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ABSTRACT OF THE DISSERTATION 
 

Analysis of 3D genome organization and gene regulation in mammalian cells 
 

by 

 

Siddarth Gautham Selvaraj 

 

Doctor of Philosophy in Bioinformatics and Systems Biology 

 

University of California, San Diego, 2014 

 

Professor Bing Ren, Chair 

Professor Vineet Bafna, Co-Chair 

 

The three-dimensional structure of the genome plays a key role in gene 

regulation. For example, while highly compacted heterochromatin drives gene 

silencing, open euchromatin facilitates gene activation. Nevertheless, how 

chromatin folds within these structures and consequently how it controls access 

to genomic content is poorly understood. Recent advances in high-throughput 

sequencing have provided valuable tools, such as Hi-C, for the study of
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chromatin structure. Using Hi-C datasets, I developed a hidden markov model 

based algorithm to identify self-interacting patterns of chromatin structure termed 

topological domains. These mega-base sized domains are pervasive through the 

genome and are highly conserved among human and mouse.   

At a higher resolution, topological domains encompass individual 

chromatin interactions between regulatory elements and its target gene. 

Therefore, in order to mechanistically understand gene regulation, it is essential 

to elucidate the functional relationship among regulatory elements and their 

target genes. By exploiting the sequence diversity between homologous 

chromosomes, it is possible to delineate this relationship. However, this requires 

the knowledge of haplotypes, which has traditionally been difficult to obtain. As 

the Hi-C protocol preferentially recovers DNA variants on the same chromosome, 

I invented HaploSeq to reconstruct chromosome-scale haplotypes. HaploSeq 

can generate haplotypes with ~99.5% accuracy for >95% of alleles in mouse and 

98% accuracy for ~81% of alleles in humans, thus solving a long-standing 

problem in genetics. 

By integrating the knowledge of haplotypes, we queried the relationship 

between regulatory elements and gene expression in human embryonic stem 

cells and a panel of differentiated cell-types. Across the 5 cell lineages examined, 

I identified a total of 24% of genes that showed allelic bias in gene expression. 

While most of the allelic-genes had a correlating allelic-promoter chromatin state, 

~29% of genes were exceptions suggesting other mechanisms of gene 

regulation. Accordingly, I then analyzed histone-acetylation marks to identify 
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1589 allelic enhancers. By predicting chromatin interactions using Hi-C, we 

observed allelic enhancers to be spatially proximal to allelic genes, suggesting 

cooperative activity among genome sequence, structure, and function.  

Taken together, our studies suggest that gene regulation is facilitated and 

coordinated by genome structure. 
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Chapter 1: Interplay between genome structure and gene 
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Abstract 

 Conventional genome sequencing technologies utilize pools of genomic 

DNA, which are fragmented prior to sequencing, resulting in the loss of three-

dimensional (3D) genome information. The 3D genome offers critical insights into 

how cells interpret genetic and epigenetic content, and therefore is key for a 

mechanistic understanding of genome regulation. For example, precise control of 

transcription involves physical structural interactions among genes and distal 

regulatory elements. Recent advancements in molecular biology techniques and 

corresponding computational methods have allowed for accurate measurements 

of 3D genome structure, enabling targeted and genome-wide analyses of higher-

order chromatin structure. Here, I review our current understanding of genome 

structure and it’s utility in unraveling multiple aspects of genome regulation.  

 

Introduction 

 The human genome project determined the genetic sequence that 

constitutes the human DNA1-4, but how cells read, interpret, and control this 

information is less clear. Differences in deciphering genetic content can lead to 

variable gene regulation and transcription patterns, resulting in hundreds of 

unique cell-types and potentially numerous disease states in the human body5-8. 

Therefore, a fine-level understanding of the mechanisms behind gene regulation 

is critical for delineating the role of genetics in human health and disease. 
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 In eukaryotes, gene regulation requires combinatorial functional activities 

involving regulatory elements such as promoters, non-coding RNAs, enhancers, 

and silencers9. To this end, the Roadmap Epigenome10-15 and the ENCODE16,17 

consortiums have generated comprehensive profiles of DNA methylation, histone 

modifications, chromatin accessibility, and transcription-factor (TF) binding, 

allowing systematic annotation of regulatory elements. However, how these 

elements cooperate in a combinatorial fashion to facilitate gene regulation is 

poorly understood. As the eukaryotic genome is organized in non-random three-

dimensional structures, knowledge of the 3D genome can reveal physical 

connections among genes and regulatory elements and thereby can further our 

understanding of gene regulation18-20. 

 Recent technological advancements have allowed for measurement of 3D 

genome at different resolutions. For instance, while Fluorescence in-situ 

hybridization (FISH) has revealed patterns of chromosome territorial 

organization, chromosome conformation capture (C-technologies) has allowed 

chromatin structure studies of specific gene loci20, 21. Each of these studies have 

been valuable in showing the role of genome structure in its function. In addition, 

3D genome information has been shown to be useful for deconvoluting 

chromosome-scale haplotype patterns22. Therefore, by exploiting aspects of 3D 

genome structural information, we can learn novel mechanistic aspects and 

potentially build predictive models of human gene regulation in a haplotype-

resolved context. 
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Higher-order chromatin structures facilitate gene regulation  

 In the interphase of a eukaryotic cell’s nucleus, the genome is non-

randomly organized at multiple levels18, 23. For example, several FISH21, 24, 25 and 

live cellular imaging26, 27 based studies have revealed that chromosomes occupy 

distinct territories of nuclear positioning, termed chromosome territories (CTs). 

Further, several independent methods have indicated the physical and functional 

separation of active (euchromatin) and inactive (heterochromatin) regions of 

CTs18, 19, 23. On the one hand, active regions within a CT are generally positioned 

at the border of the resident CT and can interact with active regions from other 

CTs to allow co-regulation of genes28. On the other, independent methylation 

measurements of cells treated with Dam protein29,30 and ChIP-Seq measurement 

of H3k9me3 histone tails31 have demonstrated that inactive regions are 

physically associated with structures at the nuclear periphery, largely separated 

from the active regions. Such differential positioning of active and inactive 

regions allows for efficient usage of cellular machinery and agrees well with the 

transcription factory model of genome regulation28. Therefore, nuclear positioning 

of chromosomes and their ability to intermingle with each other and other nuclear 

structures has profound impact on global transcription. 

 While microscopy, live imaging, and ChIP-Seq studies have demonstrated 

aspects of genome positioning at the nuclear level, a higher resolution picture of 

specific structures within chromosome territories are lacking. Recent 

advancements in chromosome conformation capture (3C)32-35 based methods 

have allowed us to investigate genome structure at the level of genes. In brief, 
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3C based methods work by crosslinking cells to retain the 3D chromatin 

structure. Then, the chromatin is fragmented and the crosslinked fragments are 

ligated to form new artificial fragments, which are then PCR amplified and/or 

sequenced. As 3C based methods generate fragment interaction frequencies, 

the spatial distance between the fragments and consequently genome structure 

can be delineated32. However, as 3C based methods are often performed on 

million of cells, each with dynamic 3D genome structures and at different cell-

cycle phases, robust computational methods that can understand the 

stochasticity and true biological variability in the data have to be developed to 

generate meaningful 3D structure predictions.  

 Utilizing a variant of 3C, called the Hi-C35, Job Dekker and colleagues 

profiled the genome-wide chromatin interaction patterns to observe two distinct 

compartments within CTs. These results correlated well with previously 

established active and inactive positioning of chromosomal regions28, 29. As this 

study lacked the sequencing depth to investigate chromosome structures at 

higher resolution, we performed Hi-C in human and mouse cells with ultra-deep 

sequencing to identify pervasive structural units of chromosomes termed 

Topological domains, or Topological associated domains (TADs)36. TADs are 

structures within the active and inactive compartments. We used rigorous non-

parametric computational methods to remove systematic biases in Hi-C data 

owing to variability across fragments in terms of fragment length, GC content and 

its mappability37. Then, we implemented a hidden markov model that predicted 

TAD locations in the genome with high confidence. TADs are megabase-sized 
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domains of high local chromatin interaction frequency yet well spatially separated 

from other TADs. In addition, intervening boundary sequences between TADs 

are invariant among cell-types and conserved between human and mouse. More 

recently, TADs have also been identified in drosophila38, demonstrating an 

evolutionary aspect of genome structure. 

 The topological domain-like organization of chromosomes is well 

established in the literature23,39,40. In particular, FISH and 3C based studies have 

revealed correlation between changes in domain structure and gene regulation41-

43. We have also shown evidence that suggest TADs can constrain chromatin 

interactions between genes and regulatory elements and such intra-TAD 

interactions are more involved in cell-type specific gene regulation patterns36,44. 

In addition, we have revealed that TAD boundaries correspond to insulator 

activity of transcription and that the boundaries correlate well with structural 

transition events that mark several functional activities – such as replication 

timing, and specification of inactive regions that move towards the nuclear 

periphery36. Recent restraint based iterative modeling of chromatin interaction 

data has allowed building of sophisticated 3D conformations of TADs and their 

relative positioning in a chromosome45, 46. In addition, 3D modeling of HoxA and 

α-globin domains has illustrated the dynamics of chromatin structure and gene 

expression across a panel of cell-types41, 43, 46. Undoubtedly, identification of 

TADs and modeling of their conformations have enabled systematic analyses of 

chromatin structure at a resolution that reveals dynamic localization of group of 

genes.  
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  While chromatin structures such as TADs and CTs seem to be static 

across a population of cells, structures measured at a deeper resolution have 

revealed that interactions among genomic loci can be dynamic. In particular, the 

single-cell Hi-C47 study revealed structural stochasticity at the gene level but 

consistent intermingling patterns of active domains of several CTs. Similarly, Jin 

and colleagues compared physical interactions among different cell-types and 

demonstrated that while promoter-enhancer level chromatin interactions change 

considerably, the large-scale structures44 remain intact. To this end, studies 

based on FISH, 3C, and Hi-C have investigated chromatin interaction patterns at 

individual genomic loci and observed that a vast majority of these chromatin 

interactions are constrained within hundreds of kilobases to few megabases and 

are generally intra-TAD20,44. For example, a 1Mb intra-TAD chromatin interaction 

loop originating from a distal enhancer is known to regulate the Sonic Hedgehog 

gene (SHH), an essential gene for proper limb development48. More recently, 

Sanyal and colleagues studied the structural patterns of promoters in the 

ENCODE regions and showed that genes can interact with multiple distal 

elements, and distal elements loop to multiple genes20. This suggests that 

chromatin interactions at the sub-TAD level can not only be dynamic among 

different cells, but can be of complex 3D structural pattern in itself enabling 

combinatorial interactions among genes and regulatory elements. 

In this section, I have presented a hierarchical view of genome 

organization. In particular, CTs form the lower level resolution, while TADs form 

mid-level, and individual chromatin interactions among genomic loci form the 
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high-resolution structural patterns. Each of these layers of 3D genome seems to 

play a critical role in controlling transcription. While we see a clear genome 

structure and function correlation, understanding genome sequence in this 

context can allow better understanding of genome function. For example, 

understanding enrichment of DNA binding protein CTCF at TAD boundaries36 

can explain formation of TADs and potentially their function.  Similarly, in order to 

delineate how disease-associated alleles regulate target genes, an 

understanding of interplay among genome sequence and the structure is 

important. Such a combined model can also help in revealing the complex 

combinatorial patterns of transcriptional activity.   

 

3D genome structure can reveal haplotype patterns 

 Recent advances in genome-editing tools such as CRISPR have enabled 

systematic perturbation of genetic sequences, offering an elegant way to assess 

the genetic background of genome structure and function49,50. However, genome-

editing tools are currently low-throughput and are laborious to perform. 

Alternatively, as humans inherit two copies, or haplotypes, of genetic content, 

sequence differences among the homologous chromosomes can be exploited as 

natural genetic perturbations, allowing us perform analyses on genome structure 

and function in high-throughput. Nevertheless, as current genomic DNA 

sequencing technologies utilize mixtures of maternal and paternal chromosomes 

that are fragmented prior to sequencing, our ability to distinguish the two 

haplotypes is extremely limited. In particular, computational approaches can be 
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used to reconstruct and assemble haplotypes, but they can recover haplotype 

blocks that are only tens to hundreds of kilobases long51-55. In complex genomes 

such as humans, genetic or epigenetic changes at regulatory sequences can 

regulate genes much further away, emphasizing the need for obtaining 

chromosome-span haplotypes20. While several experimental approaches56-58 can 

generate complete haplotypes, they require equipment not generally available in 

most research or clinical laboratories or are not applicable to general 

population59.  

 We developed a strategy called HaploSeq22, to reconstruct chromosome-

span haplotypes. Previously, proximity-ligation approaches such as Hi-C35, 5C36, 

4C34, and 3C32, were used solely for investigating spatial relationship between 

genomic sequences. HaploSeq repurposes Hi-C towards achieving whole 

genome haplotyping. A fundamental aspect of 3D genome that allows capturing 

haplotypes is the presence of chromosome territories, where even the 

homologous chromosomes seem to occupy distinct spatial localization23. In 

particular, as Hi-C captures the spatial configuration of genomic loci, it also 

preferentially links DNA variants in the same haplotype and therefore preserves 

haplotype information. We employed computational approaches based on Max-

cut graph algorithm60 to eliminate inter-haplotype sequencing error patterns, and 

predicted accurate haplotype structures for >80% of alleles in both mouse and 

human cells. As a result of generating complete haplotypes, Hi-C not only can 

reveal spatial interactions among genes and regulatory elements, but it can also 

inform which homologous copy these elements belong to.  
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 While we used Hi-C to deconvolute haplotype patters, other groups have 

performed de novo assembly61,62 using these datasets. In addition, studies have 

shown the utility of 4C towards typing structural variants such as large insertions, 

inversions and translocations63. With myriad of utilities towards analyses of 

genome structure and sequence, C-based technologies such as 4C, 5C and Hi-C 

will perhaps be applicable to a wide range of genomic studies in the future. 

 

Gene regulation in an allele-specific context 

 Previous studies have correlated changes in chromatin structure to gene 

expression across various cell-types or specific experimental conditions20, 36, 41, 43, 

44, 46. Similarly, changes in genetic sequence and epigenetic activity have been 

studied in the context of gene regulation12, 64-70. However, studies that integrate 

many types of information such as epigenetics, haplotypes and chromatin 

structure have largely been absent, owing to the difficulty in obtaining these 

datasets. Such integrative studies can substantially advance our knowledge of 

gene regulatory mechanisms in human cells.  

As projects from our lab have demonstrated the utility of Hi-C in 

delineating chromatin interactions between regulatory elements36,44 and 

reconstructing haplotypes22, we performed Hi-C across embryonic stem cells 

(ES) and a panel of ES-derived differentiated cells from the H1 human cell line. 

This system has also been extensively profiled by the Roadmap epigenome 

project for several epigenetic marks, using which we and other groups have 



	
   	
   11	
  

     
	
   	
  

annotated chromatin states such as enhancers, promoters, insulators, and gene 

activity across these cell-types14. By integrating chromatin states, 3D genome, 

and haplotype information to this system, we anticipate to explore allelic patterns 

of gene regulation.  

 Using HaploSeq22, we phased 93.5% of alleles to chromosome-spanning 

haplotypes. With the majority of alleles phased, our study is applicable to 

genome-wide analyses of allele specific gene expression and underlying 

chromatin state patterns through cellular differentiation. The haplotype phase 

resolved genome revealed widespread allele specific gene expression patters, 

which appears to be strongly correlated with allelic chromatin states of promoters 

or distal acting enhancers. By adding 3D structure information, we observed that 

spatially proximal allelic enhancers are strongly correlated to target gene 

expression. While we cannot determine if the allelic activities are due to genetic 

or epigenetic factors, our study demonstrates the combinatorial functional 

aspects of genetic sequence and structure towards gene regulation. 

 

Conclusion 

 To understand how a cell interprets it genetic content, we must first obtain 

genetic sequence and annotate the different functional elements. Recent 

collaborative projects such as ENCODE9, 16, 17 and Roadmap Epigenome10-12, 14, 

15 have used genome-sequencing tools to profile transcription factor binding, 

gene expression, chromatin accessibility and epigenetic marks. These datasets 

have been used to comprehensively map functional elements such as 
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enhancers, and promoters and have subsequently been used to study 

transcription10. However as humans inherit two copies of genetic content, any 

genetic or epigenetic difference between the two haplotypes is ignored, limiting 

our understanding of gene regulation. Further, by exploiting these differences 

and by adding knowledge of higher-order chromatin interactions to link various 

regulatory elements and target genes, we can explore novel insights on the 

landscape of allelic gene regulation patterns. For example, our study on 

haplotype-resolved H1 genome revealed aspects of distal gene regulation. In 

particular, compound heterozygosity of distal non-coding alleles can impact 

transcription and this emphasizes the need for long-range haplotypes as well as 

3D genome information. By expanding such integrative analyses to many 

individuals across different conditions such as disease states or tissue types, we 

can potentially generate predictive models of the genetic basis of human 

development and disease. 
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Abstract 

The 3D structure of the genome occupies distinct chromosome territories, 

but how chromatin folds within these territories is poorly understood. A common 

feature of several theoretical models suggests a domain-like organization of 

chromatin folding, but the exact size and boundaries of these domains have not 

been well defined. By using the Hi-C protocol, we profiled the genome-wide 

chromatin interactions in human and mouse embryonic stem cells, and a panel of 

terminally differentiated cell types. Our initial analyses of the data revealed the 

presence of highly self-interacting and spatially isolated regions, which we 

termed as topological domains (TADs). I developed a hidden-markov model 

based algorithm to show that the mammalian chromosomes are segmented into 

megabase-sized TADs. We also found that the TADs are pervasive throughout 

the genome, stable across different cell-types, and conserved between mouse 

and human. In addition, topological domain boundaries appear to mark the 

transition between active and inactive regions of the genome, as observed by 

enrichment of H3K9me3 and its relatedness to A/B compartments and Lamina-

associated domains. Further, I have developed statistical methods to correlate 

cell-type specific chromatin interactions to cell-type specific gene expression, 

illustrating coupled activity between genome structure and function.  
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Introduction 

 Nearly all cells in a mammalian organism carry the same genetic content 

and yet functional diversity exists among various cell or tissue types1,2. Cells 

achieve this diversity by regulating different subset of genes, which is facilitated 

and accompanied by coordinated changes in 3D genome or chromatin structure2-

4. For instance, previous studies have shown that chromatin loop interactions 

between promoters and distal regulatory elements such as enhancers are critical 

for gene activation5-7. In another instance, Stavros Lomvardas and colleagues 

used X-Ray tomography to show that olfactory receptor genes from different 

chromosomes assemble in a few heterochromatic loci, demonstrating co-

regulation of genes across multiple chromosomes8. Understanding the higher 

order chromatin structure is therefore essential in comprehending how genes are 

regulated, which in turn can further our knowledge in cell development and 

disease.   

In eukaryotic cells, the higher order structure of the genome is organized 

at multiple levels3,9. Specifically, it has been suggested that chromosomes 

occupy distinct regions in the interphase nucleus called chromosome territories 

(CTs), but our view of the chromosome folding within these CTs are coarse and 

incomplete. Several models have been suggested to describe these structures, 

including random-walk/giant loop model3,10, chromatin rosette/short loop model4 

and more recently fractal globule conformation11. A converging aspect of these 

models is recurring loops or domains of chromatin organization, however, the 

location, size, and properties of these domains have not been well studied.  
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Previous groups have linked the domain-like organization of genome 

structure to transcription for a few genomic loci8,12-14. A well-known example is 

the Fluorescent in situ hybridization (FISH) based study that demonstrated Hoxb 

domain condensation inside and outside of CTs, correlating well with gene 

expression14. In another example, Bau and colleagues used chromosome 

conformation capture based 5C technique to show the functional impact of 

structural changes between human GM12878 and K562 cells at α-globin 

domain13. As such techniques such as FISH15 and chromosome conformation 

capture16 are low-throughput and does not enable genome-wide understanding 

of the relationship between the higher order chromatin structure and genome 

function.  

Recently, Job Dekker and colleagues have introduced Hi-C11, as a 

genome-wide extension of chromosome conformation capture (3C). Hi-C relies 

on proximity ligation followed by PCR and high-throughput sequencing to assess 

the spatial relationship between all pairs of genomic loci in vivo. The spatial 

proximity is inversely proportional to the contact frequencies (# of reads) between 

two fragments. In this study, we performed Hi-C in multiple human and mouse 

cells to define the location of domains and to characterize the 3D structure of 

genome in relation to its function. I used a hidden-markov based algorithm and 

found that the mammalian genome is organized in to more than a thousand 

megabase-sized topological domains or TADs. I also investigated how these 

domain structures change conformation through differentiation and correlated 

these to changes in gene regulation. In addition, TADs appear to be stable 
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across cell types, and are highly conserved across species, suggesting that 

TADs are an inherent property of mammalian genomes. 

 

Results 

Hi-C analyses in human and mouse cells 

 Our lab performed at least two replicates of Hi-C, each in human and 

mouse embryonic stem cells (ES), and terminally differentiated human IMR90 as 

well as mouse cortex cells17. Together, we analyzed over 1.7 billion paired-end 

reads of Hi-C data. As a first step, we validated our Hi-C data with previously 

published chromatin interaction datasets. In particular, both replicates of our 

IMR90 Hi-C data showed high degree of similarity when compared to 5C dataset 

from lung fibroblasts (Fig. 2-1)18. Further, our mouse ES Hi-C data recovered 

previously described cell-type specific interaction at the Phc1 locus19 (Fig. 2-2).   

 As Hi-C measures spatial proximity among all pairs of loci, significant 

differences in genomic properties among various loci can potentially generate 

systemic variability in the data. Therefore, I implemented the recently published 

probabilistic method to normalize Hi-C data20. In brief, genomic loci were binned 

based on properties such as GC content, mappability, and restriction fragment 

length, and together these were non-parametrically modeled to enrich chromatin 

interaction signals over noise (Methods). While Hi-C interaction counts clearly 

depend on the frequency of restriction enzyme cut sites prior to normalization, 

the biases have been largely eliminated after normalization (Fig. 2-3). In addition, 

the correlation between Hi-C Nco1 mouse ES data and previously published 
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FISH dataset12 phenomenally increases after normalization (Fig. 2-4), 

demonstrating that the normalized Hi-C data can accurately reproduce the 

expected spatial distance from an independent method. These results 

demonstrate that our Hi-C data across multiple replicates among various cell-

types are of high quality. 

 

Identification of Topological domains 

 One striking feature of the Hi-C data when visualized as a two-

dimensional matrix of 40-kb genomic bins is the prevalence of genomic regions 

displaying high frequencies of local interactions (Fig. 2-5a), seen as “triangles” on 

the matrix. We hypothesized that these local regions of high frequency 

interactions represent higher order interacting topological domains, or “TADs”. In 

addition, narrow segments bound topological domains where the chromatin 

interactions appear to end abruptly (Fig. 2-5a) and we believed that these abrupt 

transitions might represent boundary regions that separate topological domains. 

Furthermore, bins flanking boundaries are biased towards interacting either 

upstream or downstream depending upon whether they are upstream or 

downstream to the boundary. We hence hypothesized that there are genomic 

regions that are specifically biased in upstream vs. downstream and vice versa, 

and that by detecting these locally biased regions, we would be able to 

objectively identify the location of topological domains. 

 We expected each bin to be unbiased (as null hypothesis) and we asked 

for a quantification of the degree of bias using chi-square statistic for every bin in 
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a given chromosome. In particular, for every 40-kb bin of the genome, we looked 

2-Mb upstream and 2-Mb downstream to estimate chi-square based biases. We 

labeled the upstream biases as negative and downstream biases as positive 

(Fig. 2-5c,e). We called the degree of bias as the directionality index (DI) and as 

described earlier, we notice the directionality index changes abruptly at the 

boundaries and that the domains appear to contain a cluster of downstream 

biased bins followed by cluster of upstream biased bins.  

 As DI quantifies the degree of bias of a given bin, we observe that for 

most of the bins, the DI accounts values close to 0 and therefore does not clearly 

pinpoint the bias (Fig 2-5f). As Hi-C is performed in million of cells and that these 

cells are unsynchronized in their cell-cycle stages, DI can be affected by 

stochasticity. Hence, we were in need of a system that considers the DI as 

observations, models them to account for variation and noise, and predicts 

whether a region could be upstream biased, downstream biased, or not biased. 

Since every bin in the genome has an unknown state and that the previous bin 

influences current bin (due to the clustering property of DI), I developed a hidden 

markov model (HMM) based algorithm that estimates the “true” directionality bias 

of every bin in the genome given the DI observations (Fig. 2-6). Specifically, the 

HMM assumes that the DI observations are following a mixture of Gaussians and 

then predicts the states as “Upstream Bias”, “Downstream Bias” or “No Bias”. 

For the HMM algorithm, I concatenated the DI’s across a given 

chromosome and assuming it is a vector of size n, where n= size of 

chromosome/bin size. For instance, describing the observed DI’s as Y’s 
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[Y1,Y2..Yn], the hidden true directionality biases as Q’s [Q1,Q2..Qn] and the 

mixtures as M’s [M1,M2..Mn]. The probability P(Yt|Qt = i,Mt = m) is represented 

using a mixture of Gaussians for each state i. The Conditional probability 

distribution [CPDs] of Yt and Mt nodes are defined as, 

P(Yt = yt|Qt = i,Mt = m) = N(yt;µi,m,Σi,m) 

P(Mt =m|Qt =i) = C(i,m), where C is the mixture weights for each state i. 

I used Baum-Welch algorithm based on Expected Maximization principles 

to compute maximum likelihood estimate and the parameter estimates of 

transition and emission (characterized by mean, covariance and weights). The 

posterior marginals were then estimated using the Forward-backward algorithm. I 

predicted the HMM states by allowing 1 to 20 mixtures. I chose the mixture with 

best goodness of fit using the AIC criterion, AIC = 2k – 2ln(L), k is the number of 

parameters in the model and L being the maximum likelihood estimate. In 

summary, for each chromosome we fit the HMM model with best suiting mixtures 

of varying sizes from 1 to 20. More recently, I have modified the algorithm to fit 

the HMM model for the DIs from all the chromosomes together, to utilize the 

entirely of data for estimating best suiting mixture, M. In addition, instead of 

choosing M with the lowest AIC as the best goodness of fit, a model with at most 

10% loss of AIC seemed to generate consistent results with lesser parameters. 

The updated version of domain calling algorithm is available to download 

(Methods). 

	
   As a post-processing step, I estimated the median posterior probability of 

a region, defined as a stretch of same state, and considered only in regions 
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having a median posterior marginal probabilities ≥ 0.99 or a region that is at least 

80-kb (2 bins) long. Domains and boundaries are then inferred from the results of 

the HMM state calls throughout the genome (Fig. 2-5d). A domain is initiated at 

the beginning of a single downstream biased HMM state. The domain is 

continuous throughout any consecutive downstream biased states. The domain 

will then end when the last in a series of upstream biased states are reached, 

with the domain ending at the end of the last HMM upstream biased state (Fig. 2-

5b). We term the regions in between the topological domains as either 

“boundaries” or “unorganized chromatin.” We defined unorganized chromatin to 

be these regions that are > 400kb, and the boundaries to be less than 400kb.   

 

HMM based domain boundary calls are robust 

 The domain boundaries defined by HMM (Fig. 2-6) were highly 

reproducible between replicates (Fig. 2-7). Therefore, I combined the data from 

the HindIII replicates and identified 2,200 topological domains in mouse ES cells 

with a median size of 880kb that occupy 91% of the genome (Fig. 2-8a). In 

addition, the median boundary size were ~0 base-pairs and that 76.3% of the 

boundaries were less than 50 kilobases, indicating that the domain boundary 

identification by the HMM model were precise (Fig. 2-8b). The median size of 

unorganized chromatin were ~560 kilobases (Fig. 2-8c). On the same lines, I 

identified over a 1000 domains each in mouse cortex, human ES and human 

IMR90 cells using combined datasets from replicates. 
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 As another measurement of robustness in domain identification, we 

checked the frequency of intra-domain interactions and as expected these were 

higher than inter-domain interactions (Fig. 2-9a). Similarly, FISH probes in the 

same topological domain (Fig. 2-9b) are closer in nuclear space than probes in 

different topological domains (Fig. 2-9c), despite similar genomic distances 

between probe pairs12 (Fig. 2-9d-e). These findings are best explained by a 

model of the organization of genomic DNA into spatial modules (TADs) linked by 

short chromatin segments, which we define as boundaries. 

 

TADs are largely invariant among cell-types 

 As the topological domain boundaries identified by HMM are reproducible 

among replicates, I extended this analysis to compare the boundaries among 

cell-types in both humans and mouse. I observed a high degree of consistency in 

the boundary regions identified between mouse ES and cortex (Fig. 2-10a) as 

well as between human ES and IMR90 (Fig. 2-10b). In addition, at the 

boundaries called in only one cell type, we noticed that trend of upstream and 

downstream bias in the directionality index is still readily apparent and highly 

reproducible between replicates (Fig. 2-10c-d). Currently, we cannot determine if 

the differences in domain calls between cell types is due to noise in the data or to 

biological phenomena, such as a change in the strength of the boundary region 

between cell types21. Regardless, most of the domains identified are stable 

across cell-types. Lastly, a very small fraction of the boundaries show clear 
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differences between cell-types, but it is unclear how this difference in boundary 

structure imparts changes in genome function (Fig. 2-11a-b, Methods). 

 

Higher-order conformations of TADs can vary among cell-types 

 While topological domains are largely invariant among cell-types, their 

conformation or shape might change causing cell-type specific gene regulation 

patterns6,7,13,14. For instance, cell-type specific interactions can lead to different 

domain conformations and consequently cell-type specific expression in Phc1 

gene19 (Fig. 2-2), while the domain size and locations are consistent. To identify 

this phenomenon in a genome-wide fashion, I used a binomial distribution to find 

dynamic interactions between two cell-types. In particular, I combined data from 

two replicates of mouse ES and cortex and then used binomial distribution for 

each possible interaction (20-kb bins) in the genome up to a distance of 5 mega-

bases.  

Mathematically, nd = ImESC + Imcortex, where n = total trials at a distance d 

and Expectation pmESC,d = (Σ ImESC)/n and pmcortex,d = 1-pmESC,d. As the spatial 

proximity between two bins depends on the distance between two bins, I chose 

to fit a binomial distribution for every distance d, where d varies from 20-kb to 5- 

Mb. Based on the expectations, I calculated deviations in the ratio of the number 

of interactions in mouse ES cells (Iij-mESC) to the number of interactions in cortex 

(Iij-cortex) to obtain statistically significant dynamic interactions. We then randomly 

permuted the replicates (ES-rep1+Cortex-rep1 Vs ES-rep2+Cortex-rep2) and 
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(ES-rep1+Cortex-rep2 Vs ES-rep2+Cortex-rep1) to estimate a false discovery 

rate (FDR). 

I identified 9,888 dynamic interacting regions in the mouse genome based 

on 20-kb binning using a binomial test at an FDR of 1%. As expected, the 

dynamic interactions are enriched for differentially expressed genes (Fig. 2-12a). 

In addition, ~20% of the genes that are differentially expressed are a part of 

dynamic interactions (Fig. 2-12b). This is an underestimate given that dynamic 

interactions are 20-kb bin sizes and those interactions that are less than this 

resolution will be missed. As ~96% of dynamic interactions are intra-domain (Fig. 

2-12c), it appears as though chromatin interactions are constrained within 

domains by acting as functional modules of genome structure. In addition, it also 

suggests that while topological domains size and location are consistent, their 

conformation and shape might vary leading to dynamic gene regulatory patterns 

driving cell development and disease. 

 

TADs are evolutionarily conserved  

 Next, we studied the evolutionary conservation of domains across mouse 

and humans. To address this, I compared the domain boundaries between 

mouse ES cells and human ES cells using the UCSC liftover tool22. Indeed, 

majority of boundaries appear to be shared across evolution (53.8% of human 

boundaries are boundaries in mouse and 75.9% of mouse boundaries are 

boundaries in humans, compared to 21.0% and 29.0% at random, P value = 

2.2x10-16, Fisher’s exact test; Fig. 2-13a). The random boundaries were 
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determined by constraining on the distribution of boundary lengths and 

distribution of chromosomal occurrence. The syntenic regions in mouse and 

human in particular share a high degree of similarity in their higher order 

chromatin structure (Fig. 2-13b). This suggests that beyond conservation of 

sequence elements across evolution, structural features might also be conserved 

and thus reiterating its likely role in genome function. 

 

Insulator/barrier elements mark TAD boundaries 

 We observed a strong enrichment of insulator binding element CTCF at 

the boundary regions of topological domains (Fig. 2-14a). Specifically, >85% of 

boundaries in mouse ES cells contained CTCF binding site (Fig. 2-14b), re-

iterating that boundaries share this property of classical insulator element23, 24. In 

addition, a classical insulator element pre-marks the sites known to stop the 

spread of heterochromatin. Consequently, we examined the distribution of 

H3K9me3 in humans at the shared topological domain boundary sites among ES 

and IMR9025,26. Indeed, we observe a clear segregation of H3K9me3 mark at the 

boundary, predominantly in the differentiated cell type of IMR90 (Fig. 2-14c). 

Specifically as we analyzed shared boundaries, it seems as though while the 

boundaries are constant, heterochromatin marks are rewritten in differentiated 

cell-types (Fig. 2-14f).  

  Previous studies have reported other means of genome 

compartmentalization, such as A and B compartments11 and Lamina-associated 

domains (LAD)27,28. We compared our topological domain definitions to these 
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strictures and observed that the topological domain boundaries mark the 

transition of A and B compartments, as well as LAD and non-LADs (Fig. 2-14d-

e). Taken together, the above observations strongly suggest that the topological 

domain boundaries correlate with regions of the genome displaying insulator 

activity and marks transitions between active and inactive regions of the genome, 

thus revealing a potential link between genome structure and transcription. 

 

Discussion 

 In this study, we show that the mammalian chromosomes are segmented 

into megabase-sized topological domains. Using the HMM based algorithm, we 

have now been able to determine exact genomic locations and size of these 

topological domains and boundaries to an unprecedented precision. Such spatial 

organization appears to be a general property of the genome: it is pervasive 

throughout the genome, stable across different cell types and are highly 

conserved between mouse and humans.  

 We have investigated functional relationship between the topological 

domains and genome structure in several ways. For one, while the domain 

location and size are consistent across different cell-types, their conformation 

seems to change through the presence of dynamic interactions that can in turn 

allow for cell-type specific gene regulation patterns. Second, as ~96% of dynamic 

interactions are intra-domain, the topological domains appear to act as functional 

regulatory modules that restrict chromatin interactions. Third, boundaries of 

topological domains are associated with the CTCF, suggesting that the 
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topological domains correspond to insulator or barrier elements of the genome. 

Fourth, topological domains appear to mark the transition between active and 

inactive regions of the genome by stopping the spread of heterochromatin as well 

as by marking A/B11 and LAD transitions27,28.  

 While we and other have observed topological domains in drosophila29, E. 

coli30, mouse31 and human (our study), and have investigated functional links 

between genome structure and function6,8,14, an obvious next step would be to 

provide mechanistic details on the genome structure-function relationship. For 

one, genome editing tools such as CRISPR32,33 and TALEN34,35 can be used to 

delete boundaries and can allow prediction of gene regulation. Second, a higher 

resolution Hi-C dataset36 or techniques such as ChIA-PET37 can allow for 

studying of individual fragment based functional interactions between promoters 

and regulatory elements, unlike bin based analysis in our study. This is a critical 

step in assigning target genes for the majority of disease associated non-coding 

variants38. Altogether, determining mechanistic details of genome structure that 

allows for building predictive models of gene regulation will be an important step 

in the future. 

 

Methods 

Hi-C data mapping to reference genome 

 We mapped the paired-end Hi-C data as two independent single end 

reads using BWA39 with default parameters. We used samtools40 to consider only 
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uniquely mapping reads (mapping quality > 10). We removed PCR duplicate 

reads using Picard (http://picard.sourceforge.net). 

 

Data normalization 

 I normalized the data as previously described by Yaffe and Tanay20. This 

method works by taking in to account three parameters that impact Hi-C signal – 

GC content, fragment length and mappability of fragments. Yaffe and Tanay20 

nicely showed that these three parameters interact in a non-linear way. For our 

implementation of this protocol, I first assigned reads to nearby fragments and 

then removed all reads that belonged to fragments having mappability score < 

0.5. Previously, mappability score is estimated as a fraction of simulated reads 

that mapped for any given fragment. Next, I binned all reads in 20x20 matrices of 

fragment length (FL) and GC content each and calculated the probability 

distributions of the variability of GC and FL to non-parametrically estimate an 

expectation value for the observed Hi-C signal. Specially, the expectation was 

calculated for all read-pairs originating from a given 40-kb bin pair. In comparison 

to Yaffe and Tanay20, we did not perform linear weight smoothing and BFGS 

non-linear optimization. Despite this, the normalization method is still effective at 

removing restriction enzyme bias (Fig. 2-3 and Fig. 2-4). 

 

Resolution of TAD analyses 
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We chose to work with 40-kb bin sizes for identifying topological domains 

and 20-kb bin sizes for determining dynamic interactions. Our resolution was 

determined based on the coverage of Hi-C data generated in this study.  

 

Correlation between Experiments 

We calculated the correlation between two experiments as follows: The 

set of all possible interactions Iij for two experiments A and B were correlated by 

comparing each point in interaction matrix IA from experiment A with the same 

point IB from experiment B. Because the interaction matrix is highly skewed 

towards proximal interactions, we restricted the correlation to a maximum 

distance between points i and j of 50 bins. We use R to calculate the Pearson 

correlation between the two vectors of all point in IA and IB. 

 

Enrichment of factors at boundaries 

 For determining which boundaries are associated with CTCF, we 

considered a boundary to be associated CTCF if there were a binding site called 

by MACS41 within +/- 20-kb of the boundary. The 20-kb window is chosen 

because this reflects the inherent uncertainty in the exact position of the domain 

calls due to 40-kb binning. For H3K9me3 heatmap and LAD analyses, we used 

k-means clustering to cluster the data within +/- 500-kb of the boundary. 

 

Determining cell-type specific boundaries 
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 We calculated spearman coefficient of the directionality index between two 

cells. Specifically, if a boundary was called by the HMM in either cell type, we 

correlate a vector of directionality indexes +/- 10 bins from the center of the 

boundary between two experiments of interest. For random correlation, we 

randomly selected 20 bins from each of the two cell types and calculated the 

spearman correlation between the two vectors. We repeated the randomization 

10,000 times to achieve the random distribution of spearman correlation 

coefficients. Boundaries were called as “cell type specific” if the boundary regions 

was identified by the HMM domain calling in only one cell and lacked a significant 

correlation in the directionality index between the two cell types. 

 

Domain calling algorithm 

 The latest version of the software is available to download from 

http://bioinformatics-renlab.ucsd.edu/collaborations/sid/domaincall_software.zip 
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Chapter 3: Repurposing Hi-C towards generating haplotypes 
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Abstract 

 Rapid advances in high-throughput sequencing facilitate variant discovery 

and genotyping, but linking variants into a single haplotype remains a challenge. 

Here I demonstrate HaploSeq, a novel approach for assembling chromosome-

scale haplotypes that exploits the existence of ‘chromosome territories’. Our lab 

performed Hi-C and I show that alleles on homologous chromosomes occupy 

distinct territories, and therefore this experimental protocol preferentially recovers 

physically linked DNA variants on a homolog. Computational analysis of such 

data sets allows for accurate (~99.5%) reconstruction of chromosome-spanning 

haplotypes for ~95% of alleles in hybrid mouse cells with 30× sequencing 

coverage. To resolve haplotypes for a human genome, which has a low density 

of variants, I coupled HaploSeq with local conditional phasing to obtain 

haplotypes for ~81% of alleles with ~98% accuracy from just 17× sequencing. 

Whereas Hi-C was originally designed to investigate spatial organization of the 

genome, I have repurposed it as a general tool for haplotyping. 

 

Introduction 

Rapid progress in DNA shotgun sequencing technologies has enabled 

systematic identification of the genetic variants of an individual1–4. However, as 

the human genome consists of two homologous sets of chromosomes, 

understanding the true genetic makeup of an individual requires delineation of 

the maternal and paternal copies or haplotypes of the genetic material. Obtaining 
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a haplotype in an individual is useful in several ways. First, haplotypes are useful 

clinically in predicting outcomes for donor-host matching in organ 

transplantation5,6 and are increasingly used as a means to detect disease 

associations7–9. Second, in genes that show compound heterozygosity, 

haplotypes provide information as to whether two deleterious variants are located 

on the same allele, greatly affecting the prediction of whether inheritance of these 

variants is harmful10–12. Third, haplotypes from groups of individuals have 

provided information on population structure13–15 and the evolutionary history of 

the human race16. Lastly, recently described widespread allelic imbalances in 

gene expression suggest that genetic or epigenetic differences between alleles 

may contribute to quantitative differences in expression17–20. An understanding of 

haplotype structure will therefore be critical for delineating the mechanisms of 

variants that contribute to allelic imbalances. Taken together, knowledge of 

complete haplotype structure in individuals is essential for advancing 

personalized medicine. 

Recognizing the importance of haplotypes, several groups have sought to 

expand our understanding of haplotype structures at the level of both populations 

and individuals. Initiatives such as the International Hapmap Project13 and the 

1000 Genomes Project14,15 have attempted to systematically reconstruct 

haplotypes through linkage disequilibrium measures based on populations of 

unrelated individuals. However, the average length of accurately phased 

haplotypes generated using this approach is limited to ~300 kb21,22. Alternatively, 

genotyping parent-child trios can determine whole-genome haplotypes in the 
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child, but such methods are constrained by their higher cost and the sample 

availability of the two biological parents.  

Numerous experimental methods have also been developed to facilitate 

direct haplotype phasing of an individual, including long-fragment-read 

sequencing23, mate-pair sequencing24, fosmid sequencing4,25–27 and dilution-

based sequencing28. At best, these methods can reconstruct haplotypes ranging 

from several kilobases to about a megabase, but none can achieve 

chromosome-spanning haplotypes. Whole-chromosome haplotype phasing has 

been achieved by sequencing based on fluorescence-activated cell sorting29, 

chromosome-segregation followed by sequencing21 and chromosome 

microdissection–based sequencing30. However, these methods only phase a 

fraction of the heterozygous variants in an individual, and more importantly, they 

are technically challenging to perform or require specialized instruments. 

Recently, whole-genome haplotyping has been performed using genotyping from 

sperm cells31. However, this approach is not applicable to the general population 

and requires the deconvolution of complex meiotic recombination patterns. 

Computational analysis has shown that an important factor in haplotype 

reconstruction from DNA shotgun sequencing methods is the length of the 

sequenced genomic fragment32. For example, longer haplotypes can be obtained 

using mate-pair sequencing (fragment or insert size, ~5 kb) compared with 

conventional genome sequencing (fragment or insert size ~500 bp) (Fig. 3-1a). 

However, it is technically difficult to isolate and sequence DNA fragments that are 

longer than what is already obtained using fosmid clones. Hence, using existing 
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shotgun sequencing approaches, it is difficult to generate haplotype blocks 

longer than 1 million bases, even at ultra-deep sequencing coverage (Fig. 3-1b). 

Here I describe an approach, termed HaploSeq, for haplotyping by 

combining Hi-C33–35 with a probabilistic algorithm for haplotype assembly24. We 

have experimentally validated HaploSeq in a hybrid mouse embryonic stem cell 

line and a human lymphoblastoid cell line in which the complete haplotypes were 

known a priori. With HaploSeq, chromosome-spanning haplotype reconstruction 

can be achieved with >95% of alleles linked at an accuracy of ~99.5% in mouse. 

In the human cell line, I coupled HaploSeq with local conditional phasing to 

obtain chromosome-spanning haplotypes at ~81% resolution with an accuracy of 

~98% using just 17× coverage of genome sequencing. These results establish 

the utility of Hi-C for haplotyping in human populations. 

 

Results 

Experimental strategy of HaploSeq 

In HaploSeq, we first perform the Hi-C protocol34. As this method captures 

DNA fragments from two distant genomic loci that looped together in three-

dimensional space in vivo33–35, sequencing of the resulting DNA library generates 

reads having ‘insert sizes’ ranging from several hundred base pairs to tens of 

millions of base pairs (Fig. 3-2a). Thus, although the short DNA fragments 

generated in a Hi-C experiment can yield small haplotype blocks, long fragments 

ultimately can link these small blocks together (Fig. 3-2b). With enough 
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sequencing coverage, such an approach has the potential to link variants in 

discontinuous blocks and assemble every such block into a single haplotype. 

One complicating factor is that Hi-C can capture interactions both in cis 

within an individual allele and in trans between homologous and non-homologous 

chromosomes. Although non-homologous trans interactions between different 

chromosomes do not affect phasing, interactions in trans between homologous 

chromosomes (referred to as h-trans hereafter) might complicate haplotype 

reconstruction if h-trans interactions were as frequent as cis interactions. 

Therefore, I set out to determine the relative frequency of h-trans versus cis 

interactions in Hi-C sequencing data. To accomplish this, our lab performed Hi-C 

with 30× sequencing coverage in a hybrid mouse embryonic stem (ES) cell line 

derived from a cross between two inbred homozygous strains (Mus musculus 

castaneous (CAST) and 129S4/SvJae (J129)), which were previously sequenced 

(Methods). Owing to its homozygous nature, the maternal and paternal 

haplotypes are known a priori, and the frequency of interactions between alleles 

can then be explicitly tested.  

To determine the extent of intrahaplotype (cis) versus interhaplotype (h-

trans) interactions, we used the prior haplotype information to distinguish reads 

from CAST and J129 alleles. We first visually checked the pattern of interactions 

between every allele, finding that the CAST and J129 alleles for each 

chromosome were largely self-interacting and distinct (Fig. 3-3). Such a pattern 

has been previously observed in Hi-C studies and is analogous to the long-

established concept that chromosomes occupy distinct, self-associated 
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territories, known as “chromosome territories,” within the interphase nucleus34,35. 

However, previous Hi-C studies did not distinguish whether the two alleles for a 

given chromosome also occupy distinct, individual, chromosome territories34,35. 

Overall, we observed 2% h-trans interactions among the total reads originating 

and ending on the two homologous chromosomes (Fig. 3-4a). In addition, the 

probability of a DNA read being in h-trans versus in cis appears to increase as a 

function of the insert size between the read pairs (Fig. 3-4b). Because of this 

trend, I capped the maximum insert size of Hi-C reads at 30 Mb to reduce the 

overall number of h-trans interactions to ~0.6% (Fig. 3-4c). Currently, we cannot 

determine if these rare h-trans interactions are due to noise in the data or to 

biological phenomena, such as homologous pairing of chromosomes36. 

Regardless, these observations indicate that h-trans interactions are rare, a 

prerequisite for HaploSeq analysis to succeed. 

 

Predicting accurate chromosome-span haplotypes in mouse 

Rare h-trans interacting reads and phenomena such as sequencing errors 

at the variant locations can cause erroneous connections between homologous 

chromosomes and complicate the reconstruction of haplotypes. To overcome 

these problems, I incorporated HapCUT24 software into HaploSeq analysis to 

probabilistically predict haplotypes. Because Hi-C generates larger graphs than 

conventional genome sequencing or mate-pair sequencing, we modified 

HapCUT to balance computing time and number of iterations, so that the 
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haplotypes can be predicted with reasonable speed and high accuracy 

(Methods). 

To test the ability of HapCUT to generate haplotype blocks, I used the 

CAST×J129 mouse Hi-C data. I allowed HapCUT to reconstruct de novo 

haplotype blocks of the heterozygous variants and used the metrics of 

completeness, resolution and accuracy to assess the performance of HaploSeq 

(Fig. 3-5). To assess completeness, I analyzed the span of the haplotype blocks 

generated for each chromosome. I observed that each chromosome contains 

one block with the most heterozygous variants phased (MVP) and many other 

small blocks. However, the MVP block is the most useful as it phases a large 

fraction of variants. The MVP block spanned >99.9% of the phasable base-pairs 

for each chromosome (Table 3-1), demonstrating that HaploSeq analysis using 

Hi-C data can generate complete, chromosome-spanning haplotypes. 

Although completeness is defined as the base-pair span of the MVP block, 

resolution is defined as the fraction of phased heterozygous variants relative to 

the total variants spanned in the MVP block (Fig. 3-5). These MVP blocks 

generated for each chromosome are of high resolution, as we could phase about 

95% of the heterozygous variants on any given chromosome (Table 3-1). As 

99.6% of variants are covered by at least one read, the inability to link the 5% of 

heterozygous variants is primarily due to the inability to link heterozygous 

variants to the MVP haplotype block. Consequently, although the MVP block 

spans the majority of the chromosome, it has gaps that in total contain ~5% of 

the heterozygous variants. 
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To assess the accuracy of the heterozygous variants within the MVP 

block, I compared the predicted haplotypes generated de novo by HaploSeq 

analysis with the known haplotypes of the CAST and J129 alleles. I defined 

accuracy as the fraction of phased heterozygous variants that were correctly 

phased in the MVP block (Fig. 3-5). Of the variants that were assigned to the 

MVP haplotype block, I observed >99.5% accuracy in distinguishing between the 

two known haplotypes (Table 3-1). Lastly, as I had previously demonstrated that 

the h-trans interaction probability increases with the genomic distance separating 

two sequencing reads (Fig. 3-4b), I incorporated the h-trans interaction 

probabilities into the HapCUT algorithm (Methods) and constrained the maximum 

insert size to be 30 megabase. These conditions did not sacrifice the 

completeness of the haplotypes we generated. Instead, I observed a further 

improvement in the accuracy of the variants in the MVP block with a modest 

reduction of the resolution of the variants phased (Fig. 3-6a,b). In summary, 

these results demonstrate that HaploSeq analysis yields complete, high-

resolution and accurate haplotypes for all autosomes. 

Previous haplotyping efforts have often combined different shotgun 

sequencing methods to improve phasing. For instance, whole-genome 

sequencing has been combined with mate-pair sequencing24. To see if this 

approach would also improve haplotyping with proximity-ligation data, I simulated 

20× coverage DNA sequencing data for conventional paired-end shotgun DNA 

sequencing (i.e., WGS), mate-pair sequencing, fosmids and proximity ligation. As 

expected, combining WGS with mate pair or fosmid data resulted in fragmented, 
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incomplete haplotype blocks (Fig. 3-7a,b). In contrast, performing HaploSeq 

analysis using Hi-C in combination with WGS data did not increase the 

completeness of the haplotypes generated (Fig. 3-7a) but did improve their 

resolution (Fig. 3-7b), suggesting that adding WGS to HaploSeq analysis may be 

a viable strategy in cases where the resolution of haplotypes must be maximized. 

  

Performance of HaploSeq depends on variant density 

A distinct feature of the CAST×J129 ES cell line is the high density of 

heterozygous variants present throughout the genome. On average, there is a 

heterozygous variant every 150 bases, which is 7–10 times more frequent than in 

humans1,2. As a first test of the feasibility of using HaploSeq to generate 

haplotypes in human cells, I sub-sampled heterozygous variants in the 

CAST×J129 data so that the variant density mimics that in human populations. I 

then tested how lower variant density affects the ability of HaploSeq to 

reconstruct haplotypes. Although lower variant density did result in fewer usable 

reads (Fig. 3-8a,b), I still observed complete haplotypes over each chromosome 

with only a marginal decrease in accuracy (from ~99.6% to ~99.2%, Table 3-2). 

However, the MVP block generated using a variant density similar to that 

observed in the human genome had a lower resolution. Approximately 32% of 

heterozygous variants were phased in the MVP block (Table 3-2), instead of 95% 

in the high-density case (Table 3-1). In summary, a low density of variants does 

not affect completeness or accuracy, but does substantially affect the resolution 

of chromosome-spanning haplotypes by HaploSeq analysis. 
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HaploSeq analysis of a human individual 

To realistically assess the ability of HaploSeq to phase haplotypes in 

humans, our lab performed Hi-C at ~17× coverage on the GM12878 

lymphoblastoid cell line. The 1000 Genomes Project has previously inferred the 

complete haplotype of this cell line from whole-genome sequencing of parent-

child trio14. HaploSeq generated chromosome-spanning haplotypes in all 

chromosomes of the GM12878 cells (Table 3-3). Of note, previous methods 

attempting haplotype reconstruction in humans have been unable to reconstruct 

haplotypes spanning across the highly repetitive centromeric regions of 

metacentric chromosomes4,23,25–28. Using HaploSeq, I generated haplotypes that 

accurately spanned the centromere in all metacentric chromosomes with the 

exception of chromosome 9, where an erroneous linkage caused switching of 

haplotype calls at the centromere (Fig. 3-9). Chromosome 9 has both a large 15-

Mbp, poorly mapped centromere region and relatively lowers usable coverage 

(13.7×). I hypothesized that additional coverage might offer us a better chance in 

accurately spanning the centromere. Therefore, I combined our Hi-C data with 

previously generated Hi-C and tethered chromosome confirmation capture (TCC) 

data. TCC is a Hi-C variant using solid support ligation35 that generates similar 

data as a Hi-C experiment with slightly better ability to capture long-range 

chromatin interactions (Fig. 3-10). Using this combined data set, I increased the 

coverage of chromosome 9 to ~15×, which allowed accurate phasing of the 

entire chromosome. In summary, I generated complete chromosome-spanning 
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haplotypes for all human chromosomes including chromosome X, albeit at 

reduced resolution of ~22% (Table 3-3). 

 

Combining HaploSeq and local conditional phasing 

Although I generated chromosome-spanning haplotypes using HaploSeq, 

I was unable to achieve a high resolution of variants phased owing to the low 

variant density in the human population. I reasoned that the gaps in the MVP 

block containing unphased variants could be probabilistically linked to the MVP 

block using linkage disequilibrium patterns derived from population-scale 

sequencing data. For this purpose, I used the HaploSeq-generated, 

chromosome-spanning haplotype as a ‘seed haplotype’ to guide the local 

phasing using the Beagle (v4.0)37 software and sequencing data from the 1000 

Genomes Project15. 

To initially assess the effectiveness of this approach, I simulated 

chromosome-spanning seed haplotypes in the GM12878 genome with different 

percentages of variants phased in the MVP block. My simulation results suggest 

that I can accurately infer local phasing even at low-resolution seed haplotype 

inputs (3% error at 10% seed haplotype resolution; Fig. 3-11a). Owing to 

complex population structures, occasional mismatches occurred between phase 

predictions from local haplotypes predicted by Beagle and the HaploSeq-

generated seed haplotype. To correct these mismatches, I filtered heterozygous 

variants with <100% agreement with the seed haplotype in a local neighborhood 

window surrounding the heterozygous variant. This filtering reduced the error 
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rate to ~0.7% regardless of seed haplotype resolution (Fig. 3-11a). 

Consequently, the fraction of heterozygous variants for which I can infer local 

phasing increased with greater seed haplotype resolution (Fig. 3-11a). By 

contrast, altering the neighborhood window size did not substantially increase 

accuracy (Fig. 3-11b). 

Encouraged by these results, I used the MVP chromosome-spanning 

haplotypes generated from HaploSeq analysis as seed haplotypes and 

performed local conditional phasing. Overall, I generated chromosome-spanning 

haplotypes with ~81% resolution at an average accuracy of ~98% (Table 3-4).  

Therefore, by coupling HaploSeq analysis and local conditional phasing, I 

achieved high-resolution and accurate chromosome-spanning haplotypes in 

humans. 

 

Sequencing requirements for obtaining haplotypes 

From my local conditional phasing analysis, it seems that a seed 

haplotype with ~20–30% resolution is sufficient to obtain accurate and high-

resolution, chromosome-spanning haplotypes. A subsequent question therefore 

is, what are the minimal experimental requirements to achieve chromosome-

spanning seed haplotypes with ~20–30% resolution? To investigate this, I 

simulated Hi-C data with varying read lengths and sequencing coverage. Based 

on the simulation, achieving chromosome-spanning haplotypes depends on 

obtaining a usable sequencing coverage of ~15× for most of the read lengths 

tested (Fig. 3-12a). However, chromosome-spanning seed haplotypes alone are 
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not enough for achieving high-resolution haplotypes through local conditional 

phasing. In particular, the resulting sparse seed haplotype graph may limit the 

ability to generate final high-resolution haplotypes. To increase the resolution of 

the seed haplotype once complete seed haplotypes are obtained, one must 

increase coverage, either through higher sequencing depth or longer read 

lengths (Fig. 3-12b). I observed that 50- to 100-bp paired-end reads balanced 

completeness and resolution, and achieved the desired fraction of ~20–30% 

resolution at ~25–30× usable coverage.  

 

Discussion 

I describe a strategy to reconstruct chromosome-spanning haplotypes for 

an individual. Although the density of heterozygous variants contributes strongly 

to the resolution of the generated haplotypes, I showed that this complication 

could be resolved by using local conditional phasing from population data15 (Fig. 

3-13). Compared with other haplotyping approaches that can reconstruct 

complete haplotypes21,29,30, HaploSeq is the most suitable for a clinical and 

laboratory setting, where reagents and equipment required are readily available. 

Furthermore, HaploSeq is more widely applicable than approaches based on 

sperm cell genotyping31, as it can generate whole-genome haplotypes from intact 

cells of any individual or cell line. 

We anticipate that HaploSeq will be useful for personalized medicine. 

Determination of haplotypes in individuals has the potential to reveal novel 
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haplotype-disease associations, some of which have already been identified on 

smaller scales38–40. In addition, complete haplotypes will be essential for 

understanding allelic biases in gene expression, which will contribute to 

knowledge of genetic and epigenetic polymorphisms in the population and their 

phenotypic consequences at a molecular level17–20. As a result, whole-genome 

haplotyping has applications across several fields, such as pharmacogenomics, 

genetic diagnostics, agricultural crop breeding and genetic engineering of 

animals.  

Hi-C was originally invented to study the spatial organization of 

chromosomes34. Here we show that it is also valuable for studying the genetic 

makeup of an individual. In principle, Hi-C data can also be used for genotyping, 

along the same lines as WGS. Although variants far from restriction enzyme cut 

sites are less likely to be genotyped owing to biases from Hi-C approach, 

population-based imputation22 of variants not yet genotyped can improve the 

performance of genotype calling. Because all this can be done using a single 

experiment, HaploSeq has the potential to become a general tool for whole-

genome analysis in the future. 

 

Methods 

Genotyping 
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Variant calls and genotypes for GM12878 were downloaded43 and these 

were used for haplotype reconstruction by Hi-C. Phasing Information for 

GM12878 was downloaded from 1000 Genomes Project14.  

For generating genotype calls for the hybrid CAST×J129 cells, we 

downloaded parental genome sequencing data from publicly available 

databases. For CAST, we downloaded the genome sequence from the European 

Nucleotide Archive (accession number ERP000042). S129/SvJae genome 

sequencing data was downloaded from the Sequence Read Archive (accession 

number SRX037820). Reads were aligned to the mm9 genome using Novoalign 

(www.novocraft.com) and using samtools44, and we filtered out unmapped reads 

and PCR duplicates. The final aligned data sets were processed using the 

Genome Analysis Toolkit (GATK)45. Specifically, we performed indel realignment 

and variant recalibration. The GATK Unified Genotyper was used to make single-

nucleotide polymorphism (SNP) and indel calls. We filtered out variants that did 

not meet the GATK quality filters or that were called as heterozygous variants, as 

the genome sequencing was performed in homozygous parental inbred mice. 

The genotype calls in the parents were used both to determine the extent of 

interactions in cis versus h-trans to learn the phasing of hybrid CAST×J129 cells 

a priori to haplotype reconstruction. 

 

Hi-C read alignment 

For Hi-C read alignment, we aligned Hi-C reads to the mm9 (mouse) or 

the hg18 (human) genome. In each case, we masked any bases in the genome 
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that were genotyped as SNPs in either Mus musculus castaneus or S129/SvJae 

(for mouse) or GM12878 (for humans). These bases were masked to “N” in order 

to reduce reference bias mapping artifacts. Hi-C reads were aligned iteratively as 

single-end reads using Novoalign and samtools44. Specifically, for iterative 

alignment, we first aligned the entire sequencing read to either the mouse or 

human genome. Unmapped reads were then trimmed by 5 bp and realigned. 

This process was repeated until the read successfully aligned to the genome or 

until the trimmed read was less than 25 bp long. Iterative alignment is useful for 

Hi-C data because certain reads will span a proximity-ligation junction and fail to 

successfully align to the genome due to gaps and mismatches. Iteratively 

trimming unmapped reads has the potential to allow these reads to align 

successfully to the genome when the trimming removes the part of the read that 

spans the ligation junction. After iterative alignment of reads as single ends is 

complete, the reads are manually paired using in-house scripts. Unmapped and 

PCR duplicate reads are removed. The aligned data sets are then finally 

subjected to GATK45 indel realignment and variant recalibration. 

 

Usable coverage 

For phasing using HapCUT, we utilize both intra-chromosomal and inter-

chromosomal reads. For inter-chromosomal reads, I consider each inter-

chromosomal read pair as two single-end reads, as the paired information for 

such reads is not useful for phasing. In contrast, all intra-chromosomal reads are 

considered for phasing. The probability of a single read to harbor more than one 
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variant is small, especially in humans where the variant density is relatively low. 

This, in combination with the fact that only the paired intra-chromosomal reads 

will have large insert sizes, means that the vast majority of reads that contribute 

to the success of haplotype phasing are the intra-chromosomal reads. Therefore, 

I define the “usable coverage” as the genomic coverage derived from intra-

chromosomal reads only. 

Our Hi-C experiment generated ~22% inter-chromosomal reads in 

CAST×J129, whereas ~55% of the reads in GM12878 were inter-chromosomal. 

In other words, 620 M paired-end reads out of 795 M were useful in CAST×J129, 

with a usable coverage of 30×. In humans, only 262 M paired-end reads out of 

577 M were useful, resulting in a usable coverage of 17×. In our experience, the 

fraction of all reads that are intra-chromosomal versus inter-chromosomal in a Hi-

C experiment may vary between experiments and across cell types. 

 

Analysis of HaploSeq data using HapCUT 

I used the HapCUT24 algorithm to perform the computational aspects of 

HaploSeq, This method was originally designed to work on conventional genome 

sequencing (WGS) or mate-pair sequencing data. HapCUT constructs a graph 

with the heterozygous variants as nodes and DNA fragment(s) connecting two 

nodes as edges. Therefore, only fragments with at least two heterozygous 

variants are useful for haplotype phasing. HapCUT extracts such ‘haplotype-

informative’ fragments from a coordinate-sorted BAM file using a sorting method 

that stores each potential haplotype-informative read in a buffer until its mate is 
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seen. We customized the buffer size to allow HapCUT handle large insert–sized 

Hi-C reads. 

HapCUT uses a greedy max-cut heuristic to identify the haplotype solution 

for each connected component in the graph with the lowest score under the MEC 

scoring function. In particular, the original HapCUT algorithm used O(n) iterations 

to find the best cut. Because Hi-C data resulted in chromosomal spanning 

haplotypes with a single large connected component, the default method took 

several days of computing time to phase the CAST×J129 genome. To reduce the 

computation time, I assessed the impact of reducing the number of max-cut 

iterations on the accuracy of phasing. For CAST×J129 system, increasing the 

number of max-cut iterations beyond 1,000 did not significantly improve the 

accuracy. For GM12878, I allowed up to 100,000 iterations.  

Once a best-cut solution is achieved, that solution is iterated multiple 

times to improve upon the current best-cut solution among other possible best 

cuts in the solution space. I used a maximum of 21 such iterations in CAST×J129 

and 101 in GM12878 cells. My parameters in GM12878 cells allowed HapCUT to 

obtain higher accuracy given the lower variant density and reduced sequence 

coverage compared to the mouse data. The modified version of HapCUT can be 

downloaded from https://sites.google.com/site/vibansal/software/hapcut. 

 

Maximum insert size analysis 

As previously mentioned the probability of a Hi-C read being in cis versus 

h-trans varies as a function of the distance between the two read pairs (Fig. 2c). 
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At shorter genomic distances, the probability that an intrachromosomal read is in 

h-trans is very low. At large distances (>30 Mbp), this probability rises 

substantially and is in theory more likely to introduce erroneous connections for 

HapCUT to phase. To account for this, I used the Hi-C data for chromosomes 1, 

5, 10, 15 and 19 in the CAST×J129 data and repeated haplotype reconstruction 

allowing variable maximum insert size values. I excluded any reads where the 

insert size between reads was greater than the allowable maximum insert size. I 

performed this analysis using the low variant density case as lower density was 

most amenable for applications in humans. This step resulted in increase in 

accuracy of HaploSeq analysis with moderate reduction in resolution. 

 

Insert size–dependent probability correction 

A useful feature of the HapCUT algorithm is that it accounts for the base 

quality score at a variant location to calculate the score of a potential haplotype. 

In other words, if a sequencing read that links two variants and the base quality 

at one variant location is low, this read is given relatively lower weight by 

HapCUT in generating its final haplotype calls. Therefore, HapCUT can use this 

information to try to disregard potential sequencing errors from making erroneous 

haplotype connections. As we previously mentioned, in Hi-C data errors may also 

arise due to h-trans interactions, which are much more frequent than sequencing 

errors and show a distance-dependent behavior. Therefore, I attempted to 

account for the likelihood of an interaction being in cis versus h-trans based on 

the distance between the two reads. I used the CAST×J129 Hi-C data to identify 
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reads that are in cis or h-trans. I binned the insert sizes into 50-kb bins and 

estimated the probability of a read being h-trans (#h-trans/(#cis+#h-trans). I then 

used local regression (LOWESS) at 2% smoothing to predict h-trans probabilities 

at any given insert size. For every intrachromosomal read, I multiplied the cis 

probabilities (1 – h-trans) with the base qualities to account for the odds of this 

intrachromosomal read being a h-trans interaction. As a result, reads that are 

more likely to be h-trans are given lower weight by HapCUT in identifying the 

haplotype solution. 

Adding h-trans interaction probabilities increases HaploSeq accuracy 

moderately, without having any affect on resolution. As a comparison, maximum 

insert size of 30 Mb had an error rate of 1.1% in chromosome 19. After adding h-

trans probabilities, the error rate is 0.9%, where error rate is defined as 1 – 

accuracy. 

 

Local conditional phasing simulation 

In order to study our ability to perform local phasing at different 

percentages of resolution, I performed a stepwise analysis. First, I generated 

seed haplotypes at different resolutions. Then, I used Beagle (v4.0)37 to perform 

local phasing under the guidance of the seed haplotype. Finally, I checked 

accuracy of local phasing by comparing it to phasing information known a priori 

from 1000 Genomes Project. 

To simulate seed haplotypes at different resolutions, I first simulated seed 

genotypes. I used different combinations of read length and coverage to obtain 
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seed genotypes of various resolutions. In particular, I used Hi-C intra-

chromosomal read starting positions from H1 and H1-derived cells (unpublished 

data) to generate pairs of reads of a given read length and coverage. This 

allowed us to maintain the Hi-C data structure and the observed distribution of 

insert sizes in the simulated data. To generate the seed genotype, I constructed 

a graph with nodes representing heterozygous variants in GM12878 

(chromosome 1) and edges corresponding to reads that cover multiple variants. 

This graph is essentially a genotype graph because we don’t know the phasing 

yet. Hence, the whole point of this graph is to provide a two subset of variants: 

one that is a part of the seed genotype and other that is not (which are the gaps 

to be inferred by local phasing), based on the resolution and Hi-C data structure. 

I generated seed genotypes at required parameters of read length and coverage 

to attain a specific resolution. I used these seed genotypes for both local phasing 

and to study the minimal requirements for generating seed haplotypes of enough 

resolution. These two analyses were done independently and in both cases, I 

repeated generating seed genotypes and downstream analysis ten times to note 

the average results. 

To perform local conditional phasing, I need an a priori haplotype system 

to check accuracy of our local conditional phasing. Because a priori haplotype 

information from the trio covers only a fraction of heterozygous variants, I 

decided to perform local phasing simulation only on the trio subset. Specifically, I 

required every variant that was part of either seed genotype or “gaps” to be part 

of the 1000 Genomes-phased trio. I converted seed genotypes to seed 
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haplotypes using the trio information while keeping “gap” variants as unphased. I 

then used local phasing conditioned on the seed haplotype to infer phasing of the 

gap variants using Beagle. I allowed homozygous variants to assist Beagle in 

making better predictions from the Hidden Markov Model.  

To perform neighborhood correction for a seed haplotype unphased 

variant, I collected three variants each from both upstream and downstream, 

which are phased in seed haplotype. Then I checked if there was 100% 

correlation between the phasing present in the seed haplotype to what is 

predicted by Beagle. This provides an estimate of how well Beagle could have 

performed in this “local” region. If there is a 100% match, I consider the variant 

as conditionally phased. If there is not a 100% match, I disregarded the 

unphased variant in the final haplotype. I tried other window sizes such as 5 and 

10 and found no improvement in accuracy. 

 

Local conditional phasing in human GM12878 cells 

I coupled HaploSeq analysis and local conditional phasing to increase 

resolution in GM12878 cells. Local conditional phasing was performed as 

described earlier on genotypes that are common between GM12878 (ref. 43) and 

population samples. In addition, as the seed haplotype is not 100% accurate, I 

marked the seed haplotype phased variants that did not agree with local phasing. 

These marked variants were made “unphased” as these could be potential errors 

from HaploSeq. Hence, apart from using neighborhood correction for deciding 

whether a gap variant needs to be locally phased (as in the simulation), I also 
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used this information to mark variants in the seed haplotype that could be 

potentially erroneous. 
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Chapter 4: Analysis of haplotype-resolved gene regulation 

patterns in human ES cells and ES-derived cell-types 
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Abstract 

 Recent collaborative projects such as the ENCODE and Roadmap 

Epigenome have allowed annotation of regulatory elements and subsequent 

investigation of their role in cellular differentiation and lineage specification. 

However, these analyses are limited in two aspects. First, the functional maps 

contain mixture information of the two haploids and thus epigenetic and genetic 

differences between the haplotypes are ignored. Second, current analyses are 

limited in recognizing the role of distal gene regulation. To address these 

challenges, we performed Hi-C in H1 human embryonic stem cells and 4 H1-

derived cells from diverse developmental lineages, as it can inform both 

haplotype and 3D genome patterns. We integrated previously obtained maps of 

chromatin accessibility, DNA methylation, histone modifications, and gene 

expression to delineate aspects of gene regulation in an allelic context. By 

phasing over 93.5% of alleles, the haplotype-resolved genome revealed 

widespread allelic gene expression patterns. In addition, we observe a strong 

correlation among allelic transcription and allelic chromatin states of promoters 

and distal acting enhancers. By correlating allelic regulatory states and allelic 

gene activity, our study demonstrates new insights on combinatorial functional 

interactions of gene regulation. 
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Introduction 

Human cellular differentiation is a complex process that harbors unique 

gene expression patterns in each cell type1-3. It is increasingly being accepted 

that cell type specific gene regulation patterns are facilitated by dynamic changes 

in epigenome4-9. For example, DNA Methylation at promoters has been shown to 

inhibit expression of lineage-specific genes and regulate imprinting regions10-12. 

On the same lines, other epigenomic aspects such as histone modifications have 

also suggested to play a critical role in animal development13. For example, mice 

with depleted histone acetyltransferase p300/CBP are lethal14. 

To systematically study the role of epigenetic mechanisms in human 

development, the Roadmap Epigenome project profiled DNA Methylation, core 

histone marks, chromatin accessibility and gene expression in H1 human 

embryonic stem cells (hESCs) and four-hESC derived lineages4. In particular, 

Mesendoderm, Mesenchymal Stem Cells, Neural Progenitor Cells, and 

Trophoblast were chosen as they represent extra-embryonic and embryonic 

lineages, including cells at early and late stages of development. Utilizing these 

datasets, lineage specific regulatory elements were defined using which distinct 

epigenetic mechanisms for regulation of early and late differentiated stages were 

reported, clearly showing crucial role of epigenetics in human cellular 

differentiation4, 6. 

Along with epigenomes, several groups have demonstrated the role of 3D 

genome structure in regulating cell-type specific gene expression15,16. For 

example, it has been shown that 3D genome can facilitate chromatin interactions 
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among distal regulatory elements such as enhancers and target genes17,18. 

However, the vast majority of studies that analyze gene regulation pattern have 

not performed integrative analyses of epigenome and 3D genome. In addition, 

these analyses could be confounded by the fact that each dataset contains 

mixture information of the two haplotypes. Specifically, current studies are limited 

in reporting allele specific regulatory events and allelic gene expression. For 

example, imprinting genes are known to express in an allelic fashion10, however 

the scope of such allele-specific genes are poorly understood in the context of 

cellular differentiation.  

As Hi-C can inform both 3D structure19-21 and haplotypes22, we have 

currently performed Hi-C in each of these 5 lineages to integrate analyses of 

chromatin structure, epigenome and gene expression in a haplotype resolved 

context. By analyzing allele-resolved gene expression patterns, we identify 

widespread allelic biases in gene expression in each lineage, consistent with 

recent reports in individual cell types. In total, 24% of genes in the genome for 

which we can reliably detect allele-resolved expression show an allelic bias, 

indicating that this phenomenon is pervasive throughout the genome. Allele 

biased patterns of gene expression are well correlated with allelic biased 

chromatin state at distal acting enhancer elements and long-range chromatin 

interactions between these elements and the target genes. Our results 

demonstrate a strong relationship between dynamic chromatin architecture and 

dynamic chromatin states, together coordinating gene regulation in an allelic 

context. Taken together, our study shows a combinatorial functional interaction 
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between regulatory elements and genes, facilitated by 3D genome and haplotype 

analyses. 

 

Results  

Generating complete haplotype structures for H1 cell line 

 We performed Hi-C20 experiments in H1 hESCs and each of the four H1-

derived lineages. We obtained a total of 3.85 billion unique read pairs, with on 

average 770 million unique read pairs split between two biological replicates for 

each cell type (Table 4-1). Using HaploSeq22, I generated chromosome span 

haplotypes for H1 by combining the Hi-C datasets across all of the H1-lineages, 

and whole genome sequencing to maximize phasing resolution (Fig. 4-1a). In 

total, I was able to generate haplotypes incorporating ~93.5% of all heterozygous 

variants in the H1 genome. To evaluate the accuracy of the haplotype 

predictions, I performed HaploSeq using reads from Hi-C alone and checked its 

concordance with independent datasets such as whole genome sequencing and 

mRNA-Seq (Fig. 4-1b). As, the concordance rates for the H1 genome are similar 

to the error rates we found in previous work using cell lines where haplotypes 

were known a priori where the accuracy of phasing could be calculated explicitly, 

we believe that the haplotypes predictions of H1 genome are of high quality22.    

Having obtained complete, accurate, and high-resolution haplotypes, we 

analyzed various genome wide datasets in an allele resolved context4. We re-

aligned mRNA-sequencing, ChIP-sequencing for histone modifications, MethylC-

Sequencing, and DNaseI hypersensitivity sequencing datasets for each of the 
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H1-derived lineages and determined which reads arose from which haplotype 

(Methods). Of note, as we have only haplotype information for the H1 individual, 

we cannot determine which allele is the maternal or paternal copy. Therefore, we 

arbitrarily defined the two parental haplotypes for each chromosome to be from 

the “p1” allele and “p2” allele. As another metric to check the accuracy of 

haplotypes, I checked if mechanisms behind an imprinting region could be 

recapitulated using various epigenetic datasets. Indeed SNRPN, a known DNA 

Methylation based imprinted gene cluster23, is expressed only in p1 allele as 

supported by active H3K4me3 histone mark in p1 and inactive methylated 

promoter at p2 allele (Fig. 4-2). These datasets therefore allow for the systematic 

determination of variability in gene expression and chromatin state of cis-

regulatory elements between alleles. 

 

Identifying allelic events 

 As allelic events could be a result of biased mapping strategies, we 

followed a multi-step process to accurately identify allelic events. Besides, 

mapping each of the datasets to a heterozygous variant masked human 

reference genome, I simulated reads spanning each of the variant to estimate 

mapping biases. SNPs and Indels that showed >5% and >10% biases 

respectively, were excluded from all downstream analyses, as these variants 

potentially show an inherent mapping bias. Second, variants that demonstrated 

>3 standard deviations or significant binomial variation (FDR 5%) of genome 

sequencing coverage above the mean haplotype coverage, were removed as 
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potential sources of copy number variation. Next, we excluded any heterozygous 

variant with a genotype p-value greater than 0.05 after Benjamini correction, as 

these can be inherently homozygous in nature (Methods). Using the final list of 

heterozygous variants, we employed different statistical methods such as 

negative binomial (allelic genes), binomial (allelic chromatin states), and hyper-

geometric test (DNA Methylation) to evaluate the allelic status (Methods).   

 

Widespread allelic imbalances in gene expression 

 Previous studies of allele-resolved gene expression have identified allelic 

imbalances in expression of a given gene between two alleles24, 25.  However, 

most previous studies of allele resolved gene expression focus on only a limited 

number of cell types, most often lymphoblastoid cell lines. Therefore, it remains 

unclear the degree to which allele-biased gene expression varies among different 

lineages of a single individual. To address this issue, I identified allelic biases in 

gene expression across the five H1 lineages examined in this study. I identified a 

total of 1,787 genes that showed allelic bias in gene expression between the two 

alleles in any cell type (FDR 10%, Fig. 4-3a). As only genes that contain exonic 

SNPs and can possibility be analyzed for allele specific expression, this actually 

represents 24% of all genes for which we can detect allelic expression (Fig. 4-

3a). This suggests that allele biased gene expression is pervasive throughout the 

H1 human genome. In addition, most of the allelic differences in expression were 

less than 4-fold (Fig. 4-3b), indicating that the majority of allelic differences in 

expression were not “on/off” events, but instead reflecting changes in the relative 



	
   	
   116	
  

     
	
   	
  

level of expression from each allele. By performing k-means clustering on the 

patterns of expression of allelic biased genes across cell types, we observed that 

genes that show bias in expression contain both lineage specific and 

constitutively expressed genes (Fig. 4-3c). However, allele biased genes do not 

appear to be enriched among annotated lists of either housekeeping or lineage-

restricted genes as compared with non-allele biased genes (Fig. 4-3d).  

 We were also interested in characterizing if the patterns of bias between 

the two alleles vary between cell types. For genes that are expressed exclusively 

in only one or two lineages, allele bias could only occur in a cell type specific 

manner. Therefore, we focused our analysis on genes were we could detect 

expression across all 5 lineages. By performing K-means clustering of the 

patterns of bias among these constitutively expressed genes, we can observe 

that some allelic genes show constitutive allelic bias, whereas others show cell-

type variable patterns of bias (Fig. 4-3e,f). Cell-type variability in allelic bias 

appears to largely be related to a gain of allelic bias in a particular lineage.  

 

Allelic bias is enriched among imprinted genes 

While imprinted genes are enriched in the set of allelic biased genes, they 

make up only a small fraction (~1%) of the allelic-biased genes (Fig. 4-4a,b). 

Further, as imprinted genes are generally regulated in clusters23, I also assessed 

whether allele biased genes in general tend to occur in clusters. While allele-

biased genes, tend to locate closer to other allele biased genes (Fig. 4-4c, 

p=0.0482 Wilcox rank sum test), the differences are very subtle, suggesting that 
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the majority of allele-biased gene expression appears not occur in clusters. 

Therefore, it appears that that most of the allelic gene expression is due to 

mechanisms other than genomic imprinting. 

 

Allelic promoter bias correlates with allelic transcription 

 As cis-regulatory elements such as promoters and enhancers are known 

to play critical role in gene regulation26, 27, we hypothesized that allelic gene 

expression could be at least partially explained by sequence variations in these 

cis elements. To test this hypothesis, I identified SNPs in the H1 lineage that 

showed any kind of allele specific bias when considering histone acetylation, 

histone methylation, or DNase I hypersensitivity. We observe that SNPs that 

show some kind allelic bias are indeed closer to allele-biased genes than 

unbiased SNPs (Fig. 4-5a). Encouraged by this result, we characterized DNA 

methylation or chromatin modification state at the promoters of allele biased 

genes to check if allelic transcription correlates with chromatin state of promoter 

(Fig. 4-5b,c). Specifically, only 247 (14%) out of 1,787 allele-biased genes 

contain allelic biased SNPs in their promoter region at least one lineages and are 

therefore amenable to this analysis. Of these 247 genes, a majority contains 

either active or repressive marks at their promoter (Fig. 4-5b), supporting a role 

for allele specific activation or repression of the promoter in the establishment of 

the allelic expression status of these genes. The concordance with repressive 

chromatin states is largely due to the allelic biased DNA methylation patterns. 

Notably, on average 29% of genes that have allele-biased expression show no 
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evidence of allelic-bias at their promoter region, despite the presence of SNPs in 

the promoter with the potential to distinguish allele specific activity, suggesting 

the use of alternative mechanisms, such as regulation through distal-acting 

enhancers. 

  

Patterns of allelic enhancer sites 

 As allele biased expression could be the result of allele-biased events at 

distal enhancer elements, we analyzed allelic patterns of histone acetylation and 

DNase I HS (DHS) at previously predicted enhancer elements in the H1 and H1-

derived cell lines4. We were able to identify 1,589 enhancers that displayed 

allele-biased chromatin state in at least one of the 5 cell lines analyzed (Fig. 4-

6a). Several lines of evidence suggest that these allele-specific enhancers are 

contributing to gene regulation. First, enhancers that show allelic DHS or 

acetylation show depleted levels of DNA methylation (Fig. 4-6b). Second, these 

enhancers are generally located closer to genes that also show allele biased 

expression when compared with enhancers that lack allele bias (Fig. 4-6c). To 

systematically analyze allelic enhancers with respect to genes, it is critical to link 

enhancers to target genes. However, as enhancers can regulate distal and often 

multiple genes, finding true target genes for enhancers have been challenging.   

 

Using C-based technologies to link allelic enhancers and target genes 

 We hypothesized that allelic enhancers, which are spatially proximal to 

allelic target genes, are more likely to be involved in gene regulation. To quantify 
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spatial proximity, we developed a computational strategy using Hi-C data 

(Methods). Briefly, we divided the genome into 5kb bins and calculated 

interaction frequency for every promoter-enhancer pair using normalized Hi-C 

data. Next, we summed up interaction frequencies at multiple resolutions of 

enhancers so as to enrich for Hi-C signal. We then used a Weibull distribution to 

estimate significance values and true enhancer-promoter interactions were 

chosen based on 0.1% FDR (Methods). To validate predicted enhancer-promoter 

interactions we compared the interaction frequency scores to the previously 

published 5C dataset17. We observe strong correlative patterns between 5C and 

our interaction frequency scores (Fig. 4-7a). In addition, we employed high-

resolution 4C-seq28 from 6 allele biased enhancer elements. We developed a 

distance dependent LOWESS regression model of the quantile normalized 4C-

seq interaction frequencies (using 4cseqpipe28) in order to identify “specific” 

interactions between the allele biased enhancers and the surrounding regions 

(Fig. 4-7b). 

  

Spatially proximal allelic enhancers correlate to transcription  

Using the predicted enhancer-promoter interactions, we observed that 

there is a greater correlation between allelic enhancer state and allelic gene 

expression when the gene and enhancer are spatially proximal as defined by 

strong Hi-C interaction scores (Fig. 4-8a). Most of these allelic enhancers are 

likely regulating genes at long distances. For instance, only 10% of allelic 

expressed genes have an allelic enhancer within 20kb (Fig. 4-8b). In contrast, 
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66% of the 640 allelic gene-enhancer pairs analyzed display strong Hi-C 

interactions with allelic enhancers located greater than 20kb away (Fig. 4-8b). In 

addition, by considering loci that have 4C-Seq interaction frequencies >2.5x over 

the LOWESS expected model, we observe 4 out of 6 tested allelic enhancers to 

be spatially proximal to allelic genes (Fig. 4-8c). While one locus showed 

interaction frequencies to allelic gene with <2.5fold LOWESS enrichment, other 

loci showed interactions to MT1H and MT1G genes that was not amenable to 

allelic analyses (Fig. 4-8c). In summary, we observe specific spatial contacts 

between enhancers and target genes, indicating that allele biased enhancers 

likely are regulating allele biased genes; though it remains possible that a 

minority of allele biased enhancers are not regulating any target genes. 

 

Allelic bias may contribute to human health and disease 

To understand associations between allele-biased state and common 

diseases or phenotypes, I identified all SNPs in the GWAS catalog29 that were 

present as heterozygotes in the H1 genome. I expanded the H1 GWAS list by 

including variants linked in Linkage disequilibrium (r2 > 0.8). Several 

observations suggest that allelic activity may contribute to phenotypic diversity. 

For one, GWAS SNPs are closer to allele-biased genes than would be expected 

at random (Fig. 4-9a). Second, we analyzed the enrichment of active chromatin 

marks (histone acetylation, DHS, H3K4me1, H3K4me3, H3K36me3) at GWAS 

SNPs in the H1 genome. Specifically, we compared the enrichment of these 

marks on the risk versus non-risk allele in H1, and we observe that the risk 
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alleles have a slightly lower chromatin activity when compared with the non-risk 

alleles (Fig. 4-9b), suggesting that these variants may be associated with a 

moderate loss or reduction in activity. For example, one locus identified 

corresponds to one of the allele biased enhancers we used for 4C-Seq analysis 

(Fig. 4-9c). In this case, a SNP linked to Systemic Lupus Erythematosis is 

located within an allele-biased enhancer in an intron of the PXK gene. At this 

locus, the risk allele shows reduced histone acetylation relative to the non-risk 

allele. In addition, our 4C-seq analyses indicates that this variant is forms specific 

interactions with the promoter of the PXK gene which shows allele bias in 

expression with reduced expression on the same haplotype as the risk allele 

(Fig. 4-9c), suggesting a potential molecular mechanism for this genetic variant. 

 

Allelic bias occur from both parental haplotypes 

 As we demonstrate the gene regulation patterns in a haplotype-resolved 

context, we also wanted to check if there is any bias in allelic bias towards any 

parent. Although we cannot determine which haplotype is paternal or maternal, 

we can infer parental biases in allelic events. In particular, we assessed for each 

chromosome the fraction of allelic bias present on the p1 allele for allele biased 

genes and allele biased enhancers as called by either allelic DHS or allelic 

acetylation. Although, there is some degree of variability in bias between the p1 

and p2 alleles for each chromosome, none of the chromosomes show a 

statistically significant bias in allelic events to either allele (Fig. 4-10a,b,c). The 

greater variability in the allelic acetylation and allelic DHS compared with allelic 
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genes is likely a product of the fact that there are fewer elements called as allele 

biased on each chromosome for these relative to allelic genes, and therefore 

calculating the fraction of elements on a given allele is subject to greater 

variability (Fig. 4-10b,c). Therefore, our data suggests that allelic activities are 

contributed from both the parents in a similar proportion.  

 

Discussion 

 We have presented here Hi-C interaction maps in H1 hESC and four H1-

derived lineages. These maps have allowed for comprehensive reconstruction of 

chromosome-span haplotypes for the H1 genome, enabling analysis of gene 

expression and chromatin states of regulatory elements. Furthermore, as 

regulatory elements can be distal to target genes, we have used Hi-C and 4C-

Seq interaction maps to link cis-regulatory elements to genes and therefore 

perform an integrative analysis of genome sequence, structure and epigenome. 

Analyzing these datasets in a haplotype resolved context have revealed new 

insights on allelic gene regulation.  

 We have observed extensive allele specific gene expression. Nearly a 

quarter of genes appear to have an allelic bias in at least one of the cell lines 

analyzed. In addition, the transcription of majority of these allelic genes can be 

linked to allelic chromatin states of cis-regulatory elements, such as promoters 

and enhancers. We cannot currently determine if allelic activities at these 

functional sites are due to genetic, epigenetic, or their interplay. Regardless, our 
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results reveal a coordinated activity among genome sequence and structural 

features. 

 Analysis of gene regulation in an allelic context has several implications 

for our understanding of the mechanisms of human development. For instance, 

phenomena such as compound heterozygosity were well described for coding 

variation. Our results suggest that non-coding variation in distal regulatory 

elements may also contribute to potential instances of compound heterozygosity. 

This underscores the importance of obtaining long-range haplotype information 

for an individual in order to understand the consequence of inheriting distal acting 

variants. Inevitably, these studies will need to become routine in order to 

understand the effects of distal acting non-coding variation on gene expression. 

As the two haplotypes differ primarily in genetic and epigenetic aspects, 

they can be contrasted with changes in gene expression among a population of 

individuals to understand the basis of human disease. Such studies can allow 

build predictive models of gene regulation utilizing aspects of genome structure 

and function of sequence-based regulatory elements. As allele-biased 

expression is widespread in the genome of an individual, this suggests that 

globally allele-bias cannot be highly deleterious to an individual. Instead, our 

results suggest that the allelic bias we observe is associated with common 

phenotypes and disease traits, suggesting that allelic bias in expression may 

contribute to phenotypic diversity and to risk for common diseases. 
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Methods 

Sequence read alignment 

The following description applies for the alignment of DNA Methylation, 

ChIP-Seq and DNase-Seq datasets. Single end sequencing data was mapped to 

a variant masked human reference genome (hg18) using Novoalign 

(www.novocraft.com). Unmapped and non-uniquely mapping reads were 

removed, and PCR duplicate reads were removed with Picard. Reads were 

processed with the Genome Analysis Toolkit (GATK)30. Specifically, reads 

underwent indel recalibration and variant realignment. Lastly, reads that 

overlapped with variant loci were split into the “p1” and “p2” allele according to 

whether the bases in the sequencing read matched the sequence from either the 

p1 or the p2 alleles. 

For Hi-C datasets, read pairs were mapped independently to the variant 

masked genome using Novoalign. Reads were then manually paired using in 

house scripts. Non-uniquely mapping, unmapped reads, and PCR duplicate read 

pairs were removed. Reads pairs were then split into single reads and processed 

through the same GATK pipeline described above including indel re-alignment 

and variant recalibration. Finally, read pairs were manually re-paired using in 

house scripts. For mRNA-Seq, we mapped the paired-end data to a variant 

masked transcriptome using Novoalign.  

 

Genotyping and haplotyping 
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 Whole genome sequencing (WGS) data for the H1 genome were 

downloaded from the Sequence Read Archive Database (SRA049981). Reads 

were mapped to the hg18 reference using Novoalign. Unmapped and non-

uniquely mapping reads were removed using in house scripts. PCR duplicate 

reads were removed using Picard31. The data was processed through the 

Genome Analysis Toolkit (GATK) best practices guidelines. We performed indel 

recalibration, variant realignment, variant calling using the Unified Genotyper, 

and variant recalibration was performed to achieve high quality genotyping. 

 Haplotyping was performed using the previously described HaploSeq 

method22. Briefly, Hi-C reads combined from each of the H1 derived lineages and 

whole genome sequencing were used as input sequencing into the HaploSeq 

algorithm in order to generate haplotype predictions. For final haplotype calls, Hi-

C data was combined with WGS mate-pair data for the H1 genome. HapCUT 

generates several “blocks” for each chromosome. The vast majority of variants 

on each chromosome are in the “Most Variants Phased” (MVP) block. The MVP 

block for each chromosome was used as a “seed haplotype” for local conditional 

phasing using the Beagle v4.032. This generates two haplotypes for each 

chromosome, one for the maternal allele and one for the paternal allele. Since 

we do not have information regarding the parent of origin in the H1 genome, we 

arbitrarily define each allele as the “p1” or “p2” allele (p1 and p2 for “parent 1” 

and “parent 2”). The p1 and p2 allele for different chromosomes are not 

necessarily derived from the same parent, as this information is only accessible if 

the sequence of H1’s parents were also available. 
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Identification of allelic genes 

We considered the two replicates of mRNA-Seq data and used a negative 

binomial distribution (10% FDR) to calculate significantly biased genes between 

the two alleles, where genes are defined by merging isoforms (from RefSeq). 

Finally, we included only allelic genes that showed >35% MAF based on control 

sequencing datasets, such as DNA Methylation reads and genome sequencing. 

 

Identification of allelic SNPs 

 We estimated if a SNP is allelic based on different types of readouts. In 

particular, we used ChIP-Seq, DHS, TF factor datasets independently to obtain 

readouts of each SNP between the two alleles. We then used a binomial statistic 

(with an expectation p=0.5) to identify significantly biased SNPs for a given 

dataset. FDR was based on 1000 random permutations. Lastly, we included only 

allelic SNPs that showed >35% MAF based on control sequencing datasets. 

 

Identification of allelic methylation 

 We initially grouped CpGs around heterozygous variants and used a 

hyper-geometric test to evaluate significance and FDR was performed as 

described above. 

 

Identification of allelic enhancers 

 To systematically study allelic enhancers, we combined several enhancer 

marks to obtain a combined acetylation bam file. This combined bam file gives us 
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the required coverage in an allelic context to perform an in-depth analyses. In 

particular, we combined data from H4K8ac, H4K91ac, H2BK120ac, H3K18ac, 

H3K23ac, H3K27ac, H3K4ac, H2AK5ac and H3K9ac marks. For evaluating 

allelic enhancers, we obtained readout for enhancers defined in Xie et al 20137 

(±2.5kb from enhancer peaks) between the two alleles4. Then we used binomial 

to obtain significance at an FDR of 10%, as evaluated by the random 

permutation analyses (1000 permutations). By using acetylation alone, we 

identified 726 allelic enhancers. We performed similar analyses using DHS and 

identified 969 allelic enhancers, totaling to 1589 allelic enhancers. Similar to 

allelic SNPs and genes, we included allelic enhancers that showed >35% MAF 

based on control sequencing datasets. 

 

Enhancer and gene annotations  

The enhancer regions were defined as previously described4. Briefly, 

enhancer chromatin signatures were trained for p300 binding sites in H1 ES cells 

using RFECS algorithm based on H3K4me1, H3K4me3, and H3K27ac signals at 

100bp bin size. Next, these modification signals in all cell lines were tested to 

predict enhancers. The predicted enhancers that overlap with H3K4me3 peaks or 

within 2.5kb of the transcription start site were removed. Enhancers were merged 

from all cell types if they are located close to each other (<2kb) by taking the 

midpoint at the center of the new enhancer. For the gene list, gene expression 

levels, house keeping genes, and lineage-specific genes we used the same data 

set as described in Xie et al4. For imprinting genes, we obtained 59 known 
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imprinting genes downloaded from publicly available imprinting gene database 

(http://www.geneimprint.com/).  

 

Correlating allelic genes and allelic promoters  

To investigate how many allelic gene promoter regions are consistent with 

allelic gene expression levels, first we selected allelic genes that contain at least 

one allelic SNP in their promoter regions (1.5kb upstream and downstream from 

transcription start site). We only considered allelic SNPs defined by DNaseI HS 

site, H3K4me3, histone Ac, combined H3K9me3 and H3K27me3, and DNA 

methylation because the functions of those chromatin marks at the promoter 

regions are well defined. If promoters are marked by allelic SNPs from 

H3K9me3/H3K27me3 or DNA methylation and the allelic gene expression levels 

are consistent with those promoter patterns, the genes can be explained by 

allelic repressive marks. If promoters are marked by allelic SNP from histone 

acetylations, H3K4me3, and DNaseI HS site and allelic gene expression levels 

are consistent with those promoter patterns, the genes can be explained by 

allelic active marks.  

 

Identification of enhancer-promoter interactions  

To investigate the linking between allelic genes and allelic enhancers we 

first defined enhancer-promoter interactions using Hi-C interaction frequency 

data. Hi-C interaction frequencies were calculated in terms of 5kb window and 

normalized using HiCNorm33. After that, we considered all pairs of promoters and 
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enhancers in each chromosome. Promoter regions were fixed as +/- 5kb 

surrounding transcriptional start sites and enhancer regions were defined by 

using different window sizes as 5kb, 10kb, 20kb, 30kb, 40kb, 50kb, 75kb, 100kb, 

300kb, and 500kb surrounding center of each enhancer. The interaction 

frequencies between a promoter and an enhancer at a certain window size were 

calculated as (Interaction frequency / window size of an enhancer)*5kb. Final 

interaction scores were defined as summation of interaction frequencies between 

promoter and enhancer with multiple window sizes. To calculate significance of 

each enhancer-promoter interaction, we generated a random interaction 

frequency score by randomly permutated interaction frequencies between 

promoter and enhancer in each window size. The distribution of random 

interaction frequency scores was fit to Weibull distribution and p values of each 

interaction frequency between promoter and enhancer were calculated. At a p 

value cutoff of 1E-03, we defined enhancer-promoter interactions.  

 

Correlation allelic gene and allelic enhancer 

We calculated correlation coefficient between allelic gene and allelic 

enhancer. First we generate 1 by 10 vectors for allelic gene and allelic enhancer, 

respectively, for H1 and H1-derived four lineages. For each lineage, we assigned 

log2(p2 allele /p1 allele) and log2(p1 allele / p2 allele) values as allelic bias 

information. After constructing two 1 by 10 vectors for both allelic gene and allelic 

enhancer, we calculated the Pearson correlation coefficient between them.  
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4C-Seq analyses 

 Sequence reads were processes as follows. For each read, the first and 

second sequencing reads were checked to identify the presence of the primer 

sequences and any expected portion of the bait region. Any sequence with 

greater than 20% mismatches to the expected bait region was discarded. The 

reads were trimmed such that each read was represented as a 36-mer, with 

20bp derived from the bait region and the subsequent 16bp, presumably 

containing the target region of interest. 

 4C-seq data was mapped to a version of the hg18 genome with known 

SNPs in the H1 genome masked to N, similar to other the strategy of mapping 

other sequence read datasets performed in this study. Custom indexes for this 

H1-masked hg18 genome were built using the 4cseqpipe “-build_re_db” 

command. The reads were mapped using the 4Cseqpipe software “-map” 

command to custom built indexes. Normalized contact intensities were derived 

using the 4seqpipe “-nearcis” command for a 1Mb region upstream and 

downstream of the bait locus. We then took the normalized fragment level 

interaction frequency tables and removed any fragments where a SNP either 

could create or disrupt a potential restriction enzyme site between the two alleles.  

In addition, given the short sequencing read length, any fragment with an 

insertion or deletion mapping within 16bp of the fragment end was removed. 

These final filtered sets of normalized fragment level interaction frequencies were 

then processed using a sliding window approach with the window size of 5kb and 

step size of 1kb using the average fragment interaction frequency over the 5kb 
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window. These sliding interaction frequency files were then quantile normalized 

across all replicates in order for comparison between experiments using the 

“normalize.quantiles.robust” function (with use.median=TRUE) in the 

“preprocessCore” library in R. For display purposes, the average of two 

replicates was converted to bedGraph format and displayed in the UCSC 

genome browser. 

 To identify regions that showed specific interactions with the bait region 

controlling for the genomic distance between loci, we developed a LOWESS 

regression model. We pooled the sliding window interaction frequency files from 

each of the 4C-seq replicates and performed LOWESS regression in R with the 

function “lowess” (with f=0.01) on the log-base10 transformed interaction 

frequencies controlling for the distance between the bait and potential interaction 

locus. We considered any region as showing “specific” interactions if it showed 

an increase in interaction frequency greater than 2.5 fold over expected given the 

distance between the bait and target loci. These were considered to be the “bait 

interacting regions.” 
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Figures and Tables 
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Chapter 5: Perspectives on utility of 3D genome information 
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 The eukaryotic genome has a non-random spatial organization, facilitating 

and coordinating diverse cellular processes such as DNA Replication and 

transcription1-5. Methods based on Fluorescent in-situ hybridization (FISH)6, X-

Ray tomography7, and chromosome conformation capture (3C)8 have revealed 

multiple aspects of genome structure – chromosome territories (CT)4,5,7, 

compartments of active and inactive chromatin1,4, and physical interactions 

governed at individual loci revealing long range chromatin looping between 

genes and regulating elements3,9. Nevertheless, these methods are low-

throughput and therefore not amenable to genome-wide analyses of the 3D 

genome. With the invention of Hi-C10, large-scale, systematic studies of genome 

structure are now possible. Characterizing the genome sequence, and structure, 

along with gene expression and the epigenome, will further our understanding on 

how cell-type specific gene regulation is achieved and in elucidating its dynamic 

nature through cellular differentiation. In this chapter, I will discuss current and 

future prospective utilities of obtaining 3D genome information. 

 First-generation maps of 3D genome have suggested that the genome is 

organized in to topologically associated domains (TADs)11-13. In this thesis, I 

have described a computational strategy to identify TADs using Hi-C datasets11. I 

have also shown that TADs are pervasive across the genome and are highly 

conserved between human and mouse, suggesting an evolutionary aspect to 

TADs and genome structure. While TAD locations are stable across cell-types, 

sub-TAD chromatin interactions can alter their 3D shape, driving cell-type 

specific gene regulation. Indeed, we observed that chromatin interactions 
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enriched in mouse embryonic cells (ES), in comparison to mouse cortex, were 

enriched for ES specific genes. However, our analyses were constrained by low 

resolution Hi-C datasets. Recently, Phillips-Cremins and colleagues14 have 

generated high-resolution chromatin maps to reveal dynamic changes in TAD 

shapes correlating with gene expression. To this end, ~90% of disease-

associated sequence variants reside in non-coding regulatory sequences with 

unknown target genes15,16. Consequently, mapping chromatin interactions 

between variants and promoters can help identify disease-associated target 

genes. While, we and others have established the role of genome structure on its 

function1,9,11,12,14, a predictive model for gene regulation that underlies 

contributions of genome sequence, structure, and epigenome is yet to be 

performed. With recent developments in genome editing tools such as 

TALEN17,18, and CRISPR19,20, it is possible to perturb regulatory sequences or 

TAD boundaries, offering a way to investigate the contribution of genome 

sequence on its structure and function. 

 While genome-editing methods can perturb genetic sequences in an 

elegant manner, they are still low-throughput. By exploiting the sequence 

differences between the two homologous chromosomes in the diploid human or 

mouse genomes, we can potentially correlate these to changes in structure and 

regulation. Nevertheless, such an analysis requires the knowledge of long-range 

haplotypes or “phasing”, which has long remained an elusive goal21,22. In this 

thesis, I invented HaploSeq, which builds on the Hi-C protocol and offers a 

rigorous solution for generating chromosome-scale phasing23. I demonstrated 
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HaploSeq in two systems, CASTxJ129 mouse cells and human GM12878 cells, 

for which genotyping of parent-child trio generated haplotype information a prioiri. 

While HaploSeq phased ~95% of alleles in mouse, I coupled HaploSeq with 

local-conditional phasing to obtain high-resolution haplotypes in low variant 

density human cells. Several future directions can strengthen haplotyping 

capabilities of Haploseq. For one, concurrent genotyping and haplotyping from 

Hi-C datasets can generate complete genetic makeup of an individual from a 

single assay. Second, phasing structural variants can help in understanding 

disease states such as cancer progression24 and autism25,26, where large 

insertions, inversions, and deletions are known to play a disruptive role. Third, 

recent developments might extend HaploSeq to phase polyploid agricultural 

crops27. In addition, Job Dekker, Jay Shendure and colleagues28,29 have 

demonstrated de novo assembly capabilities of Hi-C datasets. Taken together, 

Hi-C is emerging to be a multi-purpose tool, revealing several unique aspects of 

genome sequence, and structure. 

 Recently, the Roadmap epigenome consortium has generated 

comprehensive profiles of DNA methylation, histone modifications, chromatin 

accessibility, and gene expression across H1 human embryonic stem cells (ES) 

and four ES-derived lineages, to explore gene regulation patterns across 

differentiation30,31. As our lab performed Hi-C on each of these 5 lineages, I 

performed HaploSeq to phase 93.5% of the variants to obtain chromosome-scale 

haplotypes. Utilizing the haplotype-resolved genome, we analyzed changes in 

genome structure and epigenome to correlate with gene regulation patterns 
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through the differentiation process. Our analyses revealed ~24% of allelic genes 

and such allelic transcription correlated with allelic chromatin states of promoters 

and enhancers, as well as supported by chromatin interactions from Hi-C. While 

we performed the first integrative analyses of genome sequence, structure and 

epigenome to decipher gene regulation patterns, the sparse number of variants 

(SNPs) in humans did not allow comprehensive predictive modeling of these 

extensive datasets. As a future prospect, we plan to recapitulate the above-

mentioned analyses in the haplotype-resolved CASTxJ129 mouse system, as it 

contains 7-10× more variants than humans. Specifically, such a system can 

potentially allow us to detect allelic activity of many more functional elements, 

enabling detailed analyses of allelic gene regulation. 

 Altogether, sequencing methods that profile 3D genome information in an 

unbiased fashion such as Hi-C, not only can inform target genes for non-coding 

regulatory sequences, but also which of the two alleles are interacting. At 

present, Hi-C uses a single restriction enzyme to digest chromatin and 

consequently generates 3D genome data that is biased towards the location of 

restriction enzyme cut sites used. In principle, Hi-C can be performed with 

multiple restriction enzymes and this can potentially achieve a more uniform 

coverage of the genome, enabling a more complete analysis of 3D genome, 

haplotypes, as well as de novo assembly. Moreover, recent advancements on 

the lines of single-cell Hi-C32, and targeted chromatin conformation based 

capture-C33 will provide novel aspects of 3D genome at a higher resolution and 

undoubtedly will take us to closer to understanding of how cells read and 
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interpret genetic information. Furthermore, the recent NIH-RFI on 3D-nucleome 

might enable extensive profiling of genome structure and epigenome datasets 

among distinct individuals and conditions, allowing for better understanding of 

gene regulation in development and disease. 
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