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Chitinolytic enzymes contribute 
to the pathogenicity of Aliivibrio salmonicida 
LFI1238 in the invasive phase of cold-water 
vibriosis
Anna Skåne1, Per Kristian Edvardsen1, Gabriele Cordara2, Jennifer Sarah Maria Loose1, Kira Daryl Leitl2, 
Ute Krengel2, Henning Sørum3, Fatemeh Askarian4*† and Gustav Vaaje‑Kolstad1*† 

Abstract 

Background: Aliivibrio salmonicida is the causative agent of cold‑water vibriosis in salmonids (Oncorhynchus mykiss 
and Salmo salar L.) and gadidae (Gadus morhua L.). Virulence‑associated factors that are essential for the full spectrum 
of A. salmonicida pathogenicity are largely unknown. Chitin‑active lytic polysaccharide monooxygenases (LPMOs) 
have been indicated to play roles in both chitin degradation and virulence in a variety of pathogenic bacteria but are 
largely unexplored in this context.

Results: In the present study we investigated the role of LPMOs in the pathogenicity of A. salmonicida LFI238 in 
Atlantic salmon (Salmo salar L.). In vivo challenge experiments using isogenic deletion mutants of the two LPMOs 
encoding genes AsLPMO10A and AsLPMO10B, showed that both LPMOs, and in particular AsLPMO10B, were impor‑
tant in the invasive phase of cold‑water vibriosis. Crystallographic analysis of the AsLPMO10B AA10 LPMO domain 
(to 1.4 Å resolution) revealed high structural similarity to viral fusolin, an LPMO known to enhance the virulence of 
insecticidal agents. Finally, exposure to Atlantic salmon serum resulted in substantial proteome re‑organization of the 
A. salmonicida LPMO deletion variants compared to the wild type strain, indicating the struggle of the bacterium to 
adapt to the host immune components in the absence of the LPMOs.

Conclusion: The present study consolidates the role of LPMOs in virulence and demonstrates that such enzymes 
may have more than one function.
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Background
Aliivibrio salmonicida (Vibrio salmonicida before trans-
fer to genus Aliivibrio) is the causative agent of cold-water 
vibriosis (CWV) in salmonids (Oncorhynchus mykiss and 
Salmo salar L.) and gadidae (Gadus morhua L.), an acute 
infectious disease consistent with severe hemorrhagic sep-
ticemia [1–4]. Once the pathogen enters the bloodstream 
[5], A. salmonicida can disseminate in many sites, e.g. sinu-
soids of the head kidney/lymphoid organ, leukocytes, and 
endothelial cells [6], and even actively proliferate in blood 
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upon passing a latent stage [5, 7, 8]. Notably, histopatho-
logical changes caused by the bacterium are found to be 
associated with the bacterial burden [6]. Although CWV 
is under control by vaccination, virulence-associated fac-
tors that are essential for the full spectrum of A. salmoni-
cida pathogenicity are largely unknown. So far, in vitro and 
in vivo studies have demonstrated that the salinity-sensi-
tive quorum-sensing regulator LitR [9], LPS O-antigen 
[10], motility/flagellation [11], and the lux operon [12] are 
required for full virulence of A. salmonicida.

Chitinolytic enzymes include chitinases (glycoside 
hydrolases 18 and 19 (GH18 and GH19)) and lytic polysac-
charide monooxygenases (LPMOs), with the latter classi-
fied in the auxiliary activities 10 family (AA10) according 
to  classification by the Carbohydrate Active Enzymes 
database (CAZy [13]). Such enzymes are associated with 
the modification, binding, depolymerization, and catabo-
lism of chitin [14–18]. LPMOs were discovered in 2010 
[18], and thus represent a recent addition to the chitin 
degradation machinery. These copper-dependent, redox 
enzymes cleave chitin chains by an oxidative reaction 
and synergize with chitinases in chitin degradation reac-
tions [18–21]. Intriguingly, genes encoding LPMOs are 
found in an array of pathogenic bacteria [22], and there is 
an extensive amount of literature implicating their role in 
numerous biological processes including bacterial patho-
genicity [22–30]. Direct evidence for a role of LPMOs in 
virulence was recently published by Askarian et  al., who 
showed that the LPMO of the opportunistic human patho-
gen Pseudomonas aeruginosa, called CbpD, was impor-
tant for establishing systemic- and lung infections, where 
the role of the enzyme was attributed to attenuation of the 
terminal cascade of the complement system [31]. The lat-
ter study showed that deletion of the cbpd gene prevented 
P. aeruginosa from establishing a lethal systemic infection 
in mice and that this correlated with increased clearance 
of the bacterium in vivo and re-organization of the bacte-
rial proteome in vitro. Further, it was found that an intact 
active site was essential for CbpD function. A somewhat 
different role has been proposed for the Vibrio cholerae 
LPMO, GbpA, which binds chitin and mucins, mediat-
ing bacterial colonization of epithelial cell surfaces [32]. 
Similar to LPMOs, chitinases have also been indicated 
as virulence factors. For example, Listeria monocytogenes 
ChiA was found to promote bacterial viability within the 
liver and spleen of mice [25], and the chitinase (ChiA) of 
Legionella pneumophila has been shown to enhance bacte-
rial persistence in the lungs of mice in vivo [33]. Recently, 
it has been shown that L. pneumophila ChiA is involved 
in hydrolysis of the peptide bonds of mucin-like proteins 
[34], suggesting novel mechanisms of mucin degradation.

The A. salmonicida LFI1238 genome harbors genes 
encoding two family AA10 LPMOs (AsLPMO10A, 

AsLPMO10B) and one chitinase GH18 (AsChi18A). The 
two LPMOs are relatively dissimilar, showing only 20% 
sequence identity when aligning the catalytic domains. 
All three enzymes can depolymerize chitin and are 
important for the ability of the bacterium to utilize chitin 
as a nutrient source [35]. However, the authors noticed 
several features that could indicate additional roles of the 
enzymes, for instance a remarkably low chitinolytic activ-
ity of the chitinase, and the chitin-independent expres-
sion of AsLPMO10A (this protein is one of the most 
abundant proteins produced by the bacterium) [35]. In 
addition, the whole genome sequencing analysis of A. sal-
monicida LFI1238 had previously shown several points of 
mutation or insertion of mobile genetic elements within 
crucial genes associated with the chitinolytic machinery 
(e.g. several chitinases, a chitoporin and a protein impor-
tant for regulating expression of the chitin degradative 
loci [36]). Cumulatively, these results suggest the contri-
bution of the chitinolytic enzymes to other or additional 
functions beyond chitin degradation and utilization by A. 
salmonicida. Thus, the current work set out to elucidate 
the putative immune evasive properties of AsLPMO10A 
(A) and AsLPMO10B (B) in A. salmonicida pathogenesis 
during CWV in Atlantic salmon. Using a series of iso-
genic mutants (△A, △B and △AB), we found that the 
LPMOs contributed to the pathogenicity of A. salmoni-
cida in the invasive phase of CWV.

Results
Phylogenetic analysis
The sequence and biochemical properties of AsLMO10A 
and AsLPMO10B have previously been biochemically 
characterized [35] but their putative orthologs in other 
fish pathogens are not known. To determine the latter 
and to simultaneously obtain an overview of LPMOs in 
bacteria associated with fish disease, the genomes of fish 
pathogens [37] were scanned for LPMO-encoding genes 
that subsequently were subjected to phylogenetic analy-
sis (Fig. 1). The analysis showed that LPMOs are present 
in the majority of aerobic Gram-negative bacteria inves-
tigated, but to a lesser extent in Gram-positives. AsLP-
MO10A clusters with LPMOs from a variety of bacterial 
families, whereas AsLPMO10B clusters with representa-
tives mostly restricted to the Vibrionaceae. The analysis 
does not show clustering indicative of horizontal gene 
transfer but rather indicates that the LPMO paralogs 
were present in an ancestral Vibrionaceae bacterium.

Proteomic profiling
Gene deletions may induce alterations in protein regu-
lation by the bacterium to adapt to this impairment. 
Such re-organization can be readily visualized by com-
paring the proteomic response of wild-type (WT) and 
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gene-deletion variants confronted with host factors. 
Thus, comparative label-free quantitative proteomics 
was used to determine the putative proteomic response 
of wild type, ΔA, ΔB and ΔAB strains when exposed to 
Atlantic salmon serum (SS). The bacteria were grown 
to early exponential phase and incubated for 1  h in the 
absence or presence of SS, prior to being harvested. In 

total, 1725 proteins were identified, corresponding to 
almost half of the predicted proteome of A. salmonicida 
(Dataset 1).

The whole-cell proteomes of the deletion mutants were 
compared to that of the wild type in the absence and 
presence of SS. The comparison showed significant regu-
lation of 61 (∆A), 27 (∆B) and 32 (∆AB) and 46 (∆A) and 
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70 (∆B) and 94 (∆AB) in the absence or presence of SS, 
respectively (Fig. 2A). In the absence of SS, the most sig-
nificantly upregulated protein was RpoC (DNA-directed 
RNA polymerase subunit) for ΔB and ΔAB and Rne 
(ribonuclease) for ∆A (Dataset 2). Beside RpoC, RpoB 
(DNA-directed RNA polymerase subunit) and Rne was 
found to be among the top three upregulated proteins in 
most of the deletion mutants (Dataset 2 and 3).

In the presence of SS, RpoC was one of the most 
upregulated proteins for all strains (similar to what 

was observed in bacteriologic medium), in addition to 
ValS (Valine-tRNA ligase), SucA (oxoglutarate dehy-
drogenase) and AlaS (Alanine-tRNA ligase; Fig.  2B). 
Also, several proteins related to motility, chemotaxis, 
quorum sensing and stress response were identified 
as significantly regulated (Fig.  2C, Dataset 2). The 
ΔA deletion strain resulted in up-regulation of CheW 
(chemotaxis protein), CheA (phosphorelay protein 
LuxU) and FlgL (flagellar P-ring protein). The latter 
protein was identified as up-regulated in all deletion 
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variants after exposure to SS (Fig.  2B), whereas in 
absence of SS, it was downregulated in the ΔB strain 
(Fig.  2C). Moreover, exposure to SS resulted in up-
regulation of FlhF (flagellar biosynthesis protein), LuxI 
(autoinducer synthesis protein) and chaperone protein 
HtpG in the ∆B and ∆AB strains. Proteins related to 
stress response were down-regulated in ΔA (e.g. CatA 
(catalase), TrxB (thioredoxin reductase), CspV (cold 
shock protein)) and ΔB (e.g. Bcp (putative peroxire-
doxin), TrxB and VSAL_I1529 (putative glutaredoxin)) 
in presence of SS (Fig. 2C, Dataset 2). Notably, proteins 
with peptidase- and protease-related activity were 
identified as differentially regulated both in absence 
and presence of serum. Specifically, in absence of SS, 
deletion of AsLPMO10A resulted in up-regulation of 
Prc (tail-specific protease) and SohB (probable pro-
tease), and down-regulation of HslU (ATP-dependent 
protease ATPase subunit) compared to the wild type 
(Fig. 2C, Dataset 2). It should be noted that HslU has 
an indirect protease activity as it is a subunit of the 
heat-shock locus HslV-HslU complex associated with 
the proteasome of many bacteria [40, 41].

After incubation with SS, Lon protease and PepB 
(peptidase B) were up-regulated in ΔA and ΔAB, 
respectively. The protein called BsmA, involved in cell 
aggregation for biofilm development, was found to be 
down-regulated in the ∆B deletion mutant (Fig.  2C, 
Dataset 2). Host integration factor subunit B (IhfB) 
was down-regulated in ΔA and ΔAB in presence of 
SS compared to the wild-type, while subunit A (IhfA) 
was up-regulated in ∆B compared to the wild-type 
(Fig. 2C, Dataset 2). Notably, the host integration fac-
tor is implicated in regulation of virulence-related fac-
tors in V. cholerae [42], Vibrio vulnificus [43] Vibrio 
harveyi [44] and Vibrio fluvialis [45]. Interestingly, the 
transposon VSAL_I0029 was up-regulated in both ∆B 
and ∆AB in the presence of SS. The function of this 
transposon is not known; however, it is located closely 
to a reported T6SS effector VSAL_I0031 [46]. This 
gene encodes a so-called MIX (Marker for type sIX) 
effector, and these effectors have C-terminal domains 
predicted to contain different antibacterial or anti-
eukaryotic properties [46]. Finally, AsLPMO10B was 
not detected in any samples, whereas AsLPMO10A 
was observed in both the wild-type and ∆B (but not 
significantly regulated in any condition).

Together, these data indicate that deletion of the 
LPMO encoding genes in A. salmonicida results in a 
substantially altered proteome response compared to 
wild type. Moreover, the number of differentially regu-
lated proteins in the ΔB and ΔAB strains were remark-
ably increased in the presence of SS.

In vivo immersion challenge experiments to establish 
bacteremia
To provide insight into the contribution of LPMOs in the 
virulence properties of A. salmonicida, an immersion 
challenge was carried out using the wild type and dele-
tion variants (ΔA, ΔB, ΔAB). In an experiment using a 
total of 1340 Atlantic salmon smolts, fish were immersed 
in a high concentration of A. salmonicida variants for 
30 min, followed by water exchange (Fig. 3A). Immersion 
in approximately 1.2–2.7 ×  107  CFU/mL wild type and 
gene deletion strains resulted in a persistent bacteremia 
(Figs.  3 and 4) without exhaustive killing (Fig.  3B). The 
examined conditions resulted in a low number of accu-
mulated mortalities (below 10%) in the wild type and 
deletion strains over the course of the challenge (Fig. 3B). 
Furthermore, the employed concentrations resulted in 
successful establishment of bacteremia as all sampled 
fish were positive for presence of A. salmonicida in blood 
10  min post-infection (Fig.  3C). The presence of fin rot 
was observed evenly within all treatments but did not 
contribute to an extensive rate of mortality as reflected in 
the mock treatment (Fig. 3B).

Bacterial burden in blood
Fish challenged with wild type, ΔA, ΔB and ΔAB, and 
sampled at multiple time points post-challenge showed 
the presence of A. salmonicida in a various degree 
throughout the complete sampling period, indicating the 
successful establishment of CWV in our experimental 
condition (Figs. 4 and 5). A decrease of the bacterial num-
ber in whole salmon blood was observed between days 
1–6 compared to 1 h post-challenge in wild type, ΔA, ΔB 
and ΔAB infected fish (Fig. 4). At 8 days post infection, 
the group challenged with the wild type strain showed 
large individual variation and a significant increase in 
bacterial burden compared to the ΔB mutants but not 
ΔA and ΔAB infected fish (Fig. 4). The ΔB strain gener-
ally showed lower individual variation and lower CFU/ml 
blood compared to the other strains at days 10–13 post 
infection, indicating some loss of resistance towards host 
blood immune components.

Taken together these data indicate that in general 
AsLPMO10A and -B were not critical for the viability and 
survival of A. salmonicida in salmon blood in the early- 
or late- stage of infection in vivo, albeit AsLPMO10B was 
found to be important in the invasive phase of CWV.

Bacterial burden in tissues and organs
Next, samples were taken from the various tissues and 
organs to evaluate whether LPMOs were critical for 
viability of A. salmonicida in organs over the course of 
chronic CWV infection. Assessing the bacterial burden 
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revealed that despite A. salmonicida being absent in skin 
and gills of the sampled fish at day 1–6 post-infection, 
wild type and ΔA were reisolated from all sampled fish 
at 8 days post challenge (Fig. 5A, panels 1–2). In the ΔB 
and ΔAB infected groups, the reisolation was estimated 
60–80% and 20–30%, respectively (Fig. 5A, panels 1–2). A 
quantitative analysis of bacterial burden in the spleen and 
liver revealed significant increase in the reisolated wild-
type compared to the ΔB and ΔAB mutant strains 8 days 
post-challenge (Fig.  5B, right and left panels). Interest-
ingly, the number of reisolated ΔA strain was attenuated 
in the spleen (Fig. 5B, right panel), but not liver (Fig. 5B, 
left panel) at day 8 post-infection. All infected groups 
showed reduced reisolation of A. salmonicida from skin, 
gills, head kidneys, liver and spleen at the later time-
points as the CWV entered into the decline phase. Of 
note, the ΔB strain was not detected in sampled organs 
after 8 days post challenge, whereas the ΔAB strain was 
detected at levels similar to fish challenged with the wild 
type (Fig.  5A). In summary, these data demonstrate the 
importance of AsLPMO10A and -B in the invasive phase 
of CWV caused by A. salmonicida.

Structure of AsLPMO10B
A structural investigation of AsLPMO10B was initiated to 
find a rationale for its apparent role as a facilitator during 

host invasion. The X-ray crystal structure of the family 
AA10 LPMO domain of the protein (amino acid resi-
dues 26–214; Fig. 6A) was solved to a resolution of 1.35 Å 
(R/Rfree = 13.9/16.2%; Table  S1) and deposited in the 
Protein Data Bank (PDB; PDB ID: 7OKR). AsLPMO10B 
carries the canonical [47] fibronectin-like/immunoglobu-
lin-like β-sandwich core structure found in other LPMOs 
(Fig.  6B), consisting of seven β-strands arranged as two 
juxtaposing β-sheets. The β-sandwich supports the histi-
dine brace catalytic motif (His26, His136) and the puta-
tive co-substrate coordinating amino acid (Glu206), 
which shows conformational heterogeneity and was 
modeled in two alternative conformations (Fig. 6C). The 
histidine brace is loaded with a copper ion, as confirmed 
by anomalous scattering, an expected consequence of the 
sample preparation process. Copper shows an incom-
plete square planar coordination, hinting at the presence 
of Cu (I) at the metal-binding site. The latter is likely a 
consequence of the well-documented photoreduction of 
Cu (II) during X-ray data collection [48]. The model also 
contains 109 water molecules from the first and second 
coordination sphere and three polyethylene glycol frag-
ments (PEG) from the crystallization conditions. We also 
observe electron density “above” the copper site (Fig. S1), 
where the putative ligand would bind, which may rep-
resent a citrate molecule from the buffer. A search for 
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structural homologues was run on the DALI server [49] 
(ekhidna2.biocenter.helsinki.fi/dali), using the coordi-
nates of the new LPMO domain. The list of results con-
tains matches from various members of the LPMO AA10 
subfamily, confirming its correct genomic assignment. 
A visual inspection of the structural alignment with the 
top ten hits helped to further refine the assignment to 
the subcluster 2 described by Vaaje-Kolstad et A. [47]. 
In particular, the distinctive loop 2 (L2) of subcluster 2 
is conserved in AsLPMO10B. This subcluster includes 
members that display substrate promiscuity for either 
chitin or cellulose. The match with the highest score (Z 
score: 27.2, r.m.s.d.: 1.8 Å) was Tma12, a putative AA10 

LPMO from the fern Tectaria macrodonta (PDB ID: 
6IF7; sequence identity: 33%). Tma12 has been proven 
to shield its host from predators by exerting an entomo-
toxic activity [50]. Their structural superposition reveals 
a possible site for AsLMPO10B O-linked glycosylation at 
Thr166, matching the N-linked glycosylation of Tma12 at 
Asn158. A PEG molecule modeled in close proximity of 
Thr166 partially superposes with the polar groups of the 
N-linked glycan decorating Tma12, further supporting 
the hypothesis of O-glycosylation.

The AA10 module of AsLPMO10B also matches sev-
eral members of subcluster 4, which groups together 
LPMOs of viral origin. Among them is fusolin from 
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insect poxviruses (PDB ID: 4YN2 [51]) which has 36% 
sequence identity to AsLPMO10B and therefore was 
used as a model for solving the structure (see Materi-
als and methods). Their structural alignment (r.m.s.d.: 
1.5 Å) shows the conservation of a tryptophan residue 
on the far edge of L2 (Trp46, Fig. 6D). This tryptophan 
side chain is oriented parallel to the substrate bind-
ing surface and is positioned similar to the tyrosine 
residue essential for catalysis in the cellulolytic Panus 

similis LPMO9A (Tyr203). In PsLPMO9A, Tyr203 is 
carried by the long C-terminal loop (LC), absent in 
both AsLPMO10B and fusolin, and provides a stacking 
interaction with the cellulose substrate (Fig. 6D; (PDB 
ID: 5ACI) [52]). Interestingly, LPMOs that possess 
both the C-terminal loop and L2, as the Thermoas-
cus aurantiacus GH61 isozyme A (PDB ID: 2YET) 
[53], exhibit aromatic amino acids on both loops, at 
the position occupied by Trp46 in AsLPMO10B and 
Tyr203 in fusolin (Fig. 6D).
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Discussion
To gain insight into the potential roles of chitinolytic 
enzymes in virulence, the current study set out to elu-
cidate the putative immune evasive properties of AsLP-
MO10A and AsLPMO10B in the pathogenesis of A. 
salmonicida in Atlantic salmon. Given the putative role 
of LPMOs in mucin binding and attachment of bacteria 
to mucosal surfaces [32, 54], we hypothesized that AsLP-
MO10A and -B could be harnessed in the initial phase 
of binding to and penetration of the host outer barrier. 
The fact that the A. salmonicida LPMOs are chitin-
degrading enzymes [35], combined with the proposed 

presence of chitin in Atlantic salmon scales [55] makes 
this hypothesis attractive and highly relevant. A chal-
lenge model able to probe all phases of pathogenesis was 
therefore chosen, namely an immersion challenge where 
the Atlantic salmon smolts were exposed to A. salmo-
nicida in the aqueous environment. Considering that 
rapid disease development and high mortality may mask 
potential differences between groups, the selected sub-
lethal infection dose was aimed to establish bacteremia 
without exhaustive killing. Our results indicate that nei-
ther of the LPMOs are critical for A. salmonicida in pass-
ing the outer barrier since all fish were positive for the 
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presence of A. salmonicida wild type and deletion vari-
ants after 10 min in the challenge bath, and no significant 
difference between the groups was observed (Fig.  3C). 
However, the LPMOs were found to be important for 
the invasive phase of CWV. Particularly AsLPMO10B 
showed a significantly lower bacterial burden in blood, 
spleen and liver compared to the wild type strain 8 days 
post challenge (Figs. 4 and 5). Similar observations were 
made for the opportunistic pathogen Listeria monocy-
togenes, where an LPMO deletion strain was attenuated 
in the spleen and liver three days post systemic infection 
in mice [25]. The P. aeruginosa LPMO (called CbpD) was 
found to be important for pathogenesis of P. aeruginosa 
over the course of systemic infection via attenuation of 
the terminal complement pathway [31]. Neither AsLP-
MO10A or -B are very similar to CbpD (25.6 and 28.4% 
sequence identity, respectively), but AsLPMO10A con-
tains a C-terminal family CBM73 chitin binding domain 
similar to CbpD (Fig. 6A). Moreover, we note the struc-
tural similarity of the AsLPMO10B AA10 domain with 
the chitin-active AA10-domain of viral fusolin, an LPMO 
that strongly enhances the infectivity of entomopoxvi-
ruses [51, 56, 57], indicating shared structural features 
that enable an LPMO to enhance the virulence of a 
pathogen.

An interesting trait of A. salmonicida is its possession 
of two distinctly different LPMOs. Several other patho-
gens also share this trait, but many also only carry a 
single LPMO in their genome (Fig.  1), including P. aer-
uginosa for which the LPMO clearly is a virulence factor 
[31]. Can it be that the two LPMOs have different func-
tions? Both A. salmonicida LPMOs cleave chitin chains 
by oxidation and contribute to chitin catabolism [35]. On 
the other hand, AsLPMO10A is expressed at high abun-
dance in the absence of chitin and has shown a slightly 
higher rate of chitin oxidation compared to AsLPMO10B 
[35]. In the context of the slightly different phenotypes 
observed for the AsLPMO10A and-B deletion variants in 
this study, it is not unlikely that these LPMOs play differ-
ent roles in A. salmonicida pathogenesis.

LPMO deletion variants showed an altered proteome 
response compared to the wild type, in the presence 
and absence of Atlantic salmon serum (Fig. 2). Intrigu-
ingly, the ΔB and ΔAB strains showed a remarkably 
higher number of significantly regulated proteins in the 
presence of the serum compared to the absence of the 
latter (Fig.  2, panel A). Moreover, general regulation 
of stress response related proteins, chemotaxis related 
proteins (ΔA strain), and up-regulation of LuxI in the 
ΔA and ΔAB strains are intriguing observations (Fig. 2, 
panel C). The latter protein, LuxI, is important for the 
regulation of motility and biofilm formation [58]. It 
should be noted that a substantial proteome alteration 

was also observed for the P. aeruginosa LPMO deletion 
strain when exposed to human serum (compared to the 
wild type; [31]), indicating the struggle of the patho-
gens to interfere with host immune responses when 
lacking the LPMO(s).

In conclusion, we have shown that the LPMOs of A. 
salmonicida may be moonlighting enzymes that not 
only contribute to chitin catabolism [35], but also play 
a role in the pathogenicity of the bacterium in the inva-
sive phase of CWV in Atlantic salmon. Many LPMOs 
and chitinases of opportunistic pathogens have been 
shown to depolymerize chitin and also to contribute to 
chitin catabolism of the bacterium [59, 60]. Therefore, it 
is likely that chitinolytic enzymes not merely have func-
tions for acquisition of nutrients, but also for protec-
tion of the bacteria towards host defense mechanisms.

Materials and methods
Bacterial strains
A. salmonicida strain LFI1238 originally isolated from 
the head kidney of an Atlantic cod that died from 
CWV, and derivative mutant strains (Table  1) were 
routinely cultivated at 12 °C in liquid Luria Broth (LB) 
supplemented with 2.5% sodium chloride (LB25; 10 g/L 
tryptone, 5  g/L yeast extract, 12.5  g/L NaCl) or solid 
LB25 supplemented with 15  g/L agar powder (LA25). 
In-frame deletion of AsLPMO10A, AsLPMO10B and 
AsLPMO10A△10B and genes in strain LFI1238 were 
described in our previous study [35].

Atlantic salmon challenge
All experiments were carried out at the Norwegian 
Institute for Water Research (NIVA, Solbergstrand, 
Norway). Fish were monitored daily and upon showing 
clinical signs of disease during the experimental period 
were collected and euthanized by an overdose of Ben-
zoak® (ACD Pharmacuticals As, Leknes, Norway).

Table 1 List of bacterial strains

a Originally isolated by the Norwegian Institute of Fisheries and Aquaculture 
Research, N-9291 Tromsø, Norway, but provided by Simen Foyn Nørstebø for 
this study
b [35]

Strain Description Ref

LFI1238 Aliivibrio salmonicida strain LFI1238 a

AsΔLPMO10A LFI1238 containing gene deletion ΔLPMO10A b

AsΔLPMO10B LFI1238 containing gene deletion ΔLPMO10B b

AsΔLPMO10A/Δ10B LFI1238 containing gene deletions 
ΔLPMO10A and ΔLPMO10B

b
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Challenge procedures
The challenge involved 1340 unvaccinated Atlantic 
salmon parr (average weight 60 g), which were obtained 
from Center for Fish Research, Department of Animal 
and Aquacultural Sciences, NMBU. Fish were trans-
ported according to the Norwegian Regulations on trans-
port of Aquatic Animals and allocated in their designed 
experimental groups. Ahead of the immersion chal-
lenges, parr-smolt transformation was induced by gradu-
ally increasing the salinity of the tank water from 12 to 
33 ppm over a period of 11 days, followed by one-week 
acclimation at 33 ppm. Fish were kept in separate tanks 
(1400 L) with flow-through of sea water from the Oslof-
jord (45–50  m depth). The average temperature and 
salinity of intake water was 9.9 °C and 33.5 ppm respec-
tively. The fish were fed a rate corresponding 1% of the 
biomass.

The challenge was carried out using 1260 animals 
randomly divided into 4 experimental groups of 295 
fish and one control group (80 fish). The control group 
was mock challenged with Luria Broth supplemented 
with 3% NaCl (LB3). The water level was first lowered 
to 350–400 L. Water intake was temporarily stopped, 
and ~ 4 L cultures of wild type A. salmonicida LFI1238 
or LPMO gene deletion strains ΔAsLPMO10A, 
ΔLPMO10B and ΔAsLPMO10AΔLPMO10B were 
added directly to the fish tanks. After 30 min the water 
intake was re-opened and increased to 700 L/h. Water 
samples were collected before re-opening the water 
intake. Five to ten live fish from each experimental 
group were sampled from 10  min into the challenge 
bath and up to 19 days post challenge. The smolts were 
monitored for 36 days.

Obtaining blood samples from infected fish
For collection of blood samples, fish were anesthetized in 
a water bath containing benzocaine (Benzoak Vet, ACD 
Pharmaceuticals AS). Blood was sampled from the caudal 
vein using the VACUETTE® system and VACUETTE® 
4 mL NH Sodium Heparin tubes (Greiner bio-one), 100 
and 10 µl of sampled blood was immediately spread onto 
LA25 in duplicates and incubated at 12 °C 3–5 days.

Evaluation of bacterial burden in tissues and organs
The bacterial burden was monitored by collection of bac-
teriological samples 1 h, 4 h, 1 day, 2 days, 4 days, 6 days, 
8 days, 10 days, 13 days, 16 days and 19 days post chal-
lenge. Samples were collected from skin, gills, spleen, 
liver and head kidney by using 1  µl sterile disposable 
inoculation loops (Sarstedt) and patching on LA25 in 
the following order; midline of skin, outermost lamella 
of gills, dissection and puncture of spleen, liver and head 
kidney. Plates were incubated 4–5 days at 12 °C.

Persistence of the bacterium in tissue
Tissue intended for RNA isolation was dissected using 
sterile scalpels and disposable forceps (VWR Interna-
tional), washed twice in Dulbecco’s Phosphate Buffered 
Saline (PBS, Sigma-Aldritch) and transferred to 15  mL 
Falcon tubes containing 1–2  mL of protect® Bacteria 
Reagent (Qiagen). For determination of CFU/mg, the 
samples were transferred to 2  mL FastPrep® tubes (MP 
Biomedicals) pre-prepared with 100  µl sterile 1.4  mm 
ceramic beads (OMNI International) and 200 µl PBS. The 
tubes were weighed before and after sampling, homog-
enized by using FastPrep (MP Biomedicals), 4 ms, 3 × 5 s. 
Volumes of 100 and 10  µl were spread onto LA25 in 
duplicates and incubated at 12 °C for 3–5 days before cal-
culation of colony forming units/ (mg organ) (CFU/mg).

Necroscopy
Euthanized and deceased fish were autopsied to deter-
mine the cause of death. External and internal signs were 
examined, and bacterial samples taken from the head 
kidney, liver and spleen unless otherwise stated. The bac-
teriological samples were taken by puncturing the organs 
with 1  µl sterile disposable inoculation loops (Sarstedt) 
and streaking onto LA25. A. salmonicida was recovered 
from the head kidney, spleen and liver, in bacteriological 
samples taken during necroscopy. Culture results were 
evaluated together with pathological changes such as 
external and internal hemorrhages, fluid in cavity, dis-
colored liver and swollen spleen.

Proteomics
Starter cultures of wild type, ∆A, ∆B and ∆AB were 
grown in LB25, in triplicate, for 48  h at 10  °C with 
shaking. Next, the cultures were diluted in LB25 to 
an OD600 of 0.1 and grown until they reached early 
logarithmic phase  (OD600nm = 0.4–0.5). After reach-
ing early logarithmic phase, the cultures were split in 
two and incubated for 1 h in the absence or presence of 
1% Atlantic salmon serum (SS). Thereafter, 1 mM beta-
glycerophosphate (Sigma), 1  mM sodium orthovana-
date (Sigma), 20  mM sodium pyrophosphate (Sigma), 
1  mM phenylmethylsulfonyl fluoride (PMSF, Sigma), 
and 1 × Complete Mini EDTA-free protease inhibitors 
(Roche) were added to the samples. The bacterial pel-
lets and supernatants were separated by centrifugation 
(4500 × g, 15 min, 4 °C). The pellets were washed once 
with PBS and centrifuged, before being resuspended in 
lysis buffer containing 20 mM Tris–HCl (pH 7.5), 0.1 M 
NaCl, 1  mM EDTA, 1 × Complete Mini EDTA-free 
protease inhibitors, and lysozyme (0.5  mg·ml−1). Cells 
were disrupted by sonication (20 × , 5 s off-5 s on, 26% 
amp), and the cellular debris was cleared by centrifuga-
tion (4500 × g, 30 min, 4 °C).
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The protein samples were boiled in NuPAGE LDS 
sample buffer and 30  mM dithiothreitol (DTT) for 
5 min before being loaded onto Mini-PROTEAN® TGX 
Stain- Free™ Gels (Bio-Rad laboratories, Hercules, CA, 
USA). The gels were run at 200  V for 5–10  min using 
the BIO-RAD Mini-PROTEAN® Tetra System. The gels 
were stained with Coomassie brilliant blue R250 and cut 
into small gel pieces, which were transferred to 2  mL 
LoBind tubes. The gel pieces were washed in 200 µL of 
water for 15 min and decoloured by 200 µL 50% acetoni-
trile (ACN), 25  mM ammonium bicarbonate (AmBic) 
at room temperature (RT) for 15  min. Decolouring was 
performed twice. After washing and decolouring, the gel 
bits were left to shrink and dehydrate for 5 min in 100 µL 
100% ACN. In order to reduce and alkylate the proteins, 
the gel pieces were first incubated for 30 min at 56 °C in 
a solution containing 10 mM DTT and 100 mM AmBic, 
and then with 55  mM iodo-acetamide and 100  mM 
AmBic for 30 min at RT. Thereafter, the gel pieces were 
dehydrated using 100% ACN and digested overnight at 
37 °C in a solution containing 0.3 µg of trypsin. The next 
day, the digestion was stopped by adding 70 µL 0.5% tri-
fluoroacetic acid (TFA). For peptide extraction, the gel 
pieces were sonicated for 10 min and afterwards centri-
fuged (16  000 × g, 5  min). The supernatants were then 
transferred to the StageTips for desalting. This proce-
dure was repeated once more, however for the second 
round the gel pieces were added 70 µL 0.1% TFA before 
sonication.

For desalting and cleaning up the extracted peptides, 
StageTips were used. These were made accordingly: 
Using an 18 g blunt-ended needle, two pieces of Empore 
C18 membrane (6683-U, Sigma) were cut out. By a length 
of 1/32″ peeksil capillary or equivalent, the membrane 
pieces were pushed firmly into a 200 µl pipette tip. The 
StageTips were mounted onto LoBind tubes, by a hole 
in the lids, which were cut out beforehand [61]. The tips 
were activated by transferring 50 µL of methanol to the 
tips. Afterwards, the tubes were centrifuged (2500 × g, 
5  min), and the flowthrough was discarded. For equili-
bration, 100 µL of 0.1% TFA were added and centrifuged 
as before. The flowthrough was discarded, and the pep-
tide solution was loaded into the tips after sonication, 
as described in the previous Sect.  100 µL of 0.1% TFA 
were added, centrifuged as earlier, and the flowthrough 
removed. For eluting the peptides, 50 µL of a solution 
containing 80% ACN and 0.1% TFA were added and cen-
trifuged as above. The peptides were evaporated using a 
SpeedVac system until dryness. Afterwards, the peptides 
were redissolved in 12 µL of a solution containing 0.05% 
TFA and 2% ACN.

The peptides were separated by a nano UPLC (nanoE-
lute, Bruker) operating a C18 reverse-phase column, 

using a pre-installed program with a 120  min gradient, 
and analyzed by a trapped ion mobility spectrometry and 
a quadrupole time of flight mass spectrometer (timsTOF 
Pro, Bruker). 200 ng of each sample was loaded into the 
UPLC MS/MS system. The raw files were processed with 
MaxQuant (version 1.6.17.0) for label-free quantification 
(LFQ) and searched against the UniProt A. salmonicida 
proteome: UP000001730. The digestion mode was set to 
specific with Trypsin/P as the digestive enzyme, and a 
maximum of two missed cleavages were allowed. “Match 
between runs” was applied using default parameters and 
the peptides were filtered with a 1% level false discovery 
rate (FDRs) using a revert decoy database. Carbamido-
methylation of cysteines were included in the search as a 
fixed modification, while protein N-terminal acetylation, 
oxidation of methionines and deamidation of glutamines 
were included as variable modifications. For data analysis 
Perseus version 1.6.15.0 was used, and the quantitate val-
ues were  log2 transformed. Valid values were filtered with 
minimum 2 values in each group for each of the com-
parisons, and missing values were imputed. Significantly 
up- or downregulated proteins were determined by per-
forming Student’s t-test (p = 0.05). For the volcano plots, 
differentially expressed proteins were defined by having 
p-values of ≤ 0.05  (log10 = 1.3) and log2 fold change > 1.5 
 (log2 = 0.58).

Protein production and purification
The AA10 domain of AsLPMO10B was subcloned in 
the pNIC expression vector by adding a stop codon 
directly after the codon representing amino acid 217 
(D217) in the original AsLPMO10B expression construct 
described in [35]. Expression and periplasmic extrac-
tion of the protein was performed identically to the pro-
tocol described in [35]. The protein was purified using 
a three-step protocol with chilled buffers and columns 
or at 4  °C. First, the periplasmic extract was adjusted to 
the IEX running buffer (20  mM MES pH 5.5, 0.1  mM 
EDTA) and loaded onto an equilibrated 5 mL HiTrap Q 
FF column (Cytiva) with a flow rate of 6 mL/min. After 
unbound protein had passed the column, the bound pro-
tein was eluted by applying a linear gradient to 500 mM 
NaCl in 250  mL. Fractions containing AsLPMO10B 
were collected, adjusted to the HIC running buffer (1 M 
 (NH4)2SO4, 20  mM Tris–HCl pH 8.0, 0.1  mM EDTA) 
and further purified using an equilibrated 5  mL HiTrap 
Phenyl FF (HS) column. The protein was loaded at 3 mL/
min. After unbound protein had passed, the bound pro-
tein was eluted by applying a 200 mL linear gradient to 
0  M  (NH4)2SO4. The fractions containing AsLPMO10B 
were collected and concentrated using an Amicon Ultra-
15 Centrifugal Filter Unit with a 10  kDa cutoff (Mili-
pore). Finally, 1.5 mL of the concentrated eluate was run 
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through a Superdex 75 120  mL SEC column (Cytiva) 
using 20 mM Tris–HCl pH 8.0, 150 mM NaCl, 0.1 mM 
EDTA as running buffer. Pure AsLPMO10B was col-
lected, concentrated and stored at 4 °C until further use.

Protein crystallization, X‑ray structure determination 
and refinement
The AsLPMO10B AA10 domain was crystallized by the 
hanging-drop vapor diffusion method. Before setting 
up crystallization trials, the protein was saturated with 
Cu(II) by adding a threefold molar excess of  CuSO4 after 
adding 1  mM  CaCl2 (to saturate EDTA in the buffer). 
Excess copper was removed with a HiTrap desalting 5 mL 
column (GE Life Sciences). The buffer was exchanged to 
5  mM Tris–HCl pH 8.0 and subsequently concentrated 
to 30 mg/mL using Vivaspin 20 (10 kDa molecular mass 
cutoff) centrifugal concentrators (Sartorius Stedim Bio-
tech GmbH). The concentrated protein was stored at 4 °C 
until use. Crystallization experiments were prepared in 
a pre-greased 48-well VDX plate (Hampton Research) 
and mixed on silanized coverslips with the protein solu-
tion in a 1:1 volume ratio. Diffraction-quality crystals 
grew after 30–60 min incubation at 20 °C, from a reser-
voir solution containing 0.1 M Na-phosphate/citrate pH 
4.2 and 40% v/v PEG 300. Crystals were cryoprotected 
by complementing the crystallization solution with 25% 
w/v glucose, flash-cooled in liquid nitrogen and stored in 
a CX-100 Taylor-Wharton dry shipper for synchrotron 
data collection.

Diffraction data were collected at the MAX-IV syn-
chrotron (Lund, Sweden), on the BioMAX beamline [62] 
(Dectris EIGER16M hybrid-pixel detector) [63]. Data 
collection was carried out at 100  K, at a wavelength of 
0.9763 Å, covering a total oscillation range of 360° with 
0.1° oscillations. Diffraction data were integrated, merged 
and truncated using the EDNA [64] software pipeline. 
The integration and scaling output was reindexed using 
REINDEX, a component of the CCP4 crystallography 
software suite [65]. Crystals belonged to space group 
P65, with unit cell parameters a = 71.1  Å, b = 71.1  Å, 
c = 100.3  Å and one molecule in the asymmetric unit. 
Data collection and scaling statistics are reported in 
Table S1. The structure was solved by molecular replace-
ment using the program PHASER [66] from the CCP4 
suite. The structure of Wiseana spp. entomopoxivirus 
fusolin (PDB ID: 4YN2 [51]) served as search model 
(36% sequence identity) after removing alternative con-
formations for all residues using the CCP4 tool PDBCUR 
, and truncating mismatching portions with SCULPTOR, 
another program from the CCP4 suite [65]. Refinement 
was carried out using data to 1.35 Å, alternating between 
cycles of real-space refinement using Coot [67] and maxi-
mum likelihood refinement against anomalous data with 

REFMAC5 [68]. The molecular replacement output was 
examined and improved by first removing ill-defined side 
chains and loops, and thereafter adding missing struc-
tural elements in a step-wise fashion as the quality of the 
electron density map improved. After improving the pro-
tein main chain, water molecules were added based on 
compatible electron density and hydrogen-bonding inter-
actions. A peak in the phased anomalous difference map 
confirmed the presence of copper bound in the center 
of the histidine brace motif (Fig. S1). Toward the end of 
the refinement process, missing side chains and alterna-
tive conformations were added, and their relative occu-
pancies refined with PHENIX.refine [69]. As the last step, 
the very high data-to-parameter ratio (~ 32) allowed full 
anisotropic B-factor refinement, including ligands and 
water molecules. The coordinates and structure factors 
are deposited in the PDB [70] with PDB ID: 7OKR.

Phylogenetic analysis
Amino acid sequences of LPMO-encoding genes were 
obtained through the CAZy database [13]. Only protein 
sequences from known fish pathogens [37] were selected. 
Before analysis, signal peptides, predicted by SignalP 
5.0, were removed from the sequences. The phyloge-
netic analysis was performed using the “build” function 
of ETE3 v3.1.1 21 [38] which employs PhyML v20160115 
[39], with default parameters. Branch support values 
were computed from 100 bootstrapped trees.
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