
UC Riverside
UCR Honors Capstones 2022-2023

Title
A Plug-n-play Javascript Widget For Annotating Documents With Medical Jargon

Permalink
https://escholarship.org/uc/item/9j99j281

Author
Pastor, Tyler

Publication Date
2023-06-16

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9j99j281
https://escholarship.org
http://www.cdlib.org/

A PLUG-N-PLAY JAVASCRIPT WIDGET FOR ANNOTATING DOCUMENTS WITH

MEDICAL JARGON

By

Tyler Anthony Pastor

A capstone project submitted for Graduation with University Honors

May 12, 2023

University Honors

University of California, Riverside

 APPROVED

Dr. Paea LePendu

Department of Computer Science & Engineering

Dr. Richard Cardullo, Howard H Hays Jr. Chair

University Honors

2

ABSTRACT

A psychiatrist once asked our lab if it was possible to annotate their medical notes so that it's

easier for his patients to understand the medical jargon found throughout the document. I am

building a dynamic JavaScript widget that meets these needs. My plug-n-play widget will take in

a medical document and dynamically tag all medical key terms. Once the tagging process is

complete, the widget displays a pop-up information box for each key term. The pop-up

information box holds related meta-data for users to further their understanding of the medical

notes. Currently, I am working towards computing the most relevant definitions and relationships

to display within the pop-up information box. To make this possible, I plan to connect several

libraries together: a tagger to identify terms, a set of programs to organize and retrieve definitions,

and additional tools to enable approximate matching and ranking to get the best possible results.

This work is part of a larger project, Lexi – the Medical AI, which is a robust medical knowledge

graph with multiple applications and endpoints, such as my knowledge widget.

3

ACKNOWLEDGEMENTS

I would like to thank Dr. Paea LePendu and Kevin Ferrer for providing great guidance and

assistance throughout the duration of this capstone. I would also like to thank PiLabs for

encouraging me to explore new areas of computer science and better my programming abilities.

4

NATURE AND PURPOSE

During one of my research lab sessions, a psychiatrist asked us if there were any existing

resources that could help his patients better understand the medical jargon found in his medical

notes. Because medical notes often contain medical terms that are foreign to the average person,

many patients find it difficult to understand the content that they are reading. Without proper

annotations, patients are often left confused due to their lack of understanding of specific terms,

causing them to look up information on their own. If confused patients do not confirm their

findings with their medical provider, it could potentially add to issues regarding misinformation

or further misunderstandings. In order to combat this issue, I have developed a JavaScript widget

capable of annotating any existing medical document on the internet. The medical widget

supplies the patients with annotations that define key medical terms on the page, clarify any of

the patient's concerns, and provide a number of relationships regarding the key medical term.

Providing medically trusted definitions, relationships, and other relevant information for the

medical jargon found throughout the medical notes allows patients to obtain a clearer

understanding of any medical inquiries they have. In order to create this widget, I have

connected APIs, JavaScript libraries, and databases, such as the Unified Medical Language

System (UMLS), to extract the supporting data and serve it to the user as a plug-n-play Chrome

extension.

To answer the psychiatrist’s question, there have been attempts to close the knowledge

gap between the patient and medical information. One of the existing solutions comes from the

University of Michigan Library, where they developed a plain language medical dictionary that

“translates common medical terms into plain language, using definitions that were created by the

U.S. government” (Plain Language Medical Dictionary 2020). The plain language medical

5

dictionary is a static web application that retrieves definitions based on user input. While this is a

great solution for patients, one underlying issue is that users are required to use this application

alongside the medical document they are reading, causing them to continuously leave the

document they are reading to look up the meaning of a term. However, with the medical widget’s

dynamic capabilities, the patient can find the definition of a medical term on the same page,

reducing the complexity of the research process. Another great feature I found during my

research had come from Wikipedia. Wikipedia developed a widget that uses a term tagging

system that identifies key terms within an article and provides pop-up information boxes for each

of the terms. The pop-up information boxes contain brief descriptions and visual aids for each

respective key term. Since this widget is very useful in providing relevant information for each

tagged term found in Wikipedia articles, I have implemented this feature into my medical widget

to help patients not only learn more about what they are reading, but also immediately clear up

any questions or concerns. Combining all the information from the resources that I’ve gathered, I

employ some of the methods found in the plain language medical dictionary and Wikipedia’s

term tagging system in the medical widget. However, unlike the plain language medical

dictionary and Wikipedia’s tagging system, the medical widget offers a dynamic solution that

allows users to plug the widget into any webpage of their choice.

To make the application more accessible for users, I wrapped the medical widget into a

Chrome extension. Once the medical widget is applied to the desired webpage, all medical terms

are tagged and highlighted. Each tagged medical term is provided with a pop-up information

box, similar to Wikipedia’s term tagging system. Some additional features that I had added to the

information box includes a definition of the respective tagged medical term, a few medical terms

related to it, and the type of medical relation. The plugin provides a fast, yet clear solution for

6

patients via the pop-up information boxes. To obtain the concept, definition, and relationship

information for all medical terms, I have utilized the UMLS developed by the National Library

of Medicine. However, due to the UMLS limitations, some key terms are not contained in the

database, resulting in missing definitions and relationships. In the case that a medical term is not

found in the UMLS, I have attached a hyperlink to each term that directs the patient to the

respective Wikipedia article. This allows users to learn more information about any tagged

medical terms and clear up any remaining misunderstandings. The overall objective of the

widget is to provide a new and concise method to properly educate patients on any form of

medical documentation.

RELATED PROJECTS

 The medical widget is related to a food index application that I helped develop which

involves collecting nutritional information data to help identify food swamps. Food swamps are

“understood as regions with very limited or difficult access to supermarkets and healthful food

choices exemplify challenging food environments, which are generally more common in low-

income urban areas” (Vilar-Compte et al. 2021). The food index application evaluates the

nutritional health of a food item using the Ofcom United Kingdom nutrient profiling model, food

prices, and the distance to a food place given the bounds of a user location (Lobstein and Davies

2009). Users can use these evaluations to make better eating habits and help prevent health issues

such as heart disease, obesity, and malnutrition. As I have researched and developed health

related applications in the past, I believe creating the medical widget is an application that would

positively impact patients. Like the food index application, the medical widget can assist people

with understanding medically related concepts pertaining to maintaining or improving their

health.

7

Furthermore, both applications utilize Application Programming Interfaces (API), which

allows for communication between two services or libraries. This process is essential to control

the flow of data from one endpoint or library to another. The medical widget and food index

application also use APIs to extract data from outside sources to be used in different parts of the

application. For example, the food index application utilizes the Google Places API to retrieve a

group of food places found within specified boundaries. For this current project, the medical

widget uses the BioPortal Annotator API to fetch a list of medical terms found in a medical

document. The food index application also uses another form of data collection, known as web

scraping, to collect menu item data from various fast food and restaurant chains. This data is

stored in a MySQL database to allow ease of access when evaluating the nutritional health of a

given food place. Similarly, the medical widget stores all UMLS data in a MySQL database

which is used to grab supporting data for a given medical term, such as definitions, relationships,

and concept identifiers. After the food index application calculates the nutritional value for a

given food item using the nutrient profiling algorithms, the results are stored in a separate

database so they can be referenced in later parts of the application. Since the data is collected

already, the nutritional value for items from a given fast food place no longer needs to be

recomputed each time it is found in the user's vicinity, which increases runtime speeds. In

addition, because nutritional health data remains universal, no matter the location of the fast food

place, the nutritional facts for a given food item do not change. This idea is similar to how the

medical widget does not continuously need to recompute the definition of a given medical term

based on the user’s location. Both applications store data independent of the location or any

external circumstance because the data (in this case, definitions of medical terms) remains static

for each use case.

8

 Another related project that helped shape the functionalities of the medical widget is

Lexi, the Medical AI. Lexi is a medical knowledge graph that consists of various endpoints and

applications, one of those endpoints being my medical widget. Lexi takes input from users’

medical questions via voice commands and provides concise, accurate responses using curated

data from the UMLS. Similarly to how Lexi uses UMLS as a database, my medical widget also

utilizes the UMLS to “process texts to extract concepts, relationships, or knowledge”

(Bodenreider O. 2004). One of the key reasons for using this database is because the UMLS

consists of a number of medical ontologies – an ontology being an extensive knowledge base -

housing numerous relationships between concepts, definitions, identifiers, and more. Some

valuable ontologies found in the UMLS include RxNorm, SNOMED Clinical Terms, and

MedlinePlus. Extracting the desired definition for a specific medical term is not trivial because

multiple definitions, all coming from different ontologies, exist within the UMLS. Knowing this,

I have specifically chosen to extract data based on a few ontologies found in the UMLS. In

addition to the UMLS database, the medical widget utilizes the BioPortal Annotator API. The

BioPortal Annotator API extracts all medical terms found within a medical document and sends

the list of extracted terms back to my medical widget. Similar to the UMLS, the Annotator API

offers an extensive list of medical ontologies to choose from when extracting/tagging medical

terms. In order to help prevent tagging terms that do not directly contain medical jargon or

tagging medical terms that might not be found in the UMLS, I chose to search for medical terms

using a smaller set of ontologies offered by the BioPortal Annotator API.

9

DESIGN AND METHODS

My medical widget consists of several different libraries that play key roles in providing

patients with information they need to understand the medical jargon found in medical

documents. These libraries include the UMLS, RESTful web services, BioPortal Annotator API,

Wikipedia, and Chrome Extension Developer tools. API requests permit the libraries to transfer

data to one another. This is a key aspect of my application because data is continuously being

retrieved from one source and used in another. Before the medical terms can be highlighted using

JavaScript tools, the BioPortal Annotator API must respond to the medical widget with a list of

tagged medical terms that were found in a block of text. Similarly, the definitions, relationships,

and concept information cannot be retrieved from the UMLS without first extracting the medical

terms from the medical document. Due to these constraints, the medical widget must execute

each library in a specific order to allow for the proper flow of data and produce reliable

information to the user.

The first action that must be performed within the medical widget is to extract all

paragraph elements found in the HTML document. This step requires JavaScript tools that enable

data retrieval from a pre-existing webpage. Validation checks are placed after each paragraph

element is queried. The medical widget must check that every paragraph element does not

contain any child elements. This ensures that all paragraph elements only contain inner HTML

text which is later used at the point of term extraction and during the process of text reassembly.

It is important to note that the rest of the application’s data transfer processes occur for a single

paragraph element before continuing to the next paragraph element. Once each paragraph

element has been retrieved and validated, the term tagging process ensues for the first paragraph

element.

10

Figure 1. BioPortal Annotator Web API

As shown in the figure above, the term tagging process begins with the BioPortal

Annotator API. The paragraph element's inner HTML text that was initially retrieved in the

previous step is now used within the BioPortal Annotator API to extract all medically related

terms. The figure above displays the public web version of the Annotator API which allows

developers to insert a block of text, set given API parameters, and receive a table of all medical

terms found within the text. In order to retrieve a list of tagged medical terms in the medical

11

widget, I utilized BioPortal’s public API GET request route to the Annotator. The GET request

takes in a base URL concatenated with the text to be annotated. The URL also contains the API

parameters that can be manually set to produce different results. For example, I have set a

number of parameters that cause the Annotator API to search for medical terms based on a

smaller set of ontologies offered by BioPortal, match terms based on the longest instance (the

term heart attack matches “heart attack” rather than “heart”), exclude number, and exclude

synonyms. I chose to search for medical terms using a small set of ontologies because some

ontologies found in BioPortal are not included in the UMLS. Due to this problem, a significant

number of medical terms that have been tagged might not have supporting data in their pop-up

information box. To help further remediate this issue, I specifically chose to exclude synonyms

from being returned to the medical widget. Synonyms could not only lead to lacking supporting

data, but also cause issues within the text reconfiguration phase of the medical widget. A list of

tagged medical terms is returned to the medical widget in JavaScript Object Notation format.

This allows the medical widget to easily extract each term and manipulate the list for future

phases of the entire process. The figure above shows a snippet of the total results received from

the Annotator API. Multiple instances of the term “heart attack” can be found in the list. The

medical widget must remove duplicates for each term in the list to increase processing speeds

and prevent tagging issues. Without removing duplicates, the same term would be used to locate

and fetch related definitions, relationships, and concept information multiple times. This would

severely slow the time it takes to inject my medical widget into a webpage a user is reading.

Furthermore, terms would be tagged multiple times and interfere with the programming logic

which would affect the text's sentence structure.

12

 After removing all duplicate terms from the list, the medical widget begins separating the

relative block of text into sections, where each tagged medical term provides a point of

separation. Essentially, every piece of the text that does not contain a tagged medical term will

be separated from the text and stored into a list to be used later. This process helps with

reconfiguring the text once the tagged medical terms have been assigned specific CSS properties.

Before adding the CSS properties, the medical widget creates an a-tag element which will

contain the tagged medical term. This defines the tagged medical term as a hyperlink which

redirects users to read more information about the term. As previously mentioned, some tagged

medical terms might not be found within the UMLS which leaves the pop-up information empty

and does not provide users with any supporting information. To deal with this issue, I have

attached Wikipedia articles to each tagged medical term. Upon clicking on a tagged medical

term, users will be redirected to the respective Wikipedia article to view more supporting

information. Each tagged medical term is highlighted to distinguish from the rest of the text

within the webpage. When a user hovers over a tagged medical term, it will be underlined to

indicate which term the pop-up information box belongs to, in the case that two tagged medical

terms fall next to each within the text. At this point, the remaining steps include extracting all

related definitions, relationships, and concept data.

13

Figure 2. Definition route’s returned JSON data

 I created a RESTful web service (API) that allows the medical widget to quickly access

any necessary supporting data for a given medical term. The medical widget utilizes GET

requests to receive different types of information from the UMLS. Two routes are used, one to

grab related definition data and the other to grab relationship data respective to the tagged

medical term. The figure above displays how the JSON data looks when the medical widget

requests the definition data for the term “diabetes mellitus”. The definition route returns the

concept unique identifier (CUI), atomic unique identifier (AUI), ontology source (SAB), the

given medical term (STR), and the term’s definition (DEF). The definition route is the first GET

request to be called within the medical widget because the relationship route requires the AUI to

14

retrieve a list of relationships for a given medical term. Error checking is implemented within

this phase to prevent unnecessary look-ups and increase processing speeds. After the definition

data is returned to the medical widget, it checks to see the number of definitions that have been

returned. If the tagged medical term is not found in the UMLS, resulting in no definitions found,

then the medical widget skips over the GET request used to grab the relationship data.

In order to grab the data from the UMLS, the RESTful web service uses Node JS, a

JavaScript framework, to create a connection to the MySQL database that houses all the UMLS

data. The MySQL database contains a number of tables that are referenced, manipulated, and

joined by the RESTful web service to properly extract all supporting data in the correct format.

The three tables referenced by the RESTful web service include the concept table (MRCONSO),

the definition table (MRDEF), and the relationship table (MRREL). The figure below supplies a

SQL script I created to combine some of the contents from both MRCONSO and MRDEF and

the related output formatted into a table.

Figure 3. SQL script used to fetch supporting data and respective table output

Combining the MRCONSO and MRDEF tables is necessary to retrieve all supporting

information used by the medical widget because the data can not be found in one single table.

Both MRCONSO and MRDEF contain some similar data sets, such as the CUI, AUI, and SAB,

however, they differ when it comes to locating the term and definition in the same location. This

15

makes it difficult to search for definitions in MRDEF based on a given medical term because

MRDEF does not contain any terms, only the related concept identifiers. Since MRCONSO

contains both medical terms and related concept identifiers, the medical widget uses this data to

fetch the definition data found in MRDEF, essentially combining the tables. The concept

identifier data is used within the look-up SQL script to grab the definition for a given medical

term. Similarly, the relationship route uses the atomic identifier data that is received from the

definition route request to properly find all medical terms linked to the tagged medical term. As

shown in the table above, the definition route returns the AUI for a given medical term which is

utilized in the relationship route. The relationship route returns a new set of data used to provide

supporting relationship data within the pop-up information box.

 Once the supporting definitions and relationships are retrieved and stored in a list for

each tagged medical term, the medical widget reconfigures the original structure of the block of

text using the pieces of text that was stored in a previous phase and the newly created a-tag

elements. Note that a placeholder element is used to continuously add pieces of text and a-tag

elements as the list of tagged medical terms decreases. After a tagged medical term is used to

fetch the supporting data and added to the placeholder element, it is then removed from the list of

tagged medical terms and the process repeats with the following tagged medical term. Once the

list of tagged medical terms is empty, the medical widget adds all supporting data to each

respective tagged medical term. Several div-elements, pop-up information boxes, are created to

store the definitions and relationships. Each div-element uses the same CSS properties in order to

properly display or hide the pop-up information box when the user is hovering over a tagged

medical term or not. At this point, the medical widget has completed all processes and created a

better platform to inform users about medical jargon found in medical documents.

16

Figure 4. Before the medical widget is applied (on the left) and after it is applied (on the right)

 The figure above showcases my medical widget in action on the Mayo Clinic website for

information regarding heart attacks. Without the medical widget, a patient would have to scour

the internet for answers regarding any misunderstandings they may have for a given medical

term. This could lead to the spread of misinformation and potentially cause harm to those who

are not careful as they read untrustworthy material on different webpages. My medical widget

provides safe, accurate, and trustworthy data for users. Moreover, the medical widget

conveniently offers this information directly on the web page the user is reading. As a result, the

user no longer has to hassle with using outside sources as a frame of reference and continuously

validate the information they find.

17

RESULTS AND CONCLUSION

Figure 5. Graphic showcasing terms not found in the UMLS for each website

After completing all the functionalities of the medical widget, I began testing it on

several different medical websites. Through numerous amounts of testing, I learned that on

average, less than 7% of all medical terms tagged by the BioPortal Annotator API were not

found in the UMLS. These tests were completed across 7 different websites, which is displayed

in the chart above. Two lists were retrieved after completing a single test on a website. The first

list is represented by the blue bar which includes all tagged medical terms that were not found in

the UMLS, including duplicate terms. The second list is represented by the gray bar and is quite

similar to the first list, however, all duplicate terms are removed from the list in order to provide

an accurate representation of the percentage of terms not found in the UMLS. The top five most

common terms not found in the UMLS that do not contain medical jargon are “do not”, “is a”,

18

“too much”, “ensure”, and “privacy policy”. These terms do not contain any medical jargon

which shows that the BioPortal Annotator API is not properly filtering the tagged medical terms.

In the future, I would like to implement a system within the medical widget to confirm

that a tagged medical term does in fact contain medical jargon. The UMLS fails to identify some

medical terms which may distract from the patient’s ability to better their medical understanding.

The terms “tylenol”, “squamous”, and “glumetza” were tagged by the Annotator API but were

not found in the UMLS. In order to solve the medical widget’s limited data resource issues, I

attached Wikipedia articles to each tagged medical term, as previously mentioned. I would like

to expand my resources beyond the UMLS to prevent the user from needing to leave the medical

document they are reading, and to be able to access all the information needed on just one page.

Expanding these resources could allow the medical widget to use high-level supporting data that

is easy to understand by the general public. Many of the definitions and relationships currently

found in the UMLS contain medical jargon that may be difficult for patients to understand,

which does not help patients clear up their misunderstandings. Also, I find it important to supply

visual aids with the supporting text for patients. Images and diagrams can help explain certain

concepts that might be difficult to understand through text.

My medical widget was developed to better educate patients by helping them understand

their doctor’s medical notes. To make the process more accessible and convenient for patients,

the medical widget is dynamically capable of being plugged into any web page of the user's

choice. I developed the medical widget using several different libraries, all connected to one

another to allow the proper transfer of data from backend to frontend. The backend of the

application consists of MySQL, Node JS, the Unified Medical Language System (UMLS),

RESTful Web Services, and the BioPortal Annotator API. These libraries are crucial to the

19

gathering and manipulating of medical data. The frontend of the application contains more

JavaScript tools, CSS properties, and Wikipedia articles. The frontend of the application creates

a seamless viewing experience and allows patients to easily view supporting information for a

given medical term. Both the backend and frontend of the application is wrapped inside a

Chrome extension which allows users to easily plug my medical widget into the webpage of their

choice. All in all, this was a great experience as I learned more about medical relationships, data

transfer, and data collection. I believe my application is applicable in useful real-world settings,

like in the medical industry, for both patients and doctors.

20

REFERENCES

"Anxiety Disorders." National Institute of Mental Health,

www.nimh.nih.gov/health/topics/anxiety-disorders. Accessed 28 Apr. 2023.

"Basic Information About Skin Cancer." Center for Disease Control and Prevention,

www.cdc.gov/cancer/skin/basic_info/index.htm. Accessed 28 Apr. 2023.

Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical

terminology. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D267-70. doi:

10.1093/nar/gkh061. PubMed PMID: 14681409; PubMed Central PMCID: PMC308795.

"Depression." American Psychological Association, www.apa.org/topics/depression. Accessed

28 Apr. 2023.

"Diabetes." Mayo Clinic, www.mayoclinic.org/diseases-conditions/diabetes/symptoms-

causes/syc-20371444. Accessed 28 Apr. 2023.

"Heart Attack." Mayo Clinic, 21 May 2022, www.mayoclinic.org/diseases-conditions/heart-

attack/symptoms-causes/syc-20373106. Accessed 26 Apr. 2023.

Lobstein, T., and S. Davies. “Defining and Labelling ‘Healthy’ and ‘Unhealthy’ Food.” Public

Health Nutrition, vol. 12, no. 3, Mar. 2009, pp. 331–40,

https://doi.org/10.1017/S1368980008002541.

"Plain Language Medical Dictionary." University of Michigan Library,

apps.lib.umich.edu/medical-dictionary/. Accessed 28 Apr. 2023.

"Stress." World Health Organization, www.who.int/news-room/questions-and-

answers/item/stress. Accessed 28 Apr. 2023.

"Tylenol." Drugs.Com, www.drugs.com/tylenol.html. Accessed 28 Apr. 2023.

21

Vilar-Compte, Mireya, et al. “Urban Poverty and Nutrition Challenges Associated with

Accessibility to a Healthy Diet: A Global Systematic Literature Review.” International

Journal for Equity in Health, vol. 20, no. 1, Jan. 2021, p. 40,

https://doi.org/10.1186/s12939-020-01330-0.

Whetzel PL, Noy NF, Shah NH, Alexander PR, Nyulas C, Tudorache T, Musen MA. BioPortal:

enhanced functionality via new Web services from the National Center for Biomedical

Ontology to access and use ontologies in software applications. Nucleic Acids Res. 2011

Jul;39(Web Server issue):W541-5. Epub 2011 Jun 14.

"Wikipedia." Wikipedia, Wikimedia Foundation, www.wikipedia.org/. Accessed 12 May 2023.

