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A PHASE SPACE EIKONAL METHOD 

FOR TREATING WAVE EQUATIONS* 

Steven W. McDonald t 

Physics Department and Lawrence Berkeley Laboratory 

University of California, Berkeley, CA 94720 

February 1985 

ABSTRACT 

LBL-18599 

We present a new method for treating classical (or quantal) wave equations in the 

short wavelength (semiclassical) regime based on a description of the wave in the ray phase 

space. The coherent state representation is defined, the equation which it obeys is given 

and solved under assumptions similar to those of conventional eikonal theory. As indicated 

by an example, the result is a smooth distribution on phase space which, when "projected" 

onto configuration space, yields a wave field with no caustic singularities. 
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t Present address: Laboratory for Plasma and Fusion Energy Studies, University of Mary­
land, College Park, MD 207 42. 



The concept and utility of a phase space (or joint coordinate x, wavenumber k) rep-

resentation of a wave field is an old idea which has recently received much attention. The 

Wigner function 1 has been the subject of renewed interest in quantum mechanics2 and 

optics3 and has been a central issue in the study of semiclassical mechanics. 4 •5•6 Symbols 

of pseudodifferential operators have become a cornerstone of modern eikonal theory with a 

growing mathematicallitaature.7
•
8 The coherent state (or Glauber) representation9 •10 has 

been used in the study of molecular wave functions 11 and has also provided a basis for semi-

classical theories. 11•12 In this Letter we consider a phase space description for application 

to both classical and quanta! wave equations. 

In the short wavelength (or semiclassical) regime, the analysis of the structure of the 

ray phase space and its relationship to the asymptotic eikonal form of a wave t/J( x) has 

illuminated the reasons for two major shortcomings of the conventional eikonal method: ( 1) 

singularities in the projection of the ray manifold in phase space onto x- (or k-) space pro­

duces caustic singularities in t/J(x) (or ~(k)), and (2) the existence of chaotic rays precludes 

the application of modern semiclassical quantization techniques to nonintegrable classical 

Hamiltonians. While many authors have attempted to make use of phase space represen-

tations to understand and overcome these difficulties, their approaches have been primarily 

deductive in nature: either a phase space representation of a wave field IP(x, k) is studied4
•
5

•6 

in terms of its relationship to the configuration space description t/J(x), or vice versa. In the 

present paper, we present a constructive method: a phase space representation with rea-

sonable properties is defined, the equation which it obeys in phase space is given, and then 

this equation is solved with assumptions similar to those of conventional eikonal theory. As 

indicated by an example, the result produces a smooth distribution on phase space which, 

when "projected" onto configuration space, yields an asymptotic wave field t/J(x) with no 
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caustic singularities. 

We consider the coherent state representation lli(x, k) associated with a wave .,P(x): 13 

lli(x,k) = (1ru2
)-

114 Jdx' .,P(x')exp[--~x'- x) 2 /2u2
- ik(x'- x)J (1) 

This phase space representation can be interpreted as a "smoothed local Fourier transform" 

of T/J(x), with the averaging weighted by a gaussian of arbitrary width u. Despite this 

smoothing, one has the exact inversion or "projection" 

(2) 

Expressions similar to (1) and (2) can be given in terms of ~(k). While this complex-valued 

quantity lli(x, k), linear in the field .,P, will be the primary object of the following develop­

ment, it induces a real non-negative phase space density P(x,k) = llli(x,k)l 2
• This density 

is normalized on phase space when .,P( x) is normalized in x-space and has the following de­

sirable properties: P(x, k) may also be obtained by locally smoothing the Wigner function 

W ( x, k) associated with .,P with a gaussian weight over a region ~x~k "' 1 in phase space 

Furthermore, when P(x, k) is projected onto x-space, the gaussian-smoothed wave intensity 

is obtained 

As will be seen, these smoothed or average properties are to a large extent responsible for 

the success of. the method and its potential utility. 

We now assume that the field .,P obeys a general linear wave equation in one dimension 

J dx' D(x,x';w).,P(x') =0 {4) 
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where the kernel D(x,x';w) is taken to be Hermitian and has been Fourier-transformed in 

time: we thus treat the problem of normal modes or wave propagation in an inhomogeneous 

stationary medium, or ei~enstates of the Schrodinger equation (with energy E = nw, and 

p = 1ik ).· Defining the phase space representation D( x, k; w) corresponding to the kernel D 

with the Weyl rule 

D(x,k;w) = J ds D(x+ !s,x- 4s;w)exp(-iks) 

it can be shown 14 that .P(x,k) satisfies the exact phase space equations 

-D(x,k;w) exp(i£/2) !li(2x,2k)exp(-2ikx) = 0 -!li(2x, 2k) exp( -2ikx) exp(i£/2) [(xju)- iukJ = 0 

- -- --
(Sa) 

(5b) 

where the bi-directional differential operator is £ ::: azalc - a1caz. The ingredients of these 

expressions are similar to those which appear in the equations which govern the evolution of 

the Wigner function 1 (and indeed are most directly obtained by appealing to the calculus of 

Weyl symbols14). An equation for !li has been previously given 15 in terms of the Bargmann 

representation of the abstract operator D expressed as a normally-ordered series of creation 

and annihilation operators. The present formalism, however, is directly applicable to clas-

neal wave problems where the immediate description of D is either the kernel (as in ( 4)) 

or D(x, k) (from the classical ray problem). We also note that these equations differ from 

those previously derived16•17 which govern P(x,k). 

We now cast these equations in a form which is convenient for analysis by first trans-

forming to complex conjugate dimensionless variables (x,k)- (z,z),z = (xju + iuk)/V'i.. 

This is a complex canonical transformation on phase space in which the Poisson bracket 

+-+ - -- --operator£ becomes£= i(a%az- aza%)· Now !li is a function of both z and z, but with (1) 

it can be shown that the z-dependence is particularly simple. For purposes of application 

-4-

.• 



to (5), one can define10 

1/t(x, k) exp( -ikx/2) = 4)(z) exp( -zz/2) (6) 

Furthermore, in these variables we have D(z,z;w) = D(x,k;w). With these changes in (5), 

we no~ that the form (6) identically satisfies (5b). Therefore, we focus our attention on the 

remaining equation 

D(z, z; w) exp(/ltJ.) 4)(2z) exp( -2zz) = 0 (7) 

For short wavelength waves in a weakly inhomogeneous medium (or a semiclassical 

treatment of the Schrodinger equation) we now assume a solution to (7) of the form 

4)(z) = A(z) exp[iB(z)] (8) 

That such a representation is appropriate for this equation can be verified with exact con-

struction of 1/t(x, k) from exact short wavelength wave fields tf; by (1). In that way, one also 

sees that the following eikonal-like approximations are justified in this asymptotic regime: 14 

(a) We choose our smoothing length u to be intermediate between a typical wavelength A 

of the field tf;(x) and the scalelength of variation of the medium L: A« u « L. 

(b) We define the "local phase space wavenumber" 

K(z) = d~~z) 

(c) We assume that the (dimensionless) magnitudes of both )( and z are comparable and 

large 

K(z)"' z- (u/ A)"' (L/u) = E-
1 

(d) We assume the variation of the medium, the amplitude A( z) and the wavenumber K ( z) 

satisfy 

n~O 
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Under these approximations, Eq.(7) can be expanded and analyzed order by order in 

t. We note only one important difference between this method and the traditional eikonal 

procedure: low-order terms appear at all powers in the expansion of the exponential operator 

and subsequent differentiation. The terms can be rearranged, however, and the expression 

for each order can be resummed. The lowest two orders are 

D(iK(z),z;w) = o (9a) 

~ [A2(z) ( ~~) (iK(z), Z;w)] ; o (9b) 

These phase space dispersion and amplitude equations are analogous to similar equations 

obtained at lowest orders in conventional eikonal methods.7 Equation (9a) is to be solved 

for K(z) and then the phase 8(z) is computed by integration; the phase in this theory 

may be complex-valued. This equation may also be shown to induce the characteristic ray 

trajectories in phase space, so that in principle 8( z) can be constructed along rays in phase 

space. The amplitude A( z) is also transported along trajectories, although the conservative 

form of (9b) can be shown to imply that A has singularities only at fixed points in phase 

space (i.e., where i = l: = k = 0). 

The full structure and implications of this procedure will be reported elsewhere. We 

conclude with a simple illustration of the implementation of these ideas. We take the 

wave equation ( 4) to be the Schrodinger equation for the quantum mechanical harmonic 

oscillator of frequency w0 • For this problem the dispersion function is simply the classical 

Hamiltonian D(x, k; E) = !nw0 (a2.x2 + k2 fa2 ) - E. It can be shown that the natural 

quantum oscillator length parameter a- 1 = Jnjmw0 satisfies the size restrictions in (a) 

above for the smoothing length u, so we set u = a- 1 • In complex variables we then have 

D(z, .Z; E) = nwozz- E. The lowest order equation (9a) reduces toE= inwoK z, so that one 

obtains K(z) = -(iEjnw0 )z- 1 • The complex phase is therefore B(z) = -(iEjnwo)lnz; 

-6-
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the amplitude is simply A(z) "'.z- 112 • Finally, inserting these solutions into (8), we find 

P = (E /1iwo)- 1/2 (10) 

As has been previously noted, 15 this expression has an interesting consequence: in order 

for cJ(z) to be single-valued in the complex z-plane, the exponent p must be a non-negative 

integer. Thus we obtain the exact quantization rule for the harmonic oscillator. (Note that 

if we neglected the higher order-contribution from the amplitude, a satisfactory asymptotic 

quantization conditionE= nnw0 would have resulted). 

Of course, the harmonic oscillator spectrum is also correctly given by conventional 

eikonal methods; the defect in the usual theory is in the construction of the eigenfunctions. 

There, the amplitude suffers singularities at the turning points (caustics) and various tech­

niques of matching piecewise solutions have been devised. In this phase space approach, 

however, we substitute (10) into (6) to find 

(11) 

The associated normalized phase space density P(x, ~) in dimensionless polar coordinates 

is 

(12) 

r2 = o:2x2 + k2 /o:2 

a form which is peaked at the radius of the classical torus r n ,.., ffn (yet is nonsingular there, 

an artifact of the broadening in the wave problem). The remarkable feature of this result 

is that when (11) is projected by (2) onto x-space, the exact eigenfunctions are obtained. 

Furthermore, projecting (12) with (3) produces a smoothed wave intensity (see Fig.l) which 

compares favorably with the classical probability density almost everywhere; in the vicinity 

of the turning points, however, this intensity remains finite as it deviates from the classical 
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behavior (which is singular). This result is due to the fact that the asymptotic phase space 

density (12) incorporates the wave broadening of the classical torus. (One should compare 

this with the asymptotic form of the Wigner function 4 in this case, which becomes singular 

like the classical density on the classical torus.) In some experimental applications, this 

result is preferable to either the purely wave solution (which exhibits a rapidly oscillating 

phase) or the purely classical solution (woir:h is si lgular at caustics). The phase may be 

obtained from (2) if desired. 

N atur3.Ily, one should not place too much emphasis on the success of a method when 

applied to the harmonic oscillator problem. Nevertheless, we suggest that the structure 

of this theory, which is based on the asymptotic analysis of a wave equation in phase 

space (where caustics are absent), holds the promise of producing a nonsingular uniform 

approximation to yp(x) in a typical problem. In this regard, we note that a similar result has 

been obtained (also for the harmonic oscillator) from the study of canonical transformation 

theory of the coherent state formalism by Weissman. 12 Another advantage of this approach 

is that k is treated as an independent variable (rather than the gradient ·of the phase as 

in coO:ventional eikonal methods); this may provide a basis for treating waves associated 

with chaotic rays (where k(x) is not defined). The procedure given can be easily extended 

io N dimensions; although this method doubles the number of independent variables, the 

problem is ultimately reduced to N complex dimensions. 

I would like to thank A. N. Kaufman, A. Weinstein andY. Weissman for many helpful 

discussions. 
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Figure Captions 

FIG. 1. Comparison of configuration space probability densities (wave intensities) for the 

harmonic oscillator state n = 60. Solid oscillatory curve is exact I tP6o ( x) 12
, dotted singular 

curve is exact classical ray probability density, and solid non-oscillatory curve is (ltP6o(x)l 2
), 

the gaussian-smoothed wave intensity obtained by projecting P60 (x, k) (with CT = a- 1 ) from 

phase space onto x-space . 
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