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Abstract

Mechanical Behavior of Materials at Multiscale
Peridynamic Theory and Learning-based Approaches

by

Sayna Ebrahimi

Doctor of Philosophy in Engineering − Mechanical Engineering

University of California, Berkeley

Professor David Steigmann, Co-chair

Professor Trevor Darrell, Co-chair

Classical continuum mechanics has been widely used in the failure analysis of materials
for decades. However, spatial partial derivatives in governing equations of the conventional
theory are not valid along the discontinuities. Alternatively, peridynamic (PD) theory, as
a nonlocal continuum theory, eliminates this shortcoming by using integro-differential equa-
tions which do not contain spatial derivatives. This feature makes PD theory very attractive
for problems including discontinuities such as cracks.

In this study we have extended PD formulation to multiscale problems involving friction,
wear, and delamination of thin films. We have formulated a nonlocal ordinary state-based
peridynamic formulation for plastic deformation based on the idea of mechanical sublayers
which is successfully applied in modeling ductile fracture. In addition, we demonstrated how
PD can be used as an efficient and accurate analysis tool in designing real-world applications
such as body armor systems using bio-inspired structures with the goal of minimizing the
effect of the ballistic impact and bullet penetration depth while being lightweight and com-
fortable to wear. All our obtained results are validated against experimental observations
and an excellent agreement has been achieved. Similar to other mesh-free methods, PD is
massively parallelizable. We built parallel PD algorithms leveraging shared and distributed
memory systems on CPU as well as CUDA architecture on GPU. We provide extensive ex-
periments showing scalability and bottlenecks associated with each parallelization technique.

In the second part of this dissertation, we introduce a new class of learnable forward and
inference models, using graph neural networks (GNN) which develops relational behavior
between material points. We demonstrate these models are surprisingly accurate to gener-
alize remarkably well to challenging unseen loading conditions. Our framework offers new
opportunities for harnessing and exploiting non-local continuum theory and powerful statis-
tical learning frameworks to take a key step toward building accurate, robust, and efficient
patterns of reasoning about materials behavior.
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Chapter 1

Introduction

Studying behavior of materials under various loading conditions is a long-standing prob-
lem in mechanics. Researchers have used both experimental and numerical approaches to
study mechanics of materials. Despite the great benefits of conducting real-world experi-
ments on objects to explore the outcomes, it is not always feasible or practical to perform
such experiments due to many reasons such as time, expense, or impossibility of conduct-
ing a perfectly controlled experiment to study one behavior at the time especially when
we are dealing with multi-scale problems. As a result, there is always a great need for
proposing computational approaches which represent the behavior of the materials based on
well-established theoretical models.

Classical continuum theory, is the most well-known framework to study the physics of a
continuous media which was first formulated by the great Cauchy in the early 19th century
(Cauchy, 1822). Several numerical approaches such as Finite Element Method (FEM), e.g.,
(Rockey et al., 1975; Zienkiewicz et al., 1977; Banks-Sills, 1991), Boundary Element Methods
(BEM), e.g., (Aliabadi & Rooke, 1991; Ebrahimi & Phan, 2013; Ebrahimi & Phan, 2015),
Finite Difference Methods (FDM), e.g., (Mitchell & Griffiths, 1980), and particle based
methods, e.g., (Silling, 2000) have been introduced to solve the governing equations which
are derived by discritization of materials with elements, nodes, lattices , or particles.

Despite of the gained success in the process of designing engineering materials with
complex geometries under mixed-mode loading conditions, they tend to break down when
the strong assumptions of the field are no longer valid. First assumption that the classical
theory is based upon is continuity. As the name suggests, the classical continuum theory
assumes the material is continuous at all time, which is indeed not true as there exists
no defect-free material in the world. In the presence of discontinuities, governing partial
differential equations (PDE) in the classical continuum theory break down because they
simply do not exit at singular points where the stress field is no longer differentiable.

The second strong assumption in the realm of the classical theory, is locality. At high
level, locality means that a material point interacts merely with its immediate neighbors
and therefore, long-range forces are neglected in this theory. Whereas the atomic theory
has proven their existence (Madenci & Oterkus, 2014). In other words, all materials have
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internal forces that are not just contact forces and their interactions occur across longer
horizons (Bobaru et al., 2016). This results in the classical theory becoming incapable of
multi-scale failure analysis which occurs in all structures used in different applications.

Various modifications have been proposed over the past decades to mitigate the drawbacks
of the classical approaches which are listed in the following: the idea of Cohesive Zone
Model (CZM) (Dugdale, 1960) and Cohesive Zone Elements (CZE) (Hillerborg et al., 1976)
which made the calculations of crack initiation and crack propagation possible for both
ductile and brittle materials. In fact they could overcome one of the shortcoming of the
standard FEM which is incapability of predicting crack initiation as the crack must exist
in the material for FEM to be able to analyze it and predict its direction which is not a
realistic approach in failure analysis. However, the mesh-dependency of this method and
unpredictable consequences of having a non-suitable mesh for a given problem, make them
inefficient especially when location of the crack is not know a a priori. Another worth-
mentioning technique that has been developed to resolve difficulties associated with FEM,
is eXtended Finite Element Method (XFEM) (Belytschko & Black, 1999) which allowed for
crack propagation on an element surface instead of element boundaries which also surpassed
CZE in eliminating the need for defining specific direction for crack to grow. Nonetheless,
the XFEM solution is not accurate when multiple cracks interact together as the accuracy
decreases in the elements adjacent to the element in which the crack tip lives. Moreover,
XFEM still requires an artificial crack growth criterion to allow for it to occur.

To be at opposite extremes, another great framework came to exist to address the weak-
nesses of the classical continuum theory called Molecular Dynamics (MD). Although MD
simulation happens to be the most realistic way of structural analysis, they are mainly used
to study the basics of failure process rather than predicting and preventing it from occurrence
and the main reason for that is it is yet not computationally possible to study a structure at
atomic scale as a whole. Good news is that it is possible to get the best of both worlds by
bridging the gap between the classical continuum theory and molecular dynamics by means
of non-local continuum models where a material point is assumed to be interacting to other
points within a finite horizon, making it possible for long-range forces to exist in this frame-
work without restricting the material points to be as small as an atom size. The latter makes
the non-local model to be less computationally demanding.

Various versions of non-local theories have been proposed to solve wide range of problems
in mechanics. Eringan focused on this topic in most of his work such as (Eringen, 1972a;
Eringen, 1972b; Eringen & Kim, 1974; Eringen et al., 1977) in which they used their non-local
approach for crack growth prediction by defining finite stresses at discontinuities. However
similar to other non-local methods that live in the realm of the classical theory, they suffer
from using spatial derivatives in their formulation which causes failure at the presence of
discontinuities. (Kunin, 1982; Rogula, 1982) tried to use displacement fields and not their
derivatives but it was only able to cover problems in one dimensional space. Later (Kunin,
1983) introduced a three dimensional framework by using a discrete lattice structure as an
approximation of the continuous object.

After all, a new non-local theory, so-called Peridynamic, was introduced by (Silling,
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2000) which could address all the aforementioned problems in other non-local theories. It
uses the idea of using displacements instead of their derivatives similar to (Kunin, 1982) and
reformulates the equations in the classical theory from PDEs to spatial integral equations
which are valid at all points including discontinuities. The most important attribute of this
theory is that damage is part of the solution, not a handcrafted rule assigned by the user to
allow the discontinuity to occur and grow. This incredible feature allows this theory to be
able to predict initiation and growth of damage of any kind at any scale. There is no need
to have any knowledge about where the damage occurs a priori. Damage simply takes place
when and where it means to happen.

Since the numerical solution of peridynamic equations of motion is computationally more
expensive than the local solutions, such as FEM, it may be advantageous to combine PD
theory and local solutions. In a recent study, (Seleson et al., 2013) proposed a force-based
blended model that coupled PD theory and classical elasticity by using nonlocal weights
composed of integrals of blending functions. They also generalized this approach to couple
peridynamics and higher order gradient models of any order. In another study, (Lubineau
et al., 2012) performed coupling of local and nonlocal solutions through a transition (mor-
phing) that affects only constitutive parameters. The definition of the morphing functions
in their approach relies on energy equivalence. In addition to these techniques, (Kilic &
Madenci, 2010) and (Liu & Hong, 2012) coupled FEM and peridynamics. A more straight-
forward coupling procedure is given in (Macek & Silling, 2007), where the PD interactions
are represented by truss elements. If only some part of the region is desired to be modeled by
using peridynamics, then the other sections can be modeled by traditional finite elements.
Another simple approach, demonstrated by (Oterkus & Madenci, 2012) and (Agwai et al.,
2012), was first to solve the problem by using finite element analysis and obtain the displace-
ment field. Then, by using the available information, the displacements can be applied as a
boundary condition to the peridynamic model of a critical region.

The peridynamic theory has been utilized successfully for damage prediction of many
problems at different length scales from macro to nano. In order to take into account
the effect of van der Waals interactions, (Silling & Bobaru, 2005) and (Bobaru et al., 2005)
included an additional term to the peridynamic response function to represent van der Waals
forces. This new formulation was used to investigate the mechanical behavior, strength,
and toughness properties of three-dimensional nanofiber networks under imposed stretch
deformation. It was found that the inclusion of van der Waals forces significantly changes
the overall deformation behavior of the nanofiber network structure. In a recent study,
(Seleson et al., 2009) demonstrated that peridynamics can play the role of an upscale version
of molecular dynamics and pointed out the extent where the molecular dynamics solutions
can be recovered by peridynamics.

Even though numerous journal articles and conference papers exist in the literature on
the evolution and application of the peridynamic theory, it is still new to the scientific
community. Because it is based on concepts not commonly used in the past.

Intuitively, more fine-grained discritizations result in more accurate solutions. Therefore,
s Similar to all numerical approaches, Peridynamics also benefit from development of com-
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putational power. Advances in computing power, not only supports the practicality of the
existing approaches in continuum theory, but also have been the key factor in emerging data-
driven and machine learning-based approaches (Samuel, 1959; Murphy, 2012), particularly
deep learning methods (LeCun et al., 2015). Although the core idea of these approaches
was introduced a few decades ago (Samuel, 1959), researchers discontinued using them due
to their scalability issues. However, with the striking progress of graphical processing units
(GPU), deep learning in particular won overwhelming victory over any other technique in
various fields such as computer vision (Krizhevsky et al., 2012; He et al., 2016), medical
and healthcare applications (Lee et al., 2017), autonomous driving (Ebrahimi et al., 2017),
generating high resolution images (Dong et al., 2014; Azadi et al., 2018), and is being widely
used for collecting and analyzing enormous amount of data.

This work is concerned with driving deep into the peridynamic theory and deriving models
and numerical analysis of different phenomena in mechanics. Peridynamic is relevantly a
new research area and there is a lot of ongoing research in this framework. In particular
we have tried to derive new models that enable us to use this framework for a variety of
important applications in which the classical theory fails or performs poorly. Particularly
we are interested in using peridynamics for modeling friction, wear, wrinkling, delamination,
ballistic impact and deriving a plasticity theory in peridynamic framework. Applicability of
PD on these phenomena significantly depends on the PD implementation efficiency. This
has been also one of our biggest concern in this work. We designed various algorithms to
run PD algorithm in parallel.

Here is a breakdown of this dissertation in terms of our contributions presented in each
chapter:

• Chapter 2: This chapter will serve as an introduction to the peridynamic formulation
including definitions and derivations. Currently there are two different formulations
used to define concepts in PD theory. The first one with which the theory was originally
introduced is (Silling, 2000) and the second one was developed by (Madenci & Oterkus,
2014). Both formulations are defined in this chapter.

• Chapter 3: This chapter covers modeling tribological phenomena (wear and friction)
using Peridynamic theory. Our contribution in this chapter is using PD at nano-scale
to compute coefficient of friction in sliding contact of a rigid tip over an ultra-thin
film. We were also able to compute the penetration depth during such contact and
the resulting material removal caused by it. The excellent agreement between the
PD solution and the experimental setup we compared with, shows how PD can be
promising in modeling such contact mechanisms where classical theory fails at.

• Chapter 4: We introduce a new PD model to predict three modes of delamination
in compressed elastic thin films on compliant substrates: wrinkling, buckling and con-
comitant wrinkling and buckle-delamination. This 2D model is able to predict the
deformed compressed pattern based upon the mechanical properties of both film and
substrate such as their thickness, critical stretch, elastic modulus and, Poisson’s ratio
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in the absence of pre-existing defects of any kind. PD results are compared against
existing analytical solutions for the film and substrate interactions and a good agree-
ment has been achieved. This study enables us to predict the occurrence of wrinkling
and/or buckling and/or concomitant wrinkling and buckling for a given film and sub-
strate when they are under compression.

• Chapter 5: In this chapter we formulate a nonlocal ordinary state based peridynamic
formulation of plastic deformation based on the idea of mechanical sublayers. Each
bond is regarded as being composed of a series of elasto-plastic subelements arranged
in parallel. These subelements have a common modulus but different yield strains.
Accordingly, as bond strain increases, the subelements yield successively, producing
a piecewise linear approximation to uniaxial data which can be adjusted to achieve
arbitrary accuracy by increasing the number of subelements. The model automatically
incorporates the Bauschinger effect and models hysteretic cyclic loading. The proposed
model is validated by comparison with the benchmark problems such as center-cracked
tensile plate, and compact tension specimen.

• Chapter 6: Here, a new peridynamic model is proposed to model viscoplastic behavior
of body armors against projectile ballistic impacts. The ultimate goal is to develop a
parametric peridynamic model for simulation of ballistic impact in dual-material body
armors. We propose two design patterns; one is composed of multidirectional fiber
reinforced composites in the backing panel and ceramic-based front layers. The second
design is a bio-inspired structure with superior ballistic impact resistance for wearable
body armor systems. This is accomplished by replacing the conventional monolithic
backing polymer by a multi-layered structure having multiple strong interfaces which
deflect the stress waves generated by the penetrating projectile and, in turn, reduce
the impact energy. The novelty of the proposed designs is the development of a reliable
framework and computationally accurate and fast model for designing armor structures
exhibiting unique ballistic impact resistance.

• Chapter 7: In this chapter we investigate the parallelization of PD algorithm as a
particle -based method which is massively parallelizable. We have made a comprehen-
sive comparison among three common parallelization systems: distributed and shared
memory CPU systems using MPI and OpenMP, respectively, as well as GPU archi-
tecture using CUDA. We have built our parallel algorithms on a single benchmark
problem where no damage is allowed and particles can move around different horizons.
This is believed to be the most expensive computational method to solve PD problems.
We have chosen this method intentionally to explore the efficiency and scalability of
PD in the most rigorous situation. Results for weak and strong scaling efficiency are
compared against each other and scaling performances for each model are evaluated
and discussed. We show that these techniques can effectively speed up the PD simula-
tions. We will conclude that CUDA implementation is shown to be the most powerful
tool for massively parallel PD problems.
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• Chapter 8: In this chapter we propose a new class of learnable predictive models
using graph neural networks (GNN), which takes in materials properties and geometry
and outputs their reaction in unseen environments under challenging loading condi-
tions. In particular we investigate how GNNs can enhance PD theory by showing
how by executing a limited number of PD simulations one can accurately learn dy-
namics of a physical system and generalize to new material structures. In this part
of the dissertation, we take a key step towards revealing the benefits of combining
machine learning based methods and continuum theory by exploiting compositional
relations and power of statistical representation learning to open new paths for robust
and efficient reasoning and decision-making.

• Chapter 9: We conclude with highlighting our contributions during the course of this
PhD and shed some lights on future directions and possible extension of the current
study.
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Part I

Peridynamic Analysis of Materials
Behavior
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Chapter 2

Introduction to Peridynamic Theory

2.1 Preliminaries
Periynamic theory assumes that a material is composed of finite number of particles

that interact with each other via bonds within a specified limit, called the horizon. Every
particle, interacts with a group of other particles, so called the family members within its
horizon. Mechanical behavior of each particle collectively depends on its family members.
Figure (2.1) shows two particles of the same family, located at xi and xj in the reference
configuration and their horizon limits when the motion has not yet started. Particles can
undergo an arbitrary displacement, velocity, and/or force field externally which results in
motion and deformation of bonds in the current configuration. Displacement of material
points is denoted as

ui = yi − xi (2.1)

where yi is the position of particle i in the current configuration. In addition to the particles’
displacement, deformation also takes place at the bond level for all the bonds attached to
the particle of interest (ex. particle i) which forms a vector that stores the displacement of
all N bonds. This is called the deformation vector state denoted as

Y(xi, t)〈xj − xi〉 =
[
(y1 − yi), (y2 − yi), · · · (yN − yi)

]
(2.2)

The state concept introduced by Silling (Silling, 2000) can be thought as a mapping
function that operates on a single bond in the reference configuration and transfers it to the
current configuration. The bond between particles i and j which has a length of |xi − xj|
in the reference configuration can stretch(or shorten) upon deformation to the length of
|yi − yj| to introduce the dimensionless bond stretch parameter which is analogous to strain
in the classical theory and is the key concept in defining the failure of the material or
generally the change of its behavior as an elastic, or plastic material. Stretch in the bond
shared between particles i and j is defined as:

sij =
|yj − yi| − |xj − xi|

|yj − yi|
(2.3)
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xj

xi

y

x

δ

Figure 2.1: Family members of xi and xj centered at their horizons with radii of δ share a
bond in two-dimensional Cartesian space

Every particle is associated with a force density vector state which is the resultant of all
forces exerted by its family members and is denoted as

T(xi, t)〈xj − xi〉 =
[
ti1, ti2, · · · tiN

]
(2.4)

where tij is the force exerted on particle i by particle j per unit volume. From the force
vector prospective, direction and magnitude of vectors tij and tji divide the PD theory into
three distinctive approaches which are illustrated in Fig. (2.2) as the bond-based theory by
(Silling, 2000), the ordinary state-based theory by (Silling et al., 2007), and the non-ordinary
state-based theory by (Warren et al., 2009).

As depicted in Fig. (2.2), in the bond-based framework, the force vectors between two
family members are equal and parallel in opposite directions. This in fact, enforced a re-
striction in the theory to be only valid for materials with Poisson’s ratio of 1/3 in 2D and
1/4 in 3D. Soon after, force state was introduced in ordinary state-based framework such
that it was dependent upon the deformation of all its neighboring rather than pairwise in-
teractions between particles. In ordinary stated-based approach tij and tji are no longer
equal in magnitude but they are still parallel to each other. subsequently, the non-ordinary
state-based framework was proposed as the most general PD framework in which tij and tji
can have different magnitudes and directions allowing to use the constitutive equations of
the classical theory. We are proposing our new plasticity model in the ordinary state based
approach which can be also used in the bond-based framework.

Equation of motion in PD was first formulated by (Silling, 2000) which differs from its
classical counterpart in the integral term instead of the divergence of the stress field which
enables it to be applied anywhere in the material regardless of being a discontinuity such as
cracks, voids, etc. PD equation of motion is given as

ρ(i) üi(xi, t) =

∫
H

{
T[xi, t]−T[xj, t]

}
dVxj + b(xi, t) (2.5)
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Figure 2.2: PD approaches: bond-based theory, ordinary state-based theory, non-ordinary
state based theory

where ρ(xi) is the mass density of particle i, H confines the integral’s bound over the
horizon, dV is the incremental volume of each family members of i, and b is the body forces
exerted on particle i.

2.2 State-based Peridynamic Constitutive Equation
Due to the interaction between material points xi and xj, a scalar-valued micropotential,

wij, develops which depends on the material properties as well as the stretch between point
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xi and all other material points in its family.

wij = ŵij(y1i − yi, y2i − yi, . . . ) (2.6)
wji = ŵji(y1j − yj, y2j − yj, . . . ) (2.7)
wij 6= wji (2.8)

The strain energy density, Wi of material point xi can be expressed as a summation of
micropotentials, wij, arising from the interaction of material point xi and the other material
points, xj, within its horizon in the form below: (Silling, 2000):

Wi =
1

2

∞∑
j=1

1

2
(wij + wji)Vj (2.9)

where Vj is the volume of particle j

Equation of motion

The PD equations of motion at material point xi can be derived by applying the principle
of virtual work, i.e.,

δ

∫ t1

t0

(K − U)︸ ︷︷ ︸
L

dt = 0 (2.10)

K and U represent kinematic and potential energies in the system. Principle of virtual work
is met by solving the Lagrange’s equation :

d

dt

( ∂L
∂u̇i

)
− ∂L

∂ui
= 0 (2.11)

Total kinetic energy:

K =
∞∑
i=1

1

2
ρiu̇i · u̇iVi (2.12)

Total potential energy:

U =
∞∑
i=1

WiVi −
∞∑
i=1

(bi · ui)Vi =
∞∑
i=1

1

2

∞∑
j=1

1

2
(wij + wji)Vj − bi · uiVi (2.13)

Replacing Eqs. 2.12 and 2.13 into 2.11 will results in:

L = K − U =
∞∑
i=1

1

2
ρiu̇i · u̇iVi −

( ∞∑
i=1

WiVi −
∞∑
i=1

(bi · ui)Vi
)

(2.14)

=
∞∑
i=1

1

2
ρiu̇i · u̇iVi −

∞∑
i=1

1

2

∞∑
j=1

1

2
(wij + wji)Vj + bi · uiVi (2.15)



CHAPTER 2. INTRODUCTION TO PERIDYNAMIC THEORY 12

Plugging back to the Lagrange’s equation and using chain rule:

d

dt

( ∂L
∂u̇i

)
− ∂L

∂ui
= 0

ρiüiVi +
∞∑
j=1

1

2

( ∞∑
k=1

∂wij
∂(yj − yi)

Vk

)
∂(yj − yi)

∂ui
+

∞∑
j=1

1

2

( ∞∑
k=1

∂wji
∂(yi − yj)

Vk

)
∂(yi − yj)

∂ui
− bi

)
Vi = 0

(2.16)

yi = xi + ui

yj = xj + uj

}
⇒

∂(yi − yj)

∂ui
= I

∂(yj − yi)

∂ui
= −I

(2.17)

ρiüi =
∞∑
j=1

1

2

( ∞∑
k=1

∂wik

∂(yj − yi)
Vk

)
−
∞∑
j=1

1

2

( ∞∑
k=1

∂wki

∂(yi − yj)
Vk

)
+ bi (2.18)

Force state:

tij(uj − ui,xj − xi, t) =
1

2Vj

∞∑
k=1

∂wik

∂(yj − yi)
Vk = T(xi, t)〈xj − xi〉 (2.19)

tji(ui − uj,xi − xj, t) =
1

2Vj

∞∑
k=1

∂wki

∂(yi − yj)
Vk = T(xj, t)〈xi − xj〉 (2.20)

The force state consists of the constitutive equation of the material in PD. (Oterkus &
Madenci, 2012) derived the PD constitutive equation as follows. They first considered PD
equation of motion for local interactions (traction vectors) and matched the terms with its
equivalent form in the classical theory which resulted in a relation between Cauchy stress
components and PD force states. By replacing the force states with Cauchy stress com-
ponents in the well-established strain energy density function of the classical theory and
comparing the corresponding terms, they found the strain energy density function in peri-
dynamics as a function of force state as below

Wi = a1 θ
2
i −a2 θi ∆Ti+a3 ∆T 2

i +b
N∑
j=1

ωij

((∣∣yj−yi
∣∣−|xj − xi|

)
−α∆Ti|xj−xi|

)2

Vj (2.21)

where a1, a2, a3, and b are PD constants which are defined in Table 2.1. ∆T is the temper-
ature change in the material, α is the coefficient of thermal expansion of the material, ωij is
the influence function between particle i and j denoted as below and shown in Fig. ]ref:

ωij =
δ

|xj − xi|
(2.22)
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w= w#$ + w$#
2xi

xj

Table 2.1: Peridynamic material constants

Dimension Peridynamic parameters
3D a1 = 1

2

(
κ− 5µ

3

)
a2 = α(3κ− 5µ) a3 = 9

2
α2(κ− 5µ

3
) b = 15µ

2πδ5
d = 9

4πδ4

2D a1 = 1
2

(
κ− 2µ

)
a2 = 2α(κ− µ) a3 = 2α2(κ− µ) b = 6µ

πhδ4
d = 2

πhδ3

1D a1 = 0 a2 = 0 a3 = 0 b = E
2Aδ3

d = 1
2Aδ2

and θ is the dilation denoted as below

θi = d
N∑
j=1

ωij(sij − αTi)
yj − yi
yj − yi|

· (xj − xk)Vj + 3α∆Ti (2.23)

According to (Silling, 2000), force density of a bond is the derivative of the strain energy
density function with respect to the relative displacements of particles sharing that bond

tij =
1

Vj

∂Wi

∂
(∣∣yj − yi

∣∣) yj − yi∣∣yj − yi
∣∣ (2.24)

By taking derivative of Eq. (2.21), force state density can be derived as

tij = 2δ

(
d

cos[∠(yj − yi,x− xi)]

|xj − xi|
(
a1θi −

1

2
a2∆Ti

)
+ b
(
sij − α∆Ti

)) yj − yi∣∣yj − yi
∣∣ (2.25)

where
cos[∠(yj − yi,x− xi)] =

yj − yi∣∣yj − yi
∣∣ · xj − xi
|xj − xi|

(2.26)

Table 2.1 shows the PD material constant in one, two, and three dimensional framework:

Several methods have been proposed to evaluate a PD equivalent for the path-independent
J-integral which is originally proposed by (Rice, 1968) when plastic deformation occurs in
the material. Initially, (Silling & Lehoucq, 2010) derived a PD version of the J-integral
that computes the energy dissipation rate of moving discontinuities. (Foster et al., 2011)
computed J-integral via an energy approach for viscoelastic materials using non-ordinary
state based PD. (Hu et al., 2012b) used the crack infinitesimal virtual extension approach
to derive an algorithm for J-integral calculation in bond-based peridynamics. (Madenci &
Oterkus, 2016) used an energy based framework to compute J-integral by calculating the
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total work required to eliminate the bonds across the discontinuity surface. We used the
latter formulation because it requires the least amount of computations in the state based
formulation we are using developed by the same authors (Madenci & Oterkus, 2014). They
showed that the strain energy required to eliminate a PD bond between two particles of the
same family but located on opposite sides of a crack surface can be obtained as

Wij =
1

2

wij + wji
2

VjVj (2.27)

where wij is called the elastic-plastic micropotential or the area under the force density vs.
stretch (tij − sij) per bond and is defined as

wij =

∫ sij

0

tij|xj − xi|dsij (2.28)

Therefore, the J-integral or the total strain energy required to eliminate all the PD interac-
tions across the unit crack surface A is

J =
1

2A

∑
Hi

∑
Hj

(wij + wji)ViVj (2.29)

where Hi and Hj denote the family members of particle i and j that are on the same side
of the crack, respectively and A = h∆x with h being the thickness.

2.3 Numerical solution scheme
Peridynamics is mesh-free meaning that the domain should be discretized into nodes to

form a grid that has no geometrical connections (Silling & Askari, 2005). A uniform grid is
used here with a horizon of δ = 3.015 ∆x which is a common choice in PD simulations. Each
node has a volume of ∆x3. The equation of motion at the nth time-step can be discretized
as below

ρ(xi) üi(xi, t) =

NH∑
j=1

(
tnij − tnji

)
νjVj + b(xi, t) (2.30)

where νj is the area correction factor adapted from (Madenci & Oterkus, 2014).
Time integration is carried out explicitly using forward difference to update the velocity with

u̇n+1
i = üni ∆t+ u̇ni (2.31)

Displacements are updated using backward differences:

un+1
i = u̇n+1

i ∆t+ uni (2.32)
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Since we are using an explicit method, stability of the integration should be checked by the
following equation which is thoroughly derived and explained in (Oterkus & Madenci, 2012;
Madenci & Oterkus, 2014)

∆t <

√√√√√ 2ρ(xi)∑N
j=1

[(∑N
m=1 2|αijm|Vm +

∑N
n=1 2|γijnVn

)
+ βij

]
Vj

(2.33)

where

βij =
4bδ

|xj − xi|
, αijm =

2ad2δ2

|xj − xi| |xm − xi|
, γijn =

2ad2δ2

|xj − xi|
|xn − xi| (2.34)

Last thing needed is the initial condition for the above integration equations for both velocity
and displacement.

2.4 Peridynamic pseudocode
A pseudocode that describes the PD algorithm is shown in Algorithm 1.

Algorithm 1 PD Algorithm

1: Given: δ, ∆t, Bulk modulus (K), Shear modulus (G), Critical stretch (scr)
2: Initialize particles coordinates
3: Initialize displacements and velocities
4: for each time step t = 1 to T do
5: for each each particle i = 1 to n do
6: for each particle j = 1 of particle i’s family do
7: ξ ← xj − xi
8: η ← uj − ui
9: update scr, fac
10: Fi ← Fi + bc η η−ξ

ξ∆x3scr fac (xj+uj−xi−ui)

11: if Bond stretch > scr :
12: Break the j’s bond with i
13: for each particle i = 1 to n do
14: ui,vi ← MOVE(ui,vi,Fi)

1: procedure MOVE(ui,vi,Fi)
2: ai ← Fi/ρ
3: vi ← vi + ai∆t
4: ui ← ui + vi∆t
5: return ui,vi
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2.5 Original Formulation
As described in chapter 1, there exists two different formulations in PD literature. What

we have discussed so far in this chapter has been devoted to the notation introduced in
(Oterkus & Madenci, 2012). However, PD was introduced with a different notation by
(Silling, 2000). For the sake of completeness, we briefly show how different this notation is
from the rest of what has been used in this thesis.

Bond-based peridynamics presumes the existence of a pair-wise force function between
any two particles, which is independent of the deformation associated with other particles
(Silling, 2000) and has been developed for a Poisson’s ratio of 0.33 and 0.25 for 2D and
three-dimensional (3D) problems, respectively. State-based peridynamics is based on a more
general theory, which uses a more comprehensive constitutive model derived based on force-
and deformation-state concepts (Silling et al., 2007). To obtain the force state at each
particle, the deformation (stretching) of all bonds within the horizon of each particle are
considered without assuming a specific value of the Poisson’s ratio. Similarities between
state-based peridynamics and continuum theory have been reported (Silling et al., 2007;
Lehoucq & Silling, 2008), including the convergence of state-based peridynamics to classical
elasticity theory (Silling & Lehoucq, 2008).

The general 3D peridynamics equation of motion is given by (Silling et al., 2007)

ρ(xi)ü(xi, t) =

∫
H

(
T[xi, t]〈xj − xi〉 −T[xj, t]〈xi − xj〉

)
dVj + b(xi, t) (2.35)

where ρ is the mass density, xi and xj are the position vectors of particles i and j, respectively,
u is the displacement field, H is the domain of the spherical horizon with a radius δ, T is
the force vector state field, b is the body force density field, t is the time, and dVj is the
volume of particle j. In the present analysis, the deformable materials are assumed to be
ordinary, implying that the force between two particles acts in the bond direction.

For ordinary materials, the force vector is given by (Silling et al., 2007)

T = tM (2.36)

where t is the scalar force state and M is the deformation direction vector. In the linear
peridynamics solid (LPS) model, the force scalar state is defined by (Silling et al., 2007)

t =
3Kθ[x, t]
m[x]

ω〈ξ〉x〈ξ〉+
15G

m[x]
ω〈ξ〉ed[x, t] (2.37)

where K and G are the bulk and shear modulus, respectively, θ is the dilatation, m is the
weighted volume, ed is the deviatoric component of the extension scalar state e, and ω is the
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influence function. These parameters can be defined as following (Silling et al., 2007):

θ[x, t] =
3

m[x]

∫
H
ω〈ξ〉x〈ξ〉 e[x, t]〈ξ〉dV (2.38)

m[x] =

∫
H
ω〈ξ〉x〈ξ〉x〈ξ〉 dV (2.39)

e[x, t]〈ξ〉 = ‖ξ + η‖ − ‖ξ‖ (2.40)

ed[x, t]〈ξ〉 = e[x, t]〈ξ〉 − ei[x, t]〈ξ〉 = e[x, t]〈ξ〉 − 1

3
θ[x, t] x〈ξ〉 (2.41)

where ξ = xj − xi is the relative position vector between particles i and j in the reference
configuration and η = u(xj, t)−u(xi, t) is the relative displacement vector between particles
i and j at time t.

Because of the highly disordered structure of a-C films (Charitidis, 2010), they can
be modeled as isotropic materials with an influence function ω〈ξ〉 = 1/‖ξ‖, as suggested
elsewhere (Parks et al., Sandia Report 2011-8523, 2010).

Damage is assumed to occur when bond stretching exceeds a predefined critical stretch
sc, given by (Silling & Askari, 2005; Ha & Bobaru, 2011)

sc =

√
4πGI

9Eδ
(2.42)

where GI is the critical energy release rate corresponding to the mode I stress intensity factor
KI (i.e., GI = K2

I /E
′, where E ′ = E (plane stress) or E/(1− ν2) (plane strain)). Eq. (2.42)

indicates that sc is a function of the material properties and characteristic length scale of
the analyzed body, i.e., the horizon radius δ.

Damage at a given material point (particle) is defined as the ratio of the number of
broken bonds to the total number of bonds D. Because D assumes values between 0 (no
damage) and 1 (full damage) (Silling & Askari, 2005), it can be used as a damage index to
characterize the extent of material removal (D = 1) and the evolution of permanent damage
(0 < D < 1) in the wear model.

2.5.1 Body discretization and computational details

To obtain a solution for the 2D version of Eq. (2.35), the body is discretized by a uniform
grid (∆x = ∆y) and the integral is replaced by a summation including all interacting particles
within the horizon of a given particle. Thus, Eq. (2.35) can be expressed as

ρi üni =

NH∑
j=1

F
(
xni ,x

n
j ,x

n−1
i ,xn−1

j

)
Vj + bni (2.43)

where the superscripts denote the time step and NH is the total number of particles inter-
acting with the particle of interest withing its horizon. Time integration of Eq. (2.43) using
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the central difference method yields the position and velocity of each particle at time step
(n + 1). The nodal area of the particles laying on the horizon boundaries is accordingly
modified (Parks et al., 2008).

In addition to the force vector state obtained from Eq. (2.36), short-range forces are also
included in the present analysis by introducing a short-range particle interaction distance
dpi = min{0.9‖xp−xi‖, 1.35(rp+ri)}, where xp and rp are the position and radius of particle
p in the vicinity of particle i, respectively, and ri is the radius of particle i, which is set equal
to one-half of the grid size (i.e., ri = ∆x/2) (Parks et al., Sandia Report 2011-8523, 2010).
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Chapter 3

Studying Wear and Friction in Carbon
Thin Films with Peridynamic

3.1 Amorphous carbon thin films
Thin films are used as protective overcoats in a wide range of applications where the tribo-

logical properties of proximal surfaces are of paramount importance to the functionality and
endurance of mechanical components possessing contact interfaces. For example, thin films
of amorphous carbon (a-C) play a critical role in the reliability and performance of magnetic
recording devices because they protect the magnetic head and hard disk surfaces against
mechanical wear during intermittent contact and inhibit corrosion of the magnetic medium
of the hard disk. Because of the extremely small a-C film thickness and the occurrence of
head-disk surface interactions at nanoscopic surface protrusions (asperities), knowledge of
the nanoscale tribological and mechanical properties of thin a-C films is of high technological
importance.

The nano-mechanical/tribological properties of a-C films are greatly affected by the type
of carbon atom hybridization and the hydrogen content. Other elements (e.g., Si, N, B, F,
and O) can be added to modify the electromechanical properties of a-C films (Charitidis,
2010). The structure and elemental content of a-C films strongly depend on the intricacies of
the deposition process, which controls film nucleation and growth (Charitidis, 2010; Lifshitz,
1996; Grill, 1999). Thus, small variations in the deposition conditions may result in vastly
different film properties. In view of the time consuming experimental techniques available
for nanoscale mechanical and tribological testing of thin films, alternative approaches must
be used to examine the effects of structural changes on resulting film properties.

High contents of tetrahedral carbon atom hybridization (sp3) characterize the structure
of a-C films exhibiting diamond-like behavior, whereas high contents of trigonal carbon atom
hybridization (sp2) generally produce graphitic-like film behavior. A continuum description
does not account for local differences in nanostructure (Luan & Robbins, 2005), whereas
molecular dynamics (MD) is limited by high computational cost, model size, and type of
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potential function used to describe atomic interaction (Alder & Wainwright, 1959). There-
fore, nonlocal computational approaches, which are not subjected to the aforementioned
restrictions, must be developed to enhance the study of the interdependence of structure
and material behavior at the nanoscale.

Peridynamics (Silling, 2000) is a relatively new theory, which promises to bridge the ma-
terial gap in computational mechanics. Peridynamics is a continuum version of MD, which
uses integral equations of motion to offset complexities associated with material discontinu-
ities (e.g., defects, edges, and sharp corners) instead of the conventional partial differential
equations used in classical mechanics and does not rely on a priori assumed defect or damage
criteria (e.g., crack growth direction). Because of the mathematical simplicity and computa-
tional affordability, peridynamics has been used to analyze various computationally intense
problems, such as dynamic fracture in brittle (Ha & Bobaru, 2011; Bobaru & Hu, 2012; Liu
& Hong, 2012; Lipton, 2014; Ha & Bobaru, 2010) and composite (Askari et al., 2006; Xu
et al., 2008; Kilic et al., 2009; Hu et al., 2011; Hu et al., 2012a) materials, multi-scale dam-
age (Askari et al., 2008; Alali & Lipton, 2012), and damage of nanofiber networks, including
long-range effects of van der Waals forces on nanofiber deformation (Bobaru, 2007; Bobaru
& Silling, 2004; Bobaru et al., 2005; Silling & Bobaru, 2005). Moreover, peridynamics has
been used in failure analyses dealing with thin film cracking in electronic packaging (Agwai
et al., 2008; Agwai et al., 2011; Agwai et al., 2009) and also in conjunction with atomic
force microscopy and nanoindentation techniques to determine the mechanical properties of
ultrathin films (Celik et al., 2009).

The objective of this study is to introduce a two-dimensional (2D) peridynamics analysis
of the nanotribological behavior of thin a-C films. Simulation results of the coefficient of
friction and depth of wear track due to a rigid (diamond) tip sliding against a-C films of
different thickness and nanomechanical properties are presented and compared with exper-
imental results of a previous study (Lu & Komvopoulos, 2001) to validate the accuracy of
the developed peridynamics models.

3.2 Peridynamics friction and wear models
State-based peridynamics friction and wear models are presented in this section and simu-

lation results are compared with published experimental results of the nanoscale tribological
properties of thin a-C films (Lu & Komvopoulos, 2001) to illustrate the validity of the devel-
oped models. A 2D analysis of the sliding process is valid provided the depth of penetration
is significantly less than the width of the resulting plowing (wear) track (Komvopoulos et al.,
1985).

Long-range forces may also have a strong effect on nanoscale deformation and, despite
the continuum nature of peridynamic, it is possible to incorporate potential force functions
from MD analysis in the force state of peridynamic (Bobaru, 2007; Silling & Bobaru, 2005;
Bobaru et al., 2005). However, for a separation distance of 2 nm, long-range forces reach
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Table 3.1: Mechanical properties and critical stretch of Si substrate. (a)Ref. (Lu &
Komvopoulos, 2001) and (b)Ref. (Agwai et al., 2011)

Material Elastic modulus(a) (GPa) Poisson’s ratio(a) Density(a) (g/cm3) Critical stretch(b)

Silicon 132 0.278 2.329 0.01

∼10% of their peak values (Bobaru, 2007). Consequently, because the grid size used in the
present analysis is less than 2 nm, long-range forces are not considered for simplicity.

Since in all simulation cases the ratio of the wear depth to the wear track width is less
than 0.1, a 2D peridynamics analysis of the sliding friction and wear processes is justifiable.
All simulations were performed with a custom-made peridynamics code written in Fortran
90/95 and executed on a Linux platform with a quad-core 2.33 GHz Intel Xeon E5345 CPU.

3.2.1 Friction model

Fig. 3.1 schematically shows a rigid spherical tip of radius R under normal load P , which
is sliding against a thin a-C film firmly attached to a thick Si substrate. Because of the
high elastic modulus of diamond, in all numerical simulations the tip is modeled as rigid.
The center of the tip is initially set at a distance equal to R −∆x/2 from the film surface.
Short-range forces inhibit the development of particle-particle distances less than dpi, defined
in section 3. Both film and substrate materials are assumed to be isotropic, predominantly
exhibiting brittle behavior. The elastic properties, density, and critical stretch of the Si
substrate are given in Table 3.1, whereas the thickness, root-mean-square (rms) roughness,
elastic properties, and density of all a-C films examined in this study are given in Table 6.1.
The film density was calculated from the relation ρ = 1.37 +E2/3/44.65, where ρ and E are
given in g/cm3 and GPa, respectively (Casiraghi et al., 2007). The number of particles used
to discretize the film and substrate media in each friction simulation are also given in Table
6.1. In all friction simulations, the tip radius is equal to 20 µm.

To enhance the convergence, load-control sliding experiments were simulated by the fol-
lowing method. First, the normal load was incrementally applied using several time steps
until the desired load (in the range of 50-400 µN) was reached. This incremental loading
procedure is similar (though faster) to that used in the experimental study (Lu & Komvopou-
los, 2001). Subsequently, the tip was traversed in the x-direction at a constant velocity
V = 0.4 µm/s by a total distance S = 4 µm. To avoid boundary effects on the friction re-
sults, the distance of the left and right boundaries of the discretized domain from the initial
(x/S = 0) and final (x/S = 1) tip positions was set equal to S/2 (Fig. 1). An adaptive dy-
namic relaxation (ADR) method similar to that presented in (Kilic & Madenci, 2010), which
was accordingly modified for state-based formulation, was used in the friction analysis. The
time step in the ADR analysis of friction was set equal to 0.01 s. Artificial damping was used
in the equations of particle and tip motion. For the calculation of the damping coefficient of
the rigid tip, the stiffness was increased by a factor of 10 to account for the rigidity of the
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Figure 3.1: Schematic of peridynamics friction model of a spherical diamond (rigid) tip
sliding at constant velocity V against a thin a-C film, which is firmly adhered to a thick Si
substrate. The tip slides from left (x/S = 0) to right (x/S = 1) by a total distance S. The
shaded layer at the bottom of the substrate is modeled as rigid. The coefficient of friction is
obtained as the ratio of the computed tangential (friction) force F , which opposes tip sliding,
and the applied normal load P . The film thickness and the tip radius are not drawn to scale.

tip. Similar to the friction experiments reported in (Lu & Komvopoulos, 2001), only elastic
deformation is modeled in the friction simulations, i.e., irreversible damage such as bond
breakage is not included in the friction model. The initial boundary conditions used for time
integration are zero displacements and velocities in all directions at all particles and the tip
center. Films of thickness larger than 10 nm are examined because the grid size is less than
2 nm. In addition, because the rms roughness of the films (in the range of 0.15˘0.51 nm (Lu
& Komvopoulos, 2001)) is significantly smaller than the grid size, both film and substrate
media are modeled as perfectly smooth.

3.2.2 Wear model

Fig. 3.2 shows a schematic of the wear model consisting of a sharp rigid (diamond)
conospherical probe with a tip radius R plowing through an a-C film, which is firmly attached
to a thick Si substrate. After incremental loading of the probe to the desired normal load
P = 10 µN (load-control simulations) at x/S = 0, the probe was traversed in the x-direction
at a constant velocity V = 4 µm/s by a total distance S = 1 µm and was finally unloaded
at x/S = 1. To avoid boundary effects on the wear results, the distance of the left and
right boundaries of the discretized domain from the initial (x/S = 0) and final (x/S = 1)
tip positions was set equal to S/4. The thickness, rms roughness, elastic properties, density,
and critical stretch of a-C films used in the wear model and the number of particles used to
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Table 3.2: Thickness, roughness, elastic properties, and density of a-C films and numbers of
film and substrate particles used in the peridynamics friction analysis (Lu & Komvopoulos,
2001).

Number of particles

Film No.
Thickness
(nm)

Roughness,
rms
(nm)

Elastic
modulus
(GPa)

Poisson’s
ratio

Density
(g/cm3) Film Substrate

1 31 0.51 105 0.278 3.139 5000× 19 5000× 606

2 34 0.20 197 0.278 4.058 5000× 21 5000× 604

3 39 0.15 206 0.278 4.143 5000× 24 5000× 601

4 53 0.27 139 0.278 3.500 5000× 33 5000× 592

5 59 0.23 101 0.278 3.094 5000× 36 5000× 589

6 69 0.15 192 0.278 4.017 5000× 43 5000× 582

7 95 0.24 155 0.278 3.661 5000× 59 5000× 566

Table 3.3: Thickness, roughness, elastic properties, density, and critical stretch of a-C films
and numbers of film and substrate particles used in the peridynamics wear analysis (Lu &
Komvopoulos, 2001).

Number of particles

Film No. Thickness
(nm)

Roughness,
rms
(nm)

Elastic
modulus
(GPa)

Poisson’s
ratio

Density
(g/cm3)

Critical
stretch

Film Substrate

8 17 0.19 113 0.278 3.230 0.0125 937× 10 937× 615

9 22 0.18 203 0.278 4.115 0.0125 937× 13 937× 612

10 10 0.2 226 0.278 4.317 0.0125 937× 6 937× 619

discretize the film and the substrate in the wear model are given in Table 3.3. In all wear
simulations, the probe tip radius is equal to 1 µm and the initial displacements and velocities
of the tip and all particles are set equal to zero. The previously mentioned ADR technique
(Kilic & Madenci, 2010) with a time step of 0.001 s was also used in the wear analysis.

In the wear simulations, irreversible damage in the wake of the plowing tip comprises bond
breakage. Therefore, a critical bond stretch was used to capture bond breakage. In addition
to the critical bond stretch of the substrate (Table 1) and film (Table 3.3) materials, a
conservative estimate of the critical bond stretch of the a-C/Si interface was obtained from
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Figure 3.2: Schematic of peridynamics wear model of a sharp conospherical diamond (rigid)
tip under a normal load P sliding at constant velocity V and plowing through a thin a-C
film, which is firmly attached to a thick Si substrate. The tip slides against the film surface
from left (x/S = 0) to right (x/S = 1) by a total distance S. The shaded layer at the bottom
of the substrate is modeled as rigid. The film thickness and the tip radius are not drawn to
scale.

Eq. (2.42), where E is the elastic modulus of the substrate and GI is the strain energy
release rate due to film indentation by the coniospherical diamond indenter, which is equal
to 0.037 J/m2 (Volinsky et al., 2002; Marshall & Evans, 1984). Using Eq. (2.42) the critical
stretch of the a-C/diamond interface was found to be equal to 0.007. The depth of the
wear track on the film surface was determined by calculating the average displacement of
irreversibly deformed (0 < D < 1) particle layers of the film medium along the plowing path
after unloading of the probe tip.

3.3 Results and discussion
Simulation results obtained with the peridynamics friction and wear models are presented

in this section in conjunction with experimental results from a previous experimental study
(Lu & Komvopoulos, 2001) to validate both peridynamics models.
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Table 3.4: Coefficient of friction results from m-convergence tests.

δ (nm) m Coefficient of friction

8 3.5 0.1421
8 4.0 0.1526
8 4.5 0.1567
8 5.0 0.1591
8 5.5 0.1456

3.3.1 Coefficient of friction

The coefficient of friction is defined as the ratio of the tangential (friction) force and the
applied normal load. At each time step, the friction force was calculated as the tangential
component of the total force generated by the sliding action of the tip; thus, a coefficient of
friction was computed at each time step. An overall coefficient of friction was calculated for
each a-C film as the average of all friction coefficient data.

Similar to local numerical methods, determining an appropriate grid size in peridynam-
ics requires convergence testing (Bobaru et al., 2009; Bobaru & Hu, 2012). Among various
convergence tests, the m-convergence test was used in the peridynamics friction model to
calculate the coefficient of friction. The δ-convergence test was not used because the de-
crease of the horizon radius to zero (i.e., no length scale) should yield solutions converging
to classical elasticity solutions, which not only do not hold at the nanoscale (Luan & Rob-
bins, 2005) but are also length-scale independent. In the m−convergence test, δ is fixed
whereas m = δ/∆x is gradually increased until the solution converges to an exact nonlocal
peridynamics solution obtained for fixed δ (Bobaru et al., 2009). Table 3.4 shows results
from m−convergence tests for film #7 (Table 6.1), P = 400 µN, δ = 8 nm, and m in the
range of 3.5-5.5. The coefficient of friction diverges with the increase of m from 5.0 to 5.5,
suggesting an increasing effect of long-range forces. Therefore, m = 5.0 (ı.e., ∆x = 1.6 nm)
was used in the present peridynamics analysis. Because the focus of this study is the analysis
of thin a-C films, the convergence test was only carried out for the a-C film.

Table 3.5 shows a comparison between peridynamics and experimental results of the
coefficient of friction of a-C films with different thickness and rms roughness for P in the
range of 50-400 µN. Even though the films were modeled to have ideally smooth surfaces,
the agreement between numerical and experimental results is very good. It is noted that
the experimental coefficients of friction represent averages of 300 data acquired along the
entire sliding track and that the scatter in the measurements increases with the decrease
of the normal load, yielding standard deviation values in the range of 0.05–0.08 (Lu &
Komvopoulos, 2001).

Fig. 3.3 shows a comparison between peridynamics and experimental results of a typical
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Table 3.5: Peridynamics and experimental results of the coefficient of friction of a-C films
versus film thickness, roughness, and normal load.

Film No. Thickness(a) (nm) Roughness(a), rms (nm) Normal load(a) (µN) Coefficient of friction

Peridynamics Experimental(a)

1 31 0.51 50 0.132 0.16
100 0.127 0.14
200 0.115 0.13
400 0.108 0.12

2 34 0.20 50 0.149 0.17
100 0.128 0.15
200 0.110 0.14
400 0.099 0.12

3 39 0.15 50 0.156 0.18
100 0.142 0.16
200 0.121 0.14
400 0.115 0.13

4 53 0.27 50 0.145 0.17
100 0.127 0.15
200 0.118 0.13
400 0.102 0.12

5 59 0.23 50 0.140 0.17
100 0.122 0.15
200 0.114 0.14
400 0.105 0.12

6 69 0.15 50 0.169 0.18
100 0.148 0.16
200 0.129 0.14
400 0.121 0.13

7 95 0.24 50 0.147 0.17
100 0.108 0.15
200 0.115 0.13
400 0.108 0.12

(a)Ref. (Lu & Komvopoulos, 2001)

coefficient of friction response for a 400 µN normal load. The peridynamics solution closely
follows the experimental trend, showing good agreement with the average response of the
scattered experimental data. Fig. 3.3 and Table 3.5 illustrate the validity of the peridynamics
friction model and provide justification for the modeling assumptions.

Fig. 3.4 shows peridynamics results of the steady-state coefficient of friction (obtained
as the average of all numerical data in the 0-4 µm sliding distance range) versus normal
load for different a-C films (Table 6.1). All peridynamics solutions show that the coefficient
of friction decreases with increasing normal load. This trend is in good agreement with



CHAPTER 3. STUDYING WEAR AND FRICTION IN CARBON THIN FILMS WITH
PERIDYNAMIC 27

0 1 2 3 40.00

0.05

0.10

0.15

0.20

0.25

0.30

Peridynamics
Experimental [27]

Distance of sliding (µm)

C
oe

ff
ic

ie
nt

 o
f f

ric
tio

n

Figure 3.3: Peridynamic and experimental results of the coefficient of friction of an a-C film
versus sliding distance for P = 400 µN.

experimental findings and is attributed to the inverse proportionality of the coefficient of
friction of predominantly elastically deformed surfaces to the cubic root of the normal load
(Lu & Komvopoulos, 2001).

Figs. 3.5a and 3.5b, respectively, show y- and x-displacement contour maps for x/S = 1.
High-magnification views of the particle displacements under the tip, shown in Figs. 3.5c
and 3.5d, provide insight into the highly stressed region of the film underneath the loaded
tip. However, the zero displacements in the wake of the tip (Figs. 5a and 5b) reveal the
full recovery of the unloaded film region. Importantly, despite the fully elastic behavior of
the film/substrate medium and the adhesionless tip/film contact interface, the instantaneous
coefficient of friction is not zero. Not only is this finding in contrast with classical friction
theories, which attribute friction to irreversible deformation, but also reveals that frictionless
contact is practically impossible.

3.3.2 Wear depth

To validate the peridynamics wear model, the experimentally measured depths of wear
tracks produced on a-C film surfaces by a sharp conospherical rigid tip (Lu & Komvopoulos,
2001) are compared with numerical results. Fig. 3.6a shows damage at the film surface due
to sliding contact interaction. A damage index D = 1 is indicative of bond breakage. As the
rigid tip plows through the film, the particles near the surface are permanently displaced from
their original positions. Fig. 3.6b shows a close-up view of the deformed grid below the tip,
revealing much more pronounced damage in the near-surface region of the a-C film adjacent
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Figure 3.4: Peridynamic results of the coefficient of friction of various a-C films versus normal
load.

to the sharp tip. Further insight into nanoscale film wear is provided by the y-displacement
contour map shown in Fig. 3.6c and the close-up view of the near-surface damaged particle
layers shown in Fig. 3.6d.

The wear depth is defined as the average displacement of all particles with partly broken
bonds (i.e., 0 < D < 1), located relatively far from the initial (x/S = 0) and final (x/S = 1)
tip positions. The displacements of particles with D = 1 were not included in the calculation
of the wear depth. Table 3.6 shows numerical and experimental results of the wear depth
of three a-C films for P = 10 µN . For films #8 and #9 the agreement is very good (∼ 4%
error), whereas for film #10 the agreement is fair, presumably because of the rougher film
surface and errors due to the small film thickness (10 nm) relative to the grid size (≈ 1.6 nm).

Table 3.6: Comparison of peridynamics and experimental results of the wear depth of a-C
films versus film thickness, roughness, and normal load

Film No. Thickness (nm) Roughness, rms (nm) Normal load (µN) Wear depth (nm)

Peridynamics Experimental(a)

8 17 0.19 10 0.730 0.76
9 22 0.18 10 0.391 0.40
10 10 0.20 10 0.161 0.20

(a)Ref. (Lu & Komvopoulos, 2001)

Nanoscale material behavior can be challenging because classical continuum theory breaks
down at the nanoscale, whereas MD analysis is limited to very small scales of limited prac-
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Figure 3.5: (a), (b) Contour maps of y- and x-displacements of particles in film #4 for x/S =
1 and (c), (d) corresponding high-magnification contour maps showing the displacement of
particles in the near-surface region of the film adjacent to the contact interface with the
sliding rigid tip.

tical use. Peridynamics promises to bridge the material gap in computational mechanics. In
this study, state-based peridynamics theory was used to develop friction and wear models
of thin films. Favorable comparisons between peridynamics solutions and experimental re-
sults of thin films obtained under identical testing conditions illustrate the validity of the
peridynamics friction and wear models developed in this study. Long-range forces were not
considered and film surfaces were modeled as perfectly smooth, because the film roughness
is significantly less than the grid size. Despite these assumptions, very good agreement was
obtained between peridynamics and experimental results of films with thickness equal or
larger than 10 nm. The results of this study demonstrate the potential of peridynamics to
capture the nanoscale tribological behavior of thin films, which is difficult (if not impossi-
ble) to achieve at the nanoscale with other numerical techniques, such as finite element and
boundary elements methods.
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Figure 3.6: (a) Damage contour map of film #9 after tip unloading (damage index D = 1
corresponds to particles with all their bonds broken), (b) corresponding high-magnification
damage contour map of damaged particle layers in the near-surface region of the film, (c)
y-displacement contour map of damaged film #9 after tip unloading, and (d) corresponding
high-magnification contour map showing the y-displacement of particles adjacent to the
contact interface with the plowing rigid tip.



31

Chapter 4

Peridynamic Modeling of Delamination
in Thin Compressed Films

4.1 Introduction to Delamination
Laminated composites are being utilized as the preferred material various industries,

such as marine, aerospace, civil, and automotive structures, micro-electromechanical systems
(MEMS). Their structural integrities such as high toughness, strength, corrosion-resistance,
and stiffness for a given loading scenario, have been the dominant reasons for them to
replace their major conventional metallic counterpart. Their major role in the industrial
application highlights the need for studying their behavior and failure mechanism to continue
and advance their practicality and use in high demanding technologies.

The premier failure mechanism in layered composites, specially the thin film structures,
is the separation of the layers that occurs along their interface. This phenomenon is called
delamination and has been widely studied since early 40s when it was first observed in
the buckling of sandwich panels in aircraft structures (Gough et al., 1940). More recently,
failure modes of films/substrate systems have been investigated for various applications such
as wear resistant coatings (Burnett & Rickerby, 1987), ceramic thermal barrier coatings in
aircraft and automobile industries (GEIGER, 1992), stretchable electronics (Khang et al.,
2006), hard transparent coatings on optical polymers (Gioia & Ortiz, 1997), etc.

Delamination is known to occur as a result of increased interlaminar tension and shear
that give rise to the development of discontinuities such as wrinkling, buckling, channel cracks
or free edge effects. This condition might be met either under working or manufacturing
conditions. Therefore, it is very important to inspect such materials with excessive care in
various loading and environmental conditions to detect any abnormality that might remain
invisible in a particular setting while leading to catastrophic failures once they are deployed in
a certain application. Delamination can significantly decrease the mechanical integrities until
it eventually causes complete failure either alone or together with other failure mechanisms.

Studying and analyzing the thin-layered composites has been performed both numerically
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Figure 4.1: Deformation mechanisms in compressed thin films. From left to right: wrinkling
with no delamination, buckling-driven interface delamination, concomitant wrinkling and
buckle delamination

and experimentally. Experimental methods despite of resulting realistic solutions, are often
limited to precise controlled conditions, time consuming, and expensive where numerical
methods do not have these limitations if are built upon realistic assumptions. In either
direction, it is essential to understand the governing principles of initiation, growth, and
mixture of delamination with other failure modes.

4.1.1 Deformation mechanisms in compressed thin films

In this work we focus only on isotropic elastic thin film composite structures under lateral
compression because they are arguably the most dominantly used thin film structures. Due
to the significant mismatch in the material properties of these thin film and the compliant
substrate, different deformation mechanisms can occur at the film/substrate interface such as
wrinkling, wrinkle-induced delamination, buckling, and concomitant wrinkling and buckling
(in 2D), and channel cracking of the thin film (in 3D) which are the most commonly observed
ones. Figure 4.1 shows the three dominant delamination modes in 2D thin film structures
in compression. It is important to note that these mechanisms are not always considered as
failure modes. Researchers have been able to manipulate them to obtain the desired patterns
for creative applications (Harrison et al., 2004; Chan et al., 2008).

4.1.2 Why Peridynamic?

In conventional continuum mechanics, interfacial delamination modes have been treated
with either linear elastic fracture mechanics (LEFM) and cohesive zone modeling (CZM).
The biggest downside of the LEFM method is that it cannot predict crack initiation. In
other words, LEFM assumes a pre-defect exits and it grows from there. Moreover, LEFM
assumes only small-scale yielding around the crack tip and elastic behavior for the rest of
the body. Furthermore, micromechanisms of fracture are ignored in LEFM. Comprehensive
reviews on the fracture mechanics of different modes of interfacial cracks have been provided
by Rice (Rice, 1988) and Hutchinson (Hutchinson & Suo, 1991).
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Because the aforementioned assumptions of LEFM do not always remain valid, a non-
linear elastic approach, CZM in this case, has been also used to predict the delamination
modes of film/substrate systems. CZM method considers the damage at microscopic level
by introducing the bridging law in the bridging zone ahead of the crack tip that can be
derived analytically or experimentally for different types of elastic or elastic-plastic materi-
als. However, similar to the small-scale plastic zone in LEFM, the bridging zone in CZM
is estimated under the condition of small-scale bridging that has to remain small compared
to the crack size (Mei, 2011). Similar to other approaches of conventional continuum me-
chanics framework, solving partial differential equations (PDEs) is necessary in CZM which
enforces mathematical difficulties in the presence of defects as they become singular. Most
importantly, in order to study concomitant wrinkling and buckling or crack channels in con-
ventional theory, one must assume that a pre-crack already exists at the interlayer interface
whereas in many applications this assumption cannot be afforded. Moreover, wrinkling mech-
anisms is essentially a crack-free mechanism that is impossible to be modeled realistically
with conventional theory. In PD theory, failure is part of the solution not the input to the
problem. Therefore, a material fails where it means to fail, not where we introduce weakness
to it. Furthermore, PD employs integral of differential equations instead of PDEs and thus
no mathematical complexity is enforced. Hence, cracks and all other types of defects can be
treated as any other part of the material.

This chapter is partially inspired by a previously published thesis (Mei, 2011) which had a
review on analytical solution to the fracture and delamination of elastic thin films and using
finite element modeling. We are particularly interested in answering following question in
modeling delamination in thin films using PD:

• Under what circumstances deformation mechanisms change in compressed thin films?

• What are the controlling factors in surface patterns generated on thin films?

• How to quantitatively predict evolution of surface patterns and/or failure modes?

4.2 Modeling deformation mechanisms in thin films
Our goal is to develop a model that can predict deformation patterns on the thin film

given the mismatch between the mechanical properties of the film and the substrate. Figure
4.2 shows these properties as the controlling factors for surface patterns generated on the
thin film. We want to explore how materials’ properties mismatch can translate into change
in the materials’ behavior as the structure undergoes various compressive strain.

4.2.1 Wrinkling without delamination

We first consider the case where the elastic thin film is placed on an elastic thick substrate,
as shown in the leftmost pattern in Fig. 4.1. The structure undergoes lateral compressive
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Figure 4.2: Controlling parameters for surface patterns on the thin compressed film on a
compliant substrate

strain which results in wrinkling behavior of the film without being separated from the
compliant substrate. We begin with providing the analytical solution followed by our PD
analysis of this problem and their comparison.

4.2.1.1 Analytical solution

A widely-known analytical solution for the critical strain for wrinkling to initiate is given
below which was introduced in (Chen & Hutchinson, 2004; Mei, 2011). It is derived based
on assuming that the shear traction at the interface is zero.

εcr(kh) =
(kh)2

12
+

1

2kh

Ēs
Ēf

(4.1)

where subscripts f and s represent film and substrate properties, respectively, Ē =
E/(1 − ν2) denotes the plane-strain modulus with E as the Young’s modulus and v as the
Poisson’s ratio. k is the wave number such that the wrinkle wavelength is λ = 2π/k. At
λ∗ = 2πh

( Ēf

3Ēs

)1/3, the minimum required critical strain to onset wrinkling is

ε∗cr =
1

4

(3Ēs
Ēf

)2/3 (4.2)
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Figure 4.3: Schematic of the thin film and the compliant substrate model

For a compressive substrate (νs < 0.5), the shear traction can no longer be assumed
as zero and hence Eq. (4.2) is violated. However, most of the engineering materials have
Poisson’s ratio values of less than half. (Mei, 2011) introduced a more accurate analytical
solution using linear plate equations for this problem in which the effect of shear traction
is taken into account. In this solution, the tractions acting on the substrate surface are
assumed to be periodic tangential τ = τmsin(kx) and normal q = qm cos(kx). By solving
the linear elasticity equations under the plane-strain condition together with equilibrium
condition of the film the critical strain was found as below:

εcr(kh) =
(kh)2

12
+

1

2kh

(
Ēs
Ēf

)[
1− 1

2

(
1− 2νs
1− νs

)2(
Ēs
Ēf

1

kh
+ 2

)−1]−1

(4.3)

This critical strain is minimized at wavelength of λ∗ given below:

λ∗ = 2πh

(
Ēf
3Ēs

)1/3[
1− 1

4

(
1− 2νs
1− νs

)2]1/3

(4.4)

which results in the minimum critical strain of

ε∗cr =
1

4

(
3Ēs
Ēf

)2/3[
1− 1

4

(
1− 2νs
1− νs

)2]2/3

(4.5)

4.2.1.2 Peridynamic delamination model

A schematic of elastic thin film and compliant substrate is illustrated in Fig. 4.3. They
are both assumed to be elastic and isotropic and undergo small lateral compression in a plane-
strain condition. L is length and h and H correspond to the film and substrate thicknesses.
Our goal is to determine the minimum strain required to initiate wrinkling in the thin film
assuming that there is no interfacial pre-defect of any kind present. The film and substrate
are both modeled uniformly with 2D quadrilateral elements. In our peridynamic model,
lateral displacement (ū) is applied on both layers through the fictitious layer (Madenci &
Oterkus, 2014). Fictitious layer is composed of imaginary particles which are excluded from
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Table 4.1: Material properties of the film and substrate in analysis of deformation mecha-
nisms

Material properties Film Substrate

Young’s Modulus (GPa) 200 2

Poisson’s ratio 0.33 0.33

Density (kg/m3) 8000 8000

Thickness 96 mm 4mm
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Figure 4.4: Comparison between analytical solution and PD for the critical strain required
to onset wrinkling without delamination for various Poisson’s ratios of the substrate.

PD force calculation but exist to transmit the boundary conditions to the real particles
in a realistic way such that immediate or excessive damage does not occur at boundaries
where external displacement, velocity or force is prescribed. Here a layer with a width of
horizon (3.015∆x) is reserved from each side. The applied displacement on the left and right
boundaries are normalized by L to attain the required strain (ε = ū/L) as the solution to
the problem.

Figure 4.4 shows the comparison between the analytical solution presented in Eq. (4.5)
and PD solution found for the critical strain to onset wrinkling without causing delamination.
Both methods follow the same path and intuitively agree that as the substrate becomes more
compressive, it is easier to shape wrinkles with it.
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Figure 4.5: Effect of elastic moduli mismatch on onset of wrinkling with no delamination for
different film and substrate thicknesses ratios

sf/ss
2 3 4 5 6 7 8

C
rit

ic
al

 s
tr

ai
n 

to
 w

rin
kl

e 
w

ith
ou

t d
el

am
in

at
io

n

0.012

0.014

0.016

0.018

0.02

0.022

0.024
H/h=4
H/h=9
H/h=24

Figure 4.6: Effect of critical bond stretch mismatch on onset of wrinkling with no delamina-
tion for different film and substrate thicknesses ratios

4.2.2 Effect of mechanical properties mismatch

After validating our PD implementation with analytical solution, we can now analyze
the playing factors in surface pattern generation of the film in this scenario. Figure 4.5
illustrates the effect of the elastic moduli mismatch. It is interesting to note that for large
thicknesses ratio (H/h), we see a drop in required strain to onset wrinkling for Elastic moduli
mismatch (around 1000) whereas for smaller values of H/h, the required strain increases as
the substrate becomes more compliant.
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Figure 4.7: Effect of layers’ thickness mismatch on onset of wrinkling with no delamination
for different elastic moduli mismatches

4.2.3 Wrinkling with delamination

As it was found in the previous scenario, the required strain to onset wrinkling is very
low and beyond it we observe different behaviors in the film. In order to track this behavior
using conventional theory, one might calculate the wrinkling amplitude. As it grows and
reaches a critical value, it is expected to see the normal and shear tractions acting on the
film/substrate interface increase, which may result in delamination (Mei et al., 2011; Shield
et al., 1994; Goyal et al., 2010). However this interfacial tractions are assumed to occur in
nonlinear post-buckling regime where zero tangential displacement is assumed so that the
maximum shear traction is linearly related to the maximum normal traction. (Mei et al.,
2011) derives the maximum normal traction as a function of nominal strain as follows:

qm =
4(1− νs)2Ēs

3− 4νs

√
ε− εcr) (4.6)

In order to compute the critical strain required to onset wrinkling with delamination,
(Mei et al., 2011) followed the solution offered by a cohesive zone model by (Hutchinson &
Evans, 2000) in which the the maximum normal traction in Eq. (4.6) is set equal to the
peak stress in the normal traction-separation relation for the interface (σint). The critical
strain to induce wrinkling with delamination is found as

ε∗∗cr = ε∗cr +

(
3− 4ν

4(1− νs)2

σint
Ēs

)2

(4.7)

where ε∗cr is given in Eq. (4.5). Beyond ε∗∗cr it is expected to observe delamination and
wrinkling to co-exits and interact with each other.
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Figure 4.8: Comparison between analytical solution and PD for the critical strain required
to onset wrinkling with delamination for various Poisson’s ratios of the substrate.

It was also shown in (Mei et al., 2011) that their FEA results for maximum normal
traction closely agreed with Eq. (4.6). Therefore, it fair to only compare our PD results
with the analytical solution in this scenario as well. (σint) in PD solution is computed as the
maximum PD force at the interface divided by the area occupied by a PD particle (∆x2).

Figure 4.8 shows a tight agreement between the PD and the analytical solutions.

4.3 Surface pattern prediction
Similar to the previous scenario, we can now generate surface patterns prediction graphs

by plotting the critical strain versus mechanical properties mismatch. One of the most ad-
vantage of PD models is that they do not require any pre-assumption to be able to predict
the film surface patterns. Different behaviors happen when the material is ready for them.
This feature is illustrated in Figs. 4.9 and 4.10 where the transition between different be-
haviors is very clear. These graph can help predicting when different patterns are expected
to be seen given material properties and the applied compressive strain.

Recall that we equated strain energy density concept (Eq. (2.21) in both classical and
PD theories to derive the material constants in the PD force density function derivations.
By looking into the strain energy function again for the film/substrate system as it goes
under compression, we observed how changes in the strain energy are related to the changes
in generated patterns on the film.
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Figure 4.11: Energy density function for film/substrate undergoing compressive strain until
wrinkling pattern generation
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Figure 4.12: Energy density function for film/substrate undergoing compressive strain ex-
hibiting concomitant wrinkling and buckling behavior

Figure 4.11 depicts the strain energy density function for a film/substrate system under-
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Figure 4.13: Effect of Poisson’s ratio mismatch on onset of wrinkling with delamination for
different film and substrate thicknesses ratios

going compressive strain until wrinkling. For significant changes in the energy function, one
can see the film/substrate setup illustrated on the left corresponding to their strain energy
function value. Intuitively the strain energy increases until the first signs of wrinkling start
to appear. That is when the film is no longer able to resist deformation and the strain energy
is maximized. As a response to the applied strain, the film will wrinkle and uses the stored
energy density to provide energy for that. This explains the small drop in the energy function
until it starts going back up again as more strain is introduced into the system. Sole wrinkle
patterns are only present until this point and beyond this local minimum, wrinkles will be
followed by delamination. The noisy behavior shown in the graph explains the nature of this
phenomenon which is unstable because delamination is accompanied by breaking bonds at
the interface.

In Fig. 4.12, we start with applying more initial strain to skip through wrinkling-only
behavior and jumping into seeing damage at the interface. Similar to the above scenario,
the first local maximum of this plot is also an indicative of change in the film pattern.
Wrinkling with delamination appears first at this point and it continues jumping up and
down depending on the damage happening at the interface. While it was interesting to see
the correspondence between the first local maximum of this plot and the pattern change in
the system, we have pointed out two other extreme points in the energy function and their
film pattern correspondence.

4.4 Discussion
In the present study, we considered two scenarios for concomitant wrinkling and buckle-

delamination of an elastic thin film on a compliant substrate under compression. First, if
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the film/substrate interface is perfectly bonded, wrinkling occurs beyond a critical strain.
Subsequently, nucleation of interfacial delamination may occur at a larger nominal strain
when the wrinkle-induced normal traction at the interface exceeds the strength of the inter-
face. The growth of the interfacial delamination however requires further studies, for which
a cohesive zone model may be adopted for the interface.

While studying the buckling phenomenon with classical theory requires knowledge about
the pre-existing interfacial delamination, in PD theory, we do not need to deal with any pre-
existing defect of any kind. These two scenarios qualitatively agree with the experimental
observations (Mei et al., 2011).

Two failure criteria are suggested for hybrid systems with stiff thin films on compliant
substrates. First, we can compute the strain energy density of the particles at the interface.
By taking the gradient of the strain energy function and find its roots, we will be able to
determine the transition between the wrinkling, concomitant wrinkling and buckling, and
buckling. The second criterion is to plot phase diagrams similar to Figs. 4.9 and 4.10
for critical strain versus mechanical properties mismatch. Every hybrid setup undergoing
compressive strain, has a unique phase diagram that determines the change in mechanical
behavior across different properties mismatch.

The present study utilizes peridynamic to model delamination and has overcome the
aforementioned disadvantages of the conventional continuum mechanics and proposes PD as
a more general theory in modeling delamination.
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Chapter 5

Peridynamic for Plastic Deformation

Plastic deformation frequently occurs in engineering components when they are loaded
beyond their elastic limit. Predicting plastic behavior is essential in design or in determining
the cause of failure in presence or the absence of pre-existed flaws (voids, cracks, etc.).

Conventional continuum theory uses the assumptions of the elastic-plastic fracture me-
chanics (EPFM) to study plasticity in materials which undergo large deformations. EPFM
considers the material as isotropic and elastic-plastic. Once the strain energy fields or open-
ing displacement near the crack tips reach their critical limits, the crack path can be pre-
dicted. This is a well established theory and thoroughly discussed in ... However, it has
some limitations that cannot be overcome with local theories.

Peridynamics (PD) is a nonlocal theory introduced by Silling (Silling, 2000) that uses
the integral of differential equations of motion instead of partial differential equations which
results in no mathematical difficulty associated with singularities. For elastic deformations,
PD has been successfully applied in various areas such as fracture mechanics by (Silling &
Askari, 2005), (Agwai et al., 2008), (Ha & Bobaru, 2010), friction and wear in thin films by
((Ebrahimi et al., 2015a)), analysis of impact damage by (Xu et al., 2008), and mechanical
behavior of composite materials by (Bobaru & Silling, 2004), (Askari et al., 2006), (Kilic
et al., 2009), and (Hu et al., 2011).

Peridynamics formulation was extended to be used for viscoplastic deformations by (Fos-
ter et al., 2010) where they incorporated rate-dependent plastic behavior in the non-ordinary
stated-based PD. Ordinary state-based plasticity framework was first proposed by (Mitchell,
2011b) where a flow rule for the perfect plasticity was proposed. Shortly after, (Mitchell,
2011a) added rate dependency to his previous work in the state-based formulation. (Taylor,
2008) used sub-layer method to account for the plastic and viscoplastic behavior of materials
in the bond-based formulation. Recently, (Madenci & Oterkus, 2016) developed an ordinary
state-based plasticity formulation based upon von Mises yield criterion with isotropic hard-
ening. They also derived a pereidynamic path-independent J-integral formulation.

This study presents a new approach in incorporating plasticity with ordinary state-based
formulation of (Madenci & Oterkus, 2014) which uses mechanical sublayer method originally
proposed by (Besseling, 1953) and extended by (Zienkiewicz et al., 1973) and (Pian, 1987).
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Figure 5.1: (a) Uniaxial stress-strain curve ; (b) Constructing sub-layer method with three
layers

It differs from the previous work by (Taylor, 2008) in defining yield criterion and using more
general form of state-based theory. Results obtained for J-integral calculation are compared
with those from benchmark problems and an excellent agreement is achieved.

5.1 Plastic deformation
Mechanical sub-layer method introduced by (Besseling, 1953) and later extended by

(Pian, 1987) and (Zienkiewicz et al., 1973) models a time-independent elastic-plastic behavior
with kinematic hardening. As the name suggests, it assumes the material is composed of n
sub-layers, from which the first one is elastic whereas the following n− 1 layers are elastic-
plastic with different yield stresses. Given a stress-strain curve of the material, the method
replaces it with a piecewise linear function and successively models the work hardening
behavior of the material in different loading conditions. This suggests that having more
number of sub-layers can lead to a more accurate plot of nearly linear segments.

The procedure of constructing the sub-layer model is as follows. Figure 5.1(a) shows a
stress-strain curve for a typical ductile material. The curve is divided into n = 3 sub-layers
where the first segment ends at the initial yield stress (σ1) and the corresponding strain (ε1).
The slope of the first layer is clearly the Young’s modulus. The following points (σ2) and
(σ3) are also selected from this curve. In Fig. 5.1(b) the slopes of each segment is found
to construct the sub-layer segments such that the resulting stress-strain curve intersects the
original stress-strain curve at the previously chosen points. This figure clearly shows the
more segments provide a more precise insight to the hardening behavior.

5.1.1 Peridynamics plasticity using sublayer method

We have adopted the idea of the sub-layer method to predict the plastic behavior of
a ductile material once it experiences ladings above its elastic limit. In this method, the
key idea is that a peridynamic bond is assumed to be composed of n sub-layers which are in
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Figure 5.2: (a) Sub-layers of a single peridynamic bond undergoing force t̂ ; (b) Constructing
n layers and recording their critical stretch values at which they yield. e1 is the Young’s
modulus (E) of the material.

parallel (shown in Fig. 5.2(a)). They all undergo the same force density t but each one yields
at a different critical stretch value which can be calculated from the actual stress-strain (or
force-displacement) curve of the material obtained from the uniaxial tensile experiment. The
total force density in a bond is assumed to be

t̂ =
n∑
k=1

Wkt̂k (5.1)

where Wk is the weighting factor of the kth sub-layer ans is given by

Wk =
ek − ek+1

E
, ek+1 = 0 (5.2)

where ek is the slope of the kth sub-layer and E is the Young’s modulus and it is easy to
show that

∑n
k=1Wk = 1.

As the deformation occurs, each bond stretches until it reaches its first sublayer’s critical
yield stretch (s1) beyond which it yields. As the stretching process evolves, more sub-layers
tend to yield resulting the whole bond to become weaker. Each time a sub-layer with a
weighting factor of W yields, it has the same effect as if the bond force is increased by its
lost weighting factor.

In peridynamics, local damage of a particle, denoted as Φi is defined as the ratio of the
number of broken bonds to the total number of bonds attached to particle i . Once a bond
breaks, it will be permanently removed from all force density calculations. Damage index
is a scalar and ranges from 0 (unbroken bond) to 1 (completely broken bond) and can be
computed by (Silling & Askari, 2005)

φ(xi, t) = 1−
∫
H µ(xj − xi, t)dVj∫

H dVj
(5.3)
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Figure 5.3: (a) A finite center-cracked plate with crack size of 2a, and tensile displacement
boundary condition made from ferrite steel; (b) Stress-strain curve for ferrite steel given in
Eq. (5.7) and constructing sublayers with selected stress-strain pairs

.

where µ is a scalar-valued function defined as

µ(xj − xi, t) =

{
0 if s ≥ scr

1 if s < scr
(5.4)

Similar to the damage index parameter, we can introduce a new parameter called yield
index defined for a particle as the ratio of the evolved plastic deformation in the bonds
attached to it divided by the total number of attached bonds. It can be represented as

ψ(xi, t) = 1−
∫
H λ(xj − xi, t)dVj∫

H dVj
(5.5)

where λ is defined as

λ(xj − xi, t) =

{
0 if s > syi where i = 1, 2, ..., n

1 if s ≤ sy1
(5.6)

Yield index also ranges between 0 (unyielded bond) and 1 (yielded bond). Clearly, bond
breaks once its stretch reaches scr. At that point, local damage φi = 0 and ψ = 1.
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Table 5.1: Material properties of ferritic steel in center-cracked plate used by (Gullerud et
al., 2000)

Material Elastic modulus (GPa) Poisson’s ratio Density (g/cm3) σ0 (MPa) ε0 n
Ferrite steel 200 0.3 7800 400 0.002 0.1

Table 5.2: Weighting factors and critical bond stretch values for yield prediction in compact
tension specimen

weighting factor W1 = 0.9444 W2 = 0.0301 W3 = 0.0087 W4 = 0.0168
critical yield stretch sy1 = 0.0020 sy2 = 0.0065 sy3 = 0.0124 sy3 = 0.0168

5.2 Benchmark problems
Analysis of conventional fracture mechanics problems is of substantial importance in

examining the resistance to fracture in engineering materials. In this context, we present
plastic deformation prediction using sublayer method for two benchmark problems in fracture
mechanics and compare our results with those published in literature.

5.2.1 Center cracked plate in tension

The first benchmark problem models ductile crack growth in a center-cracked finite plate
under a tensile displacement boundary condition. An experimental work done by (Gullerud
et al., 2000) on such a specimen is chosen here for validation. They have conducted their
experiments on medium strength ferrite steel for which the properties are given in Table 5.1.

The stress-strain data obtained by (Gullerud et al., 2000) was fitted to the following
work-hardening equation

ε

ε0
= (

σ

σ0

)n (5.7)

where σ0 and ε0 are the reference (yield) stress and strain, and n is the work hardening
exponent (Table 5.1). Figure 5.1 shows the plot of Eq. (5.7) for this type of steel along with
selected four segments of sublayers between the yield point and the ultimate tensile stress.
Weighting factors of sublayers and their critical yield stretch values are also measured from
the graph and are tabulated in Table 5.2.

The geometry of the specimen is illustrated in Fig. 7.3. The initial crack to width
ratio used here is 2a/2W = 0.6 with W = 50 mm. The crack is modeled by removing the
bonds shared between particles that are across it as previously suggested by (Madenci &
Oterkus, 2014). The plate is discretized into a 200 × 400 grid with uniform grid spacing of
∆x = 0.5 mm. In order to reproduce the experimental condition, we have monitored the
force as a function of displacement and imposed it on a fictitious layer of width of horizon
(δ) along the boundaries. (Macek & Silling, 2007) showed that adding such layer ensures
that the assigned initial conditions will be properly distributed over the real particles of the
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Figure 5.4: Comparison of PD J-integral vs. experimental results by (Gullerud et al., 2000)

material. Hence, the total number of particles in this simulation is 81200 from which 1200
belong to the "fictitious" layer.

(Gullerud et al., 2000) used computational cell methodology to model crack growth in
different types of steel and evaluated their R-curves. Computational cell method which is
originally presented by (Xia & Shih, 1995a; Xia & Shih, 1995b) proposes an engineering
approach to evaluate R-curve by defining computational cell elements over the region of
expected crack growth through involving the micro-mechanisms that lead to crack propa-
gation. Therefore, computational cell method does not provide any information regarding
the regions of the material which are further from the crack tip, yet might be susceptible to
fracture due to being weaker (ex.along the boundaries) or due to the presence of other types
of defects. Figure (5.4) shows that a good agreement is achieved between the computed
values of PD J-integral using 2.29 combined with sublayer method and the J-integral values
measured by (Gullerud et al., 2000) using computational cells.

Unloading

In order to assure that the presented model is capable of predicting unloading, a single
random PD bond is chosen and its stretch and bond force are tracked. Due to the very
non-linear behavior of PD force, Fig. 5.5 looks very noisy, yet it shows the correct trend for
loading and unloading as the deformation continues.

Initiation and evolution of plastic deformation in the center-cracked specimen is visualized
here through the contours of displacement, velocity, and yield index. Figures (5.6) and (5.7)
show the vertical displacement and velocity contour, respectively as crack opens more and
more due to the applied displacement.

Yield index per particles is illustrated in Fig. (5.8). As expected, crack growth initiates
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Figure 5.5: Bond force vs. stretch for a single bond undergoing loading and unloading

Figure 5.6: Subsequent displacement contours in the y-direction for (a)v̄ = 0.704 mm, (b)
v̄ = 0.985 mm, (C) v̄ = 6.471 mm

from regions with high stress concentration at crack tips. Fig. (5.8b,c) shows the dissipation
of yield through the material under larger displacements.
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Figure 5.7: Subsequent velocity contours in the y-direction for (a)v̄ = 1.270 mm, (b) v̄ =
2.813 mm, (C) v̄ = 3.871 mm

Table 5.3: Material properties of compact tension specimen reported in (Areias et al., 2014)

Elastic modulus (GPa) Poisson’s ratio Density (g/cm3) σ0 (MPa)
210 0.3 8050 445

5.2.2 Compact tension

The second benchmark problem is modeling the compact tension (CT) problem which is
depicted in Fig. (5.9a) in two-dimensions. The domain is discretized into a 200 × 192 grid
with ∆x = 0.3125 mm. The relevant data including the geometry, stress-strain curve and
material properties are adapted from a computational and experimental work performed by
(Areias et al., 2014) and (Samal et al., 2009). It undergoes a tensile loading which is applied
as a function of displacement in our simulation to the "fictitious" material points located
inside the holes but are obviously eliminated from PD force calculation process. Therefore,
total number of particles is 37724 from which 2316 are fictitious. Figure 5.9 shows the stress-
strain curve of the CT specimen annotated with the 6 sublayers. The weighting factors and
critical yield stretch values are computed in Table 5.4.

R-curve of the material is the parameter that is used to validate our model. Figure
5.10 shows the comparison between J-integral obtained from experimental and a mesh-
independent finite element approach by (Samal et al., 2009). Peridynamics seem to have
a better agreement with the FEM results. However, it provides the exact same trend as was
reported in the experiment by (Samal et al., 2009).
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Figure 5.8: Subsequent yield index contours for (a)v̄ = 1.270 mm, (b) v̄ = 2.813 mm, (c)
v̄ = 4.572 mm

Table 5.4: Weighting factors and critical bond stretch values for yield prediction in center-
cracked plate

Weighting factors W1 = 8.9846× 10−1 W2 = 4.9130× 10−2 W3 = 1.9144× 10−2

W4 = 6.6750× 10−3 W5 = 7.1325× 10−3 W6 = 1.9460× 10−2

Critical yield stretches sy1 = 5.6800× 10−2 sy2 = 1.207× 10−1 sy3 = 2.8640× 10−1

sy4 = 5.2945× 10−1 sy5 = 8.2600× 10−1 sy6 = 1.1030

Figure 5.11 shows the contour plots for the yield index as the plastic deformation evolves
through the material. It can be easily observed that PD does not only predict the crack
growth path in front of it correctly but also it highlights all the regions with high stress
intensity factors spontaneously. As opposed to the conventional continuum theory which
has to be provided with a pre-defect, in peridynamics, damage and yield phenomena are
part of the solutions.

We monitor the force F as a function of the imposed displacement v and compare with
the experimental results reported in (Samal et al., 2009). This comparison is presented in
Fig. 18 where good agreement can be observed, despite the slightly higher values of reaction
obtained here. Note that higher numerical values were also reported by (Samal et al., 2009).
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Figure 5.9: (a) CT specimen geometry from (Areias et al., 2014) (b) stress-strain curve for
the material used in the CT specimen from (Areias et al., 2014)

.

5.2.3 Summary

In this chapter we introduced a new approach to model plastic deformation with PD the-
ory inspired by the mechanical sublayer method (Besseling, 1953). We presented how yielding
can be modeled per PD bonds and defined a new metric called yield index for measuring
local irreversible damage caused by plastic deformation. We validated our PD approach
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Figure 5.10: J-integral calculation comparison for the CT specimen

Figure 5.11: Yield index contour for the CT specimen for (a) v̄ = 1.99 mm and (b) v̄ =
2.82 mm

using experimental and analytical results for standard benchmarks including center-cracked
plate and compact tension problem.
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Chapter 6

Peridynamic for Ballistic Impact and
Body Armor Design

6.1 Introduction
This chapter considers using peridynamic modeling to study contact between two bodies

due to an impact event. Specifically, we focus on the ballistic impact that occurs in body
armor systems. Researchers have explored modeling dynamic fracture and impact with
PD theory but modeling this specific application has not been investigated before. In this
chapter, we aim to propose two body armor systems that minimize ballistic impact effects
as well as being light-weight and comfortable to wear. We perform an impact analysis by
computing the velocity profile of the projectile before being stopped by the armor system.
Evaluation is based on how much the bullet penetrates into the proposed design structure
and how fast it can be stopped. We study common bullets with available public information.

6.1.1 Body armor

The primary objective of body armor research is to develop a low-cost, light-weight,
secure garment system of high ballistic impact resistance. Ballistic protection is a strong
function of the material impact resistance. The ductile armor component absorbs the impact
energy of an impinging projectile in the form of plastic deformation, whereas the brittle armor
component (outer layer) dissipates the kinetic energy of the projectile by micro-fracturing.
Advanced ceramics used in various armor applications as outer layers have been extensively
studied in the past few decades (Wilkins et al., (1967); Sternberg, 1989; Sadanandan &
Hetherington, (1997)).

Until the beginning of the 20th century, body armors used to be designed as a monolithic
plate of a single metal which was chosen based on its hardness. In the 1950s researchers pro-
posed a better approach which was designing a dual-layer structure. The first layer facing the
projectile was made of a very hard material and the second layer was very ductile to be able
to absorb the kinetic energy of the projectile through plastic deformation. However, no other
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criteria such as weight or mobility of the wearer was taken to account so they simply used
two kinds of steel for two layers of their design. Despite the merits of this idea, this design
did not become popular due to the heaviness of steel. In the late 1950s aluminum became
widespread among ballistic protection manufacturers and the USA military was the first
country in using them in armored vehicles. While the monolithic structure of aluminum was
light, it was vulnerable to impacts caused by hard core (steel or tungsten) projectiles. In the
early 1960s manufacturers switched back to the dual-layer philosophy and used high-hardness
steel as the front layer backed by aluminum which resulted in a great weight reduction. In
1963, manufacturers came up with the revolutionary idea of using ceramics in the front layer
backed by fiberglass reinforced composites which decreased weight further. Microcracking
of the hard and brittle ceramic during impact leads to projectile blunting, reducing its pen-
etration capability and, hence, the damage caused to the armor. Since that breakthrough,
depending on the cost and technological advancement of manufacturing, different types of
body armors were developed: for the hard front layer in ceramic armors boron carbide, silicon
carbide, aluminum nitride or titanium diboride were used and for the backing panel several
fiber-reinforced materials such as Aramid (Kevlar) and polyethylene were utilized. The low
fracture toughness of the hard ceramic is compensated by these soft backing material of rein-
forced polymer. Another role of the backing material is to support post-impact fracturing of
the ceramic plate and entrap the projectile. However, despite the high adsorption capacity
of these high performance polymer fibers, approximately 20-50 layers of fabric are needed to
meet safety regulations for typical projectiles (Lee et al., (2003)), resulting in a bulky and
stiff armor that is not comfortable to wear and limits the rapid response of the wearer.

Design efficiency and the total cost proportionally increase in body armors so the most
effective armor is never economically reasonable to be manufactured. There is also a trade off
between efficiency of the ballistic protector and weight. There are also safety requirements
enforced by law which have to be met for different levels of protection. National Institute
of Justice regulations of body armor standards require a maximum projectile penetration
depth of less than 1.73 inches (National standard-0101.04, (2001)) to prevent blunt trauma
of the wearer (Bazhenov, (1997)). The design of anti-ballistic structures is traditionally
carried out empirically which relies on impact tests using the real projectile-target system in
each test. This method, despite yielding definitive results, is prohibitively expensive and is
not readily generalizable to all variations of different controlling factors of the problem such
as impact velocity, projectile sizes and different material types, garment size and various
material types. Therefore we believe the key ideas to design a body armor that has all the
ideal properties are the following:

• Developing a parametric model that is fast and accurate to model variety of materials
selections to chose the optimal one.

• Reinforcing the backing panel with directional fibers to increase the energy absorption
during penetration of projectile.
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Backing layer (ductile, fiber reinforced composite)

Front layer (brittle, ceramic)

Projectile

Figure 6.1: Schematic of the dual-material ballistic protection system

Designing and analyzing an optimal body armor requires a deep understanding of the
damage in both layers as well as the advantages and disadvantages of the materials that could
be used in both layers. Design choices must also be analyzed using a reliable framework that
can model the system’s behavior fast, accurate and easily. By far the best current framework
to model dynamic fracture is Peridynamics. It was first introduced to model fracture and it
has been proven to work as the best method for such purpose (Madenci & Oterkus, 2014;
Silling, 2000).

Figure 6.1 shows the schematic of a ballistic protection armor composed of the ceramic
front layer backed by a ductile reinforced material.

6.2 Body armor design
In this section we propose to design body armor systems using PD modeling. We attack

this problem in two attempts. We first assume that the bullet is rigid. This simplifies the
computation because we do not need to model the impactor with its constructing particles.
We use a bio-inspired structure by Abalone, a marine snail that protects itself with its convex
shell with incredibly stiff layered structure. We analyze the performance of this structure
and in our second attempt, we avoid this simplification and attack the problem in a more
general way. We consider many possible material choices for the body armor as well as the
bullet and try to find the combination that yields the best impact resistance.

6.2.1 Rigid impactor

Our first design choice is proposed to alter the classic design and instead use a bio-
inspired composite structure for the baking polymer comprising an epoxy layered structure
with strong interfaces between the layers. This microstructure mimics the abalone shell
structure for which several studies of the unique mechanical properties (particularly, fracture
toughness) have been reported in conjunction with manufacturing processes of producing
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Table 6.1: Mechanical propertied of materials used in the simulation

Property SiC UHMWPE WC-Co (projectile)

Elastic modulus (GPa) 410 120 600
Poisson’s ratio 0.14 0.3 0.23
Fracture toughness (MPa

√
m) 3.3 17.8 5.2

Density (kg/m3) 3210 970 1500

such layered structures (Sarikaya et al., (1989); Lin & Meyers, (2005)). The intrinsic high
strength and fracture toughness that of the abalone structure are attributed to the multiple
interfaces of the laminated structure that play the role of energy absorption sinks. Layer
interfaces can reflect back the stress waves generated by the penetrating projectile to decrease
the driving force of crack propagation and increase the rate of energy absorption. The
ballistic impact performance of the proposed model will be compared to that of a typical
current armor system of dimensions 20 × 20 × 7 mm for a projectile consisting of WC-Co
having a diameter of 9 mm, effective length of 2 mm, and blunt conical head with 5 mm
appex diameter. In preliminary simulations, the impact velocity will be set equal to 100
m/s and the thickness of the SiC and polyethylene layers equal to 3.5 mm. The material
properties of the armor components used in the present model are given in Table 6.1.

The ballistic performance depends on the kinetic energy loss of the projectile (Medve-
dovski, 2010). A decrease in projectile mass and/or velocity is the main goal of a secure
garment system. Projectile mass reduction mainly occurs in the ceramic plate as a result
of intense shattering and powdering, causing projectile blunting. Projectile deceleration
mainly occurs in the polymeric backing not only because of projectile blunting but also due
to particle attachment to the projectile appex that increase the friction with the backing
material.

Peridynamic simulations illustrating the ballistic performance of the proposed composite
armor material are included here to demonstrate the capability of the proposed peridynamics
approach and potential of new armor design.

Figure 6.2 shows the initial problem setup and the final deformed structures of the con-
ventional and proposed armor structure after 70 µs and 50 µs, respectively. Even though
both structures successfully prevented full penetration by the projectile, the deformation of
the monolithic polymer backing is significantly more pronounced than that of the layered
polymer backing. This is attributed to the absorption of impact energy by the interfaces
of the layered backing. Figure 6.3 shows the reduction of bullet’s velocity over time as it
penetrated through the proposed structure.

In addition to a qualitative comparison of the damaged patterns of the two models (Fig.
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Figure 6.2: From left to right: 1)Initial configuration of WC-Co projectile (blue) and conven-
tional body armor consisting of a SiC outer layer (green) and a homogeneous polyethylene
backing (yellow), 2) deformed conventional body armor with buried projectile, 3) initial con-
figuration of WC-Co projectile (blue) and new body armor design with a SiC outer layer
(black) and epoxy-layered backing with strong interfaces (multi-colored), and 4) deformed
new body armor with buried projectile.
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Figure 6.3: Bullet’s velocity profile during the penetration

6.2), the projectile mass loss and velocity decrease for a fixed time after initial impact (i.e.,
25 µs) can be used to asses the penetration resistance of each design. In peridynamics, failure
is predicted by tracking the position and velocity of all particles at each time step. Thus,
the average velocity of the particles comprising the projectile represents the overall projectile
velocity. Projectile mass loss is obtained by subtracting the mass of projectile particles with
broken bonds from the total projectile mass. For a fixed time from initial impact, projectile
mass loss (mainly occurring in the ceramic plate) is slightly higher in the new armor design;
however, projectile deceleration is much more pronounced in the new design (Table. 6.2).
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Table 6.2: Comparison between the mass and velocity reduction of the projectile in two
models

Backing plate Mass reduction Velocity reduction

Monolithic UHMWPE 8.8 % 39.3 %

Multi-layered UHMWPE 10.4 % 56.8 %

6.2.2 Non-rigid impactor

We exploit our recently developed new PD framework for analyzing plastic and vis-
coplastic behavior of materials described in chapter 5 to model the backing panel behavior
in maximizing the energy absorption while being cost and weight efficient. Using this plastic
PD model, we also intend to analyze the composite structure of the backing panel by exam-
ining different unidirectionl and multidirectional fiber reinforced composites. Our analysis
will be specific to the type of projectile for which we are designing armor, such as handgun
bullets, riffle bullets and heavy bullets.

Our goal is to develop a parametric PD model as the solution to choose the best effective
ballistic protection body armor, following the program:

1. Exploiting our new viscoplastic PD model to study the behavior of the backing panel
in the garment, summarized as follows:

We have adopted the idea of the sub-layer method (Besseling, 1953; Pian, 1987;
Zienkiewicz et al., 1973) to develop a new peridynamic framework to predict the be-
havior of a ductile material once it experiences loadings above its elastic limit. In this
method, the key idea is that a peridynamic bond is assumed to be composed of n
sub-layers which are in parallel. They all undergo the same force density t but each
one yields at a different critical stretch value which can be calculated from the actual
stress-strain (or force-displacement) curve of the material obtained from the uniaxial
tensile experiment.

The total force density in a bond is assumed to be a weighted sum of the force in all
of the sub-elements. As the deformation occurs, each bond stretches until it reaches
its first sublayer’s critical yield stretch (s1) beyond which it yields. As the stretching
process evolves, more sub-layers tend to yield resulting the whole bond to become
weaker. Each time a sub-layer with a weighting factor of associated with its sub-
element yields, it has the same effect as if the bond force is increased by its lost
weighting factor. In order to model the viscoplastic behavior rate effects can be added
to this plasticity model with little difficulty by accommodating the growing of the yield
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forces with increased stretch rate by using the Cowper-Symonds relation :

ˆ
tdyk = t̂yk

(
1 +

( ṡ
d

)1/p
)

where d and p are positive constants and ṡ is time derivative of the stretch in bond.

2. Using the PD formulation for non-isotropic materials (Bobaru & Silling, 2004; Askari
et al., 2006) to be able to optimize the design of the backing panel of composite with
a variety of fiber orientations and propoerties.

3. We have implemented our PD model with a custom-made FORTRAN code which is
highly optimized. Peridynamics, similar to any other particle method from the com-
putational point of view, is highly parallelizable which provides us a good scalability
of the solution. Our ultimate goal in this project is to parallelize our parametric model
to be able to try different designing patterns quickly and accurately.

6.3 Performance analysis
Feasibility of the proposed research is initially investigated through analyzing several

dual-material ballistic protection structures using different materials listed in table 6.3 using
our new viscoplastic PD model which predicts the damage patterns due to the impact of
bullets of different kinds.

We analyzed some possible combinations of the most widely used materials for projectiles,
and for front and backing layers listed in Table 6.3 with their given material properties listed
in the Table 6.4.

We first considered a fixed armor system of dimensions 15 cm × 10 cm × 1 cm with a
cylindrical projectile with 5 cm diameter, and 2 cm effective length, and a blunt conical head
with 2 mm appex diameter. In preliminary simulations, the impact velocity was set equal to
100 m/s and the thickness of the ceramic-based front layer is 2 mm and polymeric backing
layer is equal to 8 mm. We ran the simulation for design patterns #4,#6,#11 given in
Table 6.3. Figure 6.4 shows how projectile’s velocity reduces from 100 m/s to 0 inside the
body armor over the entire penetration process. Nearly all the plots show a plateau after
approximately 70 100 µs where the bullet enters the second layer of the armor in which 60%
of its velocity will be decreased. By plotting bullet velocity versus time for all the suggested
patterns one can find the most effective design for halting the projectile, taking account
various other relevant factors. For example design #6 among the three chosen patterns was
found to be the best performing but it also corresponds to the design that has the greatest
weight.

Figure 6.5 shows the displacement contour along the projectile’s direction through the
structure for design pattern #11 after 50 µs, 75 µs and 375 µs. This figure not only shows
how the armor structure was able to stop the bullet but also it is able to demonstrate how the
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Table 6.3: Possible combinations of three different projectiles with two different ceramic-
based front layers and polymeric backing layers.

Design # Projectile material Front layer material Backing layer material

#1 Copper Al2O3 UHMWPE (Spectra)

#2 Copper Al2O3 Aramid (Kevlar)

#3 Copper SiC UHMWPE (Spectra)

#4 Copper SiC Aramid (Kevlar)

#5 Steel Al2O3 UHMWPE (Spectra)

#6 Steel Al2O3 Aramid (Kevlar)

#7 Steel SiC UHMWPE (Spectra)

#8 Steel SiC Aramid (Kevlar)

#9 Tungsten carbide-cobalt (WC-Co) Al2O3 UHMWPE (Spectra)

#10 Tungsten carbide-cobalt (WC-Co) Al2O3 Aramid (Kevlar)

#11 Tungsten carbide-cobalt (WC-Co) SiC UHMWPE (Spectra)

#12 Tungsten carbide-cobalt (WC-Co) SiC Aramid (Kevlar)

Table 6.4: Material properties used in simulating front layer, backing layer and the projectile

Material / Properties Elastic modulus (GPa) Poisson’s ratio Density (kg/m3) Fracture toughness (MPa
√
m)

SiC 410 0.14 3210 3.3

AL2O3 300 0.21 3900 3.5

UHMWPE (Spectra) 120 0.30 970 18

Aramid (kevlar 29) 70 0.36 1450 14

Steel 210 0.30 7800 80

Copper 117 0.35 8900 20

WC-Co 600 0.23 1500 5.2

structure absorbs the kinetic energy of the bullet in part (b) and deforms back as unloading
occurs when the bullet stops in part (c).

We will define the performance based upon key parameters in our study such as number
and thickness of layers in the backing layer, armor weight and cost, energy absorption of the
second layer, shape of the fibers used to reinforce the backing polymer, etc.
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Figure 6.4: Velocity profile of different projectiles from Table 6.3
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envelops the bullet by absorbing its kinetic energy after 75 µs (c) Unloading occurs and the
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Chapter 7

Parallel Algorithms for Peridynamic

7.1 Peridynamic is massively parallelizable
Peridynamics, similar to any other particle-based methods, requires computing interac-

tions of many particles within the same family. This procedure can be computationally
expensive if it is done using a sequential processor. However, PD is highly parallelizable
due to the fact that interactions within each family are totally independent from another
and therefore, parallel algorithms can be leveraged to reduce the number of computations
drastically. Nevertheless, existing parallel codes for PD are either not available to the public
domain (such as EMU) or limited to one version of the PD formulation such as Peridigm
software (Parks et al., 2012) which only covers the second formulation introduced in ??. In
this thesis, we have used the first formulation for which there exists no parallel algorithm
available and this is the first work on this matter. We use C++ for efficiency and speed
purposes.

In this chapter we investigate the parallelization of particle simulation in peridynamics
on distributed and shared memory CPU systems using MPI and OpenMP, respectively. We
also implement the simulation on GPU using CUDA. We have built our parallel algorithms
based on our modified version of the sequential program for the same problem. Results for
weak and strong scaling efficiency are compared against each other and scaling performances
for each model are evaluated and discussed. We show that these techniques can effectively
speed up the simulation. CUDA implementation is shown to be the most powerful tool for
massively parallel peridynamic simulations.

In many disciplines such as physics, astronomy and mechanics, researchers often study
dynamical systems of particles. As a common fact among these and PD theory, each particle
in such a system has a state at each time step and the system contains a set of equations that
compute the state of each particle for the next time step. A natural question is to ask what
the particles’ states are after t time steps. It is known that such question is computationally
hard (Reif & Tate, 1993); this means that it is unlikely that there exists an efficient algorithm
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1 that solves the problem. Thus, the widely used solution is to simply simulate the particles
in each time step. This brings us to the central goal of this work: to simulate dynamical
systems of particles as efficiently as possible.

It should be noted that the algorithms designed in this work are not merely designed
for PD framework, and can be also used in any particle based method in which particles
interact with each other through physical laws. More precisely, in such dynamical system
of interest, each particle’s state consists of its current position and velocity, both in two
dimensional space. For each time step, each particle’s position is changed according to its
velocity whereas the velocity is changed corresponding to forces exerted by other particles
within a specified cutoff distance, horizon, from the particle.

The trivial algorithm, in which one computes interactions between every pair particle in
each time step, takes O(n2) time per time step where n is the number of particles. This,
however, is not the best one can do with this particular system. More specifically, the nature
of the PD system allows us to check for interactions only between each particle and its family
members within the horizon distance to it, That is, if we partition space into squares (or bins)
each with height equal to the horizon, then it is enough for us to compute forces between
each particle and the particles in its bin and the surrounding bins. When the density of the
particle is constant, the expected number of particles in each grid is also constant, meaning
that this “binning” algorithm takes only O(n) time.

In addition to improvement in asymptotic running time from O(n2) to O(n), we can
use parallelization to speed up the simulation even further. We explore several models of
parallelization in this work, including shared memory model and distributed memory model
using OpenMP and MPI, respectively. We also experiment with parallelization via a graphics
processing unit (GPU) via NVIDIA CUDA.

We explain our algorithms for each model along with the optimization techniques we tried
and how effective they are. Then, in Section 7.3, we discuss the performances of our codes
and whether they match our theoretical expectations. Finally, in Section ??, we suggest
some ideas that may further improve performances of our codes.

7.2 Algorithms and Implementations
In this section, we describe our algorithms for the different models of parallel program-

ming and their implementation. This section is organized as follows. For each model, we
have a subsection corresponding to more details of the algorithm as well as implementation
details and optimization techniques we have tried and how well they worked.

The algorithms in this chapter mainly focus on the optimality of the PD as a mesh-free
method, and not PD parameters in details. Therefore, the details of the PD force calculations
and other technicalities such as surface correction factor, volume correction factor, bond

1More specifically, if PSPACE != P, then there is no algorithm with running time of a polynomial in
log t.
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Algorithm 2 Naive Serial Algorithm
1: Given: E, ρ, δ, bc, ∆x, ∆t
2: Initialize particles coordinates
3: Initialize displacements and velocities
4: for each time step t = 1 to T do
5: for each each particle i = 1 to n do
6: for each particle j = 1 to n do
7: ξ ← xj − xi
8: η ← uj − ui
9: update scr, fac
10: Fi ← Fi + bc η η−ξ

ξ∆x3scr fac (xj+uj−xi−ui)

11: for each particle i = 1 to n do
12: ui,vi ← MOVE(ui,vi,Fi)

1: procedure MOVE(ui,vi,Fi)
2: ai ← Fi/ρ
3: vi ← vi + ai∆t
4: ui ← ui + vi∆t
5: return ui,vi

constant, critical stretch bond, etc., which were all discussed in ??, are not here. PD Force
computation is only given in the algorithms at a high level.

7.2.1 Serial algorithm

First, let us discuss the naive serial algorithm. As shown in Algorithm 2, at each time
step, the force interactions between each pair of particles are calculated and stored as PD
force of each particle. Every particle is then moves, i.e., its velocity and displacement is
subsequently updated accordingly to its acceleration.

By using the binning method (also known as spatial partitioning or discretization), we
can split our domain into small bins (or partitions). Each bin is simply a square of size
being the horizon limit. Each particle then merely interacts with its own surrounding bins.
Therefore, to calculate the forces applied on each particle, we no longer need to iterate
through all other particles and this reduces computational time drastically. In fact, if the
density of the particles2 is constant, then the number of particles in each bin is constant in
expectation. Hence, the running time is linear in the number of particles. The pseudo-code
for the algorithm is shown in Algorithm 3.

2The density of the particles in the number of particles per unit square of the plane.
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Algorithm 3 O(n) Serial Algorithm (Spatial Partitioning)

1: Given: E, ρ, δ, bc, ∆x, ∆t
2: Initialize particles coordinates
3: Initialize displacements and velocities
4: Initialize bins
5: for each particle i = 1 to n do
6: assign particle i to a bin according to its position
7: for each time step t = 1 to T do
8: for each particle i = 1 to n do
9: for each bin B nearby i do
10: for each particle j in bin B do
11: ξ ← xj − xi
12: η ← uj − ui
13: update scr, fac
14: Fi ← Fi + bc η η−ξ

ξ∆x3scr fac (xj+uj−xi−ui)

15: for each particle i = 1 to n do
16: ui,vi ← MOVE(ui,vi,Fi)
17: update particle i’s bin according to its new position

7.2.2 Serial implementation details

The data structures used for the algorithm are vectors in C++ Standard Library. More
specifically, we declare one vector for each bin; the vector contains the indices of all the
particles in the bin. When we update a particle’s bin, we just remove its index from the
previous bin’s vector and push it into the current bin’s vector. Below we list two optimization
techniques that are common in particle-based methods and the reasons we did not keep them
in the final implementation.

1. Iteration through bins instead of particles

For the two loops that we iterate through particles (line 9 and 16 in the pseudo-
code), we can instead iterate through bins first and, in that loop, iterate through
particles in the bin. It may not be clear from the pseudo-code what the benefit of such
alternate looping is since updating a particle’s bin is not expanded out. In the actual
implementation, we need to go through the whole vector corresponding to the old bin
to find the particle and remove it from the vector. On the other hand, if we use the
alternate looping, with can directly delete it from the vector. Theoretically speaking
the latter should be better. However, based on our experiment, looping by particles
outperforms looping by bins. As a result, we keep the former in our final code. A
reasonable explanation is that the more layer of the loops may add too much of an
overhead when we loop by bins, which prevents us from seeing any improvement.
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Figure 7.1: A distributed-memory system

2. Using smaller number of bins

While making each bin has side length the same as the horizon limit seems reasonable,
the number of bins is size2

horizon2 , which is 3n in our case. While this is not too big, it
seems that the memory usage overhead may worsen the performance of the code. We
try changing decreasing the number of bins to smaller numbers. As we did so, we saw
decline in performance so we kept the bin size to be the horizon distance.

7.2.3 Parallel algorithms

In the world of parallel multiple instruction, multiple data, or MIMD, computing systems
can be categorized into two categories: distributed-memory and shared-memory systems. A
distributed-memory system consists of a collection of core-memory pairs connected by a
network, and the memory associated with a core is directly accessible only to that core
as shown in Fig. 7.1. Whereas, a shared-memory system consists of a collection of cores
connected to a globally accessible memory, in which each core can have access to any memory
location, depicted in Fig. 7.2. We implement PD in both memory systems and discuss their
benefits in the following sections.

Last PD parallel algorithm we propose in this work will be leveraging Graphical Pro-
cessing Units (GPU). For that, we use CUDA as the programming interface used to write
parallel code in heterogeneous architectures. We will discuss the main challenges that might
occur when dealing with CUDA architecture as well as their benefits over the CPU-based
parallelization techniques.

7.2.4 Shared-memory algorithm: OpenMP

OpenMP and Pthreads are two parallel programming models for shared memory paral-
lelization schemes. In this work we have only implemented OpenMP. The pseudo-code 4
shows how the O(n) serial code is optimized with OpenMP.
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7.2.5 OpenMP implementation details

Our shared-memory code is almost exactly the same as that for serial except for the
way synchronization is being handled. Race condition is a common issue in shared memory
parallelization when multiple threads are updating the same shared variable simultaneously.
In this problem, race condition may arise when two particles are removed from or added to
the same bin when we are updating particles’ bins. To prevent such race conditions, we have a
lock (omp_lock_t) for each bin. Whenever the bin is modified, its corresponding lock is held
by the thread that makes changes to the bin. While this may seem like excessive lockings on
the surface, in practice, two threads rarely wants to modify the same bin due to the sparsity
of the particles; in fact, as will be discussed below, this yields a better performance than
other approaches that use less locks. Another trick which can be deployed is the critical
directive for synchronization which simply causes each thread executes the critical region
one at a time to check for minimum distance between each two particles. To reduce number
of writes, saving the data is also assigned to the master thread. Here are two ways to reduce
the number of required lockings:

1. We can split the large loops into two smaller loops: the first loop handles moving
particles and removing it from the old bin, and the second loop adds the particles into
the new bins. If the first loop is iterating over bins, then we can remove particles
without using locks. Hence, we only need locks for adding particles and, intuitively, we
should get some improvement. However, no improvements was observed and therefore,
we concluded that the overhead of having two separate loops and having to iterate over
bins instead of particles (see discussions in the serial section) weights in more than the
improvement from less lockings.

2. Follow up from the previous item, if the large loop is divided into two smaller ones
as stated above, then we can further reduce the number of locks required in adding
particles to their new bins. Since most particles do not move too far from there previous
bin, we can iterate through the bins, and, for each bin B, looks at the bins “close” to
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Algorithm 4 Shared Memory (OpenMP) Algorithm

1: Given: E, ρ, δ, bc, ∆x, ∆t
2: Initialize particles coordinates
3: Initialize displacements and velocities
4: Initialize bins
5: Initialize locks . We have one lock per bin
6: for each particle i = 1 to n do
7: assign particle i to a bin according to its position
8: for each time step t = 1 to T do
9: for each particle i = 1 to n do . This loop is executed in parallel
10: for each bin B nearby i do
11: for each particle j in bin B do
12: ξ ← xj − xi
13: η ← uj − ui
14: update scr, fac
15: Fi ← Fi + bc η η−ξ

ξ∆x3scr fac (xj+uj−xi−ui)

16: for each particle i = 1 to n do . This loop is executed in parallel
17: ui,vi ← MOVE(ui,vi,Fi)
18: if particle i’s move to a new bin then
19: lock the old bin
20: remove particle i’s from the old bin
21: unlock the old bin
22: lock the new bin
23: add particle i to the new bin
24: unlock the new bin

B to see whether there are any particles that should be moved into B. This steps does
not need any locks. Of course, there can be particles that move far away so we need to
have another loop that takes care of that. We experiment with various distance that
for “closeness” but never get any improvement over the original implementation.

7.2.6 Distributed memory algorithm: MPI

MPI is a parallel programming model for distributed memory parallelization. We also
use binning for our MPI code. The central idea in our MPI implementation is that each
processor is assigned with some bins that it is responsible for. At each time step, each
processor computes the acceleration, velocity and displacement of the particles that belong
to its bins and then sends the particles that leave its partitions to processors responsible
for the destination partitions. Moreover, it sends to each processor the particles that are
in bins adjacent to the bins responsible for this processor. These are needed to compute
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Algorithm 5 MPI algorithm
1: Given: E, ρ, δ, bc, ∆x, ∆t
2: Initialize particles coordinates
3: Initialize displacements and velocities
4: Initialize bins
5: compute which processor is correspond to each bin
6: for all time steps t = 1 to T do
7: compute which processor(s) each particle this processor was responsible for in the

previous step should be send to.
8: send this processor’s particles from previous step to other processors as necessary.
9: receive particles from other processors.
10: update this processor’s bins.
11: for each bin B that this processor is responsible do
12: for each particle i = 1 in B do
13: for each bin B′ nearby B do
14: for each particle j in bin B′ do
15: ξ ← xj − xi
16: η ← uj − ui
17: update scr, fac
18: Fi ← Fi + bc η η−ξ

ξ∆x3scr fac (xj+uj−xi−ui)

19: for each bin B that this processor is responsible do
20: for each particle i = 1 in B do
21: ui,vi ← MOVE(ui,vi,Fi)

forces between particles correctly. Finally, it receives the particles that moved to its bins (or
adjacent bins). The following pseudo-code shows the overall idea in the MPI algorithm.

7.2.7 MPI implementation details

We again have one vector for each bin. Each processor also records which bins it is
corresponding to. As for communication, we use Isend when we send particles to other
processors. For receiving, we use Iprobe to check whether there is any message ready to
be received from any processor; if so, we receive the message using Recv. We use different
tags for different time steps to ensure that we are not receiving particles for the future time
steps. More discussions about our choice of communication protocols can be found below.
Several optimization techniques we used are also listed below.

Non-blocking vs blocking communication We first used the (sometimes) blocking
Send. This unfavorably increased the simulation time. It also makes the program to wait
infinitely when the ordering of sends and receives are incorrect. We fix this by using Isend
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instead, which complicates the implementation a bit since the buffer cannot be reused imme-
diately. Nonetheless, it results in a huge improvement. Using Iprobe along with Recv is also
beneficial and solves the problem of waiting for one specific processor to send messages while
there are other messaged from other processors for us to receive . On average we experienced
near 5% improvement when Iprobe was used with Recv.

Space partitioning. We tried to assign partitions to processors in a way that decreases
the communication complexity of our algorithm. In particular, we want to minimize the
number of particles that need to be send to multiple processors (because they are adjacent
to partitions not belong to the processor it is assigned to). This is the same as trying to
minimize perimeter of the partitioning of the space. We ended up using vertical stripes
as our partition; each processor is responsible to a stripe. In our experiment, this works
much better than a random partitioning. We also tried grid partition when the number of
processors is four by dividing the plane into 2 × 2 grid but we did not see any significant
difference compared to the vertical stripes partitioning so we stick with the latter.

7.2.8 GPU: CUDA

Although increasing the CPU clock speed is certainly not the only method by which
computing performance has been improved, it has always been a reliable source for im-
proved performance. In recent years, however, manufacturers have been forced to look for
alternatives to this traditional source of increased computational power. Because of various
fundamental limitations in the fabrication of integrated circuits, it is no longer feasible to
rely on upward-spiraling processor clock speeds as a means for extracting additional power
from existing architectures. Because of power and heat restrictions as well as a rapidly ap-
proaching physical limit to transistor size, researchers and manufacturers have begun to look
elsewhere.

In 2005, faced with an increasingly competitive marketplace and few alternatives, leading
CPU manufacturers began offering processors with two computing cores instead of one. Over
the following years, they followed this development with the release of three-, four-, six-, and
eight-core central processor units. Sometimes referred to as the multicore revolution, this
trend has marked a huge shift in the evolution of the consumer computing market.

In comparison to the central processor’s traditional data processing pipeline, performing
general-purpose computations on a GPU is a new concept. In fact, the GPU itself is relatively
new compared to the computing field at large. However, the idea of computing on graphics
processors dates back to late 80s.

Unlike previous generations that partitioned computing resources into vertex and pixel
shaders, the CUDA Architecture included a unified shader pipeline, allowing each and every
arithmetic logic unit (ALU) on the chip to be marshaled by a program intending to perform
general-purpose computations. Because NVIDIA intended this new family of graphics pro-
cessors to be used for general purpose computing, these ALUs were built to comply with
IEEE requirements for single-precision floating-point arithmetic and were designed to use an
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Algorithm 6 CUDA Algorithm
1: initialize bins
2: copy the particles from CPU to the GPU
3: for each time step t = 1 to T do
4: assign particles to bins . Executed in GPU; inserting to a bin is atomically

performed
5: compute forces withing bins . This is executed in GPU
6: moving particles . This is executed in GPU
7: copy the particles from GPU back to the CPU

instruction set tailored for general computation rather than specifically for graphics. Fur-
thermore, the execution units on the GPU were allowed arbitrary read and write access to
memory as well as access to a software-managed cache known as shared memory. All of these
features of the CUDA Architecture were added in order to create a GPU that would excel
at computation in addition to performing well at traditional graphics tasks.

In this work, we use CUDA as another programming interface to implement PD in
parallel. The idea is that the user is in control of the CPU (host) and the GPU (device). Most
of the computational effort is done in the GPU since it is more amenable to parallelization,
as long as not too much communication effort comes with it. CUDA is drastically powerful
for massive parallelization speedups. However, it may not be suitable for medium scale
paralleization because it needs memory management for devices. Since the different threads
in the GPU share memory, our algorithm for this case is basically the same as in the shared-
memory case up to implementation details of data structures for our data. The pseudo-code
for our CUDA implementation is shown below.

7.2.9 CUDA implementation details

Since STL vector does not work on GPU, we simply allocates memory for all the bins
before the simulation begins. We allocate a memory for six particles for each bin. We
then simply use this array in place of the vectors. The other main difference between our
CUDA code and others is that we always recompute the bins every time step whereas, in
other models, we only move each particle to its new bin if its bin changes. This involves both
removing and adding particles to bins, which requires locks. On the other hand, recomputing
bins does not involve removing particles from bins, which helps us avoid locking the bins;
here we can just use atomicAdd to calculate the end index in the bin that the particle is
moved to.

We note that the reason for the number six used above is that, in the given code, the
correctness is checked by checking whether the square of the minimum distance between two
particles are at least 0.4 times the square of the cutoff distance. From this, we can prove
that, if an implementation passes such test, then, at any time step, each bin contains at most
six particles as follows. We first divide each bin into six rectangles with height cutoff/2 and
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Table 7.1: Material properties and PD parameters of the center-cracked plate shown in Fig.
7.3

Elastic modulus (GPa) Poisson’s ratio Density (g/cm3) u̇y(x,±L/2, t) scr ∆t
192 0.33 8000 ±20 m/s 1 (no failure) 1.3367× 10−8

width cutoff/3. Each rectangle cannot contain more than two particles because otherwise
the square of the distance between the two particles is at most (1/2)2 + (1/3)2 < 0.4 times
the square of the cutoff. As a result, there can be at most six particles in each bin, unless
the checker given is incorrect.

Iterating by bin instead of particles. Similar to other implementations, we have a
choice of looping over particles or looping over bins when we compute forces and move
particles. We tried iterating over bins but its performance is slightly worse than iterating
over particles so we use the latter in our final implementation.

7.3 Results and discussion
We now present the parallelizations results using the proposed algorithms. We keep the

problem setup consistent across all the algorithms. It should be noted that we do not allow
bond breaking to occur in this chapter so that the number of particles will remain the same
at all time. However, we do account for particles moving around different horizons and
changing their family members. This means that searching for family members is required
at all time steps and this is the most rigorous way of solving a PD problem. Most work in the
literature tend to assume particles do not change their family because it drastically reduces
the computations. However, here we want to focus on finding the best parallel algorithm
that works for PD even in the hardest possible case.

We have chosen the classic center-cracked plate problem under velocity loading boundary
condition with specific material properties given in (Madenci & Oterkus, 2014). Figure 7.3
shows our setup where the square plate is of length L with center crack of length 2s = 0.01m.
The domain is discretized into 500× 500 unless otherwise is stated or a test is repeated for
different number of particles.

The experiment run on TACC Stampede supercomputer with 6400 nodes configured with
two Xeon E5-2680 processors and one Intel Xeon Phi SE10P Co-processor (TACC, 2015).

7.3.1 Speed up

We first show the results for the naive and optimized serial algorithms. A common way
to show the Figure 7.4 shows a comparison between running time of the above algorithms
for different number of particles (500-8000). For the naive code, slope of the data is 1.992
whereas for the optimized code it is 1.12 which matches our expectations.
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Figure 7.3: Center-cracked plate under velocity boundary condition for testing the parallel
algorithms

Figure 7.5 shows the simulation time for different number of particles for fixed number
of threads of 4 and 24, respectively. MPI jobs were performed on 3 machines and it is
clear that an OpenMP implementation with 4 number of threads performs faster because
it uses shared memory compared to MPI with overheads due to message-passing between 4
processors. However, MPI relatively scales better with 24 threads. The performance of the
GPU code is also shown in this figure for the sake of comparison despite the fact that they
were executed on different machines. Clearly CUDA speeds up the performance by a large
scale using many thousands of threads.

Figure 7.6 gives a better insight into the performance of MPI and OpenMP. For a fixed
number of particles (50000), it shows the simulation time in seconds. OpenMP does not scale
beyond 8 threads while MPI continuously scale with increase in thread numbers. However,
OpenMP outperforms MPI in terms of simulation time for the same number of threads.

Fig. 7.7 is another comparison between MPI and OpenMP in terms of the number of
flops. While numbe rof flops in MPI linearly increases with number of threads, OpenMP
consistently remains as low as less that 250 Mflops/sec across all variations of number of
threads.
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Figure 7.4: log-log plot of simulation time for different number of particles for the naive
serial code and the modified one with binning method.
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Figure 7.8: log-log plot of simulation time versus different number of particles for naive and
optimized CUDA GPU

In Fig. 7.8 we have shown the performance of the optimized GPU code versus the naive
CUDA code. As explained in section 7.2.8 partitioning the domain in parallel and assigning
many threads to them efficiently speeds up the simulation.
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Figure 7.5: log-log plot of simulation time versus different number of particles for a fixed
number of threads of 4 (top) and 24 (bottom)
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Figure 7.6: log-log plot of simulation time versus different number of threads for a fixed
number of particles = 50000

7.3.2 Scaling efficiency
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Figure 7.9: Slopes estimates for Algorithm 3 implementation

In the context of high performance computing there are two common notions of scala-
bility: The first is strong scaling, which is defined as how the solution time varies with the
number of processors for a fixed total problem size. The second is weak scaling, which is
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Figure 7.7: Comparison of Mflops/sec versus different number of threads for OpenMP and
MPI

Table 7.2: Scaling factors for OpenMP algorithm

Average strong scaling speed up 4.78
Average strong scaling efficiency 0.66
Average weak scaling efficiency 41.59

defined as how the solution time varies with the number of processors for a fixed problem
size per processor.

Here we present our results regarding the scaling of our code for the cases of OpenMP
and MPI. To evaluate the optimized serial algorithm, we consider the “slope estimate" of the
line fit. In Fig. 7.9 we show the slopes estimates for different “ranges of number of Particles”.
That is, we show the slope estimate when we are increasing the number of particles from 500
to 1000, from 1000 to 2000, and so on and so forth. This shows that our implementation is
essentially of linear complexity.

In Fig. 7.10 results for average speed up, strong scaling, and weak scaling efficiency, re-
spectively, are presented versus the number of threads/processors. The average of each factor
across number of threads/processors are also tabulated in Tab. 7.2 for easier comparison.

Figure ?? shows the same comparison as above for MPI implementation. As we expected,
the OpenMP implementation does not scale in a great way as the number of processors is
increased, due to the "shared memory" overhead whereas MPI scales much better.

As discussed above, our MPI code partition the plane into vertical stripes and assign each
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Table 7.3: Scaling factors for MPI algorithm

Average strong scaling speed up 7.67
Average strong scaling efficiency 0.8
Average weak scaling efficiency 15.39

stripe to a processor. This, however, is not theoretically the most efficient way to partition
the space. To minimize the number of communication, we want the total perimeter of the all
the partitions to be minimized as the perimeter tells us, in expectation, how many particles
need to be sent to more than one processors. For some number of processors, it is clear that
there are better partitions; for example, if the number of processors is not a prime, then
dividing the space both horizontally and vertically into grids yields a smaller perimeters.
(Oudet, 2011) provides a partition that approximates the optimal perimeter. It is unclear,
however, whether this is optimal and therefore, can be a further direction to investigate.

Moreover, as we stated above that our CUDA code just uses simple arrays in contrast to
vectors used by our serial, OpenMP and MPI programs. In almost all instances, arrays are
faster than vectors, as vector needs to dynamically allocate memories. Therefore, it can be
explored to see what kind of performance improvement we can get if we replace vectors by
arrays in our serial, OpenMP and MPI implementations.
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Figure 7.10: OpenMP scaling: from top image to below: strong scaling of speed up, strong
scaling of efficiency, weak scaling of efficiency
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Part II

Learning Mechanical Behavior of
Materials
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Chapter 8

Materials Modeling via Graph Neural
Networks

In the first part of this thesis, we presented peridynamic formulation for materials and
proposed how we can use PD theory to model mechanical behaviors such as crack propagation
in ductile materials (5), and ballistic impact (6). In the second part of the thesis, we will
explain how advances in deep learning can enhance studying materials’ behavior and reduce
computational cost. In this chapter, we briefly introduce the basics of neural networks,
graph neural networks, and how we can combine peridynamic and neural networks to predict
behavior of a wide range materials undergoing fracture.

8.1 Introduction to Neural Networks
Computational mechanics aims at finding approximate solutions for a variety of ordinary

or partial differential equations which formulate various physical or chemical phenomena.
For feasibility reasons, these approaches discretize the materials into their smallest units
which can represent the the material behavior. However, there is a computational limit in
the number of units a material can be broken into in real-world applications. Moreover,
we simplify the non-linear equations by linearizing them and assuming perfect boundary
or initial conditions to be able to derive approximate solutions. Nevertheless, these perfect
assumptions and linearizations oversimplify the problems as well as causing excessive compu-
tational overhead. As a result, with the recent advances in computing power, data-driven and
machine learning algorithms have been revisited and found to be extraordinarily successful
in extracting correlations in high-dimensional parameter spaces. With the striking progress
of graphical processing units (GPU), deep learning in particular won overwhelming victory
over any other technique which has greatly impacted other fields in science and technology
such as computer vision (Krizhevsky et al., 2012; He et al., 2016), medical and health-care
applications (Lee et al., 2017), autonomous driving (Ebrahimi et al., 2017), generating high
resolution images (Dong et al., 2014; Azadi et al., 2018), computational fluid mechanics
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(Raissi et al., 2020), astronomy (Chen et al., 2014), agriculture (Kamilaris & Prenafeta-
Boldú, 2018), business and finance applications (Heaton et al., 2017), and computational
solids mechanics (Oishi & Yagawa, 2017), etc. and is being widely used for collecting and
analyzing enormous amount of data (Sinha et al., 2019).

Machine learning has a long history (Samuel, 1959; Murphy, 2012) and many aspirations.
It is composed of computer algorithms that develop automated mathematical models without
being explicitly programmed about the underlying rules of the system. From small or large
amount of data, machine learning can uncover complex patterns and use them to predict
about outcomes of interest in future data. Machine learning has a lot in common with the
fields of statistics and data mining but is different in the terminology, focus, and applications
they have been used for (Murphy, 2012). Deep learning, is a specific kind of machine learning.
In order to understand deep learning well, one must have a solid understanding of the basic
principles of neural networks.

8.1.1 Feed-forward Neural Networks

Training nearly all deep learning algorithms follow a fairly simple recipe: collection of
samples denoted as dataset, a cost function, a mapping function, and an optimization proce-
dure tom minimize the cost. Deep feed-forward networks, or multi-layer perceptrons (MLPs),
are the key component of deep learning models. Let f be the mapping function parametrized
by θ that maps some input data x to some output vector y or a category of y, i.e., y = f(x;θ).

Figure 8.1 shows a schematic of a neural network with and input and an output layer
with scalar values and a hidden layer denoted as z with three number of hidden units. V
andW are called weight matrices and denote the connection between two neighboring layers.
No connections exist among units in the same layer as well as units in the non-neighboring
layers. Each hidden layer is related to its precedent layer via a function called activation in
the following form

z(x) = φ(x,V) = g(V(x)) (8.1)

where g is a non-linear activation function and φ is called the hidden layer which takes in x
and weight parameters (e.g., V here).

From a probablistic point of view a standard fully-connected (FC) neural network can be
defined as a probability function p(y|x,θ). To compute p, we build a network parametrized
by θ and try to find the best set of weight parameters such that an objective function is
satisfied or in other words, a cost or error function is minimized. For that, we initialize our
network using a generic Gaussian distribution with some known mean and variance:

p(y|x,θ) = N (y|WTφ(x,V), σ2I) (8.2)

We can think of θ as a set of features describing the dataset. The dominant approach
in all scientific fields has been always trying to use laws from physics to explain the pattern
of an event. But deep learning provides an alternative way of automatically learning this
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Figure 8.1: A multi-layer perceptron (MLP) with a single hidden layer

mapping function by defining it as an optimization problem which computes the posterior
using gradient-based methods.

Neural nets are called networks because each network is composed of a chain of layers,
each of them mapping an input to an output which serves as an input for the next layer.
Input data flow through a neural network via connections between units, starting from the
input layer, and then through hidden layers, finally to the output layer, and the last layer
outputs the processed data as a desired outcome which can be a real-valued number or an
integer defining a category the output belongs to. The former case is called a regression and
the latter is a classification problem. Equation 8.2 represent the parameters of a regression
problem.

8.2 Graph Representation of a Material
Graph Networks (GN) are powerful in representing arbitrary (pairwise) relational struc-

tures. Graph Neural Networks (GNN) are a class of functions for relational reasoning over
graph-structured representations and have been widely investigated in the past decade (Gori
et al., 2005; Scarselli et al., 2005; Scarselli et al., 2008a; Li et al., 2015). They have been
successfully applied in understanding tasks with rich relational structure such as robotics
(Sukhbaatar, Fergus, et al., 2016; Kipf et al., 2018), dynamics of systems (Sanchez-Gonzalez
et al., 2018; Battaglia et al., 2016; Van Steenkiste et al., 2018), quantum chemistry (Gilmer
et al., 2017), fracture mechanics (Schwarzer et al., 2019), and materials science (Xie &
Grossman, 2018). For a complete survey on early works on graph neural networks readers
are referred to (Scarselli et al., 2008b) whereas (Bronstein et al., 2017) provides a compre-
hensive review on geometric deep learning approaches.

As discussed in chapter 2, we used the equation of motion defined in Eq. 2.30 to solve
for displacement of particles over a course of several time-steps. The key component of Eq.
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Figure 8.2: A graph sample with vi as a node, ek ad an edge, and g as the global attributes
such as dynamic force which can be encoded as a vector or even another graph.

2.30 was the peridynamic force which was derived through strain energy density function
shown in Eq. (2.21). However, we now intend to learn all the dynamic interactions using the
data collected in the PD experiments in the previous chapters. We argue that a discritized
peridynamic material can be represented with a bidirected graph where nodes correspond
to the particles and edges are the peridynamic bond between two particles belonging to the
same family.

The main module of GN framework is the GN block, referred to as graph2graph, which
takes a graph as input, and outputs another graph after performing some computations over
its structure. Figure 8.2 depicts a graph defined as G = (g, V, E) composed of nodes denoted
as vi, edges as ek, and the global attributes as g.

The g is a global attribute; for example, g can contain constant material properties. The
V = {v1,v2, · · · ,vN} is the set of nodes (vertices), where each vi with i = {1, · · · , N v} repre-
sents properties of node i such as position, velocity, mass, etc. Lastly, E = {ek, sk, rk}k=1···Ne

is the set of N e number of edges where each ek represents attributes of the edge. For each ek,
there exists a sender and receiver node indexed as sk and rk, respectively. In this work, each
sender is also a receiver in an edge because two interacting material points exert non-equal
force on each other in opposite directions due to Newton’s third law.

Every GN has an update mechanism composed of three functions to update properties of
nodes, edges, and global features denoted as φv, φe, and φg, respectively. There exists three
aggregation functions, ρ functions which are all defined below:

e′k = φe(ek,vrk ,vsk ,g) ē′i = ρe→v(E ′i) (8.3)
v′i = φv(ē′i,vi,g) ē′ = ρe→g(E ′)

g′ = φg(ē′, v̄′,g) v̄′ = ρv→g(V ′)

Each ρ function reduces a set of input to aggregated information represented with a single
element. Conventionally ρ can be an element-wise operator performing summation, mean,
or maximum.
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Figure 8.3: (a) A graph2graph network takes a graph as input and returns a graph with
the same structure but different edge, node, and global features as output. (c) A feed-
forward GN-based forward model for learning one-step predictions. (d) A recurrent GN-
based forward model.

We also define two graphs that we intent to use to model static and dynamic properties
of our peridynamic system:
Static graph (Gs): as the name suggests, static or constant information about the particles
including material properties such as Bulk modulus, Shear modulus, and simulation time-
step, critical stretch bond.
Dynamic graph (Gd): this graph contains information about the position (x,y), velocity
of the particles at each time step (vx,vy), bond stretch (s), and the peridynamic force (fx, fy)
between two particles.

Figure 8.3a shows the core GN architecture used in this work as graph2graph modules
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Algorithm 7 Graph Neural Networks

1: Input: G = (g, {vi}i=1···Nv , {ek, sk, rk}k=1···Ne)
2: for each edge {ek, sk, rk}k=1···Ne do
3: Collect sender and receiver nodes vsk and vrk
4: e′k ← φe(ek,vrk ,vsk ,g) . Output edges
5: for each node vi do
6: Aggregate e′k per receiver
7: v′i ← φv(ē′i,vi,g) . Node-wise features
8: Aggregate all edges and nodes
9: g′ ← φg(ē′, v̄′,g) . Global features
10: Output: G′ = (g′, {v′i}i=1···Nv , {e′k, sk, rk}k=1···Ne)

with three sub-modules denoted as φe, φv, and φg each can be in form of MLP or recurrent
neural network (RNN) configurations. Fig. 8.3b shows a single feedforward GN pass which
can be viewed as one step of message-passing on a graph (Gilmer et al., 2017), where φe is
first applied to update all edges, φv is then applied to update all nodes, and φg is finally
applied to update the global feature. See Algorithm 7 for details.

The reason we used two GNs (see Fig. 8.3b) was to allow all nodes and edges to commu-
nicate with each other through the g output from the first GN. Similar to (Sanchez-Gonzalez
et al., 2018), we found performance advantages over using single GN only. We also used a
recurrent GN-based inference model, which observes the dynamic states of a trajectory. It
takes a sequence of dynamic state graphs (Gd) and after T timesteps returns another graph
denoted as G′(T ) which is then concatenated with Gd and fed to the forward model. Figure
8.3c shows the RNN core takes in the concatenation of Gd and Gh and returns G′ as well as
the updated hidden graph denoted as G′h. The full architecture can be trained jointly end-
o-end and used for making prediction on behavior of materials never seen before based on
a set of behavior history observed by other materials. The experimental setup and training
procedures are described in the following section.

8.3 Experimental Setup
In this section we explain our approach to use our PD models derived in chapter 5 and

chapter 6 to predict dynamic crack propagation accurately in unknown materials without
the need to run any computational or physical experiment on them.

Our training data is composed of peridynamic results for 60 isotropic materials (ductile
and brittle) undergoing two dimensional fracture due to tensile loading of different mag-
nitudes with or without a pre-crack or a pre-existing hole placed randomly on the plate.
We took material properties for 60 real-world materials from MatMatch website (Material
Match 2020), 50 of which we used for training data and 10 for test. We considered a wide
range of materials including ceramics, metals, and polymers. Dataset collecting for each
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material, and hence each peridynamic simulation, contains a sequence per particle (graph
node) position, velocity, damage index, yield index (ductile materials only), and dynamic
force as well as edge-based information such as bond stretch. Our goal is to generate a time
series of graphs representing the evolution of fracture or any other discontinuity propagation
in an unseen material by imitating the peridynamic model used to model fracture in the
training data and capturing complex non-linear relationship in the structure. Our network
architecture utilizes the temporal aspect of RNNs and their capability in learning a memory
for constitutive occurrences. Once being trained, our model can take an initial set up for
the material at time t0, for instance the time-step, material properties such as Shear and
Bulk modules, initial coordinates and velocity of the particles, and return the sequence for
location, velocity, dynamic force, and damage index of each particle over a course of sev-
eral timesteps. As with the peridynamic models, once a bond between two nodes reaches
it critical stretch limit, it breaks and never recovers. This phenomenon guides the crack
propagation and is tracked using the damage index for each node, ranging from 0 (intact
bond) to 1 (broken bond), denoting the ration of the broken to total number of bonds. For
ductile material we also keep track of yield index (λ), defined in 5.6 per bonds where λ = 0
indicates an unyielded and λ = 1 represents a fully yielded or plastically deformed bond.

Our architecture includes N v graphs, each graph representing a family of neighboring
particles connected through an adjacency matrix. The output is also a series of the same
length graphs which are shifted over by one timestep. We have used the followings for
architecture in each sub-module:

• Edge MLP: 2 or 3 hidden layers. 256 to 512 hidden cells per layer.

• Node and Global MLP: 2 hidden layers. 128 to 256 hidden neurons per layer.

• Updated edge, node and global size: 128

• (Recurrent models) Node, global and edge size for state graph: 20

We used a standard L2-norm loss between the predictions and expected values (ground
truth data) for position and linear velocity. For optimizer we used Adam (Kingma & Ba,
2014) with batch size of 128 graphs/graph sequences on a single GPU.

8.4 Results
We have been able to train our model to predict the trajectory sequence with 0.4±0.01%

MSE error for the training data and 1.3±0.02% for test set. Qualitative results also provide
a good insight on how the predictor behavior matches between peridynamic and GNNs.
Below we have provided snapshots of the predicted displacement, damage index, and yield
index (5.6) (for ductile materials) for both success and failure cases.

Figure 8.4 shows a comparison between results from PD modeling serving as the ground
truth against predictions made by our trained GNN. Figure 8.4a shows the plate at t0 with no



CHAPTER 8. MATERIALS MODELING VIA GRAPH NEURAL NETWORKS 91

(b) (c) (d) (e)
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Figure 8.4: Damage index per particle for a plate with no pre-existing defect. (a) shows
the initial plate at time t = 0. (b-e) damage at timesteps t = 5∆t, t = 15∆t, t = 20∆t,
t = 25∆t, respectively

pre-existing discontinuity of any kind. In columns (b), (c), (d), and (e), we show a sequence
of heatmaps at different time-steps. Top row visualizes ground truth data for damage index
per particle whereas bottom row shows those values predicted by our trained GNN. It should
be noted that model has neither seen a ductile material of the same kind during training
nor a ductile material without any pre-existing defect. GNN predictions seem to agree well
with PD results of this material showing a significant generalization capability to loading
and geometry conditions never seen before.

Figure 8.5 depicts another example where we have compared damage growth produced
by PD and GNN predictions. Similar to the previous case, this setup did not exist in the
training data but GNN is able to generalize well in predicting where damage begins and
where it leads to.

Figure 8.6 shows same scenario but visualizes results for yield index. GNN model and
ground truth results here do not align with each other in column (b) where GNN model
predicts larger values for yield index for particles on the path along the center-line. Wrong
predictions for yield index at timestep t = 5∆t is followed by more pronounced yield in the
following timesteps where the error propagates and ultimately deviate by large amounts from
the reference values. This effect is also visualized in Figure 8.7 where the disagreement starts
at crack initiation time leading to predicting drastically larger values of plastic deformation
at crack tips and ultimate faster rupture of the entire plate.
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Figure 8.5: Damage index per particle for a plate with randomly placed pre-existing holes of
different size. (a) shows the initial plate at time t = 0. (b-e) damage at timesteps t = 5∆,
t = 15∆, t = 20∆t, t = 25∆t, respectively

(b) (c) (d) (e)

(a)

Figure 8.6: Yield index per particle for a plate with randomly placed pre-existing holes of
different size. (a) shows the initial plate at time t = 0. (b-e) yield effect at timesteps t = 5∆,
t = 15∆, t = 20∆t, t = 25∆t, respectively
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Figure 8.7: Yield index per particle for pre-cracked plate. (a) shows the initial plate at time
t = 0. (b-e) yield effect at timesteps t = 5∆, t = 15∆, t = 20∆t, t = 25∆t, respectively
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Chapter 9

Conclusion and Future Work

9.1 Discussion of Contributions
This dissertation aimed to explore two seemingly different paths for modeling mechanical

behavior of materials: 1) Peridynamic (PD) theory as a relatively new alternative framework
to classical continuum theory and 2) deep learning based approaches using graph neural
networks. In the first part, we mainly focused on formulating PD in physical problems
which had been previously analyzed either with numerical approaches such as FEM, or with
experimental observations. In the second part, we developed a learnable model to predict
materials’ behavior in order to bridge the gap between statistical representation learning and
physics based approaches in modeling worlds events. Summary of our key contributions is
provided as follow:

9.1.1 Part I: Peridynamic Analysis of Materials Behavior

Our contributions in part I of this dissertation are summarized as below:

• Chapter 3: we developed PD models to study wear and friction in ultra thin films at
nanoscale. Prior continuum-based approaches were not able to account for local dif-
ferences in nanostructure whereas MD simulations were limited by high computational
cost, model size, and choice of potential functions used to describe atomic interactions.
We showed, for the first time, that PD can successfully model sliding friction and wear
process of amorphous films thinner than 100nm thickness (Ebrahimi et al., 2015a). We
were able to compute coefficient of friction that matched well with the experimental
results under identical loading conditions. The closest PD work in this line of research
was (Celik et al., 2009) in which bond-based PD was used to find material properties
of polymeric films deposited on soft substrates where no damage was allowed and com-
parisons were made with MD simulations. Our work was different from (Celik et al.,
2009) in using state-based PD, modeling friction, as well as modeling nano-mechanical
wear depth caused by hard indentation of diamond tips.
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• Chapter 4: we analyzed three modes of delamination in compressed elastic thin films
on compliant substrates: wrinkling, buckling and concomitant wrinkling and buckle-
delamination (Ebrahimi et al., 2015b). The closest work that explored delamination
using PD was (Hu et al., 2015) in a parallel study where the goal was to derive critical
stretch bond based upon the strain energy release rate due to the increase in interlaminr
tension and shear at the contact surface. In our study, we used strain energy and its
gradient to determine the key roles in emergence of wrinkling and the transition to
concomitant wrinkling and buckling, and eventually to buckling. We derived phase
diagrams that determines the delamination mode and hence the change in mechanical
behavior across different properties mismatch for films undergoing compression on
top of compliant substrates. Our PD results correlate well with the analytical and
experimental results available in the literature.

• Chapter 5: one of our major contributions in this dissertation was developing a new
ordinary stated-based peridynamic formulation for plasticity using mechanical sub-
layer method originally proposed by (Besseling, 1953) and extended by (Zienkiewicz
et al., 1973) and (Pian, 1987). Our plasticity model differs from the previous work
by (Taylor, 2008) in defining yield criterion and using more general form of state-
based theory. We introduced yield index to measure the ductile behavior of particle
before their bond breaks. We predict ductile fracture for center-cracked plate and
compact tension problems in 2D where our PD results agreed well with computational
and experimental work by (Areias et al., 2014) and (Samal et al., 2009), respectively.
Moreover, our PD results for J-integral calculation are compared with those from
benchmark problems and an excellent agreement is achieved.

• Chapter 6: we used PD in a real-world practical application to design body armor
systems. PD has been proven successful in modeling dynamic fracture and impact
analysis. We took this line of research one step further by creating two PD models
for 1) rigid and 2) non-rigid bullets. In the former, we used a bio-inspired structure
by Abalone, a marine snail that protects itself with its convex she with incredibly stiff
layered structure. In the former case, non-rigid bullet, we adopted our PD plasticity
model derived in 5 and modeled the backing panel behavior in maximizing the energy
absorption while being cost and weight efficient. We analyzed the composite structure
of the backing panel by examining different unidirectionl and multidirectional fiber
reinforced composites. Our analysis was specific to the type of projectile for which we
designed the armor, such as handgun bullets, riffle bullets, and heavy bullets and we
were able to analyze most popular armor systems and proposing using new materials
for the front and backing layers.

• Chapter 7: in the last chapter of part I, we parallelized PD algorithm on CPU us-
ing shared memory (OpenMP) and distributed memory (MPI) as well as on graphics
processing unit (GPU) via NVIDIA CUDA architecture. We performed extensive ex-
periments to determine the scaling factor of each paralleization technique and found



CHAPTER 9. CONCLUSION AND FUTURE WORK 96

the bottlenecks in designing parallel PD models and the best parallization practice for
them. We used C++ here as it could offer the most efficient object-oriented setting
for this study.

9.1.2 Part II: Learning Mechanical Behavior of Materials

Our contribution in part II is described below:

• Chapter 8: The availability of computing power and emergence of the new machine-
learning based approaches in the recent years motivated us to revisit the problems
investigated in part I from a data-driven perspective using deep learning. We proposed
to use graph neural networks (GNNs) to develop a framework to directly learn material
behavior under complex loading conditions using the data provided by Peridynamic
simulations providing a universal, generalizable, and interpretable representation of
solid materials including ceramics, metals, and polymers. The interpretability is due
to the excellent capability of GNNs in extracting the contributions of graph edges, i.e.,
PD particles, to global properties.

9.2 Future Perspectives
Now, we describe some of the future directions that immediately follow from the quanti-

tative and qualitative analysis provided in this work:

• Directions to expand PD theory: this research clearly illustrates benefits of using
a non-local continuum-based approach as an alternative to the classical theory, but it
also raises the question of how PD formulation has to change should any of the assump-
tions we made about ordinary state-based PD do not hold true anymore. Our major
drawback in using non-ordinary state based PD was the lack of results from controlled
experiments in the literature to verify PD simulations with. One can investigate this
path and design and conduct experiments that can be used to verify non-ordinary
state based PD which covers modeling a broader range of materials and their complex
interactions.

• Directions to expand learning mechanical behavior of solids materials: This
work introduced a new class of learnable forward and inference models, based on graph
neural networks (GNN), which implements the relational behavior of material points.
Across a range of experiments we found that these models are surprisingly accurate,
robust, and generalizable when used for prediction, in challenging unseen loading con-
ditions. While our GNN-based models were most effective in systems with common
discontinuities (e.g., cracks, holes), they were less successful at the presence of ab-
normal defects which were never seen during training. Our approach also does not
address a common problem of errors compound over long trajectory predictions. Some
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key future directions include using our approach for material identification in real-world
settings, supporting experimenting in hazardous environments. This work takes a key
step towards realizing the promise of machine learning based methods by exploiting
compositional representation learning within a powerful statistical learning framework,
and opens new paths for robust, efficient, and general-purpose patterns of reasoning
and decision-making.

In the words of Alan Turing,

We can only see a short distance ahead,
but we can see plenty there that needs to be done.
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