection and temporal and vertical humidity variations. These studies concluded

that lower free-tropospheric humidity affects the onset of deep convection because turbulent

entrainment of dry versus moist air has different impacts on buoyancy of convective plumes

(Jensen and Del Genio 2006, Holloway and Neelin 2009, 2010, Lintner et al. 2011, Schiro et al.

2016). Another conclusion was that CWV can be used as a proxy for environmental impacts

on conditional instability. Estimates of entraining plume buoyancies using radiosonde mea-

surements in the Tropical Western Pacific (Holloway and Neelin 2009) and Amazon (Schiro
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et al. 2016), together with tropical ocean basin satellite retrievals in comparison to climate

model diagnostics (Sahany et al. 2012) imply a substantial role for entrainment in explain-

ing the observed precipitation pickup, consistent with large-eddy simulation (LES) results

(Khairoutdinov and Randall 2006).

The evidence gathered from both observational and modeling approaches across various

temporal and spatial scales, therefore, clearly reveals connections between free-tropospheric

moistening and deep convection. Diagnostic studies and offline calculations from GCM out-

put, however, do not alone make a full case for the causality of the observed precipitation-

CWV relationship. This is because convection also acts to loft moisture (including conden-

sate which can subsequently reevaporate), and one must distinguish the active role of free

tropospheric moisture in affecting the onset of conditional instability from the hypothesis

that CWV simply increases passively in association with convection due to the effect of

convective moistening of the column.

The present chapter focuses on the dominant direction of causality in the fast-timescale

precipitation-CWV relationship, and addresses the impacts of entrainment on the two-way

interaction between deep convection and environmental humidity. Our methodology is based

on analysis of parameter sensitivity experiments (Bernstein and Neelin 2016) in the Commu-

nity Earth System Model (CESM), which is able to simulate the sharp precipitation pickup

with the default setting (Sahany et al. 2012, 2014). We show that the set of statistics as-

sociated with the transition to deep convection (or convective transition statistics) in the

CESM can be radically altered if different values of entrainment are prescribed in the deep

convective scheme. In particular, the pickup of precipitation with increased CWV is no

longer captured at low values of entrainment. The sensitivity of these statistics to reevapo-

ration is also examined to quantify any contribution to the precipitation pickup that might

arise from reevaporation of condensate. Furthermore, the results demonstrate that entrain-

ment has first order effects on the simulated climatologies of precipitation, humidity, and

temperature. Because at low entrainment convection can fire before the lower troposphere
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is moistened, the climatological values of relative humidity remain lower than observed in

the tropics. Showing a dramatic change in convective transition statistics in absence of the

entrainment pathway in a model with the two-way interaction of convection and moisture

contributes an additional line of evidence for the direction of causality in the precipitation-

water vapor relationship. These findings can be consequential to a better understanding

of both climatological biases and improved simulations of climate change, underscoring the

importance of the examined causal pathway.

The rest of this chapter is organized as follows. Section 2.2 gives the setup of the pa-

rameter perturbation experiments, together with a brief description of the CESM and the

deep convective scheme. Section 2.3 examines composite time series of simulated precipita-

tion, CWV, and other relevant variables for heavily precipitating events. After background

on impacts of entrainment on climatology in section 2.4, section 2.5 presents the simu-

lated convective transition statistics corresponding to different values of entrainment, and

reevaporation rate in section 2.6. The convective transition statistics are coordinated with

observational counterparts in Schiro et al. (2016). Section 2.7 further explores the model

composite time series, focusing on the differences due to different entrainment values and

ocean-land contrast. Finally, section 2.8 draws conclusions based on the effects of entrain-

ment and reevaporation on the fast-timescale statistics and discusses potential applications

of our results for model diagnostics.

2.2 Model and data

The simulations analyzed here are integral parts of a set of parameter perturbation experi-

ments (Bernstein and Neelin 2016) with the fully coupled Community Earth System Model

version 1.0.5 (CESM1; Hurrell et al. 2013) using CMIP5 historical greenhouse gas and aerosol

forcing. The CESM simulations start from 1 January 1976, using an existing standard pa-

rameter simulation with the Community Climate System Model version 4 (CCSM4, a subset

7



of CESM1; Gent et al. 2011) as the initial condition. In CESM terminology this approach

to starting a simulation is referred to as branch runs and aims to reduce the time required

for model spin-up. The atmosphere component of CESM is the Community Atmosphere

Model (CAM; Neale et al. 2010) with horizontal resolution of about 1.9° × 2.5° (latitude

by longitude 144 × 96 grid points) and 26 levels in the vertical. The ocean component is

the Parallel Ocean Program (POP; Smith et al. 2010) with horizontal resolution of about 1°

(gx1v6; 384 × 320 grid points) and 60 levels in the vertical.

The CAM deep convective scheme (Zhang and McFarlane 1995, ZM hereafter) is based on

an entraining plume calculation modified to include turbulent mixing (Neale et al. 2008) and

convective momentum transports (Richter and Rasch 2008). The reevaporation of convective

precipitation is also taken into account following Sundqvist (1988). Here we concentrate

on two sets of experiments in which the only parameter changed are the parcel fractional

mean entrainment rate (dmpdz), which controls the entrainment of environmental air in

the convective plume, and the convective precipitation evaporation rate (zmconv ke, or ke

hereafter), which controls the reevaporation of convective precipitation, respectively. Note

that dmpdz is only used in the entraining plume calculations for the cloud base mass flux

closure in the ZM scheme. In the buoyancy computations for the rising plume at each

level, a fraction (determined by dmpdz) of environmental air relative to updraft mass flux is

assumed to be mixed into the plume, conserving dry static energy and moisture. Entrainment

thus affects convection directly through the entraining plume calculations, though it may

have other indirect effects. Also note that dmpdz affects only deep convection (the shallow

convection is handled separately). The CESM default values are dmpdz = 1 in units of

10−3 m−1 and ke = 1 in units of 10−5 (kg m−2s−1)−1/2s−1. The range of dmpdz explored

is from 0 to 2 with default ke, and the range of ke explored is from 0.1 to 10 with default

dmpdz. For dmpdz 6= 1 or ke 6= 1, the initial state is slightly out of equilibrium due to the

branch-run approach. The timescale for the simulated climate to effectively equilibrate is

about 2 years for hydrological cycle statistics including the precipitation-CWV relationship
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(Bernstein and Neelin 2016), although statistics affected by deep ocean circulation may

not be fully equilibrated. Therefore, we can interpret that the differences obtained in the

simulated convective transition statistics and climatology are due to varying entrainment or

reevaporation, and not to initial transients. In addition to convective precipitation given by

ZM, the CAM also includes a calculation for large-scale precipitation, which can be produced

when the environment is saturated due to e.g., detrainment or moisture convergence.

The CESM simulations we analyze cover the period of 1976-2005 (1976-1998 for auxiliary

cases dmpdz = 0.08, 0.16, 0.25) to overlap with the data available from the Global Precip-

itation Climatology Project (GPCP; Adler et al. 2003), which is used as our baseline for

comparison. For more details regarding the setup and coordinated parameter perturbation

experiments under global warming conditions, see Bernstein and Neelin (2016).

Capturing the fast-timescale convective onset requires special output from the CESM

simulations. The output we analyze includes a set of relevant 2D fields at every time step

for which they are computed (30 min), which can therefore be interpreted as instantaneous

values as opposed to averages when model histories are written at multiple time steps.

The variables selected for analysis comprise convective and total (convective + large-scale)

precipitation rates (Pc and P , respectively), column-integrated water vapor (CWV), mass-

averaged column air temperature (T̂ ), and column-integrated saturation specific humidity

(q̂sat). Here the column is defined as 1000-200 mb. The Kahan summation algorithm (Kahan

1965) is adopted for compiling the convective transition statistics to avoid possible round-off

error. For verification we use observational and reanalysis datasets, including the Remote

Sensing System (RSS) Version-7 microwave radiometer total columnar water vapor values

(Hilburn and Wentz 2008), precipitation from the GPCP (version 2.2), and temperature

profile from the NCEP-DOE AMIP-II Reanalysis (Reanalysis-2) dataset (Kanamitsu et al.

2002).
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2.3 Temporal correlation between CWV and precipitation — The

problem of determining causality

Previous studies analyzing observations in the maritime and continental tropics have ex-

amined composite time series centered at locally high (total) precipitation, and found that

CWV and precipitation are closely related, pointing to the importance of atmospheric mois-

ture to the onset of deep convection (Holloway and Neelin 2010, Adams et al. 2013). In this

section, we briefly review similar time series composites from the model to verify that causal

relationships are difficult to infer from the temporal sequence alone.

Specifically, we construct composite time series of CESM output for heavy convective

precipitation events at geographical locations corresponding to Manus Island (2.1°S, 146.9°E;

Tropical Western Pacific) and the GOAmazon mobile facility near Manaus (3.1°S, 60°W;

Amazon), where ARM mobile facility observational data are available (Fig. 2.A.1). Here,

heavy convective precipitation events are defined as having convective precipitation rates

exceeding the mean convective precipitation rate averaged over all convectively precipitating

events with respect to the threshold value of 0.1 mm h−1 within a 96-hour window at the

single grid point closest to the specified location. Figure 1 shows such composites (together

with those of total precipitation), centered at heavy convective precipitation events in the

standard entrainment case (dmpdz = 1). The qualitative features indicated by the curves

in Fig. 2.1 are robust with respect to the value selected for the threshold defining heavy

precipitation, and do not change significantly if the composites are centered at locally high

total precipitation (see Fig. 2.C.1). The time series of each individual heavily precipitating

event may look very different from the composites shown here (e.g., see Fig. 2 in Holloway

and Neelin 2010).

At both the maritime and continental location, the values of CWV increase (decrease)

before (after) the Pc maximum, with a broad maximum surrounding the sharp precipitation

maximum. This is consistent with short duration precipitation events occurring within a
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Figure 2.1: Model composite time series centered at locally high convective precipitation (defined as being

greater than the mean of all convectively precipitating events with respect to the threshold of 0.1 mm

h−1) within a 96-hour window for the standard entrainment case (dmpdz = 1). The top panels show the

total (black) and convective (red) precipitation. Dotted curves in all panels represent ±1 standard error.

The qualitative features indicated by these curves are robust with respect to the threshold defining heavy

precipitation. See Supplement for composites centered at locally high total precipitation and composites

calculated using observational data.
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high water vapor environment that tends to have longer temporal autocorrelation. Both

locations are influenced by a temperature diurnal cycle, represented by q̂sat, which is used

here as a proxy for temperature. The column relative humidity CRH ≡ CWV/q̂sat provides

one measure of the relationship to temperature, i.e., how far the column is from saturation.

We note that the main impact of CWV to convection occurs via conditional instability, for

which the temperature dependence is subtler than simple column saturation (Sahany et al.

2014). Vertical structure changes can reduce the usefulness of CRH relative to other mea-

sures of temperature (Neelin et al. 2009), such as lower tropospheric layer relative humidity.

In climatological analysis in section 2.4, we use CRH to account for large-scale temperature

changes among experiments with different parameter values; CRH provides a useful measure

for such equilibrated situations. At Manus Island (tropical maritime), the temporal relation-

ship of CRH to Pc is similar to that of CWV. At the GOAmazon site (tropical continental),

the diurnal cycle is stronger as seen in q̂sat (which is strongly influenced by boundary layer

temperature). Precipitation exhibits modest diurnal cycle in these composites, while that

of CWV is small. CRH has a stronger temporal structure that is not closely related with

precipitation.

The model composites at Manus Island in the standard entrainment case shown in Fig. 2.1

capture neither the magnitudes of precipitation rate nor the rapid CWV increase due to

mesoscale processes found with observations (Fig. 2.A.1; Holloway and Neelin 2010, Fig. 7).

This is at least partially due to the model resolution. Nevertheless, the composites from the

standard entrainment case capture the relationship between environmental humidity and pre-

cipitation that has been seen from observations. The model composites at the GOAmazon

site, over land, show a large amplitude of the diurnal cycle in comparison with observations

(Fig. 2.A.1; Adams et al. 2013, Fig. 2). The composites from both the model and observa-

tions show that CWV increases and decreases rather symmetrically near the precipitation

maximum over both tropical maritime and continental locations examined. These features

could be consistent with either the hypothesis that lower free tropospheric moisture has the
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dominant effect on convection via entrainment or the alternative hypothesis that convection

simply tends to moisten the atmosphere (through detrainment or reevaporation). These,

however, due to the lack of asymmetry in the lead-lag relationship, are not enough to infer

causality—that is, to determine whether entrainment results in the observed precipitation

pickup.

In another line of evidence, radiosonde measurements from tropical ARM sites (Nauru,

Manus, and GOAmazon) have shown that the moisture increase prior to deep convection

tends to be in the lower free troposphere, while it tends to be in the upper troposphere after

precipitation (e.g., Fig. 5 in Holloway and Neelin 2009; Fig. 7 in Schiro et al. 2016), consistent

with composites in (Sherwood and Wahrlich 1999, Figs. 5 and 6). Such changes of vertical

moisture structure associated with precipitation, are potentially consistent with a causal

role for lower free tropospheric water vapor via entrainment, with the upper tropospheric

changes due mainly to convective moistening. However, they do not alone establish causality

of the observed precipitation-CWV relationship. Here we address this question by examining

CESM simulations subject to different values of entrainment and reevaporation rate.

2.4 Climatological sensitivity to entrainment

Before turning to fast-timescale statistics, we provide a sense of changes at the largest tropical

scales in the set of parameter sensitivity experiments with different values of entrainment.

As noted in the Introduction, entrainment can impact the climatology simulated by GCMs.

Figure 2.2 shows the simulated climatological values of CRH, T̂ , CWV, total and convective

precipitation (P and Pc, respectively), averaged over the tropics (20°S to 20°N) separately

for ocean and land points as a function of entrainment parameter dmpdz. For reference, the

corresponding values calculated using observational and reanalysis datasets are also plotted

at dmpdz = 1.8. As entrainment increases, average CRH over ocean and land increases

monotonically and T̂ decreases monotonically, with the sharpest transition for dmpdz less
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Figure 2.2: Average climatological values of simulated column relative humidity CRH, mass-averaged column

air temperature T̂ , column-integrated water vapor CWV, total precipitation P , and convective precipitation

Pc over the tropics (20°S-20°N) for different entrainment values dmpdz = 0, 0.08, 0.16, 0.25, 0.5, 1, 1.5 and

2. The standard errors associated with the 3-year tropical averages are smaller than those represented by

the marker size. For comparison, the corresponding values calculated using RSS CWV (over ocean), GPCP

precipitation, and Reanalysis-2 temperature, are also plotted at dmpdz = 1.8 (only for visual clarity).
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than 0.5. Averaged CWV also increases drastically as dmpdz increases over both ocean and

land for dmpdz less than 0.5, after which it exhibits a slight decrease with further increase in

dmpdz. This decrease at high entrainment is likely associated with decreasing T̂ , and CRH

reasonably accounts for this temperature effect since the relationship between the boundary

layer and free troposphere is fairly constant through this range. Averaged over the tropics,

total precipitation is relatively insensitive to entrainment (a slow decrease with increasing

entrainment over ocean, and small variations near low entrainment over land). Convective

precipitation decreases modestly as dmpdz increases over both ocean and land, with the

ratio of convective to total precipitation decreasing from 94% to 71% (ocean-land difference

within 2%). This is consistent with the more restrictive conditions on conditional instability

resulting in convection firing at higher CRH with increasing dmpdz, and with it being easier

to reach saturation in the vicinity of convection associated with these higher CRH values.

The simulated precipitation in comparison with observations indicates that the simulation

of the hydrologic cycle has room for improvement. Regardless of other metrics, the values

of simulated CRH, T̂ , and CWV alone in comparison to observations/reanalysis seem to

suggest a dmpdz value larger than the CESM default setting, which may degrade the model

performance in other aspects. For instance, Hannah and Maloney (2014) noted in the CAM5

hindcast experiments that higher entrainment values erroneously improve MJO predictive

skill because of tradeoffs between vertical MSE advection and cloud-radiative feedbacks.

The choice of an optimal set of parameters often involves tradeoffs among different metrics

in model performance (e.g., see Kim et al. 2011), and requires a systematic approach for

multiobjective optimization (Langenbrunner 2015).

The dependences of simulated CRH and CWV on entrainment shown in Fig. 2.2 are

consistent with what one would expect from entraining plume calculations, although ex-

plaining the detailed dependence of T̂ may requires further radiation budget analysis. Over

fast timescale, atmospheric moisture can be removed efficiently through convection-induced

precipitation, provided large-scale moisture divergence is negligible. When entrainment ef-
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Figure 2.3: Climatology of T̂ , CWV, P , and CRH calculated using observational and reanalysis datasets, and

CESM simulations for no-entrainment (dmpdz = 0) and standard-entrainment (dmpdz = 1) cases. White

contours in the uppermost panels indicate T̂ ≥ 270 K with 1 K increment, as well as the 4 mm/day contour.

The climatological values for CESM simulations are calculated using the 30-min output for the period of

1979-2004, and the values for observations/reanalysis use 6-hourly and monthly data. In particular, the RSS

CWV (also used for calculating CRH) is monthly mean. The simulated CRH values calculated using the

30-min output are not very different from those calculated using monthly-mean output, hence justifying the

comparison here.

fects are included in the parameterization, convection can fire only when the environmental

humidity is high enough. Thus, entrainment effects result in a moister and relatively cool at-

mosphere than when these effects are neglected. In contrast, without entrainment, convection

occurs without preconditioning of environmental humidity, i.e., the lower free troposphere

does not have to moisten before conditional instability can occur. The environment thus fa-

vors a low humidity state, resulting in a moisture-depleted and relatively warm atmosphere.

These CESM cases that take into account convective moistening (including reevaporation)

demonstrate how the large-scale environment react to varying entrainment, serving as a

background for the convective transition statistics presented in the following section.

Complementary to Fig. 2.2, Fig. 2.3 shows the climatological values of T̂ , CWV, total

precipitation, and CRH from observational and reanalysis datasets together with those from
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CESM simulations for dmpdz = 0 and dmpdz = 1. Regarding the former datasets, we

show T̂ calculated using Reanalysis-2 and precipitation from GPCP, both of which are for

the 1979-2004 period. CWV is from RSS for the 1998-2014 period. The CRH is calculated

using the monthly RSS CWV and Reanalysis-2 temperature field, which is for the 1998-

2014 period. Although the observational datasets cover different periods and are subject

to different temporal resolutions, it does not affect our discussion. Comments on biases in

Reanalysis-2 CWV fields are included in the Supplement.

Overall, Fig. 2.3 shows that the no-entrainment case simulates the warmest and driest

atmosphere. In this case, the tropical-mean value of CWV is about 7 mm (or 13% in terms

of relative difference) lower than the default case, while the corresponding CRH is lower

by about 20% (or 27% in relative difference). Temperature contributes to this quantitative

difference. Although not the main focus here, it is worth remarking on certain aspects of

the climatological simulation. An overextension of the South Pacific Convergence Zone may

be noted in the Tropical Eastern Pacific, and the Atlantic Intertropical Convection Zone has

excessive precipitation just south of the equator; these issues are both common in climate

models (e.g., Mechoso et al. 1995, Lin 2007, Oueslati and Bellon 2015). Entrainment impacts

this quantitatively, but qualitatively these issues persist across all values of entrainment ex-

amined (including in the dmpdz = 2 case not shown here). Large differences in precipitation

occur at regional scales, but these scales can be affected by multiple parameters (Bernstein

and Neelin 2016). Examination of fast-process statistics is more directly relevant to the

relationships at the timescale of convection. These statistics can provide independent mea-

sures of the convective process that can reveal differences in behavior even when it would be

difficult to distinguish between effects of a parameter based on climatological metrics alone.
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Figure 2.4: The CESM-simulated convective transition statistics at Manus Island in the Tropical Western

Pacific for various entrainment (dmpdz) cases. The upper panels show the average total (color) and convec-

tive (gray) precipitation rate conditioned on CWV. The middle panels show the corresponding conditional

probability of total (blue; P > 0.1 mm h−1) and convective (gray; Pc > 0.1 mm h−1) precipitation. The PDF

of CWV for all (dark gray) and precipitating (blue; P > 0.1 mm h−1) events are shown in the lower panels.

In the upper panels, the colors indicate the corresponding CWV value, and the standard errors associated

with total precipitation rate are smaller than that represented by the marker size. Underpopulated bins

(PDF < 10−4) are trimmed, and do not affect the discussion here.

2.5 Entrainment impacts on convective transition statistics

We next turn to the simulated convective transition statistics for different values of dmpdz

compiled at fast timescales for two ARM sites at Manus Island in the Tropical Western Pacific

(Fig. 2.4), and the GOAmazon mobile facility in the central Amazon near Manaus, Brazil

(Fig. 2.5). For both locations we use model output sampled at the grid point including site

coordinates as well as two adjacent grid points to both the east and west at both sites. The

top panels in Figs. 2.4 and 2.5 show conditionally averaged precipitation rates for both total

(color) and convective (gray) precipitation as a function of CWV binned at 0.5-mm intervals.
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Figure 2.5: Same as in Fig.2.4, but using model output at the GOAmazon site. The standard errors associated

with total precipitation rate are plotted if greater than that represented by the marker size.

The middle panels show the corresponding conditional probability of total (blue; P > 0.1

mm h−1) and convective (gray; Pc > 0.1 mm h−1) precipitation. The bottom panels show

the probability distribution function (PDF) of CWV for all (dark gray) and precipitating

(blue; P > 0.1 mm h−1) events. Underpopulated bins (PDF < 10−4) are trimmed and do

not affect the discussion.

The convective transition statistics at tropical maritime and continental sites are qualita-

tively similar. For the standard case (dmpdz = 1), these statistics compare reasonably well

to observed measures of the pickup. Observational comparisons are available from earlier

studies at the ARM site at Nauru (0.5°S, 167°E; Holloway and Neelin 2009), and satellite

microwave retrievals over the Tropical Western Pacific (Sahany et al. 2012, 2014). A direct

comparison for the GOAmazon and Tropical Western Pacific ARM sites may be seen in the

coordinated observational paper (Schiro et al. 2016). In particular, the precipitation rate

sharply increases for CWV exceeding a threshold value, known as the critical CWV. The
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accompanying conditional probability of precipitation picks up and the PDFs peak around

this critical CWV. Quantitative discrepancies between model and observations do exist. For

example, the simulated precipitation rates appear to be smaller than in observations, while

the conditional probability derived from in situ data rarely reaches 80% (Schiro et al. 2016).

Higher precipitation rates are noted in higher-resolution CESM runs (Sahany et al. 2012,

2014).

Drastic differences in the simulated convective transition statistics presented in Figs. 2.4

and 2.5 occur in the low entrainment range. For the no-entrainment case (dmpdz = 0) the

precipitation pickup breaks down. At Manus Island, conditionally averaged precipitation

increases only modestly over a broad range of CWV values (Fig. 2.4, leftmost column). Over

land at the GOAmazon site (Fig. 2.5, leftmost column), the precipitation actually decreases

at high CWV. The probability of precipitation exhibits very different behavior than for the

standard case and the observations, and the PDF for precipitating events spreads across a

large range of CWV.

As entrainment increases, precipitation rate and conditional probability both evolve to-

wards increasing functions in CWV, and demonstrate clear signs of the observed pickup

when subject to substantial entrainment. The precipitation rate and conditional probability

curves shift towards higher CWV with increasing entrainment, consistent with the fact that

larger entrainment results in a more sensitive dependence of entraining plume instability on

environmental humidity. Larger entrainment also results in higher precipitation rates at the

high end of CWV. The mean and mode of CWV, as being indicated by the PDF and reflected

by the simulated climatology, increase as dmpdz increases from 0 to 0.5, and decrease slightly

after that. This shift in climatology in response to varying entrainment matches that we see

in Fig. 2.2. At high entrainment (dmpdz = 1.5 and 2), an even sharper increase of large-scale

precipitation with reduced convective precipitation at very high CWV is noticed over some

regions (e.g., the whole Tropical Western/Eastern Pacific basin, not shown), suggesting a

shift from the deep convection regime to the large-scale saturation regime as the CWV is
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driven to large-scale saturation.

It is clear that the model can reproduce the pickup only with substantial entrainment.

These convective transition statistics are drastically altered as dmpdz increases from 0 to

0.08. Further increase in dmpdz above 0.16 causes relatively minor changes in the pickup

behavior. These results apply for both maritime and continental tropics. The dependences

of climatological values on entrainment we see in Fig. 2.2, together with the convective

transition statistics shown in Figs. 2.4 and 2.5, clearly demonstrate the dominant direction in

the fast-timescale precipitation-CWV relationship, indicating that entrainment results in the

observed precipitation pickup, and the importance of environmental humidity to convective

onset, in line with previous studies.

2.6 Effects of varying precipitation reevaporation

Reevaporation of precipitation could be hypothesized to affect the relationship between pre-

cipitation and CWV but via a different mechanism, i.e. greater reevaporation of hydromete-

ors in a drier environment reducing surface precipitation. Kim et al. (2011, Fig. 12) found an

impact of reevaporation on pickup at daily timescale, in terms of CRH, in an earlier version

of CAM (i.e., the precipitation picks up at lower CRH when subject to lower reevaporation

rate). To evaluate the importance of this at the fast timescales most relevant to convection,

we examine another set of CESM cases with varying reevaporation rate ke. In the CAM,

reevaporation is modeled following Sundqvist (1988), where the evaporation rate of convec-

tive precipitation is proportional to (1− RH) and a prescribed value of ke. Here RH is the

relative humidity at each level.

The simulated climatologies in the tropics are insensitive to reevaporation, except that

the temperature decreases by about 1.5 K across the large range examined, and the precip-

itation rates over land decrease modestly, in response to increasing ke (see Fig. 2.B.1). The

corresponding convective transition statistics for the whole Tropical Western Pacific basin
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Figure 2.6: The CESM-simulated convective transition statistics in the Tropical Western Pacific (upper

panels) and at the GOAmazon site (lower panels) for various reevaporation (ke) cases. The plotted variables

are the total precipitation rate conditioned on CWV, conditional probability of precipitation (P > 0.1 mm

h−1), and PDFs of CWV for all and precipitating (P > 0.1 mm h−1) events. The standard errors associated

with total precipitation rate are plotted if greater than that represented by the marker size. Underpopulated

bins (PDF < 10−4) are trimmed.

(TWP; west to 170°W) and for the GOAmazon site are compiled in Fig. 2.6. Much like the

climatological responses, the precipitation pickup and the associated statistics (including

convective precipitation, not shown) are insensitive to ke across the two orders of magnitude

tested here (from 0.1 to 10), except for large ke values (5 and 10) for GOAmazon, where a

slight reduction in the highest conditional average rain rates at high CWV may be noted.

Though not the main focus here, the sensitivity noted in Kim et al. (2011) may be attributed

to changing temperature in response to varying reevaporation (see Figs. 2.B.1 and 2.B.2).

Overall, the insensitivity to reevaporation shown in Fig. 2.6 suggests that reevaporation

cannot be the primary cause for the precipitation pickup.
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2.7 Temporal relation between CWV and precipitation revisited

Figure 2.7 shows the same composites as in Fig. 2.1, but for the no-entrainment case. In

this case, one does not see an increase in CWV or CRH associated with the occurrence

of high precipitation. At Manus Island, there is essentially no change in CWV, CRH or

q̂sat when composited on precipitation. At the GOAmazon site for the no-entrainment case,

the diurnal cycle overwhelmingly predominates the variations in precipitation as well as in

CWV, CRH and q̂sat. Without dependence on lower tropospheric environmental humidity

set by entrainment, the influence of the diurnal cycle seems to be exaggerated. Diurnal

cycle aside, composites for both tropical maritime and continental locations are consistent

with the convective transition statistics (Figs. 2.4 and 2.5), showing that the precipitation

and environmental humidity are no longer closely related when entrainment is turned off,

and both the environmental humidity and temperature fail to serve as an indicator for

precipitation.

2.8 Discussion

This chapter analyzes simulations from a set of parameter perturbation experiments in

coupled CESM1 to determine the dominant direction of causality in the fast-timescale

precipitation-water vapor relationship. The results presented here include composite time

series centered at locally high precipitation (Figs. 2.1 and 2.7), the climatological responses

at the largest tropical scales to varying entrainment (Figs. 2.2 and 2.3), and the dependences

of the set of statistics associated with the transition to deep convection (referred to as con-

vective transition statistics; Figs. 2.4, 2.5, and 2.6) on entrainment and reevaporation. The

simulated convective transition statistics, in comparison to ground-based observations from

ARM sites in the Tropical Western Pacific and from the GOAmazon campaign, as well as

satellite microwave retrievals over tropical ocean basins lead us to conclude that entrainment

results in the observed pickup of precipitation with CWV. This conclusion is in line with pre-
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Figure 2.7: Same as in Fig. 2.1, but for the no-entrainment case (dmpdz = 0). Note that the scales of

the ordinates for plots at the GOAmazon site are different from those at Manus Island or those shown in

Fig. 2.1. At both sites, one can hardly differentiate total and convective precipitation, due to the lack of

large-scale precipitation, and the composites centered at locally high convective and total precipitation are

quantitatively similar in this case.
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vious studies including the conditional instability calculations for entraining plumes. Unlike

the offline entraining plume calculations, the CESM takes into account the two-way inter-

action between deep convection and environmental humidity, including moistening of the

environment through detrainment and parameterized reevaporation of hydrometeors. When

substantial entrainment is included in the deep convective parameterization, the composite

time series (Fig. 2.1) show that the CWV increases prior to and decreases after (convec-

tive) precipitation maximum, akin to the observed (Fig. 2.A.1; Holloway and Neelin 2010)

association with precipitation.

The high CWV associated with convection in these time series, and in the convective

transition statistics has been hypothesized to be due to the impacts of environmental hu-

midity on deep convection through entrainment in the lower free troposphere. The devil’s

advocate position, on the other hand, would be to postulate that these associations are sim-

ply due to the effect of convective moistening via detrainment or reevaporation. There is

not sufficient asymmetry in the lead-lag relationship to rule out convective moistening as

a major pathway. However, these parameter perturbation experiments add a new line of

evidence for the causal role of entrainment. With low values of entrainment in the deep con-

vective scheme (shallow convection is not affected), the convective transition statistics show

a breakdown of the precipitation pickup, and the composite time series of CWV and precip-

itation are no longer tied together. Convection in this case occurs without preconditioning

of environmental humidity, resulting in a dry and relatively warm atmosphere. In contrast,

with substantial entrainment, the high CWV associated with convection in the corresponding

composite time series and convective transition statistics indicate that convection cannot fire

until the lower free-tropospheric environment is moistened due to the impact on buoyancy

of turbulent entrainment of dry versus moist air, resulting in a moist and relatively cool

atmosphere. The pathway through reevaporation is likely inconsequential to the existence of

the pickup since varying the reevaporation rate by two orders of magnitude results in only

minor variations in the convective transition statistics, although it can quantitatively affect
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the climatology (Fig. 2.B.1).

As far as the precipitation-CWV relationship and its dependence on entrainment and

reevaporation is concerned, the convective transition statistics at tropical maritime and

continental sites are qualitatively very similar, though the convective transition statistics

are more sensitive to reevaporation over land, where the influence of the diurnal cycle at low

entrainment is also more significant.

Describing the convective transition statistics in terms of column-integrated values is pri-

marily motivated by the availability of observational CWV products, including the ground-

based radiometer data analyzed in the coordinated observational paper (Schiro et al. 2016).

It retains information of environmental impacts on conditional instability of the deepest

vertical structures of moisture variations, although not of more detailed vertical structure

variations. Quantitative differences in the precipitation pickup (e.g., critical CWV and q̂sat;

not shown) are observed across different ocean basins and may be attributed to this. One

way to quantify the uncertainties of convective transition statistics due to vertical struc-

ture is to treat these hidden factors as stochastic processes (e.g., Neelin et al. 2009) but

ideally additional information about vertical structure should be included (i.e., explicitly

distinguishing between boundary layer and lower free troposphere impacts on conditional

instability). Convective transition statistics in GCMs (Sahany et al. 2012, 2014) require

high-time resolution output or instantaneous samples of variables important for convection,

which are not yet standard output in most models.

The results here are obtained with a single coupled GCM (CESM) that uses a particular

convective parameterization. In this regard, our findings are model dependent. Neverthe-

less, our focus has been a specific process that is represented in a qualitatively similar way

in other current convective parameterizations. Differences among various convective param-

eterizations include the vertical profile of entrainment rate. Other studies have analyzed

simulations subject to different entrainment characteristics and have concluded that the

entrainment profile can impact large-scale features such as double-ITCZ bias (e.g., Hirota
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et al. 2014). The present chapter finds that the impacts of entrainment on the climato-

logical simulation at the largest tropical scales, while substantial, are not as dramatic as

those seen at the fast timescales analyzed here. This suggests that convective transition

statistics can provide additional diagnostics of model performance, addressing behavior at

timescales closer to the parameterized process. Examination of these fast-process statistics

in perturbed physics experiments helps to determine which aspects of the underlying physics

are being constrained by these metrics. This provides essential background as convective

transition statistics are used to calibrate GCMs. Quantitative comparisons require quan-

tification of dependence on temporal and spatial resolutions, as well as differences among

reanalysis/satellite retrieval and ground-based observational products. However, qualitative

conclusions such as the complete collapse of major features of the observations for low en-

trainment noted here are expected to be robust. More importantly, the model-based results

can answer questions that cannot be addressed with observations alone, such as the relative

importance of a particular physical process.
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APPENDIX

2.A Lead-lag relationship between CWV and precipitation
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Figure 2.A.1: Composite time series for CWV and precipitation rate centered at locally high (total) pre-

cipitation rate calculated using radiometer and rain gauge data (hourly mean) collected for the period of

1998-2010 at Manus Island (blue), and for the period 10 January 2014 through 20 October 2015 at the

GOAmazon site (red). The qualitative features indicated by these curves are robust with respect to the

threshold defining heavy precipitation. The maximum of precipitation composites is about 19 mm h−1 at

Manus, and about 18 mm h−1 at the GOAmazon site.

Figure 2.A.1 shows the composites centered at locally high total precipitation calculated

using the radiometer and rain gauge data (hourly mean) collected from the ARM site for the

period of 1998-2010 at Manus Island, and for the period from 10 January 2014 through 20

October 2015 during the GOAmazon campaign. Here high precipitation is defined as being

greater than the mean precipitation rate averaged over all precipitating events with respect

to the threshold value of 0.1 mm h−1.

At both locations, CWV gradually increases (decreases) before (after) the precipitation
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peaks, with more drastic variation occurs between ±6 hour time-lag, which could be at-

tributed to mesoscale processes. It is clear that CWV has a longer autocorrelation timescale

compared with precipitation. At the GOAmazon site, there are secondary precipitation

peaks 24 hours before and after the main peak, hinting to the diurnal cycle. At Manus Is-

land, the CWV slightly lags the precipitation maximum by about 7 min. (from the original

higher-time resolution data, not shown), and the precipitation rate outside the main peak is

invariant in time. Overall, the composites are rather symmetric.

The composites from the standard entrainment case (see Figs. 2.1 and 2.C.1) qualita-

tively capture the relationship between environmental humidity and precipitation seen from

observations, although quantitative differences do exist. For instance, the simulated precip-

itation as well as the CWV variation associated with strong precipitation are smaller than

in observations and have a longer timescale of increase prior and decrease after. The ampli-

tudes of the simulated diurnal cycle are probably exaggerated. These discrepancies may due

partly to the model resolution.

It is also worth noting that calculations of the simulated precipitation diurnal cycle using

the 30-year-long history at the geographical location of the GOAmazon site exhibit numerical

wiggles at 1-hour period (2 half-hour steps). These wiggles are not large enough to affect

conclusions here but serve as a reminder that examining models for convective timescale

processes can reveal imperfections in model numerics and implications for the fundamental

underlying physics.

2.B Climatological responses to varying reevaporation

Figure 2.B.1 shows the simulated climatologies averaged over the tropics as a function of

reevaporation rate ke. As in Fig. 2.2, values for ocean and land points are calculated sep-

arately, and the corresponding values from observations/reanalysis are also provided for

reference. Overall, the climatological responses to varying ke across the range examined here
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Figure 2.B.2: Same as in Fig. 2.6, but replace CWV with CRH.

are smaller compared with those for dmpdz as in Fig. 2.2. The average T̂ drops by about

1.5 K as ke increases from 0.1 to 10, while CWV changes about 1 mm. At the same time,

the average CRH increases by about 5%, associated with the changing temperature. Both

the total and convective precipitation rates are insensitive to increasing ke over ocean, but

decrease modestly over land. The ratio of convective to total precipitation is almost constant

(74 ± 1%), with slight reduction for ke = 10 (71% over ocean versus 69% over land). Thus

ke does have nontrivial impacts on the climatology, especially over land.

The simulated fast-timescale statistics for various ke values are compiled again in Fig. 2.B.2,

but with CWV replaced by CRH. These statistics show modest sensitivity to reevaporation,

but given the results in Figs. 2.6 and 2.B.1, this sensitivity is likely due to the change in

temperature. We have not broken out the convective transition statistics with conditional

averages on temperature, but previous results for observations and related versions of CESM

(Sahany et al. 2014) show that convective onset is not well approximated by constant CRH—

as q̂sat increases, the onset occurs at lower values of CRH. Thus the modest differences in
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Fig. 2.B.2 relative to Fig. 2.6 are likely an artifact of using CRH versus CWV to characterize

the impact of environmental humidity on conditional instability.

2.C Supplement

2.C.1 Lead-lag relationship between CWV and precipitation

Figure 2.1 shows the composite time series centered at locally high convective precipitation

using model output at Manus Island and the GOAmazon site for the standard entrainment

case. Figure 2.C.1 shows the model composites similar to Fig. 2.1, except that they refer

to total precipitation. Here the composites are centered at locally high total precipitation

(defined as being greater than the mean total precipitation rate averaged over all precipitating

events with respect to the threshold value of 0.1 mm h−1). There are some quantitative

differences between composites in Figs. 2.1 and 2.C.1. For instance, the q̂sat variation at the

GOAmazon site has larger amplitude when composited on convective precipitation. This

suggests that in the continental tropics, the diurnal cycle has more pronounced influence on

convection than on the overall precipitation. At Manus Island, the total precipitation time

series is rather symmetric in time-lag, and CWV very slightly leads the total precipitation

maximum. After the total precipitation peaks, both q̂sat and convective precipitation are

smaller compared with before. Details aside, the behavior in Fig. 2.C.1 is highly consistent

with the behavior seen in Fig. 2.1 based on convective precipitation.

2.C.2 Low-bias of NCEP Reanalysis CWV

It has been noted that the NCEP Reanalysis products consistently show a low bias for CWV

over the tropical oceans (Trenberth and Guillemot 1998, Trenberth et al. 2005). Figure 2.C.2

shows the CWV climatology from RSS and Reanalysis-2 and their difference. Figure 2.C.3

shows the CRH climatology calculated using the Reanalysis-2 temperature together with
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Figure 2.C.1: Model composite time series centered at locally high total precipitation (defined as being

greater than the mean of all precipitating events with respect to the threshold of 0.1 mm h−1) within a

96-hour window for standard entrainment case (dmpdz = 1). The top panels show the total (black) and

convective (red) precipitation. Dotted curves in all panels represent ±1 standard error. The qualitative

features indicated by these curves are robust with respect to the threshold defining heavy precipitation.
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RSS and Reanalysis-2 CWV as well as the precipitation from the GPCP. From Figs. 2.C.2

and 2.C.3, regions with high (low) precipitation over the tropical oceans usually have high

(low) CWV and CRH from satellite retrievals. Reanalysis-2 generally underestimates CWV

in comparison with satellite microwave retrievals in regions where CWV is high, and slightly

overestimates it in regions where CWV is low. This bias also results in the difference between

Reanalysis-2 and RSS CRH. Overall, Reanalysis-2 underestimates CWV over the tropical

oceans compared to satellite retrievals.

Given the evidence that the lack of entrainment in model physics leads to a drier at-

mosphere (see Figs. 2.2 and 2.3), we can conjecture that the low CWV bias in the NCEP
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Figure 2.C.3: The climatology of CRH calculated using RSS and Reanalysis-2 datasets and precipitation

from GPCP. The CRH values shown in the upper and middle panels are calculated using the RSS and

Reanslysis-2 CWV, respectively. The Renalysis-2 temperature field is used for both calculations.

Reanalysis results from the entrainment process not being properly modeled in the Simpli-

fied Arakawa-Schubert scheme (or SAS scheme; Pan and Wu 1995) used in the atmospheric

model component. In the SAS scheme, the level below 700 mb at which the moist static

energy reaches local maximum is first found as the starting point (SP) of the convection

in a model column. Then a parcel from the SP is taken upward, conserving its saturation

moist static energy, to find the level of free convection (LFC, or cloud base). After the SP

and LFC are found, the updraft mass flux is re-calculated by assuming that entrainment

occurs only between the SP and LFC, and 50% of the mass flux at the LFC originates at the
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SP. The parcel is assumed to be non-entraining above LFC up to the cloud top. Thus the

entrainment process is confined within a rather shallow layer instead of through the whole

column. This suggests that a revision of the entrainment process might help to improve this

aspect of the NCEP model and thus the reanalysis.
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CHAPTER 3

Convective transition statistics over tropical oceans for

climate model diagnostics: Observational baseline

Abstract

Convective transition statistics, which describe the relation between column-integrated

water vapor (CWV) and precipitation, are compiled over tropical oceans using satellite

and ARM site measurements to quantify the temperature and resolution dependence of the

precipitation-CWV relation at fast timescales relevant to convection. At these timescales,

and for precipitation especially, uncertainties associated with observational systems must be

addressed by examining features with a variety of instrumentation, and identifying robust

behaviors versus instrument sensitivity at high rain rates. Here the sharp pickup in pre-

cipitation as CWV exceeds a certain critical threshold is found to be insensitive to spatial

resolution, with convective onset occurring at higher CWV but at lower column relative

humidity as bulk tropospheric temperature increases. Mean tropospheric temperature pro-

files conditioned on precipitation show vertically coherent structure across a wide range of

temperature, reaffirming the use of a bulk temperature measure in defining the convective

transition statistics. The joint probability distribution of CWV and precipitation develops a

peak probability at low precipitation for CWV above critical, with rapidly decreasing prob-

ability of high precipitation below and near critical, and exhibits systematic changes under

spatial-averaging. The precipitation pickup with CWV is reasonably insensitive to time-

averaging up to several hours but is smoothed at daily timescales. This work demonstrates

that CWV relative to critical serves as an effective predictor of precipitation with only mi-
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nor geographic variations in the tropics, quantifies precipitation-related statistics subject to

different spatial-temporal resolution, and provides a baseline for model comparison to apply

these statistics as observational constraints on precipitation processes.

3.1 Introduction

Despite the ongoing improvement of weather and climate modeling in recent decades in

terms of model resolution and number of simulated processes, convective parameterization

remains a major contributor to the uncertainty of future projection (Sanderson 2011, Rowell

2012, Yokohata et al. 2012, Sherwood et al. 2014) and systematic biases in precipitation

and clouds persist. A non-exhaustive list of persistent biases includes the double-ITCZ bias

(Mapes and Neale 2011, Hirota et al. 2014), insensitivity of precipitation to environment

humidity (Oueslati and Bellon 2013), low bias in tropospheric humidity (Gonzalez and Jiang

2017), failing to capture the amplitude and propagation of MJO (Kim et al. 2014, Jiang et al.

2016, Jiang 2017), unrealistic statistics and surface storm tracks for tropical cyclones (Booth

et al. 2017), and incorrect precipitation diurnal cycle over land (Covey et al. 2016). These

biases also impact model diagnosis for short-term forecasting purposes, since models adopted

for weather forecasting or reanalysis share common components with climate models.

Many conventional diagnostics for climate models emphasize comparisons against long-

term climatology or variability at different timescales, and the model performance examined

by these metrics are affected by multiple factors. While sensitivity experiments with re-

spect to such metrics are useful in identifying important processes (Benedict et al. 2013,

2014, Boyle et al. 2015, Bernstein and Neelin 2016, Langenbrunner and Neelin 2017), the

contribution of certain processes can be difficult to isolate, making constraining model per-

formance challenging. As such, there is an emerging need for diagnostics targeting processes

and focusing on the most relevant timescales. This study presents an example of such process-

oriented diagnostics—the convective transition statistics—which focus on the fast-timescale
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deep convection in the tropics.

The sensitivity of moist convection to lower free-tropospheric humidity had been sug-

gested by the analysis of TOGA COARE and operational sounding data for the tropical

western Pacific (Brown and Zhang 1997, Sherwood and Wahrlich 1999, Parsons et al. 2000),

and was subsequently affirmed by numerical experiments (Tompkins 2001, Redelsperger et al.

2002, Ridout 2002, Derbyshire et al. 2004). Later observational and modeling studies pointed

to the importance of organized convective systems in determining the environment moisture

field (Tao and Moncrieff 2009, Yano et al. 2012, Moncrieff et al. 2017). Bretherton et al.

(2004) documented an empirical relationship between the column relative humidity (CRH)

and precipitation over tropical oceans at daily and monthly timescales in SSM/I satellite

retrievals. Based on the analysis of the same satellite observations at fast timescales, Peters

and Neelin (2006) noted a sharp increase in precipitation as the column-integrated water

vapor (CWV) exceeded a certain threshold, and, using the analogy to associated behavior

in continuous phase transitions, showed consistent relations among a set of statistics includ-

ing probability and variance of precipitation, and the distribution of CWV for precipitating

events. Subsequent studies have examined the dependence on tropospheric temperature

(Neelin et al. 2009) and how the statistics can be reproduced by simple stochastic models

(Stechmann and Neelin 2011, 2014). The plume buoyancy calculations based on ground-

based measurements at tropical ARM sites (Holloway and Neelin 2009, Schiro et al. 2016)

and the NCAR CAM5 simulations (Sahany et al. 2012, Kuo et al. 2017) have demonstrated

that entrainment is instrumental in explaining the observed precipitation-CWV relation,

and that there is not a land-ocean contrast and the relation is qualitatively robust. These

convective transition statistics characterize the dependence of tropical convection on bulk

measures of the water vapor-temperature environment.

The robust rapid increase in conditionally-averaged precipitation and conditional prob-

ability of precipitation as CWV exceeds a certain threshold (the “pickup of precipitation”)

derived from the tropical ARM sites have been used to constrain the entrainment param-
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eter in the NCAR CESM (Kuo et al. 2017). Given that precipitation-related statistics are

sensitive to resolution (Chen and Dai 2018, Klingaman et al. 2017), to allow for a more

quantitative comparison to model output subject to varying spatial resolution and temporal

frequency, the dependence of the convective transition statistics on spatial-temporal reso-

lution must be quantified. Moreover, the robustness to instrumentation, especially at high

rain rate, should be addressed to ensure the reliability of such diagnostics. The purpose of

this study is to quantify the resolution dependence and robustness of the statistics, provide

an observational baseline for model comparison, and to expand the set of related properties

that can be understood within this framework.

This chapter is organized as follows. Section 3.2 describes the datasets analyzed here.

The basic convective transition statistics, which build on those introduced in previous work

(e.g., Peters and Neelin 2006, Neelin et al. 2008), are presented in section 3.3 with the fol-

lowing additions: using newer datasets, assessing the spatial-resolution dependence of the

statistics, testing the robustness to instrumentation and evaluating sensitivity to the choice

of bulk measure of tropospheric temperature. Sections 3.4–3.6 explore new statistics charac-

terizing the convective transition. Section 3.4 examines the geographic variations, or the lack

thereof, of the effectiveness of CWV relative to critical as a predictor of precipitation, and

the associated dependences on spatial-temporal resolution. The sensitivity of the statistics

to time-averaging is discussed in section 3.5. The joint-PDF of CWV and precipitation, and

its dependence on spatial resolution and instrumentation, are shown in section 3.6. Finally,

section 3.7 summarizes the properties of convective transition statistics, and briefly discusses

their potential as diagnostic tools.

3.2 Datasets

Compiling the convective transition statistics requires column-integrated water vapor CWV,

precipitation rate P , column-integrated saturation humidity q̂sat ≡
∫
qsat[T (p), p]dp/g {here
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qsat[T (p), p] is the saturation specific humidity with respect to liquid water as a function of

temperature T (p) and pressure p}, and mass-weighted column-averaged temperature T̂ .

The primary source of CWV and P here is the TRMM Microwave Imager (TMI) retrieval

products processed by Remote Sensing Systems (RSS; algorithm v7.1; TMIv7.1 hereafter;

Wentz et al. 2015). The retrieved values include gridded (0.25° × 0.25°) snapshots of CWV

(units: 0.3 mm) and P (units: 0.1 mm h−1) over ocean, with no data available over land. The

TRMM Precipitation Radar (PR) 2A25 (v7; TRMM 2011a) and TRMM 3B42 (v7; TRMM

2011b) Rainfall Rate products are used for comparison. The 2A25 data provides snapshots

of P with resolution 5 km, and 3B42 provides gridded (0.25° × 0.25°) P every 3 hours. Note

that 3B42 is a merged product; as such, most values should be interpreted as instantaneous,

since P is observed during a specific 3-hour window rather than a computed 3-hourly mean.

Here, the TMIv7.1, 2A25, and 3B42 data for 01 Jun 2002–31 May 2014 are used.

The Microwave Radiometer (MWR) CWV and rain gauge P measurements collected

from the DOE ARM sites at Nauru (0° 31’ S, 166° 54’ E) for 1999-2008 and at Manus (2° 3’

S, 147° 25’ E) for 1998-2010 in the tropical western Pacific @(both with optical rain gauge;

Gaustad and Riihimaki 1996, 1998, Holdridge and Kyrouac 1997, 1998), and at the ARM

Mobile Facility near Manaus (3° 7’ S, 60° 1’ W) for 10 Jan 2014–20 Oct 2015 during the

GOAmazon campaign (with acoustic rain gauge; Schiro et al. 2016) are also used to study

the sensitivity of the statistics to instrumentation and time-averaging.

For column-integrated/averaged q̂sat and T̂ , with the column being defined as 1000-200

hPa, the 6-hourly 2.5° NCEP-DOE Reanalysis-2 (Kanamitsu et al. 2002) temperature is

adopted with necessary interpolation. Since the spatial and temporal autocorrelation scales

of temperature are expected to be large in the tropics, the interpolation is justified. To avoid

potentially erroneous temperature values from spatial interpolation (e.g., around the Andes

and New Guinea), data in the 2.5°-neighborhood of land pixels are excluded for some of the

presented statistics.

Note that the CWV datasets often do not record a CWV value in the presence of pre-
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cipitation, and thus gap-filling is required to re-construct missing data (see section 3.A for

Supplement). For algorithm choices used for the TMIv7.1 data, the probability of missing

CWV depends primarily on P , with the probability increasing from 0 to 1 almost linearly as

P increases from 2 to 9 mm h−1. This even affects the tropical mean precipitation, e.g., the

annual mean precipitation over tropical oceans (20°S-20°N) is reduced from 3.1 to 2.1 mm

day−1 by excluding precipitation without valid CWV retrievals. Therefore, it is necessary to

gap-fill these missing CWV values; otherwise, the information comprising the desired statis-

tics would be systematically distorted. Here the default is to simply fill the missing values

using the available CWV value at the geographically nearest pixel. The sensitivity of the

presented statistics to the gap-filling are included in Figs. 3.A.7-3.A.11. Similarly, the raw

CWV time series from the tropical ARM site MWR measurements are recorded every 20 s,

but exhibit gaps because of the “wet-window” effect. Gaps shorter than 6 hours are filled

using linear interpolation as described in Schiro et al. (2016). The gap-filled time series are

then used to calculate the mean time series at lower temporal frequencies (e.g., 5-min- or

hourly-average). Precipitation observations are available in the CWV gaps and do not have

to be interpolated.

Additionally, satellite CWV retrievals processed by RSS (including TMIv7.1) have a 75-

mm cap set by the algorithm. While CWV rarely exceeds 75 mm, operational soundings

occasionally record such events, e.g., weather stations in Ishigakijima (24° 20’ N, 124° 10’ E;

station number 47918) and Taipei (25° 02’ N, 121° 31’ E; 58968) recorded 80.03 and 82.54

mm at 00Z and 12Z, respectively, on 21 Aug 2013 under the influence of Typhoon Trami

(data from University of Wyoming Atmospheric Soundings). This serves as a reminder of the

imperfect observational systems, and one must keep in mind the uncertainties when applying

the presented statistics for model diagnosis.
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3.3 Dependence of precipitation-CWV relation on tropospheric

temperature and spatial resolution

3.3.1 Basic features of convective transition statistics

Figure 3.3.1 shows the basic convective transition statistics, including the precipitation rate

(Fig. 3.3.1a), probability of precipitation (Fig. 3.3.1b; P > 1.05 mm h−1), probability density

functions (PDFs) of all events (Fig. 3.3.1c) and precipitating events (Fig. 3.3.1d) conditioned

on CWV and q̂sat for the tropical western Pacific, along with results for other tropical ocean

basins (Figs. 3.3.1e-3.3.1p). Here the statistics are compiled at 0.25° (colored markers)

and 0.5° (dots), using q̂sat as the bulk tropospheric temperature (see Fig. 3.A.4 for the

corresponding statistics compiled using T̂ as the bulk tropospheric temperature measure).

The standard errors associated with the conditionally averaged precipitation (conditional

precipitation hereafter) at 0.25° are smaller than the marker size, and thus omitted. To

exclude light precipitation and focus on deep-convective events, a threshold of 1.05 mm

hr-1 defining precipitating events is chosen, with a natural offset 0.05 since the TMIv7.1

precipitation is discretized by 0.1-mm h−1 units. Note that the PDFs of all events (e.g.,

Fig. 3.3.1c)—i.e., PDFs of CWV—are calculated from the joint-PDF of CWV and q̂sat,

normalized for each basin, by treating CWV as a continuous variable and q̂sat discretely.

These PDFs, when multiplied by the corresponding conditional probabilities (Fig. 3.3.1b),

give the PDFs for precipitating events (Fig. 3.3.1d). The jumps at 75 mm for the PDFs

result from the CWV cap set by the retrieval algorithm. For sensitivity to gap-filling, see

section 3.A.4 (Figs. 3.A.7-3.A.11).

For each q̂sat, the conditional precipitation and probability (Fig.3.3.1; 1st and 2nd columns)

pick up sharply as CWV exceeds a certain threshold, referred to as the “critical CWV,” or

wc (defined in section 3.3.2), around which the PDF of precipitating events (4th column)

peaks. The precipitation pickup occurs at higher CWV for higher q̂sat, i.e., wc is increasing

with q̂sat. The conditional probability would decrease with an increase in the threshold that

43



WPac P > 1.05 mm/hr

EPac P > 1.05 mm/hr

Atl P > 1.05 mm/hr

20 40 60 80

CWV [mm]

20 40 60 80

CWV [mm]

20 40 60 80

CWV [mm]
20 40 60 80

CWV [mm]

Ind P > 1.05 mm/hr

83.5
79
74.5
70
65.5
61
56.5
52

88
83.5
79
74.5
70
65.5
61
56.5
52

79
74.5
70
65.5
61
56.5
52
47.5

79
74.5
70
65.5
61
56.5
52
47.5

0

2

4

6

8

P
re

c
ip

 [
m

m
/h

r]

1

0.5

0P
re

c
ip

 P
ro

b
a

b
ili

ty 10-1

10-2

10-3

10-4

10-5

P
D

F
 [
m

m
-1

]

10-1

10-2

10-3

10-4

10-5

P
D

F
 [
m

m
-1

]

0

2

4

6

8

P
re

c
ip

 [
m

m
/h

r]

1

0.5

0P
re

c
ip

 P
ro

b
a

b
ili

ty 10-1

10-2

10-3

10-4

10-5

P
D

F
 [
m

m
-1

]

10-1

10-2

10-3

10-4

10-5

P
D

F
 [
m

m
-1

]

0

2

4

6

8

P
re

c
ip

 [
m

m
/h

r]

1

0.5

0P
re

c
ip

 P
ro

b
a

b
ili

ty 10-1

10-2

10-3

10-4

10-5
P

D
F

 [
m

m
-1

]

10-1

10-2

10-3

10-4

10-5

P
D

F
 [
m

m
-1

]

0

2

4

6

8

P
re

c
ip

 [
m

m
/h

r]

1

0.5

0P
re

c
ip

 P
ro

b
a

b
ili

ty 10-1

10-2

10-3

10-4

10-5

P
D

F
 [
m

m
-1

]

10-1

10-2

10-3

10-4

10-5

P
D

F
 [
m

m
-1

]

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.3.1: (a) Conditionally averaged precipitation rate; (b) conditional probability of precipitation; (c)

probability density function of all events, and (d) precipitating events only as a function of CWV and

q̂sat (units: mm) for the tropical (20°S-20°N) western Pacific. (e)-(h) Same statistics, but for the tropical

eastern Pacific, (i)-(l) for Atlantic, and (m)-(p) for Indian Ocean. Results are shown using TMIv7.1 data

and Reanalysis-2 temperature compiled at 0.25° (colored markers) and 0.5° (dots). Underpopulated bins at

0.25° (PDF < 10−5) are indicated by open circles, and those for 0.5° are omitted. Triangles represent the

corresponding q̂sat values. Here, precipitating events are defined by P > 1.05 mm h−1. The CWV data

is gap-filled using nearest available values, and data from pixels within 2.5° of land are excluded to avoid

potentially erroneous temperature values arising from spatial interpolation. The standard errors associated

with the conditional precipitation are smaller than the marker size, and omitted.

defines precipitating events; i.e., the probability curves would move towards higher CWV.

The spacing between pickup curves (for conditional precipitation and probability) suggests
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that the behavior for q̂sat bins ≥ 61 mm (> 85% of total occurrence over tropical oceans) is

slightly different from that in lower q̂sat bins. Inspection of the geographical distribution of

q̂sat occurrence suggests that low-q̂sat events are due mostly to systems originating from the

extratropics (section 3.A.6).

The observed sharp increase in precipitation as CWV exceeds critical has been explained

by entraining plume calculations, through which the deep-convective conditional instability

can be estimated. As previously demonstrated (Holloway and Neelin 2009, Schiro et al.

2016, Kuo et al. 2017), CWV serves as a measure of the impact of environment moisture

on plume buoyancy, and hence the instability, through the effects of mixing, as indicated by

the precipitation pickup. The dependence of wc on q̂sat can be explained through a similar

approach (Sahany et al. 2012).

In Fig. 3.3.1, the dots (0.5°) match the colored markers (0.25°) in the 1st and 3rd columns;

i.e., the conditional precipitation and PDF of CWV are insensitive to spatial resolution,

with small but noticeable decreases in the PDF at highest CWV (above critical). This

insensitivity is consistent with the assertion that the autocorrelation spatial scales of CWV

and tropospheric temperature are much greater than that of precipitation. Nonetheless,

to what extent this holds depends on the gap-filling (Figs. 3.A.9-3.A.11 in section 3.A.4).

It is also consistent with Yano et al. (2012) which used a cloud-resolving model (CRM)

and demonstrated that the conditional precipitation as a function of CWV is quantitatively

robust to spatial resolution (up to ∼1°).

The conditional probability defined by a fixed nonzero threshold (1.05 mm h−1; Fig. 3.3.1;

2nd column) slightly shifts toward lower CWV with spatial coarse-graining, consistent with

the greater chances of observing precipitation over a larger area. However, with a much

higher threshold (e.g., 15 mm h−1, the practical maximum for TMIv7.1 precipitation in

the tropics) or at even lower resolution (e.g., 2°), the dependence on spatial resolution may

reverse for the rarer chances of seeing extreme over a larger area. These dependences indicate

the underlying joint-PDF of CWV and P being resolution-sensitive, as will be discussed in
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sectionn 3.6.

3.3.2 Critical CWV wc and collapsed statistics

As described earlier, CWV measures the impact of environment moisture on conditional

instability, and hence precipitation. For those q̂sat bins most relevant in the tropics (≥

61 mm), the pickup curves in Fig. 3.3.1 suggest the possibility of collapsing statistics by

shifting CWV by wc for each q̂sat, i.e., the precipitation-CWV relation can be simplified

by taking into account the dependence of wc on temperature. To define wc as a function

of q̂sat, it makes sense to do so based on conditional precipitation alone, for it, unlike the

conditional probability, does not rely on any threshold and is insensitive to spatial resolution.

This assumes that the conditional precipitation has the form of f(cwv − wc), with its q̂sat-

dependence implicitly built in through wc(q̂sat). See section 3.A.3 regarding details on finding

wc given the statistics as in Fig. 3.3.1.

Figures 3.3.2a-3.3.2d show the collapsed version of the original statistics for the tropi-

cal western Pacific in Fig. 3.3.1a-3.3.1d (other basins in Fig. 3.A.6). As in Fig. 3.3.2a, wc

is defined as the CWV value at which the best-fit for conditional precipitation (gray line)

intersects with the CWV axis. For q̂sat bins ≥ 70 mm, the conditional precipitation, prob-

ability of precipitation (Fig. 3.3.2b), and PDF of precipitating events (Fig. 3.3.2d) collapse

perfectly. For these q̂sat bins, there are below-critical precipitating events, many of which

are weakly precipitating and excluded because of the 1.05-mm h−1 threshold adopted here,

and are likely associated with the mature and decaying phases of convection (not shown).

As q̂sat increases, q̂sat − wc (triangles) increases, indicating critical deviates from column

saturation. For lower q̂sat ≤ 61 mm, both conditional precipitation and probability have

slightly higher (lower) values for CWV right below (above) critical, with some underpopu-

lated CWV bins (open circles) exceeding the corresponding column saturation (triangles),

indicating minor inconsistency between the retrieval and reanalysis datasets. Furthermore,

there is more below-critical precipitation as q̂sat decreases (Fig. 3.3.2d; even more when a
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Figure 3.3.2: (a)-(d) Convective transition statistics for the tropical western Pacific as in Figs. 3.3.1a-3.3.1d

for 0.25° (colored markers) and 0.5° (dots), but for each marker/dot shifted by the corresponding critical

CWV wc(q̂sat) from Fig. 3c, and with PDFs scaled. The best-fit for conditional precipitation is shown as

gray line in (a), with its slope indicated by α. (e)-(h) Same as (a)-(d), but using T̂ instead of q̂sat as the

bulk tropospheric temperature measure. The colored triangles represent average q̂sat conditioned on T̂ and

CRH (≡ CWV/q̂sat) > 60%, shifted by wc. The corresponding plots for the other basins are in Figs. 3.A.5

and 3.A.6.

smaller precipitation threshold is adopted), consistent with cold events originating from the

extratropics and exhibiting characteristics different from deep convection in the tropics.

The PDF of CWV in Fig. 3.3.2c also collapses around and above critical, with the PDF of

non-precipitating events (including those with P < 1.05 mm h−1) varying with q̂sat and basin.

For CWV slightly lower than critical, the PDF of CWV starts to drop rapidly, and the PDF

for precipitating events peaks. As demonstrated in simple stochastic models (Stechmann and

Neelin 2011, 2014), moisture accumulates by surface evaporation and moisture convergence

until CWV reaches critical, at which point precipitation becomes an effective sink, leading

to the drop in the PDF for CWV above critical. Note that the PDF for all events has

another peak at lower CWV because of the balance between surface evaporation and moisture

divergence.

Earlier studies (Neelin et al. 2009, Sahany et al. 2014) have suggested scaling instead
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of shifting by wc, i.e., considering the form f(cwv/wc) instead of the shift f(cwv − wc), to

collapse the statistics. Both are similar to leading order for small differences in wc, but to

second order have slightly different effects. Scaling preserves the zero CWV value, which can

be important when examining PDFs across the entire CWV range, while shifting is preferred

here because effects near critical seem to be affected by factors that do not scale with wc.

The two approaches may lead to different interpretations for warming climate, where some of

the simplest arguments tend to rescale moisture by saturation (for a discussion surrounding

saturation deficit vs relative humidity in projecting future tropical cyclone genesis frequency,

see Camargo et al. 2014).

3.3.3 Dependence of critical on temperature

The collapsed conditional precipitation and probability of precipitation for the tropical west-

ern Pacific at 0.25° in Figs. 3.3.2a-3.3.2b are duplicated in Figs. 3.3.3a-3.3.3b, along with

the critical CWV wc(q̂sat) (Fig. 3.3.3c) and critical column relative humidity (critical CRH)

wc(q̂sat)/q̂sat (Fig. 3.3.3d). Results for other basins are also shown. Here, we focus on the

results derived using TMIv7.1 CWV and precipitation.

In Figs. 3.3.3a-3.3.3d, the precipitation pickup and the dependence of wc on q̂sat are

constant across basins, with slightly lower wc for the tropical Atlantic. As noted earlier,

a clear transition occurs around q̂sat = 61 mm in Figs. 3.3.3c-3.3.3d. For lower q̂sat, the

precipitation pickup is less well-defined and scatters more, and so do the corresponding

critical values, with approximately constant critical CRH. Above the transition q̂sat, the

critical values deviate from saturation as q̂sat increases, i.e., deep convective onset occurs

at higher CWV but at lower CRH with increasing tropospheric temperature, as shown in

Neelin et al. (2009). The critical CRH decreasing with q̂sat is expected to be robust as

long as wc is defined through collapsing statistics, for other reasonable definition of critical

[e.g., assuming the functional form of log(1 + eα(cwv−wc)) for the conditional precipitation]

would only introduce a q̂sat-independent offset of wc, preserving the slope of the wc − q̂sat
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Figure 3.3.3: (a) Collapsed conditional precipitation and (b) probability of precipitation; (c) critical CWV

wc and (d) critical CRH (≡ wc/q̂sat) for tropical oceans using q̂sat as the bulk tropospheric temperature

measure. (e)-(h) Same as (a)-(d), but using T̂ instead of q̂sat as the bulk temperature. The conditional

precipitation [(a), (e)] and probability of precipitation [(b), (f); P > 1.05 mm h−1] are compiled for 3

combinations of datasets: (i) TMIv7.1 CWV and precipitation (colored dots) with underpopulated bins

plotted as open circles, (ii) TMIv7.1 CWV and PR 2A25 precipitation (gray dots) excluding underpopulated

bins, and (iii) ARM site CWV and precipitation measurements from Manus (diamonds) and Nauru (squares)

Islands in the tropical western Pacific (WPac). Reanalysis-2 temperature is used for (i)-(iii). For (i) and (ii),

bins from all four basins are plotted, with data at 0.25° resolution and coastal regions excluded. For (iii), the

CWV values are shifted by the corresponding wc given the temperature (q̂sat or T̂ ) time series according the

wc-temperature relation for WPac [as in (c) and (g)]. The critical CWV [(c), (g)] and critical CRH [(d), (h)]

are calculated for combinations (i) and (ii), respectively. The colored solid lines in (c) and (g) represent q̂sat

conditioned on temperature and CRH (≡ CWV/q̂sat) > 60%. This conditional q̂sat is also used in defining

the critical CRH. The gray lines in (c) represent CRH from 100% to 8% with 2% spacing.

relation which, when compared with the constant CRH (gray) lines in Fig. 3.3.3c, indicates

decreasing critical CRH with q̂sat.

The transition from approximately constant to decreasing critical CRH with increasing
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q̂sat marks the different precipitation regimes, i.e., convection-dominant in the tropics vs.

large-scale saturation-driven in the extratropics.

3.3.4 Robustness to instrumentation

Before the convective transition statistics can be used for model diagnostics, their robust-

ness and sensitivity to instrumentation must be quantified. Figures 3.3.3a-3.3.3d include

the results derived using multiple datasets, including (i) TMIv7.1 CWV and precipitation,

(ii) TMIv7.1 CWV and PR 2A25 precipitation, and (iii) ground-based measurements from

Manus and Nauru ARM sites in the tropical western Pacific.

The statistics in Figs. 3.3.3a-3.3.3d are robust to TMIv7.1 vs. PR precipitation, with

slightly more scatter for the conditional probability. Combining TMIv7.1 CWV and 3B42

precipitation results in quantitatively similar statistics except for a slightly smaller slope α

of the best-fit for conditional precipitation (not shown).

In Fig. 3.3.3a, the conditional precipitation from Manus and Nauru ground-based mea-

surements, collapsed using wc(q̂sat) for the tropical western Pacific (WPac; TMIv7.1 CWV

+ precipitation), are quantitatively consistent with those from satellite retrievals, with sig-

nificant low bias at highest CWV (relative to critical; cwv−wc > 5 mm); the corresponding

conditional probability in Fig. 3.3.3b is uniformly lower than satellite retrievals because of

the difference in spatial-resolution, with the similar low bias. Combining the ground-based

CWV time series and 3B42 precipitation around Manus and Nauru shows the same bias at

high CWV, indicating that the cause is due to the ground-based MWR CWV measurements

(section 3.A.8). These have a “wet-window” problem, i.e., high CWV events associated

with strong precipitation are missing in the raw CWV time series, and gap-filling can only

partially compensate for this.

Though not the focus here, conditional precipitation and probability at the Manaus

GOAmazon site (over land) exhibits quantitative differences from those over oceans as in
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Fig. 3.3.3, despite the qualitative similarities we shall discuss in section 3.5.

The quantitative agreement among datasets examined here boosts our confidence in the

reliability of the convective transition statistics as model diagnostic tools. Meanwhile, given

that the same TMIv7.1 CWV and Reanalysis-2 temperature are used for compiling the

statistics, we advise caution that the robustness of the statistics to TMIv7.1 vs. PR pre-

cipitation may simply reflect the efforts of calibration among datasets. As indicated by the

minor difference in the collapsed conditional probabilities in Fig. 3.3.3b, and as we shall

see in section 3.6, the two precipitation datasets do lead to quantitative differences in the

distribution of precipitation, especially at high rain rate.

3.3.5 Robustness to bulk measure of temperature

Thus far, q̂sat appears to be a useful bulk measure of tropospheric temperature. As noted

above, the critical value is not governed by q̂sat in a simple way, with critical CWV increasing

and critical CRH decreasing with q̂sat.
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Figure 3.3.4: Reanalysis-2 temperature profiles conditionally averaged on TMIv7.1 precipitation and q̂sat.

Profiles are anomalies with respect to the mean profile averaged over all precipitating events (P > 0.25 mm

h−1) with coastal regions excluded.

Figure 3.3.4 shows the temperature profile, conditioned on precipitation and q̂sat, relative

to the mean profile (referred to as a perturbation). The perturbed profile evolves coherently

in the vertical as a function of q̂sat, explaining the usefulness of a bulk temperature mea-

sure such as q̂sat, or the mass-weighted column-averaged temperature T̂ adopted in previous
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studies (e.g., Holloway and Neelin 2007, Sahany et al. 2012). The profiles are similar across

basins, except for the high- and low-q̂sat bins in the tropical Indian Ocean showing greater

(smaller) anomaly in the lower (upper) troposphere. This is likely a consequence of the cir-

culation pattern driven by the local land-ocean contrast, since both the warmest and coldest

events in this domain tend to occur near the south Asian continent in the Bay of Bengal

and Arabian Sea (Fig. 3.A.13). The resulting statistics in Figs. 3.3.1-3.3.3, nevertheless, do

not reflect this difference in temperature structure. Replacing the condition on precipitation

by CWV above critical, or replacing q̂sat by T̂ , leads to similar profiles. For q̂sat higher than

the most probable bin, the corresponding overall (perturbed + mean) temperature profiles

are insensitive to conditions on precipitation or CWV, suggesting that high-q̂sat events re-

sult from previous or nearby convective activity, consistent with convection being the major

heating mechanism in the tropical troposphere.

The two bulk measures q̂sat and T̂ , both of which have similar properties in character-

izing convection, are well-correlated because of the vertical coherence of temperature (sec-

tion 3.A.2). It is nonetheless worth quantifying in detail their similarity as bulk temperature

measures for the statistics because of the nonlinear dependence of precipitation statistics

on the thermodynamic variables. The lower panels of Figs. 3.3.2-3.3.3 show the similar

statistics corresponding to their upper-panel counterparts, but use T̂ instead as the bulk

measure (other basins in Fig. 3.A.5). From these two figures, substituting one bulk measure

by another only leads to minor quantitative differences, e.g., a slightly smaller slope α for

conditional precipitation (Figs. 3.3.2a vs 3.3.2e), and slightly more precipitating events for

CWV right below critical for cold bins when q̂sat is used (Figs. 3.3.2d vs 3.3.2h). This insensi-

tivity to the bulk measure of temperature also holds for statistics presented in Figs. 3.4.1 and

3.6.1-3.6.3 below. Note that the vertically coherent temperature structure in the presence of

convection guarantees that layered bulk measures (e.g., 850-500 hPa-integrated saturation

humidity, etc.) can also be useful and would lead to similar statistics (e.g., Figs. 1 and 3

in Neelin et al. 2009), except for the PDF of all events for CWV significantly lower than
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critical, which could differ qualitatively (not shown).

3.4 Geographical dependence of precipitation pickup

The statistics in Figs. 3.3.2-3.3.3 demonstrate that CWV above critical is a practical esti-

mator of conditional instability, and hence precipitation, with the temperature dependence

characterized by the wc-temperature relation [wc(q̂sat) or wc(T̂ )]. These relations seem to be

universal across ocean basins, at basin scales. However, other factors contributing to con-

ditional instability—vertical degrees of freedom of temperature and moisture structure not

captured by the bulk measures used here, large-scale convergence/divergence, radiative forc-

ing associated with existing clouds or the lack thereof, and triggering of convection because

of cold pool expansion from organized systems or land-sea breeze in coastal regions—may

vary geographically, causing geographic variations at regional scales (e.g., Torri et al. 2015,

Bergemann and Jakob 2016, Ahmed and Schumacher 2017). As such, the effectiveness of

CWV above critical as a predictor of precipitation at regional scales is examined in this

section.

As background for our discussion, Fig. 3.4.1a shows the probability of precipitation

(P > 0.25 mm h−1; details in caption). The probability of high CWV (relative to criti-

cal; Fig. 3.A.14a) is included in section 3.A.7. These maps of probability of precipitation

and high CWV reflect the climatology of precipitation (Fig. 3.A.14b), sharply contrasting

the major convergence zones with regions elsewhere.

Figure 3.4.1b shows the corresponding conditional probability of precipitation given high

CWV, formally defined as

Prob(P > 0.25 mm h−1| cwv > wc − 1.5 mm)

≡ # of occurences with P > 0.25 mm h−1 & cwv > wc − 1.5 mm

# of occurences with cwv > wc − 1.5 mm
,

(3.1)

as a function of geographical location. Here the critical value wc(q̂sat) is from Fig. 3.3.3c,
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Figure 3.4.1: (a) The probability of precipitation as a function of geographical location, calculated using

TMIv7.1 precipitation at 0.25° resolution. (b) The conditional probability of precipitation given CWV ex-

ceeding critical, calculated using TMIv7.1 CWV and precipitation, and Reanalysis-2 temperature at 0.25°.

Here the conditional probability is calculated from the frequency binned by cwv−wc(q̂sat), P , and geograph-

ical location, with wc(q̂sat) as in Fig. 3.3.3c averaged over four basins. (c) Same as in (b) but at 1°. (d) Same

as in (b), but with P defined as the maximum of the TMIv7.1 precipitation rate and two additional 3B42

precipitation rates that are closest in time to the TMIv7.1 measurement. (e) The fraction of total precipita-

tion from events with CWV exceeding critical, calculated using data as in (b) at 0.25°. (f) Precipitation rate

(for P ≥ 0.25 mm h−1) on top of regions of CWV exceeding critical using TMIv7.1 data at 1° for ascending

orbits on 01 Jan 2004. Note that (f) is a realization of the conditional probability in (c) on a particular

day. For (a)-(e), the precipitation threshold 0.25 mm h−1 is chosen for comparison across spatial resolution,

and CWV offset −1.5 mm to include more events. The magnitudes of probabilities/fraction in these panels

depend on the precipitation threshold and CWV offset, while the corresponding geographic patterns appear

to be robust. 54



averaged over four basins (adopting basin-dependent critical values only introduces small

discontinuities in wc hence the conditional probability across basin boundaries). The most

outstanding feature in Fig. 3.4.1b is that the conditional probability is far smoother than the

probability of precipitation in Fig. 3.4.1a. To the extent that there are geographic variations,

the conditional probability scarcely reflects the features of precipitation climatology. Thus,

including CWV relative to critical and the dependence of critical on temperature has yielded

a probability measure that is much less dependent on space.

To a first approximation, the CWV value relative to critical thus provides information

that will apply reasonably well across a large portion of the tropics. Furthermore, com-

piling the statistics presented in Fig. 3.3.3 inside and outside regions with high seasonal

precipitation yields quantitatively similar results (not shown; refer to Fig. 3.3.3 since the

corresponding collapsed statistics and critical values are visually indistinguishable), reaf-

firming that these statistics focus on the occurrences of convection at fast timescales rather

than long-term climatology.

Minor geographic variations may be noted in Fig. 3.4.1b, e.g., the contrast between the

lower values around the Maritime Continent and along the equator in the eastern Pacific,

and the higher values off the equator in the central-to-eastern Pacific and Atlantic. The

conditional probability is not defined over dry regions covered by marine stratocumulus

(there are not above-critical events occurring in these locations); where it is defined, there

is large uncertainty associated with small sample size along the edges of the dry regions

(e.g., along 10°S in the eastern Pacific). The extreme low values in some coastal regions

(∼2.5° in width, the resolution of Reanalysis-2 data) are due likely to the erroneously lower

q̂sat (and hence wc) and spurious occurrence of above-critical events arising from land-ocean

temperature contrasts and spatial interpolation.

Figures 3.4.1c and 3.4.1d further quantify spatial and temporal dependence of this con-

ditional probability. Figure 3.4.1c shows the same conditional probability as in Fig. 3.4.1b,

but at 1°. Coarse-graining in space leads to the same spatial pattern (or the lack thereof)
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and, with the 0.25-mm h−1 threshold adopted here, uniformly greater magnitude in condi-

tional probability, consistent with the dependence on resolution shown in Figs. 3.3.1-3.3.2.

That is, CWV above critical serves as a precipitation estimator with more certainty at scales

comparable to or larger than the autocorrelation spatial scale of precipitation.

Figure 3.4.1d shows the conditional probability as in Fig. 3.4.1b, but incorporating 3B42

precipitation (details in caption). Here, including two additional 3B42 precipitation rate

values effectively provides one more independent snapshot of precipitation taken in the period

of 0 to 4.5 hours prior to or after the TMIv7.1 measurement is acquired. The resulting

conditional probability in Fig. 3.4.1d therefore quantifies the probability of observing at least

one precipitating event from the two datasets, consecutive in time but randomly separated

by up to 4.5 hours, given that CWV exceeds critical. Note that here the CWV value relative

to critical is treated as approximately constant because of the long autocorrelation timescales

of CWV and temperature.

As expected, the conditional probability in Fig. 3.4.1d (at 0.25°) is everywhere greater

than its counterpart in Fig. 3.4.1b, and a similar map compiled at 2° is uniformly greater than

85% over tropical oceans (not shown). These suggest that, at scales comparable to the auto-

correlation spatial and temporal scales of CWV, an above-critical event is almost certainly

accompanied by precipitation before decreasing to below-critical. While precipitation has

much shorter autocorrelation timescales, the comparison of Figs. 3.4.1b and 3.4.1d has ruled

out the simplest hypothesis that the two consecutive-in-time measurements of precipitation

can be treated as independent random events (not shown).

Figure 3.4.1e shows the fraction of total precipitation from above-critical events, which

are responsible for most of the precipitation over tropical oceans (except in dry regions). It

also captures the seasonal shifts of convergence zones, e.g., the local maximum along 10° S

in the Indian Ocean and between 0-10° S in the eastern Pacific results from events during

the Southern Hemisphere raining seasons.

Note that Fig. 3.4.1e [and the conditional probability Prob(cwv > wc − 1.5 mm| P >
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0.25 mm h−1); Fig. 3.A.14d] has a geographic pattern similar to Fig. 17 in Tao and Moncrieff

(2009, TM09; fraction of precipitation from mesoscale convective systems) with some coastal

exceptions. This similarity suggests that organized systems are important contributors to

precipitation above critical (see also Moncrieff et al. 2017). As we have seen in Figs. 3.3.1-

3.3.2, the conditional precipitation and PDF of CWV are robust to spatial resolution (up

to ∼1°)—in addition to the autocorrelation spatial scale of CWV being greater than that of

precipitation, organized systems could play a role in this robustness.

Finally, Figure 3.4.1f shows an example for ascending orbits on a particular day, showing

the regions where CWV is close to or above critical, i.e., a realization of the conditional

probability in Fig. 3.4.1c for those snapshots on each orbit. Precipitation values exceeding

0.25 mm h−1 are overlaid. It may be seen that precipitation mainly occurs in the near- or

above-critical regions sporadically, consistent with the probabilities shown in the earlier pan-

els. Thus, the estimates of near- or above-critical CWV-temperature environment may have

useful applications as predictors of precipitation (see also section 3.A.7), making the known

association of precipitation with high CWV (e.g., Mapes et al. 2006) more quantitative.

3.5 Sensitivity to time-averaging

Satellite retrievals provide snapshots of CWV and precipitation covering basin-scale areas

and, unlike most ground-based data, contain enough events for the compiled statistics to be

stable, i.e., insensitive to noise. However, when these statistics apply to model diagnostics—

given that most current models output at sub-daily frequencies (e.g., 6- or 12-hourly means)

and higher frequency output (e.g., hourly or time-step mean/snapshot) are not standard

yet—the validity of the model vs. retrieval comparison must be addressed. To quantify the

dependence on coarse-graining in time, we turn to ground-based measurements that have

more extensive time-domain information.

Figure 3.5.1 shows statistics from tropical ARM site measurements with different time-
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Figure 3.5.1: (Left) Precipitation rate with standard error as error bar, (center) probability of precipitation

P > 0.5 mm h−1, and (right) frequency density of all events (crosses) and precipitating events (circles), all

conditioned on CWV using ARM site microwave radiometer CWV and precipitation data for the GOAmazon

site in the Amazon (top), and for Nauru (middle) and Manus (bottom) Islands in the tropical western Pacific.

Here the statistics are calculated using CWV and precipitation data time-averaged at 15-min (dark red),

1-h (red), 3-h (yellow), 6-h (green), and 24-h (blue) intervals. Conditional precipitation without error bar

indicates a standard error smaller than the marker size.

averaging (not conditioned on temperature). At these sites, the temperature range in terms

of T̂ is narrow, with ∼1-2 K variation, and hence the overall statistics are dominated by the

most probable temperature bin. The conditional precipitation (1st column) and frequency

density for all events (3rd column; crosses) are relatively insensitive to time-averaging up to
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6 hours, with Nauru being more sensitive than the other two sites. Conditional probability

(2nd column; P > 0.5 mm h−1) increases with time-averaging, reflecting the sensitivity of the

joint-PDF of CWV and precipitation. There are quantitative differences among these sites,

but there is not a clear qualitative difference or contrast between oceanic vs. continental

environments regarding the dependence on time-averaging. The sharpness of the pickup

tends to be smoothed out by the averaging, resulting from averaging sub-daily instances

of high CWV, high precipitation times with lower values. Overall, however, the results in

Fig. 3.5.1 suggest that, while instantaneous or hourly data are desirable for insights into

the fast-timescale behavior, statistics from 3- or 6-hourly mean data can be used for model

comparisons, extending the applicability of using these statistics as diagnostic tools.

3.6 Joint-PDF of CWV and precipitation, and its resolution/instrument

dependence

As mentioned in section 3.4, bulk measures like CWV and q̂sat (or T̂ ) can represent large-

scale factors that affect conditional instability. However, given the same condition at large

scales, one would still expect a distribution of precipitation because there are processes at

smaller scales or large-scale factors that are unaccounted for by the bulk measures. In this

section, we examine the joint-PDF of CWV and precipitation, and its dependence on spatial

resolution and instrumentation, to quantify the uncertainty associated with the use of the

bulk measures. This joint-PDF can be another useful metric for model diagnostics.

Figure 3.6.1a shows the joint-PDF of CWV (relative to critical) and precipitation rate P

for the 70-mm q̂sat-bin (2nd most probable) in the tropical western Pacific compiled using

PR (2A25) precipitation at 0.25°. This q̂sat bin is chosen instead of the most probable bin

(74.5 mm) because for the latter, the 75-mm cap of TMIv7.1 CWV results in the CWV

value relative to critical being capped at ∼11 mm, and hence the PDF of the highest CWV

is missing. The same joint-PDF is plotted in Fig. 3.6.1b on a log-log scale. Non-precipitating
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Figure 3.6.1: (a) Joint-PDF of CWV relative to critical and precipitation rate P for the 70-mm q̂sat-bin in the

tropical western Pacific compiled using TMIv7.1 CWV, Reanalysis-2 temperature and PR 2A25 precipitation

at 0.25° by treating CWV and P as continuous variables with bin-width 3 mm, and 0.1 mm h−1 (0.05 for

lowest bin), respectively. (b) Same as in (a), but on a log-log scale. (c) Same as in (a), but using TMIv7.1

precipitation (0.25°). The colors indicate the values of CWV relative to wc.

bins (0 ≤ P < 0.05 mm h−1) aside, the joint-PDF is quantitatively similar across the q̂sat

range and ocean basins (section 3.A.5).

For CWV below critical, the PDF in Fig. 3.6.1a drops sharply as P increases. As the

CWV increases and approaches critical, the PDF increases for all P > 0 with long tails

extending into high precipitation regime. This occurs until the CWV reaches critical, above

which the PDF starts to decrease, with a local PDF maximum developing at a positive P

(∼3 mm h−1) for the highest CWV bin. From Figs. 3.6.1a and 3.6.1b (the same joint-PDF

on different scales), there is not a clear power-law or exponential dependence of the PDF on

precipitation, although a possible functional form will be discussed further below.

Note that the distribution of P is asymmetric, with the most probable value being (close
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to) zero even for CWV around critical. As such, any Gaussian-like distribution (Lin and

Neelin 2003) or on-and-off precipitation model (Muller et al. 2009, Stechmann and Neelin

2014) with the observed conditional mean and variance would miss much of the distribution

details.

The radar-based precipitation retrievals are probably more reliable than the passive mi-

crowave radiometer counterpart (including TMI) since the latter is based solely on a path-

integrated signal without phase information (Chen et al. 2013). The conditional precipita-

tion and probability of precipitation in Fig. 3.3.3 demonstrate that PR 2A25 and TMIv7.1

precipitation are consistent in terms of the mean and distribution of low-to-moderate pre-

cipitation. However, there are quantitative discrepancies for high precipitation between the

two datasets. Figure 3.6.1c shows the similar joint-PDF as in Fig. 3.6.1a, but using TMIv7.1

precipitation instead. In Fig. 3.6.1c, there is a clear cutoff at P ∼ 10 mm h−1 and practi-

cally no events for > 15, despite the cap set by the algorithm is 25. This is an undesirable

characteristic of the retrieval algorithm when applied to the tropics (there is no sign of a

cutoff in the extratropics; not shown). Besides the cutoff, the joint-PDFs for P < 10 mm

h−1 are similar for PR and TMIv7.1, with minor quantitative differences, e.g., the local PDF

maximum at high CWV occurs at higher precipitation for TMIv7.1. Thus, we shall not

emphasize the distribution of precipitation from TMIv7.1 precipitation, except for using it

as an aid to study its dependence on spatial resolution.

Figure 3.6.2 shows the joint-PDF of CWV (relative to critical) and P compiled at different

spatial resolutions (details in caption). The two panels for 0.25° show the same joint-PDFs

as in Figs. 3.6.1a and 3.6.1c, but with a different CWV bin-width.

In terms of the general features, the joint-PDFs in Fig. 3.6.2 exhibit clear asymmetries

between the low-CWV—low-precipitation regime and regime near critical. However, in the

vicinity of critical (roughly ±3 mm), the joint-PDFs are roughly symmetric with respect

to CWV, consistent with Figs. 3.3.2d and 3.3.2h. As CWV increases, the fraction of non-

precipitating events decreases, as indicated by the conditional probability of precipitation
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Figure 3.6.2: Color shading: Joint-PDF (units: mm−2

h), on a log10-scale, of CWV relative to critical and

precipitation rate P for the 70-mm q̂sat-bin in the

tropical western Pacific compiled using TMIv7.1 CWV

and Reanalysis-2 temperature, PR 2A25 (at 5 km and

0.25°) and TMIv7.1 (at 0.25°, 0.5°, and 1°) precipita-

tion, by treating CWV and P as continuous variables.

The spacing between the joint-PDF contours is 0.3,

i.e., the color advances whenever the joint-PDF dou-

bles (100.3 ∼ 2). The corresponding precipitation rate

(blue solid line), probability of precipitation (P > 0

mm h−1; orange dots), median (white solid line) and

variance (blue dashed line) of precipitation, all condi-

tioned on CWV, are also shown for reference. For PR

(at 5 km and 0.25°) and TMIv7.1 (0.25°), the bands at

the bottom indicate bins with 0 ≤ P < 0.05 mm h−1.

Note that the minimum nonzero P for raw PR data at

5 km is ∼0.11 mm h−1, and the TMIv7.1 precipitation

at 0.25° is discretized with units 0.1 mm h−1.
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(orange dots; P > 0) and the bands at the bottom for the top 3 panels (PDFs for 0 ≤

P < 0.05 mm h−1). This and the extension of PDF into high-precipitation around critical

result in the sharp increase in the conditional mean (blue solid line), median (white solid),

and variance (blue dashed) of precipitation. These 3 conditional statistics, when calculated

by excluding non-precipitating pixels, would still show a sharp pickup around critical with

slightly higher values for CWV below (not shown). Both the precipitation distribution for

P > 0 and its contrast to non-precipitating events (i.e., P > 0 vs. P = 0) contribute to the

overall variance of precipitation (Stechmann and Neelin 2011).

In addition to the differences of PR and TMIv7.1 shown in Fig. 3.6.1, the conditional

probability for PR at 0.25° in Fig. 3.6.2 is noticeably higher than its TMIv7.1 counterpart

for CWV lower than critical, partly because of the differences in instrument sensitivity

and native resolution of the datasets. Recall in Fig. 3.3.3 that the conditional mean and

probability (with respect to a different 1.05-mm h−1 threshold) from PR and TMIv7.1 are

extremely close. Despite this, the two 0.25° panels in Fig. 3.6.2 show that the TMIv7.1

precipitation tends to underestimate the variance of precipitation for CWV around and above

critical. Furthermore, the TMIv7.1 conditional median approaches mean at high CWV,

implying a more symmetric distribution of precipitation, consistent with the corresponding

PDFs in Fig. 3.6.1c.

As for the dependence on spatial resolution shown in Fig. 3.6.2, there are more weakly

precipitating events (e.g., 0 < P < 2 mm h−1) in the expense of non-precipitating and

heavily precipitating events at lower resolutions, consistent with spatial-averaging, which

also results in the conditional probability increasing and variance decreasing with resolution.

Figure 3.6.3 shows the precipitation contribution as a function of CWV and P for the

70-mm q̂sat-bin in the tropical western Pacific on different scales. In Fig. 3.6.3a, the areas

under the curve integrated to the mean precipitation rate for this q̂sat. While the largest

contributions come from near critical, values below or above critical still contribute sub-

stantially. The relatively linear range in Fig. 3.6.3b appears to suggest that a P−1e−βP
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Figure 3.6.3: Precipitation rate-weighted Joint-PDF of CWV relative to critical and precipitation rate P ,

i.e., the precipitation contribution as a function of CWV and P , for the 70-mm q̂sat-bin in the tropical

western Pacific. (a) linear axes; (b) log-linear axes; (c) log-log axes. The data correspond to the Joint-PDF

of CWV relative to critical and P in Fig. 3.6.1a, using PR 2A25 precipitation at 0.25°. The colors indicate

the values of CWV relative to wc.

dependence with β ∼ 0.16 (mm h−1)−1 might be a reasonable approximation for moderate

to high precipitation for a wide range of CWV. In both Figs. 3.6.3b and 3.6.3c, the value of

P at which the precipitation contribution is a maximum moves towards higher P as CWV

increases.

Overall, the distributions of precipitation discussed in this section underline the im-

portance of considering the dependence of the precipitation PDF on where the CWV-

temperature environment is relative to critical, rather than as a single PDF for total precip-

itation.

3.7 Summary and discussion

In this chapter, the convective transition statistics over tropical oceans are compiled us-

ing satellite retrievals and ARM site measurements to quantify the dependence of precip-

itation on the water vapor and tropospheric temperature environment, and to provide an
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observational baseline for comparison in using these statistics as model diagnostics at fast

(convective) timescales.

The mean tropospheric temperature profiles conditioned on precipitation (P > 0.25 mm

h−1; Fig. 3.3.4) show vertically coherent structure, justifying the use of bulk tropospheric

temperature measures like column-integrated saturation humidity q̂sat, mass-weighted col-

umn average temperature T̂ , or other layered equivalents as the leading order description of

temperature in defining the convective transition statistics. Using these temperature mea-

sures yields quantitatively similar statistics, e.g., those shown in Figs. 3.3.2-3.3.3, including

the conditional precipitation and probability of precipitation, critical CWV wc, and PDFs

of CWV for precipitating events, though the PDFs of CWV for all events below critical may

differ significantly, reflecting the differences in the climatology of these temperature mea-

sures. Because of the narrow temperature range in the tropics, the conversion among these

temperature measures can be carried out using simple linear relations found by regression.

Among the robust features of the precipitation-CWV relation is the conditional precip-

itation as a function of CWV and tropospheric temperature, which is insensitive to spatial

resolution (Figs. 3.3.1-3.3.3) and time-averaging (Fig. 3.5.1), consistent with the assertion

that the autocorrelation spatial and temporal scales of CWV and temperature are much

greater than that of precipitation. This is particularly useful for model comparison since

model output is subject to varying spatial-temporal resolution. Because of this insensitivity,

wc and the slope α characterizing the precipitation pickup are defined through the condi-

tional precipitation. Both wc and α are approximately constant across ocean basins, with

the latter being insensitive to temperature over the most common range in the tropics. The

dependence of the precipitation-CWV relation on temperature is completely characterized

by wc in the sense that shifting CWV by wc collapses the convective transition statistics

and the joint-PDFs of CWV and precipitation. The dependence of wc on temperature is,

however, not a simple relation. Convective onset occurs at higher CWV but at lower column

relative humidity (CRH) with increasing temperature, as noted in Neelin et al. (2009), and
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is consistent with the entraining plume calculations by Sahany et al. (2012). At low temper-

atures, which lie along the subtropical margin of the domain, critical values could plausibly

be approximated by a constant CRH within a small regime. This regime likely corresponds

to the subtropical expression of mid-latitude frontal systems. For the most common behav-

ior in the tropical domain, we underline that using CRH as a variable, without separately

quantifying the water vapor-temperature dependence, would yield a poor characterization

of the statistics, as expected because of the dominance of conditional instability as a source

of tropical convective events.

Robustness of the presented statistics to instrumentation is examined by comparing var-

ious datasets, including precipitation radar, microwave retrievals and in situ data. A major

source of uncertainty in the convective transition statistics is the measurement of CWV in

the presence of precipitation. Sensitivity to CWV gap-filling is quantified, which primarily

affects probability distributions at very high CWV (above critical). Despite the differences

in precipitation distribution, especially at high rain rate, associated with different datasets

as indicated by the joint-PDFs (Figs. 3.6.1-3.6.2), both conditional precipitation and proba-

bility of precipitation are robust to instrumentation (including ground-based measurements

of the former; Fig. 3.3.3). This consistency likely reflects the calibration among precipita-

tion datasets, and emphasizes the reliability of these statistics as observational references for

model diagnostics.

At the timescale of the individual retrieval, the tendency of precipitation to coincide

with high CWV has been observed. Here, this is quantified more precisely by including the

dependence on tropospheric temperature. Specifically, CWV relative to critical (cwv − wc)

appears to be a useful predictor of precipitation over tropical oceans. Unlike the climatol-

ogy of precipitation or CWV that shows sharp contrast between major convergence zones

and regions elsewhere, the conditional probability of precipitation given CWV exceeding

critical shows only minor geographic variations (Fig. 3.4.1). In other words, the convective

transition statistics created from individual convective events conditioned on two bulk mea-

66



sures of the temperature—water-vapor environment apply reasonably universally through

the tropics even at the individual space-time point. Small departures are noted that are

presumably due to other vertical degrees of freedom impacting convection. At larger spatial

scales and sub-daily timescales, events of high CWV relative to critical are almost certainly

associated with convection, leading to a potential application of using CWV above critical

as a precipitation predictor. A connection between above-critical events and mesoscale con-

vective systems (Fig. 3.4.1e vs. TM09’s Fig. 3.6.1) is noted, which could contribute to the

robustness of conditional precipitation to spatial resolution (up to ∼1°). A recent analysis

of the GOAmazon campaign data also points to the potential importance of organized flow

in creating the dependence of deep convection on lower tropospheric water vapor through a

deep layer (Schiro et al. 2018) that is seen here as the CWV dependence of precipitation.

It is common to discuss probability distributions of precipitation and to compare models

to these (e.g., Figs. 8 and 13 in Klingaman et al. (2017)). However, the strong dependence

of the statistics on CWV relative to critical suggests that much of the important dynamics

depend on the temperature–water-vapor environment of the precipitating system. We extend

the scope of the precipitation-CWV relation to include the joint-PDF of CWV relative to

critical and precipitation rate P. This joint-PDF is quantitatively similar in the most common

temperature range across tropical ocean basins. For low CWV (relative to critical) the PDF

drops rapidly as P increases. As CWV increase, the PDF extends into high precipitation

regime, and develops a peak at a non-zero P (∼3 mm h−1) for the highest CWV (Fig. 3.6.1a),

with most of the precipitation contribution from CWV around and above critical (mostly

P < 10 mm h−1; Fig. 3.6.3a).

Examination of the precipitation contributions suggests that the conditional distribution

of precipitation in the PR 2A25 data can be approximated by the functional form P−1e−βP

with β ∼ 0.16 (mm h−1)−1 for sufficiently high P , for a wide range of CWV (Fig. 3.6.3b).

This would correspond to a gamma distribution at the limit of its range of validity, except

that there is a clear low-precipitation cutoff in the precipitation contribution that changes
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systematically as a function of CWV above critical. This apparently simple observational

relationship in precipitation distributions as a function of CWV relative to critical can po-

tentially provide an interesting target for theoretical work.

The joint-PDF does exhibit dependence on spatial averaging, with the joint-PDF exhibit-

ing more light precipitation at the expense of non-precipitating and heavily precipitating

events, at lower spatial resolution (Fig. 3.6.2). This resolution dependence results in the

dependence of conditional probability of precipitation on resolution, as in Figs. 3.3.1-3.3.3.

There is not enough observational data to compile the joint-PDF at resolutions most common

for current models (∼1°) without losing information for the highest CWV, but qualitative

dependence of the joint-PDF on distance above critical can be used as an auxiliary diagnostic

tool for the evaluation of modeled convective parameterizations.

Overall, in addition to providing an observational baseline with quantified robustness

and resolution dependence of the basic convective transition statistics for model comparison,

the ability to summarize statistics in terms of CWV relative to critical enables additional

diagnostics. The dependence of precipitation probability on this quantity expands the set of

related properties that exhibit common behavior for precipitation throughout the tropics.
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APPENDIX

3.A Supplement

3.A.1 Gap-filling methods for TMIv7.1 CWV

Figure 3.A.1: TMIv7.1 CWV (upper; units: mm) and precipitation rate (lower; units: mm h−1) for TRMM

descending passes on 12 October 2013. In the upper panel, regions of missing CWV are shown by black.

The image in the lower panel is directly downloaded from the RSS website. The three tropical cyclones,

from left to right, are Phailin, Nari, and Wipha.

The latest algorithm (version 7.1) adopted by the Remote Sensing Systems (RSS; Wentz

et al. 2015) for column-integrated water vapor (CWV) and precipitation retrievals occasion-

ally does not return a CWV value in the presence of precipitation. Figure 3.A.1 shows an
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example of this (chosen to illustrate a severe case, as opposed to a typical situation). One

may note that regions with missing CWV, as indicated by black in the upper panel, coincide

with regions of high precipitation, as indicated by warm colors in the lower panel.

Figure 3.A.2: Probability of missing CWV as a function of precipitation rate and q̂sat (colors; units: mm) for

four tropical ocean basins calculated using TMIv7.1 CWV and precipitation, and Reanalysis-2 temperature

for 2005.

The probability of missing CWV is shown in Fig. 3.A.2. The probability depends pri-

marily on precipitation rate and shows little sensitivity to bulk tropospheric temperature

and basin. There is also no noticeable annual variability (not shown). Because the missing

values are associated with higher precipitation, the raw TMIv7.1 data product has significant

biases. This applies even to the climatology, for instance, when precipitation values without

CWV retrievals are excluded, the annual mean precipitation rate over tropical oceans calcu-

lated using the TMIv7.1 data is reduced from ∼3.1 to 2.1 mm h−1. As such, it is necessary

to gap-fill the missing CWV values to avoid distortion of the desired precipitation-CWV

relation.

Three gap-filling methods are tested. The first approach fills the missing values using
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the available CWV value at the geographically nearest pixel. When there are multiple such

pixels, the maximum among the available CWV values is used. This method, referred to as

“Nearest” here, is our default choice for CWV gap-filling. The second approach starts with

identifying “holes” of missing CWV. For all pixels in each hole, we then fill missing values

with the maximum CWV value on the circumference. This approach is referred to as “Max.”

The third method, “Mean,” is similar to Max, but uses a mean instead. Among these three

methods, Max assigns more high CWV values, and Mean assigns less high CWV values, while

Nearest lies somewhere in between. A fourth method based on biharmonic spline interpola-

tion provided by MATLAB (see https://www.mathworks.com/help/matlab/ref/griddata.html;

option ‘v4’) has also been tested; the results are similar to Max, and hence is not presented

here.

The sensitivity of the convective transition statistics (and their spatial-resolution depen-

dence) to gap-filling is discussed in section 3.A.4 (Figs. 3.A.7-3.A.11).

3.A.2 Bulk measures of tropospheric temperature

In the presence of convection, the tropospheric temperature tends to exhibit vertically coher-

ent structure (as in Fig. 3.3.4). Therefore, bulk measures of tropospheric temperature, such

as the column-integrated saturation humidity q̂sat (units: mm) and mass-weighted column

average temperature T̂ (units: K) are expected to be useful in characterizing convection,

and different bulk measures are expected to yield similar characterization. To verify this

assertion directly, Fig. 3.A.3 shows that the joint-PDF of q̂sat and T̂ over tropical oceans are

clearly well-correlated.

Figure 3.3.1 shows the convective transition statistics conditioned on q̂sat. The corre-

sponding statistics conditioned on T̂ are shown in Fig. 3.A.4. As expected, statistics in these

two figures demonstrate similar behaviors.
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Figure 3.A.3: Joint-PDF (log10) of q̂sat and T̂ over tropical oceans calculated using Reanalysis-2 temperature

for 2005. The color advances when the values of the joint-PDF doubles (100.3 ∼ 2). The gray dashed line

represents the linear regression with slope ∼ 4.9 mm K−1.

3.A.3 Estimating critical CWV

The critical CWV wc is used to characterize the location of the strong increase in condition-

ally average precipitation and probability of precipitation, and related drops in probability

of CWV. Here we detail how this is estimated from the statistics presented in Figs. 1 and

S4. Throughout this study, we use the following estimator for wc: the CWV value at which

the asymptote of the conditional precipitation curve intersects with the CWV-axis, with the

asymptote being approximated by the best-fit line of a segment of the precipitation pickup

(recall Fig. 3.3.2). In practice, the curves for some temperature bins may not reach the

high precipitation regime so that their asymptotes (and hence the best-fit lines) are not

sufficiently well-sampled for robust estimation. We thus work with the assumption that

the precipitation pickup curves can be collapsed by shifting CWV by a suitable amount

depending on the temperature, and the slope of the best-fit line does not depend strongly

on temperature. One can refer to Figs. 2-3 in the main text, and Figs. S5-S11 below to
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Figure 3.A.4: Similar to Fig. 3.3.1 of the main text but conditioned on T̂ instead of q̂sat as the measure

of tropospheric temperature. Conditionally averaged precipitation rate (1st column from left), conditional

probability of precipitation (2nd column), probability density function of all events (3rd column) and pre-

cipitating events only (4th column) as a function of CWV and T̂ (units: K) for four tropical ocean basins

(20°S-20°N): western Pacific (WPac; 1st row), eastern Pacific (EPac; 2nd row), Atlantic (Atl; 3rd row), and

Indian Ocean (Ind; 4th row). Results are shown using TMIv7.1 data and Reanalysis-2 temperature for the

period of 01 Jun 2002–31 May 2014 compiled at 0.25° (colored markers) and 0.5° (black dots). Underpop-

ulated bins at 0.25° (PDF < 10−5) are indicated by open circles, and those for 0.5° are omitted. Triangles

represent the corresponding q̂sat values. Here, precipitating events are defined by P > 1.05 mm h−1. The

CWV data is gap-filled using nearest available values, and data from pixels within 2.5° of land are excluded

to avoid potentially erroneous temperature values arising from spatial interpolation.
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Figure 3.A.5: Convective transition statistics for each ocean basin, as in Fig. 3.A.4 for 0.25° (colored markers)

and 0.5° (dots), but for each T̂ shifted by the corresponding critical CWV wc (as in Fig. 3.3.3g), and with

PDFs scaled. The best-fit lines for conditional precipitation rates (leftmost column) are shown as gray

dash-dot line, with slope indicated by α. The top row is identical to the bottom row in Fig. 3.3.2.

assess the validity of this assumption. Consider the case where q̂sat is used as the bulk

temperature measure. We start with choosing a fixed reference precipitation rate Pr (say,

1.05 mm h−1 as used here). For each q̂sat, we can find the reference CWV wr at which the

conditional precipitation equals Pr. Having found wr(q̂sat), the assumption implies that the
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Figure 3.A.6: Same as Fig. 3.A.5, but conditionally averaged by q̂sat as in Fig. 3.3.1. The top row is identical

to the top row in Fig. 3.3.2.

precipitation pickup curves can be collapsed by shifting CWV by wr(q̂sat) for each q̂sat, i.e.,

expressing statistics as a function of cwv−wr(q̂sat) instead. After the curves collapse into a

single cluster, one can then take a segment of the cluster with the precipitation rate falling

within a certain range (here, 3 < P < 5 mm h−1) to find the best-fit line and its (shifted)

CWV-intercept. Note that the difference between wr(q̂sat) and wc(q̂sat) under this procedure

is independent of q̂sat, and is typically around 1.75 mm (given by Pr divided by the slope of
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the pickup curve, α). The value of wr would correspond approximately to the measure of

critical used in Sahany et al. (2014). The critical values found by the procedure just outlined,

and hence the resulting collapsed statistics, are reasonably insensitive to the reference Pr

and the specified precipitation range. There are, however, occasions for which special care

is necessary. An example of such occasion (but without the proper care for demonstration

purposes) is shown in Figs. S8 and S11 below for the 274-K T̂ -bin in the tropical western

Pacific (WPac). In this case, the conditional precipitation as a function of CWV (gap-filled

by Mean) has an irregular behavior for precipitation rate around Pr, leading to a wr sensitive

to Pr, and hence an unsatisfactory collapse. In this particular case, a set of carefully chosen

Pr (and precipitation range in some other cases) can resolve the issue. There are, however,

cases where the precipitation pickup is too irregular compared with observation (e.g., non-

monotonic as a function of CWV) and the procedure outlined above would simply fail (e.g.,

output from a model with ill-constrained convective parameterization; not shown). Note

that in some of the figures presenting the collapsed statistics, the colored markers and black

dots represent statistics compiled at different resolutions using the same gap-filling method

(Figs. 3.3.2, 3.A.5-3.A.6, and 3.A.9-3.A.11), respectively, and represent statistics using dif-

ferent gap-filling at the same resolution in the others (Figs. 3.A.7-3.A.8). Figures 3.A.5-3.A.6

show the same statistics as in Fig. 3.3.2 in the main text, but include other basins. In all

of these figures, the black-dot statistics are collapsed by using the critical values calculated

for the colored-marker statistics. Since the lower-resolution conditional precipitation usually

does not reach the high precipitation regime, this approach enables us to collapse the lower-

resolution (black-dot) statistics without choosing a different range of precipitation, and still

leads to a satisfactory collapse. One can assess this last assertion, and the sensitivity of the

critical values and the collapsed statistics to the resolution/gap-filling as indicated by the

differences between the color-marker and black-dot statistics, by referring to these figures

(with the exception of the 274-K T̂ -bin for WPac in Fig. 3.A.8).
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3.A.4 Sensitivity of convective transition statistics (and their spatial-resolution-

dependence) to gap-filling

In this subsection, we examine the sensitivity of the convective transition statistics (and

their dependence on spatial-averaging) to the adopted gap-filling method. As mentioned in

section 3.A.3, in Figs. 3.A.7-3.A.11, the black-dot statistics are collapsed by using the critical

values calculated for the colored-marker statistics.

Figures 3.A.7 shows the (collapsed) statistics at 0.25° compiled using TMIv7.1 data with

CWV gap-filled by Max (colored markers) and Nearest (default; black dots). The two meth-

ods lead to very similar results. Noticeable differences include the slope of the precipitation

pickup and the PDF at high CWV—the former method results in a steeper pickup in terms

of conditional precipitation and probability, and more frequent occurrences of CWV exceed-

ing critical. Figure 3.A.8 is similar to Fig. 3.A.7, but with statistics for Max replaced by

Mean. The latter method leads to a less steep precipitation pickup, and slightly less frequent

occurrences of CWV above critical.

To further examine how the gap-filling method impacts the sensitivity of the statistics to

spatial resolution, Figs. 3.A.9-3.A.11 show the collapsed statistics compiled using TMIv7.1

CWV data gap-filled by Max (0.25° and 1.5°), Nearest (0.25° and 1°), and Mean (0.25° and

0.5°), respectively. The choices of resolution for Max and Nearest are the lowest resolution

up to which a noticeable difference starts to appear. Here we should leave aside the condi-

tional probability and PDF of precipitating events since they are expected to be sensitive to

resolution. Max leads to the conditional precipitation most robust to spatial resolution, with

the slope of the asymptote being almost invariant up to 1.5°, while Mean results in the least

robust conditional precipitation and a noticeable reduction in the slope for 0.5° compared

to 0.25°. Overall, Max assigns more high CWV values and leads to statistics most robust

to spatial-averaging, Mean is at the other end of the spectrum, and Nearest lies somewhere

in between. For comparison purposes, Nearest is chosen as the default gap-filling method
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for this study. Although currently available observational datasets cannot provide sufficient

information to favor one method over another, Yano et al. (2012) analyzed output from a

cloud-resolving model (CRM) and concluded that the conditional precipitation as a function

of CWV is indeed very robust to spatial-averaging. In light of the CRM study, our default

choice of gap-filling may be too conservative, and Max leads to statistics more consistent

with the CRM simulation in terms of being insensitive to spatial resolution.

3.A.5 Joint-PDF of CWV relative to critical and precipitation for different

temperature and basin

Figure 3.A.12 shows the joint-PDF of CWV relative to critical and precipitation rate given

different q̂sat bins and tropical ocean basins. Note that the 70-mm panel for the tropical

western Pacific (WPac) is identical to Fig. 3.6.1a in the main text. These joint-PDFs are

similar across the most common range of q̂sat and basins.

3.A.6 Geographic distribution of bulk tropospheric temperature

Figure 3.A.13 shows the probability of occurrences of T̂ (bin-width 1 K) as a function of

geographical location. The most probable T̂ -bin is 271 K in all tropical ocean basins but

the tropical western Pacific, where the most probable T̂ is 272 K. Events with T̂ lower than

270 K mostly occur at latitudes around or higher than 20°, but occasionally in the tropical

eastern Pacific and Atlantic. These cold events in the tropics, judged from their geographical

distribution, are likely due to systems from the extratropics. Some of the coldest and warmest

events in the tropics tend to happen near the south Asian continent in the Bay of Bengal and

Arabian Sea, likely caused by the circulation pattern driven by the local land-sea contrast.
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Figure 3.A.7: Convective transition statistics as in Fig. 3.A.4 for 0.25° (colored markers), but with CWV

gap-filled using Max. The black dots are a duplication of the colored markers in Fig. 3.A.4 (the statistics

for 0.25° with CWV gap-filled using Nearest).
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Figure 3.A.8: Convective transition statistics as in Fig. 3.A.4 for 0.25° (colored markers), but with CWV

gap-filled using Mean. The black dots are a duplication of the colored markers in Fig. 3.A.4 (the statistics

for 0.25° with CWV gap-filled using Nearest). The 274-K T̂ -bin for WPac requires the additional effort of

choosing a larger Pr to collapse the statistics, which is not done here for illustration purpose (section 3.A.3).
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Figure 3.A.9: Convective transition statistics as in Fig. 3.A.5 for 0.25° (colored markers) and 1.5° (black

dots), both with CWV gap-filled using Max.
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Figure 3.A.10: Convective transition statistics as in Fig. 3.A.55 for 0.25° (colored markers) and 1° (black

dots), both with CWV gap-filled using Nearest.
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Figure 3.A.11: Convective transition statistics as in Fig. 3.A.5 for 0.25° (colored markers) and 0.5° (black

dots), both with CWV gap-filled using Mean. The 274-K T̂ -bin for WPac requires the additional effort of

choosing a larger Pr to collapse the statistics, which is not done here for illustration purpose (section 3.A.3).
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Figure 3.A.12: Joint-PDF of CWV relative to critical (colors) and precipitation rate for the four most

probable q̂sat bins for each tropical ocean basin. The joint-PDF is normalized for each q̂sat.

3.A.7 CWV relative to critical as an indicator of precipitation

Section 3.4 (with Fig. 3.4.1) in the main text discusses how CWV relative to critical can

be used as an indicator of precipitation. This section provides additional information com-84



Figure 3.A.13: PDF of T̂ on a log10-scale as a function of geographical location calculated using Reanalysis-2

temperature for the period of 1 June 2002–31 May 2014. The color advances whenever the PDF doubles

(100.3 ∼ 2). The sum of the PDFs over all T̂ (including < 267 K and > 274 K) equals one.

plementing that discussion. Note that the geographical patterns (not the magnitudes) in

Figs. 3.4.1 and 3.A.14 are robust to the CWV offset and precipitation threshold.

Figure 3.A.14a shows the probability of CWV exceeding critical (offset by −1.5 mm;

to be consistent with Fig. 3.4.1), exhibiting a geographical pattern similar to that of the

probability of precipitation (Fig. 3.4.1a) and precipitation climatology (Fig. 3.A.14b). The

most outstanding feature here is the sharp contrast between the major convergence zones

and other regions. Note that the corresponding CWV climatology in Fig. 3.A.14c, without

taking into account the dependence of the critical CWV on temperature, reveals a gentler

spatial variation, although the overall pattern still resembles that of precipitation.

While it has been demonstrated that CWV relative to critical is a useful proxy for

precipitation, given that the chances of CWV exceeding critical are low (∼ 25% in the

major convergence zones as in Fig. 3.A.14a), and that there are below-critical precipitating

events, the contribution of above-critical events to the overall precipitation still has to be
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Figure 3.A.14: (a) The probability of CWV exceeding critical (offset by −1.5 mm) as a function of geo-

graphical location, calculated using TMIv7.1 CWV and Reanalysis-2 temperature. (b) The precipitation

climatology calculated using TMIv7.1 precipitation. (c) Same as in (b) but for CWV. (d) The conditional

probability [Prob(cwv > wc − 1.5 mm| P > 0.25 mm h−1)] calculated using TMIv7.1 data and Reanalysis-2

temperature. Here, (a)-(d) are for the same period 01 Jun 2002–31 May 2014 and resolution 0.25°, and the

critical CWV wc(q̂sat) is as in Fig. 3.3.3 (top center; in the main text) averaged over four basins.

quantified. Figure 3.A.14d shows the conditional probability of CWV exceeding critical given

precipitation, which exhibits a geographical pattern and magnitude similar to the fraction

of total precipitation from above-critical events shown in Fig. 3.4.1e. In most places in the

tropics, the conditional probability and fraction are higher than 60%, indicating that above-

critical events are indeed the major contributor to precipitation. The spatial pattern, when

compared to that of the precipitation climatology, shows much weaker spatial contrast, and
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seems capable of capturing the seasonal shift of precipitation. For instance, one may notice

the high values in Figs. 3.A.14d and 3.4.1e in the tropical eastern Pacific between 0° and

10°S, reflecting the occurrences of deep convective events in this region during the boreal

spring (not shown). Since these events are rare, they barely make a dent in Figs. 3.A.14a

and 3.A.14b (255°-275°).

Figure 3.4.1f in the main text demonstrates a potential application of using CWV rel-

ative to critical as a predictor of precipitation. The false positive rate of this (i.e., the

conditional probability of no precipitation given CWV exceeding critical) is given by the

conditional probability shown in Figs. 3.4.1b, 3.4.1c, and 3.4.1d (more precisely, one minus

the conditional probability), and varies weakly with geographical location. The actual mag-

nitude of the false positive rate depends on the spatial-temporal resolution of precipitation

in which one is interested, as well as the CWV offset and precipitation threshold. The false

negative rate (the chances of having precipitation given CWV below critical) is given by

(one minus) the conditional probability in Fig. 3.A.14d. While the exact magnitude of the

false negative rate depends on the resolution, CWV offset, and precipitation threshold, it

is expected to be lower than 40% in regions including the major convergence zones based

on Fig. 3.A.14d. There are regions with high false negative rates, but mostly inside regions

with climatologically low precipitation.

3.A.8 Low bias of conditional precipitation associated with ground-based CWV

measurements

In Fig. 3.3.3 of the main text, the conditional precipitation and probability of precipitation

compiled using the ARM site data from Manus and Nauru show significant low bias for the

highest CWV bins (relative to critical; cwv−wc > 5 mm) compared to those from the satel-

lite retrievals. To test whether the bias results from the “wet-window” problem associated

with the ground-based MWR CWV measurements, Fig. 3.A.15 shows the conditional pre-

cipitation and conditional probability as in Figs. 3.3.3a-3.3.3b, but with the ground-based
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Figure 3.A.15: Similar to Fig. 3.3.3 of the main text but with the ground-based precipitation from the

Manus and Nauru ARM sites replaced by the TRMM 3B42 precipitation averaged around the sites (2.25°

× 2.25°). (Left) Collapsed conditional precipitation complied using different datasets, including (i) TMIv7.1

CWV and precipitation (colored dots) with underpopulated bins plotted as open circles, (ii) TMIv7.1 CWV

and PR 2A25 precipitation (gray dots) excluding underpopulated bins, and (iii) ARM site CWV and 3B42

precipitation (2.25°-averaged) for Manus (diamonds) and Nauru (squares) Islands in the tropical western

Pacific (WPac). Reanalysis-2 temperature is used for (i)-(iii). For (i) and (ii), bins from all four basins

are plotted, with data at 0.25° resolution for 01 Jun 2002–31 May 2014 and coastal regions excluded. For

(iii), the curves are shifted by the corresponding wc given the temperature q̂sat or T̂ ) time series according

the wc-temperature relation for WPac. (Right) Same as in the left panel, but for conditional probability of

precipitation defined by P > 1.05 mm h−1.

precipitation at Manus and Nauru being replaced by 3B42 precipitation around the 2 islands

(a 2.25° × 2.25°-average). Since the ground-based data and 3B42 have different temporal fre-

quency/averaging, the necessary interpolation/matching has been performed. In Fig. 3.A.15,

the low bias for the statistics for Manus and Nauru persists.

An additional combination of TMIv7.1 CWV and 3B42 precipitation gives results quan-

titatively similar to those shown in Figs. 3.3.1-3.3.3, except for the slope of the precipitation
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pickup is slightly smaller (not shown), with no signs the low bias for the highest CWV bins.

Given this, and the low bias for Manus and Nauru in Figs. 3.3.3 and 3.A.15, we conclude

that this bias must be caused by the ground-based CWV measurements, and very likely,

the “wet-window” problem. Specifically, high CWV events (relative to critical) with strong

precipitation are missing from the CWV timeseries, and the gap-filling, through interpola-

tion, assigns to these events CWV values lower than that happened, while high CWV events

associated with weak/no precipitation are not affected as much, resulting in the low bias

for the highest cwv − wc bins. The results here further suggest (i) the adopted gap-filling

for ground-based CWV time series cannot satisfactorily restore the missing information; (ii)

for cwv − wc > 5 mm, the CWV data is no longer trustworthy, and (iii) the temperature

dependence of critical must be considered in determining this trustworthiness.
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CHAPTER 4

Convective transition statistics over tropical oceans for

climate model diagnostics: GCM evaluation

Abstract

To assess deep-convective parameterizations in a variety of GCMs and examine the fast-

timescale convective transition, a set of statistics characterizing the pickup of precipitation

as a function of column water vapor (CWV), PDFs and joint-PDFs of CWV and precipita-

tion, and the dependence of the moisture-precipitation relation on tropospheric temperature

is evaluated using the hourly output of two versions of GFDL AM4, NCAR CAM5 and

superparameterized CAM (SPCAM). The 6-hourly output from the MJOTF/GEWEX At-

mospheric System Study (GASS) project is also analyzed. Contrasting statistics produced

from individual models that primarily differ in representations of moist convection suggest

that convective transition statistics can substantially distinguish differences in convective

representation and its interaction with the large-scale flow, while models that differ only

in spatial-temporal resolution, microphysics, or ocean-atmosphere coupling result in similar

statistics. Most of the models simulate some version of the observed sharp increase in pre-

cipitation as CWV exceeds a critical value, as well as that convective onset occurs at higher

CWV but at lower column RH as temperature increases. While some models quantitatively

capture these observed features and associated probability distributions, considerable inter-

model spread and departures from observations in various aspects of the precipitation-CWV

relationship are noted. For instance, in many of the models, the transition from the low-

CWV, non-precipitating regime to the moist regime for CWV around and above critical
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is less abrupt than in observations. Additionally, some models overproduce drizzle at low

CWV, and some require CWV higher than observed for strong precipitation. For many of

the models, it is particularly challenging to simulate the probability distributions of CWV

at high temperature.

4.1 Introduction

Simulating deep convection in GCMs has been a longstanding challenge despite progress in

computer power and model complexity. The tropical precipitation simulated by GCMs is

often at odds with the observed and targeted studies have identified limitations of simulated

convection as a likely contributor to major biases in climatology and large-scale modes of

tropical variability—e.g. the MJO (Del Genio et al. 2012, Zhu and Hendon 2015, Jiang 2017),

the diurnal cycle of precipitation (Del Genio and Wu 2010, Rio et al. 2009, Hourdin et al.

2013, Covey et al. 2016), and the double ITCZ (Mapes and Neale 2011, Hwang and Frierson

2013, Oueslati and Bellon 2013, Hirota et al. 2014). Tropical precipitation also exhibits

great intermodel spread in the context of future change projection (Biasutti and Sobel 2009,

Biasutti 2013, Voigt et al. 2016, Su et al. 2017, Maloney et al. 2019a). As a result, model

diagnostic efforts targeting deep convection are central to several model improvement efforts

across scales. Recent approaches seek process-oriented diagnostics that target improvements

to physical parameterizations by investigating coordinated statistics for relationships among

variables aimed at giving insight into underlying processes (Eyring et al. 2019, Maloney

et al. 2019b). Such efforts include, for example, diagnostics for Moist Static Energy (MSE)

variance budget analysis (Wing and Emanuel 2014), MJO propagation (Kim et al. 2014,

Gonzalez and Jiang 2017), MJO midlatitude teleconnection (Henderson et al. 2017), ENSO-

related SST anomalies for seasonal to interannual predictability (Annamalai et al. 2014),

warm rain processes (Suzuki et al. 2015), and tropical cyclone simulations (Kim et al. 2018).

Here we focus on convective transition statistics that serve as model diagnostics for the

91



parameterization of deep convection (Peters and Neelin 2006, Neelin et al. 2009; Kuo et al.

2018, content included in chapter 3). These statistics characterize the PDFs of CWV for

precipitating points, the pickup of precipitation as a function of CWV, and the dependence of

the moisture-precipitation relation on tropospheric temperature. The moisture-precipitation

relation is representative of the relation between observed deep convection and the buoyancy

available for deep convection (Holloway and Neelin 2009, Schiro et al. 2016, Ahmed and

Neelin 2018), applying to both mesoscale-organized and smaller-scale convection (Schiro

et al. 2018, 2019). The relationship to convective instability has been examined in a single

GCM (Sahany et al. 2012, 2014, Kuo et al. 2017). Here we systematically evaluate the

performance of multiple GCMs in simulating key features of tropical precipitation and deep

convection with such diagnostics.

Chapter 3 has detailed observational aspects of the convective transition statistics over

tropical oceans using satellite retrievals and ground-based measurements, providing a base-

line. Here, the same set of statistics are compiled for 3 sets of high-frequency (hourly and

6-hourly) GCM output and compared to observations to address a fundamental question:

whether these statistics can target specific processes and differentiate the relevant parame-

terization schemes adopted by each GCM, namely deep-convective parameterizations. The

first set consists of hourly output from a pair of uncoupled GFDL AM4 and AM4 modified

to include multiple deep plumes. The second set, also hourly output, is from the uncoupled

NCAR CAM5.3 and the superparameterized CAM (SPCAM), which share the same dynamic

core but differ in representations of moist convection. These 2 pairs of model comparison

demonstrate that the convective transition statistics can reveal model characteristics directly

relevant to the moist-convective representations in contrast to the conventional diagnostic

metrics based on long-term climatology and variability. The third set consists of 6-hourly

output from a subset of models participating in the MJO Task Force/GEWEX Atmospheric

System Study (GASS) multimodel comparison project on the Madden-Julian Oscillation

(hereafter MJOTF/GASS; Petch et al. 2011, Jiang et al. 2015), which further enables us
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to perform similar assessment but for a selection (16 models/configurations) of mainstream

GCMs.

This chapter is organized as follows. Section 4.2 describes the observational and model

data. Section 4.3 briefly summarizes the observational aspects of the basic convective tran-

sition statistics, with the corresponding model comparisons in section 4.4. The joint PDFs

of CWV and precipitation, and the derived statistics, are presented in section 4.5. Summary

and conclusions are given in section 4.6.

4.2 Data and model descriptions

4.2.1 Observational datasets

Compiling the desired statistics requires the column-integrated water vapor (CWV), precipi-

tation rate P , and 1000-200 hPa column-integrated saturation humidity q̂sat ≡
∫
qsat[T (p), p]dp/g

{qsat[T (p), p] is the saturation specific humidity with respect to liquid water}. Here, q̂sat is

used as the bulk measure of tropospheric temperature (see chapter 3 for comparison to

vertically-averaged tropospheric temperature).

To be consistent with previous studies, the 6-hourly 2.5° NCEP-DOE Reanalysis-2 tem-

perature (Kanamitsu et al. 2002) is adopted for calculating q̂sat with interpolation as needed.

Newer reanalysis products (e.g., ERA-Interim) give similar results (not shown). Our primary

source of CWV and P is the TRMM Microwave Imager (TMI) retrievals processed by Re-

mote Sensing Systems (version 7.1; TMIv7.1 hereafter; Wentz et al. 2015) for the period of

1 June 2002 through 31 May 2014. The TMIv7.1 data contains gridded (0.25°) snapshots of

CWV and P (at 0.3-mm and 0.1-mm h−1 increments, respectively) over ocean. The CWV

is capped at 75 mm and often records missing values in the presence of heavy precipitation

(with increasing probability of missing values starting around P = 2 mm h−1 and recording

almost nothing above 9 mm h−1). We gap-fill the missing values using the available values at

the nearest pixel to restore substantial coverage, but one should not overlook the uncertainty
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associated with the CWV counts at high P (see chapter 3 for sensitivity to gap-filling). The

TMIv7.1 P exhibits a spurious cutoff around 10 mm h−1. Thus, for studying the PDFs of

P , the TRMM Precipitation Radar (PR) 2A25 (v7; TRMM 2011a) Rainfall Rate containing

snapshots of P at ∼5 km resolution is utilized. At its native resolution, the lowest value the

PR can distinguish is ∼0.11 mm h−1.

4.2.2 Model descriptions

Part of the model data analyzed here are from the Timeslice Experiments performed by

the NOAA MAPP Model Diagnostic Task Force (Maloney et al. 2019b), which include 2-

year-long high-frequency output under the AMIP settings. The relevant data consists of

hourly snapshots of temperature and humidity, for calculating q̂sat and CWV, and hourly

average precipitation. The available models include uncoupled ∼1° GFDL AM4 (Zhao et al.

2018a,b, AM4G9 hereafter), and AM4 modified to include multiple deep plumes and con-

vective mesoscale circulations (Donner et al. 2011, AM4B6), and the uncoupled ∼1° NCAR

CAM5.3 (Neale et al. 2012). The two AM4 configurations, running through 2009-2010, pri-

marily differ in the convective parameterizations—double-plume convective scheme (Zhao

et al. 2009) for AM4G9 vs Donner convective scheme (Donner 1993) for AM4B6—with as-

sociated tuning differences, but otherwise share most model components.

The CAM5.3, running through 1990-1991, uses the Zhang-McFarlane deep-convective

parameterization Zhang and McFarlane (1995) as updated by Neale et al. (2008) and Richter

and Rasch (2008). For comparison, our analysis also includes another set of 10-year-long

hourly output from the uncoupled ∼2° superparameterized CAM (SPCAM; the atmospheric

component of the SP-CESM, version 1.1.1; prescribed monthly mean SST over 1982-2001),

in which the moist-convective processes are explicitly simulated by a 2D cloud-resolving

model (Khairoutdinov and Randall 2003) instead of being parameterized. The SPCAM is

run with the CAM4 physics. CAM5 (and CAM5.3) differs from CAM4 primarily in updated

parameterization schemes and incorporating aerosol-cloud interactions, leaving most of the
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dynamic components unchanged. Thus, one major difference between the SPCAM and

CAM5.3 lies in the representations of moist convection, which is expected to be the key

difference for the statistics analyzed here.

Table 4.2.1: Analyzed models with resolutions and references. Simulations 1-3 are provided by the NOAA

MAPP MDTF Timeslice Experiments. Simulations 1-4 output hourly data. Simulations 5-20 are provided

by the 20 year climate simulation component of the MJOTF/GASS Global Model Comparison Project, with

6-hourly data regridded to 2.5° × 2.5° resolution. The descriptions of the MJOTF/GASS models follow

(Jiang et al. 2015, Table 1).

To survey the convective transition in a variety of models, we also analyze the 6-hourly

output of 16 models/configurations participating in the MJOTF/GASS Global Model Com-

parison Project, the 20 year climate simulation component. Here, the precipitation is 6-
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hourly average, and all the data have been regridded to 2.5° × 2.5° resolution prior to

our analysis (Jiang et al. 2015). This MJOTF/GASS ensemble further provides an oppor-

tunity for two case studies of the sensitivity of the convective transition statistics on (a)

time-averaging and convective-cloud microphysics through two additional CAM5 instances

(referred to as CAM5 and CAM5-ZM), and on (b) coupling/forcing configurations through

three CNRM instances (CNRM-AM, CNRM-CM, and CNRM-ACM; section 4.4.2.3).

See Table 4.2.1 and reference therein for details regarding the examined models.

4.3 A summary of the observational aspects of convective transi-

tion statistics over tropical oceans

In this section, we briefly summarize the observed characteristics of convective transition

over tropical oceans synthesized by chapter 3.

Figures 4.3.1a-4.3.1d show the basic statistics compiled using the TMIv7.1 data and

Reanalysis-2 temperature at 1° resolution, including the conditionally-averaged precipitation

rate (conditional precipitation hereafter; calculated by including all events; Fig. 4.3.1a),

conditional probability of precipitation (P > 0.25 mm h−1; Fig. 4.3.1b), PDFs of CWV for

all events (Fig. 4.3.1c) and for precipitating events (Fig. 4.3.1d), all as a function of CWV

and q̂sat for the tropical western Pacific (WPac; 20°S-20°N, west of 180°). Here, q̂sat is used as

a proxy for the bulk tropospheric temperature. The PDFs in Fig. 4.3.1c together represent

the normalized joint distribution of CWV and q̂sat, reflecting the CWV-q̂sat climatology in

this basin. Multiplying these PDFs by the corresponding conditional probabilities in Fig.

1b leads to the PDFs for precipitating events in Fig. 4.3.1d.

The conditional precipitation and probability (Figs. 4.3.1a and 4.3.1b) sharply increase as

CWV exceeds a certain threshold known as the critical CWV wc (defined through Fig. 4.3.1e

later). wc increases with q̂sat. For low q̂sat bins, the PDFs of CWV in Fig. 4.3.1c exhibit a

characteristic shape, i.e., a peak at low CWV below which the PDF drops sharply, and above
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Figure 4.3.1: Conditionally averaged precipitation rate (a), conditional probability of precipitation (b), PDFs

of all events (c), and PDFs for precipitating events as a function of CWV and q̂sat (colors; units: mm) (d) for

the tropical western Pacific (20°S-20°N, west of 180°). In (a)-(d), results are using TMIv7.1 precipitation rate

and CWV and Reanalysis-2 temperature compiled at 1° (colored markers). Triangles represent corresponding

q̂sat values, which indicate where the column is approximately saturated, and underpopulated bins (PDF

< 10−5) are omitted. (e)-(h) Same statistics as in (a)-(d) but at 0.25° to include more events, and with

the statistics collapsed by shifting CWV for each q̂sat by the corresponding critical CWV wc from (k), and

with the PDFs scaled by values at wc. (i) Collapsed conditionally averaged precipitation rate at 0.25° as in

(e) but with data from three additional tropical (20°S-20°N) ocean basins (colored dots) and with TMIv7.1

precipitation rate replaced by PR 2A25 precipitation rate (gray dots). (j) Same as in (i) but for conditional

probability of precipitation [P > 1.05 mm h−1; different from the 0.25-mm h−1 threshold for (b) and (f)].

(k) Critical CWV wc as a function of q̂sat for the four tropical ocean basins, with the gray line indicating

the q̂sat value where the column is approximately saturated. (l) Critical column RH defined as wc/q̂sat. In

(k)-(l), the values of wc are calculated by fitting the conditionally averaged precipitation rate in the range

3-5 mm h−1 using TMIv7.1 data and Reanalysis-2 temperature compiled at 0.25°.
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which the PDF decreases slowly until reaching a cutoff around critical. As q̂sat increases,

another peak develops at high CWV around critical with the low-CWV peak diminishing.

Neelin et al. (2009) has noted that low-CWV/high-CWV events tend to occur over ocean

with colder/warmer SST, which is closely related to the locations of the descending/ascending

branches of the general circulation. Stechmann and Neelin (2011, 2014) have also demon-

strated through a stochastic framework that the CWV PDFs are sensitive to processes like

surface evaporation, precipitation, and moisture convergence. These observations suggest

that the CWV PDFs are determined by the large-scale flow interacting with convective

physics.

In chapter 3, we noted that, because of the large spatial autocorrelation scales of tempera-

ture and CWV compared with that of precipitation, the conditional precipitation (Fig. 4.3.1a)

and CWV PDF (Fig. 4.3.1c) are insensitive to the spatial resolution at which the statistics

are compiled, while the conditional probability (Fig. 4.3.1b) and PDF of precipitating events

(Fig. 4.3.1d) are more sensitive. It thus makes sense to define wc through conditional pre-

cipitation alone so that it provides a resolution-independent metric. Following chapter 3,

we define wc as the CWV value at which a linear fit for conditional precipitation (in the

range 3-5 mm h−1) intersects with the CWV axis. This is depicted in Fig. 4.3.1e, which

shows the conditional precipitation as in Fig. 4.3.1a, but for 0.25° resolution and is collapsed

by shifting CWV by wc for each q̂sat. Here, the resolution 0.25° is chosen instead of 1° to

include more events, making the fitting numerically stable. The collapsed conditional prob-

ability and re-scaled CWV PDFs corresponding to those in Figs. 4.3.1b-4.3.1d are shown in

Figs. 4.3.1f-4.3.1h, and the values of wc and critical column RH wc/q̂sat in Figs. 4.3.1k-4.3.1l.

From Figs. 4.3.1k-4.3.1l, the slopes of wc and wc/q̂sat exhibit a clear transition around

q̂sat = 61 mm separating tropical convection from events originating from extratropics (in-

dicated by the geographical distribution of q̂sat; low-q̂sat occurrence mostly along the edge

of tropics, sometimes reaching the equator in the central-eastern Pacific; see chapter 3,

Fig. 3.A.13). As q̂sat exceeds around 61 mm, wc increases but wc/q̂sat decreases, i.e., convec-
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tive onset occurs at higher CWV but at lower column RH. This wc–q̂sat relation completely

characterizes the dependence of precipitation pickup on tropospheric temperature in the

sense that the conditional precipitation and probability (Figs. 4.3.1e and 4.3.1f) collapse

well without exhibiting additional temperature dependence. For q̂sat bins ≥ 70 mm, the

PDFs for precipitating events (Fig. 4.3.1h) peak right below critical with a common near-

Gaussian core, i.e., precipitation mostly occurs within a characteristic (and relatively narrow)

CWV range around critical. Also, there are more precipitating events below critical for lower

q̂sat ≤ 65.6 mm, consistent with the slightly higher probability in Fig. 4.3.1f.

The conditional precipitation and probability in Figs. 4.3.1e and 4.3.1f are reproduced

in Figs. 4.3.1i and 4.3.1j together with the results from the other tropical ocean basins

(20°S-20°N; colored markers). Here, the statistics from all 4 basins collapse, and are thus

indistinguishable. The corresponding values calculated using the PR (2A25) precipitation

are also shown (gray dots). Note that Fig. 4.3.1j uses a 1.05-mm h−1 threshold. The PR and

TMI precipitation yield consistent statistics despite that the two instruments slightly differ

in sensitivity to low precipitation < 1.05 mm h−1. For q̂sat above the transition (∼61 mm),

the pickup of conditional precipitation and probability shows little variation across the q̂sat

range and ocean basins (Figs. 4.3.1i and 4.3.1j), and so do the critical values (Figs. 4.3.1k

and 4.3.1l). For q̂sat below the transition, on the other hand, precipitation exhibits a gentler

pickup, and the critical values scatter over a wider range. Although not shown here, the

qualitative features of the CWV PDFs (for all events and precipitating events) for WPac

noted above also apply to other ocean basins.

It is worth noting that the CWV PDFs vary considerably across basins and seasons (not

shown), reflecting differences in the CWV–q̂sat climatology. However, there is not a clear

interannual variability (e.g., ENSO vs non-ENSO years). The conditional precipitation,

probability, and the critical values, on the other hand, are robust and exhibit little variation.

We caution the readers to interpret Fig. 4.3.1 carefully, especially for results at the highest

CWV. The TMIv7.1 CWV retrievals are capped at 75 mm and often contain missing values in
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the presence of heavy precipitation (P > 2 mm h−1). Here, we adopt the gap-filling method

tested in chapter 3 prior to compiling the statistics. The gap-filling partially restores the

missing information but inevitably leads to uncertainty, e.g., in the distribution of CWV

above critical for highest q̂sat bins.

The tropical ARM site data had also been examined to quantify the dependence of

convective transition on temporal averaging (not shown). Based on the analysis of satel-

lite retrievals and ground-based measurements in chapter 3, the conditional probability of

precipitation defined through a reasonable threshold (e.g., P > 0.25 mm h−1) would shift

towards lower CWV for (1) lower spatial resolution, (2) longer temporal averaging, or (3)

lower precipitation threshold, with the shift being less than 10 mm for spatial resolution

changing from 0.25° to 2° and/or temporal resolution from snapshot to 6-hourly averaging.

This dependence on resolution would not hold for an extreme precipitation threshold (e.g.,

P > 10 mm h−1). In contrast, the conditional precipitation and CWV PDF are insensitive

to spatial averaging and less sensitive to temporal averaging.

For more information regarding observed convective transition, see chapter 3. Below

we summarize key aspects of the basic statistics. In the next section, we will examine the

performance of the chosen models with these in mind:

a. The conditional precipitation and probability sharply increase as CWV exceeds the

critical CWV wc.

b. As the bulk tropospheric temperature q̂sat increases, wc increases, but the critical

column RH wc/q̂sat decreases.

c. The critical values exhibit little variation across ocean basins.

d. The conditional precipitation and probability can be collapsed by shifting the CWV

by wc.

e. The collapsed conditional precipitation and probability exhibit little variation across

the q̂sat range and ocean basins.
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f. The CWV PDF exhibits a characteristic shape (the low- vs high-CWV peak) which

depends on q̂sat.

g. For CWV above critical, the CWV PDF drops rapidly for all q̂sat. This part of the

PDF can be collapsed by shifting the CWV and re-scaling the PDF.

h. The PDF of CWV for precipitating events, for the most common q̂sat bins over tropical

oceans, can be collapsed and shares a common near-Gaussian core.

4.4 Simulated convective transition statistics in GCMs

4.4.1 Convective transition statistics distinguishing convective parameteriza-

tions

To assess whether the convective transition statistics can apply as a diagnostic tool targeting

convective processes and distinguish the realism of convective parameterizations adopted by

models, in this subsection, we examine the basic statistics compiled using the hourly data

from two pairs of GCMs. The configurations/models within each pair differ primarily in

their representations of moist convection, which is expected to be the key difference for the

examined statistics analyzed here.

The first pair of GCMs consists of two ∼1° configurations of the latest global model AM4

(Zhao et al. 2018a,b) developed by the GFDL that are equipped with different convective

schemes, namely the AM4G9 with the double-plume convective scheme (Zhao et al. 2009),

and the AM4B6 with the Donner convective scheme (Donner 1993).

The second pair is based on the CAM developed by the NCAR, namely the CAM5.3 (∼1°;

Neale et al. 2012) with the default Zhang-McFarlane convective parameterization (Zhang and

McFarlane 1995), and the SPCAM (∼2°) with a 2D CRM for simulating moist convection

(Khairoutdinov and Randall 2003). Both models share the same dynamic core. Like the

observed statistics in Fig. 4.3.1, Figs. 4.4.1-4.4.4 show the same sets simulated in the models
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Figure 4.4.1: Same as in Fig. 4.3.1 but compiled using the AM4G9 model output (∼1°, hourly). Statistics in

Figs. 4.3.1a-4.3.1d are reproduced as smaller markers in (a)-(d) here for visual reference, and critical values

in Figs. 4.3.1k-4.3.1l reproduced in (k)-(l) as gray makers. In (i)-(j), statistics from the four tropical ocean

basins are shifted with 10-mm increments for ease in viewing.

listed above. The observed statistics in Figs. 4.3.1a-4.3.1d are reproduced as small markers

for visual reference in Figs. 4.4.1a-4.4.1d; the simulated statistics in Figs. 4.4.1i and 4.4.1j

are shifted for ease in viewing [with 10-mm increments; from left to right: tropical western

(WPac) and eastern Pacific (EPac), Atlantic (Atl) and Indian Ocean (Ind)]; the observed

critical values in Figs. 4.3.1k and 4.3.1l are reproduced in gray in Figs. 4.4.1k and 4.4.1l; same

for the corresponding panels in Figs. 4.4.2-4.4.4. We note in Fig. 4.4.4 (SPCAM), because

of lower precipitation rates, the range of the linear fit in Figs. 4.4.4e and 4.4.4i had to be

reduced to 1.5-2.5 mm h−1 (as opposed to 3-5 mm h−1 for observations and other models).
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Figure 4.4.2: Same as in Fig. 4.4.1 but compiled using the AM4B6 model output (∼1°, hourly).

All 4 models capture the observed pickup of precipitation and probability; they also

capture the observed dependence of the critical CWV and critical column RH as a function

of q̂sat (Figs. 4.4.1-4.4.4k,l). However, the simulated conditional probability (Figs.4.4.1-

4.4.4b,f,j) shows departures from observations to varying extents, reflecting the disagreement

in the joint distribution of CWV and precipitation rate P (discussed later in section 4.5).

The collapsed version of the simulated statistics in panels e-j also demonstrate that the wc–

q̂sat relation does not completely characterize the temperature dependence in these models,

e.g., the slope of the best-fit to the conditional precipitation and the conditional probability

show sensitivity to q̂sat (Figs. 4.4.1-4.4.4e,f,i,j); Additionally, the CWV PDFs for high q̂sat do

not drop rapidly around critical (Figs. 4.4.1-4.4.4g,h), i.e., more above-critical events than
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Figure 4.4.3: Same as in Fig. 4.4.1 but compiled using the CAM5.3 model output (∼1°, hourly).

observed, indicating a tendency of excessive moisture convergence or surface evaporation

during precipitation in models. The following sections examine each model in greater detail.

4.4.1.1 AM4G9 (Double-plume convective scheme)

According to Fig. 4.4.1, the simulated conditional precipitation by AM4G9 quantitatively

agrees with observations (Fig. 4.4.1a), with the slope of the best-fit being slightly higher

than observed (Figs. 4.4.1e vs 4.3.1e) but still within the range of observational uncertainty

(e.g., caused by CWV gap-filling). The slope also modestly varies with q̂sat (Fig. 4.4.1e) and

across ocean basins (Fig. 4.4.1i). The simulated conditional probability has a steeper pickup

occurring at slightly lower CWV (Fig. 4.4.1b). The simulated CWV PDF (Fig. 4.4.1c),
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Figure 4.4.4: Same as in Fig. 4.4.1 but compiled using the SPCAM model output (∼2°, hourly). In (k)-(l),

the values of wc are calculated by fitting the conditionally averaged precipitation rate in the range 1.5-2.5

mm h−1.

i.e., the joint PDF of CWV and q̂sat, matches observations but also exhibits modestly more

above-critical events for highest q̂sat bins (Fig. 4.4.1g). However, given the uncertainty in

the CWV retrievals at high values, it is inconclusive at this time whether this mismatch in

the PDF implies the model misbehaving. The simulated PDF for precipitating events shows

that there are more below-critical precipitating events for low q̂sat, resembling observations

(Figs. 4.4.1h and 4.3.1h). The simulated critical values (Figs. 4.4.1k and 4.4.3l) exhibit a

clear transition around q̂sat = 61 mm and are consistent with observations, with slightly

higher values for WPac.
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4.4.1.2 AM4B6 (Donner convective scheme)

In Fig. 4.4.2, the simulated conditional precipitation by AM4B6 roughly matches observa-

tions for q̂sat bins ≥ 70 mm (Fig. 4.4.2a), with the best-fit slope slightly increasing with q̂sat

(Fig. 4.4.2e). The simulated critical values (Figs. 4.4.2k and 4.4.2l) agree with observations

and display a transition around q̂sat = 61 mm. However, discrepancies exist in the simulated

conditional probability and CWV PDFs. The collapsed conditional precipitation shows lit-

tle variation across basins (Fig. 4.4.2i), but its pickup is gentler than observed (Fig. 4.4.2b)

and exhibits dependence on q̂sat for CWV below critical (Fig. 4.4.2f), i.e., there are more

below-critical precipitating events for high q̂sat compared to observations (Figs. 4.4.2h vs

4.3.1h). While the characteristic shape of the simulated PDFs of CWV (Fig. 4.4.2c) for low-

q̂sat bins is consistent with observations, the high-CWV peak around critical fails to develop

as q̂sat increases. Furthermore, the simulated CWV PDF extends into the above-critical

range for highest q̂sat bins (Fig. 4.4.2g), implying the moisture convergence in warm, moist

environments is stronger than suggested by observations.

An additional set of output from the 0.5° version of AM4B6 has also been analyzed,

and the resulting statistics closely resemble those for 1° shown in Fig. 4.4.2, with minor

quantitative differences (not shown). This is indicative that comparing models of different

resolution may still be relevant for diagnosis of convective transition.

4.4.1.3 CAM5.3 (Zhang-McFarlane convective scheme)

In Fig. 4.4.3, the simulated conditional precipitation by this version of CAM5.3 picks up at

higher CWV than observed (Fig. 4.4.3a), resulting in higher critical values (especially for

lower q̂sat bins; Figs. 4.4.3k and 4.4.3l). The best-fit slope is slightly lower than observed (but

still within the observational uncertainty) and exhibits weak dependence on q̂sat (Fig. 4.4.3e)

with modest variation across basins (Fig. 4.4.3i). On the other hand, the simulated condi-

tional probability picks up at lower CWV (Fig. 4.4.3b; P > 0.25 mm h−1). The collapsed
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conditional probability also exhibits dependence on q̂sat with slightly steeper pickup for

higher q̂sat (Fig. 4.4.3f), and exhibits noticeable irregularities, i.e., non-monotonic in CWV

for q̂sat = 47.5 mm in EPac and for q̂sat = 56.5 mm in Atl (Fig. 4.4.3j). The simulated CWV

PDFs (Fig. 4.4.3c) reveal a cold bias in the model with 70-mm instead of 74.5 being the

most probable q̂sat for WPac, and this cold bias also appears in other tropical ocean basins.

The characteristic shape of the PDFs generally agrees with observations (Fig. 4.4.3c), but

also exhibits more above-critical events for highest q̂sat bins, subject to the uncertainty of

the CWV retrievals at high values (Fig. 4.4.3g; like Fig. 4.4.1g for AM4G9). In Fig. 4.4.3c,

the CWV PDF for q̂sat = 61 mm has two peaks, implying a bimodal distribution of SST

(Neelin et al. 2009) instead of a smoother transition from cold to warm SST (or low-level

divergence to convergence) suggested by observations.

4.4.1.4 SPCAM (Superparameterization using a 2D cloud-resolving model)

In Fig. 4.4.4, the simulated precipitation-CWV relationship by SPCAM is decent despite the

lower resolution (∼2°) for the host GCM grid (note the grid spacing of the 2D CRM is 4 km).

The pickup of the simulated conditional precipitation and probability is less steep compared

with observations (Figs. 4.4.4a and 4.4.4b) and exhibits a q̂sat-dependence with gentler pickup

for higher q̂sat (Figs. 4.4.4e and 4.4.4f). Note that in Fig. 4.4.4b, as CWV increases from

below-critical, the simulated conditional probability for q̂sat bins≤ 74.5 mm increases roughly

linearly until reaching a probability of ∼0.15, and then sharply increases with further CWV

increment, exhibiting a 2-step pickup. The pickup also displays a great variation across basins

(Figs. 4.4.4i and 4.4.4j), and irregular behavior of the simulated conditional probability can

be noted for q̂sat = 79 mm in EPac. On the other hand, the simulated critical values generally

agree with observations, with lower values for EPac (Figs. 4.4.4k and 4.4.4l). For low q̂sat

bins ≤ 61 mm, the simulated CWV PDFs are consistent with observations (Fig. 4.4.4c),

with a bimodal PDF for q̂sat = 65.5 mm (like Fig. 4c, 61-mm bin). For even higher q̂sat bins,

the high-CWV peak around critical is less distinctive compared to observations, and the
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PDF also extends into the above-critical regime (like Fig. 4.4.2g for AM4B6). The statistics

presented in Fig. 4.4.4 are from an SPCAM simulation with prescribed SST. Another SPCAM

run coupled with a slab ocean model (SOM; Bitz et al. 2012) leads to similar statistics with

a slightly shifted joint PDF of CWV and q̂sat, reflecting changes in the mean climate state

(not shown). This is indicative that coupling with different model components (e.g., ocean

model) does not alter the simulated convective transition which primarily depends on the

representation of convective physics. This is also supported by a set of CNRM simulations

discussed later in subsection 4.4.2.3. Also note that the statistics exhibit little sensitivity to

doubling the CRM domain size (4 km × 64 column vs 32 column) to permit more organized

convective events (not shown).

4.4.2 Convective transition in MJOTF/GASS models

The last subsection has demonstrated that hourly model data is suitable for the diagnosis of

fast-timescale convective transition. However, most high-frequency output from the recent

CMIP5 are daily or 6-hourly, and higher frequencies are uncommon. To establish that

6-hourly data can also be useful for diagnosing convective transition, and to survey the

performance of current mainstream GCMs, in this subsection we sample the basic statistics

for particular q̂sat bins using the 6-hourly output (snapshot for CWV and q̂sat, average for

precipitation; regridded to 2.5° × 2.5° resolution) from a subset of models (simulations 5-20

in Table 4.2.1) from the MJOTF/GASS project.

Figure 4.4.5 shows the conditional precipitation and probability of precipitation (P > 0.25

mm h−1) for the 70-mm q̂sat-bin for WPac sampled from the MJOTF/GASS models, together

with observations (TRMM OBS; as in Fig. 4.3.1) and hourly 1° CAM5.3 (as in Fig. 4.4.3).

The corresponding CWV PDFs are presented in Figs. 4.4.6a-4.4.6c for different q̂sat bins from

low to high relative to the most probable q̂sat in each case (bins chosen to contrast differences).

A single q̂sat is sufficient to demonstrate the typical behavior for the precipitation pickup,

while three q̂sat values illustrate the typical behavior of the PDFs. For the complete set of
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Figure 4.4.5: (a) Conditionally averaged precipitation rate for q̂sat = 70 mm in the tropical western Pacific

sampled from the MJOTF/GASS ensemble. (b) Same as in (a) but for conditional probability of precipita-

tion (P > 0.25 mm h−1). Here, the TRMM OBS is reproduced from Figs. 4.3.1a-4.3.1b, and CAM5.3 from

Figs. 4.4.3a-4.4.3b for visual reference. The MJOTF/GASS model data are 6-hourly (average for precipi-

tation) and had been regridded to 2.5° resolution prior to our analysis. See Fig. 4.A.1 for MJOTF/GASS

ensemble statistics for other q̂sat bins.

statistics for the MJOTF/GASS models, see Fig. 4.A.1.

4.4.2.1 General overview

Figure 4.4.5a displays considerable variation across models. Most models produce a qual-

itatively reasonable pickup of precipitation above some threshold in CWV, but the exact

value varies considerably. Qualitative departures from the observed behavior can be noted

for some models. For instance, CWB-GFS and FGOALS-s2 exhibit a two-step pickup, and

precipitation in the ISUGCM is relatively insensitive to CWV. The pickup of precipitation

in many models occurs at higher CWV compared to observations. In contrast, the simu-

lated conditional probability (Fig. 4.4.5b) in most models sharply increases at CWV much
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Figure 4.4.6: (a) PDFs of CWV for the most probable q̂sat − 13.5 mm (i.e., a relatively cold bin) in the

tropical western Pacific sampled from the MJOTF/GASS ensemble. (b) Same as in (a) but for the most

probable q̂sat bin. (c) Same as in (a), but for the most probable q̂sat + 4.5 mm (i.e., a relatively warm bin).

Here, the most probable q̂sat value is found separately for each case. The TRMM OBS is reproduced from

Fig. 4.3.1c, and CAM5.3 is reproduced from Fig. 4.4.3c for visual reference. See Fig. 4.A.1 for MJOTF/GASS

ensemble statistics for other q̂sat bins.
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lower than observed, and this departure from observations is too large to be explained by

the dependence of conditional probability on spatial- and time-averaging (1° snapshot for

observations vs 2.5° 6-hourly average for MJOTF/GASS models). Following section 4.3, the

estimated shift caused by averaging is on the order of 5-10 mm or smaller compared to the

shifts of up to 20 mm exhibited here. The low conditional precipitation and high conditional

probability (for P > 0.25 mm h−1; well above detection limit of the TMI and PR; TRMM

2011; Wentz et al. 2015) at CWV below critical in these models imply a widespread problem

with excessive occurrence of low rain rates—which for brevity we refer to as a drizzle problem

at subdaily timescales (not to be confused with the conventional drizzle problem for daily

mean, e.g., Dai 2006).

Turning to the CWV PDF, as noted in section 4.3 (Fig. 4.3.1c), at low q̂sat, the PDF

peaks at low CWV below which the PDF drops sharply, and above which the PDF decreases

slowly. As q̂sat increases, another peak develops at high CWV around critical with the

low-CWV peak diminishing. In Fig. 4.4.6a, the simulated PDFs for low q̂sat by all models

qualitatively resemble the observed low-CWV peak. But the transition to high-CWV peak

as q̂sat increases (Figs. 4.4.6b and 4.4.6c) is correctly captured only by some of the models

(e.g., CAM5 cases, MRI-AGCM3 and GEOS5). In the other models, the high-CWV peak

has a wider spread (CanCM4, NavGEM1, and CNRM cases) or fails to develop (CWB-

GFS). Note that whether a model can capture this transition of PDF at high q̂sat is in part

related to its ability to simulate precipitation pickup, with models that have a less sharp

pickup tending to have PDFs that have insufficiently sharp peaks for the most common q̂sat.

However, this relationship is not perfect; for instance, ISUGCM has a very slow pickup, but

while the pickup peak occurs at too low CWV, the excessive breadth of its PDF is not as

bad as might be anticipated from its simulation of the pickup.

Next, we concentrate on two subsets of models for which we have multiple instances: the

CAM5 and CNRM.
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4.4.2.2 CAM5 comparisons

There are three CAM5 instances (represented by crosses in Figs. 4.4.5 and 4.4.6): CAM5.3,

CAM5, and CAM5-ZM. CAM5.3 and CAM5 primarily differ in spatial (1° vs 2.5°; originally

simulated at same resolution) and temporal resolution (hourly vs 6-hourly average), which

presumably lead to the minor differences in Fig. 4.4.5 (a small shift in CWV) and PDFs

in Fig. 4.4.6. However, the precipitation pickup in CAM5.3 and CAM5 closely resemble

each other (see also Fig. 4.A.1), which is consistent with the insensitivity to spatial- and

time-averaging noted in observations (section 4.3; chapter 3). This demonstrates that con-

ventional 6-hourly model data is useful for fast-timescale convective transition diagnosis,

thus extending the applicability of such metrics.

For CAM5 vs CAM5-ZM, the latter configuration adopted a modified Zhang-McFarlane

deep-convective parameterization with a new microphysics scheme for convective clouds

(Song and Zhang 2011). Nevertheless, the resulting statistics in Figs. 4.4.5 and 4.4.6 are

very similar, suggesting that the formulation of entraining plume and mass flux closure are

more important than microphysics to the convective transition (see Fig. 4.A.1. Small differ-

ences between the two most probable q̂sat bins in the CAM5 and CAM5-ZM lead to apparent

differences in the magnitude of the peak in Fig. 4.4.6, while the shapes are similar.) Whether

this will hold for other models requires further investigation.

4.4.2.3 CNRM comparisons

There are three CNRM instances (thick solid lines in Figs. 4.4.5-4.4.6): CNRM-AM, CNRM-

CM, and CNRM-ACM. Here the suffixes AM and CM stand for atmosphere-only and coupled

simulations, and ACM for atmosphere-only run forced by the monthly mean SST and sea

ice output from the coupled simulation (Jiang et al. 2015). That is, they differ in coupling

or forcing through lower boundary.

CNRM-CM and CNRM-ACM produce almost identical statistics in Figs. 4.4.5 and 4.4.6.
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The uncoupled version, CNRM-AM, quantitatively differ in CWV PDF from the other two,

tending to be shifted towards higher values in Fig. 4.4.6. However, the pickup of precipitation

(Fig. 4.4.5) and qualitative features of the CWV PDF (Figs. 4.4.6 and 4.A.1) are alike for all

3 cases, and the most common q̂sat value, 65.5 vs 70 mm, indicates that the coupled/forced

versions are residing overall at lower temperatures. These differences are consistent with

the fast-timescale convective transition operating similarly among these versions, as in the

SPCAM comparisons (section 4.4.1.4), while the overall effects of the coupling and forcing

through lower boundary affect the probability distribution of temperature and water vapor,

associated with differences in climatology.

4.4.3 Summary of model behavior

Sections 4.4.1 and 4.4.2 are suggestive that the basic statistics can distinguish convective

parametrizations and are less sensitive to other model components, e.g., cloud microphysics,

coupling and forcing configurations. Furthermore, the qualitative features of the basic statis-

tics are reasonably robust to spatial- and time-averaging, making it possible to leverage the

existing CMIP effort for such fast-timescale diagnosis. Across the tested models there is

great variation in various aspects, which must be examined separately to comprehensively

assess parameterization schemes.

The observed precipitation-CWV relationship has been attributed to the impact of tropo-

spheric moisture on conditional instability through entrainment (Holloway and Neelin 2009,

Schiro et al. 2016, Kuo et al. 2017). The exact functional forms of simulated conditional

precipitation and probability vary considerably, but all models capable of simulating precip-

itation pickup can reproduce the dependence of critical CWV wc and critical column RH

wc/q̂sat on q̂sat (including those from the MJOTF/GASS project; not shown), although quan-

titative differences are noted in the values of wc. This could be consistent with the observed

wc–q̂sat relation arising from entrainment, as demonstrated by offline entraining plume cal-

culations (Sahany et al. 2012) and perturbed physics experiments (Kuo et al. 2017), since
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the models differ in their entrainment representations. However, we cannot exclude other

intermodel differences as potentially contributing to this spread.

The conditional probability in most models picks up at below-critical CWV lower than

observed, which cannot be fully explained by the difference in spatial- and time-averaging

of the data, revealing a widespread drizzle problem at subdaily/hourly timescales. The

traditional use of the term ‘drizzle problem’ concerns excessive occurrence of low daily mean

intensities (Dai 2006) without specifying the underlying thermodynamic environment. Here,

conditioned on the bulk parameters (CWV, q̂sat) that tend to vary slowly compared with

subdaily/hourly timescales, the statistics indicate misrepresented precipitation processes in

many of the models.

In the model for which we have a direct comparison of different microphysics schemes

(CAM5.3 vs CAM5-ZM), only very small impact on the drizzle problem was noted. On the

other hand, perturbed physics experiments (Kuo et al. 2017) indicate that the entrainment

value can strongly affect this issue, since low entrainment yields insufficient dependence on

free tropospheric moisture and thus overly frequent occurrence of rainfall. Analysis of such

perturbed physics experiments across a wide set of convective parameters, combined with

conceptual modeling, would be useful to further understand such intermodel differences.

Some of the models qualitatively capture the form of the PDFs of CWV and the depen-

dence of these on temperature seen in observations, but many do poorly in this comparison.

The PDF in the dry (non-precipitating) regime is expected to be influenced by dynamics

other than the convective physics alone. The PDFs at colder temperatures, which reflect

more of the dry regime, tend to be better simulated than the high-temperature, high-CWV

range that has stronger dependence on the convective physics. Comparison of models with

coupled vs uncoupled versions and different coupling/forcing settings through lower bound-

ary (SPCAM and CNRM cases) indicates that the shapes of the PDFs tend to be similar,

but shifts in climatology are reflected in the probability distribution of temperatures and

water vapor.
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Note that small errors in the onset of precipitation could have significant implications. For

instance, the values of critical CWV determine the CWV PDF peak locations in observations

and some of the models. Thus, a bias of a few millimeters in the critical values, compared

with the observed climatological mean of ∼41 mm over tropical oceans, and more generally,

biases in the CWV PDFs, could substantially alter the longwave radiation budget.

Overall the spread among the models and departures from observations in these fast-

process diagnostics to which they have not previously been compared is of considerable

concern for model development. But the existence of some models that do well at these

diagnostics is encouraging.

4.5 Joint probability distributions of precipitation and CWV

In this section, we further examine the joint PDF of precipitation rate P and CWV (relative

to critical, cwv − wc) compiled from observations and hourly data of the AM4G9, AM4B6,

CAM5.3, and SPCAM. Recall that the former two AM4 instances adopt different convective

parameterizations, and the latter two are CAM cases sharing the same dynamic components

but differing in moist-convective representations (parameterizations vs 2D CRM). To help

interpret the joint PDF, consider the decomposition:

Prob(P, cwv − wc) = Prob(P | cwv − wc)Prob(cwv − wc), (4.1)

where the three Prob terms from left to right represent, respectively, the joint PDF of

P and cwv − wc, the conditional probability distribution of P given cwv − wc, and the

PDF of cwv − wc. Each of these quantities potentially depends also on bulk tropospheric

temperature q̂sat and ocean basin, but these are omitted from the notation for simplicity.

Prob(P |cwv−wc) characterizes the probability distribution of precipitation for a given large-

scale temperature-moisture environment (with temperature entering via wc). Prob(cwv−wc)

reflects the interaction of the large-scale environment with convective physics (to the extent

this environment is captured by CWV and q̂sat). Note that even if a model permits an
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accurate estimate of precipitation given a large-scale temperature-moisture environment [e.g.,

with a correct Prob(P | cwv−wc)], the joint PDF would still be affected by Prob(cwv−wc),

which is expected to be more vulnerable to large-scale flow interacting with convective physics

and subsequent feedbacks.

Below, we first examine the joint PDFs in Fig. 4.5.1, and then Figs. 4.5.2-4.5.3 for a

quantitative breakdown of these distributions.

4.5.1 Joint PDF of precipitation and CWV relative to critical

Figure 4.5.1a (color shading) shows the joint PDF of P and cwv−wc for the most probable

q̂sat bin (74.5 mm) in the tropical western Pacific (WPac) compiled at 1° using the PR

precipitation, TMIv7.1 CWV and Reanalysis-2 temperature. Here, the color increments

correspond to a doubling of the PDF value. The “non-precipitating” bins (0 ≤ P ≤ 0.05

mm h−1) are enlarged in the vertical along the bottom for visual clarity, and the orange

dotted lines represent the conditional probability of P > 0.05 mm h−1, providing an alternate

display of the ratio of the non-precipitating bins. The gray shading indicates CWV > 75

mm at which the TMIv7.1 CWV is capped. The corresponding conditional mean (blue

solid), variance (blue dashed), and median (magenta solid) of precipitation are also shown

for reference. The same set of statistics compiled using the TMIv7.1 precipitation is displayed

in Fig. 4.5.1b, and those simulated by models in Figs. 4.5.1c-4.5.1f. Compared to PR, the

TMIv7.1 precipitation has a spurious cutoff around P ∼ 10 mm h−1 (presumably retrieval-

dependent; see Figs. 4.5.2b vs 4.5.2a) but contains more events than the PR when coarse-

grained to 1°. Hence both are included in Fig. 4.5.1.

In Fig. 4.5.1a, an abrupt transition from the dry to moist regime occurs around cwv−wc ∼

−10 mm below which only weak precipitation is permitted, and above which strong precip-

itation becomes frequent. However, this transition occurs considerably lower than critical,

implying that the rapid increase of the conditional precipitation (blue solid) near critical

is partly contributed by the decreasing ratio of non-precipitating vs precipitating events
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Figure 4.5.1: (a) Joint-PDF (color shading; units: mm−2 h), on a log10-scale, of CWV relative to critical

and precipitation rate P for the 74.5-mm q̂sat-bin in the tropical western Pacific compiled at 1° using the PR

2A25 precipitation rate, TMIv7.1 CWV and Reanalysis-2 temperature. The color increments correspond

to a doubling of the PDF value (100.3 ∼ 2). The ”non-precipitating” bins (0 ≤ P ≤ 0.05 mm h−1) are

enlarged in the vertical along the bottom for visual clarity. The conditional mean (solid blue), median (solid

magenta), variance (dashed blue), and probability of precipitation (P > 0.05 mm h−1; orange dots), all as

a function of CWV, are also displayed for reference (note separate y-axes for precipitation and probability;

variance is on the same axis as precipitation, although in different units). (b) Same as in (a) but with the

PR 2A25 precipitation rate replaced by TMIv7.1 precipitation rate. (c)-(f) Same as in (a) but compiled

using the hourly output from the AM4G9, AM4B6, CAM5.3, and SPCAM, respectively. In (a)-(b), the gray

shading represent where the TMIv7.1 CWV value is capped at 75 mm and is hence unavailable.
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Figure 4.5.2: (a) The precipitation contribution

(i.e., precipitation rate-weighted joint-PDF), as

a function of precipitation rate P and CWV rel-

ative to critical (colors), for the 74.5-mm q̂sat-

bin in the tropical western Pacific (WPac) com-

piled at 1° using the PR 2A25 precipitation rate,

TMIv7.1 CWV and Reanalysis-2 temperature.

Here, the calculation uses the joint-PDF dis-

played in Fig. 4.5.1a. The gray line represent the

overall (i.e., including all CWV and q̂sat) pre-

cipitation contribution for WPac (units: dimen-

sionless) shifted downwards by a factor of 6 for

visual reference. (b) Same as in (a) but with the

PR 2A25 precipitation rate replaced by TMIv7.1

precipitation rate. (c)-(d) Same as in (a) but for

a relatively cold q̂sat-bin and a relatively warm

q̂sat-bin, respectively, compiled using the hourly

AM4G9 model output. (e)-(j) same as in (c)-(d)

but using the hourly output from the AM4B6,

CAM5.3, and SPCAM, respectively.
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as CWV increases and exceeds critical. This is also reflected by the pickup of conditional

probability (orange dotted) and median (magenta solid) around the same location. One

can contrast the conditional precipitation which sharply increases with the more detailed

behavior of the joint PDF. From slightly below critical to slightly above critical, a roughly

exponential tail toward high precipitation values may be seen, and the properties of this tail

do not change dramatically as a function of CWV in this range (see also Fig. 4.5.2a). The

joint PDF exhibits the highest probability of high precipitation near critical, partly because

the CWV PDF peaks around critical. The statistics in Fig. 4.5.1b generally agree with those

in Fig. 4.5.1a (differences may be noted later in Figs. 4.5.2b vs 4.5.2a).

The model-simulated joint PDFs in Figs. 4.5.1c-4.5.1f qualitatively capture many features

of the observations, but the dry-to-moist transition is less drastic than observed. Another

notable difference seen to some extent in all models is in the behavior of the tail of the

PDF extending to high precipitation as a function of CWV. The tail tends to extend further

towards strong precipitation as CWV increases above critical (cwv−wc > 5 mm), indicating

departures from observations in Prob(P |cwv−wc) and/or Prob(cwv−wc). One can also see

the conditional precipitation tending to coincide more closely with the conditional median

in the models, implying a relatively symmetric P distribution at odds with the observed

asymmetry. Variations among the models in these differences relative to observations may be

noted: AM4G9 and SPCAM can produce strong precipitation for CWV around or right below

critical, while AM4B6 and CAM5.3 can not. All 4 models underestimate the conditional P

variance, but CAM5.3 is the most serious one.

Chapter 3 has noted that the observed joint PDF shows little variation across the q̂sat-

range and ocean basins (except the ratio of precipitating vs non-precipitating events for

below-critical CWV may vary significantly). That is, the value of cwv−wc alone characterizes

the probability distribution of precipitation in the moist regime, and this precipitation-CWV

relation does not exhibit additional dependence on q̂sat. As such, only the results for the

most probable q̂sat are displayed in Figs. 4.5.1a and 4.5.1b (and the qualitative characteristics
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noted in Figs. 4.5.1c-4.5.1f are generally valid). However, the model-simulated distributions

exhibit spurious dependence on q̂sat, as shown in Fig. 4.5.2.

4.5.2 Precipitation contributions

Figures 4.5.2a and 4.5.2b show the amount of total rainfall accumulation contributed by each

P intensity, or precipitation contribution (i.e., P -weighted joint-PDF), for various values of

cwv − wc (colors) calculated using the same joint PDFs in Figs. 4.5.1a and 4.5.1b, with

different bin width. The gray lines represent the overall (i.e., including all CWV and q̂sat)

precipitation contribution for WPac (units: dimensionless; shifted downwards by a factor of

6 for visual reference). The corresponding results simulated by models are in Figs. 4.5.2c-

4.5.2j, with panels on the left displaying a low q̂sat bin (the most probable q̂sat − 4.5 mm),

and panels on the right displaying a high q̂sat bin (the most probable q̂sat + 4.5 mm).

The individual colored lines in Fig. 4.5.2a from PR precipitation represent P ·Prob(P |cwv−

wc)Prob(cwv−wc) for different values of cwv−wc. The shape of the curve at moderate to high

P is primarily determined by Prob(P | cwv − wc). These precipitation contributions vanish

at zero because of P , which does not otherwise greatly alter the profiles of Prob(P |cwv−wc)

for P > 3 mm h−1. The lowest cwv − wc values only permit low P < 2 mm h−1. Around

critical (yellow line), an approximately exponential tail may be noted above P ∼ 2 mm

h−1 extending to the highest precipitation values for which sufficient data is available. The

slope of this tail is insensitive to cwv − wc over a wide range (−9.6∼4.8 mm). As CWV

exceeds critical, the precipitation contribution develops a maximum at a positive P , which

shifts slightly toward higher P with further increase in CWV [this evolution of maximum

can also be seen in Prob(P | cwv−wc) and is more pronounced for higher spatial resolution;

see chapter 3]. At the highest cwv − wc (9.6 mm; red), the precipitation contribution ex-

hibits a broad spread in P , indicating that strong precipitation is more frequent given very

high CWV values. However, the contribution from the highest cwv − wc is only a small

fraction of the overall contribution (gray) which roughly matches that at critical (yellow)
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because of the modulation by Prob(cwv − wc). The corresponding statistics in Fig. 4.5.2b

are consistent with those in Fig. 4.5.2a but display a faster decay at high P caused by the

(retrieval-dependent) cutoff ∼10 mm h−1 in the TMIv7.1 precipitation.

We evaluate the model-simulated precipitation contributions in Figs. 4.5.2c-4.5.2j. For

low q̂sat [left column: (c), (e), (g), (i)], the models capture some aspects of the observed

dependence of precipitation on CWV to an extent that varies among models. For instance,

the precipitation contribution drops rapidly for CWV below critical, and the contribution

from high precipitation values increases with CWV. Around critical (yellow line), a local

maximum of the precipitation contribution can be seen at a positive P . This local maxi-

mum occurs at higher P with its magnitude decreasing as CWV further increases because

of Prob(cwv − wc). The contributions tend to be less asymmetric in P around the local

maximum compared to observations (especially for AM4B6, CAM5.3, and SPCAM). These

less asymmetric contributions explain why the conditional average of precipitation tends to

coincide with the median noted in Fig. 4.5.1.

Other departures from observations can also be noted. Each model exhibits some range

that appears qualitatively consistent with an exponential tail toward high precipitation.

However, the tail slope (in log-Y coordinates), where it exists, varies substantially among

models and does not quantitatively match observations. The tail slope ends to be shallower

for higher cwv − wc values, i.e., strong precipitation is more frequent given higher CWV.

Comparing the low-q̂sat contributions to their high-q̂sat counterparts [right column: (d), (f),

(h), (j)], high-(cwv−wc) events (red and brown) are more frequent for high q̂sat, reflecting that

there are more above critical evens as noted in section 4.4.1. Using the overall precipitation

contribution (gray) as a reference, the high-q̂sat contributions tend to decay slower than the

low-q̂sat ones. These indicate that both Prob(P | cwv − wc) and Prob(cwv − wc) exhibit

spurious dependence on q̂sat, inconsistent with observations.

Figure 4.5.3 shows the precipitation contribution from a different angle, i.e., as a function

of cwv − wc for different q̂sat bins (indicated by colors) for WPac, with the top/bottom
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Figure 4.5.3: (a) The precipitation contribution (i.e., precipitation rate-weighted CWV PDF), on a linear

scale, as a function of CWV relative to critical and q̂sat (colors) in the tropical western Pacific compiled at

0.25° using the PR 2A25 precipitation rate, TMIv7.1 CWV and Reanalysis-2 temperature. Here the triangles

represent the values of q̂sat relative to the critical CWV, which indicate where the column is approximately

saturated. (b) Same as in (a) but on a log10-scale. (c)-(j) Same as in (a)-(b) but using the hourly output

from the AM4G9, AM4B6, CAM5.3, and SPCAM.

panels in a linear/log-Y scale. Here the area under each curve represents the precipitation

contributed by each q̂sat.

The observed contributions (Fig. 4.5.3a) for the most common q̂sat values peak around

critical with a common near-Gaussian core (Fig. 4.5.3b). Variations can be noted for CWV

below critical (< −15 mm) which clearly deviates from Gaussian, presumably affected by

dry-regime dynamics and non-convective rain. For low q̂sat bins≤ 56.5 mm, the contributions

peak slightly below critical with a wider spread in CWV, contrasting tropical vs extratropical
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precipitation.

The precipitation contributions simulated by the AM4G9 (Figs. 4.5.3c and 4.5.3d) and

SPCAM (Figs. 4.5.3i and 4.5.3j) also peak around critical but tend to shift and spread toward

higher CWV relative to critical as q̂sat increases. For CAM5.3 (Figs. 4.5.3g and 4.5.3h), the

contributions peak around critical but do not exhibit consistent dependence on q̂sat, and

the contribution for the highest q̂sat (70 mm) is bimodal, consistent with the CWV PDF in

Fig. 4.4.3g. The greatest departure from observations are noted for the AM4B6 (Figs. 4.5.3e

and 4.5.3f), with the contributions spreading across a wide range of CWV, and the peak

clearly shifting with q̂sat. These features display the dependence of precipitation on q̂sat that

generally agree with Fig. 4.5.2. We note that the differences from observations are exhibited

even around critical, near the peak of the distribution, and are thus likely to be robust to

any retrieval issues at high precipitation.

Overall, the precipitation contributions in Figs. 4.5.2-4.5.3 show that the models exhibit

many qualitative features of the observations, but also exhibit substantial quantitative devi-

ations. These combine with biases in the PDF of cwv−wc, in which the models overproduce

above-critical events (especially at high temperature) to yield the errors in the joint PDF

seen in Fig. 4.5.1.

4.6 Summary and discussion

Most of the models examined simulate some version of the observed precipitation pickup

with CWV. However, significant intermodel spread and departures from observations in

multiple aspects of the convective transition statistics suggest these provide a challenging

observational constraint. Examining these aspects separately using the 6-hourly and higher

frequency model output provides a comprehensive assessment for deep-convective parame-

terizations with clues for improvements. Below we briefly summarize the comparisons of

these aspects.
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4.6.1 Precipitation pickup and CWV relative to critical

In observations, the conditionally averaged precipitation, as a function of CWV for a given

bulk tropospheric temperature q̂sat, sharply increase as CWV exceeds the critical threshold

wc (Fig. 4.3.1a). wc increases with q̂sat but the corresponding critical column RH wc/q̂sat

decreases (Figs. 4.3.1k and 4.3.1l). Offline calculations have suggested that the dependence

of wc and wc/q̂sat on q̂sat is a generic consequence of including entrainment in the estima-

tion of buoyancy in convective updraft (Sahany et al. 2012). The conditionally averaged

precipitation exhibits little variation across ocean basin (Fig. 4.3.1i) and is insensitive to

spatial-averaging (chapter 3). Furthermore, when viewed as a function of cwv − wc, its

functional form shows little dependence on q̂sat (Figs. 4.3.1e and 4.3.1i). This reaffirms the

interpretation that cwv−wc combines the impacts of tropospheric moisture and temperature

on conditional instability, through entrainment, into a single measure (Holloway and Neelin

2009, Schiro et al. 2016; chapter 3).

Among the examined models, AM4B6 (Fig. 4.4.2a) satisfactorily simulates the condition-

ally averaged precipitation which exhibits modest sensitivity to q̂sat (Fig. 4.4.2e) and little

variation across ocean basin (Fig. 4.4.2i). The corresponding critical values match observa-

tions (Figs. 4.4.2k and 4.4.2l). However, the conditionally averaged precipitation simulated

by the other models (Figs. 4.4.1, 4.4.3, 4.4.4, and 4.4.5a), tends to exhibit sensitivity to q̂sat

(Fig. 4.4.4e) and basins (Fig. 4.4.4i), or results in different critical values (Figs. 4.4.3k and

4.4.3l). Figure 4.4.5a further demonstrates a significant intermodel spread in the critical val-

ues (where the precipitation picks up) or in the functional form of precipitation. For instance,

the precipitation in the ISUGCM fails to pick up, likely because of the lack of entrainment

in its convective scheme. The precipitation in CWB-GFS shows a two-step pickup, likely

results from a built-in precipitation trigger that explicitly depends on environment humidity.

Most models that can simulate a decent precipitation pickup also capture the observed

qualitative dependence of critical values on q̂sat (wc increases and wc/q̂sat decreases; not
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shown), indicating that entrainment is the essential mechanism.

4.6.2 Probability of precipitation and drizzle problem

The observed conditional probability of precipitation (defined relative to a threshold of pre-

cipitation rate P ) also exhibits a sharp pickup for CWV around critical (Figs. 4.3.1b and

4.3.1f). Its functional form can be approximated using an error function with standard

deviation ∼4 (units: mm; not shown). Lower q̂sat, lower P threshold, and lower spatial

resolution (at which the statistics are computed) all lead to higher values of conditional

probability without altering its functional form, i.e., the conditional probability curve would

shift slightly towards lower CWV (chapter 3). Like the conditional average, the conditional

probability can also be expressed as a function of cwv − wc, which exhibits little variation

across the q̂sat range and basins (Figs. 4.3.1f and 4.3.1j).

As an example, we consider two GFDL AM4 cases with different convective parameteri-

zations, one among the best and one among the poorest simulations in this measure. In the

AM4G9, the conditional probability of precipitation closely resembles the observed values

with a slightly steeper pickup (Fig. 4.4.1b) which starts at lower CWV relative to critical

(Figs. 4.4.1f vs 4.3.1f). It also exhibits modest variation across basins (Fig. 4.4.1j). The

simulated conditional probability picking up at lower CWV relative to critical may result

from and is consistent with the difference in the temporal resolution of P (hourly average for

AM4G9 vs snapshot for satellite retrievals). Despite the superior performance of AM4B6 in

simulating conditionally averaged precipitation, the conditional probability in AM4B6 devi-

ates considerably from observations (Fig. 4.4.2b). The pickup of conditional probability is

gentler and shows a clear dependence on q̂sat (Fig. 4.4.2f), i.e., higher probability of precipi-

tation at low CWV relative to critical especially at high q̂sat, indicating a drizzle problem in

a warm environment (see also the CNRM instances in Fig. 4.4.5). This contrast in AM4B6’s

ability to simulate conditional average and probability of precipitation serves as a reminder

that different aspects of the convective transition statistics must be examined separately.
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Regarding the other models, the simulated conditional probability exhibits sensitivity to

q̂sat (Figs. 4.4.3f and 4.4.4f) and variation across basins (Figs. 4.4.3j and 4.4.4j), and even

non-monotonic behavior. Figure 4.4.5b shows a substantial intermodel spread and that the

conditional probability in most models picks up at CWV values lower than observed, many

of which cannot be explained by the difference in the temporal resolution of P alone.

4.6.3 PDF of CWV

The observed CWV PDFs have q̂sat-dependent characteristic shapes with two peaks/cut-offs

at low and high CWV values (Fig. 4.3.1c), and are relatively insensitive to resolution. For

low q̂sat, the PDF peaks at a low CWV value above which the PDF decreases gradually until

reaching a high-CWV cut-off right below critical (Fig. 4.3.1g). As q̂sat increases, the high-

CWV cut-off develops into a peak. The pickup of precipitation suggests that the behavior

for CWV above critical is governed by the moist-regime dynamics, i.e., conditional insta-

bility. Consequently, the (properly normalized) CWV PDF exhibits little variation across

q̂sat range (Fig. 4.3.1g) and ocean basins (chapter 3). Stochastic models suggested that the

functional form of the CWV PDF in this regime is primarily controlled by precipitation

removal balancing low-level convergence of moisture (Stechmann and Neelin 2011, 2014). In

contrast, at low CWV, the PDF and fraction of non-precipitating events vary considerably

(Fig. 4.3.1g), suggesting other factors influencing the dry regime, e.g., prevailing subsidence

and extratropical events intruding into the tropics (chapter 3).

For low q̂sat, the CWV PDFs are primarily determined by the dry-regime dynamics, and

all the models simulate this aspect in reasonable agreement with observations (Figs. 4.4.1-

4.4.4c,g and Fig. 4.4.6a). But when moist-regime dynamics becomes dominant as q̂sat

increases, the simulated CWV PDFs by many of the models depart from the observed

(Figs. 4.4.6b and 4.4.6c), e.g., the PDF has a broad spread around intermediate CWV values

(CNRM cases). Some of the models overproduce very-high-CWV events especially at high

q̂sat values (Figs. 4.4.2g and 4.4.4g) which may result from small gross moist stability during
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precipitation. Note that the CWV PDFs for highest q̂sat values in the AM4G9 (Fig. 4.4.1g)

and CAM5.3 (Fig. 4.4.3g) seemingly indicate more above-critical events, but still fall within

the observational uncertainty.

4.6.4 PDF of CWV for precipitating events

The CWV PDF for precipitating events here is defined as the product of the CWV PDF

and conditional probability. Consequently, it modestly depends on the P threshold and res-

olution. In observations, the CWV PDFs for precipitating events for q̂sat ≥ 70 mm display

a common near-Gaussian core (Fig. 4.3.1h), indicating convection favors specific thermody-

namic conditions with a narrow water vapor range. For lower q̂sat values, the corresponding

PDFs coincide with the high-q̂sat PDFs for CWV around and above critical, but also indicate

greater probability of precipitation given CWV below critical. The geographical distribution

of q̂sat suggests these low-q̂sat below-critical precipitation occurrences are in part associated

with extratropical events resulting from other mechanisms, e.g., large-scale saturation (chap-

ter 3).

Among the examined models, the AM4G9 and CAM5.3 can reproduce the common near-

Gaussian core to some extent (Figs. 4.4.1h and 4.4.3h), but the contrast in below-critical

precipitation for high- vs low-q̂sat is less pronounced as observed. The SPCAM, on the other

hand, seems more capable of simulating this contrast but the PDF spreads over a broader

range of CWV (Fig. 4.4.4h). The AM4B6 performs poorly in this regard (Fig. 4.4.2h) as

a result of the biased CWV PDF and conditional probability (Figs. 4.4.2f and 4.4.2g). See

also Fig. 4.A.1 for CWV PDFs in the MJOTF/GASS models.

4.6.5 Joint PDF of precipitation and CWV relative to critical

In observations, the joint PDF of P and cwv − wc exhibits an abrupt transition from the

dry, non-precipitating regime into the moist regime as CWV increases from below critical
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(Fig. 4.5.1a). In the moist regime, a robust exponential tail toward high precipitation can

be noted in the PDF of P for CWV around critical (Fig. 4.5.2a), and the accumulated

precipitation is mostly contributed by events in this regime (Fig. 4.5.3a and 4.5.3b). The

slope of the exponential tail, and more generally, the PDF of P , depend on spatial averaging

(chapter 3). The joint PDF shows little variation across the q̂sat range ≥ 61 mm and ocean

basins (chapter 3).

The four models for which we examined joint PDFs with hourly data, AM4G9, AM4B6,

CAM5.3 and SPCAM, can simulate the transition from the dry to moist regime to some

extent (Figs. 4.5.1c-4.5.1f). However, the simulated transitions are less abrupt than observed.

High precipitation tends to occur at above-critical CWV values but is less likely for around-

and below-critical CWV than in the observed. The CAM5.3 especially underestimates the

variability of precipitation (Fig. 4.5.1e). At relatively low q̂sat, the simulated PDFs of P seem

to exhibit some version of the asymptotic tail into high precipitation (Figs. 4.5.2c, 4.5.2e,

4.5.2g, 4.5.2i). The tails at critical CWV drop more rapidly than observed. Moreover, the

simulated tails display dependence on CWV and indicate that strong precipitation favors

high q̂sat, i.e., a warm troposphere (Figs. 4.5.2d, 4.5.2f, 4.5.2h, 4.5.2j). These spurious

dependencies on CWV and q̂sat lead to biased precipitation contribution. For instance, the

above-critical contribution of precipitation at high q̂sat values is slightly exaggerated in the

AM4G9 (Figs. 4.5.3c and 4.5.3d), and the AM4B6 precipitation is contributed over a broader

range and mostly from above-critical CWV (Figs. 4.5.3e and 4.5.3f). This identifies the high-

precipitation, high-CWV range as a regime demanding greater scrutiny as further discussed

below.

4.6.6 Additional inferences based on the ensemble

Several comparisons are available in individual models with multiple instances differing in

some specific components, permitting additional inferences regarding using the convective

transition statistics as diagnostic tools:
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1) Where the model (AM4 and CAM5.3 vs SPCAM) is available with alternative rep-

resentations of moist convection, the statistics distinguish different instances in multiple

aspects, despite all the model instances having been calibrated against typical diagnostic

metrics.

2) Different cloud microphysics in the convective parameterizations in the same model

(CAM5) only cause minor variations in the joint distribution of CWV and q̂sat, but otherwise

do not notably alter the statistics examined here.

3) Where the same model (CAM5) is examined at hourly and 6-hourly time-averaging

(of precipitation), the results are comparable. Although output at model timestep or hourly

timescale are preferable, the analysis can apply with more conventional subdaily output.

4) Where the model (CNRM and SPCAM) is available in uncoupled vs coupled versions,

or with different forcing settings through the lower boundary, the major difference appears

in the probability distribution of (cwv, q̂sat) associated with climate drift caused by cou-

pling/forcing configuration. Other aspects of the statistics, e.g., the precipitation pickup

and CWV PDF are less sensitive.

These cases in this ensemble of opportunity further indicate that the convective transition

statistics substantially discriminate between convective parameterizations and are reasonably

robust to subdaily time-averaging i.e. can be used with conventional model data.

4.6.7 Possible action items for model revision and diagnostic development

While these diagnostics help identify the relationship between tropical precipitation and its

thermodynamic environment in considerable detail, the diagnostics presented here can lead

to suggestions for specific revisions of a given convective parameterization. The link is not

direct, however. Analysis and improvement necessarily involve specifics of each model’s set

of parameterizations and can involve interaction of these parameterizations with emergent

behavior of the dynamics. While it is not possible to cover detailed analysis for each model
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in the ensemble, here we discuss process hypotheses and suggestions for further diagnostic

development, broken out by type of error. These are all offered with the caveat that changes

to improve model performance under one set of diagnostics can often erode the performance

under other measures (Kim et al. 2011, Langenbrunner and Neelin 2017).

4.6.7.1 Errors in position/shape of onset

For models exhibiting errors in the functional form of conditional precipitation, the leading

candidate for adjustment can be the entrainment assumptions in the convective scheme, since

these are known to impact the critical values simulated by models (Sahany et al. 2012) or

even the existence of a sharp pickup in precipitation Kuo et al. (2017). Plume calculations

with higher entrainment are more sensitive to the free tropospheric environmental humidity,

resulting in precipitation tending to pick up at higher CWV. Changes in a vertically constant

entrainment rate can impact circulation or vertical distribution of cloud (Mapes and Neale

2011, Qian et al. 2018, Schiro et al. 2019). Recent analysis of observations and reanalysis

(Schiro et al. 2018, Ahmed and Neelin 2018) point to a large influence of the environment on

convective plume through a deep lower tropospheric layer contributing relatively uniformly

to the updraft mass flux from all levels. This may be consistent with certain representa-

tions of entrainment (e.g., Siebesma et al. 2007), although if it occurs substantially through

dynamical entrainment (Suselj et al. 2019) the strong effects may be confined to the lower

troposphere.

This suggests that models that fail to simulate a strong precipitation pickup (e.g.,

ISUGCM) may benefit from increased lower tropospheric entrainment. Some models in the

ensemble exhibit a multi-step pickup (CWB-GFS) because precipitation is triggered with re-

spect to a certain humidity threshold. Apparently, this kind of trigger must be designed with

caution to match the observed precipitation-moisture relationship and may not be necessary

if entrainment is reasonably represented.
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4.6.7.2 Errors in water vapor/precipitation PDFs

We note the following aspects of errors:

I. Errors in shape of water vapor PDF

The shape of the CWV PDF is largely controlled by the dominant moisture budget bal-

ance. Statistics from observations clearly distinguish between the wet, precipitating regime

and the dry, non-precipitating regime. The overprediction of drizzle frequency in some of

the models can be thought of as a spurious sink term of moisture at low CWV, contributing

to biases in CWV PDF. In the wet regime, a longer convective adjustment timescale can

be a factor tending to limit the rate at which the convective scheme removes moisture. In

response, the environment reaches saturation more often and results in a higher fraction

of precipitation occurring by grid-scale condensation associated with convection (e.g., Jiang

et al. 2016).

II. Too much precipitation below main onset (drizzle problem) & Precipitating PDF too

wide

Increasing entrainment can alleviate the drizzle problem over tropical oceans (but not

over land, in CESM1; Kuo et al. 2017). Models produce precipitation through contributions

by various parameterizations (e.g., cloud microphysics, shallow- and deep-convective) under

different circumstances. Identifying precipitation types in varying thermodynamic conditions

using radar rainfall products may help modelers coordinate parameterization schemes and

quantify conditional instability given the tropospheric temperature-moisture state, e.g., in

terms of entraining CAPE or general cloud work functions.

III. Joint PDF follows conditionally averaged precipitation too closely & Precipitation

PDF/contribution tail errors at high precipitation

Several features of the joint PDF described in section 4.6.5 can be summarized as the

model joint-PDF tending to follow the pickup of the conditionally average precipitation, with

smaller spread about this than in observations. This suggests that for a given thermody-
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namic environment, the precipitation is too deterministic. This is consistent with simulated

extreme precipitation being improved by explicitly incorporating a stochastic component

(Plant and Craig 2008, Wang et al. 2017). It could also be consistent with representation of

additional sources of variability including effects of subgrid scale moisture variability, gusti-

ness, downdrafts, cold pools, or organized systems (e.g., Hourdin et al. 2013, Harrop et al.

2018, Mapes and Neale 2011).

The longer-than-Gaussian tail of the observed precipitation distribution/contribution at

high P is insensitive to the bulk measures of water vapor and temperature in the retrieval

datasets used here. Given the importance of model projections of changes in extreme pre-

cipitation under global warming, the departures of the model precipitation PDFs from the

observed in the high-precipitation, high-CWV regime as a function of temperature is of con-

cern. Independent observational datasets, for instance from radio occultation (Padullés et al.

2018), could be used to further constrain the behavior in this regime; process modeling could

be used to better identify sources of differences among models; and this regime can be an

important target for cloud resolving models.

4.6.8 Concluding remarks

The statistics presented here are available as the Convective Transition Diagnostic Module

associated with the Model Diagnostics Task Force (MDTF) Diagnostics Package (Maloney

et al. 2019b, available at https://www.gfdl.noaa.gov/mdtf-diagnostics/). As applied to the

set of models analyzed here, the convective transition statistics summarized above reveal

substantial departures from observations and intermodel spread, especially for CWV within

the moist regime, reflecting the current status of model representations of moist convection

and its interaction with the large-scale flow. Although several models performed poorly with

respect to the measures introduced here, it is encouraging that for the basic statistics (i.e.,

pickup of precipitation and probability, CWV PDF and CWV PDF for precipitating points)

a few cases—including AM4G9, ECEarth3, GEOS5, and CAM5—performed well. This is
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particularly noteworthy as in almost all cases the models had not previously been assessed

with respect to these measures so have clearly not been in any way tuned to achieve these

results. For a model to do well, the parameterization must reasonably capture multiple

aspects of the triggering of deep convection associated with conditional instability. From

related work, there is evidence that this requires a reasonable representation of the depen-

dence on lower free tropospheric humidity by entrainment into the deep convective plumes.

It also implies that the parameterization of convective heating as a function of buoyancy is

operating well, and that the overall effects in the model yielding large-scale variations with

which the convection interacts are of a suitable magnitude—on the one hand driving the sys-

tem into the high-moisture, high-precipitation regime, and on the other causing event (i.e.,

precipitation) termination—with each occurring at a reasonable frequency. However, even

in models that perform well, the high-temperature, high-CWV, high-precipitation regime is

flagged as challenging to simulate in detailed comparison to the observations at these fast

timescales.
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APPENDIX

4.A Supplement

4.A.1 Basic convective transition statistics for MJOTF/GASS models

Figure 4.A.1 displays the basic statistics for the tropical western Pacific basin compiled using

the 6-hourly model output (average for precipitation) from a subset of the MJOTF/GASS

ensemble, as in Figs. 4.4.1-4.4.4a-d. The statistics presented in Fig. 4.A.1, from left to right,

are the conditionally averaged precipitation rate, conditional probability of precipitation

(P > 0.25 mm h−1), PDFs of all events, and PDFs for precipitating events as a function

of CWV and q̂sat (colors; units: mm). Triangles represent corresponding q̂sat values, which

indicate where the column is approximately saturated, and underpopulated bins (PDF <

10−5) are omitted.
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Figure 4.A.1: Basic convective transition statistics in the tropical western Pacific compiled using the 6-hourly

output (average for precipitation) from the MJOTF/GASS models.
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Figure 4.A.2: Figure 4.A.1 continued.
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Figure 4.A.3: Figure 4.A.1 continued.
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CHAPTER 5

Conditions for convective deep inflow

Abstract

Strong convective precipitation comes from a range of scales, from isolated cumulonimbus

to mesoscale convective systems (MCSs). Representations of deep convection (comparable

in depth to the troposphere) in climate models still typically rely on plume models in which

rising cloud parcels, modified by small-scale turbulent mixing, are compared locally to their

environment. There is a growing recognition from field observations and cloud-resolving

simulations that a convective updraft structure that draws mass from a deep layer (0–4 km)

in the lower troposphere occurs over a wide range of conditions. This “deep inflow” can also

be reverse-engineered from the observed dependence of precipitation on the thermodynamic

environment. Surprisingly, it occurs for both MCS and less-organized convection, raising

the question: Is there a simple, universal characteristic governing the deep inflow? Here

we show that horizontally and vertically nonlocal dynamics of the response to buoyancy are

key to this behavior. For precipitating deep-convective features including horizontal scales

comparable to or exceeding a substantial fraction of the troposphere depth, the response to

buoyancy tends to yield deep inflow into the updraft mass flux. Precipitation features in this

range of scales are found to dominate contributions to observed convective precipitation for

both MCS and less-organized convection. The importance of such nonlocal dynamics implies

thinking beyond small-scale turbulence for representation of convection in climate models.

Superparameterizations incorporate these effects via subgrid cloud-resolving models but are

computationally costly. Solutions here lend support to investment in parameterizations at a
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complexity between conventional and superparameterization.

5.1 Introduction

Deep-convective clouds produce much of the Earth’s precipitation and strongly constrain the

atmospheric circulation especially in the tropics (Houze 2014, Emanuel et al. 1994). Through

self-aggregation (Holloway et al. 2017, Wing et al. 2017), convective cells can organize into

extensive storms known as mesoscale convective systems (MCSs) that have sizable upper cir-

riform anvils and rainfall over large areas, accounting for a significant fraction of precipitation

in the tropics and midlatitudes (Houze 2004, Nesbitt et al. 2006). MCSs also form constituent

parts of synoptic-scale features and impact large-scale disturbances like the Madden-Julian

Oscillation (Yang et al. 2019, Chen et al. 2021). Understanding the interaction between

convection and large-scale environment aids the projection of precipitation extremes under

warming scenarios (O’Gorman and Schneider 2009, Abbott et al. 2020, Martinez-Villalobos

and Neelin 2021). Indeed, reliable forecasting of weather and climate depends on adequate

representations of deep convection in general circulation models (GCMs). This—especially

in regards to organized convection (Yano and Moncrieff 2016, Moncrieff et al. 2017)—remains

a challenging subject (Kuo et al. 2020, Yano and Plant 2020, Feng et al. 2021) even with the

advances in cloud-resolving models (CRMs) and machine learning (Wing et al. 2020, Yuval

and O’Gorman 2020).

A primary source of uncertainty in the parameterization of convection is the entrainment

process of environmental air entering in-cloud updrafts (Plant 2010, Sherwood et al. 2014).

The traditional view assumes a plume/parcel rising from near the surface that is modified

by its immediate surroundings via localized, small-scale turbulent mixing (Arakawa and

Schubert 1974, Kain and Fritsch 1990, Zhang and McFarlane 1995). This motivated efforts

to quantify a postulated local entrainment rate (Siebesma et al. 2003, Del Genio and Wu 2010,

Romps 2010, Masunaga and Luo 2016)—primarily by indirect means—from which mass flux
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can be derived for plume models in parameterization schemes (De Rooy and Pier Siebesma

2010, Morrison 2017). At odds with the above conceptual model, a range of turbulent scales

contributes to the mixing within actual convective entities (Becker et al. 2018), and features

of larger scales are instrumental for nonlocal transport by convection (Siebesma et al. 2007).

Field measurements of convective updrafts during aircraft campaigns and by radar wind

profilers (LeMone and Zipser 1980, Lucas et al. 1994, Kumar et al. 2015, Schiro et al. 2018),

in accordance with CRM simulations (Robe and Emanuel 1996, Li et al. 2008), identify

a common mass flux structure that gradually increases throughout the lower troposphere.

Contributions to this can occur through organized inflow (Moncrieff 1992)—termed dynamic

entrainment (Houghton and Cramer 1951, Ferrier and Houze 1989, Lecoanet and Jeevanjee

2019)—in contrast with the traditional paradigm of small-scale mixing. Deep-inflow profiles,

with environmental air entering the updraft through a deep lower-tropospheric layer, can also

be inferred from the dependence of precipitation on the temperature-moisture environment

as a function of lower-tropospheric layer (Ahmed and Neelin 2018). The deep-inflow profile

is in general agnostic as to whether inflow occurs by spatially coherent flow, small-scale

turbulence, or both.

Given the importance of mass flux in convective parameterizations, the occurrence of

simple vertical structures demands explanation, particularly since any potential for directly

constraining such structures could aid in bypassing the elusive task of determining vertical

dependence of entrainment rate (Kuang and Bretherton 2006, Han and Bretherton 2019,

Peters et al. 2021). The apparent widespread occurrence of deep-inflow structures, together

with the surprising observation that such structures occur similarly for both MCS and less-

organized deep convection (Schiro et al. 2018), raises the question of whether there is some

universal characteristic governing the dynamics of deep inflow.
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Figure 5.2.1: (a) Mean deep-convective mass flux profiles in the lower troposphere for mesoscale, less-

organized, and all precipitating convective events estimated from radar wind profiler during the GOAmazon

campaign adapted from (Schiro et al. 2018). (b) Theoretical response of convective mass flux to buoyancy

tartares of vertical extent 4 ≤ z ≤ 8 km and varying horizontal diameter D. The tartares consist of randomly

generated small cylindrical bubbles with a 7:3 warm-to-cold bubble ratio (see Fig. 5.4.1a). The response

profiles are the mean within the diameter D and averaged over an ensemble of 10 tartare realizations, then

normalized using values at z = 3 km. (c) Convective precipitation contribution (curves) and precipitation rate

(markers), for MCS and non-MCS features, conditioned on convective feature size measured by chord length

(blue) and square root of area (red). The areas under the MCS and non-MCS precipitation contribution

curves sum to unity. Feature size is solely based on contiguous convective precipitation pixels.

5.2 Convective precipitation feature scales and inflow

Fig. 5.2.1 provides an overview of key ingredients of this problem and of the proposed solu-

tion. First, Fig. 5.2.1a summarizes the observed deep-convective updrafts in the lower tropo-

sphere (Schiro et al. 2018). The gradual increase of mass flux with height implies horizontal

convergence of environmental air into the updrafts through much of the lower troposphere.

Such mass flux profiles are characteristic of both MCS and less-organized convection.

Second, Fig. 5.2.1b provides a thumbnail of key results from the nonlocal response to

buoyancy elaborated below. For localized net-positive buoyancy structures of horizontal

diameter D and vertical extent 4 ≤ z ≤ 8 km, the nonlocal response of mass flux ∂t(ρ0w̄)
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averaged within the diameter yields a deep-inflow profile through the lower troposphere. This

tends to converge to a roughly linear increase for a broad range of reasonable conditions when

D is comparable to the depth of the tropospheric layer under consideration.

Third, in Fig. 5.2.1c we quantify the claim that much of the deep convective precipitation

comes from features that include such horizontal scales. Contiguous features of convective

precipitation are identified from satellite precipitation radar (PR) retrievals (section 5.A.5).

The contribution to total convective precipitation is shown as a function of feature size esti-

mated two different ways: by cord length of the feature and by square root of the area of the

feature. The contribution to convective precipitation is further separated by features that

meet common criterion for MCS (section 5.A.5), and features that do not (i.e., less orga-

nized). Note that stratiform precipitation is not included, since we wish to focus on the scales

of features of the deep-convective precipitation. For both MCS and less-organized convec-

tion, the precipitation contribution peaks around 15 km, and > 70% of the total convective

rain is from events of this scale or greater for both feature size measures. That is, convective

rain is mostly from deep-convective features whose horizontal extent is comparable to the

depth of the troposphere (Louf et al. 2019). MCS features tend to have greater contribution

to convective rain at large sizes than do less-organized features. While the conditionally

averaged convective precipitation rate for less-organized features (squares) levels off as size

exceeds ∼25 km, the MCS precipitation rate (circles) continues to increase asymptotically

as roughly the 1/4-th power of feature size.

The convective precipitation region is not necessarily identical to that of the buoyancy,

but provides a rough measure of the existence of strong updrafts and downdrafts indicative of

buoyancy anomalies. The spatial and temporal coverage of the satellite PR provides regions

and periods extensive enough to identify typical characteristics of convection. We also note

that the satellite PR resolution ∼5 km coarse-grains smaller scale variations, but suffices

to support that localized features containing substantial convective rain occur over a broad

range of scales. The nonlocal effects discussed below also help justify such coarse-graining.
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We thus have 1) observational evidence that much of the convective rain in both MCS

and less-organized systems comes from features with characteristic scales of the convection

exceeding 10 km; and 2) a theoretical basis for how the nonlocal nature of the response to

buoyancy tends to yield deep inflow on such scales.

5.3 Nonlocal response to buoyancy

We follow the anelastic framework (Ogura and Phillips 1962, Lipps and Hemler 1982) to

derive the diagnostic equation for the response to buoyancy. The anelastic approximation

assumes a horizontally homogeneous, time-invariant atmospheric density ρ0(z), which allows

the governing system to filer acoustic waves and retain nonhydrostatic solutions relevant for

deep convection with O(1) aspect ratio. Thus the anelastic approximation has been widely

adopted by CRMs (Bryan and Fritsch 2002, Khairoutdinov and Randall 2003, Jung and

Arakawa 2008).

5.3.1 Anelastic response to buoyancy field

One can use the vorticity and anelastic continuity equations and derive the following (sec-

tion 5.A.1)

∇2
ha+

∂

∂z

[
1

ρ0

∂

∂z
(ρ0a)

]
= ∇2

hB +D, (5.1)

where a ≡ ∂tw is the vertical acceleration (z-direction), B the buoyancy, D a quadratic

function of spatial derivatives of velocity u (i.e., associated with flow kinematics) that van-

ishes when u ≡ 0. The influences of buoyancy and kinematics on a can thus be separately

diagnosed via Eq. 5.1. Here we focus on the response to buoyancy, which allows a direct

contrast to conventional parameterizations.

In Eq. 5.1, the operator acting on a is elliptic, one thus expects a global response even

for localized forcing. The response is accompanied by adjustment to horizontal convergence

to ensure mass conservation. Note that buoyancy drives acceleration via ∇2
hB, i.e., the flow
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field evolves following horizontal variation of buoyancy (Wu et al. 2015).
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Figure 5.3.1: Cross section of vertical mass flux response (color shading; kg/m2s2) to idealized buoyancy

forcing with constant B = 0.01 m/s2 in cylindrical bubbles of 8-km diameter and varying vertical extent

(magenta contours). The white contours indicate zero response. The colorbar range is chosen to highlight

details below and above the bubbles.

To give a concrete sense of the nonlocal dynamics, Fig. 5.3.1 demonstrates two examples

of the mass flux response ρ0a (color shading) to an idealized cylindrical buoyancy bubble

of 8-km diameter and different vertical extent (magenta contours). Here a is from solving

Eq. 5.1 (with D ≡ 0) for the two bubbles separately. The localized buoyancy generates strong

upward acceleration within its diameter, accompanied by weak, broad downward acceleration

in the surroundings to conserve mass. The extensive response reaches well below and above

the bubble, driving a layer of flow into the convective region in the lower troposphere, as a

consequence of gradually increasing ρ0a with height, and outflow aloft from decreasing ρ0a.

For the same magnitude of buoyancy, deeper bubbles generally result in greater responses.

The nonlocal responses in Fig. 5.3.1 are consistent with the operator in Eq. 5.1 being
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elliptic. The anelastic approximation filtering acoustic solutions implies that the nonlocal

behavior is the result of rapid adjustment by acoustic waves (if these were resolved, the

adjustment timescale yielding the solutions would be on the order of 10 s). Since the prop-

agation of acoustic waves is not sensitive to atmospheric stability, neither is the nonlocal

behavior. In particular, the response above or below a buoyancy anomaly can occur for a

broad range of conditions regardless of background stratification.

We do not intend to discuss in depth the buoyancy response to vertical motion here, but

note the following. In the atmosphere, updrafts associated with buoyancy anomalies cause

adiabatic cooling and possibly condensation. If the condensational heating is not available to

balance the work against stratification—e.g., in the upper troposphere or lower stratosphere

with low water vapor concentration—the cooling, i.e., production of negative buoyancy can

be a probable source of phenomena like the convective cold top (Holloway and Neelin 2007)

and convective overshoot (Houze 2014).

5.3.2 Analytic vertical structures

For a more detailed characterization of the nonlocal dynamics, we apply a Fourier transform

to Eq. 5.1

−4π2(k2 + `2)â+
∂

∂z

[
1

ρ0

∂

∂z
(ρ0â)

]
= −4π2(k2 + `2)B̂, (5.2)

where a ∼ â(z; k, `)e2πi(kx+`y) and B ∼ B̂(z; k, `)e2πi(kx+`y). We denote the horizontal wave-

length by L ≡ (k2 + `2)−1/2.

Consider a simple buoyancy structure with B̂(z) ≡ constanst within a layer and vanishing

elsewhere—general profiles can be approximated by superposition. We can analytically solve

Eq. 5.2 (section 5.A.3) for the homogeneous solutions

â±(z; k, `) ∼ e±2πz/L, (5.3)

and for the particular solution within the buoyant layer

âp(z; k, `) ≈ B̂(z; k, `). (5.4)
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The monochromatic solutions can then be constructed as a piecewise linear combination of

â± and âp by matching across layer boundaries. Therefore, each horizontal wavelength gives

rise to an e-folding scale Hs ≡ L/2π in the vertical, i.e., there is a greater range of nonlocal

influence for longer wavelength.
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Figure 5.3.2: (a) Monochromatic solutions of vertical velocity response (lines) to individual buoyant layers

located at different heights (shadings) with horizontal wavelength L = 5 km. (b) As in (a), for a deeper

layer (red) and varying L. (c) As in (b), with additional thin layers of negative buoyancy, for vertical mass

flux response.

Fig. 5.3.2a shows examples of â (lines) given a buoyant layer of depth HB = 1 km and B̂ =

0.01 m/s2 (shadings) at various heights with L = 5 km. Above the buoyancy, the vanishing

condition requires that â ∼ e−2πz/L. Below the buoyancy for layers away from the surface

(compared with Hs), â ∼ e+2πz/L, and the overall profiles appear to be symmetric in z with

maximum occurring in the middle of the layers. But for a layer at low altitude (e.g., brown
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line in Fig. 5.3.2a), the surface boundary condition results in â ≈ c1e
+2πz/L − c2e−2πz/L—

adding âp if the layer reaches the surface—causing an approximately linear dependence on

height below the maximum as well as an overall weaker response magnitude. This surface

control is generally important for sufficiently long wavelength (see also Fig. 5.3.2b, blue line).

As a limiting case, note that â = 0 for k = ` = 0 or L =∞.

To further illustrate how the layer depth and horizontal wavelength affect the solutions,

consistent with prior studies (Jeevanjee and Romps 2016, Morrison 2016), Fig. 5.3.2b includes

additional examples for a deeper layer of buoyancy (HB = 6 km; red) and varying L. Short

wavelength (L/HB � 1) leads to limited nonlocal influence, mostly confined in the vicinity

of the layer boundaries (brown line). Conversely, long wavelength or relatively shallow

(L/HB � 1) layer would yield solutions extending well outside the buoyant layer (blue line;

also contrast with Fig. 5.3.2a). Note that the inflow can also continue for a characteristic

vertical scale ∼ Hs within the buoyant layer. The mass flux response corresponding to the

accelerations in Figs. 5.3.2a,b are similar but bottom-heavy since ρ0 decreases with height.

For a more sophisticated case, Fig. 5.3.2c shows the mass flux responses ρ0â (lines) to an

idealized deep-convective structure with the addition of a near-surface convective inhibition

(CIN) layer and a thin negatively-buoyant layer representing, for instance, effects of melting

near freezing level (red). For short wavelength, the response tracks the variation of buoyancy

(e.g., brown line). But for sufficient horizontal scales, the solution due to net-positive buoy-

ancy has no difficulty tunneling through vertically restricted layers of negative buoyancy or

near-surface CIN layer.

This last observation—based on monochromatic argument but also supported by the

tartare results presented below—has practical implications. First, this helps understand

why a nighttime CIN layer may not prevent pre-existing storms from moving into a region,

e.g., over the Mississippi basin or the Amazon (Burleyson et al. 2016, Houze 2018): the

layer depth plus surface interactions limit the effect of CIN. This may also be relevant to

elevated MCSs (Parker 2008, Marsham et al. 2011). Second, it addresses a common issue in
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parcel computations of convective available potential energy (CAPE) that have to contend

with small layers in which parcel buoyancy goes negative (e.g., similar to the buoyancy

in Fig. 5.3.2c)—this can give rise to an underestimate of the energy actually available to

convective storms; the results here indicate why updrafts in large storms easily penetrate

such layers.

To briefly summarize the monochromatic dependence on scales: 1) the horizontal wave-

length L determines the range of nonlocal vertical influence; small L yields the familiar limit

of vertically localized response, while buoyancy layers that are thin compared to L/2π yield

response of limited magnitude. 2) L comparable to or exceeding a substantial fraction of

the tropospheric depth or of the height of the buoyant layer above the surface yields roughly

linear profiles below the buoyancy.

5.4 Buoyancy Tartare—robustness to fine structure

Two important modifications occur as one moves from considering a single wavelength to

more realistic cases. First, the buoyancy associated with convective updrafts tends to be

localized. Features of a finite horizontal size D and net-positive buoyancy consist of Fourier

component contributions from a broad range of wavelength, primarily L & D (see section 5.A

and Fig. 5.B.1). This includes nonlocal effects beyond what one would anticipate from the

monochromatic considerations above, and is in contrast with prior studies that emphasized

on the contribution from L ≈ D (Jeevanjee and Romps 2016, Jeevanjee 2017). Second,

robustness to complex buoyancy structures associated with imperfectly mixed turbulent

flow must be assessed.

To address this, we build net-positive buoyancy patches from an ensemble of smaller

elements, using the shorthand “tartare” to describe these constructions of larger scale D

from raw ingredients of scale d � D. Figs. 5.4.1a,c display two such tartares of diameter

D ≈ 10 km consisting of warm (red) and cold (blue) bubbles of d = 1 km and depth 0.5 km.
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Figure 5.4.1: (a) A realization of a net-positive buoyancy tartare—an aggregate of stochastically generated

smaller positive (red) and negative (blue) buoyancy elements—of horizontal diameter D ≈ 10 km and vertical

extent 4 ≤ z ≤ 8 km. Buoyancy value within individual element is approximately constant, and of equal

strength for warm and cold elements. The ratio of numbers of warm to cold elements is set to 7:3. (b)

Theoretical response of convective mass flux to an ensemble of 10 tartare realizations as in (a), for varying

D. The average buoyancy over each tartare is rescaled to +0.01 m/s2. Each curve represents the mean profile

within the tartare diameter. (c) As in (a), with vertical extent 2 ≤ z ≤ 10 km and tilt ≈ 27◦ (∆z/∆x ≡ 2).

(d) As in (b), but for vertically tilted tartares as in (c).
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In the first set of examples (as in Fig. 5.4.1a) the tartares are constructed to illustrate the

nonlocal influence below the buoyancy by placing them at a distance from the surface. The

mean mass flux responses to 10 randomly generated tartares for each D are demonstrated

in Fig. 5.4.1b (depth indicated by gray shading). Through interference, the integral of

individual d-bubbles results in primary Fourier contributions from L & D for each D-tartare

(Fig. 5.B.1). Thus for larger D and/or further below the buoyancy forcing, the responses

converge towards linear dependence on height; see also Fig. 5.2.1b. For smaller D (e.g.,

D ≈ 5 km) and closer to the forcing, the vertically localized behaviors—i.e., more rapid

increase with height near the tartare base—from the smaller-scale 1 . L . 5 km Fourier

components can be distinguished from the nonlocal, roughly linear solutions at lower height

(z < 2.5 km) dominated by contributions from L & 5 km.

Figs. 5.4.1c,d offer additional examples for vertically tilted tartares—to mimic convective

clouds under wind shear—with a greater depth and lower base. The tilt does not greatly

alter the nonlocal behavior for D exceeding a substantial fraction of the tropospheric depth.

Since the tartare base is at z = 2 km, the responses appear roughly linear even for D ≈ 5

km. In a more comprehensive setup where the evolution of buoyancy is included, the tilt

impacts the location of rain, hence cooling by evaporation of raindrops relative to latent

heating. Here, the point is simply that tilted convective systems are subject to the same

nonlocal dynamics.

Compared with idealized bubbles of the same dimensions and constant buoyancy (not

shown), the tartare responses are weaker by a small fraction but otherwise exhibit similar

profiles. This is consistent with the nonlocal dynamics being robust to small-scale variations

and depending primarily on large-scale integral measures for the features of interest. The fine

structures within the buoyant region give rise to localized intense accelerations. The effects of

this on the horizontal average in Figs. 5.4.1b,d may be seen in variations among instances of

the tartare. Below the buoyant region, however, the nonlocal effects create relatively smooth

structure even for individual instances. Furthermore, this horizontal-average mass flux is
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equivalent to the horizontal convergence of air entering the feature, bringing in unmodified

air from the far field and thus tending to dominate the effect of the environment on the

feature.

5.5 Discussion

Aspects of nonhydrostatic nonlocal solutions have been studied in recent years with different

focuses (Jeevanjee and Romps 2016, Jeevanjee 2017). For instance, the rate of entrainment of

individual updrafts as a function of updraft size has been examined for dry plumes (Lecoanet

and Jeevanjee 2019). Relationships of entrainment and plume scale have been incorporated

into recent convective parameterizations for preliminary testing (Morrison 2017, Peters et al.

2021). Such approaches are similar to modifying the idealized monochromatic response as

in Fig. 5.3.2 as building blocks for constraining mass flux profiles. Although results here are

aimed at explaining a feature of observations, they have implications for such parameteriza-

tion efforts. In particular, they underline that the leading-order flow response to a buoyant

region of a finite size includes contributions from a range of wavelengths. This is key to

the robustness of nonlocal dynamics at the larger scales involved in convection—those less

amenable to treatment by moment closures or traditional turbulent assumptions—especially

when one has in mind the formulation for organized ensembles of smaller structures (Mon-

crieff et al. 2017). Superparameterizations include representations of all these effects by

partially resolving them with CRMs embedded into GCM grid-boxes (Khairoutdinov and

Randall 2001, Slawinska et al. 2015, Chern et al. 2016, Jansson et al. 2019). The nonlocal

effects whose importance is emphasized here are thus likely captured, even if small-scale

turbulence is not resolved—but superparameterization remains computationally expensive.

Approaches such as Moncrieff et al. (2017), Morrison (2017), and Lecoanet and Jeevanjee

(2019) may be promising if generalized to include the nonlocal effects underlined here both

vertically and horizontally. Overall, leveraging anelastic solutions such as Jeevanjee and
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Romps (2016), Jeevanjee (2017) and those here can help move parameterizations away from

the idealization of entrainment as determined purely locally by a single parameter.

In light of these results, what can be considered universal regarding the convective mass

flux profile? Not so much a specific profile shape, but the inherent vertically and horizontally

nonlocal effects tending to yield a deep contribution to the mass flux. The nonlocal dynamics

is effective at integrating over heterogeneous buoyancy (as in the tartare solutions), and can

generate deep inflow robustly under a wide range of conditions. Variations in the distribution

of buoyancy can create departures from this. In particular, a layer of negative buoyancy can

yield reductions in the vertical increase of mass flux, or even a low-level layer of negative

vertical velocity at small scales. Yet because the nonlocal dynamics operates persistently,

deep-inflow profiles tend to appear in averages of mass flux over many convective instances.

The observationally motivated hypothesis that there is a common explanation for the deep

inflow into heavily precipitating unorganized convection and mesoscale-organized convection

indeed has a simple explanation: the nonlocal dynamics entailing interaction between the

buoyant layer and the surface. The robustness of this effect especially at scales relevant

for both large cumulonimbus and MCSs, supports the potential for parameterizing aspects

of these systems. Although it implies the need to include nonlocal, anelastic dynamics in

convective parameterizations, the overall effect is to simplify key aspects of the interaction

with the thermodynamic environment for large convective entities.

Acknowledgements

The content of this chapter has been prepared for publication, and the research was

supported by National Science Foundation grant AGS-1936810 and National Oceanic and

Atmospheric Administration grant NA21OAR4310354. This work was partly motivated by

prior work of Drs. D. M. Romps and N. Jeevanjee. The author thanks Dr. C.-M. Wu for

discussions regarding cloud-resolving simulations and J. Meyerson for graphical assistance.

152



The author also thanks Drs. S. W. Nesbitt, M. W. Moncrieff, and J. Jeevanjee for their

valuable comments.

153



APPENDIX

5.A Materials and Methods

The 3D velocity and vorticity are denoted by u = (uh, w) = (u, v, w) and ω ≡ ∇ × u =

(ξ, η, ζ), respectively (subscript h for horizontal components). We use ρ and θ for atmospheric

density and potential temperature, and subscript 0 for hydrostatic reference states that are

time-invariant, horizontally homogeneous. Relevant constants for dry air used here include

the gas constant Rd = 287 J/kg/K, specific heat at constant pressure cpd = 1005 J/kg/K

and at constant volume cvd = 718 J/kg/K (Yau and Rogers 1996). Also, g = 9.81 m/s2.

5.A.1 Governing equation for response

From the definitions of ξ and η, ∂yξ − ∂xη = ∇2
hw − ∂z(∇h · uh) = ∇2

hw + ∂z[ρ
−1
0 ∂z(ρ0w)]

(Jung and Arakawa 2008). The last equality follows the anelastic continuity equation ∇h ·

(ρ0uh) + ∂z(ρ0w) = 0. Apply ∂t to both sides of the equation and substitute ∂tξ, ∂tη using

the vorticity equation, it is straightforward to derive Eq. 5.1 with

B ≡ g

(
θ′

θ0
+ 0.61qv − qc

)
,

D ≡ − ∂

∂z
∇ · [u× (ω + f)] +∇2(uη − vξ),

(5.5)

where B is the buoyancy, θ′ the potential temperature deviation from θ0, qv and qc the

mixing ratios of water vapor and condensate, f the Coriolis parameter pointing along the

vertical z-direction. Note that (uη− vξ) is the z-component of u× ω. Furthermore, Eq. 5.1

is similar to the decomposition adopted by Jeevanjee and Romps (2016) in that both capture

the nonlocal nature and have the identical response to buoyancy. D can become a significant

modifier in strong flow regimes, but spatial filtering by the nonlocal solutions to Eq. 5.1

would apply to forcing by D as well.
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5.A.2 Atmospheric density

In practice, ρ0(z) is often determined by a prescribed reference potential temperature θ0(z)

assuming hydrostatic balance. Here to facilitate our analytic approach, we assume

ρ0(z) ≡ P0

RdΘ0

(
1− z

H

)β
, (5.6)

with the reference pressure P0 and potential temperature Θ0 at z = 0 (values set to 1000 hPa

and 292.8 K so that H ≡ cpdΘ0/g ≡ 30 km throughout this chapter), and β = cvd/Rd ≈ 2.5

for an isentropic atmosphere (i.e., θ0 ≡ Θ0). Note that the atmospheric stability can be

adjusted by slightly varying β, which will not alter our key findings (neither will a more

general ρ0).

5.A.3 Analytic solutions

We introduce the changes of variables

s ≡ 1− z

H
,

A(s) ≡ √ρ0 â,
(5.7)

with which Eq. 5.2 becomes

A′′ − λ(s)2A = −F (s). (5.8)

Here (·)′ denotes d/ds, and

F (s) ≡ λ20
√
ρ0B̂,

λ(s) ≡ λ0

(
1 +

γ

λ20s
2

)1/2

,

λ0 ≡ 2πH/L,

γ ≡ β

2

(
β

2
+ 1

)
.

(5.9)

A WKB approach gives approximate homogeneous solutions to Eq. 5.8

A±(s) = e∓λ(s)s
(
λ(s)s−√γ
λ(s)s+

√
γ

)∓√γ/2
λ(s)−1/2, (5.10)
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leading to â±(z) in Eq. 5.3. When B̂ is slow-varying—e.g., a polynomial in z of degree

≤ 2—so that O(F ′′/λ2)� O(F ) allows iteratively approximating the particular solution

Ap(s) =
1

λ(s)2

[
F (s) +

F ′′(s)

λ(s)2

]
, (5.11)

leading to âp(z) in Eq. 5.4.

The monochromatic solutions in Fig. 5.3.2 are evaluated using Eqs. 5.10 and 5.11. The

value and first derivative of the solutions are matched across the jumps of buoyancy in the

vertical. This requires inverting regular yet ill-conditioned (because of the exponentials)

linear systems for which symbolic computations are employed.

The monochromatic responses to a single layer of buoyancy at various height and for

different L form a basis that is used for building responses to more general buoyancy con-

figurations in Fig. 5.4.1. The solutions built this way are consistent with those obtained by

numerically solving Eq. 5.1. For general ρ0, Eqs. 5.7 and 5.8 still apply though with different

λ(s) and approximate solutions.

5.A.4 Numerical evaluations of responses

Denote the normal cumulative distribution function by N (τ, τ0, σ) ≡ 1
2
erfc(− τ−τ0√

2σ
). In

Fig. 5.3.1, the idealized cylindrical bubbles of buoyancy (units: m/s2) are given by B ≡

10−2 × [1−N (r, 4, 0.2)]×N (z, zB, 0.1)[1−N (z, zT , 0.1)], where r ≡
√
x2 + y2, zB = 4, and

zT = 5, 8 (in km). Here instead of directly solving Eq. 5.1, we consider a domain doubly

periodic in the horizontal −16 ≤ x, y ≤ 16 km, and solve Eq. 5.2 for â(z; k, `) numerically

with vanishing conditions at z = 0, 20 km for all admissible (k, `), then reconstruct a via

inverse Fourier transform. The horizontal and vertical grid spacings used are 125 and 6 m.

The tartares in Fig. 5.4.1 consist of raw elements having buoyancy of the form B =

±1
2
erfc

(
r−0.5
0.02

)
×H(z−zB)H(zB +0.5−z) with r, z, zB in km, and H denoting the Heaviside

function. When building a tartare of diameter ≈ D, the ± signs are randomly assigned with

7 : 3 probabilities. Then the integral buoyancy of each tartare is rescaled to that of 10−2 ×
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1
2
erfc

(
r−D/2
0.2

)
×H(z−zB)H(zT−z) (≈ 0.01 m/s2 on average within the tartare of depth zT−

zB). The overall responses to buoyancy tartares are computed utilizing the monochromatic

basis in a 64 km × 64 km doubly-periodic horizontal domain with grid spacing 62.5 m. Using

the analytic expressions for vertical structures, the accuracy of solutions is not affected by

the vertical grid spacing. For tilted tartares, the tartare cross section for 5.5 ≤ z ≤ 6 km is

centered at x = y = 0. The profiles in Fig. 5.4.1d are from averaging over x2 + y2 ≤ D/2.

5.A.5 Convective precipitation feature scales and MCS identification

For convective precipitation features, we use the TRMM 2A25 data (TRMM 2011a) for the

period of June 2002 through May 2014 that include PR retrievals of surface rain rate (rain)

and type (rainType) at 5 km × 5 km resolution covering 40◦S-40◦N. The values of rainType

consist of three numerical digits, and here we consider 2X0 (X = 0, 2, 3, 4) convective.

Note that these are different from shallow-convective and have rain ≥ 0.11 mm/h—the

minimum detectable by the PR. For each 2A25 file (i.e., one orbit) we identify all contiguous

areas and/or along-track chords consisting of convective raining pixels for the two measures

of convective feature size. We further associate each area/chord with MCS or non-MCS

depending on whether the feature overlaps with an MCS identified as outlined below. We

do not attempt to correct for the finite PR swath—this would lead to biases toward small

features and so would not impact our conclusion regarding the importance of large features

in the size distribution.

We follow (Mohr and Zipser 1996) for simple MCS criteria. With the 10.8 µm brightness

temperature (TB11) from the Merged IR product (Janowiak et al. 2017), for each IR snap-

shot, we identify MCS as an area with TB11 < 250 K of at least 2,000 km2 and an enclosed

minimum < 225 K.
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5.B Horizontal features of finite size and their Fourier spectrum

In section 5.4, we asserted that net-positive buoyancy features of a finite horizontal size

d consist of Fourier component contributions primarily from wavelength L & d. Here we

provide a heuristic argument of why this should be the case, and demonstrate by examples

for more realistic instances.

5.B.1 Heuristic proof

The heuristic argument goes as follows. Consider an idealized feature of size d in a large 1D

domain

BH(x) ≡


1, |x| ≤ d/2,

0, elsewhere,

(5.12)

and its Fourier coefficient (omitting the normalization factor that varies with domain size

and the precise convention one adopts)

B̂H(k) ≡
∫
BH(x)e−2πikxdx. (5.13)

When L ≡ 1/|k| is comparable to or smaller than d, the sign of the integrand changes. The

positive and negative contributions to the integral tends to cancel, resulting in B̂H(k) of

small magnitude. In contrast, when L exceeds d (or 2d to be conservative), the integrand

tends to be of the same sign, leading to a substantial B̂H(k).

Indeed, for this idealized case, the integral can be readily evaluated

B̂H(k) =


d
kπd

sin(kπd), k 6= 0,

d, k = 0.

(5.14)

Normalize B̂H by its value at k = 0. The magnitude of B̂H is bounded by the envelope

1/|k|πd ≡ L/πd, i.e., the size d quantifies the primary Fourier component contribution.

While the possibility of pathological counterexamples cannot be ruled out, the assertion
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Figure 5.B.1: (a) An idealized buoyancy pattern bh of diameter 1 km (gray contour) and a realization of

stochastically-generated net-positive pattern of diameter ≈ 10 km (color shading). The latter is constructed

using 1,000 copies of bh, with their centers randomly spread within a circle of diameter 10 km, magnitudes

uniformly distributed in [0, 1], and 7:3 positive-to-negative sign ratio. (b) The Fourier coefficients of bh (gray

thick) and 10 realizations of the stochastically-generated net-positive patterns (colors) for wavenumbers

k ≥ 0, ` = 0. The Fourier coefficient of the pattern in a is indicated by the thick magenta line. Here, the

Fourier coefficients are computed in a 32 km×32 km doubly-periodic domain, normalized by their values at

k = ` = 0.

is likely to hold for a broad range of conditions relevant to atmospheric convection, as

elaborated below.

5.B.2 More realistic demonstration

In 2D, consider the following idealized pattern

bH(x, y) ≡ 1

2
erfc

(
r − 0.5

0.02

)
, (5.15)

where r ≡
√
x2 + y2 (units: km). bH ∼ 1 for r < 0.5 km and vanishes elsewhere with a

smooth transition over a width ∼ 0.06 km. In Fig. 5.B.1, the pattern of bh and its Fourier
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coefficient

b̂H(k, `) ≡
∫∫

bH(x, y)e−2πi(kx+`y)dxdy (5.16)

are represented by gray lines. bh has its primary Fourier contribution from |k| . 1 (km−1),

or L & 1 km.

Using bh, we construct more complicated net-positive patterns as

BH(x, y) ≡
1000∑
n=1

snmnbH(x− xn, y − yn), (5.17)

where sn = ±1 with 7:3 positive-to-negative ratio, mn the magnitude uniformly distributed

in [0, 1], and (xn, yn) the center of bh uniformly spread within a circle of diameter 10 km.

Figure 5.B.1a shows one such realization, which seems plausible for convection. Its Fourier

coefficient for k ≥ 0, ` = 0 is included in Fig. 5.B.1 (magenta thick) together with the

results for nine more realizations. These examples demonstrate that when an ensemble of

1-km patterns form larger-scale net-positive features of diameter 10 km, the primary Fourier

contributions are from |k| . 1/10 (km−1), or L & 10 km
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