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ABSTRACT OF THE DISSERTATION

Analysis of 3D genome organization and gene regulation in mammalian cells

by

Siddarth Gautham Selvaraj

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California, San Diego, 2014

Professor Bing Ren, Chair

Professor Vineet Bafna, Co-Chair

The three-dimensional structure of the genome plays a key role in gene
regulation. For example, while highly compacted heterochromatin drives gene
silencing, open euchromatin facilitates gene activation. Nevertheless, how
chromatin folds within these structures and consequently how it controls access
to genomic content is poorly understood. Recent advances in high-throughput

sequencing have provided valuable tools, such as Hi-C, for the study of

XVi



chromatin structure. Using Hi-C datasets, | developed a hidden markov model
based algorithm to identify self-interacting patterns of chromatin structure termed
topological domains. These mega-base sized domains are pervasive through the
genome and are highly conserved among human and mouse.

At a higher resolution, topological domains encompass individual
chromatin interactions between regulatory elements and its target gene.
Therefore, in order to mechanistically understand gene regulation, it is essential
to elucidate the functional relationship among regulatory elements and their
target genes. By exploiting the sequence diversity between homologous
chromosomes, it is possible to delineate this relationship. However, this requires
the knowledge of haplotypes, which has traditionally been difficult to obtain. As
the Hi-C protocol preferentially recovers DNA variants on the same chromosome,
| invented HaploSeq to reconstruct chromosome-scale haplotypes. HaploSeq
can generate haplotypes with ~99.5% accuracy for >95% of alleles in mouse and
98% accuracy for ~81% of alleles in humans, thus solving a long-standing
problem in genetics.

By integrating the knowledge of haplotypes, we queried the relationship
between regulatory elements and gene expression in human embryonic stem
cells and a panel of differentiated cell-types. Across the 5 cell lineages examined,
| identified a total of 24% of genes that showed allelic bias in gene expression.
While most of the allelic-genes had a correlating allelic-promoter chromatin state,
~29% of genes were exceptions suggesting other mechanisms of gene

regulation. Accordingly, | then analyzed histone-acetylation marks to identify

XVii



1589 allelic enhancers. By predicting chromatin interactions using Hi-C, we
observed allelic enhancers to be spatially proximal to allelic genes, suggesting
cooperative activity among genome sequence, structure, and function.

Taken together, our studies suggest that gene regulation is facilitated and

coordinated by genome structure.
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Chapter 1: Interplay between genome structure and gene

regulation
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Abstract

Conventional genome sequencing technologies utilize pools of genomic
DNA, which are fragmented prior to sequencing, resulting in the loss of three-
dimensional (3D) genome information. The 3D genome offers critical insights into
how cells interpret genetic and epigenetic content, and therefore is key for a
mechanistic understanding of genome regulation. For example, precise control of
transcription involves physical structural interactions among genes and distal
regulatory elements. Recent advancements in molecular biology techniques and
corresponding computational methods have allowed for accurate measurements
of 3D genome structure, enabling targeted and genome-wide analyses of higher-
order chromatin structure. Here, | review our current understanding of genome

structure and it’s utility in unraveling multiple aspects of genome regulation.

Introduction

The human genome project determined the genetic sequence that
constitutes the human DNA™, but how cells read, interpret, and control this
information is less clear. Differences in deciphering genetic content can lead to
variable gene regulation and transcription patterns, resulting in hundreds of
unique cell-types and potentially numerous disease states in the human body5'8.
Therefore, a fine-level understanding of the mechanisms behind gene regulation

is critical for delineating the role of genetics in human health and disease.



In eukaryotes, gene regulation requires combinatorial functional activities
involving regulatory elements such as promoters, non-coding RNAs, enhancers,
and silencers®. To this end, the Roadmap Epigenome’®'® and the ENCODE'®"’
consortiums have generated comprehensive profiles of DNA methylation, histone
modifications, chromatin accessibility, and transcription-factor (TF) binding,
allowing systematic annotation of regulatory elements. However, how these
elements cooperate in a combinatorial fashion to facilitate gene regulation is
poorly understood. As the eukaryotic genome is organized in non-random three-
dimensional structures, knowledge of the 3D genome can reveal physical
connections among genes and regulatory elements and thereby can further our
understanding of gene regulation®%°.

Recent technological advancements have allowed for measurement of 3D
genome at different resolutions. For instance, while Fluorescence in-situ
hybridization (FISH) has revealed patterns of chromosome territorial
organization, chromosome conformation capture (C-technologies) has allowed
chromatin structure studies of specific gene loci?> ?'. Each of these studies have
been valuable in showing the role of genome structure in its function. In addition,
3D genome information has been shown to be useful for deconvoluting
chromosome-scale haplotype patterns?. Therefore, by exploiting aspects of 3D
genome structural information, we can learn novel mechanistic aspects and
potentially build predictive models of human gene regulation in a haplotype-

resolved context.



Higher-order chromatin structures facilitate gene regulation

In the interphase of a eukaryotic cell’s nucleus, the genome is non-
randomly organized at multiple levels'® %*. For example, several FISH?" 2*2° and
live cellular imaging®® ?" based studies have revealed that chromosomes occupy
distinct territories of nuclear positioning, termed chromosome territories (CTs).
Further, several independent methods have indicated the physical and functional
separation of active (euchromatin) and inactive (heterochromatin) regions of
CTs' ¥ 23 0On the one hand, active regions within a CT are generally positioned
at the border of the resident CT and can interact with active regions from other
CTs to allow co-regulation of genes®®. On the other, independent methylation

measurements of cells treated with Dam protein?®*°

and ChlIP-Seq measurement
of H3k9me3 histone tails®® have demonstrated that inactive regions are
physically associated with structures at the nuclear periphery, largely separated
from the active regions. Such differential positioning of active and inactive
regions allows for efficient usage of cellular machinery and agrees well with the
transcription factory model of genome regulation®®. Therefore, nuclear positioning
of chromosomes and their ability to intermingle with each other and other nuclear
structures has profound impact on global transcription.

While microscopy, live imaging, and ChlP-Seq studies have demonstrated
aspects of genome positioning at the nuclear level, a higher resolution picture of
specific structures within chromosome territories are lacking. Recent

advancements in chromosome conformation capture (3C)***° based methods

have allowed us to investigate genome structure at the level of genes. In brief,



3C based methods work by crosslinking cells to retain the 3D chromatin
structure. Then, the chromatin is fragmented and the crosslinked fragments are
ligated to form new artificial fragments, which are then PCR amplified and/or
sequenced. As 3C based methods generate fragment interaction frequencies,
the spatial distance between the fragments and consequently genome structure
can be delineated®. However, as 3C based methods are often performed on
million of cells, each with dynamic 3D genome structures and at different cell-
cycle phases, robust computational methods that can understand the
stochasticity and true biological variability in the data have to be developed to
generate meaningful 3D structure predictions.

Utilizing a variant of 3C, called the Hi-C*®, Job Dekker and colleagues
profiled the genome-wide chromatin interaction patterns to observe two distinct
compartments within CTs. These results correlated well with previously
established active and inactive positioning of chromosomal regions® #. As this
study lacked the sequencing depth to investigate chromosome structures at
higher resolution, we performed Hi-C in human and mouse cells with ultra-deep
sequencing to identify pervasive structural units of chromosomes termed
Topological domains, or Topological associated domains (TADs)*. TADs are
structures within the active and inactive compartments. We used rigorous non-
parametric computational methods to remove systematic biases in Hi-C data
owing to variability across fragments in terms of fragment length, GC content and
its mappability®”. Then, we implemented a hidden markov model that predicted

TAD locations in the genome with high confidence. TADs are megabase-sized



domains of high local chromatin interaction frequency yet well spatially separated
from other TADs. In addition, intervening boundary sequences between TADs
are invariant among cell-types and conserved between human and mouse. More
recently, TADs have also been identified in drosophila®®, demonstrating an
evolutionary aspect of genome structure.

The topological domain-like organization of chromosomes is well
established in the literature®*=%4°, In particular, FISH and 3C based studies have
revealed correlation between changes in domain structure and gene regulation*""
3 We have also shown evidence that suggest TADs can constrain chromatin
interactions between genes and regulatory elements and such intra-TAD
interactions are more involved in cell-type specific gene regulation patterns®*.
In addition, we have revealed that TAD boundaries correspond to insulator
activity of transcription and that the boundaries correlate well with structural
transition events that mark several functional activities — such as replication
timing, and specification of inactive regions that move towards the nuclear
periphery®®. Recent restraint based iterative modeling of chromatin interaction
data has allowed building of sophisticated 3D conformations of TADs and their
relative positioning in a chromosome*> #°. In addition, 3D modeling of HoxA and
a-globin domains has illustrated the dynamics of chromatin structure and gene
expression across a panel of cell-types*" ** . Undoubtedly, identification of
TADs and modeling of their conformations have enabled systematic analyses of
chromatin structure at a resolution that reveals dynamic localization of group of

genes.



While chromatin structures such as TADs and CTs seem to be static
across a population of cells, structures measured at a deeper resolution have
revealed that interactions among genomic loci can be dynamic. In particular, the
single-cell Hi-C*’ study revealed structural stochasticity at the gene level but
consistent intermingling patterns of active domains of several CTs. Similarly, Jin
and colleagues compared physical interactions among different cell-types and
demonstrated that while promoter-enhancer level chromatin interactions change
considerably, the large-scale structures** remain intact. To this end, studies
based on FISH, 3C, and Hi-C have investigated chromatin interaction patterns at
individual genomic loci and observed that a vast majority of these chromatin
interactions are constrained within hundreds of kilobases to few megabases and
are generally intra-TAD?***. For example, a 1Mb intra-TAD chromatin interaction
loop originating from a distal enhancer is known to regulate the Sonic Hedgehog
gene (SHH), an essential gene for proper limb development*®. More recently,
Sanyal and colleagues studied the structural patterns of promoters in the
ENCODE regions and showed that genes can interact with multiple distal
elements, and distal elements loop to multiple genes®. This suggests that
chromatin interactions at the sub-TAD level can not only be dynamic among
different cells, but can be of complex 3D structural pattern in itself enabling
combinatorial interactions among genes and regulatory elements.

In this section, | have presented a hierarchical view of genome
organization. In particular, CTs form the lower level resolution, while TADs form

mid-level, and individual chromatin interactions among genomic loci form the



high-resolution structural patterns. Each of these layers of 3D genome seems to
play a critical role in controlling transcription. While we see a clear genome
structure and function correlation, understanding genome sequence in this
context can allow better understanding of genome function. For example,
understanding enrichment of DNA binding protein CTCF at TAD boundaries®
can explain formation of TADs and potentially their function. Similarly, in order to
delineate how disease-associated alleles regulate target genes, an
understanding of interplay among genome sequence and the structure is
important. Such a combined model can also help in revealing the complex

combinatorial patterns of transcriptional activity.

3D genome structure can reveal haplotype patterns

Recent advances in genome-editing tools such as CRISPR have enabled
systematic perturbation of genetic sequences, offering an elegant way to assess
the genetic background of genome structure and function***°. However, genome-
editing tools are currently low-throughput and are laborious to perform.
Alternatively, as humans inherit two copies, or haplotypes, of genetic content,
sequence differences among the homologous chromosomes can be exploited as
natural genetic perturbations, allowing us perform analyses on genome structure
and function in high-throughput. Nevertheless, as current genomic DNA
sequencing technologies utilize mixtures of maternal and paternal chromosomes
that are fragmented prior to sequencing, our ability to distinguish the two

haplotypes is extremely limited. In particular, computational approaches can be



used to reconstruct and assemble haplotypes, but they can recover haplotype
blocks that are only tens to hundreds of kilobases long®'~°. In complex genomes
such as humans, genetic or epigenetic changes at regulatory sequences can
regulate genes much further away, emphasizing the need for obtaining
chromosome-span haplotypes®. While several experimental approaches®**® can
generate complete haplotypes, they require equipment not generally available in
most research or clinical laboratories or are not applicable to general
population®.

We developed a strategy called HaploSeg??, to reconstruct chromosome-
span haplotypes. Previously, proximity-ligation approaches such as Hi-C*°, 5C*°,
4C*, and 3C*, were used solely for investigating spatial relationship between
genomic sequences. HaploSeq repurposes Hi-C towards achieving whole
genome haplotyping. A fundamental aspect of 3D genome that allows capturing
haplotypes is the presence of chromosome territories, where even the
homologous chromosomes seem to occupy distinct spatial localization®. In
particular, as Hi-C captures the spatial configuration of genomic loci, it also
preferentially links DNA variants in the same haplotype and therefore preserves
haplotype information. We employed computational approaches based on Max-
cut graph algorithm60 to eliminate inter-haplotype sequencing error patterns, and
predicted accurate haplotype structures for >80% of alleles in both mouse and
human cells. As a result of generating complete haplotypes, Hi-C not only can
reveal spatial interactions among genes and regulatory elements, but it can also

inform which homologous copy these elements belong to.
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While we used Hi-C to deconvolute haplotype patters, other groups have

performed de novo assembly®®

using these datasets. In addition, studies have
shown the utility of 4C towards typing structural variants such as large insertions,
inversions and translocations®. With myriad of utilities towards analyses of

genome structure and sequence, C-based technologies such as 4C, 5C and Hi-C

will perhaps be applicable to a wide range of genomic studies in the future.

Gene regulation in an allele-specific context

Previous studies have correlated changes in chromatin structure to gene
expression across various cell-types or specific experimental conditions?® 3641 43
.48 Similarly, changes in genetic sequence and epigenetic activity have been
studied in the context of gene regulation® ®*"°. However, studies that integrate
many types of information such as epigenetics, haplotypes and chromatin
structure have largely been absent, owing to the difficulty in obtaining these
datasets. Such integrative studies can substantially advance our knowledge of
gene regulatory mechanisms in human cells.

As projects from our lab have demonstrated the utility of Hi-C in

36,44 and

delineating chromatin interactions between regulatory elements
reconstructing haplotypes?, we performed Hi-C across embryonic stem cells
(ES) and a panel of ES-derived differentiated cells from the H1 human cell line.

This system has also been extensively profiled by the Roadmap epigenome

project for several epigenetic marks, using which we and other groups have
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annotated chromatin states such as enhancers, promoters, insulators, and gene
activity across these cell-types'. By integrating chromatin states, 3D genome,
and haplotype information to this system, we anticipate to explore allelic patterns
of gene regulation.

Using HaploSeq®, we phased 93.5% of alleles to chromosome-spanning
haplotypes. With the majority of alleles phased, our study is applicable to
genome-wide analyses of allele specific gene expression and underlying
chromatin state patterns through cellular differentiation. The haplotype phase
resolved genome revealed widespread allele specific gene expression patters,
which appears to be strongly correlated with allelic chromatin states of promoters
or distal acting enhancers. By adding 3D structure information, we observed that
spatially proximal allelic enhancers are strongly correlated to target gene
expression. While we cannot determine if the allelic activities are due to genetic
or epigenetic factors, our study demonstrates the combinatorial functional

aspects of genetic sequence and structure towards gene regulation.

Conclusion

To understand how a cell interprets it genetic content, we must first obtain
genetic sequence and annotate the different functional elements. Recent
collaborative projects such as ENCODE® ' ' and Roadmap Epigenome'®-'? 4
' have used genome-sequencing tools to profile transcription factor binding,

gene expression, chromatin accessibility and epigenetic marks. These datasets

have been used to comprehensively map functional elements such as
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enhancers, and promoters and have subsequently been used to study
transcription'®. However as humans inherit two copies of genetic content, any
genetic or epigenetic difference between the two haplotypes is ignored, limiting
our understanding of gene regulation. Further, by exploiting these differences
and by adding knowledge of higher-order chromatin interactions to link various
regulatory elements and target genes, we can explore novel insights on the
landscape of allelic gene regulation patterns. For example, our study on
haplotype-resolved H1 genome revealed aspects of distal gene regulation. In
particular, compound heterozygosity of distal non-coding alleles can impact
transcription and this emphasizes the need for long-range haplotypes as well as
3D genome information. By expanding such integrative analyses to many
individuals across different conditions such as disease states or tissue types, we
can potentially generate predictive models of the genetic basis of human

development and disease.
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Abstract

The 3D structure of the genome occupies distinct chromosome territories,
but how chromatin folds within these territories is poorly understood. A common
feature of several theoretical models suggests a domain-like organization of
chromatin folding, but the exact size and boundaries of these domains have not
been well defined. By using the Hi-C protocol, we profiled the genome-wide
chromatin interactions in human and mouse embryonic stem cells, and a panel of
terminally differentiated cell types. Our initial analyses of the data revealed the
presence of highly self-interacting and spatially isolated regions, which we
termed as topological domains (TADs). | developed a hidden-markov model
based algorithm to show that the mammalian chromosomes are segmented into
megabase-sized TADs. We also found that the TADs are pervasive throughout
the genome, stable across different cell-types, and conserved between mouse
and human. In addition, topological domain boundaries appear to mark the
transition between active and inactive regions of the genome, as observed by
enrichment of H3K9me3 and its relatedness to A/B compartments and Lamina-
associated domains. Further, | have developed statistical methods to correlate
cell-type specific chromatin interactions to cell-type specific gene expression,

illustrating coupled activity between genome structure and function.
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Introduction

Nearly all cells in a mammalian organism carry the same genetic content
and yet functional diversity exists among various cell or tissue types'?. Cells
achieve this diversity by regulating different subset of genes, which is facilitated
and accompanied by coordinated changes in 3D genome or chromatin structure®
*. For instance, previous studies have shown that chromatin loop interactions
between promoters and distal regulatory elements such as enhancers are critical
for gene activation®”. In another instance, Stavros Lomvardas and colleagues
used X-Ray tomography to show that olfactory receptor genes from different
chromosomes assemble in a few heterochromatic loci, demonstrating co-
regulation of genes across multiple chromosomes®. Understanding the higher
order chromatin structure is therefore essential in comprehending how genes are
regulated, which in turn can further our knowledge in cell development and
disease.

In eukaryotic cells, the higher order structure of the genome is organized
at multiple levels®®. Specifically, it has been suggested that chromosomes
occupy distinct regions in the interphase nucleus called chromosome territories
(CTs), but our view of the chromosome folding within these CTs are coarse and
incomplete. Several models have been suggested to describe these structures,
including random-walk/giant loop model*'°, chromatin rosette/short loop model*
and more recently fractal globule conformation'’. A converging aspect of these
models is recurring loops or domains of chromatin organization, however, the

location, size, and properties of these domains have not been well studied.
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Previous groups have linked the domain-like organization of genome
structure to transcription for a few genomic loci®'#™. A well-known example is
the Fluorescent in situ hybridization (FISH) based study that demonstrated Hoxb
domain condensation inside and outside of CTs, correlating well with gene
expression'. In another example, Bau and colleagues used chromosome
conformation capture based 5C technique to show the functional impact of
structural changes between human GM12878 and K562 cells at a-globin
domain®™. As such techniques such as FISH'™ and chromosome conformation
capture'® are low-throughput and does not enable genome-wide understanding
of the relationship between the higher order chromatin structure and genome
function.

Recently, Job Dekker and colleagues have introduced Hi-C'', as a
genome-wide extension of chromosome conformation capture (3C). Hi-C relies
on proximity ligation followed by PCR and high-throughput sequencing to assess
the spatial relationship between all pairs of genomic loci in vivo. The spatial
proximity is inversely proportional to the contact frequencies (# of reads) between
two fragments. In this study, we performed Hi-C in multiple human and mouse
cells to define the location of domains and to characterize the 3D structure of
genome in relation to its function. | used a hidden-markov based algorithm and
found that the mammalian genome is organized in to more than a thousand
megabase-sized topological domains or TADs. | also investigated how these
domain structures change conformation through differentiation and correlated

these to changes in gene regulation. In addition, TADs appear to be stable
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across cell types, and are highly conserved across species, suggesting that

TADs are an inherent property of mammalian genomes.

Results

Hi-C analyses in human and mouse cells

Our lab performed at least two replicates of Hi-C, each in human and
mouse embryonic stem cells (ES), and terminally differentiated human IMR90 as
well as mouse cortex cells'’. Together, we analyzed over 1.7 billion paired-end
reads of Hi-C data. As a first step, we validated our Hi-C data with previously
published chromatin interaction datasets. In particular, both replicates of our
IMR90 Hi-C data showed high degree of similarity when compared to 5C dataset
from lung fibroblasts (Fig. 2-1)'". Further, our mouse ES Hi-C data recovered
previously described cell-type specific interaction at the Phc1 locus™ (Fig. 2-2).

As Hi-C measures spatial proximity among all pairs of loci, significant
differences in genomic properties among various loci can potentially generate
systemic variability in the data. Therefore, | implemented the recently published
probabilistic method to normalize Hi-C data®. In brief, genomic loci were binned
based on properties such as GC content, mappability, and restriction fragment
length, and together these were non-parametrically modeled to enrich chromatin
interaction signals over noise (Methods). While Hi-C interaction counts clearly
depend on the frequency of restriction enzyme cut sites prior to normalization,
the biases have been largely eliminated after normalization (Fig. 2-3). In addition,

the correlation between Hi-C Nco1 mouse ES data and previously published
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FISH dataset'> phenomenally increases after normalization (Fig. 2-4),
demonstrating that the normalized Hi-C data can accurately reproduce the
expected spatial distance from an independent method. These results
demonstrate that our Hi-C data across multiple replicates among various cell-

types are of high quality.

Identification of Topological domains

One striking feature of the Hi-C data when visualized as a two-
dimensional matrix of 40-kb genomic bins is the prevalence of genomic regions
displaying high frequencies of local interactions (Fig. 2-5a), seen as “triangles” on
the matrix. We hypothesized that these local regions of high frequency
interactions represent higher order interacting topological domains, or “TADs”. In
addition, narrow segments bound topological domains where the chromatin
interactions appear to end abruptly (Fig. 2-5a) and we believed that these abrupt
transitions might represent boundary regions that separate topological domains.
Furthermore, bins flanking boundaries are biased towards interacting either
upstream or downstream depending upon whether they are upstream or
downstream to the boundary. We hence hypothesized that there are genomic
regions that are specifically biased in upstream vs. downstream and vice versa,
and that by detecting these locally biased regions, we would be able to
objectively identify the location of topological domains.

We expected each bin to be unbiased (as null hypothesis) and we asked

for a quantification of the degree of bias using chi-square statistic for every bin in
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a given chromosome. In particular, for every 40-kb bin of the genome, we looked
2-Mb upstream and 2-Mb downstream to estimate chi-square based biases. We
labeled the upstream biases as negative and downstream biases as positive
(Fig. 2-5c,e). We called the degree of bias as the directionality index (DI) and as
described earlier, we notice the directionality index changes abruptly at the
boundaries and that the domains appear to contain a cluster of downstream
biased bins followed by cluster of upstream biased bins.

As DI quantifies the degree of bias of a given bin, we observe that for
most of the bins, the DI accounts values close to 0 and therefore does not clearly
pinpoint the bias (Fig 2-5f). As Hi-C is performed in million of cells and that these
cells are unsynchronized in their cell-cycle stages, DI can be affected by
stochasticity. Hence, we were in need of a system that considers the DI as
observations, models them to account for variation and noise, and predicts
whether a region could be upstream biased, downstream biased, or not biased.
Since every bin in the genome has an unknown state and that the previous bin
influences current bin (due to the clustering property of DI), | developed a hidden
markov model (HMM) based algorithm that estimates the “true” directionality bias
of every bin in the genome given the DI observations (Fig. 2-6). Specifically, the
HMM assumes that the DI observations are following a mixture of Gaussians and
then predicts the states as “Upstream Bias”, “Downstream Bias” or “No Bias”.

For the HMM algorithm, | concatenated the DI's across a given
chromosome and assuming it is a vector of size n, where n= size of

chromosome/bin size. For instance, describing the observed DI's as Y’s



31

[Y1,Y2..Yy], the hidden true directionality biases as Q’'s [Q4,Q2..Q;] and the
mixtures as M’s [M1,M,..M;]. The probability P(Y:|Q: = i,M; = m) is represented
using a mixture of Gaussians for each state i. The Conditional probability
distribution [CPDs] of Y and M; nodes are defined as,

P(Yt = yi|Qt = i,Mt = m) = N(yt;Him,Zim)

P(M; =m|Q; =i) = C(i,m), where C is the mixture weights for each state i.

| used Baum-Welch algorithm based on Expected Maximization principles
to compute maximum likelihood estimate and the parameter estimates of
transition and emission (characterized by mean, covariance and weights). The
posterior marginals were then estimated using the Forward-backward algorithm. |
predicted the HMM states by allowing 1 to 20 mixtures. | chose the mixture with
best goodness of fit using the AIC criterion, AIC = 2k — 2In(L), k is the number of
parameters in the model and L being the maximum likelihood estimate. In
summary, for each chromosome we fit the HMM model with best suiting mixtures
of varying sizes from 1 to 20. More recently, | have modified the algorithm to fit
the HMM model for the DlIs from all the chromosomes together, to utilize the
entirely of data for estimating best suiting mixture, M. In addition, instead of
choosing M with the lowest AIC as the best goodness of fit, a model with at most
10% loss of AIC seemed to generate consistent results with lesser parameters.
The updated version of domain calling algorithm is available to download
(Methods).

As a post-processing step, | estimated the median posterior probability of

a region, defined as a stretch of same state, and considered only in regions
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having a median posterior marginal probabilities = 0.99 or a region that is at least
80-kb (2 bins) long. Domains and boundaries are then inferred from the results of
the HMM state calls throughout the genome (Fig. 2-5d). A domain is initiated at
the beginning of a single downstream biased HMM state. The domain is
continuous throughout any consecutive downstream biased states. The domain
will then end when the last in a series of upstream biased states are reached,
with the domain ending at the end of the last HMM upstream biased state (Fig. 2-
5b). We term the regions in between the topological domains as either
“‘boundaries” or “unorganized chromatin.” We defined unorganized chromatin to

be these regions that are > 400kb, and the boundaries to be less than 400kb.

HMM based domain boundary calls are robust

The domain boundaries defined by HMM (Fig. 2-6) were highly
reproducible between replicates (Fig. 2-7). Therefore, | combined the data from
the Hindlll replicates and identified 2,200 topological domains in mouse ES cells
with a median size of 880kb that occupy 91% of the genome (Fig. 2-8a). In
addition, the median boundary size were ~0 base-pairs and that 76.3% of the
boundaries were less than 50 kilobases, indicating that the domain boundary
identification by the HMM model were precise (Fig. 2-8b). The median size of
unorganized chromatin were ~560 kilobases (Fig. 2-8c). On the same lines, |
identified over a 1000 domains each in mouse cortex, human ES and human

IMR90 cells using combined datasets from replicates.
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As another measurement of robustness in domain identification, we
checked the frequency of intra-domain interactions and as expected these were
higher than inter-domain interactions (Fig. 2-9a). Similarly, FISH probes in the
same topological domain (Fig. 2-9b) are closer in nuclear space than probes in
different topological domains (Fig. 2-9c), despite similar genomic distances
between probe pairs'® (Fig. 2-9d-e). These findings are best explained by a
model of the organization of genomic DNA into spatial modules (TADs) linked by

short chromatin segments, which we define as boundaries.

TADs are largely invariant among cell-types

As the topological domain boundaries identified by HMM are reproducible
among replicates, | extended this analysis to compare the boundaries among
cell-types in both humans and mouse. | observed a high degree of consistency in
the boundary regions identified between mouse ES and cortex (Fig. 2-10a) as
well as between human ES and IMR90 (Fig. 2-10b). In addition, at the
boundaries called in only one cell type, we noticed that trend of upstream and
downstream bias in the directionality index is still readily apparent and highly
reproducible between replicates (Fig. 2-10c-d). Currently, we cannot determine if
the differences in domain calls between cell types is due to noise in the data or to
biological phenomena, such as a change in the strength of the boundary region
between cell types®'. Regardless, most of the domains identified are stable

across cell-types. Lastly, a very small fraction of the boundaries show clear
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differences between cell-types, but it is unclear how this difference in boundary

structure imparts changes in genome function (Fig. 2-11a-b, Methods).

Higher-order conformations of TADs can vary among cell-types

While topological domains are largely invariant among cell-types, their
conformation or shape might change causing cell-type specific gene regulation
patterns®”'>"_ For instance, cell-type specific interactions can lead to different
domain conformations and consequently cell-type specific expression in Phc1
gene' (Fig. 2-2), while the domain size and locations are consistent. To identify
this phenomenon in a genome-wide fashion, | used a binomial distribution to find
dynamic interactions between two cell-types. In particular, | combined data from
two replicates of mouse ES and cortex and then used binomial distribution for
each possible interaction (20-kb bins) in the genome up to a distance of 5 mega-
bases.

Mathematically, nq = Imesc + Imcortex, Where n = total trials at a distance d
and Expectation pmescad = (Z Imesc)/n and Pmcortexd = 1-Pmesc.a- As the spatial
proximity between two bins depends on the distance between two bins, | chose
to fit a binomial distribution for every distance d, where d varies from 20-kb to 5-
Mb. Based on the expectations, | calculated deviations in the ratio of the number
of interactions in mouse ES cells (lij-mesc) to the number of interactions in cortex
(licortex) to ODbtain statistically significant dynamic interactions. We then randomly

permuted the replicates (ES-rep1+Cortex-rep1 Vs ES-rep2+Cortex-rep2) and
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(ES-rep1+Cortex-rep2 Vs ES-rep2+Cortex-rep1) to estimate a false discovery
rate (FDR).

| identified 9,888 dynamic interacting regions in the mouse genome based
on 20-kb binning using a binomial test at an FDR of 1%. As expected, the
dynamic interactions are enriched for differentially expressed genes (Fig. 2-12a).
In addition, ~20% of the genes that are differentially expressed are a part of
dynamic interactions (Fig. 2-12b). This is an underestimate given that dynamic
interactions are 20-kb bin sizes and those interactions that are less than this
resolution will be missed. As ~96% of dynamic interactions are intra-domain (Fig.
2-12c), it appears as though chromatin interactions are constrained within
domains by acting as functional modules of genome structure. In addition, it also
suggests that while topological domains size and location are consistent, their
conformation and shape might vary leading to dynamic gene regulatory patterns

driving cell development and disease.

TADs are evolutionarily conserved

Next, we studied the evolutionary conservation of domains across mouse
and humans. To address this, | compared the domain boundaries between
mouse ES cells and human ES cells using the UCSC liftover tool®?. Indeed,
majority of boundaries appear to be shared across evolution (53.8% of human
boundaries are boundaries in mouse and 75.9% of mouse boundaries are
boundaries in humans, compared to 21.0% and 29.0% at random, P value =

2.2x10-16, Fisher's exact test; Fig. 2-13a). The random boundaries were
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determined by constraining on the distribution of boundary lengths and
distribution of chromosomal occurrence. The syntenic regions in mouse and
human in particular share a high degree of similarity in their higher order
chromatin structure (Fig. 2-13b). This suggests that beyond conservation of
sequence elements across evolution, structural features might also be conserved

and thus reiterating its likely role in genome function.

Insulator/barrier elements mark TAD boundaries

We observed a strong enrichment of insulator binding element CTCF at
the boundary regions of topological domains (Fig. 2-14a). Specifically, >85% of
boundaries in mouse ES cells contained CTCF binding site (Fig. 2-14b), re-
iterating that boundaries share this property of classical insulator element® %*. In
addition, a classical insulator element pre-marks the sites known to stop the
spread of heterochromatin. Consequently, we examined the distribution of
H3K9me3 in humans at the shared topological domain boundary sites among ES
and IMR90%?®. Indeed, we observe a clear segregation of H3K9me3 mark at the
boundary, predominantly in the differentiated cell type of IMR90 (Fig. 2-14c).
Specifically as we analyzed shared boundaries, it seems as though while the
boundaries are constant, heterochromatin marks are rewritten in differentiated
cell-types (Fig. 2-14f).

Previous studies have reported other means of genome
compartmentalization, such as A and B compartments'' and Lamina-associated

domains (LAD)?"*®. We compared our topological domain definitions to these
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strictures and observed that the topological domain boundaries mark the
transition of A and B compartments, as well as LAD and non-LADs (Fig. 2-14d-
e). Taken together, the above observations strongly suggest that the topological
domain boundaries correlate with regions of the genome displaying insulator
activity and marks transitions between active and inactive regions of the genome,

thus revealing a potential link between genome structure and transcription.

Discussion

In this study, we show that the mammalian chromosomes are segmented
into megabase-sized topological domains. Using the HMM based algorithm, we
have now been able to determine exact genomic locations and size of these
topological domains and boundaries to an unprecedented precision. Such spatial
organization appears to be a general property of the genome: it is pervasive
throughout the genome, stable across different cell types and are highly
conserved between mouse and humans.

We have investigated functional relationship between the topological
domains and genome structure in several ways. For one, while the domain
location and size are consistent across different cell-types, their conformation
seems to change through the presence of dynamic interactions that can in turn
allow for cell-type specific gene regulation patterns. Second, as ~96% of dynamic
interactions are intra-domain, the topological domains appear to act as functional
regulatory modules that restrict chromatin interactions. Third, boundaries of

topological domains are associated with the CTCF, suggesting that the
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topological domains correspond to insulator or barrier elements of the genome.
Fourth, topological domains appear to mark the transition between active and
inactive regions of the genome by stopping the spread of heterochromatin as well
as by marking A/B'" and LAD transitions?”%,

While we and other have observed topological domains in drosophila®®, E.
coli*®, mouse®' and human (our study), and have investigated functional links

between genome structure and function®®'

, an obvious next step would be to
provide mechanistic details on the genome structure-function relationship. For
one, genome editing tools such as CRISPR**** and TALEN®**** can be used to
delete boundaries and can allow prediction of gene regulation. Second, a higher
resolution Hi-C dataset®® or techniques such as ChIA-PET®" can allow for
studying of individual fragment based functional interactions between promoters
and regulatory elements, unlike bin based analysis in our study. This is a critical
step in assigning target genes for the majority of disease associated non-coding
variants®. Altogether, determining mechanistic details of genome structure that

allows for building predictive models of gene regulation will be an important step

in the future.

Methods
Hi-C data mapping to reference genome
We mapped the paired-end Hi-C data as two independent single end

reads using BWA® with default parameters. We used samtools*® to consider only
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uniquely mapping reads (mapping quality > 10). We removed PCR duplicate

reads using Picard (http://picard.sourceforge.net).

Data normalization

| normalized the data as previously described by Yaffe and Tanay?’. This
method works by taking in to account three parameters that impact Hi-C signal —
GC content, fragment length and mappability of fragments. Yaffe and Tanay?
nicely showed that these three parameters interact in a non-linear way. For our
implementation of this protocol, | first assigned reads to nearby fragments and
then removed all reads that belonged to fragments having mappability score <
0.5. Previously, mappability score is estimated as a fraction of simulated reads
that mapped for any given fragment. Next, | binned all reads in 20x20 matrices of
fragment length (FL) and GC content each and calculated the probability
distributions of the variability of GC and FL to non-parametrically estimate an
expectation value for the observed Hi-C signal. Specially, the expectation was
calculated for all read-pairs originating from a given 40-kb bin pair. In comparison
to Yaffe and Tanay?’, we did not perform linear weight smoothing and BFGS
non-linear optimization. Despite this, the normalization method is still effective at

removing restriction enzyme bias (Fig. 2-3 and Fig. 2-4).

Resolution of TAD analyses
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We chose to work with 40-kb bin sizes for identifying topological domains
and 20-kb bin sizes for determining dynamic interactions. Our resolution was

determined based on the coverage of Hi-C data generated in this study.

Correlation between Experiments

We calculated the correlation between two experiments as follows: The
set of all possible interactions | for two experiments A and B were correlated by
comparing each point in interaction matrix la from experiment A with the same
point Ig from experiment B. Because the interaction matrix is highly skewed
towards proximal interactions, we restricted the correlation to a maximum
distance between points i and j of 50 bins. We use R to calculate the Pearson

correlation between the two vectors of all point in 15 and Ig.

Enrichment of factors at boundaries

For determining which boundaries are associated with CTCF, we
considered a boundary to be associated CTCF if there were a binding site called
by MACS*' within +/- 20-kb of the boundary. The 20-kb window is chosen
because this reflects the inherent uncertainty in the exact position of the domain
calls due to 40-kb binning. For H3K9me3 heatmap and LAD analyses, we used

k-means clustering to cluster the data within +/- 500-kb of the boundary.

Determining cell-type specific boundaries
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We calculated spearman coefficient of the directionality index between two
cells. Specifically, if a boundary was called by the HMM in either cell type, we
correlate a vector of directionality indexes +/- 10 bins from the center of the
boundary between two experiments of interest. For random correlation, we
randomly selected 20 bins from each of the two cell types and calculated the
spearman correlation between the two vectors. We repeated the randomization
10,000 times to achieve the random distribution of spearman correlation
coefficients. Boundaries were called as “cell type specific” if the boundary regions
was identified by the HMM domain calling in only one cell and lacked a significant

correlation in the directionality index between the two cell types.

Domain calling algorithm
The latest version of the software is available to download from

http://bioinformatics-renlab.ucsd.edu/collaborations/sid/domaincall_software.zip



Figures

Wang et al. 5C Replicate 1 vs.
Wang et al. 5C Replicate 2

r";O.
~ - . o ol
g o, S 4
g "o ”E{Er'
- o
K £
v 2] s
2 : A,
T o o BT
o ge e
% B '.i.r e
. X .
= ° ,"!?' : Pearson’s R=0.86
10 102 100 10!
Wang et al. 5C Replicate 1
Wang et al. 5C Replicate 2 vs.
- IMR90 Hi-C Original
MO- N
~ - — e s 4
L PO
T "o | sk AT =
- et M
Y w0 Tt aemas e
e 3 s i'\:_.g' .
Bh = oot |4 > 2
= L. ﬂ:.t.i-.: LRSS
RO ¥ it
g’ — “h
Sy e
A R, Pearson’s R=0.76
10" 10 10%°
IMR90 Hi-C Original
Wang et al. 5C Replicate 2 vs.
- IMR90 Hi-C Replicate
EN -
— e & o
~ .
§ "o L3ng 4’:
= ° BT i,
U e * T oo
o o 0 %3 S0 8.3,
g el RO L F B L
h ST, LS aasd
S| AT
1] S .
gﬁ 9' oo ;.t.‘:' o ®
© Spd
! ‘"'5","" Pearson’s R=0.76
o 4 .
10 -0.6 B 100.2
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Figure 2-2: Hi-C data recoveres previously described mouse ES

specific activity at Phc1 locus.

Our mouse ES and cortex Hi-C data agreed well with previously

described (ref. 19) ES specific chromatin interaction and correspond-

ing ES specific Phc1 gene expression activties.
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Bias plots showing the correlation between restriction enzyme cut site

frequency and Hi-C interaction frequency from mouse ES data using a bin
size of 250kb at a distance of 1Mb. X and Z axes have bins i and j are

grouped into 20 equal sized groups based on increasing restriction enzyme
frequency. Y axis shows the median of all interactions lij divided by the
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Raw Hindlll data. b) Hindlll normalized data showing
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Figure 2-4: Normalized Hi-C data correlates with previously published

FISH results.

a) and b) Hindlll original raw and normalized data respectively. ¢) and d) Hin-
dlll replicate raw and normalized data respectively. e) and f) Nco1 raw and
normalized data respectively. As Hi-C counts are inversly proportional to spa-

tial distances, we expect a negative correlation among Hi-C and FISH results.

While Hindlll datasets show negative correlation before and after normaliza-
tion, Ncol result is phenominally improved after normalization.
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Figure 2-5: Identification of Topological domains.

a) Normalized Hi-C interaction frequencies displayed as a two-dimen-
sional heat map, demonstrating self interacting traingles or topological
domains. b) Topological domain identified from HMM state calls. c¢)
Chi-Sequared based Directionality Index (DI) estimates used by HMM to
identify topological domains. d) HMM state calls used to infer domains.
For both directionality index and HMM state calls, downstream bias (red)
and upstream bias (green) are indicated. e) Schematic illustrating topo-
logical domains and resulting directional bias. f) Density distribution of
Dls.
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Figure 2-6: HMM with mixture of Gaussian model.

Each 40kb bin i along a chromosome having n bins has an DI value which
is observed from Hi-C data. The true directionality biases are hidden and
have states 1, 2, or or 3 for simplicity). Assuming that the observed DI’s are
a mixture of Gaussians, we determine the true directionality bias hidden
state (1, 2 or 3) at bin i.
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Figure 2-7: Overlap of Topological domain boundaries between Hi-C

replicates.

Venn-diagrams showing high degree of overlap between boundaries called by

the HMM from each pair of Hi-C replicates.
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Figure 2-8: Size distribution of topological domains, boundaries,
and unorganized chromatin.

a-c, Histograms of sizes of topological domains (a), topological bound-
aries (b), and unorganized chromatin (c). While domains are megabase
long, boundary definitions are precise with 0 bp.
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Figure 2-9: Intra-domain intercations are more frequent than

inter-domain.

a) Mean interaction frequencies at all genomic distances between 40
kb to 2 Mb. Above 40 kb, the intra- versus inter- domain interaction
frequencies are significantly different (P < 0.005, Wilcoxon test). b—e,
Diagram of intra- domain (b) and inter-domain FISH probes (c) and
the genomic distance between pairs (d). e, Bar chart of the squared
inter-probe distance (from ref. 12) mouse ES FISH probe pairs. Error
bars indicate standard error (n = 100 for each probe pair).
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Figure 2-10: Topological domain boundaries are invariant
among cell-types

a) Overlap in boundaries between mouse ES and cortex cell-types.
b) Overlap in boundaries between human ES and IMR90. In both
these cases, we observe a high degree of overlap among the two
cell-types. c-d) Heat maps showing the directionality index surround-
ing the topological boundary regions. The heat maps are divided
into three regions. Shared boundaries, boundaries called in cell type
A and boundaries called in cell type B for mouse cells (c) and
human cells (d).
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Figure 2-11: Rare cell-type specific domains.

a) Cell type specific is called if the boundary is identified by HMM
in only one cell type and the spearman correlation of the direction-
ality index is not significant when compared to a random distribu-
tion of spearman correlations. A minority of boundaries are actual-
ly called as cell types specific. b) A genome browser shot of a cell
type specific domain on chromosome 16. The domain is called in

hESCs and is not called in IMR90.
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Figure 2-12: Topological domain conformation changes among
cell-types leading to dynamic physical interactions and consequent-
ly differential gene regulation.

a) Heat map of the gene expression ratio between mouse ES cell and
cortex of genes at dynamic interactions. b) The number of genes with >
4-fold change in gene expression that are found in a dynamic interacting
region in either mouse ES cell or cortex. Shown in grey is the number of >
4-fold changed gene expected using randomly permuted dynamic inter-
acting regions. c) Pie chart of intra-domian and inter-domain dynamic
interactions.
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Figure 2-13: Topological domains are evolutionarily conserved
accross human and mouse.

a) Overlap of boundaries between syntenic mouse and human sequences.
b-c) Genome browser shots showing domain structure over a syntenic region
in the mouse (b) and human (c) ES cells.

Note: the region in humans has been inverted from its normal UCSC coordi-
nates for proper display purposes.
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Figure 2-14: Topological Domain boundaries mark insulator/barrier
elements.

a) Enrichment of CTCF at boundary regions. b) The portion of CTCF sites
that are considered ‘associated’ with a boundary (within +/-20-kb). c) Heat
maps of H3K9me3 at boundary sites in human ES and IMR90. d) Heat
map of LADs (from ref. 27,28) surrounding the boundary regions. e) Heat
map of the Eigen Vector values used to to determine the A and B compart-
ments in mouse ES cells. f) UCSC Genome Browser shot showing heter-
ochromatin spreading in the human ES cells (hESC) and IMR90 cells.
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Abstract

Rapid advances in high-throughput sequencing facilitate variant discovery
and genotyping, but linking variants into a single haplotype remains a challenge.
Here | demonstrate HaploSeq, a novel approach for assembling chromosome-
scale haplotypes that exploits the existence of ‘chromosome territories’. Our lab
performed Hi-C and | show that alleles on homologous chromosomes occupy
distinct territories, and therefore this experimental protocol preferentially recovers
physically linked DNA variants on a homolog. Computational analysis of such
data sets allows for accurate (~99.5%) reconstruction of chromosome-spanning
haplotypes for ~95% of alleles in hybrid mouse cells with 30x sequencing
coverage. To resolve haplotypes for a human genome, which has a low density
of variants, | coupled HaploSeq with local conditional phasing to obtain
haplotypes for ~81% of alleles with ~98% accuracy from just 17x sequencing.
Whereas Hi-C was originally designed to investigate spatial organization of the

genome, | have repurposed it as a general tool for haplotyping.

Introduction

Rapid progress in DNA shotgun sequencing technologies has enabled
systematic identification of the genetic variants of an individual'™. However, as
the human genome consists of two homologous sets of chromosomes,
understanding the true genetic makeup of an individual requires delineation of

the maternal and paternal copies or haplotypes of the genetic material. Obtaining
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a haplotype in an individual is useful in several ways. First, haplotypes are useful
clinically in predicting outcomes for donor-host matching in organ
transplantation®® and are increasingly used as a means to detect disease
associations”®. Second, in genes that show compound heterozygosity,
haplotypes provide information as to whether two deleterious variants are located
on the same allele, greatly affecting the prediction of whether inheritance of these
variants is harmful'®'2. Third, haplotypes from groups of individuals have

provided information on population structure'"°

and the evolutionary history of
the human race'®. Lastly, recently described widespread allelic imbalances in
gene expression suggest that genetic or epigenetic differences between alleles
may contribute to quantitative differences in expression'?°. An understanding of
haplotype structure will therefore be critical for delineating the mechanisms of
variants that contribute to allelic imbalances. Taken together, knowledge of
complete haplotype structure in individuals is essential for advancing
personalized medicine.

Recognizing the importance of haplotypes, several groups have sought to
expand our understanding of haplotype structures at the level of both populations
and individuals. Initiatives such as the International Hapmap Project13 and the
1000 Genomes Project'*'"® have attempted to systematically reconstruct
haplotypes through linkage disequilibrium measures based on populations of
unrelated individuals. However, the average length of accurately phased

haplotypes generated using this approach is limited to ~300 kb?'?2. Alternatively,

genotyping parent-child trios can determine whole-genome haplotypes in the
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child, but such methods are constrained by their higher cost and the sample
availability of the two biological parents.

Numerous experimental methods have also been developed to facilitate
direct haplotype phasing of an individual, including long-fragment-read

42521 and dilution-

sequencing®, mate-pair sequencing®*, fosmid sequencing
based sequencing®. At best, these methods can reconstruct haplotypes ranging
from several kilobases to about a megabase, but none can achieve
chromosome-spanning haplotypes. Whole-chromosome haplotype phasing has
been achieved by sequencing based on fluorescence-activated cell sorting®,
chromosome-segregation followed by sequencing’?’ and chromosome
microdissection-based sequencing®®. However, these methods only phase a
fraction of the heterozygous variants in an individual, and more importantly, they
are technically challenging to perform or require specialized instruments.
Recently, whole-genome haplotyping has been performed using genotyping from
sperm cells®'. However, this approach is not applicable to the general population
and requires the deconvolution of complex meiotic recombination patterns.
Computational analysis has shown that an important factor in haplotype
reconstruction from DNA shotgun sequencing methods is the length of the
sequenced genomic fragment®2. For example, longer haplotypes can be obtained
using mate-pair sequencing (fragment or insert size, ~5 kb) compared with
conventional genome sequencing (fragment or insert size ~500 bp) (Fig. 3-1a).
However, it is technically difficult to isolate and sequence DNA fragments that are

longer than what is already obtained using fosmid clones. Hence, using existing
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shotgun sequencing approaches, it is difficult to generate haplotype blocks
longer than 1 million bases, even at ultra-deep sequencing coverage (Fig. 3-1b).
Here | describe an approach, termed HaploSeq, for haplotyping by
combining Hi-C*° with a probabilistic algorithm for haplotype assembly**. We
have experimentally validated HaploSeq in a hybrid mouse embryonic stem cell
line and a human lymphoblastoid cell line in which the complete haplotypes were
known a priori. With HaploSeq, chromosome-spanning haplotype reconstruction
can be achieved with >95% of alleles linked at an accuracy of ~99.5% in mouse.
In the human cell line, | coupled HaploSeq with local conditional phasing to
obtain chromosome-spanning haplotypes at ~81% resolution with an accuracy of
~98% using just 17x coverage of genome sequencing. These results establish

the utility of Hi-C for haplotyping in human populations.

Results

Experimental strategy of HaploSeq
In HaploSeq, we first perform the Hi-C protocol®*. As this method captures
DNA fragments from two distant genomic loci that looped together in three-

dimensional space in vivo>*~°

, sequencing of the resulting DNA library generates
reads having ‘insert sizes’ ranging from several hundred base pairs to tens of
millions of base pairs (Fig. 3-2a). Thus, although the short DNA fragments

generated in a Hi-C experiment can yield small haplotype blocks, long fragments

ultimately can link these small blocks together (Fig. 3-2b). With enough
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sequencing coverage, such an approach has the potential to link variants in
discontinuous blocks and assemble every such block into a single haplotype.

One complicating factor is that Hi-C can capture interactions both in cis
within an individual allele and in trans between homologous and non-homologous
chromosomes. Although non-homologous trans interactions between different
chromosomes do not affect phasing, interactions in trans between homologous
chromosomes (referred to as h-trans hereafter) might complicate haplotype
reconstruction if h-trans interactions were as frequent as cis interactions.
Therefore, | set out to determine the relative frequency of h-trans versus cis
interactions in Hi-C sequencing data. To accomplish this, our lab performed Hi-C
with 30x% sequencing coverage in a hybrid mouse embryonic stem (ES) cell line
derived from a cross between two inbred homozygous strains (Mus musculus
castaneous (CAST) and 129S4/SvJae (J129)), which were previously sequenced
(Methods). Owing to its homozygous nature, the maternal and paternal
haplotypes are known a priori, and the frequency of interactions between alleles
can then be explicitly tested.

To determine the extent of intrahaplotype (cis) versus interhaplotype (h-
trans) interactions, we used the prior haplotype information to distinguish reads
from CAST and J129 alleles. We first visually checked the pattern of interactions
between every allele, finding that the CAST and J129 alleles for each
chromosome were largely self-interacting and distinct (Fig. 3-3). Such a pattern
has been previously observed in Hi-C studies and is analogous to the long-

established concept that chromosomes occupy distinct, self-associated
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territories, known as “chromosome territories,” within the interphase nucleus®®.

However, previous Hi-C studies did not distinguish whether the two alleles for a
given chromosome also occupy distinct, individual, chromosome territories®*>°.
Overall, we observed 2% h-trans interactions among the total reads originating
and ending on the two homologous chromosomes (Fig. 3-4a). In addition, the
probability of a DNA read being in h-trans versus in cis appears to increase as a
function of the insert size between the read pairs (Fig. 3-4b). Because of this
trend, | capped the maximum insert size of Hi-C reads at 30 Mb to reduce the
overall number of h-trans interactions to ~0.6% (Fig. 3-4c). Currently, we cannot
determine if these rare h-trans interactions are due to noise in the data or to
biological phenomena, such as homologous pairing of chromosomes®.

Regardless, these observations indicate that h-trans interactions are rare, a

prerequisite for HaploSeq analysis to succeed.

Predicting accurate chromosome-span haplotypes in mouse

Rare h-trans interacting reads and phenomena such as sequencing errors
at the variant locations can cause erroneous connections between homologous
chromosomes and complicate the reconstruction of haplotypes. To overcome
these problems, | incorporated HapCUT?* software into HaploSeq analysis to
probabilistically predict haplotypes. Because Hi-C generates larger graphs than
conventional genome sequencing or mate-pair sequencing, we modified

HapCUT to balance computing time and number of iterations, so that the
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haplotypes can be predicted with reasonable speed and high accuracy
(Methods).

To test the ability of HapCUT to generate haplotype blocks, | used the
CASTxJ129 mouse Hi-C data. | allowed HapCUT to reconstruct de novo
haplotype blocks of the heterozygous variants and used the metrics of
completeness, resolution and accuracy to assess the performance of HaploSeq
(Fig. 3-5). To assess completeness, | analyzed the span of the haplotype blocks
generated for each chromosome. | observed that each chromosome contains
one block with the most heterozygous variants phased (MVP) and many other
small blocks. However, the MVP block is the most useful as it phases a large
fraction of variants. The MVP block spanned >99.9% of the phasable base-pairs
for each chromosome (Table 3-1), demonstrating that HaploSeq analysis using
Hi-C data can generate complete, chromosome-spanning haplotypes.

Although completeness is defined as the base-pair span of the MVP block,
resolution is defined as the fraction of phased heterozygous variants relative to
the total variants spanned in the MVP block (Fig. 3-5). These MVP blocks
generated for each chromosome are of high resolution, as we could phase about
95% of the heterozygous variants on any given chromosome (Table 3-1). As
99.6% of variants are covered by at least one read, the inability to link the 5% of
heterozygous variants is primarily due to the inability to link heterozygous
variants to the MVP haplotype block. Consequently, although the MVP block
spans the majority of the chromosome, it has gaps that in total contain ~5% of

the heterozygous variants.
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To assess the accuracy of the heterozygous variants within the MVP
block, | compared the predicted haplotypes generated de novo by HaploSeq
analysis with the known haplotypes of the CAST and J129 alleles. | defined
accuracy as the fraction of phased heterozygous variants that were correctly
phased in the MVP block (Fig. 3-5). Of the variants that were assigned to the
MVP haplotype block, | observed >99.5% accuracy in distinguishing between the
two known haplotypes (Table 3-1). Lastly, as | had previously demonstrated that
the h-trans interaction probability increases with the genomic distance separating
two sequencing reads (Fig. 3-4b), | incorporated the h-trans interaction
probabilities into the HapCUT algorithm (Methods) and constrained the maximum
insert size to be 30 megabase. These conditions did not sacrifice the
completeness of the haplotypes we generated. Instead, | observed a further
improvement in the accuracy of the variants in the MVP block with a modest
reduction of the resolution of the variants phased (Fig. 3-6a,b). In summary,
these results demonstrate that HaploSeq analysis yields complete, high-
resolution and accurate haplotypes for all autosomes.

Previous haplotyping efforts have often combined different shotgun
sequencing methods to improve phasing. For instance, whole-genome
sequencing has been combined with mate-pair sequencin924. To see if this
approach would also improve haplotyping with proximity-ligation data, | simulated
20x coverage DNA sequencing data for conventional paired-end shotgun DNA
sequencing (i.e., WGS), mate-pair sequencing, fosmids and proximity ligation. As

expected, combining WGS with mate pair or fosmid data resulted in fragmented,
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incomplete haplotype blocks (Fig. 3-7a,b). In contrast, performing HaploSeq
analysis using Hi-C in combination with WGS data did not increase the
completeness of the haplotypes generated (Fig. 3-7a) but did improve their
resolution (Fig. 3-7b), suggesting that adding WGS to HaploSeq analysis may be

a viable strategy in cases where the resolution of haplotypes must be maximized.

Performance of HaploSeq depends on variant density

A distinct feature of the CASTxJ129 ES cell line is the high density of
heterozygous variants present throughout the genome. On average, there is a
heterozygous variant every 150 bases, which is 7—10 times more frequent than in
humans'?. As a first test of the feasibility of using HaploSeq to generate
haplotypes in human cells, | sub-sampled heterozygous variants in the
CASTxJ129 data so that the variant density mimics that in human populations. |
then tested how lower variant density affects the ability of HaploSeq to
reconstruct haplotypes. Although lower variant density did result in fewer usable
reads (Fig. 3-8a,b), | still observed complete haplotypes over each chromosome
with only a marginal decrease in accuracy (from ~99.6% to ~99.2%, Table 3-2).
However, the MVP block generated using a variant density similar to that
observed in the human genome had a lower resolution. Approximately 32% of
heterozygous variants were phased in the MVP block (Table 3-2), instead of 95%
in the high-density case (Table 3-1). In summary, a low density of variants does
not affect completeness or accuracy, but does substantially affect the resolution

of chromosome-spanning haplotypes by HaploSeq analysis.
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HaploSeq analysis of a human individual

To realistically assess the ability of HaploSeq to phase haplotypes in
humans, our lab performed Hi-C at ~17x coverage on the GM12878
lymphoblastoid cell line. The 1000 Genomes Project has previously inferred the
complete haplotype of this cell line from whole-genome sequencing of parent-
child trio™. HaploSeq generated chromosome-spanning haplotypes in all
chromosomes of the GM12878 cells (Table 3-3). Of note, previous methods
attempting haplotype reconstruction in humans have been unable to reconstruct
haplotypes spanning across the highly repetitive centromeric regions of
metacentric chromosomes*?*?*72%_ Using HaploSeq, | generated haplotypes that
accurately spanned the centromere in all metacentric chromosomes with the
exception of chromosome 9, where an erroneous linkage caused switching of
haplotype calls at the centromere (Fig. 3-9). Chromosome 9 has both a large 15-
Mbp, poorly mapped centromere region and relatively lowers usable coverage
(13.7%). | hypothesized that additional coverage might offer us a better chance in
accurately spanning the centromere. Therefore, | combined our Hi-C data with
previously generated Hi-C and tethered chromosome confirmation capture (TCC)
data. TCC is a Hi-C variant using solid support ligation®® that generates similar
data as a Hi-C experiment with slightly better ability to capture long-range
chromatin interactions (Fig. 3-10). Using this combined data set, | increased the
coverage of chromosome 9 to ~15%, which allowed accurate phasing of the

entire chromosome. In summary, | generated complete chromosome-spanning
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haplotypes for all human chromosomes including chromosome X, albeit at

reduced resolution of ~22% (Table 3-3).

Combining HaploSeq and local conditional phasing

Although | generated chromosome-spanning haplotypes using HaploSeq,
| was unable to achieve a high resolution of variants phased owing to the low
variant density in the human population. | reasoned that the gaps in the MVP
block containing unphased variants could be probabilistically linked to the MVP
block using linkage disequilibrium patterns derived from population-scale
sequencing data. For this purpose, | used the HaploSeq-generated,
chromosome-spanning haplotype as a ‘seed haplotype’ to guide the local
phasing using the Beagle (v4.0)*” software and sequencing data from the 1000
Genomes Project’®.

To initially assess the effectiveness of this approach, | simulated
chromosome-spanning seed haplotypes in the GM12878 genome with different
percentages of variants phased in the MVP block. My simulation results suggest
that | can accurately infer local phasing even at low-resolution seed haplotype
inputs (3% error at 10% seed haplotype resolution; Fig. 3-11a). Owing to
complex population structures, occasional mismatches occurred between phase
predictions from local haplotypes predicted by Beagle and the HaploSeq-
generated seed haplotype. To correct these mismatches, | filtered heterozygous
variants with <100% agreement with the seed haplotype in a local neighborhood

window surrounding the heterozygous variant. This filtering reduced the error
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rate to ~0.7% regardless of seed haplotype resolution (Fig. 3-11a).
Consequently, the fraction of heterozygous variants for which | can infer local
phasing increased with greater seed haplotype resolution (Fig. 3-11a). By
contrast, altering the neighborhood window size did not substantially increase
accuracy (Fig. 3-11b).

Encouraged by these results, | used the MVP chromosome-spanning
haplotypes generated from HaploSeq analysis as seed haplotypes and
performed local conditional phasing. Overall, | generated chromosome-spanning
haplotypes with ~81% resolution at an average accuracy of ~98% (Table 3-4).
Therefore, by coupling HaploSeq analysis and local conditional phasing, |
achieved high-resolution and accurate chromosome-spanning haplotypes in

humans.

Sequencing requirements for obtaining haplotypes

From my local conditional phasing analysis, it seems that a seed
haplotype with ~20-30% resolution is sufficient to obtain accurate and high-
resolution, chromosome-spanning haplotypes. A subsequent question therefore
is, what are the minimal experimental requirements to achieve chromosome-
spanning seed haplotypes with ~20-30% resolution? To investigate this, |
simulated Hi-C data with varying read lengths and sequencing coverage. Based
on the simulation, achieving chromosome-spanning haplotypes depends on
obtaining a usable sequencing coverage of ~15x for most of the read lengths

tested (Fig. 3-12a). However, chromosome-spanning seed haplotypes alone are
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not enough for achieving high-resolution haplotypes through local conditional
phasing. In particular, the resulting sparse seed haplotype graph may limit the
ability to generate final high-resolution haplotypes. To increase the resolution of
the seed haplotype once complete seed haplotypes are obtained, one must
increase coverage, either through higher sequencing depth or longer read
lengths (Fig. 3-12b). | observed that 50- to 100-bp paired-end reads balanced
completeness and resolution, and achieved the desired fraction of ~20-30%

resolution at ~25-30x% usable coverage.

Discussion

| describe a strategy to reconstruct chromosome-spanning haplotypes for
an individual. Although the density of heterozygous variants contributes strongly
to the resolution of the generated haplotypes, | showed that this complication
could be resolved by using local conditional phasing from population data15 (Fig.
3-13). Compared with other haplotyping approaches that can reconstruct

212930 HaploSeq is the most suitable for a clinical and

complete haplotypes
laboratory setting, where reagents and equipment required are readily available.
Furthermore, HaploSeq is more widely applicable than approaches based on
sperm cell genotyping®', as it can generate whole-genome haplotypes from intact
cells of any individual or cell line.

We anticipate that HaploSeq will be useful for personalized medicine.

Determination of haplotypes in individuals has the potential to reveal novel



75

haplotype-disease associations, some of which have already been identified on

smaller scales®,

In addition, complete haplotypes will be essential for
understanding allelic biases in gene expression, which will contribute to
knowledge of genetic and epigenetic polymorphisms in the population and their
phenotypic consequences at a molecular level'?°. As a result, whole-genome
haplotyping has applications across several fields, such as pharmacogenomics,
genetic diagnostics, agricultural crop breeding and genetic engineering of
animals.

Hi-C was originally invented to study the spatial organization of
chromosomes®. Here we show that it is also valuable for studying the genetic
makeup of an individual. In principle, Hi-C data can also be used for genotyping,
along the same lines as WGS. Although variants far from restriction enzyme cut
sites are less likely to be genotyped owing to biases from Hi-C approach,
population-based imputation®? of variants not yet genotyped can improve the
performance of genotype calling. Because all this can be done using a single

experiment, HaploSeq has the potential to become a general tool for whole-

genome analysis in the future.

Methods

Genotyping
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Variant calls and genotypes for GM12878 were downloaded*® and these
were used for haplotype reconstruction by Hi-C. Phasing Information for
GM12878 was downloaded from 1000 Genomes Project™.

For generating genotype calls for the hybrid CASTxJ129 cells, we
downloaded parental genome sequencing data from publicly available
databases. For CAST, we downloaded the genome sequence from the European
Nucleotide Archive (accession number ERPO000042). S129/SvJae genome
sequencing data was downloaded from the Sequence Read Archive (accession
number SRX037820). Reads were aligned to the mm9 genome using Novoalign
(www.novocraft.com) and using samtools**, and we filtered out unmapped reads
and PCR duplicates. The final aligned data sets were processed using the
Genome Analysis Toolkit (GATK)*. Specifically, we performed indel realignment
and variant recalibration. The GATK Unified Genotyper was used to make single-
nucleotide polymorphism (SNP) and indel calls. We filtered out variants that did
not meet the GATK quality filters or that were called as heterozygous variants, as
the genome sequencing was performed in homozygous parental inbred mice.
The genotype calls in the parents were used both to determine the extent of
interactions in cis versus h-trans to learn the phasing of hybrid CASTxJ129 cells

a priori to haplotype reconstruction.

Hi-C read alignment
For Hi-C read alignment, we aligned Hi-C reads to the mm9 (mouse) or

the hg18 (human) genome. In each case, we masked any bases in the genome
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that were genotyped as SNPs in either Mus musculus castaneus or S129/SvJae
(for mouse) or GM12878 (for humans). These bases were masked to “N” in order
to reduce reference bias mapping artifacts. Hi-C reads were aligned iteratively as
single-end reads using Novoalign and samtools*. Specifically, for iterative
alignment, we first aligned the entire sequencing read to either the mouse or
human genome. Unmapped reads were then trimmed by 5 bp and realigned.
This process was repeated until the read successfully aligned to the genome or
until the trimmed read was less than 25 bp long. Iterative alignment is useful for
Hi-C data because certain reads will span a proximity-ligation junction and fail to
successfully align to the genome due to gaps and mismatches. Iteratively
trimming unmapped reads has the potential to allow these reads to align
successfully to the genome when the trimming removes the part of the read that
spans the ligation junction. After iterative alignment of reads as single ends is
complete, the reads are manually paired using in-house scripts. Unmapped and
PCR duplicate reads are removed. The aligned data sets are then finally

subjected to GATK* indel realignment and variant recalibration.

Usable coverage

For phasing using HapCUT, we utilize both intra-chromosomal and inter-
chromosomal reads. For inter-chromosomal reads, | consider each inter-
chromosomal read pair as two single-end reads, as the paired information for
such reads is not useful for phasing. In contrast, all intra-chromosomal reads are

considered for phasing. The probability of a single read to harbor more than one
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variant is small, especially in humans where the variant density is relatively low.
This, in combination with the fact that only the paired intra-chromosomal reads
will have large insert sizes, means that the vast majority of reads that contribute
to the success of haplotype phasing are the intra-chromosomal reads. Therefore,
| define the “usable coverage” as the genomic coverage derived from intra-
chromosomal reads only.

Our Hi-C experiment generated ~22% inter-chromosomal reads in
CASTx=J129, whereas ~55% of the reads in GM12878 were inter-chromosomal.
In other words, 620 M paired-end reads out of 795 M were useful in CASTxJ129,
with a usable coverage of 30%. In humans, only 262 M paired-end reads out of
577 M were useful, resulting in a usable coverage of 17x. In our experience, the
fraction of all reads that are intra-chromosomal versus inter-chromosomal in a Hi-

C experiment may vary between experiments and across cell types.

Analysis of HaploSeq data using HapCUT

| used the HapCUT?* algorithm to perform the computational aspects of
HaploSeq, This method was originally designed to work on conventional genome
sequencing (WGS) or mate-pair sequencing data. HapCUT constructs a graph
with the heterozygous variants as nodes and DNA fragment(s) connecting two
nodes as edges. Therefore, only fragments with at least two heterozygous
variants are useful for haplotype phasing. HapCUT extracts such ‘haplotype-
informative’ fragments from a coordinate-sorted BAM file using a sorting method

that stores each potential haplotype-informative read in a buffer until its mate is
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seen. We customized the buffer size to allow HapCUT handle large insert-sized
Hi-C reads.

HapCUT uses a greedy max-cut heuristic to identify the haplotype solution
for each connected component in the graph with the lowest score under the MEC
scoring function. In particular, the original HapCUT algorithm used O(n) iterations
to find the best cut. Because Hi-C data resulted in chromosomal spanning
haplotypes with a single large connected component, the default method took
several days of computing time to phase the CASTxJ129 genome. To reduce the
computation time, | assessed the impact of reducing the number of max-cut
iterations on the accuracy of phasing. For CASTxJ129 system, increasing the
number of max-cut iterations beyond 1,000 did not significantly improve the
accuracy. For GM12878, | allowed up to 100,000 iterations.

Once a best-cut solution is achieved, that solution is iterated multiple
times to improve upon the current best-cut solution among other possible best
cuts in the solution space. | used a maximum of 21 such iterations in CASTxJ129
and 101 in GM12878 cells. My parameters in GM12878 cells allowed HapCUT to
obtain higher accuracy given the lower variant density and reduced sequence
coverage compared to the mouse data. The modified version of HapCUT can be

downloaded from https://sites.google.com/site/vibansal/software/hapcut.

Maximum insert size analysis
As previously mentioned the probability of a Hi-C read being in cis versus

h-trans varies as a function of the distance between the two read pairs (Fig. 2c).
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At shorter genomic distances, the probability that an intrachromosomal read is in
h-trans is very low. At large distances (>30 Mbp), this probability rises
substantially and is in theory more likely to introduce erroneous connections for
HapCUT to phase. To account for this, | used the Hi-C data for chromosomes 1,
5, 10, 15 and 19 in the CASTxJ129 data and repeated haplotype reconstruction
allowing variable maximum insert size values. | excluded any reads where the
insert size between reads was greater than the allowable maximum insert size. |
performed this analysis using the low variant density case as lower density was
most amenable for applications in humans. This step resulted in increase in

accuracy of HaploSeq analysis with moderate reduction in resolution.

Insert size-dependent probability correction

A useful feature of the HapCUT algorithm is that it accounts for the base
quality score at a variant location to calculate the score of a potential haplotype.
In other words, if a sequencing read that links two variants and the base quality
at one variant location is low, this read is given relatively lower weight by
HapCUT in generating its final haplotype calls. Therefore, HapCUT can use this
information to try to disregard potential sequencing errors from making erroneous
haplotype connections. As we previously mentioned, in Hi-C data errors may also
arise due to h-trans interactions, which are much more frequent than sequencing
errors and show a distance-dependent behavior. Therefore, | attempted to
account for the likelihood of an interaction being in cis versus h-trans based on

the distance between the two reads. | used the CASTxJ129 Hi-C data to identify
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reads that are in cis or h-trans. | binned the insert sizes into 50-kb bins and
estimated the probability of a read being h-trans (#h-trans/(#cis+#h-trans). | then
used local regression (LOWESS) at 2% smoothing to predict h-trans probabilities
at any given insert size. For every intrachromosomal read, | multiplied the cis
probabilities (1 — h-trans) with the base qualities to account for the odds of this
intrachromosomal read being a h-trans interaction. As a result, reads that are
more likely to be h-trans are given lower weight by HapCUT in identifying the
haplotype solution.

Adding h-trans interaction probabilities increases HaploSeq accuracy
moderately, without having any affect on resolution. As a comparison, maximum
insert size of 30 Mb had an error rate of 1.1% in chromosome 19. After adding h-
trans probabilities, the error rate is 0.9%, where error rate is defined as 1 —

accuracy.

Local conditional phasing simulation

In order to study our ability to perform local phasing at different
percentages of resolution, | performed a stepwise analysis. First, | generated
seed haplotypes at different resolutions. Then, | used Beagle (v4.0)*” to perform
local phasing under the guidance of the seed haplotype. Finally, | checked
accuracy of local phasing by comparing it to phasing information known a priori
from 1000 Genomes Project.

To simulate seed haplotypes at different resolutions, | first simulated seed

genotypes. | used different combinations of read length and coverage to obtain
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seed genotypes of various resolutions. In particular, | used Hi-C intra-
chromosomal read starting positions from H1 and H1-derived cells (unpublished
data) to generate pairs of reads of a given read length and coverage. This
allowed us to maintain the Hi-C data structure and the observed distribution of
insert sizes in the simulated data. To generate the seed genotype, | constructed
a graph with nodes representing heterozygous variants in GM12878
(chromosome 1) and edges corresponding to reads that cover multiple variants.
This graph is essentially a genotype graph because we don’t know the phasing
yet. Hence, the whole point of this graph is to provide a two subset of variants:
one that is a part of the seed genotype and other that is not (which are the gaps
to be inferred by local phasing), based on the resolution and Hi-C data structure.
| generated seed genotypes at required parameters of read length and coverage
to attain a specific resolution. | used these seed genotypes for both local phasing
and to study the minimal requirements for generating seed haplotypes of enough
resolution. These two analyses were done independently and in both cases, |
repeated generating seed genotypes and downstream analysis ten times to note
the average results.

To perform local conditional phasing, | need an a priori haplotype system
to check accuracy of our local conditional phasing. Because a priori haplotype
information from the trio covers only a fraction of heterozygous variants, |
decided to perform local phasing simulation only on the trio subset. Specifically, |
required every variant that was part of either seed genotype or “gaps” to be part

of the 1000 Genomes-phased trio. | converted seed genotypes to seed
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haplotypes using the trio information while keeping “gap” variants as unphased. |
then used local phasing conditioned on the seed haplotype to infer phasing of the
gap variants using Beagle. | allowed homozygous variants to assist Beagle in
making better predictions from the Hidden Markov Model.

To perform neighborhood correction for a seed haplotype unphased
variant, | collected three variants each from both upstream and downstream,
which are phased in seed haplotype. Then | checked if there was 100%
correlation between the phasing present in the seed haplotype to what is
predicted by Beagle. This provides an estimate of how well Beagle could have
performed in this “local” region. If there is a 100% match, | consider the variant
as conditionally phased. If there is not a 100% match, | disregarded the
unphased variant in the final haplotype. | tried other window sizes such as 5 and

10 and found no improvement in accuracy.

Local conditional phasing in human GM12878 cells

| coupled HaploSeq analysis and local conditional phasing to increase
resolution in GM12878 cells. Local conditional phasing was performed as
described earlier on genotypes that are common between GM12878 (ref. 43) and
population samples. In addition, as the seed haplotype is not 100% accurate, |
marked the seed haplotype phased variants that did not agree with local phasing.
These marked variants were made “unphased” as these could be potential errors
from HaploSeq. Hence, apart from using neighborhood correction for deciding

whether a gap variant needs to be locally phased (as in the simulation), | also
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used this information to mark variants in the seed haplotype that could be

potentially erroneous.
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Figure 3-1: The length of haplotype depends on the insert size distribu-

tions of the fragments.

a) Inferred insert sizes from conventional genome sequencing (ref. 41),

mate-pair (ref. 41) and fosmid clones (ref.

42). The x-axis is in base-pairs

(log10 scale). b) Simulations of 100bp paired-end reads at various sequenc-
ing coverage for these different datatypes. Each skewed datatype contrains
70% and 10% percent of 40000bp or 500bp, depending on the case. Skew
datasets always contain 20% mate-pair. N50 is averaged over 10 simulai-

tons.
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Figure 3-2: Schematic for HaploSeq method for reconstructing haplotypes.

a) Hi-C experiment. In brief, cross-linked chromatin are digested and

ligated (i,ii). (iii, iv). Consequently the Hi-C library contains fragments of different
insert sizes.The x axis is in base pairs (log10 scale). b) Hi-C reads can build
long haplotypes by utilizing combination of small and long insert sized
fragments. This cartoon represents a case where two small haplotype blocks
can be connected as a single block, as these two are spatial proximal and
therefore captured by Hi-C.
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Figure 3-3: Hi-C data demonstrates that the two homologous alleles
occupy distinct chromosome territories.

Heat map of whole-genome Hi-C contact frequencies. Hi-C reads originating
from the CAST (“c”) or J129 (‘") genome were distinguished based on the
known haplotype structures of the parental strains. The frequency of
interactions between each allele of each chromosome was calculated using
10-Mb bin size. The CAST or J129 allele of each chromosome primarily
interacts in cis, confirming that the chromosomes territories seen in Hi-C data
occur for individual alleles. Inset shows a magnified view of the CAST and
J129 alleles for chromosomes 12 through 16.
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Figure 3-4: Hi-C data is predominantly intrahaplotype.

a) Chart of intrahaplotype (cis) and interhaplotype (h-trans) interaction
frequencies. From a priori haplotype information, we distinguish Hi-C
read-pairs as interacting in cis (green) and in h-trans (purple). In (i), we used
all intrachromosomal reads and in (ii), we excluded all intrachromosomal reads
that map with an insert size <1kb, as these are probably short contiguous DNA
fragments and are therefore very likely to be in cis. Thus analysis described

in (ii) provides a more conservative estimate of h-trans. Comparing these
charts, h-trans frequency is at most ~2%. b) Comparison of the h-trans
interaction probability as a function of insert sizes. LOWESS fit (purple) was
performed at 2% smoothing. ¢) Similar to b, but excluding reads that have
inserts >30 megabases.
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Figure 3-5: Graphical explanation of completeness, accuracy, and reso-
lution in haplotype phasing.

a) Nucletoide bases represent heterozygous SNPs while “-” represents no
variability. Considering heterozygous SNPs as nodes, edges are made
between nodes that belong to same fragment.This graph system establishes
red and green homologous chromosomes (or haplotypes) de-novo. Neverthe-
less, there can be multiple blocks formed and in this example, we have one
large MVP component that spans 96.15% and one other small block that
cannot be connected to MVP block (shown in the black edged box). b) Haplo-
type phasing of the MVP block demonstrating resolution ¢) True haplotypes
known a priori and this knowledge helps to measure the accuracy of predicted
de-novo haplotypes. (inaccurate variant phasing is shown at the gray box
location) d) Describes the different metrics.
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Figure 3-6: Constrained HapCUT model allowing only fragments up to a
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certain maximum insert size (maxIS).

At higher maxl|S, the resolution of MVP block in a) is high but contains lower
accuracy in b). Hence, we chose maxIS as 30 megabases to allow accept-
able levels of resolution and accuracy. This simulation was performed in
different chromosomes in CASTxJ129 system in the low variant density
scenario, as this was more close to human applications. This analysis does
not incoporate the h-trans probabilities, so that the effect of maxIS alone is

realized.
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Figure 3-7: HaploSeq resolution can be increased with additional datasets.

a) | simulated 75-bp paired-end sequencing data of conventional shotgun
sequencing, mate pair and fosmids at 20x coverage. | subsampled the
CASTxJ129 data to generate 20x Hi-C fragments.The y axis represents the
span of MVP block of chromosome 19. | also combined 20x sequencing
coverage for each method with 20x conventional WGS data for a total of

40x coverage to compare methods at a higher coverage. b) Analysis of the
adjusted span (AS) of phasing. The AS is defined as the product of span and
fraction of heterozygous variants phased in that block. Haplotype blocks were
ranked by number of variants phased in each block (x axis is ranking).
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Figure 3-8: Variant density affects the fraction of usable reads and poten-
tially haplotyping.

a) The plot depicts the relationship between variant density and probability of
paired-end read pairs harboring at least two heterozygous variants, as only
these reads are usefull for phasing. b) The differences in variant frequency
between mice (CASTxJ129) and humans (GM12878) over the

Hoxd13/HOXD13 gene. Also shown in the Hi-C read coverage (log10 scale)
over these loci.
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Figure 3-9: HaploSeq generated haplotypes spans accross the centro-
mere.

Hi-C—generated seed haplotypes span the centromere of metacentric chro-
mosomes. Shown are two regions on either side of the centromere of chro-
mosome 2. The two Hi-C generated seed haplotypes are arbitrarily desig-
nated as “A” and “B.” The actual haplotypes of the GM12878 individual
learned from trio sequencing are shown below designated arbitrarily as “A”
and “B.” The Hi-C—generated seed haplotypes match the actual haplotypes
on both sides of the centromere. Some variants in the actual haplotype
remain unphased, thus contributing to the “gaps” in the seed haplotype. In
addition, the actual haplotypes based on trio sequencing may not contain all
of the variants from (ref: 43) phased. Therefore, the seed haplotype contains
some phased variants not in the trio-phased haplotype (see the third variant
in the AAK1 region for example).
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Figure 3-10: Insert size distributions from Hi-C and TCC.

The insert size distributions (log10 scale) from Hi-C and TCC (both taken from
ref. 35). TCC has an additional step where ligations are tethered to a solid
surface, which are then preferentially captured. Hence, TCC offers more
chances to capture true long-range interactions in TCC than in Hi-C experi-

ment. Plots made using random subset of datapoints from chromosomes 1-22.
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Figure 3-11: Local conditional phasing in human GM12878 cells.

a) The x axis is the chromosome span seed haplotypes resolution generated
by simulation. The top panel shows the error rates of local conditional phas-
ing. The bottom panel shows the percentage of variants that remain
unphased due to neighborhood correction as a function of resolution. All
simulations are done using GM12878 chromosome 1.b) Plots of the affect of
window sizes on accuracy and resolution of local condiditonal phasing after
neighborhood-window correction. We used window sizes of 3, 5 and 10.
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Figure 3-12: Sequencing requiremements for obtaining haplotypes by
HaploSeq.

a) Chromosome-spanning seed haplotype (MVP block) at varying parameters
of read length and coverage. b) Different combinations of read length and
coverage generate high-resolution seed haplotypes. Resolution metric
depends on percentage of completeness. For example, for 250 bp reads at
30x% coverage, resolution is 45% of the 90% variants spanned in the haplotype.
All simulations are done in GM12878 chromosome 1.
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Figure 3-13: HaploSeq coupled with Local conditional phasing (LCP)
generates high resolution haplotypes.

UCSC Genome browser shot illustrating all variants (green track), phased
variants by HaploSeq (purple track), and phased variants by combining LCP
with HaploSeq (red track) in chromosome 1. The track displays the number of
heterozygous variants in each category and demonstrates that only a high
fraction of variants are phased only after LCP. Top panel, a zoom-in of the
browser, showing a binary value for presence (value 1) and absence of a
variant (value 0) in that category. A value of 0 in the phased variant track
represents unphased variants or “gaps,” whereas a value of 1 represents the
group of variants that are part of the MVP block. Most of the gaps from the
purple track are phased after LCP, as shown in red track.



Table 3-1: Accurate chromosome-span haplotypes in mouse ES cells.

We used HapCUT to phase CASTxJ129 mouse Hi-C data. For every
chromosome, we obtain complete chromosome-scale haplotypes (~>99.9%),
as seen in theMVP block. Although 99.6% of SNPs have at least one read
covering them, ~5% of SNPs do not have reads that connect to them to the
MVP block and therefore cannot be phased with respect to MVP block.
Consequently, we obtain a resolution of 95%. The accuracy of the haplotype
generated is ~99.5%.

Phasable Span | Variants spanned | %Chr Spanned | %Variants Phased | % Accuracy of variants
Chr of Chr in MVP block in MVP block in MVP block phased in MVP block
chr1 194,188,030 1,409,566 100.000 95.231 99.627
chr2 178,746,638 1,109,866 99.997 93.703 99.569
chr3 156,599,306 1,120,125 100.000 94.911 99.639
chr4 152,628,848 1,030,740 99.997 94.366 99.546
chr5 149,536,169 1,063,616 99.999 94.414 99.521
chré 146,516,752 1,074,301 100.000 96.086 99.674
chr7 149,523,520 965,142 99.999 94.152 99.427
chr8 128,735,517 939,132 99.948 95.060 99.558
chr9 121,070,077 832,047 99.987 94.547 99.600
chr10 126,991,341 980,549 99.996 95.624 99.735
chr11 118,843,488 861,541 99.996 94.612 99.577
chr12 118,256,511 794,128 100.000 94.588 99.515
chr13 117,284,037 858,859 100.000 95.494 99.679
chr14 122,159,750 823,216 99.998 94.707 99.541
chr15 100,494,041 719,697 100.000 94.811 99.618
chr16 95,301,285 711,670 99.898 95.471 99.668
chr17 92,272,062 616,348 99.999 93.669 99.443
chr18 87,771,251 674,750 99.989 95.631 99.599
chr19 58,256,454 411,457 99.869 95.243 99.662




Table 3-2: Lowering variant density resulted in chromosome-scale and
accurate haplotypes, but of low resolution.

Table depicting the completness, resolution and accuracy of haplotype
reconstruction using HaploSeq analysis in a low variant density scenario in
CASTxJ129 system. Variants were sub-sampled in the CASTxJ129
genome to have a heterozygous variant every 1,500 bases, to mimic
human scenario.

% Chr % Variants | % Accuracy of
Spanned in| Phased in | variants phased
Chr | MVP block | MVP block | in MVP block
chri 99.932 33.428 99.223
chr2 99.975 30.650 99.298
chr3 99.975 32.522 99.079
chr4 99.913 30.948 98.994
chr5 99.947 30.259 99.310
chré 99.982 35.529 99.223
chr7 99.909 30.841 99.227
chr8 99.879 32.273 99.234
chr9 99.932 31.676 99.338
chr10 99.997 34.246 99.318
chr11 99.997 30.736 99.334
chr12 99.931 31.056 99.061
chr13 99.988 33.793 99.256
chr14 99.627 31.723 99.106
chr15 99.847 33.108 99.168
chr16 99.483 33.586 99.255
chr17 99.920 31.240 99.213
chr18 99.775 33.775 99.174
chr19 99.285 32.464 99.086




Table 3-3: HaploSeq analysis in human GM12878 cells generate complete
but low resolution haplotypes.

Table of results of the HaploSeq based haplotype reconstruction in GM12878
cells using variants identified previously (ref: 43). The results show
completeness and resolution. In GM12878 cells, we generated ~17x coverage
when compared to ~30x in CASTxJ129 system. Therefore, we observe a lower
resolution (22%) when compared to low-density CASTxJ129 (32%).

% Phasable | Variants spanned | % Chr spanned | % Variants phased
chr | Span of Chr. in MVP block in MVP block in MVP block
chr1 | 247,195,920 161,669 99.911 21.596
chr2 | 242,747,622 174,845 99.984 22.766
chr3 | 199,384,702 144,914 99.986 23.915
chr4 | 191,260,971 151,304 99.974 24.687
chr5 | 180,770,319 139,987 99.890 24.037
chré | 170,883,965 146,307 99.924 28.113
chr7 | 158,765,244 123,880 99.992 22.819
chr8 | 146,268,969 115,878 99.912 24.457
chr9 | 140,252,520 95,981 99.936 22.347
chr10 | 135,321,315 108,910 99.976 22.544
chr11 | 134,358,758 104,211 99.984 24.144
chr12 | 132,273,383 99,405 99.997 21.511
chr13 | 96,209,726 76,991 99.495 24.260
chr14 | 88,283,606 68,949 99.973 21.751
chr15 | 82,077,797 61,540 99.979 22.164
chr16 | 88,818,477 71,478 99.847 21.507
chr17 | 78,612,598 54,660 99.745 18.862
chr18 | 76,114,907 61,146 99.956 22.791
chr19 | 63,773,223 50,151 99.726 16.706
chr20 | 62,424,237 49,535 99.745 22.572
chr21 | 37,193,100 31,891 99.822 22.223
chr22 | 35,158,263 32,300 99.929 16.464
chrX | 151,825,709 64,769 99.982 15.765

100
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Table 3-4: By coupling HaploSeq and local conditional phasing (LCP), we
obtain high resolution and accurate haplotypes for GM12878 cells.

While HaploSeq analysis by itself generates low resolution (22%) haplotypes,
combining it with LCP enhances resolution to 81%. The second column depicts
the enhanced resolution. Owing to strict neighborhood matching during LCP,
fraction of resolution is lost (third column). The final column depicts the accuracy
of haplotypes.

% Enhanced MVP| % NC based |% Accuracy of variants
Chr Block Res. loss in Res. phased in MVP block
chr1 81.429 2.867 98.164
chr2 81.876 2.224 98.214
chr3 83.665 1.958 98.616
chr4 82.259 1.851 98.459
chr5 82.753 2.498 98.518
chré 83.308 1.923 98.132
chr7 80.485 2.556 98.445
chr8 84.065 1.643 98.766
chr9 80.058 2.754 98.099
chr10 84.982 1.470 98.743
chr11 84.318 2.597 98.474
chr12 83.593 2.212 98.602
chr13 85.626 1.716 98.429
chr14 82.021 2.121 98.714
chr15 79.897 2.567 98.052
chr16 78.713 2.977 97.945
chr17 75.566 6.591 95.368
chr18 82.409 2.466 98.548
chr19 76.806 5.839 95.985
chr20 83.275 3.414 96.901
chr21 82.657 2.550 98.345
chr22 76.114 6.561 97.843
chrX 72.419 5.981 96.489
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Abstract

Recent collaborative projects such as the ENCODE and Roadmap
Epigenome have allowed annotation of regulatory elements and subsequent
investigation of their role in cellular differentiation and lineage specification.
However, these analyses are limited in two aspects. First, the functional maps
contain mixture information of the two haploids and thus epigenetic and genetic
differences between the haplotypes are ignored. Second, current analyses are
limited in recognizing the role of distal gene regulation. To address these
challenges, we performed Hi-C in H1 human embryonic stem cells and 4 H1-
derived cells from diverse developmental lineages, as it can inform both
haplotype and 3D genome patterns. We integrated previously obtained maps of
chromatin accessibility, DNA methylation, histone modifications, and gene
expression to delineate aspects of gene regulation in an allelic context. By
phasing over 93.5% of alleles, the haplotype-resolved genome revealed
widespread allelic gene expression patterns. In addition, we observe a strong
correlation among allelic transcription and allelic chromatin states of promoters
and distal acting enhancers. By correlating allelic regulatory states and allelic
gene activity, our study demonstrates new insights on combinatorial functional

interactions of gene regulation.
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Introduction

Human cellular differentiation is a complex process that harbors unique
gene expression patterns in each cell type'>. It is increasingly being accepted
that cell type specific gene regulation patterns are facilitated by dynamic changes
in epigenome*®. For example, DNA Methylation at promoters has been shown to
inhibit expression of lineage-specific genes and regulate imprinting regions'®"2.
On the same lines, other epigenomic aspects such as histone modifications have
also suggested to play a critical role in animal development'®. For example, mice
with depleted histone acetyltransferase p300/CBP are lethal™.

To systematically study the role of epigenetic mechanisms in human
development, the Roadmap Epigenome project profiled DNA Methylation, core
histone marks, chromatin accessibility and gene expression in H1 human
embryonic stem cells (hESCs) and four-hESC derived lineages®. In particular,
Mesendoderm, Mesenchymal Stem Cells, Neural Progenitor Cells, and
Trophoblast were chosen as they represent extra-embryonic and embryonic
lineages, including cells at early and late stages of development. Utilizing these
datasets, lineage specific regulatory elements were defined using which distinct
epigenetic mechanisms for regulation of early and late differentiated stages were
reported, clearly showing crucial role of epigenetics in human cellular
differentiation® ®.

Along with epigenomes, several groups have demonstrated the role of 3D

15,16

genome structure in regulating cell-type specific gene expression ™. For

example, it has been shown that 3D genome can facilitate chromatin interactions
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among distal regulatory elements such as enhancers and target genes'’'®.

However, the vast majority of studies that analyze gene regulation pattern have
not performed integrative analyses of epigenome and 3D genome. In addition,
these analyses could be confounded by the fact that each dataset contains
mixture information of the two haplotypes. Specifically, current studies are limited
in reporting allele specific regulatory events and allelic gene expression. For
example, imprinting genes are known to express in an allelic fashion'®, however
the scope of such allele-specific genes are poorly understood in the context of
cellular differentiation.

921 and haplotypes®, we have

As Hi-C can inform both 3D structure
currently performed Hi-C in each of these 5 lineages to integrate analyses of
chromatin structure, epigenome and gene expression in a haplotype resolved
context. By analyzing allele-resolved gene expression patterns, we identify
widespread allelic biases in gene expression in each lineage, consistent with
recent reports in individual cell types. In total, 24% of genes in the genome for
which we can reliably detect allele-resolved expression show an allelic bias,
indicating that this phenomenon is pervasive throughout the genome. Allele
biased patterns of gene expression are well correlated with allelic biased
chromatin state at distal acting enhancer elements and long-range chromatin
interactions between these elements and the target genes. Our results
demonstrate a strong relationship between dynamic chromatin architecture and

dynamic chromatin states, together coordinating gene regulation in an allelic

context. Taken together, our study shows a combinatorial functional interaction
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between regulatory elements and genes, facilitated by 3D genome and haplotype

analyses.

Results

Generating complete haplotype structures for H1 cell line

We performed Hi-C?* experiments in H1 hESCs and each of the four H1-
derived lineages. We obtained a total of 3.85 billion unique read pairs, with on
average 770 million unique read pairs split between two biological replicates for
each cell type (Table 4-1). Using HaploSeq?, | generated chromosome span
haplotypes for H1 by combining the Hi-C datasets across all of the H1-lineages,
and whole genome sequencing to maximize phasing resolution (Fig. 4-1a). In
total, | was able to generate haplotypes incorporating ~93.5% of all heterozygous
variants in the H1 genome. To evaluate the accuracy of the haplotype
predictions, | performed HaploSeq using reads from Hi-C alone and checked its
concordance with independent datasets such as whole genome sequencing and
mRNA-Seq (Fig. 4-1b). As, the concordance rates for the H1 genome are similar
to the error rates we found in previous work using cell lines where haplotypes
were known a priori where the accuracy of phasing could be calculated explicitly,
we believe that the haplotypes predictions of H1 genome are of high quality®?.

Having obtained complete, accurate, and high-resolution haplotypes, we
analyzed various genome wide datasets in an allele resolved context*. We re-
aligned mRNA-sequencing, ChlP-sequencing for histone modifications, MethylC-

Sequencing, and DNasel hypersensitivity sequencing datasets for each of the
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H1-derived lineages and determined which reads arose from which haplotype
(Methods). Of note, as we have only haplotype information for the H1 individual,
we cannot determine which allele is the maternal or paternal copy. Therefore, we
arbitrarily defined the two parental haplotypes for each chromosome to be from
the “p1” allele and “p2” allele. As another metric to check the accuracy of
haplotypes, | checked if mechanisms behind an imprinting region could be
recapitulated using various epigenetic datasets. Indeed SNRPN, a known DNA
Methylation based imprinted gene cluster®®, is expressed only in p1 allele as
supported by active H3K4me3 histone mark in p1 and inactive methylated
promoter at p2 allele (Fig. 4-2). These datasets therefore allow for the systematic
determination of variability in gene expression and chromatin state of cis-

regulatory elements between alleles.

Identifying allelic events

As allelic events could be a result of biased mapping strategies, we
followed a multi-step process to accurately identify allelic events. Besides,
mapping each of the datasets to a heterozygous variant masked human
reference genome, | simulated reads spanning each of the variant to estimate
mapping biases. SNPs and Indels that showed >5% and >10% biases
respectively, were excluded from all downstream analyses, as these variants
potentially show an inherent mapping bias. Second, variants that demonstrated
>3 standard deviations or significant binomial variation (FDR 5%) of genome

sequencing coverage above the mean haplotype coverage, were removed as



115

potential sources of copy number variation. Next, we excluded any heterozygous
variant with a genotype p-value greater than 0.05 after Benjamini correction, as
these can be inherently homozygous in nature (Methods). Using the final list of
heterozygous variants, we employed different statistical methods such as
negative binomial (allelic genes), binomial (allelic chromatin states), and hyper-

geometric test (DNA Methylation) to evaluate the allelic status (Methods).

Widespread allelic imbalances in gene expression
Previous studies of allele-resolved gene expression have identified allelic

2425 However,

imbalances in expression of a given gene between two alleles
most previous studies of allele resolved gene expression focus on only a limited
number of cell types, most often lymphoblastoid cell lines. Therefore, it remains
unclear the degree to which allele-biased gene expression varies among different
lineages of a single individual. To address this issue, | identified allelic biases in
gene expression across the five H1 lineages examined in this study. | identified a
total of 1,787 genes that showed allelic bias in gene expression between the two
alleles in any cell type (FDR 10%, Fig. 4-3a). As only genes that contain exonic
SNPs and can possibility be analyzed for allele specific expression, this actually
represents 24% of all genes for which we can detect allelic expression (Fig. 4-
3a). This suggests that allele biased gene expression is pervasive throughout the
H1 human genome. In addition, most of the allelic differences in expression were

less than 4-fold (Fig. 4-3b), indicating that the maijority of allelic differences in

expression were not “on/off” events, but instead reflecting changes in the relative
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level of expression from each allele. By performing k-means clustering on the
patterns of expression of allelic biased genes across cell types, we observed that
genes that show bias in expression contain both lineage specific and
constitutively expressed genes (Fig. 4-3c). However, allele biased genes do not
appear to be enriched among annotated lists of either housekeeping or lineage-
restricted genes as compared with non-allele biased genes (Fig. 4-3d).

We were also interested in characterizing if the patterns of bias between
the two alleles vary between cell types. For genes that are expressed exclusively
in only one or two lineages, allele bias could only occur in a cell type specific
manner. Therefore, we focused our analysis on genes were we could detect
expression across all 5 lineages. By performing K-means clustering of the
patterns of bias among these constitutively expressed genes, we can observe
that some allelic genes show constitutive allelic bias, whereas others show cell-
type variable patterns of bias (Fig. 4-3e,f). Cell-type variability in allelic bias

appears to largely be related to a gain of allelic bias in a particular lineage.

Allelic bias is enriched among imprinted genes

While imprinted genes are enriched in the set of allelic biased genes, they
make up only a small fraction (~1%) of the allelic-biased genes (Fig. 4-4a,b).
Further, as imprinted genes are generally regulated in clusters®, | also assessed
whether allele biased genes in general tend to occur in clusters. While allele-
biased genes, tend to locate closer to other allele biased genes (Fig. 4-4c,

p=0.0482 Wilcox rank sum test), the differences are very subtle, suggesting that
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the majority of allele-biased gene expression appears not occur in clusters.
Therefore, it appears that that most of the allelic gene expression is due to

mechanisms other than genomic imprinting.

Allelic promoter bias correlates with allelic transcription
As cis-regulatory elements such as promoters and enhancers are known

to play critical role in gene regulation® #’

, we hypothesized that allelic gene
expression could be at least partially explained by sequence variations in these
cis elements. To test this hypothesis, | identified SNPs in the H1 lineage that
showed any kind of allele specific bias when considering histone acetylation,
histone methylation, or DNase | hypersensitivity. We observe that SNPs that
show some kind allelic bias are indeed closer to allele-biased genes than
unbiased SNPs (Fig. 4-5a). Encouraged by this result, we characterized DNA
methylation or chromatin modification state at the promoters of allele biased
genes to check if allelic transcription correlates with chromatin state of promoter
(Fig. 4-5b,c). Specifically, only 247 (14%) out of 1,787 allele-biased genes
contain allelic biased SNPs in their promoter region at least one lineages and are
therefore amenable to this analysis. Of these 247 genes, a majority contains
either active or repressive marks at their promoter (Fig. 4-5b), supporting a role
for allele specific activation or repression of the promoter in the establishment of
the allelic expression status of these genes. The concordance with repressive

chromatin states is largely due to the allelic biased DNA methylation patterns.

Notably, on average 29% of genes that have allele-biased expression show no
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evidence of allelic-bias at their promoter region, despite the presence of SNPs in
the promoter with the potential to distinguish allele specific activity, suggesting
the use of alternative mechanisms, such as regulation through distal-acting

enhancers.

Patterns of allelic enhancer sites

As allele biased expression could be the result of allele-biased events at
distal enhancer elements, we analyzed allelic patterns of histone acetylation and
DNase | HS (DHS) at previously predicted enhancer elements in the H1 and H1-
derived cell lines*. We were able to identify 1,589 enhancers that displayed
allele-biased chromatin state in at least one of the 5 cell lines analyzed (Fig. 4-
6a). Several lines of evidence suggest that these allele-specific enhancers are
contributing to gene regulation. First, enhancers that show allelic DHS or
acetylation show depleted levels of DNA methylation (Fig. 4-6b). Second, these
enhancers are generally located closer to genes that also show allele biased
expression when compared with enhancers that lack allele bias (Fig. 4-6¢). To
systematically analyze allelic enhancers with respect to genes, it is critical to link
enhancers to target genes. However, as enhancers can regulate distal and often

multiple genes, finding true target genes for enhancers have been challenging.

Using C-based technologies to link allelic enhancers and target genes
We hypothesized that allelic enhancers, which are spatially proximal to

allelic target genes, are more likely to be involved in gene regulation. To quantify
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spatial proximity, we developed a computational strategy using Hi-C data
(Methods). Briefly, we divided the genome into 5kb bins and calculated
interaction frequency for every promoter-enhancer pair using normalized Hi-C
data. Next, we summed up interaction frequencies at multiple resolutions of
enhancers so as to enrich for Hi-C signal. We then used a Weibull distribution to
estimate significance values and true enhancer-promoter interactions were
chosen based on 0.1% FDR (Methods). To validate predicted enhancer-promoter
interactions we compared the interaction frequency scores to the previously
published 5C dataset'’. We observe strong correlative patterns between 5C and
our interaction frequency scores (Fig. 4-7a). In addition, we employed high-
resolution 4C-seq®® from 6 allele biased enhancer elements. We developed a
distance dependent LOWESS regression model of the quantile normalized 4C-
seq interaction frequencies (using 4cseqpipe?®) in order to identify “specific”
interactions between the allele biased enhancers and the surrounding regions

(Fig. 4-7b).

Spatially proximal allelic enhancers correlate to transcription

Using the predicted enhancer-promoter interactions, we observed that
there is a greater correlation between allelic enhancer state and allelic gene
expression when the gene and enhancer are spatially proximal as defined by
strong Hi-C interaction scores (Fig. 4-8a). Most of these allelic enhancers are
likely regulating genes at long distances. For instance, only 10% of allelic

expressed genes have an allelic enhancer within 20kb (Fig. 4-8b). In contrast,
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66% of the 640 allelic gene-enhancer pairs analyzed display strong Hi-C
interactions with allelic enhancers located greater than 20kb away (Fig. 4-8b). In
addition, by considering loci that have 4C-Seq interaction frequencies >2.5x over
the LOWESS expected model, we observe 4 out of 6 tested allelic enhancers to
be spatially proximal to allelic genes (Fig. 4-8c). While one locus showed
interaction frequencies to allelic gene with <2.5fold LOWESS enrichment, other
loci showed interactions to MT1H and MT1G genes that was not amenable to
allelic analyses (Fig. 4-8c). In summary, we observe specific spatial contacts
between enhancers and target genes, indicating that allele biased enhancers
likely are regulating allele biased genes; though it remains possible that a

minority of allele biased enhancers are not regulating any target genes.

Allelic bias may contribute to human health and disease

To understand associations between allele-biased state and common
diseases or phenotypes, | identified all SNPs in the GWAS catalog?® that were
present as heterozygotes in the H1 genome. | expanded the H1 GWAS list by
including variants linked in Linkage disequilibrium (r2 > 0.8). Several
observations suggest that allelic activity may contribute to phenotypic diversity.
For one, GWAS SNPs are closer to allele-biased genes than would be expected
at random (Fig. 4-9a). Second, we analyzed the enrichment of active chromatin
marks (histone acetylation, DHS, H3K4me1, H3K4me3, H3K36me3) at GWAS
SNPs in the H1 genome. Specifically, we compared the enrichment of these

marks on the risk versus non-risk allele in H1, and we observe that the risk



121

alleles have a slightly lower chromatin activity when compared with the non-risk
alleles (Fig. 4-9b), suggesting that these variants may be associated with a
moderate loss or reduction in activity. For example, one locus identified
corresponds to one of the allele biased enhancers we used for 4C-Seq analysis
(Fig. 4-9c). In this case, a SNP linked to Systemic Lupus Erythematosis is
located within an allele-biased enhancer in an intron of the PXK gene. At this
locus, the risk allele shows reduced histone acetylation relative to the non-risk
allele. In addition, our 4C-seq analyses indicates that this variant is forms specific
interactions with the promoter of the PXK gene which shows allele bias in
expression with reduced expression on the same haplotype as the risk allele

(Fig. 4-9c), suggesting a potential molecular mechanism for this genetic variant.

Allelic bias occur from both parental haplotypes

As we demonstrate the gene regulation patterns in a haplotype-resolved
context, we also wanted to check if there is any bias in allelic bias towards any
parent. Although we cannot determine which haplotype is paternal or maternal,
we can infer parental biases in allelic events. In particular, we assessed for each
chromosome the fraction of allelic bias present on the p1 allele for allele biased
genes and allele biased enhancers as called by either allelic DHS or allelic
acetylation. Although, there is some degree of variability in bias between the p1
and p2 alleles for each chromosome, none of the chromosomes show a
statistically significant bias in allelic events to either allele (Fig. 4-10a,b,c). The

greater variability in the allelic acetylation and allelic DHS compared with allelic
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genes is likely a product of the fact that there are fewer elements called as allele
biased on each chromosome for these relative to allelic genes, and therefore
calculating the fraction of elements on a given allele is subject to greater
variability (Fig. 4-10b,c). Therefore, our data suggests that allelic activities are

contributed from both the parents in a similar proportion.

Discussion

We have presented here Hi-C interaction maps in H1 hESC and four H1-
derived lineages. These maps have allowed for comprehensive reconstruction of
chromosome-span haplotypes for the H1 genome, enabling analysis of gene
expression and chromatin states of regulatory elements. Furthermore, as
regulatory elements can be distal to target genes, we have used Hi-C and 4C-
Seq interaction maps to link cis-regulatory elements to genes and therefore
perform an integrative analysis of genome sequence, structure and epigenome.
Analyzing these datasets in a haplotype resolved context have revealed new
insights on allelic gene regulation.

We have observed extensive allele specific gene expression. Nearly a
quarter of genes appear to have an allelic bias in at least one of the cell lines
analyzed. In addition, the transcription of majority of these allelic genes can be
linked to allelic chromatin states of cis-regulatory elements, such as promoters
and enhancers. We cannot currently determine if allelic activities at these

functional sites are due to genetic, epigenetic, or their interplay. Regardless, our
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results reveal a coordinated activity among genome sequence and structural
features.

Analysis of gene regulation in an allelic context has several implications
for our understanding of the mechanisms of human development. For instance,
phenomena such as compound heterozygosity were well described for coding
variation. Our results suggest that non-coding variation in distal regulatory
elements may also contribute to potential instances of compound heterozygosity.
This underscores the importance of obtaining long-range haplotype information
for an individual in order to understand the consequence of inheriting distal acting
variants. Inevitably, these studies will need to become routine in order to
understand the effects of distal acting non-coding variation on gene expression.

As the two haplotypes differ primarily in genetic and epigenetic aspects,
they can be contrasted with changes in gene expression among a population of
individuals to understand the basis of human disease. Such studies can allow
build predictive models of gene regulation utilizing aspects of genome structure
and function of sequence-based regulatory elements. As allele-biased
expression is widespread in the genome of an individual, this suggests that
globally allele-bias cannot be highly deleterious to an individual. Instead, our
results suggest that the allelic bias we observe is associated with common
phenotypes and disease traits, suggesting that allelic bias in expression may

contribute to phenotypic diversity and to risk for common diseases.
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Methods

Sequence read alignment

The following description applies for the alignment of DNA Methylation,
ChlIP-Seq and DNase-Seq datasets. Single end sequencing data was mapped to
a variant masked human reference genome (hg18) using Novoalign
(www.novocraft.com). Unmapped and non-uniquely mapping reads were
removed, and PCR duplicate reads were removed with Picard. Reads were
processed with the Genome Analysis Toolkit (GATK)®*. Specifically, reads
underwent indel recalibration and variant realignment. Lastly, reads that
overlapped with variant loci were split into the “p1” and “p2” allele according to
whether the bases in the sequencing read matched the sequence from either the
p1 or the p2 alleles.

For Hi-C datasets, read pairs were mapped independently to the variant
masked genome using Novoalign. Reads were then manually paired using in
house scripts. Non-uniquely mapping, unmapped reads, and PCR duplicate read
pairs were removed. Reads pairs were then split into single reads and processed
through the same GATK pipeline described above including indel re-alignment
and variant recalibration. Finally, read pairs were manually re-paired using in
house scripts. For mRNA-Seq, we mapped the paired-end data to a variant

masked transcriptome using Novoalign.

Genotyping and haplotyping
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Whole genome sequencing (WGS) data for the H1 genome were
downloaded from the Sequence Read Archive Database (SRA049981). Reads
were mapped to the hg18 reference using Novoalign. Unmapped and non-
uniquely mapping reads were removed using in house scripts. PCR duplicate
reads were removed using Picard®’. The data was processed through the
Genome Analysis Toolkit (GATK) best practices guidelines. We performed indel
recalibration, variant realignment, variant calling using the Unified Genotyper,
and variant recalibration was performed to achieve high quality genotyping.

Haplotyping was performed using the previously described HaploSeq
method®?. Briefly, Hi-C reads combined from each of the H1 derived lineages and
whole genome sequencing were used as input sequencing into the HaploSeq
algorithm in order to generate haplotype predictions. For final haplotype calls, Hi-
C data was combined with WGS mate-pair data for the H1 genome. HapCUT
generates several “blocks” for each chromosome. The vast majority of variants
on each chromosome are in the “Most Variants Phased” (MVP) block. The MVP
block for each chromosome was used as a “seed haplotype” for local conditional
phasing using the Beagle v4.0°’. This generates two haplotypes for each
chromosome, one for the maternal allele and one for the paternal allele. Since
we do not have information regarding the parent of origin in the H1 genome, we
arbitrarily define each allele as the “p1” or “p2” allele (p1 and p2 for “parent 1”
and “parent 2”). The p1 and p2 allele for different chromosomes are not
necessarily derived from the same parent, as this information is only accessible if

the sequence of H1’s parents were also available.
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Identification of allelic genes

We considered the two replicates of mMRNA-Seq data and used a negative
binomial distribution (10% FDR) to calculate significantly biased genes between
the two alleles, where genes are defined by merging isoforms (from RefSeq).
Finally, we included only allelic genes that showed >35% MAF based on control

sequencing datasets, such as DNA Methylation reads and genome sequencing.

Identification of allelic SNPs

We estimated if a SNP is allelic based on different types of readouts. In
particular, we used ChIP-Seq, DHS, TF factor datasets independently to obtain
readouts of each SNP between the two alleles. We then used a binomial statistic
(with an expectation p=0.5) to identify significantly biased SNPs for a given
dataset. FDR was based on 1000 random permutations. Lastly, we included only

allelic SNPs that showed >35% MAF based on control sequencing datasets.

Identification of allelic methylation
We initially grouped CpGs around heterozygous variants and used a
hyper-geometric test to evaluate significance and FDR was performed as

described above.

Identification of allelic enhancers
To systematically study allelic enhancers, we combined several enhancer

marks to obtain a combined acetylation bam file. This combined bam file gives us
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the required coverage in an allelic context to perform an in-depth analyses. In
particular, we combined data from H4K8ac, H4K91ac, H2BK120ac, H3K18ac,
H3K23ac, H3K27ac, H3K4ac, H2AK5ac and H3K9ac marks. For evaluating
allelic enhancers, we obtained readout for enhancers defined in Xie et al 20137
(+2.5kb from enhancer peaks) between the two alleles*. Then we used binomial
to obtain significance at an FDR of 10%, as evaluated by the random
permutation analyses (1000 permutations). By using acetylation alone, we
identified 726 allelic enhancers. We performed similar analyses using DHS and
identified 969 allelic enhancers, totaling to 1589 allelic enhancers. Similar to
allelic SNPs and genes, we included allelic enhancers that showed >35% MAF

based on control sequencing datasets.

Enhancer and gene annotations

The enhancer regions were defined as previously described®. Briefly,
enhancer chromatin signatures were trained for p300 binding sites in H1 ES cells
using RFECS algorithm based on H3K4me1, H3K4me3, and H3K27ac signals at
100bp bin size. Next, these modification signals in all cell lines were tested to
predict enhancers. The predicted enhancers that overlap with H3K4me3 peaks or
within 2.5kb of the transcription start site were removed. Enhancers were merged
from all cell types if they are located close to each other (<2kb) by taking the
midpoint at the center of the new enhancer. For the gene list, gene expression
levels, house keeping genes, and lineage-specific genes we used the same data

set as described in Xie et al*. For imprinting genes, we obtained 59 known
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imprinting genes downloaded from publicly available imprinting gene database

(http://www.geneimprint.com/).

Correlating allelic genes and allelic promoters

To investigate how many allelic gene promoter regions are consistent with
allelic gene expression levels, first we selected allelic genes that contain at least
one allelic SNP in their promoter regions (1.5kb upstream and downstream from
transcription start site). We only considered allelic SNPs defined by DNasel HS
site, H3K4me3, histone Ac, combined H3K9me3 and H3K27me3, and DNA
methylation because the functions of those chromatin marks at the promoter
regions are well defined. If promoters are marked by allelic SNPs from
H3K9me3/H3K27me3 or DNA methylation and the allelic gene expression levels
are consistent with those promoter patterns, the genes can be explained by
allelic repressive marks. If promoters are marked by allelic SNP from histone
acetylations, H3K4me3, and DNasel HS site and allelic gene expression levels
are consistent with those promoter patterns, the genes can be explained by

allelic active marks.

Identification of enhancer-promoter interactions

To investigate the linking between allelic genes and allelic enhancers we
first defined enhancer-promoter interactions using Hi-C interaction frequency
data. Hi-C interaction frequencies were calculated in terms of 5kb window and

normalized using HICNorm®. After that, we considered all pairs of promoters and
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enhancers in each chromosome. Promoter regions were fixed as +/- 5kb
surrounding transcriptional start sites and enhancer regions were defined by
using different window sizes as 5kb, 10kb, 20kb, 30kb, 40kb, 50kb, 75kb, 100kb,
300kb, and 500kb surrounding center of each enhancer. The interaction
frequencies between a promoter and an enhancer at a certain window size were
calculated as (Interaction frequency / window size of an enhancer)*5kb. Final
interaction scores were defined as summation of interaction frequencies between
promoter and enhancer with multiple window sizes. To calculate significance of
each enhancer-promoter interaction, we generated a random interaction
frequency score by randomly permutated interaction frequencies between
promoter and enhancer in each window size. The distribution of random
interaction frequency scores was fit to Weibull distribution and p values of each
interaction frequency between promoter and enhancer were calculated. At a p

value cutoff of 1E-03, we defined enhancer-promoter interactions.

Correlation allelic gene and allelic enhancer

We calculated correlation coefficient between allelic gene and allelic
enhancer. First we generate 1 by 10 vectors for allelic gene and allelic enhancer,
respectively, for H1 and H1-derived four lineages. For each lineage, we assigned
log2(p2 allele /p1 allele) and log2(p1 allele / p2 allele) values as allelic bias
information. After constructing two 1 by 10 vectors for both allelic gene and allelic

enhancer, we calculated the Pearson correlation coefficient between them.
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4C-Seq analyses

Sequence reads were processes as follows. For each read, the first and
second sequencing reads were checked to identify the presence of the primer
sequences and any expected portion of the bait region. Any sequence with
greater than 20% mismatches to the expected bait region was discarded. The
reads were trimmed such that each read was represented as a 36-mer, with
20bp derived from the bait region and the subsequent 16bp, presumably
containing the target region of interest.

4C-seq data was mapped to a version of the hg18 genome with known
SNPs in the H1 genome masked to N, similar to other the strategy of mapping
other sequence read datasets performed in this study. Custom indexes for this
H1-masked hg18 genome were built using the 4cseqpipe “-build_re db”
command. The reads were mapped using the 4Cseqgpipe software “-map”
command to custom built indexes. Normalized contact intensities were derived
using the 4seqpipe “-nearcis” command for a 1Mb region upstream and
downstream of the bait locus. We then took the normalized fragment level
interaction frequency tables and removed any fragments where a SNP either
could create or disrupt a potential restriction enzyme site between the two alleles.
In addition, given the short sequencing read length, any fragment with an
insertion or deletion mapping within 16bp of the fragment end was removed.
These final filtered sets of normalized fragment level interaction frequencies were
then processed using a sliding window approach with the window size of 5kb and

step size of 1kb using the average fragment interaction frequency over the 5kb
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window. These sliding interaction frequency files were then quantile normalized
across all replicates in order for comparison between experiments using the
‘normalize.quantiles.robust”  function (with use.median=TRUE) in the
“‘preprocessCore” library in R. For display purposes, the average of two
replicates was converted to bedGraph format and displayed in the UCSC
genome browser.

To identify regions that showed specific interactions with the bait region
controlling for the genomic distance between loci, we developed a LOWESS
regression model. We pooled the sliding window interaction frequency files from
each of the 4C-seq replicates and performed LOWESS regression in R with the
function “lowess” (with f=0.01) on the log-base10 transformed interaction
frequencies controlling for the distance between the bait and potential interaction
locus. We considered any region as showing “specific’ interactions if it showed
an increase in interaction frequency greater than 2.5 fold over expected given the
distance between the bait and target loci. These were considered to be the “bait

interacting regions.”



132

Figures and Tables

1

a)

mem 1 meenm RSl

RN NN T

(I W WEWHT N

9E V) D | .Y

RN BN B 0 B B hcom )
L I MEEEUE  Dd BN T

| AR I LG MGG . GG W
. AN M GO

C NS NI O T o)~

1 G I O R O

i
s
H
| |
1
L]
i
Fl
¥
1l
L]
N
||
B

WO QTR T OO EDGN VLT

50

A
AT R P R AT

| |
| |
]
|
i
P_:;
E
| ]
.
|l
g
§
=
|
]
| |
[
| ]
U

LS GRS S TS T T S AR S A

EZ NN ENTI ' TANNN

I Varaints phased using HaploSeq (~93.5%)

Varaints that remain unphased (~6.5%)

2
i
i
5
:
E
g
:
2
i

|
| |
|
]
||
!
l -
| ]
i EH
2 )
E 1]
= x
. [ |
]
L] =
| ]
D4
- | ]
o L
ﬁ -
|
] [ ]
L]
L] n
]
. 1
| ] | ]
» -
I |
] a
2 g
i ]
- ]
& L
8

1 14 1 16 17 22
F A A #8 =R §
= = 5 ! i i

g g =M | =p
S0 B 8H 2 g
H BH =H =f §
[ i
] =H = T Ll

R i ’ l L

2 =2H ! L ® g

o it Bl

. I l i

: £

] : -

b) (O  mRNA (i)  waes
0.8% discordance 1.76% discordance

@ Concordance among mm Discordance among
reads from predicted reads from predicted
haplotypes haplotypes

Figure 4-1: Haplotype phasing in H1.

a) Graph demonstrating HaploSeq phasing of variants for each chro-
mosome. The left axis (purple) is the number of variants phased per
100kb bins and the right axis (gold) are the unphased variants. Over
93.5% alleles are phased using HaploSeq. b) Validation of haplotypes
by (i) RNA-sequencing and (ii) whole-genome sequencing (WGS).
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Figure 4-2: Recapitulating imprinting activity at SNRPN gene
cluster.

Genome browser shots of allele specific DNasel Hypersensitivity,
chromatin modifications, and mRNA-sequencing. The two parental
alleles are designated as P1 and P2. For mRNA-seq, data is shown
in a strand-specific manner as well. Inset labeled with # from panel c
showing mutually exclusive allele specific DNA-methylation and
H3K4me3 at the SNURF promoter at the SNRPN gene cluster.
Together, we observe functional activity only in the P1 allele while P2
allele is non-functional due to methylated and therefore inactive P2
promoter.
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Figure 4-3: Widespread allele specific gene-expression.

a) Pie charts showing the proportion of genes with detectable allelic expres-
sion that show statistically significant allelic bias in each lineage. b) Density
plot of the absolute value of the fold change in expression between alleles
(log 2). c) Heat map showing K-means clustering (k=12) of gene expression
levels of allele biased genes across each of the 5 H1 hESC derived lineag-
es. The expression levels are shown as the fold-change of expression in
each lineage relative to the average expression level across each of the 5
lineages. d) Fraction of housekeeping genes, and lineage-restricted genes
that show allele biased expression. €) Heat map showing k-means (k=20)
clustering of allelic expression ratios at the genes with constitutive expres-
sion in each of the 5 lineages. f) UCSC genome browser of PARP9 showing
allelic bias favoring the p1 allele in ES cells while it shows no allelic bias in
MSC despite similar expression levels.



135

a 8] —~
) *kk b) ® S C)
/23
N £
© \ g‘ % = Allelic Genes
§ 2 - o % © Randomized allelic genes
< S o
8 37 3 o o~
2 o ) L
% _ 8 o < | /
o €N © O
c .o ‘S
E ¥7 3 S
s © < b o
E - = ©
- . < L o p value = 0.0482
o
o- I I I I I
Allelic-biased Non-allelic Ok 200k 400k
I:l . Distance to nearest allelic TSS

genes genes

Figure 4-4: Allelic bias is enriched among imprinted genes.

a) Allelic biases are enriched in imprinted genes (p value 1.3E-5). b)
Fraction of imprinted genes among allelic genes. ¢) Empirical cumulative
density plot of the distance between each allele-biased gene and the
nearest allele-biased gene (purple) as compared with randomly chosen
genes (yellow). The difference from an allele-biased gene to the nearest
allele-biased gene is less than what would be expected at random
(p=0.0482, Wilcoxan rank sum test), however, the difference is subtle,
indicating that most allele biased expression does not occur in clusters.



136

a)
Allelic SNPs
" © _| m Other SNPs
¢ o
z
%) _
©
C <t ]
S35
(@]
o
& |
o p value < 2.2E-16
S -

I I I I I [
Ok 400k 800k

Distance from allelic TSS

| 10kb ,
b I 1
) 102,890,000 102,905,000 |
TDG (chr12) # i Ipfiin oo
MSC
P1 mRNA
P2 mRNA
B P1 H3K4me3
P2 H3K4me3
P2 DHS
=11
P1 DNA meth _ I.. 1. 1 1 -
P2 DNA meth 1 1] 1 L I
ME P1 H3K9me3
P2 H3K9me3 |
| I I I I | I
0 40 80 120 P1Gseq o _  ___ dee  db_atn.8da e e
Testable allelic expressed genes P2Gseq| s . .. _ _ma._ B M aam o s b d
B Both active/repressive marks [ Active marks
B Repressive marks Other mechanisms

Figure 4-5: Allelic promoter bias correlates with allelic transcription.

a) Empirical cumulative density plot of distances from allelic SNPs and
non-allelic SNPs to the nearest allele-specific gene transcription start site.
Allele specific SNPs are defined using histone acetylation, combined
H3K9me3/H3K27me3, DNasel HS, and H3K4me3. Allele specific SNPs
tend to be located closer to allele specific genes compared with non-allele
specific SNPs (<2.2E-16 KS-test). b) Number of allele specific genes show-
ing consistent allele specific chromatin states in their promoter regions.
Allele specific SNPs identified by H3K4me3, DNasel HS, and histone
acetylation are considered as active allele specific SNPs and those identi-
fied by DNA methylation and H3K9me3/27me3 are considered as inactive
allele specific SNPs. c) Example UCSC genome browser shot of the TDG
gene, an allele biased gene. Allele specific chromatin states at promoter
regions are consistent with allele specific gene expression levels.
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Figure 4-6: Patterns of allelic enhancer sites.

a) Plots demonstrating the enrichment of acetylation (top row), DNase | HS
(bottom row). b) Reduced DNA Methylation activity at allelic enhancers as
defined by histone acetylations and DNase | HS. c) Enhancers that display
allelic activity bias tend to be closer to allele specific genes. The distance
between allelic genes and enhancers as defined by allelic acetylation (pur-
ple), DNasel HS (green), DNA methylation (yellow) or all enhancers (blue)
are shown.
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Figure 4-7: Spatial proximity estimates based on Hi-C and 4C-Seq
are of high quality.

a) Distribution of 5C signals between interacting pairs (‘Interaction’) and
non-interacting pairs (‘Others’) defined by Hi-C interaction frequency
score from our method at different pvalue cutoffs. Regardless of pvalue
cutoff, we observe a strong correlation among these two predictions and
therefore validating our Hi-C based interaction scores. b) Scatter plot of
LOWESS regression of 4C-seq data. The x-axis shows the genomic
distance between the bait region and the putative target region. The
y-axis is the log base-10 of the quantile normalized interaction frequen-
cies. LOWESS was performed to generate an expected interaction
frequency at each genomic distance (green line). A cut off of 2.5 fold
over expected (shown in the red dashed line) is used to determine if a
region shows specific interactions.
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Figure 4-8: Spatially proximal allelic enhancers correlate to transcrip-
tion.

a) The Pearson correlation coefficients of allelic biased gene-enhancer pair
activities across five cell types. Allelic biased gene-enhancer pairs are
grouped into strongly (top 30%), weakly (bottom 30%), and intermediately
interacting pairs. b) Number of allele specific genes linked by allele specific
enhancers. The long-range enhancer-promoter interactions are defined
using Hi-C interaction frequencies. The short-range enhancer-promoter
interactions are any enhancers <20kb from TSS. If allele specific gene
expression patterns are consistent with allele specific enhancer activities
interactions, they are shown here. c) Normalized 4C-seq interaction
frequencies surrounding a bait region located in the 6 allelic enhancers.
Regions with significant interactions according to the LOWESS model are
marked “Bait interacting Regions.” While GCLM interaction falls less than
the LOWESS threshold, no specific interactions between the enhancer and
the MT2A gene is found.
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Figure 4-9: Allelic bias may contribute to human disease.

a) Empirical cumulative density plots of the distance between SNPs and
allelic genes. SNPs are either categorized as GWAS associated if the SNP
is in the GWS catalog oris in LD (r2 > 0.8) with a SNP in the GWAS cata-
log. As a control, an equal number of randomly selected SNPs (and SNPs
in LD with the random selection) were used for comparison. b) Chromatin
activity over risk and non-risk alleles in H1. For each SNP in the above-
mentioned GWAS catalog, we calculated the number of reads from active
chromatin marks (histone acetylation, DHS, H3K4me3, H3K4me1,
H3K36me3) on the risk and non-risk alleles. c) Normalized 4C-seq interac-
tion frequencies from an allele biased enhancer located in the PXK gene.
The enhancer shows specific interactions with the promoter of the PXK
gene. In addition, the H1 genome has a SNP located in this allele biased
enhancer that has been previously linked to Systemic Lupus Erythemato-
sis. At this enhancer, the risk allele (labeled with an asterisk) is associated
with reduced enhancer activity as measured by acetylation levels com-
pared with the non-risk allele.
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Figure 4-10: Allelic activity occur from both parental haplotypes.

Fraction of P1 allelic genes (a), DHS (b) and acetylaiton (c) per chromo-
some averaged accross 5 cell-types (dots). As the number of allelic events
are lesser per chromosome, they might appear as a bias towards one
parent. However, 95% bayes binomial confidence interval based on the
number of allelic events, shows that there is no significant deviaiton of
allelic activities towards any one parent and that the observed deviation
could be explained by expected deviaiton from low counts of allelic events.
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Table 4-1: Number of reads in the Hi-C experiment.

Table depicting read counts in Hi-C datasets accross 5 lineages. Together,
we have ~3.85 billion reads.

Cell Replicate Total Reads Short reads Percent cisreads  Percent Transreads Percent
(<500bp)

Type

ES rep1 331587795 122070404 36.81% 159920890 48.23% 49,596,501 14.96%

rep2 743132905 276597229 37.22% 233301469 31.39% 233234207 31.39%

ME  rept 527651650 218062039  41.33% 209163061 39.64% 100426550 19.03%
rep2 320765028 86437620  26.21% 205629844 62.36% 37,697,564 11.43%
MSC  rept 273900059  46,155555 16.85% 188679257 68.89%  39,065247 14.26%
rep2 324325610 53579351 16.52% 221655061 68.34% 49,091,198 15.14%

NPC  rep1 259265402 73500282 28.35% 56278964 21.71% 129486156 49.94%
rep2 361610256 101875277 28.17% 75293949 20.82%  184441,030 51.01%
B rep1 409236714 218716568 53.45% 100776836 24.63% 89743310 21.93%

rep2 297,555667 63254013 21.26% 117315748 39.43% 116985906 39.32%
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The eukaryotic genome has a non-random spatial organization, facilitating
and coordinating diverse cellular processes such as DNA Replication and
transcription'. Methods based on Fluorescent in-situ hybridization (FISH)®, X-
Ray tomography’, and chromosome conformation capture (3C)® have revealed
multiple aspects of genome structure — chromosome territories (CT)*°”,
compartments of active and inactive chromatin*, and physical interactions
governed at individual loci revealing long range chromatin looping between
genes and regulating elements®®. Nevertheless, these methods are low-
throughput and therefore not amenable to genome-wide analyses of the 3D
genome. With the invention of Hi-C'°, large-scale, systematic studies of genome
structure are now possible. Characterizing the genome sequence, and structure,
along with gene expression and the epigenome, will further our understanding on
how cell-type specific gene regulation is achieved and in elucidating its dynamic
nature through cellular differentiation. In this chapter, | will discuss current and
future prospective utilities of obtaining 3D genome information.

First-generation maps of 3D genome have suggested that the genome is

11-13

organized in to topologically associated domains (TADs) ~°. In this thesis, |

have described a computational strategy to identify TADs using Hi-C datasets’". |
have also shown that TADs are pervasive across the genome and are highly
conserved between human and mouse, suggesting an evolutionary aspect to
TADs and genome structure. While TAD locations are stable across cell-types,

sub-TAD chromatin interactions can alter their 3D shape, driving cell-type

specific gene regulation. Indeed, we observed that chromatin interactions
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enriched in mouse embryonic cells (ES), in comparison to mouse cortex, were
enriched for ES specific genes. However, our analyses were constrained by low
resolution Hi-C datasets. Recently, Phillips-Cremins and colleagues'™ have
generated high-resolution chromatin maps to reveal dynamic changes in TAD
shapes correlating with gene expression. To this end, ~90% of disease-
associated sequence variants reside in non-coding regulatory sequences with

unknown target genes'>'®.

Consequently, mapping chromatin interactions
between variants and promoters can help identify disease-associated target
genes. While, we and others have established the role of genome structure on its
function™®'12™ 3 predictive model for gene regulation that underlies
contributions of genome sequence, structure, and epigenome is yet to be
performed. With recent developments in genome editing tools such as
TALEN'"® and CRISPR'™?, it is possible to perturb regulatory sequences or
TAD boundaries, offering a way to investigate the contribution of genome
sequence on its structure and function.

While genome-editing methods can perturb genetic sequences in an
elegant manner, they are still low-throughput. By exploiting the sequence
differences between the two homologous chromosomes in the diploid human or
mouse genomes, we can potentially correlate these to changes in structure and
regulation. Nevertheless, such an analysis requires the knowledge of long-range
haplotypes or “phasing”, which has long remained an elusive goal?"®. In this

thesis, | invented HaploSeq, which builds on the Hi-C protocol and offers a

rigorous solution for generating chromosome-scale phasing®. | demonstrated
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HaploSeq in two systems, CASTxJ129 mouse cells and human GM12878 cells,
for which genotyping of parent-child trio generated haplotype information a prioiri.
While HaploSeq phased ~95% of alleles in mouse, | coupled HaploSeq with
local-conditional phasing to obtain high-resolution haplotypes in low variant
density human cells. Several future directions can strengthen haplotyping
capabilities of Haploseq. For one, concurrent genotyping and haplotyping from
Hi-C datasets can generate complete genetic makeup of an individual from a
single assay. Second, phasing structural variants can help in understanding

disease states such as cancer progression®** and autism?>%

, Where large
insertions, inversions, and deletions are known to play a disruptive role. Third,
recent developments might extend HaploSeq to phase polyploid agricultural
crops?’. In addition, Job Dekker, Jay Shendure and colleagues®®?® have
demonstrated de novo assembly capabilities of Hi-C datasets. Taken together,
Hi-C is emerging to be a multi-purpose tool, revealing several unique aspects of
genome sequence, and structure.

Recently, the Roadmap epigenome consortium has generated
comprehensive profiles of DNA methylation, histone modifications, chromatin
accessibility, and gene expression across H1 human embryonic stem cells (ES)
and four ES-derived lineages, to explore gene regulation patterns across

differentiation3%"

. As our lab performed Hi-C on each of these 5 lineages, |
performed HaploSeq to phase 93.5% of the variants to obtain chromosome-scale
haplotypes. Utilizing the haplotype-resolved genome, we analyzed changes in

genome structure and epigenome to correlate with gene regulation patterns
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through the differentiation process. Our analyses revealed ~24% of allelic genes
and such allelic transcription correlated with allelic chromatin states of promoters
and enhancers, as well as supported by chromatin interactions from Hi-C. While
we performed the first integrative analyses of genome sequence, structure and
epigenome to decipher gene regulation patterns, the sparse number of variants
(SNPs) in humans did not allow comprehensive predictive modeling of these
extensive datasets. As a future prospect, we plan to recapitulate the above-
mentioned analyses in the haplotype-resolved CASTxJ129 mouse system, as it
contains 7-10x more variants than humans. Specifically, such a system can
potentially allow us to detect allelic activity of many more functional elements,
enabling detailed analyses of allelic gene regulation.

Altogether, sequencing methods that profile 3D genome information in an
unbiased fashion such as Hi-C, not only can inform target genes for non-coding
regulatory sequences, but also which of the two alleles are interacting. At
present, Hi-C uses a single restriction enzyme to digest chromatin and
consequently generates 3D genome data that is biased towards the location of
restriction enzyme cut sites used. In principle, Hi-C can be performed with
multiple restriction enzymes and this can potentially achieve a more uniform
coverage of the genome, enabling a more complete analysis of 3D genome,
haplotypes, as well as de novo assembly. Moreover, recent advancements on
the lines of single-cell Hi-C*?, and targeted chromatin conformation based
capture-C* will provide novel aspects of 3D genome at a higher resolution and

undoubtedly will take us to closer to understanding of how cells read and
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interpret genetic information. Furthermore, the recent NIH-RFI on 3D-nucleome
might enable extensive profiling of genome structure and epigenome datasets
among distinct individuals and conditions, allowing for better understanding of

gene regulation in development and disease.
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