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Abstract of the Dissertation

Third Sound in Superfluid 4He Films Adsorbed

on Packed Multiwall Carbon Nanotubes

by

Emin Menachekanian

Doctor of Philosophy in Physics

University of California, Los Angeles, 2014

Professor Gary A. Williams, Chair

Third sound is studied for superfluid films of 4He adsorbed on multiwall carbon

nanotubes packed into an annular resonator. The third sound is generated with

mechanical oscillation of the cell, and detected with carbon bolometers. A filling

curve at temperatures near 250 mK shows oscillations in the third sound velocity,

with maxima at the completion of the 4th and 5th atomic layers. Sharp changes

in the Q factor of the third sound are found at partial layer fillings. Temper-

ature sweeps at a number of fill points show strong broadening effects on the

Kosterlitz-Thouless (KT) transition, and rapidly increasing dissipation, in qual-

itative agreement with the predictions of Machta and Guyer. At the 4th layer

completion there is a sudden reduction of the transition temperature TKT, and

then a recovery back to linear variation with fill, although the slope is consider-

ably smaller than the KT prediction. These effects might be related to changes

in the gas-liquid coexistence regions.
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the cell’s bolt circle (used to compress the cell’s indium O-ring).
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structure becoming apparent. (d) A further zoom into the region
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2.5 SEM images of the MCNT powder at the smallest length
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ing with temperature controllers and monitors, signal filter, pres-

sure gauge, function generator, and oscilloscope; Vibration-isolation

system with dewar; Pumping and filling lines for fridge, vacuum

can, 1K pot, and dewar; Leak-detector and diffusion-pump assem-
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spontaneous phase separation occurs between the 3He and 4He in
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is on top of the 4He-rich component because of its lower density

(owed to its lighter mass and its need to obey fermionic statistics). 94
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denoted by Fi for the Fridge line, Vi for the Vacuum-can line, and
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of helium added into the cell. The boxes on the left-end of each
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3.5 c3 and Q as functions of the 4He coverage at 1300 mK on

the MCNT powder. The low Q near the superfluid onset indi-

cates substantial attenuation due to topological excitations. The

rise up to the maximum in c3 represents the increase in the super-
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ness. The reduction in the sound speed beyond the maximum is

due to the reduction of the vdW potential. The onset coverage is

taken as 0.413 atoms/Å2. . . . . . . . . . . . . . . . . . . . . . . . 127

3.6 Third-sound speed as a function of the 4He coverage at
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Reference [104]. This is likely due to capillary condensation where
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3.8 Third-sound speed as a function of coverage at 250 mK. c3

oscillates at the lowest coverages with layer periodicity. The vertical

lines indicate layer completion, starting from the 3rd-layer comple-

tion. The onset coverage is 0.293 atoms/Å2. c3 is a maximum at

the 3rd (unseen) and 4th layer completions, with a suppressed max-

imum at the 5th layer completion where the decrease in the film

compressibility is dominated by the reduction in the vdW potential. 131

3.9 Third-sound speed and isothermal compressibility of the

4He film on graphite foam. The plot is from Reference [55],

which showcases c3 and KT as functions of the 4He coverage. The
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for the lower-temperature data. Moreover, note that the minima in
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in the sound speed occur slightly before and slightly after the half-
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3.10 c3 and Q as functions of 4He coverage at 250 mK. The Q
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0.306 and 0.344 atoms/Å2, indicating an interesting attenuation

pattern that is not commensurate with half- or full-layer-completion

points. However, there seems to be a rise to a local maximum in

the Q at the 4th and 5th layer completions. The solid line running

through each plot of Q is meant for visual enhancement of the

witnessed trends. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
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3.11 Temperature sweep at a coverage of 0.303 atoms/Å2. The

drop in the Q occurs at around 520 mK, which is taken as TKT for

this particular coverage. . . . . . . . . . . . . . . . . . . . . . . . 137

3.12 Oscillator period shift (∆P) and superfluid attenuation

(Q−1) as functions of the temperature, from Reference [89].

The closed circles in the ∆P plot correspond to the 2nd layer,

while the open circles and triangles correspond to the third and

fourth layers, respectively. The 4He coverage is indicated to the

left of each trace. An abrupt shift in TKT occurs over a small

change in coverage, from 200 mK at 26.1 atoms/nm2 to 600 mK at

27.9 atoms/nm2, which is right before the 3rd-layer completion at

28.0 atoms/nm2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.13 Temperature sweep at a coverage of 0.308 atoms/Å2. The

drop in the Q occurs at around 560 mK, which is taken as TKT for
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3.14 Temperature sweep at a coverage of 0.318 atoms/Å2. The

drop in the Q occurs at around 635 mK, which is taken as TKT for

this particular coverage. Notice that c3 also slightly increases as a
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ature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
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though the data points near the onset temperature are represented

by different drive levels (which may have different levels of attenu-

ation), a drop in the Q seems to occur near 950 mK, which is taken

as TKT for this coverage. An uncertainty of 70 mK is taken to make

up for this lack of data points, owing to the difficulty of controlling

the dilution refrigerator above 900 mK. . . . . . . . . . . . . . . . 149

3.21 Attenuation, Q−1, as a function of temperature and cov-

erage from Reference [89]. The peaks represent points of large

attenuation. Note the encircled region between 28 - 30 atoms/nm2

in coverage, where the peak—attributed to the KT transition—

remains constant. The peaks at slightly lower temperatures next

to the encircled region are an anomaly that could be attributed to

a 3rd-sound resonance, although it was interpreted by Crowell et

al. as a phase transition on some other surface in the cell (not the

Grafoil) that happened to be detected at certain coverages. . . . . 152

3.22 Schematic representation of the KTN line for a newly

formed 4He layer on Grafoil from Reference [89]. The va-

lidity of the KTN line is not completely clear in the gas-liquid

coexistence (G+L) region, particularly when the coverage in this

new layer is below the critical density, nc, where a self-bound liquid

has not yet formed. . . . . . . . . . . . . . . . . . . . . . . . . . . 155

xxiii



3.23 TKT as a function of the 4He coverage on the MCNT pow-

der. The vertical lines indicate layer-completion coverages, start-

ing from the 3rd-layer completion. The data points are taken from

the temperature sweeps in Figures 3.11 and 3.13 to 3.20, with the

last data point obtained from the onset coverage at 1300 mK in

Figure 3.6. The solid line is the (theoretical) KTN line obtained

using Equation 1.32. There is a dip in TKT in the experimental

data around the 4th-layer completion. A possible explanation for

the mismatch in the slopes of the data and the theory is that a

good fraction of the 4He atoms remain gaseous and perhaps do not

condense into a liquid to participate in superfluidity. . . . . . . . 156

3.24 Superfluid fraction as a function of 4He coverage overlaid

on the 2nd-layer phase diagram, from Reference [89]. The

open circles represent the period-shift in the torsion oscillator—

which is sensitive to the superfluid fraction—while the closed circles

represent data taken from Reference [116]. The C+F (Commensu-

rate + Fluid) phase represents a region of coverages at which there

is a fluid film present, but that it is locked-on to the underlying sub-

strate’s lattice structure. The locking-on of the fluid film is thought

to immobilize the superfluid, resulting in the loss of superfluidity in

this phase. The superfluid fraction becomes nonzero again beyond

the C+F phase, thus coining the phenomenon as a re-entrance of

superfluidity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

xxiv



Acknowledgments

First and foremost, I would like to thank my advisor, Gary Williams, for being

the best advisor any graduate student can ever have. He is an incredibly gifted

experimentalist and talented theoretician, and I am so thankful that he gave

me the opportunity to work on such a fascinating and fulfilling research topic.

His support for my endeavors has been unparalleled. I am eternally grateful for

his willingness to urge me to pursue the full-time professorship at Santa Monica

College (SMC), even in the wake of the constraints this job would place on my

research obligations in the lab. I will forever cherish the years I spent working in

his lab, and I hope to inherit the same undying passion for physics that he has

demonstrated over his illustrious career. His kindheartedness, care, patience, and

humor made my experience in working under him truly unforgettable.

I would like to thank my wife, Armineh Mikaelian, who has supported me

throughout this arduous journey with unmitigated love. I could not have asked

for a better person with whom to share the rest of my life, as her will to provide

me with the comfort I needed to be able to manage my various responsibilities

was second to none. Our life as a married couple has been constrained due to

these obligations, but her support has never wavered, and I am glad to finally be

able to share more of my life with her upon finishing the doctorate.

Without the uncompromising support of my parents, Asik and Silva Men-

achekanian, none of my successes would have been possible. After my birth, they

decided to leave the life they knew to join the rest of their family and relatives

in the journey to start a completely new life in the United States. Through an

act of complete selflessness, they raised my brother and me, and gave us the op-

portunity to pursue our dreams and to live a life unbounded. They went through

many stressful years to give us all that we desired within their means. There are

no words that can express how grateful I am to have them as my parents. Even

xxv



in the most difficult of times, they have provided my brother and me with more

than for which we could have ever even asked. They dedicated their lives to help

us achieve our goals, and instilled in us the importance of education. They never

once urged us to work from a young age—even when they may have needed the

financial assistance—because they knew that our future success would be directly

related to focusing on our studies. They have cheered me on all the way to the

end, and I hope that I have made them proud with my accomplishments.

I would also like to thank my brother, Meishel Menachekanian, who has been

an incredible role model for me. Seeing his focus in going through higher education

set a precedent for me to follow in his footsteps throughout my schooling career.

My childhood was an incredible experience because of him. Even with our age

difference, he was, and still is, my best friend, and I cannot thank him enough for

being so supportive throughout the years. He has also been instrumental in my

development as a human being, passing on to me a love for music and a genuine

curiosity for the world around us. His spontaneity has made a big impact on me

as well, especially as I recount the countless times that I ended up experiencing

things I would not have otherwise experienced had it not been for his sense of

exploration. I am very fortunate to have him in my life.

I am also very lucky to have wonderful extended siblings. Lauren Menacheka-

nian, Ani Mikaelian, and Ray Badalyan have always supported my endeavors, and

I am thankful to them for providing me with much-needed moral support in this

long journey towards the light at the end of the tunnel. The tunnel had more

light than originally anticipated because of their presence.

I would like to thank Harry Lockart and his crew at the Physical Sciences

Machine Shop for fabricating the various parts used in this study. It was always

a pleasure working with Harry to get the finer details mapped out in order to

be able to use the machined parts successfully. Moreover, I owe a great deal to

Shylo Stiteler, the supervisor of the Physical Sciences Student Machine Shop. He

xxvi



patiently taught me the basics of machining and helped me to build some of the

parts that I would end up using in these experiments. He is an extremely talented

artist, and I will never forget the wonderful hours spent with him in the student

shop.

Chuck Buchanan and Brent Corbin have been very meaningful in my develop-

ment as a physics teacher. Being Chuck’s teaching assistant on many occasions

helped me see how an experienced professor approaches the teaching process. I

will forever cherish the weekly meetings we had to discuss the progress of the

students, as these would help shape my desire for student success. Brent was

responsible for hiring me to teach physics workshops for PEERS (Program for

Excellence in Education and Research in the Sciences), which has been an experi-

ence for which I am grateful. He has been instrumental in showing me the power

in collaborative learning, which I try to use as much as possible at SMC. I am

so fortunate to have him as a mentor and a friend, and he has been an integral

part of my development as a challenging physics teacher who tries to make the

teaching process fun for the students.

Finally, I would like to thank Jenny Lee, Carol Finn, Cecile Chang, and Elaine

Dolalas. As graduate counselors and administrators, they have made my expe-

rience in the department as if I was part of an extended family. I will always

remember their helpfulness, care, and warmth when I look back at my graduate

career.

xxvii



Vita

2007 B.S. (Physics), UCLA, Los Angeles, California.

2009 M.S. (Physics), UCLA, Los Angeles, California.

2012 - Present Assistant Professor of Physics, Santa Monica College, Santa

Monica, California.

xxviii



CHAPTER 1

Introduction to Superfluidity in 4He

The theoretical and experimental understanding of superfluidity currently spans a

history of over a century. It was Kamerlingh Onnes’ technological breakthrough of

the liquefaction of 4He that began the effort of understanding liquid helium and its

novel properties. In particular, this chapter is devoted to giving a firm background

in superfluidity in 4He.1 This introduction is based on various standard sources.

[3–8]

1.1 The 4He Phase Diagram

An enormous class of elements and molecules have a phase diagram similar to

the one shown in Figure 1.1. The most important feature on which to focus in

this figure is the fact that it is impossible for a material obeying such a generic

phase diagram to remain a liquid down to absolute zero. Most such elements

undergo freezing into a crystalline solid at their saturated vapor pressure (SVP)

and remain a crystal down to absolute zero.

In sharp contrast, 4He behaves rather differently, as can be seen in Figure 1.2.

The reason for this behavior is discussed in Section 1.3. Interestingly enough, in

1The isotope 3He also undergoes a superfluid phase transition. [1,2] Much of the ideas men-
tioned in this section apply very nicely to this isotope. However, the mechanism by which 3He
undergoes the superfluid phase transition is very different from 4He. This has to do with the fact
that 4He obeys bosonic statistics in which all such atoms have the ability to enter into the same
quantum state; however, 3He obeys fermionic statistics so that it can only undergo a superfluid
transition if the 3He atoms pair up to form a bosonic entity. This mechanism is analogous to
the formation of Cooper pairs of electrons in superconductivity.
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Figure 1.1: Typical phase diagram of ordinary elements or molecules. At

ultra-low pressures the substance may remain in its gaseous state, but it is known

that at SVP, almost all substances will condense into a solid phase at low-enough

temperatures. Helium is the exception, even at very large pressures.
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Figure 1.2: The phase diagram of 4He. Notice how it remains a liquid down to

absolute zero and requires about 25 bars of pressure in order to solidify around 1

K. The λ-line indicates the second-order phase transition separating the normal-

fluid state (at high temperature) and the superfluid state (at low temperature).

order to achieve the crystalline phase in 4He, one must necessarily apply enormous

amounts of pressure: 25 atm or more. Furthermore, one sees that there is, in fact,

no triple point in which a three-phase coexistence takes place. A critical point

nevertheless exists, so that it is possible to go from the liquid to the gas phase

(or vice versa) without having to incur a first-order phase transition (i.e., there

exists no latent heat of transition between the two phases if the path in the phase

diagram is mapped out appropriately in an experiment).
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1.2 Determining the Importance of Quantum Effects

For most fluids in nature, quantum mechanics is reasonably irrelevant in under-

standing the properties of fluids and how they interact, even at low tempera-

tures. Indeed, quantum-mechanical effects become much more significant when

the thermal energy of a system is reduced. Namely, quantum effects dominate

when ~ω � kBT , with ~ the reduced Planck’s constant, kB Boltzmann’s constant,

T the temperature of the system, and ω the characteristic quantum-mechanical

frequency of the system at hand.

A fluid of 4He particles is a fluid for which quantum effects drastically dictate

how it behaves at low temperatures. From statistical mechanics, a useful measure

from which one could roughly deduce the importance of quantum effects in systems

of particles is the thermal de Broglie wavelength, defined by

λT ≡
(

2π~2

mkBT

)1/2

, (1.1)

where m is the mass of an individual particle in the gas under question. If λT

is larger than, or of the same order as, other typical length scales in the fluid,

then the quantum regime will have great bearing on the observed results. For

instance, neon and helium share approximately the same interatomic separation

d at the minimum of the potential energy of interaction between these particles

in a gas. (For neon dNe = 0.296 nm and for helium dHe = 0.265 nm.) Also, the

atomic masses are given by: mNe = 20.2 u = 3.35× 10−26 kg and mHe = 4.00 u =

6.65 × 10−27 kg. At SVP, neon turns into a liquid at TNe ≈ 27 K and helium

turns into a liquid at THe ≈ 4 K. As a result2, λ
(Ne)
T ≈ 7.5 × 10−2 nm < dNe and

2In this case, the gas of particles is being treated as noninteracting, even though at these
temperatures neon and helium are in a liquid state and, thus, are strongly interacting. In any
case, such an estimate gives one a rough idea of the nature of the fluids and whether they behave
classically or quantum mechanically. In fact, the de Broglie wavelength simply stems out of the
momentum distribution for a collection of particles. So, although the potential energy may
contain terms that couple particles together, the potential energy should generically not depend
on the momentum of the particles. Thus, since λT is born out of the momentum distribution—
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λ
(He)
T ≈ 0.44 nm ∼ dHe. Thus, the helium fluid will be dictated more significantly

by quantum effects than the neon fluid.

1.3 The Zero-Point Energy

The major quantum-mechanical effect that determines the behavior of helium at

low temperatures is the zero-point energy (also known as the kinetic energy of

localization). The zero-point motion in 4He is not negligible when considering the

total energy of the quantum fluid. The reason for this is two-fold: the 4He mass

is rather small and the interaction between 4He atoms is weak in comparison to

other elements.

To analyze this further, it is paramount to obtain an expression for the zero-

point energy for the 4He quantum fluid. Although the atoms in this quantum

fluid move, one could say that, on average, one 4He atom is contained3 within a

sphere whose radius is roughly the size of the interatomic spacing, a, so that its

volume V ∼ a3. From the Heisenberg uncertainty principle, the uncertainty in

the momentum of such a 4He atom is

∆p ∼ h

a
∼ h

V 1/3
.

As a result, the kinetic energy of localization of this atom is given by

T0 ∼
(∆p)2

2m4

∼ h2

2m4

1

V 2/3
, (1.2)

where m4 = 6.65× 10−24 g is the mass of the 4He atom.

In order to complete the story, a rough expression for the interatomic potential

energy must also be described. This is a rather complicated process, but the

which (for all practical purposes) decouples from the interaction potential—it is still permissible
to gauge the importance of quantum effects using rough estimates of the thermal de Broglie
wavelength.

3In other words, the 4He atom under question is contained in an imaginary cage bounded by
its nearest neighbors.
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behavior of the interaction can be modeled upon considering both the weak, long-

ranged (van der Waals) attraction as well as the relatively strong, short-ranged

(exponentially decaying) repulsion of the helium atoms.4 Such a potential can

take the form

V (r) = αe−βr − ϕ

r6
, (1.3)

where α, β, and ϕ are parameters that may be determined empirically. Such

a potential will contain an attractive well since the two terms in Equation 1.3

compete with one another in the intermediate values of r. So, the total energy of

the liquid helium, adding in the kinetic energy T0, then becomes

ε = T0 + V (r). (1.4)

Qualitatively speaking, when plotting ε, T0, and V as functions of the atomic

volume, one obtains Figure 1.3. The large zero-point contribution causes the

total-energy minimum to be shifted to a considerably larger atomic volume in

comparison to the minimum of the liquid’s potential energy. So, even though the

interatomic forces are apparently strong enough for helium to finally liquefy at

4.25 K (at SVP), the large zero-point energy keeps the density of the liquid rather

small, thus preventing 4He solidification. It is expected that the potential-energy

minimum for a crystalline lattice of helium atoms would occur at a smaller atomic

volume—in comparison to the liquid state—because of the dense nature of solids

in general. Notice from Figure 1.3 that at smaller atomic volumes, the zero-point

energy is considerably stronger. As a result, one must necessarily apply a great

deal of pressure to the system in forcing the helium atoms to get closer together

in order to finally achieve crystallization.

4A more accurate potential for the intermolecular attraction between helium atoms is the
Aziz potential [9]. However, using the simplified potential here is to simply establish a qualitative
argument for how zero-point effects are important to describe helium’s status as a true quantum
liquid.
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Figure 1.3: Qualitative sketches of total energy, potential energy, and

zero-point energy of liquid helium. The zero-point-energy curve drives the

total-energy minimum to higher values of the atomic volume in comparison to the

minimum of the potential-energy curve, thus lowering the density of the helium

atoms in the liquid and preventing crystallization without external pressure.
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Helium is the only5 substance that remains a liquid down to absolute zero.

Indeed, the H2 molecule has a van der Waals attraction that is approximately

an order of magnitude larger than in the case of helium, due to the fact that

hydrogen is much more easily polarized. It is true that the hydrogen atom should

have a larger zero-point energy due to its smaller mass; however, the van der

Waals attraction far outweighs the increase in zero-point energy in hydrogen, so

that it necessarily chooses the stable configuration of solidification at low enough

temperatures without the application of an external pressure. Furthermore, all

atoms larger in mass than helium do not have enough zero-point energy to keep

their densities small enough upon cooling. As a result, helium stands alone in its

ability to remain a liquid down to absolute zero.

1.4 Experimental Evidence for Superfluidity in 4He

Superfluidity in helium was discovered experimentally without any theoretical in-

sight in making predictions regarding such novel behavior. Although one may

explain it nowadays in terms of a Bose-Einstein condensation of a strongly inter-

acting system of bosons, many of the phenomenologies developed—in particular,

Landau’s two-fluid hydrodynamics—owe to the overwhelming experimental evi-

dence suggesting the existence of superfluidity in helium. Thus, it is worthwhile

to discuss the experimental observations for further development of helium’s the-

oretical background.

As can be seen in Figure 1.2, there are two distinct liquid phases in helium.

(The nomenclature He I and He II is assigned to the normal and superfluid regions,

respectively, in the phase diagram.) The line that separates the two regions is a

line of phase transitions. This phase transition is (in the language of Landau)

a second-order, or (in more proper, modern lingo) continuous, phase transition.

5This applies to both stable isotopes of helium (i.e., 3He and 4He).
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Figure 1.4: The specific heat of 4He as a function of T − Tλ. The curve

resembles the Greek letter λ, which is why the superfluid phase transition is

referred to as the λ transition. Data in the plot is adapted from Reference [10].

Note the sharp feature at T − Tλ = 0 even at the micro-Kelvin resolution.

The second-order nature of the phase transition follows from the fact that as one

traverses from the He I to the He II regime (or vice versa), there is no discontinuity

in the thermodynamic state of the system. Instead, the phase transition occurs

because of a discontinuous anomaly in the specific heat of 4He as a function of

temperature, shown in Figure 1.4. The shape of the specific-heat curve resembles

the Greek letter λ, so that the phase transition line is dubbed the λ-line, while

the transition temperature is called the lambda point Tλ. At SVP, Tλ = 2.17 K.

As mentioned previously, the two-fluid nature of He II was conjectured as

a result of experimental evidence that suggested both the presence and absence

of viscosity below the λ point. First, a discussion of two experiments which

naturally showcase the absence of viscosity is in order. Pyotr Kapitza performed
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an experiment in which he observed the flow velocity, v, of He II through narrow

capillaries (ranging from a diameter of 0.1 µm to 4 µm). [11] In a normal fluid, the

flow velocity will depend on the viscosity of the fluid, η, the pressure difference

between the ends of the capillary, ∆P , the cross-sectional area of the capillary,

A, and the length of the capillary, L. Through dimensional analysis of these

fundamental quantities the dependence of η on ∆P , v, A, and L can be easily

written:

η ∼ A

Lv
∆P. (1.5)

No matter what capillary diameter was utilized in the experiment, it was found

that even though a finite flow speed was detected, the pressure difference was

always zero. As a result of Equation 1.5, the viscosity was therefore found to be

essentially zero. Allen and Misener [12] obtained similar results in flow experi-

ments as well.

Another experiment demonstrating the absence of viscosity in He II is the

persistent-current measurements performed by Reppy and Depatie in 1964 [13].

In this experiment, a torus filled with liquid helium above Tλ was made to rotate

at a given angular speed. Then, the liquid helium was cooled below the lambda

point and, in turn, the external rotation was stopped. Over a twelve-hour period,

measurements were made of the flow angular velocity and it was found that there

was literally no reduction in the angular velocity. Indeed, in the case of a normal

fluid with a finite viscosity, the angular velocity would have surely gone down to

zero soon after the torus ceased to rotate: after the rotation stops, the walls in

contact with the liquid no longer entrain the liquid to flow at the speed of the walls

and, thus, the liquid gradually slows down to a halt. However, in the case of He

II, the timescale—during which zero dissipation of angular velocity was observed

in this experiment—was so large that the viscosity just had to be zero in order

for such measurements to have even made sense.
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Although these two experiments seem to suggest the zero-resistance nature

of He II, other experiments actually showcase the opposite scenario. An elegant

experiment was carried out by Alfred Leitner in 1963 in a low-temperature-physics

demonstration video on superfluid helium that very nicely showcased the viscous

nature of He II.6 [15] The experimental schematic is shown in Figure 1.5. The

induction coils are powered by an induction motor, and they are set up (as shown

in Figure 1.5a) so that the copper cylinder can feel a torque set up by the magnetic

field, spinning it in a predetermined direction. As seen in Figure 1.5b, both the

copper cylinder and the propeller are placed in a bath of liquid helium.7 The

cylinder and the propeller are not connected. Furthermore, the propeller is not

made of a magnetic material so that it is not affected by the stray magnetic fields

from the induction coils.

Prior to cooling, it is expected that by turning on the induction coils to make

the copper cylinder turn8, the boundary layers of liquid in contact with the copper

cylinder will also start moving. Indeed, because of the finite viscosity inherent in

He I (which behaves as a normal fluid), the boundary layers of the liquid are

entrained by the motion of the copper cylinder. Thus, one expects the propeller

to attain the same circulation as the copper cylinder in the steady state.

As one cools below the lambda point, the 4He transitions into the superfluid

regime. Based on the aforementioned experiments, which showcased the absence

of viscosity in He II, one would expect the rotation of the copper cylinder to no

6Experiments as early as 1938 validated the viscous nature of He II. In fact, the first sugges-
tion for a two-fluid model was made by Tisza in 1938. [14]

7The apparatus is optically visible. To prevent thermal radiation, particularly from the
infrared part of the spectrum, from entering into the cryostat (or dewar), the cryostats are
normally made opaque with a highly-polished surface. In any case, to make the dewar optically
visible, normally one surrounds the helium bath by a liquid nitrogen bath, thus providing a
good shield from infrared and visible radiation. Finally, surrounding the liquid nitrogen bath
is a vacuum jacket which serves as a means of not only keeping away air at room temperature
from diffusing into the apparatus, but also reducing thermal conduction. These extra details
are not shown in the schematics of Figure 1.5.

8Since 4He has neutral charge, the magnetic fields generated by the induction coils do not
have a net effect on the liquid helium itself.
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(a) Propeller Bottom View

(b) Propeller Side View

Figure 1.5: Schematic of Leitner’s experiment for detecting a nonzero

viscosity in He II. The propeller is seen to rotate even though it is decoupled

from a spinning source below it that is driven using induction. There is a viscosity

within the liquid helium, as the only explanation of the propeller’s rotation is

through the entrainment of fluid layers, as in the classical notion of deriving a

velocity gradient in the fluid from the entrainment of the fluid set forth by a

moving wall.
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longer result in a circulation of the propeller. Nevertheless, it is found that the

motion of the copper cylinder still entrains the liquid boundary layers, eventually

making the propeller acquire the same rotation as the cylinder. Since no other

agents can possibly cause this rotation, this leads to the conclusion that He II has

a viscous nature.

It is clear that none of the experimental findings can be invalidated, even

though the results achieved seem to be rather paradoxical. The experiments were

all carried out in an extremely accurate fashion and were reproduced by other

experimentalists alike, thus reinforcing the truth of the observations. A way to

get out of this apparent paradox is to reach, in essence, some form of compromise,

which necessarily led to the proposition of a two-fluid model of He II. In this

model, He II contains both a normal component (which behaves like any other

classical, low-density fluid) and a superfluid component (which has absolutely no

viscosity). [14,16,17]

However, none of the mentioned experiments have been able to showcase both

the absence and presence of viscosity simultaneously. Thus, it is worthwhile to

discuss an experiment which naturally caters to both sides of the story. This

experiment involves measurements using a torsion pendulum, and was first con-

ducted by Elepter Andronikashvili in 1946. [18] The apparatus for the experiment

is shown in Figure 1.6.

The spacing between the discs (roughly on the order of 0.1 mm) is small

enough such that, above the lambda point, all the (normal) fluid in between the

discs would be completely dragged by the motion of the discs. If the rotational

motion of the oscillator is parametrized by using the the azimuthal angle φ, then

labeling I as the moment of inertia9, β as some dissipative coefficient, κ as the

stiffness of the torsion pendulum and τ as an external (possibly time-dependent)

9There is only a need to consider the single component of the generalized moment-of-inertia

tensor
←→
I since the oscillatory motion is exclusively along the principal axis that runs along the

string (running through the center of mass) attached to the oscillator.
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Figure 1.6: Andronikashvili’s torsion oscillator. It consists of a pile of equally

spaced, thin metallic discs suspended by a torsion fiber that can be twisted to allow

for torsion oscillations. The spacing between the discs is on the order of 0.1 mm in

the original Andronikashvili apparatus. [18] This spacing ensured enough viscous

clamping of the normal component to the oscillator to couple to the moment of

inertia of the discs.
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torque, then the equation of motion is given by

I
d2φ

dt2
+ β

dφ

dt
+ κφ = τ. (1.6)

If the system is fairly non-dissipative, then the pendulum will obtain a resonance

at approximately its natural (angular) frequency

ω0 =

√
κ

I
. (1.7)

Since the moment of inertia I is directly proportional to the density ρ, then

the period of oscillations, P (which is inversely proportional to the frequency),

depends on ρ as

P ∼ √ρ. (1.8)

As a result, when the mass density decreases (increases), the resonant period

decreases (increases) monotonically.

Upon conducting this experiment, it was found that cooling the liquid helium

below the lambda point saw a significant decrease in the period of oscillation

of the pendulum. In this sense, the transition to the superfluid state below Tλ

necessarily makes the thinly separated discs entrain less fluid in their motion due

to the fact that the superfluid component exhibits zero viscous drag. In cooling

below the transition temperature, it is obvious that new helium particles are not

being created, which implies that the fraction of atoms behaving as a normal

fluid decreased as a result of the superfluid onset. Thus, the resonant period of

oscillation in Equation 1.8 must be modified to take into account the decoupling

of the superfluid component. In particular, the period will shift according to the

amount of normal fluid present. In other words, P = P(ρn). Dividing up the

He II density, ρ, into a normal-fluid component, ρn, and a superfluid component,
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ρs, the total density—in this development of the two-fluid hydrodynamics of He

II—is equal to the sum of each component’s density:

ρ = ρn + ρs. (1.9)

As a result, extracting the normal fluid density based on the period shift in An-

dronikashvili’s experiment, the superfluid density can then be measured upon

applying Equation 1.9. The data (at SVP) is summarized in Figure 1.7. The

λ point marks the temperature at which a macroscopic number of helium atoms

occupy the superfluid state. At temperatures above Tλ, the total density is simply

the normal-fluid density. Furthermore, notice that at about 1.0 K, ρs ≈ ρ and

ρn ≈ 0. However, if this curve is further extrapolated to absolute zero, then the

entire fluid will strictly comprise of superfluid.

Utilizing the results of Andronikashvili’s experiment, the absence of entropy

can be deduced in superfluid helium with the help of the phase diagram of 4He.

Notice from Figure 1.2 that the melting curve (i.e., the solid-liquid phase coex-

istence line) is rather steep above the lambda point, while its slope essentially

goes to zero in the transition below Tλ. The Clausius-Clapeyron equation for the

melting curve states that the slope of this curve is given by

dPm

dT
=
Sliq − Ssol

Vliq − Vsol

≡ ∆Sm

∆Vm

, (1.10)

where Sliq and Vliq are the entropy and volume in the liquid phase (respectively),

and Ssol and Vsol are the entropy and volume in the solid phase. Notice that

because of the nature of the slope close to about 1.0 K, Equation 1.10 reveals

that the change in entropy is essentially zero. So, looking at 4He as a liquid in

this temperature range, it is clear that the liquid cannot lose entropy by solidi-

fying (since, due to Equation 1.10, the solid and liquid entropies exactly cancel

one another). Thus, the liquid will choose to stay in its liquid state for a fixed
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Figure 1.7: The fraction of superfluid atoms, ρs/ρ, and normal fluid

atoms, ρn/ρ, as functions of the temperature at SVP. Notice how the

superfluid fraction goes to zero as Tλ = 2.17 K is approached. Also, notice that

the superfluid fraction almost completely dominates at approximately 1.0 K.
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external pressure near the melting curve. Furthermore, since the Third Law of

Thermodynamics must be obeyed, it is thus concluded that Sliq → 0 as T → 0.

Moreover, as seen in Figure 1.7, He II consists completely of the superfluid fraction

at absolute zero. Ultimately, in the scheme of the two-fluid model, the superfluid

fraction carries no entropy, and all of the entropic content resides in the normal

fluid. This then explains the nature of the melting curve above 1.0 K, since the

normal fluid fraction above this temperature becomes considerably larger and, as

a result, the entropic content of the liquid increases, as a whole.

From the experimental evidence suggested in Andronikashvili’s experiment, it

seems that the λ point triggers some sort of tendency for the helium to take form

as a superfluid.10 As such, one is inevitably led to think of the phenomenon of

Bose-Einstein condensation, in which a gas of bosonic particles—at low enough

temperatures—macroscopically condenses into the lowest quantum state. Thus,

it is common for one to think of the superfluid transition as an occurrence of

Bose-Einstein condensation, in which the superfluid component composes of the

condensate, while the normal fluid consists of helium atoms in the excited states11.

However, the picture is not as clear-cut as this. In fact, evidence—from deep-

inelastic-neutron-scattering experiments [19] and from Quantum Monte Carlo

(QMC) simulations [20–22]—suggests that the condensate is actually depleted.

In other words, not all of the superfluid condenses into the lowest quantum-

mechanical state. Indeed, due to the strong interactions present in He II, it is

found that the condensate only consists of roughly 10% of the total fluid at ab-

solute zero. In this sense, it seems as though the superfluid fraction comprises of

10It is not correct to say that the fluids can be separated physically. In other words, it cannot
be said that some of the atoms are superfluid while others are normal. Indeed, at the quantum-
mechanical level, 4He atoms are indistinguishable since all such atoms are utterly identical. As
a result, the correct way in which to describe the two-fluid nature of 4He is to speak of the
two “states” (super and normal) to be accessible to any helium atom at the same instant. The
temperature dictates how many atoms, taken as a whole, will occupy one “state” as opposed to
the other, with lower temperatures favoring the super “state” instead of the normal one.

11These excited states are identified as thermal excitations.
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both the condensate and its depletion.

Without a doubt, many complications arise when including interactions in the

theoretical framework of any system. However, it is still possible to understand

the nature of the superfluid fraction by introducing the idea of the macroscopic

wave function.

1.5 The Macroscopic Wave Function

The approach of introducing a macroscopic wave function is a bold step in un-

derstanding the nature of 4He. The first proposition of the existence of such a

wave function was due to Fritz London in 1954 [7]. He motivated its existence by

creating a connection between dissipationless flow in superfluid helium and dissi-

pationless flow of bound electrons in atoms. In the same way in which electrons

orbiting a stable atom are described by a wave function (namely, an eigenfunc-

tion of the appropriate Hamiltonian describing the electron), London argued that

such a wave function should also be able to describe the macroscopic nature of a

body of superfluid. In this sense, the wave function should extend throughout the

superfluid specimen. Thus, just as electrons are quantum-mechanical particles

described by a (microscopic) wave function, superfluid currents are quantum-

mechanical currents described by a (macroscopic) wave function. London’s bold

argument gave rise to postulating the existence of a wave function that describes

superflow.

One can also motivate the presence of a quantum-mechanical wave function

based on the existence of an order parameter in the description of the superfluid

phase transition. Near the lambda point, the specific heat (at constant volume)

has the form:

19



C(T ) =

 C(T ) + A> |T − Tλ|−α (T > Tλ)

C(T ) + A< |T − Tλ|−α (T < Tλ)
, (1.11)

where C(T ) is a smooth function of T close to Tλ, and A> and A< are constants.

Such a discontinuity is typical of a continuous (or second-order) phase transition,

which can be described using the Ginzburg-Landau formalism [23]. In particular,

the transition is described by an ordering of an order parameter, which is effec-

tively zero at and above the critical temperature Tλ and continuously becomes

nonzero below the transition temperature. Over the course of the development

of the Ginzburg-Landau theory, it has become evident that, depending on the

nature of the order parameter (i.e., whether it is a scalar, two-component vector,

n-component vector, second-rank tensor, etc.), seemingly unrelated phase transi-

tions can be grouped into a particular class, referred to as a universality class. The

universality class into which superfluid helium’s phase transition falls is known

as the three-dimensional XY-model12 class. In this class, phase transitions are

characterized by systems that attain a certain order that is fully described by a

two-component unit vector

~n(~r) = (nx(~r), ny(~r)) = (cos[θ(~r)], sin[θ(~r)]), (1.12)

which is assigned at every point ~r in three-dimensional space. The angle θ

parametrizes the two-dimensional unit vector. When above the lambda point

the angle θ is spatially random (i.e., no true correlations exist between points in

space), while below the lambda point there is a definite ordering in the angle θ

(i.e., correlations begin to take hold). To physically draw the connection between

the angle θ and the superfluid phase transition, one postulates the existence of a

macroscopic, complex-valued wave function (which describes the condensate). In

12Which consists of a three-dimensional lattice of spins confined to rotate in a two-dimensional
plane with some interaction between lattice sites.
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this sense, the angle θ is exactly the phase of the wave function. In this proposi-

tion, it is expected that the phase of the wave function plays the critical role in

the description of superflow in He II. The condensate wave function has the form

ψ(~r) = ψ0(~r)eiθ(~r). (1.13)

Consider the condensate wave function in the Ginzburg-Landau framework of

order parameters. If above the transition temperature and, as a result, |ψ0(~r)| = 0,

then it is not possible to define the phase θ (i.e., there is no ordering in the phase);

however, if below the transition temperature and, as a result, |ψ0(~r)| 6= 0, then

the phase of the system can be defined and, thus, this phase can be identified as

a physical parameter of the He II system.

From the microscopic quantum theory, for a wave function φ, the expression

φ∗φ = |φ|2 for, say an electron, describes the probability density that one will

find the electron at position ~r. In the macroscopic case, such an interpretation

does not make sense, simply because one is dealing with a macroscopic object

composed of an enormous collection of atoms. Indeed, the important idea is that

the macroscopic wave function should somehow relate to the fraction of helium

atoms that are superfluid. So, if the number density of superfluid atoms is called

νs, then it is conventional to normalize the condensate wave function such that

|ψ|2 = ψ2
0 = νs. (1.14)

Integrating over all space, one finds:

∫
d3r|ψ(~r)|2 = νsV = Ns, (1.15)

where V is the volume of the space and Ns is the number of superfluid atoms.

One may utilize the condensate wave function
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ψ(~r) =
√
νs(~r)e

iθ(~r) (1.16)

to develop a mass-current density. Adapting the probability-current density from

quantum mechanics into the superfluid (number) current density for the macro-

scopic wave function, one may write

~Js(~r) =
~

2m4i

[
ψ∗(~r)~∇ψ(~r)− ψ(~r)~∇ψ∗(~r)

]
. (1.17)

Noting that

~∇ψ(~r) = eiθ(~r)~∇
√
νs(~r) + i

√
νs(~r)e

iθ(~r)~∇θ(~r)

~∇ψ∗(~r) = e−iθ(~r)~∇
√
νs(~r)− i

√
νs(~r)e

−iθ(~r)~∇θ(~r)

then Equation 1.17 becomes:

~Js(~r) =
~
m4

νs(~r)~∇θ(~r). (1.18)

Relating this (number) current density to the superfluid velocity via the relation

νs~vs = ~Js, (1.19)

then it is seen that the superfluid velocity is directly proportional to the gradient

of the condensate wave function’s phase:

~vs =
~
m4

~∇θ. (1.20)

One may use Equation 1.20 to understand why the supercurrent is able to

maintain a constant velocity over long periods of time, as seen in the experiment
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of Reppy and Depatie (described in Section 1.4). Indeed, according to this equa-

tion, when the superfluid is at rest, the phase is constant. Furthermore, when

the superfluid is moving at constant velocity, the phase varies uniformly in the

direction of the superfluid velocity. In this sense, the phase appears to be a rather

smooth function of position, even on a macroscopic scale.13 The phase creates

a form of coherence among the collection of particles over a macroscopic length

scale, locking the particles into a state of uniform motion. Indeed, suppose one

focuses on a particular superfluid helium atom flowing in a pipe. If this helium

atom were to encounter an impurity in its path, then it would actually not scatter

off of the impurity—contrary to what one would expect if the atom behaved clas-

sically (i.e., as a particle in a normal fluid). If the helium atom scattered, then

due to the strong phase coherence, this would potentially cause every other su-

perfluid atom to scatter as well. Energetically speaking, this would be an event so

improbable that it could altogether be discarded. In this framework, it is there-

fore not surprising that the measured angular velocity in Reppy and Depatie’s

experiment [13] remained the same over such an extended period of time.

1.6 Vortices in Liquid Helium

In Section 1.5 it was found that a gradient in the phase of the macroscopic wave

function gave rise to a finite superfluid velocity. In other words, it is the phase that

determines the presence of superflow. For any well-behaved function f = f(~r), it

is known from vector calculus that

~∇× (~∇f) = ~0.

So, as a result of Equation 1.20,

13This is not the case near a vortex core where the phase undergoes abrupt changes over a
distance scale on the order of the atomic separation.
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Figure 1.8: Superflow in a torus. The superfluid velocity, ~vs, is tangent to the

streamline and maintains a constant speed throughout.

~∇× ~vs = ~0, (1.21)

which, from classical fluid mechanics, implies that the fluid is irrotational (i.e.,

the fluid undergoes potential flow).

Now, suppose that there is superflow around a torus, as in Figure 1.8. The

circulation is defined as

Γ =

∮
γ

d~̀ ·~vs, (1.22)

where γ represents the closed path and d~̀ is an infinitesimal line element that is

in the direction tangent to ~vs in Figure 1.8. Via Equation 1.20, and the utilization

of the Fundamental Theorem for Line Integrals14, it is seen that the circulation is

independent of the path (by virtue of the nature of Equation 1.20) and is given

by

14This theorem states that if f(~r) is a scalar field for which ~∇f is a well-behaved function,
then for any path γ taken in the counter-clockwise (positive) orientation which begins at position

vector ~a and ends at position vector ~b, the value of the line integral of ~∇f taken over this path
is given by: ∫

γ

d~̀ · ∇f = f(~b)− f(~a).

This is the multi-dimensional equivalent of the Second Fundamental Theorem of Calculus.
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Γ =
~
m4

∮
γ

d~̀ · ~∇θ =
~
m4

∆θ, (1.23)

where ∆θ is the change in phase over the closed loop.15

As in elementary quantum-mechanical situations, one desires the single-valued

nature of the wave function. So, according to Figure 1.8, if one starts at a specific

point on the drawn loop, performs a full rotation and returns to the same chosen

point, then the value of the wave function must not have changed. In mathematical

terms,

ψ(~r) = ψ(~r)ei∆θ. (1.24)

As a result,

∆θ = 2πq, (1.25)

where q ∈ Z = {0,±1,±2, . . .}. Utilizing the quantization of this change in phase,

Equation 1.23 showcases the quantized nature of the circulation

Γ =
h

m4

q, (1.26)

upon utilizing ~ = h/2π. Thus, the quantum of circulation in 4He is h/m4.

As mentioned before, vortices are actually able to form even in the presence

of such an irrotational flow. This can be seen with the use of some simple vector

calculus. Indeed, because of the nature of the superfluid velocity in the form of

Equation 1.20, based on Stokes’ Theorem it is expected that

Γ ≡
∮
∂S

d~̀ ·~vs =

∫
S

d~S · ∇ × ~vs = 0, (1.27)

15Here, the phase (as the so-called argument of a complex-valued function) has been allowed
to acquire a nonzero change over the closed path.
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where ∂S is the boundary of the surface S16. To look more closely at the curl of the

superfluid velocity, it is instructive to write the superfluid velocity in cylindrical

coordinates, ~vs = (vr, vφ, vz). Then the curl is given by:

∇× ~vs =
1

r
det


êr rêφ êz

∂
∂r

∂
∂φ

∂
∂z

vr rvφ vz

 , (1.28)

where êi is the unit vector along the i direction (i = r, φ, z). Consider now a

rotating bucket of bulk superfluid helium. If the superfluid flows like a classical

fluid—in which case the fluid would form a parabolic meniscus due to the cen-

trifugal force present in the rotating frame—then one expects the fluid to only

flow in the φ direction. Noting that the speed of the fluid can neither depend on

the z direction (due to the translational symmetry along this direction) nor on

the φ direction (due to rotational symmetry), then if Equation 1.28 is set equal

to zero, one finds:

1

r

∂

∂r
(rvφ) = 0. (1.29)

Solving this differential equation and identifying the definition of the circula-

tion Γ, the superfluid velocity becomes

~vs = vφ(r)êφ =
Γ

2πr
êφ. (1.30)

Furthermore, since the circulation is quantized, based on Equation 1.26, then

vs =
~
m4r

q (1.31)

for q ∈ Z.

16As in standard topological notation.
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There is experimental evidence to showcase the fact that vortices can form even

based on the irrotational nature of the flow in superfluid helium. The vortex lines

were first predicted by Onsager [24] and Feynman [25]. Feynman predicted that

the number of vortices that appear in a rotating bucket of superfluid helium would

be directly proportional to the angular speed of rotation. His predictions were

verified in 1975 with an experiment performed by Williams and Packard. [26] The

experimental apparatus (shown in Figure 1.9a) consists of a cylindrical bucket into

which liquid helium is poured and ultimately cooled. Using a potential difference,

electrons are injected from the bottom and are able to flow up and through the

normal-fluid cores of the vortices. When coming out of the other side of the vortex

lines, the electrons strike a phosphor screen located at the top. The electrons light

up the screen and, thus, allow for direct photographic evidence of the quantized

vortices. The resulting photographs are displayed in Figure 1.9b.

The photographs were taken at various angular speeds and it was seen that

the number of vortices increased in proportion to the angular speed. However,

this was not simply a linear relationship. The number of vortices would remain

the same for a range of angular speeds, until a given threshold was reached to

permit the nucleation of another vortex. Thus, the relationship was more step-

like, contrary to Feynman’s aforementioned prediction. Furthermore, notice from

Figure 1.9b that the vortices tend to form a lattice arrangement to minimize

the overall energy of the system. This is particularly evident at higher rotation

speeds, which suggests the tendency of the vortices to repel one another. The

rotation speed in this case was always made to vary in a slow, continuous fashion.

Indeed, abrupt changes in the angular speed of the bucket necessarily led to vortex

entanglement, giving rise to nonlinear effects such as turbulence.

Although the rotating-bucket experiment gave rise to vortex lines, it is also

possible to generate vortex rings, where the normal core—about which there is a

circulation of He II—wraps around in a donut shape. The existence of these vortex
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(a) (b)

Figure 1.9: Experimental setup and results of vortex photography from

Reference [26]. (a) The rotating bucket of superfluid helium. At a range of

angular speeds, a fixed number of vortices nucleate and form a lattice. Electrons

are injected from the bottom and travel through the normal-fluid cores to then get

ejected from the opposite end of the vortex line to then collide into a phosphor

screen. (b) Photographs of the vortices in the rotating bucket. Following the

letters alphabetically corresponds to higher angular speeds. Note the formation

of various lattice structures when more vortex lines nucleate on account of the

interaction of the fluid with the cylindrical wall.
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rings was established by the work of Rayfield and Reif in which time-of-flight mea-

surements of an ion complex running through a chamber of He II were observed.

A radioactive source generated excitations within the liquid helium which would

then travel through the fluid unhindered when the temperature was low enough.17

The excitations would then trap the ions used to initially form the complex upon

using appropriate electric fields with appropriate potential differences to make the

ions travel at the optimal speed for trapping.18 Upon measurement of the energy

of these complexes for a variety of ion velocities—set up by increasing or decreas-

ing the potential differences of the ions generating the complex—it was found that

this velocity varied inversely with the complex’s (kinetic) energy—measured using

the time of flight procedure—which was indicative of a traveling vortex ring from

classical fluid mechanics. Moreover, it was also found that the circulation of these

rings—upon measurement of the dispersion relation of the rings—was quantized

in units of h/m4, as in Equation 1.26.

These experiments undoubtedly confirm that vortices exist within the super-

fluid. These topological excitations play a significant role in Helium II, as vortices

can cause superfluid atoms to scatter out of their ground-state configuration when

a specific critical, or threshold, relative velocity is reached. Indeed, the relative

motion between the superfluid and these vortices—whether two-dimensional vor-

tex lines or three-dimensional vortex rings—leads to mutual friction forces, aiming

to reduce the overall superfluid fraction. Indeed, as discussed by Anderson [27],

these vortices can exchange energy with the flow of the superfluid, thus allowing

for this energy to be carried away. This energy loss is a crucial idea in the onset

17An operating temperature of 0.3 K was deemed to be optimal in extending the mean free
path of the ion complexes, as the primary hindrance was a drag resistance introduced by roton
scattering. Operating at such temperatures reduced the roton density enough to suppress these
scattering events.

18Too high a speed would force the ions to not be trapped within the complex and would lead
to a further generation of other complexes as they traveled through more of the fluid. Too slow
a speed would prevent the formation of a complex, resulting in the detection of the ion without
an accompanying liquid excitation.
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of dissipation in the superfluid and for providing the superfluid with a critical

velocity far smaller than that predicted by Landau’s model of the elementary ex-

citations of Helium II. This notion of the reduction of the superfluid fraction on

account of the interaction between superfluid atoms and such topological excita-

tions will be further discussed shortly, but it is important to shed light on how

these vortices mold the Helium II excitation spectrum beyond Landau’s treatment

of elementary excitations.

Indeed, the notion of a critical velocity was crucial in Landau’s phenomenolog-

ical development of the superfluid dispersion relation [30], shown in Figure 1.10.

The dispersion relation showcases the presence of elementary excitations within

the fluid at some temperature for a motionless fluid. The energy gap in the dis-

persion relation is a necessity if there truly is frictionless flow in such a system.

Under the application of an external flow of this fluid, there is a means by which

a helium atom, with some probability, can be scattered from the superfluid state

to the normal-fluid one upon the further generation of elementary excitations. In

particular, when the external flow reaches some critical velocity—determined by

the slope of the dotted tangent line in Figure 1.10—the number of elementary

(roton) excitations increases, resulting in flow that is no longer dissipationless.

Inelastic neutron scattering experiments have verified the Landau dispersion re-

lation for helium. [31] Note the tangent line that runs through both the predicted

and the experimental data in Figure 1.10. The notion of superfluidity is that

there is an energy gap that prevents excitations from taking place, which in-

evitably results in the fluid flow being dissipationless. Only when the flow has

the appropriate velocity to nucleate excitations will there be considerable dissipa-

tion. Such excitations can be mechanically generated, such as in the rotation of a

bucket of superfluid helium which nucleate vortices on account of interaction with

the container boundaries19, or they can be thermally agitated from the inherent

19These vortices are inherently macroscopic and should not necessarily be considered as el-
ementary excitations. The quantum of a vortex can be thought of as a roton, so that the
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Figure 1.10: Landau’s dispersion relation for superfluid 4He. The solid

line represents Landau’s prediction for the helium dispersion relation at T = 0.

The crosses correspond to neutron-scattering data of the dispersion curve from

Reference [28]. This plot has been taken from Reference [29]. The dotted line,

which was added to the plot, represents the tangent line which runs through both

the experimental data and Landau’s prediction. The slope of this line represents

~vc, with vc the critical velocity necessary for the lowest-energy, roton excitations.
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restlessness of the fluid constituents.

Based on Landau’s phenomenology, it is the energy gap associated with the

roton minimum, as well as the lack of any other thermal excitations below the

dispersion curve in Figure 1.10, that ensures the notion of flow without viscos-

ity. The critical velocity at which the lowest-energy, roton excitations take place,

known as the Landau criterion, is at a relative velocity of v
(R)
c = 58 m/s. Although

experiments [32,33] studying this critical velocity have corroborated a theoretical

prediction [34] of v
(R)
c = 46 m/s, critical values of the superfluid velocity have

been seen to be one or more orders of magnitude smaller than v
(R)
c . Such mea-

surements were aimed to study an intrinsic mechanism by which the superfluid

component could invariably go from frictionless to dissipative flow without con-

sidering its interaction with the normal-fluid component. In order to eliminate

the normal-fluid component from the picture, these experiments were performed

under circumstances in which the normal fluid would either be stationary or would

undergo laminar flow. Although the mechanism by which rotons are created would

seem to be a proper candidate for explaining the transition into dissipative flow

for the superfluid component, the measured critical velocities did not corroborate

the value set forth by the Landau criterion. An example of such an experiment

which resulted in critical velocities much smaller than those predicted by Landau

is the persistent-current measurements of Reppy and Langer in a superleak—thus

viscously clamping the normal-fluid component—with the use of a superfluid gyro-

scope. [35,36] A direct measurement of the precessing angular-momentum, whose

magnitude is proportional to the angular speed of the current, provided a means of

measuring the critical angular momentum at which a considerable decay was seen.

Transforming the angular momentum into a linear speed then outputted critical

velocities on the order of 10 - 100 cm/s, depending on the temperature and the

superleak’s pore size. Thus, Landau’s elementary excitations are not sufficient to

generation of a macroscopic number of rotons can essentially correspond to the production of a
larger-scale vortex.
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explain all the intricacies associated with superfluidity.

To this end, the inclusion of (macroscopic) vortices in superfluid helium tends

to paint a more complete picture of the physics associated with this exotic phase.

In fact, it is now well known that vortices appear as a result of the thermal

energy contained within the superfluid, and that these thermally-excited vortices

are essential in the physics of the helium phase transition, particularly in two

dimensions.20 Indeed, one of the most compelling pieces of evidence for this came

as a result of torsion-oscillator measurements of helium films on flat substrates. [37]

Consider a flat substrate isolated in an evacuated chamber that is in good thermal

contact with a liquid-helium bath that can be cooled to temperatures sufficiently

below the λ point. Upon metering helium gas into an evacuated chamber in

which the substrate resides, some of the helium atoms will get attracted to the

flat substrate due to the van der Waals attraction between the helium atoms

and the substrate material.21 Naturally, the helium atoms will adsorb onto the

flat substrate, and one could control the film thickness by measuring the vapor

pressure. In any case, the film thickness (ranging from ∼ 0.4 nm all the way to

∼ 40 nm) can be controlled in very small steps, depending on the resolution of

the apparatus used to meter in the helium gas. Even if the temperature of the

outside bath is below the λ point at SVP, the film that forms on the substrate

may not necessarily be superfluid. In fact, there is a threshold thickness above

which the film is finally able to support superfluidity (i.e., form a superfluid layer

20As mentioned before, superfluid helium can be treated as a strongly interacting Bose-
Einstein Condensate (BEC). Although it is well known that a noninteracting boson gas cannot
undergo a BEC transition at any finite temperature in two dimensions, an interacting Bose gas
can undergo such a transition. Superfluidity in 4He films is a specific case in point.

21This attraction is mediated by electric-dipole interactions between the helium atoms and
the substrate, and is a natural occurrence in even everyday life. For example, one can look very
closely at a recently consumed glass of wine to find that there is a reddish hue to the glass that
was not present when the glass was clean. This reddish hue is a result of an adsorbed film of
red wine to the glass. Although the red wine and the glass may certainly not be electrically
charged, there is nonetheless an attractive interaction that “glues” a thin layer of wine to the
glass. This is a manifestation of the effects of capillarity that take place when a small-diameter
tube is able to suck up liquid without an ambient pressure differential.
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of atoms).

Bishop and Reppy were able to map out the superfluid fraction as a function

of temperature for various film thicknesses on a Mylar substrate. Their results are

presented in Figure 1.11. These results were a direct observation of the so-called

Kosterlitz-Thouless (KT) phase transition. [39] Such a phase transition applies

to any system that is in the same universality class as the the two-dimensional

XY model, one of which happens to be the 4He film. Indeed, this KT theory was

fully applied to describe the two-dimensional phase transition of helium films into

a superfluid state by Kosterlitz, Thouless, and Nelson (KTN). [40] The theory

explained the disappearance of superfluidity in a 4He film as a result of ther-

mal excitations of vortex-antivortex pairs. These pairs comprise of vortices of

opposite orientation (i.e., one with clockwise circulation and the other with coun-

terclockwise circulation) that are topological excitations created solely through

the available thermal energy within the helium film. A single vortex costs too

much energy to be created22; however, at the KT onset temperature, TKT, the

bound vortex pairs unbind and drive down the superfluid density to zero. The

drop is abrupt, as can be seen in the dashed line in Figure 1.11, and this drop

in the superfluid areal (mass) density, σs, is predicted by the KT theory to be a

universal23 jump governed by the relation

(
σs(T )

T

)
TKT

=
2

π

(
m4

~

)2

kB = 3.49× 10−9 g/cm2 ·K, (1.32)

where m4 = 6.65× 10−24 g is the 4He mass, ~ = 1.05× 10−27 erg · s is the reduced

Planck’s constant, and kB = 1.38× 10−16 erg/K is Boltzmann’s constant.

To fully appreciate the consequences of the KTN theory, it is worthwhile to

briefly outline its development. It begins with the energy, V0, required to excite a

22Since it would require circulating the entire film of 4He atoms.
23The relationship is deemed universal because the ratio of the areal superfluid density to the

temperature is written in terms of universal constants, as seen in Equation 1.32.
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Figure 1.11: Torsion oscillator measurements of superfluid films made

on a flat substrate taken from the work of Bishop and Reppy [37].

The substrate is a Mylar film, which is a stretched, polyester film. The solid

lines are fits to the dynamical theory of Ambegaokar et al. [38]. The dashed

line represents the Kosterlitz-Thouless (KT) transition for a static film. Note the

strong attenuation, Q−1, when the normalized period-shift, ∆P/P—and thus the

superfluid fraction—decreases toward zero. The attenuation profile would be a lot

sharper (ideally a Dirac-δ function), and would be centered at the dashed line, if

there were no finite-frequency effects.
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single vortex-antivortex pair, which is given by

V0 = 2πK0 ln

(
r − a0

a0

)
+ 2Ec, (1.33)

where a0 is the vortex core size, Ec is the vortex core energy, r is the separation

distance of the vortex pairs (taken from their centers), and K0 is the dimensionless

areal superfluid density given by

K0 =

(
~
m4

)2
σ

(0)
s

kBT
, (1.34)

with σ
(0)
s the “bare” areal superfluid density (i.e., in the absence of vortices). This

so-called “undressed” superfluid density will become “dressed” in the scheme of

the renormalization-group analysis that will eventually follow.

The vortex pairs polarize on account of a static superflow since they feel a

Magnus force in opposite directions, the net result of which is to reduce the su-

percurrent with its own opposing flow field.24 The schematic shown in Figure

1.12 showcases some vortex-antivortex pairs on such a two-dimensional substrate.

In particular, note the direction of the flow field between one of the pairs, which

is denoted by the arrow in the figure. This arrow will aim to orient completely

antiparallel to the externally applied superflow. Since the areal superfluid den-

sity is proportional to the net superflow, this reduction in the supercurrent, on

account of the backflow generated by the polarized vortex-antivortex pair, results

in a reduction of this density. The lower the temperature, the more tightly bound

these pairs are since there is very little thermal energy available. These tightly

bound pairs will not be successful in the macroscopic reduction of the superfluid

fraction. However, upon increasing the temperature, more vortex pairs are ex-

cited with larger separation. The pairs with smaller separation tend to screen

24This is analogous to Lenz’s law in electromagnetism, in which a Lorentz force will result in
the re-orientation of a magnetic dipole to reduce an increasing magnetic flux running through
the loop.
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Figure 1.12: Cartoon of the creation of vortex pairs on a two-dimensional

substrate with an adsorbed superfluid film. The arrow indicates the direc-

tion of flow in between a particular vortex-antivortex pair that is caused by the

pair. Such pairs will polarize in a way to make this arrow counter the externally

applied superflow, thus aiming to renormalize the areal superfluid density.

the flow field generated by the pairs at larger separation. This screening is the

reason why it is possible reduce the energy required to excite vortex-antivortex

pairs at larger separation.25 In other words, without such screening, there would

not be enough thermal energy available to allow for the complete reduction of

the supercurrent on macroscopic length scales, which is what is necessary for a

true phase transition to occur from a superfluid film to a normal-fluid film at a

high-enough temperature.

Just as a dielectric can be used to reduce the electric field within a material—

on account of the polarization field generated by the bound, dipolar atoms in the

insulator aligning against the field—the same idea may be applied to describe

25Otherwise, it would be energetically improbable to generate such pairs at large separations.
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the reduction of the areal superfluid density from the excitation of the vortex

pairs. Introducing the dielectric function ε(r)—which is a function of the pair

separation, r—the reduced superfluid density, σs, may be written in terms of the

“bare” superfluid density as

σs =
σ

(0)
s

ε(r)
. (1.35)

The dielectric function can be redefined in terms of the susceptibility, χ(r), as in

electromagnetism, as:

ε(r) = 1 + 4πχ(r). (1.36)

Knowing the distribution of vortex pairs, Γ(r), and the polarizability of a

pair, α(r), linear response theory may be used to come up with a value for the

susceptibility:

χ(r) =

∫ r

a0

dr′Γ(r′)α(r′), (1.37)

with

α(r) = πK0r
2. (1.38)

The screened energy, V (r)—as opposed to the bare energy, V0, from Equation

1.33—is given by

V (r) = 2πK0

∫ r

a0

dr′

r′
1

ε(r′)
+ 2Ec, (1.39)

and this form can be used to then obtain the distribution of pairs upon utilizing

Boltzmann statistics:
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Γ(r) =
2πr

a4
0

e
−V (r)

kBT . (1.40)

Using Equation 1.35, the dimensionless superfluid density is renormalized with

the help of the dielectric function:

K(r) =

(
~
m4

)2
σs

kBT
=

K0

ε(r)
. (1.41)

Using Equation 1.36, Equation 1.41 may be written in terms of the susceptibility,

χ(r) as

K−1(r) = K−1
0 + 4πχ(r). (1.42)

It is useful to introduce the vortex fugacity in its bare form,

y0 = e
− Ec

kBT , (1.43)

only to then transform it to its renormalized form,

y(r) = y0

(
r

a0

)2

e
− Ur

kBT . (1.44)

For further convenience, the pair separation, r, is redefined in terms of the pa-

rameter l defined by

r = a0e
l. (1.45)

Along with this reparametrization of r, upon using Equations 1.36, 1.37, 1.38,

1.40, and 1.39, the renormalized, dimensionless superfluid density, K(r) = K(l),

in Equation 1.42 gets rewritten as
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K−1(r) = K−1
0 + 4π3

∫ l

0

dl′y2(l′), (1.46)

while the renormalized vortex fugacity in Equation 1.44, y(r) = y(l), becomes

y(l) = y0e
∫ l
0 dl

′[2−πK(l′)]. (1.47)

The integral equations 1.46 and 1.47 can be recast into differential form, known

as the KT (differential) recursion relations:

dK−1(l)

dl
= 4π3y2(l) (1.48a)

dy(l)

dl
= [2− πK(l)]y(l) (1.48b)

Solving these recursion relations gives rise to the universal jump result in Equation

1.32. The temperature at which the jump occurs is called the KT transition

temperature, TKT. Films of different thickness have a different value of TKT. At

the coldest temperatures, the 4He film can support a submonolayer superfluid

film, leading to the smallest value of TKT. Increasing the temperature results

in more thermal energy, making it necessary to build up to a thicker film in

order to support a superfluid layer. As a result, there is a larger critical onset

thickness when the temperature is higher. Nonetheless, the universal jump occurs

at TKT for a given onset thickness, so that Equation 1.32 really represents a line

of phase transition points, known as the KTN line, when, for instance, making

measurements of the superfluid density as a function of the film thickness and

temperature, as shown in Figure 1.13.

However, in making experimental measurements of the KT transition on flat

substrates—whether by means of a torsion oscillator [37] or by detecting surface

waves in the 4He, known as third sound26 [42]—a static approach is not going

26Third sound will be discussed in Section 1.8 in further detail.
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Figure 1.13: The static KTN theory for various transition temperatures

on a flat substrate. The KTN line, with a slope of 3.49× 10−9 g/cm2 ·K runs

through all of the curves right at the point where the abrupt drop in each curve

takes place. The curves with a higher value of TKT require a much larger film

thickness, as indicated by the larger onset value of the areal superfluid density.

The plot is taken from Reference [41] and uses Ec/K0 = 2.2 (in units of kBT ).
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to work very well. Indeed, such measurements must be run at finite frequency,

and this requires a modification of the KT theory. As can be seen from Figure

1.11, there is a more gradual drop in the period shift (and, thus, the superfluid

fraction), so that the KT transition under these finite-frequency measurements is

broadened. This broadening is well understood theoretically as a finite-frequency

effect first discussed by Ambegaokar et al. [38]. In this modification, the dielectric

function is taken to be frequency dependent

ε(r, ω) = 1 + 4πχ(r, ω), (1.49)

where the frequency-dependent susceptibility may be calculated with the addi-

tion of a response function, g(r, ω), which dictates the way in which vortex pairs

respond to the time-varying external flow field with angular frequency ω. In this

way, Equation 1.37 gets modified for the dynamical theory in the form

χ(r, ω) =

∫ r

a0

dr′Γ(r′)α(r′)g(r′, ω). (1.50)

The physical reason behind the inclusion of this response function has to do

with the fact that the vortex-antivortex pairs, although wanting to polarize against

the superflow, will not react instantaneously to an externally applied, time-varying

superflow field. Instead, because of the existence of mutual friction between the

pairs, pairs of larger separation will have a harder time responding to the alter-

nating superflow. In fact, by solving a Fokker-Planck equation for the diffusive

motion of the vortex pairs, a good approximation for the response function was

obtained in terms of the vortex diffusion constant, D:

g(r, ω) =
1

1− i ωr2
14D

. (1.51)

The relevant length scale that determines the finite-frequency broadening of the

KT transition in this dynamical theory is the vortex diffusion length, rD, which
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is defined as

rD =

√
14D

ω
. (1.52)

In this sense, only pairs with a separation r < rD can respond to the oscillating

flow field, while pairs with a separation r > rD cannot follow the motion of the

drive and, thus, do not contribute to the polarizability. Notice from Equation 1.52

that the larger the driving frequency, the smaller the diffusion length. In essence,

this important length scale introduces a cutoff for the KT recursion relations in

Equations 1.48, leading to a broadened transition as seen in the experimental data

in Figure 1.11.

Along with finite-frequency effects, the KT transition can also be broadened by

finite-size effects, which are naturally seen when adsorbing helium onto substrates

with geometries that are not necessarily flat. The vortex pairs are constrained

to live on the geometry dictated by the substrate. For instance, on a sphere,

the vortex pairs cannot be separated to infinity (contrary to the case on a flat

substrate) due to the connected nature of the surface. In this sense, a cutoff

is introduced into the KT recursion relations, resulting in a broadening of the

transition. As mentioned previously, finite-frequency effects are dictated by the

vortex diffusion length, rD. However, if the size of the nominal spherical pore in

the substrate is smaller than this diffusion length, then finite-size effects play the

crucial role in the broadening. Figure 1.14, taken from Reference [43], showcases

this broadening. Note that the superfluid fraction does not abruptly drop to zero

in the finite-size-broadened curves. Rather, the decrease is very gradual as can be

seen in the dashed tails of the 1 µm and 500 Å curves.

An interesting extension of these ideas is to consider the fact that in a packed

powder, the powder grains can be connected to one another via small channels.

A simplified model of such a situation is that of a jungle gym, shown in Figure
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Figure 1.14: An illustration of finite-size effects in a porous substrate of

spherical pores from Reference [43]. The plots showcase the superfluid areal

density, σs, and the attenuation, Q−1, as functions of the temperature. The dotted-

dashed line in the σs plot represents the static KT theory. The “flat substrate”

curve represents the dynamic KT theory on a flat substrate. The remaining curves

represent the KT theory on spheres of diameter 1 µm and 500 Å. Note the spread

in the attenuation of the superfluid signal with decreasing pore size. The dashed

lines indicate regions for which the assumption of a dilute collection of vortex

pairs (used in the calculation of these curves) is no longer valid.
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1.15. The goal of such a model was to develop a crossover of the superfluid

phase transition from a two-dimensional regime into a three-dimensional one by

implementing the notion of vortex strings as the elementary excitation. [44–46]

As in the figure, an imaginary line is drawn through the cores of vortex pairs

to develop the notion of the vortex string. When sufficiently below the phase

transition point, only pairs of very small separation are excited, so that the strings

are small in length. The excitation of pairs of such close proximity requires an

energy that is logarithmic in the separation. As such, not much energy is required

for the excitation of such a pair. However, to create a vortex string that connects

a vortex pair by essentially looping around a pore—to which it is referred as a

pore vortex in Reference [45]—requires an energy that is linear in the separation.

On top of this linear profile, since the separation is already the size of a lattice

spacing in the jungle gym, the energy cost is a lot more substantial. Thus, these

pore vortices can only be excited at higher temperatures, when there is substantial

screening from pairs of smaller separation and sufficient thermal energy. The

costliness of exciting these long vortex strings essentially leads to a broadened KT

transition. However, the superfluid density does drop more abruptly to zero than

in the case of a single, unconnected pore27 (see Figure 1.16), since these strings

can eventually reach an infinite extent at Tc > TKT when enough thermal energy

is present to macroscopically suppress the supercurrent.

The three-dimensional crossover of the KT transition in such multiply con-

nected geometries motivated the promotion of this mechanism to account for the

actual bulk-fluid phase transition at the λ point. The idea of this theory is to play

on the fundamental importance of vortices in determining the phase transition, as

initially suggested by Onsager [24] and Feynman [25]. In essence, the elementary

excitation is taken to be vortex rings, which screen an applied superflow by polar-

izing against the flow with their own backflow (much like in the two-dimensional

27As can be seen from the dashed tails in the single-sphere model of the 1 µm and 500 Å
curves in Figure 1.14.
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Figure 1.15: The jungle-gym model of a multiply connected porous ma-

terial. In this model, the elementary excitation is taken to be a vortex string

that is an imaginary line that runs through the cores of a given vortex-antivortex

pair in a closed loop. The curve C1 represents a vortex string that runs across

vortex pairs that are in close proximity to one another. The curve C2 represents a

vortex string that is larger than the lattice spacing. The energy associated with a

pair is far more costly for pairs whose separation is larger than the lattice spacing,

which introduces a broadening of the KT transition. The diagram is taken from

Reference [46].
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Figure 1.16: Comparison of the KT transition of the vortex-string model

to the single-sphere model. The two models display the broadening of the KT

transition; however, as seen in Figure 1.14, note the rounded tail of the single-

sphere model, which showcases the gradual reduction of the superfluid fraction

upon approaching Tc. The vortex-string model has a much more abrupt reduction

in the superfluid density due to the production of infinite strings. Although the

local geometry is limiting, the channels connecting the pore spaces allow for an

actual vortex-unbinding transition. The plot is taken from Reference [41].
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case). [47] The average diameter of such loops increases upon approaching Tλ from

below, while the diameter diverges at the transition temperature. These loops are

built up from the smallest of rings.28 Agreement with these notions has been seen

in Type-II superconductors, with a vortex-loop-unbinding transition agreeing with

the results of the simulation study. [48]

1.7 Two-Fluid Hydrodynamics

Before discussing sound modes that are present in the two-fluid model of He II,

it is important to first develop the fluid equations. Recall, upon including time

dependence, that the macroscopic wave function for the superfluid has the form

ψ(~r, t) = ψ0(~r, t)eiθ(~r,t) =
√
νs(~r, t)e

iθ(~r,t). (1.53)

As such, the condensate wave function must obey a (non-relativistic) time-dependent

Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m∗
∇2ψ + V̄ (~r)ψ, (1.54)

where m∗ is some effective mass, which is related to the 4He mass (m4), and V̄ (~r)

is some potential energy that takes into account the interactions between the

superfluid particles in some macroscopic sense. As stated before, parameters—

such as the phase of the wave function, θ, as well as the superfluid density, νs—

should be slowly varying functions of position29 so that a thermodynamic approach

to the flow of superfluid atoms should be sufficient. In this sense, the average

potential energy V̄ (~r) is treated as such a thermodynamic function. Surely, not

much has been said about this potential as a whole, and some thermodynamics is

needed in order to delve further into the properties of this potential energy.

28These smallest of rings can be taken as Landau’s rotons.
29Exceptions include near a vortex core or at a boundary, such as a wall.
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In the treatment, this average potential energy should still be present when

the superfluid is at rest. So, if a reversible change is applied to this fluid, then

the First Law of Thermodynamics states that

dV̄ = TdS − PdV + µdN , (1.55)

where T is the temperature, S is the entropy, P is the pressure, V is the volume, µ

is the chemical potential, and N is the number of particles. These thermodynamic

parameters together provide information about the system itself. Notice that the

chemical potential is given by the relation

µ =

(
∂V̄

∂N

)
S,V

, (1.56)

where the subscripts S and V next to the parentheses refer to the reminder that

the entropy and volume are kept fixed upon taking this derivative relative to

particle number.

In order to obtain the total energy of the superfluid, the kinetic energy T must

also be considered, so that the total energy E is given by:

E = T + V̄ . (1.57)

Since superflow involves no dissipation, then the total energy in a reversible change

of the system will remain constant. So, if such a change from a state A to a state

B is performed, then using Equation 1.57 it is found that

0 = ∆E = ∆T +

[(
∂V̄

∂N

)(B)

S,V
−
(
∂V̄

∂N

)(A)

S,V

]
∆N . (1.58)

As a result,

∆T
∆N

= −
(
µ(B) − µ(A)

)
, (1.59)
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which implies that a change in kinetic energy of the superfluid is the direct re-

sult of a net flow of superfluid particles in response to an imbalance in chemical

potential. In this sense, the chemical potential for a fluid at rest describes the

potential energy per particle of the superfluid. Thus, for each superfluid atom,

a direct adaptation of Equation 1.54 for this result gives rise to the condensate

wave function to obey

i~
∂ψ

∂t
= − ~2

2m4

∇2ψ + µψ. (1.60)

Using Equation 1.53, one sees that:

i
∂ψ

∂t
= eiθ

(
−ψ0

∂θ

∂t
+ i

∂ψ0

∂t

)
,

and

∇2ψ = eiθ
{
∇2ψ0 − ψ0

(
~∇θ
)2

+ i
[
ψ0∇2θ + 2

(
~∇θ
)
·
(
~∇ψ0

)]}
.

Plugging these results into Equation 1.60, one finds:

~eiθ
(
i
∂ψ0

∂t
− ψ0

∂θ

∂t

)
=− ~2

2m4

eiθ
{
∇2ψ0 − ψ0

(
~∇θ
)2

+ i
[
ψ0∇2θ + 2

(
~∇θ
)
·
(
~∇ψ0

)]}
+ eiθµψ0.

This equation has both a real part and an imaginary part which decouple into

two separate equations. The real part reveals:

−~ψ0
∂θ

∂t
= − ~2

2m4

[
∇2ψ0 − ψ0

(
~∇θ
)2
]

+ µψ0

while the imaginary part reveals:

~
∂ψ0

∂t
= − ~2

2m4

[
ψ0∇2θ + 2

(
~∇θ
)
·
(
~∇ψ0

)]
.

Upon rearrangement of the real part and using Equations 1.14 and 1.20, and the

fact that the mass density of the superfluid component can be written as
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ρs = m4νs, (1.61)

one finds

~
∂θ

∂t
= −

(
µ+

1

2
m4v

2
s

)
+

~2

2m4

∇2
(√

ρs

)
√
ρs

. (1.62)

Furthermore, if the imaginary part is massaged a bit using Equations 1.14 and

1.20, it is found that:

∂ψ0

∂t
+

1

2
ψ0
~∇ ·~vs + ~vs ·

(
~∇ψ0

)
= 0,

so that since

~∇ψ0 =
1

2

~∇νs√
νs

and
∂ψ0

∂t
=

1
√
νs

∂νs

∂t

then it can be seen that

∂νs

∂t
+ ~∇ · (νs~vs) = 0. (1.63)

However, multiplying through by m4 in Equation 1.63 and defining the mass

current as

~js ≡ ρs~vs, (1.64)

the equation of continuity of the superfluid is then derived30:

∂ρs

∂t
+ ~∇ ·~js = 0. (1.65)

30Of course, in the absence of sources and sinks.
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In light of previous assumptions, if the superfluid mass density is treated as

a slowly varying function over macroscopic distances, the last term on the right-

hand side of Equation 1.62 can be neglected. Taking gradients of both sides of

this equation and using Equation 1.20, the local rate of change of the superfluid

velocity is then given by:

m4
∂~vs

∂t
= −~∇

(
µ+

1

2
m4v

2
s

)
. (1.66)

Noting that
1

2
~∇
(
v2

s

)
=

1

2

[
2
(
~vs · ~∇

)
~vs

]
=
(
~vs · ~∇

)
~vs,

then Equation 1.66 becomes

D~vs

Dt
≡ ∂~vs

∂t
+
(
~vs · ~∇

)
~vs = − 1

m4

~∇µ, (1.67)

where the operator D/Dt is called the material (or particle) derivative in fluid

mechanics31. Equation 1.67 is the equation of motion for the superfluid.

This superfluid equation of motion may be expressed in terms of the pressure

and temperature gradients as well. Recall from thermodynamics the Gibbs free

energy, defined by the relation

G ≡ E − TS + PV . (1.68)

31This derivative comes from elementary fluid mechanics. Fluid mechanics consists of two
perspectives: the particle (or Lagrangian) formalism and the field (or Eulerian) formalism. For
solving problems, the Eulerian description is the most useful, in which collections of particles
are described by some effective particle field. However, in describing the time evolution of a
fluid element in the field description one is effectively treating the fluid field as a particle. The
correct way to describe this evolution in the Eulerian framework is to introduce the material
derivative defined as:

D

Dt
=

∂

∂t
+ (~v · ∇)

where the first term describes the local rate of change of the fluid element, while the second term
describes how the fluid element changes from one spatial location to another (i.e., it describes
advection). Here, ~v is the velocity of the fluid element.
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Taking differentials of both sides of Equation 1.68 and using the First Law of

Thermodynamics, it is then found that

dG = µdN − SdT + VdP, (1.69)

from which it can be shown that

Nµ(P, T ) = G(N , P, T ). (1.70)

Achieving a change in µ upon keeping N fixed, Equation 1.70 reveals that

Ndµ =

(
∂G

∂P

)
N ,T

dP +

(
∂G

∂T

)
N ,P

dT, (1.71)

from which (upon use of Equation 1.69) it can be seen that

~∇µ =
V
N
~∇P − S

N
~∇T. (1.72)

Upon noting that Nm4/V = ρ is the total fluid density and

s ≡ S

Nm4

(1.73)

is the specific entropy (i.e., entropy per unit mass), then Equation 1.67 reads

D~vs

Dt
= − 1

m4

~∇µ = −1

ρ
~∇P + s~∇T. (1.74)

So far only the equations that govern the superfluid have been considered. Of

course, in this two-fluid hydrodynamics, the normal-fluid component must also

be factored into the mix. The total mass current (containing both superfluid and

normal-fluid components) is given by

~j = ρs~vs + ρn~vn, (1.75)
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and the total density is given by Equation 1.9. By the principle of the conservation

of mass, it is known that ~j and ρ must necessarily satisfy a continuity equation:

∂ρ

∂t
+ ~∇ ·~j = 0. (1.76)

Furthermore, the normal fluid is the component that carries the entropy in

the fluid. Of course, entropy may be generated by the inherent viscosity in the

normal component. However, if the velocity of the normal fluid is kept low, then

this entropic contribution is negligible. Therefore, in this low-velocity limit32, a

continuity equation for the entropy may also be written down, since the total

entropy of the system is conserved due to the reversible nature of the normal-fluid

and superfluid flow in this limit. Noting that the entropy density is given by ρs

and, thus, the entropy current density is given by ρs~vn (since the normal fluid

carries the entropy), then the equation for the conservation of entropy reads:

∂ (ρs)

∂t
+ ~∇ · (ρs~vn) = 0. (1.77)

The final piece of the puzzle is to discuss how the mass-current gets accelerated.

In the low-velocity limit, a Navier-Stokes equation may be employed33. If it is

assumed that the flow of the liquid is incompressible (i.e., the normal-fluid and

superfluid densities do not depend on position), then

D

Dt
(ρs~vs + ρn~vn) =

D~j

Dt
= −~∇P, (1.78)

which qualitatively states that gradients in pressure dictate a change in the mass-

current flow properties.34

32If this limit is not taken, then one must also be concerned about thermal dissipation due to
viscosity, which occurs at a rate proportional to ~∇

(
v2ν
)
, with ν the total number density.

33Navier-Stokes equations arise from applying Newton’s Second Law to a fluid element in
order to describe the time evolution of flow. Accelerations of such flows are given by pressure
gradients.

34If the low-velocity limit was not taken, then one would need to include thermal losses due to
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In summary, the following four equations describe the two-fluid hydrodynamics

of He II in the low-velocity limit:

D~vs

Dt
= − 1

m4

~∇µ (1.79a)

= −1

ρ
~∇P + s~∇T (1.79b)

D

Dt
(ρs~vs + ρn~vn) = −~∇P (1.79c)

∂ (ρs)

∂t
+ ~∇ · (ρs~vn) = 0 (1.79d)

∂

∂t
(ρs + ρn) + ~∇ · (ρs~vs + ρn~vn) = 0. (1.79e)

1.8 Sound Modes in Superfluid Helium

The interplay between the normal-fluid and superfluid components of He II leads

to rather exotic types of sound waves. In this section, the wave equations for first,

second, and third sound will be developed from the Hydrodynamic Equations

1.79 obtained in Section 1.7. The existence of fourth and fifth sound will also be

discussed, but without much rigor.

To begin, it is fitting to extract a more useful form for Equations 1.79b and

1.79c. Assuming low-enough velocities—in order to avoid dissipative terms as

well as nonlinear turbulence corrections—multiplying through by ρs in Equation

1.79b, results in the following relation:

ρs
D~vs

Dt
= −ρs

ρ
~∇P + ρss~∇T. (1.80)

Subtracting this relation from Equation 1.79c, a similar equation is obtained for

(essentially) the normal fluid:

the viscous nature of the normal fluid. In this case, a term of the form ηn∇2~vn must be added
to the right-hand side of Equation 1.78. Here, ηn represents the normal-fluid viscosity.
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ρn
D~vn

Dt
= −ρn

ρ
~∇P + ρss~∇T. (1.81)

In deriving the first- and second-sound modes, nonlinear effects are neglected.

Thus, the appropriate approximations are made for the application of linear acous-

tics35 and the advective term in the material derivative of the normal-fluid and

superfluid velocities is thrown away (as this term is inherently nonlinear). So, the

following sets of equations define the beginning of the derivation of these sound

modes:

ρs
∂~vs

∂t
= −ρs

ρ
~∇P + ρss~∇T (1.82a)

ρn
∂~vn

∂t
= −ρn

ρ
~∇P + ρss~∇T (1.82b)

∂ (ρs)

∂t
+ ~∇ · (ρs~vn) = 0 (1.82c)

∂

∂t
(ρs + ρn) + ~∇ · (ρs~vs + ρn~vn) = 0. (1.82d)

In what follows, the assumption of incompressibility will be relaxed, because den-

sity gradients will actually play a crucial role in deriving the desired sound modes.

Adding Equations 1.82a and 1.82b, upon neglecting terms like ~vi(∂ρi/∂t) (for

i = s, n)36 so that

ρi
∂~vi

∂t
=
∂ (ρi~vi)

∂t
− ~vi

∂ρi

∂t
≈ ∂ (ρi~vi)

∂t
, (1.83)

this approximation scheme then leads to

35In other words, one writes ρ = ρ0 + δρ, s = s0 + δs, P = P0 + δP , T = T0 + δT where
δx� x.

36Since

~vi
∂ρi
∂t

= ~vi
∂(ρ0i + δρi)

∂t
= ~vi

∂ρ0i
∂t

+ ~vi
∂(δρi)

∂t
= ~0 + ~vi

∂(δρi)

∂t
= ~vi

∂(δρi)

∂t

is negligibly small for the chosen approximation scheme.
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∂~j

∂t
= −~∇P. (1.84)

Taking divergences of both sides of Equation 1.84 and substituting in the mass-

conservation equation (Equation 1.82d), one finds:

∂2ρ

∂t2
= ∇2P. (1.85)

Now, to make further progress, solve for ~∇P in Equation 1.82a and plug into

Equation 1.84 to obtain
∂~j

∂t
= ρ

∂~vs

∂t
− ρs~∇T.

Then, upon utilizing the approximation in Equation 1.83, it is found that

ρn
∂

∂t
(~vn − ~vs) = −ρs~∇T. (1.86)

Notice from Equation 1.86 that a temperature gradient is able to set up relative

motion between the two fluids that changes in time. Furthermore, combining

Equations 1.82c and 1.82d, and neglecting second-order terms in the same way as

done before, one also arrives at the equation:

~∇ · (~vn − ~vs) = − ρ

ρss

∂s

∂t
, (1.87)

which, upon combination with Equation 1.86 results in the following equation:

∂2s

∂t2
=
ρs

ρn

s2∇2T. (1.88)

If one now expresses the pressure and temperature as functions of entropy and

density

dP =

(
∂P

∂ρ

)
s

dρ+

(
∂P

∂s

)
ρ

ds
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dT =

(
∂T

∂ρ

)
s

dρ+

(
∂T

∂s

)
ρ

ds,

then Equations 1.85 and 1.88 become:

∂2ρ

∂t2
=

(
∂P

∂ρ

)
s

∇2ρ+

(
∂P

∂s

)
ρ

∇2s (1.89a)

∂2s

∂t2
=
ρs

ρn

s2

[(
∂T

∂ρ

)
s

∇2ρ+

(
∂T

∂s

)
ρ

∇2s

]
(1.89b)

which may be solved upon looking for plane-wave solutions of the form:

ρ = ρ̄+ ρ′eiω(t−z/c) (1.90)

s = s̄+ s′eiω(t−z/c) (1.91)

Here, the wave has been chosen to propagate in the z direction37, with c the speed

of propagation and ω the angular frequency of propagation. Defining

c2
1 ≡

(
∂P

∂ρ

)
s

(1.92a)

c2
2 ≡

ρs

ρn

s2

(
∂T

∂s

)
ρ

(1.92b)

then, upon plugging in the plane wave solutions into Equations 1.89, the following

equations, which must be solved simultaneously, are obtained:

[(
c
c1

)2

− 1

]
ρ′ −

(
∂P
∂s

)
ρ

(
∂ρ
∂P

)
s
s′ = 0(

∂T
∂ρ

)
s

(
∂s
∂T

)
ρ
ρ′ −

[(
c
c2

)2

− 1

]
s′ = 0

, (1.93)

37Transverse waves cannot propagate in a fluid because there simply is no mechanism for
driving motion perpendicular to the propagation of the wave. Indeed, in the case of ordinary
sound waves propagating in air, it is absolutely nonsensical to imagine such a sound wave
propagating in a particular direction but creating density fluctuations in the perpendicular
direction. Thus, a direction is simply picked for the propagation of the sound wave in the liquid
helium.
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or, in matrix form:


[(

c
c1

)2

− 1

]
−
(
∂P
∂s

)
ρ

(
∂ρ
∂P

)
s(

∂T
∂ρ

)
s

(
∂s
∂T

)
ρ
−
[(

c
c2

)2

− 1

]

 ρ′

s′

 =

 0

0

 . (1.94)

A solution exists for Equation 1.94 if and only if

det


[(

c
c1

)2

− 1

]
−
(
∂P
∂s

)
ρ

(
∂ρ
∂P

)
s(

∂T
∂ρ

)
s

(
∂s
∂T

)
ρ
−
[(

c
c2

)2

− 1

]
 = 0. (1.95)

Performing this determinant, one finds:

[(
c

c1

)2

− 1

][(
c

c2

)2

− 1

]
=

(
∂P

∂s

)
ρ

(
∂ρ

∂P

)
s

(
∂T

∂ρ

)
s

(
∂s

∂T

)
ρ

. (1.96)

Recognizing that the right-hand side of Equation 1.96 (with CP and CV the specific

heat capacities at constant pressure and constant volume, respectively) is given

by (
∂P

∂s

)
ρ

(
∂ρ

∂P

)
s

(
∂T

∂ρ

)
s

(
∂s

∂T

)
ρ

=
CP − CV
CP

,

and the fact that these specific heats are very nearly equal to each other in He II,

one may write:

[(
c

c1

)2

− 1

][(
c

c2

)2

− 1

]
≈ 0. (1.97)

As a result of Equation 1.97, it can then be seen that what was defined as

c1 and c2 in Equations 1.92 are in fact the sound speeds that solve the matrix

equation (Equation 1.94). Incidentally, the first-sound speed is given by

c1 =

√(
∂P

∂ρ

)
s

, (1.98)
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while, upon recognizing the fact that

CP = T

(
∂s

∂T

)
ρ

,

the second-sound speed is given by

c2 =

√
ρs

ρn

Ts2

CP
. (1.99)

First sound corresponds to the propagation of waves as seen in sound waves

(namely, pressure and density oscillations in the fluid). This sound mode has

the normal-fluid and superfluid components oscillating in phase. However, second

sound is vastly more exotic, because it is actually a temperature wave that relies

on the superfluid to normal-fluid ratio. Incidentally, second sound is killed at the

lambda point due to the fact that the superfluid density goes to zero when ap-

proaching Tλ from below (i.e., from lower temperatures). This sound mode has the

normal-fluid and superfluid components oscillating out of phase. Because of this

and the consequences of Figure 1.7, where there is a net inflow of superfluid, the

temperature is lower; where there is a net outflow of superfluid, the temperature

is higher. Indeed, it is because of this that second-sound is actually a temperature

wave in the bulk fluid. This property is rather extraordinary, as classical fluids

cannot support temperature waves due to the diffusive nature of heat transport

in such systems. The existence of second-sound is but one of the many properties

of superfluidity that truly showcases liquid helium’s nature as a quantum fluid.

There also exist more exotic sound modes. Fourth sound is a manifestation of

first sound when the normal fluid is completely immobilized. This may be done

by exciting pressure oscillations in He II inside a container filled with a packed

powder. [49] The minuscule capillaries present in the packed powder only allow

for oscillations in the superfluid fraction, while the normal-fluid fraction remains

viscously clamped. The speed of fourth sound is given by
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c4 =

√
ρs

ρ
c1. (1.100)

Again, the fourth-sound speed goes to zero at the λ point due to the presence of

the superfluid fraction in Equation 1.100, which itself goes to zero at Tλ.
38 Fifth

sound is what fourth sound becomes when pressure oscillations become forbidden

(see Footnote 38). Its speed is given by:

c5 =

√
ρn
ρ
c2. (1.101)

Fifth sound can be detected if a cell is only partially filled with helium. [50] Notice

that the fifth-sound speed also goes to zero since the second-sound speed goes to

zero upon approaching Tλ. Figure 1.17 summarizes how these sound speeds vary

as functions of the temperature. For further discussion of first, second, fourth,

and fifth sound, see Reference [51].

The final sound mode of interest is third sound, which solely involves the

propagation of the superfluid fraction in a thin film of liquid helium adsorbed onto

a substrate. The simplest case of third-sound propagation occurs on a completely

flat substrate. A schematic of the mechanism behind third sound propagation is

displayed in Figure 1.18.

The normal fluid remains viscously clamped to the substrate because the film

thickness of the helium film is much, much smaller than the viscous penetration

depth. As a result, only the superfluid fraction is allowed to move. However, as

mentioned in the latter part of Section 1.6, a superfluid film can only be supported

once a critical film thickness is achieved at a given temperature. In other words,

in the ideal case of a flat substrate with a static flow, the temperature of the

38Actually, this is not quite correct. The fourth-sound speed is given by

c4 =

√
ρs
ρ
c21 +

ρn
ρ
c22,

so that it also depends on the normal-fluid fraction and the speed of second sound.
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Figure 1.17: Speeds of the various sound modes of He II as functions of

the temperature. Note that all of the sound modes go to zero at the λ point

except for first sound. However, there is a kink in the first-sound speed at Tλ,

which is a signature of the continuous phase transition that takes place in the

bulk fluid, as the discontinuity occurs when one more derivative is taken with

respect to the temperature when approaching the transition temperature. The

speed of second sound is dashed below about 0.8 K because it is unobservable in

practice. [51]
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Figure 1.18: Third-sound propagation in a thin film of helium adsorbed

on a flat substrate. The superfluid component is the only component that

can move, since the normal component is viscously clamped to the substrate. In

other words, the viscous penetration depth is much larger than the film depth, so

that propagation of the normal fluid parallel to the substrate is forbidden. It is

assumed that ζ � d. The mean temperature is denoted Tm, and the temperature

at film thickness ζ is Tm + T ′.
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film must be below TKT for the particular film thickness under question if such a

surface wave is to be detected.39

Recall from classical fluid mechanics that a shallow-water wave has a propaga-

tion speed that depends only on the gravitational acceleration (i.e., the derivative

of the gravitational potential with respect to distance), g, and the depth of the

water, d. When the wavelength of the surface wave becomes appreciably small,

surface-tension effects must also be considered, so that the speed of the shallow-

water wave becomes

cw =

√
g

k
+ kσwρw tanh(kd), (1.102)

where k = 2π/λ is the wave number, σw is the surface tension of water, and ρw is

the (mass) density of water. In the long-wavelength limit, one can Taylor-expand

the hyperbolic-tangent function and ignore the surface-tension contribution. In

such a case, Equation 1.102 gets vastly simplified:

cw =
√
gd. (1.103)

For superfluid helium, Equation 1.103 gets slightly modified in this long-

wavelength limit due to a necessary dependence on the superfluid fraction. It

has been pointed out that in a thin film of helium, it is not the gravitational force

that acts as the restoring force, but rather the forces responsible for the formation

of the film. [52] The primary potential that is responsible for thin films of helium

is the van der Waals (vdW) potential. For a flat substrate, the vdW force (per

unit mass) is given by

39When finite-frequency and/or finite-size effects are prevalent, a signal can be obtained above
TKT due to the rounding of the transition. Under these circumstances, the temperature must
be below Tc, which is the transition temperature for the presence of a superfluid fraction in the
film.
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Fvdw =

[
∂

∂ζ

(
− α
ζ3

)]
ζ=d

, (1.104)

where the normal direction to the substrate is labeled by ζ. Here, α is a constant

that is dependent on the substrate material. The larger the value of α, the stronger

the vdW bond between the helium atoms and the substrate. Furthermore, the

superfluid fraction gets tacked on to the adaptation of Equation 1.103 for third

sound in superfluid helium.

Although such an adaptation seems simple enough, the actual third-sound

wave is not only a thickness wave, but also a temperature wave. Just as in

the discussion of fourth sound before, in regions where there is a net inflow of

superfluid (i.e., where there is a mound in Figure 1.18), the local temperature

is lower because of the consequences of Figure 1.7.40 However, where there is a

net ouflow of superfluid (i.e., where there is a valley in Figure 1.18) in a specific

region, then the local temperature is higher because the superfluid fraction in that

region is lower. Thus, the peaks of the thickness wave are cold while the troughs

of the wave are hot. This is why third sound is also a temperature oscillation.

Not only is third sound different than shallow-water waves in this manner, it

is also different in the sense that there is not only a restoring force due to just

pressure differences, but also a restoring force due to thermal gradients. As can

be seen from Figure 1.18, where the superfluid flows the temperature is actually

colder. This is very different from a classical fluid, which will typically flow from

cold regions to hot regions (as dictated by the Second Law of Thermodynamics).41

This peculiarity in the superfluid flowing from hot regions to cold regions is known

as the thermomechanical effect. However, note that this in itself also contributes

40Remember, the normal fluid is viscously clamped, so that a local maximum in the thickness
of the film necessarily contains more superfluid than a local minimum. With a larger superfluid
fraction, the temperature is lower in such mounds.

41However, there is no inherent violation of this law, as the superfluid carries no entropy, so
that such a process is ideally a reversible process.
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to a restoring force, as mounds will eventually turn into valleys with the outflow

of the superfluid fraction from a mounded region.

Moreover, at temperatures where the vapor pressure is appreciable (typically

around or above 1 K), there is an inherent attenuation of the wave. Indeed, note

that since the valleys in Figure 1.18 are the hottest region in the film, there is

more evaporation of the film from those regions. Also, since the peaks are the

coldest regions, there is a heightened amount of condensation that takes place

there. This will cause a decay in the sound propagation.

So far, the discussion about third sound has been strictly qualitative. To

make things more quantitative, a derivation of this sound speed is desired. The

derivation follows the work of Atkins [49]. It will be assumed that the thickness

oscillations are small amplitude42 so that nonlinear effects are negligible. The

picture that will be used in this derivation is Figure 1.18, in which the chosen

coordinate system has the superfluid propagating along the x axis. The motion

will be symmetric at any value of y, so that, for the sake of convenience, the

analysis of fluid elements will assume a unit length in that direction.

The rate of evaporation of the film, dm/dt = ṁ, is given (in units of g/s)

by [53]

ṁ = ε

√
M4

2πRT

(
dP

dT

)
v.p.c.

T ′ = kT ′, (1.105)

where ε ≈ 1 is the evaporation coefficient, M4 is the molecular mass of 4He,

R = 8.31 × 107 erg/mol ·K is the gas constant, and (dP/dT )v.p.c. is the slope of

the 4He vapor-pressure curve. Here, the factor k has absorbed everything but the

temperature fluctuation T ′, which is taken relative to the mean temperature Tm.

Upon looking at the slab of infinitesimal length dx and including the evaporation

rate ṁ, the conservation of mass requires

42In other words, the deviation in the thickness is much, much smaller than the film thickness.
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ρ
∂ζ

∂t
+ ρsd

∂vsx

∂x
+ kT ′ = 0, (1.106)

where, on the left-hand side, the first term looks at the variation of the film

thickness as a function of time, while the second and third terms describe that

thickness variation, respectively, as being caused by a flux of superfluid entering

or exiting the region and by a loss or gain of film from evaporation or condensation

effects. Moreover, because of the temperature difference across regions, a heat-

flow analysis must also be done on the slab. With C the specific heat of the fluid

and L the specific latent heat of vaporization, this analysis leads to

ρCd∂T
′

∂t
− ρsd

∂vsx

∂x
sT + kLT ′ = 0, (1.107)

where, on the left-hand side, the first term looks at temperature variations in

the slab as a function of time, while the second and third terms describe that

temperature variation, respectively, as being caused by variations of the superfluid

fraction as the supercurrent flows into or out of a region and by heat flow into or

out of the film as the film evaporates or undergoes condensation. Finally, because

of the free surface in the film, there is a pressure-release boundary condition that

provides a description of the pressure change at a point within the film as

δP =

(
dP

dT

)
v.p.c.

T ′ + ρFvdwζ = γT ′ + ρFvdwζ, (1.108)

where, on the right-hand side, the first term looks at the pressure change on

account of the changing temperature (using the vapor pressure curve γ), while

the second term comes from the vdW potential set forth by the substrate.

From the linearized hydrodynamic equation describing the acceleration of the

superfluid component (Equation 1.82a), one finds:
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∂~vs

∂t
= −1

ρ
~∇P + s~∇T

∂vsx

∂t
= −1

ρ

∂(δP )

∂x
+ s

∂T ′

∂x

= −1

ρ

(
γ
∂T ′

∂x
+ ρFvdw

∂ζ

∂x

)
+ s

∂T ′

∂x
,

where the third line follows from using Equation 1.108. Rearranging the terms in

this line, the time variation in the superfluid velocity may be written as

∂vsx

∂t
= −Fvdw

∂ζ

∂x
+

(
s− γ

ρ

)
∂T ′

∂x
. (1.109)

Assuming plane-wave solutions43 for vsx, ζ, and T ′, and plugging this ansatz into

Equations 1.106, 1.107, and 1.109, the phase speed of the traveling wave, known

as the third-sound speed c3 ≡ ω/k, must then satisfy the following equation:

c2
3 =

ρs

ρ
Fvdwd+

ρs

ρ
sT

[(
s− γ

ρ

)
− ikFvdw

ρω

C − i kL
ρωd

]
.

Although the bulk fluid density ρs has consistently been used throughout this

derivation, it is more correct to consider the average of this superfluid density

across the film thickness 〈ρs〉. So, the substitution ρs → 〈ρs〉 is made, as this takes

into account nonuniform variations of the superfluid density near the boundaries

(due to healing effects), as well as the fact that the entire film is not a liquid. Tak-

ing the evaporation coefficient ε = 1, then the imaginary terms in the numerator

and denominator are large compared to the real terms if the angular frequency

ω > 103 rad/s. Under such circumstances, the third-sound speed becomes

43In other words, for Ξ = Ξ(x), a traveling wave solution of the form

Ξ(x) = Ξ0e
i(kx−ωt).
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c2
3 =
〈ρs〉
ρ
Fvdwd

(
1 +

sT

L

)
. (1.110)

In this study, the entropy term in Equation 1.110 is small in the range of

temperatures considered. For example, at 1.5 K, sT/L ≈ 0.01 and decreases

with decreasing temperature. It is effectively zero around 1 K since the superfluid

fraction carries no entropy and is practically unity at such temperatures, as shown

in Figure 1.7. Thus, the third-sound speed for a helium film adsorbed on a flat

substrate at sufficiently low temperatures is given by

c2
3 =
〈ρs〉
ρ
Fvdwd. (1.111)

The film-thickness-averaged superfluid density, 〈ρs〉, may be written in terms

of the bulk density, ρs [54] as

〈ρs〉 = ρs

(
1− Ddead

d

)
, (1.112)

where Ddead is known as the dead layer, which is the part of the film that is not

superfluid. Indeed, the pressures for the initially adsorbed helium atoms are larger

than 25 atm on account of the dependence of the vdW potential on the cube of the

distance from the substrate. Thus, the helium nearest to the substrate should be

in its solid state, so that there is certainly no superfluid present there. Moreover,

because of healing effects, the macroscopic wave function describing the superfluid

cannot possibly reach its maximal value from a boundary where it must be zero

due to continuity constraints in the wave function and its spatial derivative. As

a result, upon transitioning from the vapor above and the solid below the liquid

film, a finite length must be traversed in order to even be able to deposit a nonzero

superfluid fraction within the liquid film. Above the dead layer, the superfluid

density can safely be taken as the value it would assume within the bulk fluid, so
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long as the helium film is not substantially compressed. [55] So, the third-sound

speed in Equation 1.111 can be written as

c2
3 =

ρs

ρ
Fvdw(d−Ddead). (1.113)

Since third-sound is a wave in a thin film of superfluid helium, it can also be

used as a probe to observe the KT transition. [42] Figure 1.19 shows third-sound

data taken on a flat surface using the substrate CaF2, which has been adapted

from data in Reference [56]. Because it is a thickness/temperature wave, third

sound can be excited mechanically or thermally. Chapter 2 will elaborate more

on these techniques. In Figure 1.19, the detection was made using a time-of-flight

method, where a heat pulse results in the excitation of a signal which is then

detected on the other end using a receiver. Knowing the time difference between

the source signal and the detected signal, as well as the distance between the

source and the receiver, allows for the determination of the sound speed. Note

that the hash-marks in the figure essentially represent an abrupt drop in the

superfluid fraction, where there was no substantial rounding in the transition.

Finite-frequency effects are still prevalent in the measurements, but do not result

in a gradual drop since the signal was probably buried in the noise due to the

attenuation of vortices as well as desorption effects. However, note the flat trend of

the sound speed immediately after the hash-mark of a given plot. This represents

the finite-frequency broadening to some extent, since if the superfluid fraction

reached its maximum value at the transition point, the sound speed would have

decreased from the signal onset on account of the drop in the vdW restoring force

with added film. A rounded transition can be seen in Figure 3.5, which is primarily

due to finite-size effects on the Multi-wall Carbon Nanotube (MCNT) powder.
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Figure 1.19: Experimental observation of third-sound on the flat sub-

strate of CaF2. The plot is taken from data in Reference [56]. There is no

observed signal at temperatures below the hash-marks for each plot of c3 as a

function of the film thickness, where 1 layer ≈ 3.6 Å. Note that the higher the

temperature, the larger the initial film thickness required to form a superfluid

layer. Moreover, the larger the temperature, the smaller the sound speed since

the film is thicker and, thus, the vdW restoring force is smaller.
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CHAPTER 2

Experimental Setup

An acoustical investigation was undertaken to observe the onset of superfluidity on

Multi-wall Carbon Nanotubes (MCNTs). The third-sound signal was excited in a

cavity packed with a powder of these nanotubes. The measurements were made on

two separate cryostats using the same cell. The high-temperature cryostat made

use of liquid 4He as the refrigerant, where the liquid helium was dumped into a

dewar and then pumped on by a large mechanical pump to reduce temperatures

down to a baseline of 1300 mK. The low-temperature cryostat made use of a

dilution refrigerator which circulated a 3He-4He mixture to operate between 150

mK and 800 mK. The forthcoming sections will describe details regarding the

experimental cell, the employed gas-handling systems, as well as the propagation

and detection of third sound in this study.

2.1 The Experimental Cell

Figure 2.1 presents the components used to construct the vacuum-sealed cell which

was used as a third-sound, annular (racetrack) resonator. Initially the nanotubes

were packed directly into the copper racetrack without the Plexiglas housing. An

experimental run at 1300 mK on this system resulted in no detection of a third-

sound signal until sufficiently thick films were formed, nearing the saturated vapor

pressure. It was believed that the third-sound temperature wave became diffusive

in its macroscopic propagation on account of the powder being in direct thermal

contact with the copper, and thus creating a thermal short through the thermally
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conducting nanotubes. As a result, a Plexiglas insert was machined in order to

shield the nanotubes from the copper. Although temperature equilibration would

be an issue for short time scales with high vacuum within the cell, this should not

have been a major issue for the employed method of taking data in this study,

with equilibration times on the order of tens-of-minutes to an hour—particularly

when a sufficient helium film had been deposited.

The instrument cap, shown in Figure 2.1c, houses grooves for bolometers—

which sense the oscillating temperature associated with the third-sound wave—

and heaters—which excite the temperature wave. Two specific bolometers were

used: one was a 200-Ω Allen-Bradley carbon resistor, while the other was a 33-Ω

variety. The 200-Ω resistor has a very strong temperature coefficient, rising from

about 2 kΩ at 4.2 K to around 100 kΩ at 1300 mK. This provided the bolometer

with a very steep dV/dI profile, allowing for very sensitive detection of resistance

changes due to temperature fluctuations administered from the resonating third-

sound standing wave. The amplitude of the temperature wave is on the order of

10 - 100 µK. [57] In the range of temperatures over which the data was taken—150

- 1300 mK—the 200-Ω bolometer provided great sensitivity, with a dV/dI profile

that never saturated.

The bolometers were immobilized within the grooves of the instrument cap

using epoxy1, and the side of each bolometer facing the nanotube powder was

sanded off to expose the carbon element. The response of each bolometer was

monitored by biasing it with a 1-µA current from a voltage-divided battery. The

outputted voltage oscillations were then run through a preamplifier2, set to a gain

of 5000, followed by a low-noise filter3, and then entered a data-acquisition box

which digitized the signal to then analyze with LabView. The LabView program

performed a Fast-Fourier Transform (FFT) on the incoming time-domain signal,

1Emerson and Cuming Stycast 1266.
2Stanford Research Systems Model SR560 Low-Noise Preamplifier
3Stanford Research Systems Model SR650 Dual-Channel Filter
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.1: Cell components and construction. (a) Copper racetrack. (b)

Plexiglas racetrack that houses the packed nanotube powder. The i.d. of the gap

is 0.814”, the o.d. is 1.776”, and the depth is 0.190”. (c) Nanotube instrument

cap. The grooves at 0 ◦ and 90 ◦ house bolometers, while the ones at 180 ◦ and 270 ◦

house heaters. (d) Plexiglas racetrack in the copper racetrack. (e) Instrument cap

placed on top of the racetrack assembly. (f) Packed MCNTs in Plexiglas racetrack.

The powder is packed in a single helping. The depth of the powder volume is

0.126”. The plastic wrap is taken off when installed. (g) Cell enclosure assembly.

The large holes are for soft-soldering hermetically sealed electrical crowns, while

the smalle hole is for hard-soldering a 1/16” SS fill line. (h) The assembled cell.
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which it then converted to a frequency-domain signal for observing resonance

peaks in the third-sound wave.

The two remaining grooves on the instrument cap were made into heaters. Two

leads snapped off from a resistor were secured with epoxy and made to protrude

slightly below the groove. Carbon paint4 was then used to connect the leads to

form a resistor with typically 0.5 - 2.0 kΩ of resistance at room temperature.

Since nanotubes also have the capability of electrical conduction, precautions

were taken to insulate the heaters and the bolometers from shorting out to the

nanotubes, particularly since these elements were made flush with the instrument

cap facing the nanotubes. The proposed solution to this problem was to use

three stacked nuclepore filters5 to just cover each of the grooves. These filters had

a nominal pore diameter of 0.2 µm. The barrier of filters would allow contact

between the helium adsorbed on the nanotube powder and the helium coating

the pores in the filters, while electrically insulating the heaters and bolometers

from the MCNT powder. The contribution to the third-sound signal coming from

the filters—which themselves could propagate a third-sound signal and have been

extensively studied under such circumstances [58, 59]—would be minimal, both

because of the negligible amount of helium coating the porous membranes, and

because a signal coming from the pores within these membranes would have to

be detected over the length of the carbon element within the bolometer (which

cannot happen since the bolometer is not a point detector). Thus, the detected

signal must be a result of third-sound resonances within the nanotube powder.

Since third sound is a temperature wave in the superfluid helium film, one

standard method of excitation is to make use of a heater pulse. The classic method

would be a time-of-flight measurement [56], where a heater pulse is generated and

then detected using a bolometer. Knowing the dimensions of the flight path

4SPI brand carbon conductive paint (colloidal graphite in isopropanol).
5Whatman Nuclepore polycarbonate track-etched membranes.
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and the time difference between the generated and detected pulses would then

warrant a calculation of the speed. Another method would be to run an AC

current through the heater and then sweep in frequency in order to find the

resonances. [60] This is a method that was employed in the experiments performed

on the MCNT powder; however, there is a drawback to the use of a heater. On

the one hand, a larger input current would certainly result in a larger-amplitude

signal, which is desirable for sensitively detecting with the use of a bolometer.

However, putting in too much of a current comes at the cost of possibly boiling off

the film, proving to be detrimental to the detection of the superfluid onset. Being

sensitive to the onset is already made difficult due to the attenuation put forth by

the unbinding of the vortex-antivortex pairs at the transition temperature. [38] As

such, inputting extra dissipation in the form of film desorption from the excitation

of the third-sound wave makes it difficult to sensitively detect the onset using this

heater-driven method. [49, 53,61,62]

Although heater drive was used occasionally in the excitation of third-sound,

the primary method of excitation—particularly in the vicinity of the onset region—

was purely mechanical. Two methods of mechanical excitation were employed.

The first method was solely employed on the high-temperature system (see Sec-

tion 2.3 for further details regarding this system), which was used to study the

adsorbed film at 1300 mK. The experimental cell, in Figure 2.1h, was rigidly

clamped to a cryostat that was inserted into a dewar. The cryostat’s top flange

was bolted to the bolt circle at the neck of the dewar. Thus, there was a mechan-

ically rigid connection between this flange and the cell. To induce the thickness

wave in the film, the flange was lightly and repeatedly hit using a hammer. The

vibrations induced on that topmost flange put forth a free oscillation that ran

through the various rigid tubes feeding electrical and gas lines to the very bottom

of the cryostat. Eventually these vibrations made the cell oscillate at the bottom

of the cryostat, inducing the third-sound resonance. The necessary frequencies
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were present in these free oscillations as dictated by the Fourier decomposition of

a pulse. In this sense, a frequency “sweep” was performed on the cell, and the

resonance frequencies were then detected by the bolometer. When a resonance

in the heater signal was detectable, it was verified that the mechanical vibrations

were indeed exciting the third-sound wave, as both excitations were then used to

generate the same resonance response at a given film thickness.

The position on the flange at which the hammer was hit repeatedly made

a difference for the strength of the signal detected. For instance, the standing-

wave structure may be induced in such a way that the bolometer may sit at a

node. Moreover, the placement of the hits may not be generating a large-enough

response in the amplitude of the free oscillations running to the experimental cell.

Thus, on the basis of trial and error, some sweet spots were determined to better

investigate the signal. However, exciting the wave from different spots on the top

flange made no marked difference for the resonant frequency of the standing-wave.

As can be imagined, exciting the wave in this manner was not perfect. Indeed,

this method of excitation was certainly not localized and did tend to generate stray

resonances. These resonances were a combination of mechanical resonances from

within the cryostat, as well as microphonics from the jiggling of the various wires

running down to the experimental cell. Since the third-sound signal depends on

temperature and the adsorbed helium film thickness, it was easy to filter the real

signal from such stray signals, as these stray signals were static and rarely shifted

in frequency. Sometimes the stray signals would be in the way of the third-sound

signal as it moved in frequency as a function of temperature or film thickness.

However, the amplitude of the stray signals was usually much smaller than the

amplitude of the third-sound resonance, allowing for the proper separation of the

real signal from the fake ones. This separation was made even clearer due to the

relatively large quality factor, Q, of the third-sound resonance in comparison to

the stray ones.
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Although this method was very useful for investigating the resonance response

of the superfluid film at high temperature, it was useless for lower temperatures.

When running the systems at these temperatures with the help of a dilution

refrigerator6, there was no resonance response whatsoever from using this tech-

nique, partly because the cryostat/dewar assembly was held up using a vibration-

isolation system, making it more difficult to focus the free oscillations to move

through the cryostat. Moreover, ramping up the hitting strength was detrimental

to the fridge, as it typically resulted in the jumping around of the temperature at

the various stages at which the temperature was being monitored.

Because of this shortcoming, a more localized oscillation was employed to make

the cell the primary vibrating component on the cryostat. Thus, a magnet-in-coil

shaker (which will henceforth be called the ”shaker”) was made from scratch to

attach to the cell to help induce center-of-mass oscillations. These oscillations

would help produce the thickness waves in the helium film, similar to how a

trough of water can be oscillated to lead to the formation of shallow-water waves.

Figure 2.2 showcases the construction of this shaker. The coil was constructed

from superconducting copper wire wound separately on two ends of a machined

Plexiglas housing. The coils on either half of the shaker were epoxied to hold the

them in place. The superconducting nature of the coils was useful in the operation

of the shaker to help minimize the heat load on the cryostat while running a current

through the wires. The absence of coils in the region where the two halves join

(via a bolt circle) provided enough of a gradient in the solenoidal magnetic field

to drive the magnet that was also centered at the adjoining region of the two

halves. The magnet was held in place with two springs that were sandwiched on

either side of the magnet. On either end of the shaker was a threaded hole that

allowed for the screwing of a nylon screw that runs through SS bars that kept

the shaker tightly in place underneath the cell. These SS bars were threaded at

6The details of this system will be spared until Section 2.3.
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(a) (b)

(c)

Figure 2.2: Shaker construction and placement. (a) One half of the shaker.

The bolt circle allows for fusing the other symmetric half. The coil is made of

copper and the hole houses the Neodymium magnet and springs. (b) A close-up

of the shaker while mounted. The two halves keep two springs on either side of

the centered magnet compressed. (c) The shaker is attached using diametrically

opposite SS bars that get screwed into protruding 4-40 screws that are part of the

cell’s bolt circle (used to compress the cell’s indium O-ring). The nylon screws

on the left and right ends run through holes in each SS bar and get screwed into

threads on either end of each half of the shaker to keep it firmly in place.
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the top to screw into diametrically opposite, protruding 4-40 SS screws that were

part of the cell’s bolt-circle7. To summarize the components of the experimental

cell, a cross-sectional schematic of the experimental cell and shaker assembly is

presented in Figure 2.3.

The shaker was used in a run on the high-temperature system as a proof of

principle. It worked very well, particularly since the cooling power of this system

was practically unaffected by the drive amplitude of the magnet. This was mainly

because the shaker and the cell were in direct contact with the liquid helium bath,

which itself was at the operating temperature of the cell.8 However, there was a

considerable heat load on the dilution refrigerator, most likely due to the poor

thermal contact with the magnet within the shaker. The idea was to keep the

thermal conductivity between the cell and the shaker as low as possible in order to

inhibit the transfer of heat generated from the shaking of the magnet. However,

this also meant that the thermal gradient from the shaker to the cell (and other

parts of the refrigerator) would be large since cooling down the cell would not

necessarily cool down the shaker assembly. As such, there was an unmitigated

heat load on the cell. Moreover, barring heating from the actual vibration of

the magnet, the magnet itself would have taken a long time to cool down to low

temperatures in the first place. It was believed that part of the reason why the

base temperature was sufficiently above the known capability of the refrigerator

was due to this. Thus, even though having little thermal contact with the shaker

was helpful9, it also limited the cooling power of the refrigerator.

Often times—particularly near the superfluid onset, or at points in the third-

sound profile where there was considerable attenuation—the shaker was driven

7The cell’s bolt-circle uses 4-40 SS screws to merge the two copper pieces that form the
experimental cell together ((see Figure 2.1h), and compress the indium O-ring used to seal the
cell at low temperature.

8Sparing specific details to Section 2.3, this was achieved by pumping directly on the liquid
helium in the bath space using a high-throughput, high-speed pump.

9Mainly to reduce the heat load on the fridge and to provide it with a manageable rate of
heat transfer.
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Figure 2.3: Cross-sectional schematic of the experimental cell and shaker

assembly. The lowest-frequency mode in the resonator will be the whispering-

gallery mode that travels along the circumference of the cavity, as the azimuthal

degree of freedom has the largest dimension in the cavity. The shaker induces

center-of-mass oscillations in the cell, resulting in the sloshing of the helium film

to produce the third-sound wave mechanically. The heater may also be used for

excitiation by inducing a heat pulse to get the coherent temperature wave to begin

propagating across the film. The cell is made of copper, while the instrument cap

and the MCNT-powder housing are made of Plexiglas.
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at higher amplitudes to try to raise the third-sound signal above the noise for

proper detection. This proved detrimental to the cooling power of the fridge, as

the fridge assembly was rigidly connected to the cell assembly. Again, the rigid

connection was helpful as it was in very good thermal contact with the coldest

portion of the dilution fridge. However, this rigidity also led to the shaking of the

fridge components, which made the fridge operate in a manner that was certainly

not part of its list of immunities to external issues.

2.2 The Nanotube Powder

The nanotube powder was a MCNT powder purchased from Cheap Tubes, Inc.

High-quality nanotubes have been known to be rather expensive, particularly five

years prior to this report, which was when the samples were bought. Although

the nanotubes from this company were not particularly desirable based on the

lack of uniform orientation, vast diameter distribution, and overall quality of the

tubes10, this was not an issue for the experiments conducted in this study as they

were intended to observe the specific constraints that the atomic-scale, cylindrical

geometry would enforce on thin films of superfluid helium. In other words, as long

as the powder was overwhelmingly composed of cylinders, the results under these

experimental conditions would not have wavered much.

The manufacturer claimed that the powder consisted of MCNTs with outer

diameters ranging from 8 - 15 nm. As can be seen in the various SEM images

in Figures 2.4 and 2.5, the packed powder that was used consisted of many large

grains, ranging from 5 - 30 µm across, which persisted across macroscopic length

scales.11 The tubes were several microns long, although the exact lengths were

difficult to determine since the tubes were tangled and braided together while

10As would be the case for studying electronic transport properties, where the use of pristine,
highly oriented tubes is necessary.

11Only for the thickest films would this overarching grain structure play a role. More will be
said later in this report.
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(a) (b)

(c) (d)

Figure 2.4: SEM images with progressive zoom. (a) The MCNT powder.

Note the grain structure across macroscopic length scales. (b) A further zoom

into the region shown in image (a). (c) A zoom into a few of the grains present

in image (b). Note the spaghetti-like structure becoming apparent. (d) A further

zoom into the region between two specific grains.
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(a) (b)

(c) (d)

Figure 2.5: SEM images of the MCNT powder at the smallest length

scales. (a) An amorphous carbon impurity within the forest of tubes. (b) A

closer look at the forest. (c) A closeup of some tangled and wavy tubes. Note the

standing tube at the top left. Although it terminates, the other end’s termination

point is unclear. It is at least 0.5 µm in its protrusion. (d) A further closeup of

some bent and kinked tubes.
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exhibiting twists, kinks, and bends. Impurities were also identified12, some of

which were catalyst particles that were used in the production of MCNTs via the

Chemical Vapor Deposition (CVD) method. Other impurities were amorphous

collections of carbon atoms. Neglecting the presence of some catalyst particles

and amorphous carbon blobs, the powder was relatively clean and was almost

entirely composed of tubes.

Although the SEM (Scanning Electron Microscope) images provided some in-

sight into the structure of the powder, it was also necessary to characterize the

internal structure of the MCNTs. For this, TEM (Transmission Electron Micro-

scope) grids were utilized to take TEM micrographs of a sample of this powder.

The powder used on the grids was not sonicated, so that the images displayed

the powder in the form in which it was received from the manufacturer. It is

believed that the inherent damage resulted from the poor conditions in which the

tubes were grown in the manufacturing process. Figures 2.6 and 2.7 display some

of these images. From the sample of images compiled, the tubes were, contrary

to what was stated by Cheap Tubes, 10 - 30 nm in their diameter. It was also

determined from these micrographs that the tubes consisted of hollow cores and

that they did exhibit damaged outer layers. Although some of the images in the

TEM micrographs showcased both open- and closed-ended tubes, the distribu-

tion profile of the tubes with regard to the nature of their endcaps was totally

unclear.13

12The identification was done using Energy Dispersive X-Ray Spectroscopy (EDS). While
performing microscopy using electrons (such as in TEM), the primary electron beam can be
used to interact with atoms in the sample, causing shell transitions in the elements that are
being bombarded by the beam. From the energy characteristics of the emitted X-rays from
these shell transitions, the parent element may be determined uniquely. This is the essence of
the EDS technique.

13The author is grateful to B. Chris Regan and his graduate student, William (Billy) Hubbard,
who took a very generous amount of time and utilized their own resources to take these beautiful
SEM and TEM images of the powder used in this study.

85



(a) (b)

(c) (d)

Figure 2.6: TEM images detailing MCNT powder contents. (a) An amor-

phous carbon structure. (b) Copper nanoparticles stuck at the tip of a couple of

tubes, consistent with the tip-growth model of CVD MCNT production. (c) Some

MCNTs in closer detail. Using the length scale provided in the image, the tubes

have approximately a 15-nm o.d. and a 5-nm i.d. (d) The presence of wall dam-

age is evident upon viewing regions in the structure that exhibit lighter shades,

signifying a larger transmission coefficient in the detected electron beam.
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(a) (b)

(c) (d)

Figure 2.7: More focused TEM images of the MCNT powder detailing

wall and end structure. (a) Closeup characterizing the inner wall structure of

some tubes. Note the bamboo-joint structure. The number of walls vary along

the tube’s length. The left-hand tube is kinked and open. (b) An example of a

closed MCNT. The endcap is possibly a hemispherical buckyball. (c) An example

of an open tube with a narrowing diameter toward its tip. (d) Another example

of an open tube, severely disfigured at its end.
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2.3 Low-Temperature Systems

The experiments on the packed MCNT powder were performed using two sep-

arate low-temperature systems. This section will describe, in brief detail, the

gas-handling system used for metering helium into the experimental cell, as well

as the cooling mechanisms for the temperatures at which the sample was studied.

A gas-handling system was implemented to allow for filtering14 the 4He gas

through a Liquid Nitrogen (LN) cold trap, and for sensitively metering in shots of

the gas to be adsorbed onto the cold MCNT powder. Figure 2.8 is a schematic of

the gas-handling system used for this purpose. The helium gas was purified using

the LN trap twice: once while being pushed into the reserve keg of the system and

once more while being forced into the experimental cell. To have better control

over the number of helium atoms added to the experimental cell, the reserve keg

was closed off at valve C2. Valve C5 remained closed to prevent bypassing the

cold trap, while valve C8 remained closed unless cleaning of the accumulated cold

trap impurities was in order with the use of the shown pump assembly. The

diffusion pump was typically used not for the cleaning of the cold trap—which

was typically heated with heater tape to more easily desorb the impurities—but

rather to pump on the experimental cell. Prior to each run, the experimental

cell was flushed with helium gas multiple times to displace impurities, such as

air, from the MCNT powder. The flushing also served to check for leaks at room

temperature and 77 K to make sure the cell was properly sealed. The diffusion

pump would be put in series with the LN-cooled cold trap to prevent the backflow

of impurities from the pump (such as oil) from contaminating the cell and the

lines leading up to it.

Valve C7 would be opened to let helium into the experimental cell. The number

of helium atoms could then be obtained by using the ideal-gas law and knowing

14Unpurified helium gas from compressed-gas cylinders was driven into a reserve keg on board
the gas-handling system.
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the pressure difference in the tubes when a shot of helium was added to the

experimental cell. The pressure difference would be measured using the Wallace

& Tiernan pressure gauge attached to the system. With the presence of liquid

nitrogen cooling the cold trap, the effective volume of the gas-handling tubes (with

valves C3, C4, and C6 open, and the rest closed) was 336 cm3. Being limited by

the resolution of the Wallace & Tiernan gauge, the least amount of helium atoms

that could be added to the experimental cell under these conditions was about

5×1019 atoms. This minimum number of atoms was small enough to build up the

film thickness on the MCNT powder with more-than-adequate resolution, as will

be seen upon presentation of the results.

Initially, experiments were performed using a system with a base temperature

of approximately 1250 mK. This system is shown in Figure 2.9. The system

did not have a 1-K pot, but instead made use of a high-throughput, high-speed

pump15 to directly pump on the liquid helium to reduce the whole bath space

down to the desired temperature. The dewar operated in the absence of a nitrogen

jacket. Instead, it was cooled by the rising helium vapor that was forced through

a narrow gap below the neck of the dewar. The cryostat made use of closed-

cell foam to establish this gap. For more information on the design of dewars,

consult Reference [63]. The cell was in direct contact with the bath. Although

this system had immense cooling power—withstanding 10-mW heating sources

while maintaining its base temperature—it was very limited in its practicality,

requiring a 20-L transfer every 24 hours, as well as the stopping and restarting

of the experiment to allow for transferring liquid helium and pumping back down

again to the base temperature, which would take 3 - 4 hours. The gas-handling

system was hooked up to the fill line of this basic cryostat. The base temperature

was limited by the pump’s pumping speed and throughput, as well as the heat-

leaks present (predominantly via radiation and conduction). These experiments

15The pump was located in a separate room to allow for noise and vibration isolation.
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Figure 2.8: Gas-handling system for the experimental cell. The purified

helium gas was not metered into the cell while open to the reserve keg, as this

would have allowed little control over building up the adsorbed film of helium

in fine thickness intervals. Instead, the tube volume between valves C2 and C7

(running through the cold trap) was used while having valve C6 open to monitor

the pressure before and after each shot of helium. Valve C5 remained closed to

ensure the 4He gas traveled through the cold trap for further purification before

being admitted into the cell. The effective volume was 336 cm3.
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Figure 2.9: High-temperature system. This system consists of a dewar with

a pump line attached to its neck. The pumping line is about 3” in diameter.

A high-throughput pump is used to pump directly on the liquid helium dumped

into the dewar. The experimental cell is in direct thermal contact with the liquid-

helium bath. The cryostat inserted into the dewar is a very basic configuration of

gas lines and electrical feed-through tubes that run directly to the experimental

cell located at the bottom of the cryostat. These tubes are thin-walled, SS tubes

with radiation baffles that help limit radiative and conductive heat transfer into

the dewar.

were performed at 1300 mK, to which will be referred as “high temperature.”

The experimental cell was then mounted on a low-temperature system with

exactly the same cell gas-handling system. This low-temperature system made

use of a dilution refrigerator upon which the experimental cell was mounted. A

panoramic picture of the laboratory showcasing the experimental setup is shown

in Figure 2.10. This system was capable of reaching a base temperature of 50 mK.

However, with a problematic sealed pump, a large heat load from the experimental

cell and excitation mechanism (to be discussed later), as well as a likely loss of 3He
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Figure 2.10: Panoramic picture of the low-temperature assembly. From

left-to-right: Cell gas-handling system; Multi-level, portable shelving with tem-

perature controllers and monitors, signal filter, pressure gauge, function generator,

and oscilloscope; Vibration-isolation system with dewar; Pumping and filling lines

for fridge, vacuum can, 1K pot, and dewar; Leak-detector and diffusion-pump as-

sembly (behind the silver liquid-helium storage dewar); Portable 3He-4He storage

assembly with sealed pump.

as a result of the pump issues, the lowest attainable temperature with this setup

was 200 - 250 mK while running the experiment. On small spurts the system was

able to go below 200 mK—very rarely reaching 100 mK—but it was not possible

to run at such temperatures while exciting the signal.

Dilution refrigerators harness a 3He-4He mixture as the refrigerant. As can be

seen in Figure 2.11, the mixture spontaneously phase separates below 860 mK. [64]

In the figure, the 3He concentration is represented as

x =
ν3

ν3 + ν4

,

where ν3 is the 3He concentration in the mixture and ν4 is the 4He concentration.

Note that there must be a nonzero concentration of 3He in order for the phase

separation to occur in the first place. In order to cool down to the lowest temper-

atures, this concentration must also be just right. The appropriate concentration

can be attained using a gas-handling system to increase or decrease the 3He com-
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ponent during the operation of the dilution refrigerator, which can be done rather

easily.

In a dilution refrigerator, the mixing chamber is where the phase separation

should ideally occur. Since 3He is a spin-1
2

fermion, then it obeys the Pauli ex-

clusion principle. For this reason, and because of its lighter mass, the phase

separation is such that the 3He-rich phase lies on top of the 4He-rich phase un-

der the effect of a gravitational field. Within the mixing chamber, the situation

looks as shown in Figure 2.12. Since 3He has a higher vapor pressure than 4He—

particularly below 1.0 K when 4He effectively has zero vapor pressure—it is im-

possible to cool by evaporation with the use of 4He alone. As such, the dilution

refrigerator works on the basis of cooling by evaporation by reducing the 3He con-

centration from the phase boundary present in the mixture. To pull the 3He atoms,

a high-vacuum pump is utilized to pump on the still of the dilution-refrigerator

assembly, which only consists of 3He. This still space is in direct contact with the

capillary tube that dips below the phase boundary, as shown in Figure 2.12. By

pumping on the still, an osmotic pressure difference is set up between the dilute

3He phase and the rich phase. [65] It is through this osmotic pressure difference

that cooling by evaporation of the 3He atoms from the rich phase can occur. Of

course, to operate the refrigerator continuously, an appropriate rate of refilling

must occur to continuously supply 3He atoms to replenish the rich phase. Thus,

if the rate of replenishment is equal to the rate of evaporation, then one can ef-

fectively sit at a specific temperature as dictated by the phase diagram in Figure

2.11. Since the primary isotope running through the gas-handling lines of the re-

frigerator is 3He, then to modify the amount of 3He in the refrigerant, one simply

has to pull out 3He from the reserve keg or push 3He into the keg. Thus, the

operating temperature of the dilution refrigerator may be tuned. This, in essence,

describes how the continuous-cycle dilution refrigerator operates.

In order to properly operate the low-temperature system, four separate plumb-
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Figure 2.11: Phase diagram of the 3He-4He mixture under its own vapor

pressure. The plot represents the temperature as a function of the 3He concen-

tration. The regions of normal fluid and superfluid refer to the 4He isotope, as

the superfluid transition for 3He occurs below 2.49 mK [1,2], which is superfluous

to point out for the purposes of this diagram. The tricritical point indicated is

at 860 mK. Upon going down in temperature and reaching the coexistence curve,

a spontaneous phase separation occurs between the 3He and 4He in the mixture.

Under a gravitational field, the 3He-rich component is on top of the 4He-rich com-

ponent because of its lower density (owed to its lighter mass and its need to obey

fermionic statistics).
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Figure 2.12: Cooling by evaporation within the mixing chamber. Below

860 mK the 3He-4He mixture phase separates into a 3He-rich phase and a 4He-rich

phase. The osmotic pressure difference between the phases pulls 3He atoms from

the rich phase, through the phase boundary, and out into the still. The return line

replenishes the mixing chamber with 3He, thus allowing the dilution refrigerator

to operate in a continuous cycle.
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ing lines were used to prepare, start, and properly run the dilution refrigerator in

a continuous cycle. Figure 2.13 is a schematic detailing the fridge gas-handling

system, as well as the lines used to access the dewar, 1K pot, and vacuum can.

The following few paragraphs will detail the operation of these plumbing lines

as it pertains to maintaining, starting up, and ultimately running the dilution

refrigerator by referring to this schematic.

2.3.1 Cleaning the Mixture

The 3He-4He mixture—also known as the “mash”—was stored in a reserve keg.

To ensure the purity of the mash, it was necessary to clean the mixture, as even

the slightest bit of impurity would have plugged the lines leading into the mixing

chamber, the most sensitive portion of which was the fridge impedance. This

impedance was meant to properly limit the flow of the 3He that replenished 3He

supply that was cooled by evaporation within the mixing chamber. Too large

a flow would have made the rate of replenishment much more than the rate of

evaporation, in which case the base temperature would have been much higher

than desired, as set forth by the phase diagram of the mixture in Figure 2.11. On

the other hand, too slow a rate of replenishment would have not been able to keep

up with the evaporation rate necessary to cool to the lowest temperatures. Thus,

a delicate balance was in order. This fridge impedance was a foot-long segment of

Cu-Ni capillary tubing16—with a 20-mil outer diameter and roughly a 10-mil inner

diameter—with a #9 guitar string stuck through the entire length of the capillary.

When tested at room temperature, the value of the impedance through this line

was 2×1011 cm−3. The same length of line without the guitar string stuck through

it had an impedance that was roughly two orders-of-magnitude less. With such

a high impedance, the slightest impurity (such as hydrocarbon remnants) would

have plugged the fridge line at liquid-helium temperatures.

16Cu-Ni was used in order to easily be able to soft-solder it at either end in a leak-tight fashion.
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Figure 2.13: Fridge pumping, filling, and cooling system. The valves are

denoted by Fi for the Fridge line, Vi for the Vacuum-can line, and Ki for the

1K-pot line. There are Thermocouple (TC) gauges that monitor pressures in

important areas. Refer to the text for further discussion and details.
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In order to clean the mixture, the mash was driven using its own pressure

into the LN and LHe traps slowly in order to ensure the proper cooling of the

mash while in direct thermal contact with the cold traps. The valve-opening

sequence began from taking the mash out of the bottom of the reserve keg and

circulating it through the cold traps as follows: F2 → F1 → F10 → F11 → F12

→ F13 → F14 → F20 → F18. The fact that the mash had reached to valve F17

could be monitored using the ThermoCouple (TC) gauge TC3 that would result

in a sudden increase in pressure. Afterwards, valve F17 would be opened while

running the Alcatel 2033H. Allowing ample time for the pump to warm up, valve

F7 would slowly be opened. The mash would then exit the exhaust and enter into

the Oil Mist Eliminator, which simply housed a porous material through which

the exhaust gas was forced to move. The filter’s purpose was to provide an extra

safeguard against allowing impurities (such as the hydrocarbons from the oil) to

get mixed up with the mash. To prevent the possibility of this happening, it was

imperative to impose the additional safeguard of cleaning the mix through the LHe

cold trap, as certain hydrocarbons, as well as hydrogen, cannot be appropriately

filtered using the porous zeolite within the cold traps unless the traps were cooled

to LHe temperatures. Finally, the exhaust gas was then forced back into the top

of the reserve keg by opening valve F5. With sufficient backing pressure from the

exhaust (which can be monitored by occasionally closing valve F1 and reading the

Wallace & Tiernan Gauge), the circulation can be continued indefinitely. Once

circulated for a sufficient amount of time, F2 can be closed to stop the supply

of mash from the bottom of the reserve keg. The Alcatel can then be used to

pump out all of the open lines to return all of the mash back into the reserve keg.

Progress of the cleaning of the lines can be monitored using the gauges TC2 and

TC3. Once the pressure read-outs reached low values, all lines to the reserve keg

can be closed. Valves F11 and F12 can be used for allowing the roughing pump

to clean the LN and LHe traps while exposing the traps to room temperature.
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Artificial heating, either with an industrial heat gun or heater tape, was used to

ensure all the deposits trapped by the zeolite were properly released to then be

captured by the pump.

2.3.2 Cleaning the Fridge Lines

Although the procedure outlined in Section 2.3.1 was used to clean the mixture, it

was also important to flush the lines running through the fridge from the still and

return sides to clean out impurities within the fridge, particularly when a cool-

down was unsuccessful due to the measurement of undesired flow rates through

the fridge. The valve-opening sequence began again from taking the mash out of

the bottom of the reserve keg, circulating it through the cold traps, and dumping

it into the still side of the refrigerator as follows: F2 → F1 → F10 → F11 → F12 →

F13 → F14 → F20 → F19. Valve F19 was just barely cracked open to allow for the

cooling of the mash running through the cold traps. Monitoring the pressure with

the Wallace & Tiernan gauge allowed for recognizing when there was no longer

any more mash being driven into the still from the reserve keg’s own pressure. It

was not necessary to dump in all of the reserve keg’s mash supply, as the desire

was to simply rid of the impurities of the fridge with sufficient mash. As such, the

reserve keg was closed off. In order to detail the circulation through the fridge,

assume now that all the valves have been closed. First, the valve AF (the Fine

valve on the Alcatel pump control) was cracked open to begin pumping on the

still side of the fridge. This then began accumulating mash on the exhaust side of

the Alcatel. The valve opening sequence to circulate the mash and run it through

the cold traps to rid of the fridge impurities was as follows: F6 → F9 → F10 →

F11 → F12 → F13 → F14 → F20 → F21. Opening F21 allowed for pushing the mash

back into the fridge lines through the fridge impedance to then be pumped out by

the Alcatel from the still side. This process then allowed for the circulation of the

mash which could be continued indefinitely, so long as the backing pressure was
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large enough to drive the mash back into the fridge. The backing pressure can

be monitored using the Wallace & Tiernan by opening valve F1 and comparing it

to the value read by TC2, which was directly connected to the front side of the

Alcatel. Once it was deemed to have circulated enough, the mash could then be

placed back into the reserve keg. It was then important to pump out all the lines

through which the mash was streamed. To pump out the still line, the coarse

valve can eventually be opened to speed up the process of recovery. For good

measure, it was best not to rely on the recovery of the mash in the return line

from the still side. As such, opening valves F19 and F21 to expose to the Alcatel

front side helped in the speedy recovery.

Cleaning the fridge lines required a reasonable impedance from the fridge

impedance. If the impedance was too high, the repeated circulation of the mash

might not have properly cleaned these lines, even though whatever had crystal-

lized within the impedance at low temperature would have been returned to a

fluid state at room temperature while the cleaning was taking place. If improve-

ments were not seen from this process of circulation, then the best course of action

would have been to altogether replace the fridge impedance.

2.3.3 Flow Testing the Fridge

Flow testing the refrigerator at room temperature and at 77 K was an integral

part of assessing the needed flow to ensure the proper operation of the dilution

refrigerator once cooled down to the required operating temperature. To perform

flow tests at either of these temperatures, the mash again would be driven with

its own pressure through the cold traps. The mash would then slowly be dumped

into the still side of the fridge as in the valve-opening sequence outlined in Section

2.3.2. Once the pressure equilibrated and no more mash was being driven into the

still side, valve F1 or F2 were closed—depending on whether the pressure in the

keg or the pressure in the fridge gas-handling lines needed to be read—in order to
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isolate the reserve keg. Valve F19 was closed, while the sequence of valves F7 →

F17 → F18 → F21 were opened to allow the Alcatel to pump out the contents of

the return line on the return side of the fridge as well as the contents leading up

to TC3, which was to be used to test the flow of the mash from the still side of the

fridge to the return side via the fridge impedance. Once TC3 reached its lowest

value in pressure, valve F17 was closed off to monitor the pressure rise in order to

see if the fridge impedance showed signs of blockage. The mixture would then be

collected again by pumping all lines through which the mash was streamed and

dumping the exhaust side of the Alcatel back into the reserve keg.

2.3.4 Starting and Running the Fridge

The following few paragraphs outline the procedure for starting the fridge from

room temperature. Although it will be indicated exactly when flow tests and leak

checks are to be done in the process, the assumption will be that the measurements

come out favorable so that cooling down to the base temperature of the dilution

fridge is warranted.

Pre-cooling the dewar was a necessity, as it would be a waste to use liquid

helium to cool down all of the contents within the dewar to 4.2 K by using the

liquid helium itself as the cooling agent. With a low latent heat of vaporization

and a high, per-liter cost compared to nitrogen, it is more economical to pre-cool

the system using LN. The vacuum can was evacuated prior to placing the dewar

around the cryostat to check for leaks in the indium O-ring used to seal the vacuum

can. This was done by first using the roughing pump to remove the air in the can

up to a reasonably low pressure (below 100 mTorr) by opening V2 → V4 → V7.

Valve V2 was then closed and V3 was opened to use the leak-detector assembly to

pump down the vacuum-can line below 10 mTorr using its own diffusion pump.

The 1K-pot line was evacuated using the high-vacuum pump by opening valve

101



K1. Valve K2 was then opened to evacuate the line leading up to the 30-psi

pressure gauge to get a true reading of zero pressure on the gauge. Valves K1

and K2 were then closed. Prior to the dumping of the liquid nitrogen into the

dewar’s bath space, the 1K pot was pressurized to about 5 psi using helium from

a compressed gas cylinder. Valves K4 and K5 were opened and the pressure was

monitored using the 30-psi pressure gauge in series with these lines. Valve K2

was then opened and valve K4 was adjusted to read a 5-psi pressure increase from

when the line was evacuated. The 1K-pot line was pressurized in order to have

a constant outflow of He gas from the LHe leak that runs from the bath space,

into the vacuum can, and into the 1K pot.17 This outflow of He gas provided a

displacement of any remnants of air or other impurities from infesting the pores of

the leak. The presence of such impurities would inevitably crystallize, particularly

below 77 K when the liquid helium was dumped into the bath space. This would

prove catastrophic to the running of the fridge, as the fridge relied heavily on the

1K pot to cool the mash down to 1 K to more easily allow the navigation to the

phase-separated regime as can be seen in the phase diagram in Figure 2.11.

Upon pressurizing the 1K pot, LN was then dumped into the bath space. The

level of the LN was kept slightly below the vacuum can’s bolt circle and monitored

by noting the spike in a resistance bolometer taped to the desired level outside of

the vacuum can. The dewar was left to sit overnight after transferring the LN.

The following day, the leak detector was again connected to the vacuum can to

check for leaks. The dewar was then pressurized with 4He gas to push out the

remaining LN that had not evaporated overnight. The gas would also serve to

check for leaks through the vacuum can (mainly through the indium O-ring which

17When LHe filled the bath space, the leak from the bath space would slowly fill the small
volume within the 1K pot. To cool the pot down to 1 K, the high-vacuum pump would be used
to pump on the liquid within the pot, thus cooling the 1K pot by evaporation. The LHe leak
consisted of a packed powder that slowly allowed the LHe from the bath to trickle into the pot
volume to replenish the liquid that had been evaporated using the high-vacuum pump. The 1K
pot served as the cooling stage responsible for reducing the temperature of the mash from 4.2
K to 1 K.
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was usually the culprit). Leaks in the fridge lines would be addressed when a

flow-test was performed again on the fridge as detailed in Section 2.3.3. Leaks in

the experimental cell would be addressed by flushing the cell with He gas from the

gas-handling system. A flow-test was also performed on the leak into the 1K pot.

To perform this, the dewar was pressurized again to 1 ATM using compressed

4He gas hooked up to valve D2. Valves K4 and K5 were then closed while K1 was

opened (with K2 still left open) to pump out the 1K-pot line of the 4He gas that

was used to pressurize the pot. Valve K1 was then closed and the pressure rise

from the LHe leak was monitored through TC4.

To prepare for transferring LHe into the bath space of the dewar, the 1K pot

was pressurized to 5 psi again, but with the valves K4, K5, and K2 closed off after

the line was fully pressurized. The evacuated vacuum can was then pressurized

slightly with a small volume of air by plugging the air outlet next to valve V6,

opening valves V6 and V7, closing both valves, unplugging the air outlet, and

then repeating this process once more. This small amount of air would serve as

an exchange gas to cool the innards of the vacuum can (i.e., the main components

of the fridge) to 4.2 K upon dumping LHe into the bath. Since the dewar was

already pressurized from performing the 1K-pot flow test, exposing the dewar to

the atmosphere would not allow air to leak into the bath space. Taking advantage

of this, liquid helium would then be transferred into the bath space, requiring

roughly 80 liters of the liquid to inundate the bath space up to the top of the

belly of the dewar. Only a couple of hours were required to allow the exchange

gas to cool the fridge down to 4.2 K, which was easily monitored using resistance

bolometers placed at the various stages of the fridge (one on the 1K pot, one on

the still, three on the heat exchangers of the still and return lines, and two on the

mixing chamber). The exchange gas was then evacuated by initially warming up

the diffusion-pump assembly attached to the vacuum-can line while running the

roughing pump. Valves V5, V1, and V2 were opened, while V7 was slowly opened
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to pump out the vacuum can. The system was left pumping overnight to ensure

complete evacuation of the exchange gas. Having a sufficient amount of exchange

gas left over would render the refrigeration process ineffective, as there would be a

constant thermal short from the bath space to the fridge. This would put a large

heat load on the 1K pot, preventing the mash from phase separating.

Upon eliminating the exchange gas, valve V7 was closed off and the diffusion

pump was shut down. Valve K1 was then slightly cracked open to begin pumping

on the 1K pot, thus letting LHe to start filling the 1K-pot volume through the

LHe leak. The mix was then partially dumped into the still, as in Section 2.3.2,

by driving the mash using the pressure in the reserve keg.18

In order to dump all of the contents of the reserve keg when the keg pressure

could not drive any more mash into the fridge lines, the following procedure was

implemented. Valve F4 was opened to the Alcatel’s front to pump the remaining

contents of the reserve keg into the exhaust line of the pump. This built up the

back pressure to allow driving this volume of mash through the cold traps and into

the still. The valve-opening sequence was as follows: F6→ F9→ F10→ F11→ F12

→ F13 → F14 → F20 → F19. Once the mash was emptied from the keg—verified

by monitoring the Wallace & Tiernan gauge with F2 open and F1 closed—valve

F4 was closed off. The backing pressure was monitored by opening F1 (with F2

closed) to read out using the Wallace & Tiernan gauge. Upon dumping into the

still side, the mash was circulated by pumping on the still using the front of the

Alcatel by slowly opening AF and then slowly opening AC to increase pumping

power. This would then complete the closed loop allowing for the circulation of

the mash, with the Alcatel front side pumping directly on the still and the Alcatel

back side pushing the mash back through the cold traps and into the return line

18It was found that leaving the mash in the fridge lines after the flow test at 77 K was also
acceptable in starting up the fridge, so long as the mash was thoroughly cleaned of impurities.
Nonetheless, the mash can still be driven a bit from the pressure in the room-temperature reserve
keg, since the pressure of the mash in the fridge lines would be much lower than when originally
admitted at 77 K due to the substantially reduced temperature.
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to replenish the 3He in the mixing chamber. Ideally, phase separation would occur

in the mixing chamber, in which case the fridge cooling will be optimal. With the

phase separation prevalent, 3He would be the isotope being circulated through

the gas-handling lines. To improve cooling power, a heater attached to the still

may be turned on to increase the vapor pressure of the 3He supply in the still,

allowing for a larger osmotic pressure difference to drive the 3He across the phase

boundary, leading to a lowered concentration of 3He within the 4He-rich phase,

and, thus, lowering the temperature according to the phase diagram of the mash

in Figure 2.11. If the 3He concentrations were found to be too high, some of the

circulating 3He can be deposited back into the reserve keg by briefly opening and

closing valve F5.
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CHAPTER 3

Results, Analysis, and Discussion

Aside from interesting layering effects that are prevalent in the adsorbed helium

film on graphitic substrates such as MCNTs—which will be described in detail

in this chapter—the main motivation for studying superfluidity on the cylindrical

geometry is to probe a potential crossover of the KT transition into one dimension.

The way in which this can be done is if the relevant length scale in the helium

film approaches the relevant length scale of the substrate. The original KT tran-

sition was theoretically predicted [39] in superfluid films [40] and experimentally

observed in third-sound [42] and torsion-oscillator [37,66,67] measurements when

looking at films on a flat substrate. In this sense, there was no relevant length scale

of the substrate to which to compare a relevant helium-film length scale, so that

the transition cannot be anything but two dimensional. However, studies on more

exotic substrates such as, among others, Vycor glass [68], Nuclepore [59, 69], and

aluminum-oxide powders [43] showcase a rounded transition which more appro-

priately indicates some form of crossover into a three-dimensional geometry, par-

ticularly if the relevant pores in the studied substrate form a multiply-connected

surface. [44–46] Under such circumstances (as discussed in Section 1.6), when the

vortex string size is comparable to the nominal pore size, then the thermodynamic

phase transition is essentially three dimensional.

Instead of crossing over from 2D to 3D, one can, instead, jump from 2D to

1D. Such a crossover is dictated by the vortex-core size, a0. In other words, if the

vortex-core size becomes comparable to the smallest length-scale in the substrate
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geometry—in the case of the MCNT powder, the diameter—then the transition is

effectively one dimensional. There have been experiments investigating just such

a 1D transition [70–72], and this study aimed to further probe this interesting

crossover. To be able to achieve a vortex-core size comparable to the MCNT

powder’s nominal diameter, it is necessary to attain very thin superfluid films.

Indeed, it has been shown that in the continual thinning of the superfluid film,

the vortex core size can be made to increase considerably, with a value close

to 100 Å below 100 mK on aluminum-oxide powders. [73, 74] Such a core size

would be comparable to the nominal diameter in the MCNT powder. Nonetheless,

the stable, baseline temperature that this study was able to achieve was no less

than 200 mK, for which the core size would roughly be half the diameter of the

nanotubes. In any case, no such signatures of a 1D crossover were seen at these

investigated temperatures.

3.1 Raw Data and Resonance Analysis

As mentioned in Section 2.1, the signal generated from the bolometer within the

experimental cell was amplified, filtered, and run into LabView to transform the

time-domain voltage into the frequency domain to pinpoint the resonance profile

of the third-sound signal. Typical raw data generated from the bolometer is

presented in Figure 3.1. The boxes on the very left of each FFT trace indicate the

amount of helium added into the cell. This measurement is denoted “Fill” and

it stems from noting the pressure difference in the tubes of the cell gas-handling

system (as described in the beginning of Section 2.3), which is directly related

to the number of helium atoms admitted into the cell. The FFT profiles are

stacked on top of one another to help in the tracking of the third-sound peak as a

function of fill, with the fill increasing upon going higher in the stack. The signal

is around 106.5 Hz at a fill of 481 mmHg, and continues down to lower frequencies,
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ending at about 83 Hz at 612 mmHg. The peaks at 93.5 Hz and 109.5 Hz are

stray resonances, which clearly do not vary as a function of fill. For instance,

it is easy to decipher the third-sound resonance from the fake resonance at a fill

of 542 mmHg. Indeed, as the third-sound resonance reaches 93.5 Hz, its profile

overshadows the profile of the uninteresting peak, in line with what was described

in Section 2.1.

For accumulating and analyzing the data, WaveMetric’s Igor Pro graphical-

analysis program was utilized. The analysis of the data amounted to fitting the

peaks with a Lorentzian1 The frequency of each fitted peak was taken as the

resonant frequency for that particular FFT profile. Furthermore, the width of the

fitted peak was also utilized to compute the quality factor (or Q) of the resonance

using

Q =
fres

∆f
, (3.1)

where fres is the resonant frequency and ∆f is the full-width at 1/
√

2 of the maxi-

mum2. The uncertainties for the resonant frequency and the width were statistical,

solely based upon the ability for the fitting function to represent the trend in the

1This function is the appropriate one, as this system is a damped, driven oscillator that is
presumed to be linear, and therefore of the harmonic type. The resonance amplitude for the
differential equation

ẍ+ βẋ+ ω2
0x = α0 cos(ωt)

has the solution x(t) = A cos(ωt− δ) with

A2 =
α2
0

(ω2
0 − ω2)2 + 4β2ω2

and

δ = arctan(
2βω

ω2
0 − ω2

).

The phase shift δ describes the lag that the drive has with respect to the response, with resonance
occurring when δ = π/2. The amplitude A is a Lorentzian in the driving angular frequency ω.
For sufficiently low damping (with β � ω0), the resonance occurs exactly at the natural angular
frequency ω0. As always, the frequency used in the scanning of the resonance is f = ω/2π.

2The full-width at half-maximum is reserved for the intensity spectrum. The raw data was
outputting the amplitude spectrum. The intensity is proportional to the square of the amplitude.
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Figure 3.1: Raw data at 1300 mK using heater drive. The plot shows the

tracking of a third-sound signal as a function of the amount of helium added into

the cell. The boxes on the left-end of each trace denote the helium fill. A larger

fill corresponds to a thicker adsorbed film. Here, c3 decreases as the fill increases.
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Figure 3.2: Schematic of the annular resonator. As mentioned in Figure 2.1,

the dimensions are b0 = 0.407”, b1 = 0.888”, and L = 0.126”, with L representing

the actual depth of the MCNT powder.

data points as in minimizing the chi-squared value. These uncertainties were then

used to propagate an error for the Q for each resonance.

The peaks in Figure 3.1 correspond to the third-sound speed; however, the

values are in terms of the frequency. In order to convert these into an actual

speed, the resonance structure must be calculated within the Plexiglas annulus

that houses the packed MCNT powder, as shown in Figure 3.2. To do this, the

wave equation,

∇2T =
1

c2
3

∂2T

∂t2
, (3.2)

was solved to account for the azimuthal, radial, and axial degrees of freedom3 in

which the temperature wave may propagate macroscopically. Using the ansatz

T (r, θ, z, t) = T0f(r)g(θ)h(z)eiωt, (3.3)

the wave equation is solved subject to “rigid” boundary conditions in the axial and

3The Laplacian in cylindrical coordinates was used:

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
+

∂2

∂z2

.
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radial directions—in which it is assumed that the temperature wave is at a node

when it reaches the boundaries as the superfluid ceases to exist at the boundaries—

and periodic boundary conditions in the azimuthal direction. Mathematically, the

boundary conditions amount to restricting

∂T

∂r

∣∣∣∣
r=b0,b1

= 0,

∂T

∂z

∣∣∣∣
z=0,L

= 0,

T (θ) = T (θ + 2π).

(3.4)

Plugging in the ansatz, dividing through by T and rearranging, the wave equation

reduces to

r2

f

∂2f

∂r2
+
r

f

∂f

∂r
+

1

g

∂2g

∂θ2
+
r2

h

∂2h

∂z2
+
ω2

c2
3

r2 = 0. (3.5)

To employ the separation of variables properly, the azimuthal and axial terms

are set equal to suggestive constants. The ordinary differential equation in the

azimuthal direction is written as

1

g

d2g

dθ2
= −m2, (3.6)

with the general solution

g(θ) = G1 cos(mθ) +G2 sin(mθ).

Subjecting this solution to the azimuthal boundary condition in Equations 3.4,

the azimuthal solution becomes

g(θ) = G cos(mθ), (m = 0, 1, 2, . . .). (3.7)

Moreover, the ordinary differential equation in the axial direction is written as
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1

h

d2h

dz2
= −k2

z , (3.8)

with the general solution

h(z) = H1 cos(kzz) +H2 sin(kzz).

Subjecting this solution to the axial boundary condition in Equations 3.4, the

axial solution becomes

h(z) = H cos(kzz) = H cos

(
nzπ

L
z

)
, (nz = 0, 1, 2, . . .). (3.9)

Using Equations 3.6 and 3.8, plugging into Equation 3.5 and rearranging, Bessel’s

differential equation is found for the radial direction:

r2d
2f

dr2
+ r

df

dr
+

[(
ω2

c2
3

− k2
z

)
r2 −m2

]
f = 0. (3.10)

The general solution consists of the cylindrical Bessel function (Jm(krr)) and the

Neumann function (Nm(krr)):

f(r) = F1Jm(krr) + F2Nm(krr). (3.11)

Subjecting this solution to the radial boundary condition in Equations 3.4, it is

seen that the Neumann function must be kept. The Neumann function is known

to blow up as r → 0. However, because of the annular nature of the resonator,

the Neumann function is finite for r ∈ [b0, b1]. However, the boundary condition

subjects the functions to the condition that

(
∂Jm(krb0)

∂r

)(
∂Nm(krb1)

∂r

)
−

(
∂Nm(krb0)

∂r

)(
∂Jm(krb1)

∂r

)
= 0, (3.12)
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where the derivative with respect to r for each function is taken and then evaluated

at the radial boundaries b0 and b1. For each value of m, this condition provides the

values of kr that satisfy it. With kr obtained from finding the roots of Equation

3.12 and kz derived from Equation 3.9, the frequency f = ω/2π at which the

third-sound resonance occurs may then be related to the third sound speed, c3,

via the condition

c3 =
2πf√
k2
r + k2

z

. (3.13)

As a note, Equation 3.13 is taken as the definition of kr. This equation was used

to convert the raw resonant-frequency data into the speed of third sound for all

accumulated data points.

However, the conversion from the experimental frequency to the experimental

third-sound speed is not necessarily the true third-sound speed. Since this surface

wave is propagating across a powder of MCNTs—which not only contains the

smaller scale grains of the actual tubes, but also the larger scale grains of the

collections of tubes, as in Figure 2.4—the experimental speed will be smaller than

the theoretical speed. Indeed, the theoretical speed, as in Equation 1.113, only

considers propagation on a smooth surface without the presence of grains. As

the wave propagates across the grainy substrate, it imparts momentum to the

substrate, resulting in a reduction of the sound speed. As such, an index of

refraction must be quoted to treat this reduction:

n3 =
c

(th)
3

c
(exp)
3

. (3.14)

Thus, if there is a desire to output the true theoretical sound speed, the right-hand

side of Equation 3.13 must be multiplied by this index of refraction.

To obtain this index of refraction, one needs to obtain a value for the surface

tortuosity, χ2D, which is a measure of the tortuous path that the fluid is forced
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to follow when restricted to the surface of the pore-space in the powder. The

value of this surface tortuosity can be obtained from measurements of the index

of refraction. [75] In fact, the index of refraction of third sound can be written in

terms of this surface tortuosity as

n2
3 = χ2D. (3.15)

To obtain an expression for the surface tortuosity, information regarding the

porosity, φ, of the powder must be known. If Vopen is the amount of open volume

present within a packed powder and Vtot is the total amount of volume occupied

by the powder, then the porosity of the powder is given by the ratio

φ =
Vopen

Vtot

. (3.16)

The porosity for this MCNT powder, using the dimensions provided in Figure 3.2,

was found to be φMCNT = 0.82 upon using the density of an individual MCNT,

ρMCNT = 2.1 g/cm3, which is essentially the density of graphite. [76] However,

knowledge regarding the critical porosity, φc, is also essential. This critical value

represents the pore-space percolation threshold. This threshold can be understood

in the following way, described by Reference [77]. Imagine taking a porous solid

and allowing it to become progressively denser. Increasing this density will change

the way in which the channels connecting the pore spaces will be interconnected.

Indeed, some of the interconnections will surely be choked off, while others may

get displaced to the exterior of the defined powder volume. The essential idea is

that as the density is increased, the number of paths connecting one side of the

powder with the other will be reduced. The porosity at which there is no longer

a connected path from one side of the powder to the other is called the critical

porosity, which represents this percolation threshold. Thus, the surface tortuosity,

χ2D, can be calculated using the power-law [78]
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χ2D = Bφ(φ− φc)
−β, (3.17)

where B is a constant dependent on the porous material and β is some number.

It is unclear exactly how the percolation threshold can be empirically discovered

using a MCNT powder.

3.2 Film Thickness and Number Density Calibration

A difficulty in making measurements of the helium adsorption on substrates is that

the vapor pressure becomes very small, particularly when reaching sub-Kelvin

temperatures. This can be seen by noting the metrological data compiled in

the International Temperature Scale of 1990 (ITS-90) [79], which made use of

the 3He vapor pressure, in favor of 4He, for proper precision, particularly below

1 K. However, it is still possible to detect the pressure of 4He gas at sub-Kelvin

temperatures by making use of an in-situ gauge that capacitively detects pressures.

The vapor pressure of 4He at 700 mK is about 2 µmHg, so that the minimum

resolution of such a gauge must be good to roughly 0.1 µmHg. At 500 mK, the

vapor pressure is about 10 nmHg.

The ultimate goal of the experiments on which this report is based required

cooling the MCNT powder sample to temperatures at which a vapor-pressure

reading would be impossible, even with the use of an in-situ detection apparatus.

To bypass this issue, the adsorption profile was obtained at 1300 mK, which would

then be used to navigate the helium coverage on the MCNT powder at lower

temperatures. For this navigation to be uniform across the high-temperature

and low-temperature systems, the same cell was used with the same gas-handling

system. As such, the data for these temperatures could be easily connected.

The vapor-pressure data at high-temperature was also useful for determining

the film thickness adsorbed on the outer diameter of the MCNTs. It follows from
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standard thermodynamics that the useful thermodynamic potential for analyzing

the coexistence between the liquid film and the gaseous vapor under these experi-

mental conditions is the Gibbs free energy. Indeed, the conditions were of constant

temperature and pressure, for which the Gibbs-free-energy change is zero. The

Gibbs-Duhem relation reveals the nature of the Gibbs free energy (G)—defined

in Equation 1.68—as the chemical potential (µ) per particle (N ), as in Equation

1.70. Because ∆G = 0 across the liquid-gas interface, then the chemical potential

of the vapor must be equal to the chemical potential of the film at the interface.

For a flat substrate, the van der Waals (vdW) potential (per particle) for a helium

atom a distance z above the substrate takes the form

Uflat(z) = − α
z3
, (3.18)

where α is the coupling strength between the liquid particle and the specific sub-

strate under question. Thus, the chemical-potential balance between the vapor

and the liquid in the flat-substrate case takes the form

kBT ln

(
P0

P

)
=
α

z3
, (3.19)

where kB = 1.381 × 10−16 erg/K, P0 is the saturated vapor pressure at the tem-

perature T , and P is the vapor pressure in the experimental cell.

For the purposes of this experiment, the relevant geometry onto which the

helium adsorbed was a cylindrical one. The vdW potential (per particle) between

a spherical particle and a long, solid cylinder of radius R is given by Kirsch [80]

as

Uscyl(z) = −9π

4
α

R2

(R + z)5
F 2

1

[
5

2
,
5

2
; 2;

R2

(R + z)2

]
, (3.20)

where F 2
1 is the Gaussian hypergeometric function and z denotes the (radial)
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position of the helium atom from the cylinder surface. However, to modify this

slightly, Kirsch also provides an integral representation of the potential for cases

in which the cylinder is not solid, but rather annular. This is more favorable based

upon the MCNT images seen in Figure 2.7. Labeling the inner radius as Rin and

the outer radius as Rout, the vdW potential for the cylinders under question takes

the form

Ucyl(α,Rin, Rout, z) = − 9πα

4(Rout + z)5

∫ R2
out

R2
in

d(ξ2)F 2
1

[
5

2
,
5

2
; 1;

ξ2

(Rout + z)2

]
, (3.21)

where ξ is measured from the center of the cylinder and covers the range of radial

distances in a MCNT where the carbon atoms live (i.e., ξ ∈ [Rin, Rout]), and z

denotes the position of the helium atom as measured from the outer radius of the

cylinder.

On top of the modified vdW potential to which the helium atoms are subjected

when adsorbing onto the MCNT, it also costs the helium atoms energy to maintain

a curved surface when forming a liquid film while adsorbing onto the MCNTs,

which have a very small radius of curvature. In other words, the effects of surface

tension must also be factored in order to properly describe the chemical potential

of the film. This is done by using the appropriate Kelvin equation to account for

the change in vapor pressure that accompanies a curved liquid/vapor interface.

The full chemical-potential balance for this cylindrical case, upon including surface

tension effects, becomes

kBT ln

(
P0

P

)
= −Ucyl(z)− σm4

ρ(Rout + z)
, (3.22)

where σ and ρ are the surface tension and mass density, respectively, of the liquid-

helium film, and m4 = 6.646 × 10−24 g is the mass of the 4He atom. At T =

1.300 K, σ = 0.3397 dyne/cm, and ρ = 0.1451 g/cm3. The pressures were
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obtained by experimentally measuring the pressure difference between the bath

and the cell (i.e., ∆P = P0 − P ), and taking note of the bath pressure P0 when

the cell pressure was zero. Inputting the cell and bath pressures into Equation

3.22, the film thickness can be calculated.

The chemical-potential balance can be modified by noting that the preliminary

film might not necessarily be in a liquid state when adsorbing directly onto the

substrate. As can be seen in Figure 1.2, 4He becomes a solid with roughly 25 bars

of pressure applied around or below 1 K. The vdW attraction is strong enough to

solidify these initially adsorbed helium atoms. As a result, the film is not a liquid

until two initial solid layers are present on the graphitic substrate [81]. This then

modifies the adsorption a bit, as the relevant liquid helium film is not adsorbing

onto the substrate directly, but rather is adsorbing onto a pseudosubstrate of

solid helium. Cheng and Cole [82] modeled a multilayer film by observing the

vdW interaction of the liquid-helium film with the actual substrate (s), the solid-

helium pseudosubstrate (ps), and the liquid adsorbate (a).4 The multilayer film

was modeled on a flat substrate, defining a solid region of thickness D0 and a

liquid region of thickness d′. The total film thickness is then d = D0 + d′. The

modified vdW potential of the newly adsorbed liquid atoms at a thickness d′ above

the solid layer in this multilayer film is then written as

U ′flat(d
′) = − αs

(D0 + d′)3
− αps

d′3
+

αps

(D0 + d′)3
+
αa

d′3
. (3.23)

Upon removing a factor of d′3 from each denominator in Equation 3.23, the form

reduces to the Cheng and Cole modification reported in Reference [55]

U ′flat(d
′) = −α(d′)

d′3
, (3.24)

with the definition

4This work by Cheng and Cole was described by Zimmerli et al. [55].
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α(d′) ≡ αps − αa + (αs − αps)

(
1 +

D0

d′

)−3

. (3.25)

At the time of this report, there is no evidence in the literature as to the

modeling of a multilayer film on arbitrary geometries, and how such a model

would change the vdW coupling parameter, α, for an adsorbed helium film on

that geometry.5 However, the result of the Cheng and Cole theory, at least based

upon Reference [55], is that the modification accounts for an extra layer that would

otherwise not be accounted for under the use of the Frenkel-Halsey-Hill (FHH)

adsorption theory [83–85] . The essential idea of the FHH theory, as it applies

to 4He, is that each layer of helium coating a substrate is 3.58 Å. However, this

theory presumes that the adsorbed helium film is structureless, so that this value

for the layer thickness should really only be applied for a film adsorbing onto an

amorphous substrate.6 However, the structure of carbon atoms is anything but

amorphous (as is the case in graphite), and the way in which the helium film

adsorbs must be distinguished between amorphous and crystalline substrates. [86]

Each concentric nanotube shell used to form the multiple layers of the MCNT is a

curled-up graphene sheet, thus displaying a regularized honeycomb structure over

macroscopic length scales. [87] In this sense, the adsorbed helium film on a carbon

substrate can undergo, in essence, epitaxial growth—both as a liquid [55] and even

as a solid [88]—exhibiting a multitude of phases as a function of coverage within

each layer [89]. Such layer-by-layer growth is not limited to carbon substrates,

5A guess at doing this, based on what has been reported thus far, would be to use Equation
3.21 for each of the annular regions upon which the liquid film adsorbs. Taking into account the
annular carbon substrate and the annular solid-helium substrate, a modification could possibly
take the form

U ′cyl(d
′) = Ucyl(αs, Rin, Rout, d

′) + Ucyl(αps, Rout, Rout +D0, d
′),

since Equation 3.21 seems to suggest the effective potential to be the sum of the potentials in
the different regions.

6Technically, it is a bit of a misnomer to apply the idea of “layers” to such an amorphous
substrate, as the adsorbed film does not necessarily grow in layers. Indeed, the notion of layers
on such disordered substrates is simply statistical in nature. However, this nomenclature is
readily used throughout the literature.
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but has been seen, for instance, on solid hydrogen substrates, which also exhibit

regular crystalline structure. [90,91]

Along with the crystalline order in graphitic substrates, the helium-carbon

vdW interaction is rather strong compared to other substrates. [92] This fact is

also important in setting the stage for the various exotic phases that are seen

as a function of helium coverage within each layer, which has been studied very

extensively over many decades [93–96], including recently in various computer

simulations [97–99] in the wave of effort that was generated in the supersolid-

helium craze [100].

The strength of the vdW interaction, along with the crystalline order in the

substrate, sets the stage for the helium adsorption to be rather different than as

described by the FHH model. The helium layers closest to the carbon substrate

are highly compressed, and the layer thickness approaches the FHH value when

the film is sufficiently thick. [55] The first and second (solid) layers have a density

that is 1.5 and 1.1 times the usual density of bulk liquid helium, respectively. As a

result, the first two layers have a total thickness of 4.42 Å, which—along with the

less-compressed layers on top—amounts to the FHH model’s under-representation

of the number of layers by about one full layer. Taking this FHH modification into

account and applying the chemical-potential balance in Equation 3.22 for the high-

temperature results of this study, the superfluid onset was seen to occur between

the fourth and fifth layer-completions for the study on the MCNT powder at 1.300

K. Since the indicative sign of layer completion came as a result of maxima in the

third-sound profile as a function of coverage—to be discussed shortly—the fifth-

layer completion occurred after the onset coverage for 1.300 K. This particular

result was one of the two elements that dictated the coverage scale adopted for

this study.

Although reporting coverage in terms of the unit of “layers” is common (e.g.,

Reference [95]), the literature for helium adsorption on Grafoil (e.g., References
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[55,89,96]) more readily uses the unit of “areal number density” (i.e., the number

of helium atoms per unit area of available surface). From the experiments by

Zimmerli et al., the second layer completes at a number density of 0.204 atoms/Å2,

while subsequent layers complete every 0.076 atoms/Å2. This result was the

second element used to establish the coverage scale in these findings, which was

incorporated by using a calculation of the surface area of the MCNT powder that

would complement these areal-number-density values at layer completion.

Both experimental [101] and theoretical [76] studies involving the structure

of MCNTs readily showcase the uniform way in which these multi-wall tubes are

built from a superposition of concentrically stacked Single-wall Carbon Nanotubes

(SCNTs), irrespective of the diameter or length of the tubes. In these studies,

the inter-shell separation in the MCNTs is taken to be exactly the same as the

separation between adjacent graphene sheets in normal graphite, namely dS−S =

3.40 Å. Taking the specific surface area of a SCNT (i.e., the surface area per unit

mass) as sSCNT = 1315 m2/g—which is the same as the specific surface area of a

single graphene sheet (determined by the carbon-carbon bond length and lattice

structure of such a sheet) [102]—the surface area of a single MCNT with ν walls,

an outer-diameter dout, and length `MCNT is given by

MMCNT =
1

sSCNT

π`MCNT

(
νdout − 2dS−S

ν−1∑
i=1

i

)
. (3.26)

By weighing the Plexiglas resonator before and after packing the MCNT powder

(i.e., the mass difference between Figures 2.1b and 2.1f without the plastic wrap),

the mass of the powder was determined to be Mpowder = 0.75 g. Taking the

surface area of a MCNT to be SMCNT = π`dout, the surface area of the powder7

then becomes

7It is assumed that the available surface area for the adsorbed helium is limited to the outside
of the nanotubes across the powder, for reasons to be discussed later.
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Spowder =
Mpowder

MMCNT

SMCNT, (3.27)

which is independent of the (average) length `MCNT of each MCNT. In this ex-

pression, the outer diameter, dout, and the number of walls, ν, in Equation 3.26

represent average quantities across the powder.

The surface area for adsorption on the cylindrical geometry changes as a func-

tion of the helium film thickness, since the circumference of a cylinder scales as the

diameter. Thus, the surface area for each layer must be modified to take this ef-

fect into account. Implementing this correction to properly account for the helium

coverage, the necessary values for the average outer diameter and wall number of

each MCNT within the powder must be dout = 24 nm and ν = 11 walls, re-

spectively, in order to satisfy the aforementioned coverage scale in Reference [55].

Although the value for the outer diameter seems to be consistent with the SEM

and TEM images in Figures 2.5 and 2.7, the number of walls suggest an implied

(average) inner diameter of din ≈ 17 nm. This inner-diameter is seemingly at odds

with the images in Figures 2.6c and 2.6d which suggest a value that is about a

factor of two smaller.8

One of the reasons for assuming that the helium adsorption only takes place

on the outside surface of the nanotubes is because of the extrapolation of the

coverage scale in Reference [55] to low coverages. Indeed, having established the

layer-completion values for the third, fourth, and fifth layers using the third-sound

data in this study, in conjunction with the output of Equation 3.22 at 1300 mK,

going down to zero coverage did not leave a surplus of helium atoms. In other

words, this extrapolation took into account all of the helium atoms added to

8Albeit, those images are not necessarily a complete representation of the distribution of
inner-diameter sizes, especially since the images could also be obscured by diffraction effects,
as can be seen in the “fringes” upon closer inspection of Figures 2.6c and 2.6d. Such fringes
amount to an overestimation of the number of walls when included in the counting scheme. Of
course, it is unclear in such images exactly where the cutoff for the counting of the walls should
be in the first place.
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the cell in perfect correspondence with the suggested scale. Had an excess been

present, it could have been concluded that these atoms adsorbed to the interior

of the uncapped MCNTs. Even with a cylindrical pore-size as low as 1.8 nm, the

helium atoms would not be deterred from adsorbing into such a cage, even when

considering the high 4He zero-point energy. [70] However, assuming any other

value of dout and ν would be incommensurate with the layer-completion values.

3.3 High-Temperature Results and Discussion

The adsorption isotherm for the helium film adsorbed on the MCNT powder at

1300 mK is shown in Figure 3.3. At low-enough temperatures, the completion of a

layer will show up in the adsorption profile as steps, with a substantial pressure rise

occurring beyond the completion and comparatively minimal pressure change on

the verge of layer completion. Indeed, while the coverage is close to completing,

the helium atoms adsorbed become immobilized, leading to a constancy in the

vapor pressure. The step-like features come from this effect, as can be seen in the

adsorption profile in Reference [103], which is shown in Figure 3.4. The use of

the in-situ pressure gauge is a necessity to detect such small pressure changes at

such low pressures, and to detect the step-like features in the adsorption profile

at sub-Kelvin temperatures.

Figure 3.5 is a plot of the third-sound speed and Q as functions of the helium

coverage for low coverages. The data points have been combined for the various

excitation methods used to create the third-sound waves. The 0◦ and 90◦ vibra-

tions refer to the repeated hitting of the topmost flange of the cryostat with a

hammer at different locations on the circular flange, as discussed in Section 2.1.

These sweet spots provided the best results throughout the course of the experi-

ment. However the heater was less invasive in exciting resonances when the film

was thick enough to suppress desorption in thermally driving third sound.
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Figure 3.3: Helium adsorption isotherm at 1300 mK. Dashed, horizontal

lines indicate layer completion. The spacing between layers becomes uniform

beyond the 2nd-layer at 0.203 atoms/Å2 since the film is no longer strongly com-

pressed. The pressure begins to rise with coverage beyond the 2nd-layer comple-

tion, most notably indicating liquid-film deposition. The steep rise in the coverage

around 1 Torr is the rise towards the SVP value of the bulk liquid.
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Figure 3.4: Adsorption isotherm of 4He on graphite foam at 640 mK.

The plot is from Reference [103], which showcases the number of helium atoms,

N , admitted into the experimental space as a function of the pressure reading,

P , on the in-situ pressure gauge. The step at 16.5 × 1019 atoms indicates the

completion of the 3rd layer.
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The rise to a maximum in c3 is expected on account of finite-size broadening in

the KT transition, as discussed in Section 1.6. Indeed, since the superfluid current

is not completely screened by a true vortex-unbinding transition, the superfluid

density does not abruptly drop to zero at TKT. The reason there is a maximum in

the sound speed stems from a competition between the superfluid density and the

vdW attraction. On the one hand, increasing the film thickness from the superfluid

transition temperature, Tc, makes the superfluid density gradually increase as the

vortex-antivortex pairs have less of a screening effect as the film thickness is built

up to larger values. On the other hand, the vdW potential is becoming smaller

for the newly adsorbed film, as the film thickness is now larger and, thus, farther

away from the substrate. The superfluid density increases more rapidly than the

decrease in the vdW potential for the film, resulting in a maximum in the third-

sound speed. Once the superfluid density reaches its maximal value, the reduction

in the vdW potential dominates the c3 profile, resulting in the reduction of the

sound speed.

The third-sound profile sees a marked change at larger values of coverage,

as is shown in Figure 3.6. This increase in the sound speed is probably at-

tributed to the film’s preferred condensation—at high-enough coverages—at re-

gions where neighboring nanotubes touch, a schematic of which is presented in

Figure 3.7. This effect, known as capillary condensation, has been studied in su-

perfluid films adsorbed on Al2O3 powders consisting of spherical and ellipsoidal

powder grains. [104] In this study, an increase in the sound speed was observed,

which was explained by modeling the adsorbed film at the boundary where two

grains touched. The surface-tension force was the dominant force at high-enough

helium coverages, and it was responsible for increasing the sound speed on account

of its anti-restoring nature.
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Figure 3.5: c3 and Q as functions of the 4He coverage at 1300 mK on

the MCNT powder. The low Q near the superfluid onset indicates substantial

attenuation due to topological excitations. The rise up to the maximum in c3

represents the increase in the superfluid density as it is gradually built up from

a lessened screening from the vortex-antivortex pairs above the critical onset film

thickness. The reduction in the sound speed beyond the maximum is due to the

reduction of the vdW potential. The onset coverage is taken as 0.413 atoms/Å2.
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Figure 3.6: Third-sound speed as a function of the 4He coverage at 1300

mK on the MCNT powder. After the decrease in c3 due to the reduction of

the vdW potential in the building up of the film, the speed begins to increase

as modeled in Al2O3 powders in Reference [104]. This is likely due to capillary

condensation where the MCNTs touch.
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Figure 3.7: Model for capillary condensation on the cylindrical geometry.

Although the nanotubes’ outer region has an unfavorable curvature both due to

a reduced vdW attraction and surface tension, the region between nanotubes

presents a favorable, confining geometry to where helium atoms are likely to be

drawn. The film thickness ceases to build up across the cylinders uniformly and is,

instead, deposited into the regions where the tubes touch, resulting in an increase

in the surface-wave’s speed.
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3.4 Low-Temperature Results and Discussion

Layering effects were not readily seen at 1300 mK, but at sub-Kelvin temperatures

these effects were more prevalent. In particular, the profile of the third-sound

speed displays oscillatory behavior, which is directly related to the hardening and

softening of the adsorbed superfluid film, particularly between the 3rd and 5th

layer-completion coverages. This behavior has been seen on graphite foam [55]—

as shown in Figure 3.9—and modeled theoretically in a study of multilayer film

growth on various substrates showing crystalline order [105]. This can be seen in

Figure 3.8, which is a plot of the third-sound speed as a function of coverage at

an approximately constant temperature of 250 mK.9 The adsorbed helium film

displays an oscillation in the (2D) isothermal compressibility [55,89], defined by

KT =
1

n2T

∂n

∂ ln(P )
,

where n is the (areal) 4He number density, T is the temperature, and P is the

pressure as measured by the in-situ gauge. Indeed, when the film hardens when

getting close to the completion of a layer, the compressibility decreases—since

an already compressed film is difficult to compress further—while when the film

softens, the compressibility increases—since such a film has the potential to be

compressed further.

The behavior of the third-sound speed can be characterized rather well by

observing the trends in the compressibility. Indeed, a discussion of the relationship

can be extracted from a discussion of how the generic sound speed in a bulk fluid

9It was difficult to keep the temperature at a fixed value. It was necessary to excite the third-
sound resonance by shaking the shaker at a large drive level, particularly when the Q of the
resonance signal was low. This violent shaking would inevitably make the entire dilution-fridge
assembly shake, since the experimental cell was rigidly coupled to the mixing chamber to ensure
optimal thermal contact. This would heat up the mixing chamber both because of a presumed
increase in the heat load to the mixing chamber from the heating-up of the magnet, but also
because of a nonequilibrium perturbation set forth on the phase-separated mash. However, the
mixing chamber was able to robustly maintain a temperature around 250 mK for the most part,
allowing for an approximate isothermal investigation of c3 as a function of the helium coverage.
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Figure 3.8: Third-sound speed as a function of coverage at 250 mK. c3

oscillates at the lowest coverages with layer periodicity. The vertical lines indicate

layer completion, starting from the 3rd-layer completion. The onset coverage is

0.293 atoms/Å2. c3 is a maximum at the 3rd (unseen) and 4th layer completions,

with a suppressed maximum at the 5th layer completion where the decrease in

the film compressibility is dominated by the reduction in the vdW potential.

131



(denoted as first sound in superfluid helium) depends on the compressibility. As

in Equation 1.92a, the speed of first sound can be written as

c2
1 =

(
∂P

∂ρ

)
S

.

The bulk-liquid density ρ may be rewritten in terms of the specific volume (i.e.,

volume of the bulk fluid per unit mass), v, as ρ = 1/v. Since d(1/v) = −(1/v2)dv,

then

c2
1 = −v2

(
∂P

∂ρ

)
S

=
v

κS
,

where κS is the isentropic compressibility (using the specific entropy, s). Using a

Jacobian transformation, the isentropic compressibility may be written in terms

of the isothermal compressibility,

κS ≡ −
1

v

(
∂v

∂ρ

)
S

= −1

v

∂(v, s)

∂(P, s)

= −1

v

∂(v, s)/∂(P, T )

∂(P, s)/∂(P, T )

= −1

v

(
∂T

∂s

)
P

[(
∂v

∂P

)
T

(
∂s

∂T

)
P

−

(
∂v

∂T

)
P

(
∂s

∂P

)
T

]

= −1

v

[(
∂v

∂P

)
T

−

(
∂T

∂s

)
P

(
∂v

∂T

)
P

(
∂s

∂P

)
T

]
.

From the (specific) Gibbs-free-energy differential (presuming no particle exchange,

which is completely warranted for a bulk liquid), dg = −sdT + vdP , we have that(
∂g

∂T

)
P

= −s

and that (
∂g

∂P

)
T

= v.

Since g is a thermodynamic potential, the mixed partial derivatives must be equal.

As a result, it must be true that(
∂v

∂T

)
P

= −

(
∂s

∂P

)
T

.
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Using this, along with the definition of the specific heat capacity at constant

pressure,

CP = T

(
∂s

∂T

)
P

,

the isentropic compressibility is rewritten as

κS = −1

v

[(
∂v

∂P

)
T

+
T

CP

(
∂v

∂T

)2

P

]

= −1

v

(
∂v

∂P

)
T

− T

vCP

(
∂v

∂T

)2

P

= κT −
T

vCP

(
∂v

∂T

)2

P

.

Finally, defining the volumetric thermal expansion coefficient, αV , as

αV ≡
1

v

(
∂v

∂T

)
P

,

the relationship between the isentropic and isothermal compressibilities becomes

κS = κT −
Tvα2

V

CP
. (3.28)

Thus, using Equation 3.28, the first-sound speed may be written in terms of the

isothermal compressibility as

c2
1 =

v

κT −
Tvα2

V

CP

. (3.29)

Although this analysis cannot be completely applied to the 2D film, Equation

3.29 can be used to understand the overarching inverse relationship between the

third-sound speed, c3, and the (2D) isothermal compressibility, KT . Indeed, Fig-

ure 3.9—taken from Reference [55]—showcases this relationship, where it is seen

that a maximum in c3 corresponds to a minimum in KT , and a minimum in c3
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roughly corresponds to a maximum in KT . The minima in the compressibility,

along with the maxima in the sound speed, align perfectly with the completion of

a layer. The maxima in the compressibility and the minima in the sound speed

do not occur at the half-layer mark, but are slightly offset from that coverage.

The sound-speed was the only means by which the effects of layer-by-layer

growth were seen in this study of 4He adsorption on the MCNT powder. However,

the Q also showed some interesting features as a function of the coverage, as can

be seen in Figure 3.10. At the Q minima seen at 0.306 and 0.344 atoms/Å2,

there was much difficulty in trying to capture a signal above the noise, and it was

necessary to ramp up the shaker amplitude to pick up the resonance. It is not

entirely clear why there was significant attenuation at these coverages. In the plot

of c3 and Q at 1300 mK (Figure 3.5), there was significant attenuation around

the onset region. At 250 mK, it was almost impossible to get a signal above the

noise at the onset coverage of 0.290 atoms/Å2. There seems to be a trend towards

lower values of Q around this coverage in both drive levels shown in Figure 3.10,

but even with drive levels above the ones shown, there was very little semblance

of a resonance peak in this region. If 0.290 atoms/Å2 is the onset coverage at this

temperature, it is unclear why the Q jumps to such high values after such a small

increase in the coverage (e.g., at 0.300 atoms/Å2).

The coverage of 0.290 atoms/Å2 becomes somewhat more anomalous in its

identity as the onset coverage when looking at the profile of c3 as a function of

temperature at a fixed coverage near this region. Indeed, it was necessary to

build up the coverage slightly in order to investigate the temperature dependence

of the sound speed, as the signal was very difficult to extract near the onset.

In fact, raising the shaker amplitude proved detrimental at this point, since the

temperature would run away to much higher values very rapidly, not allowing for

extraction of an isothermal FFT profile. As can be seen in Figure 3.10, the Q was

more manageable at a coverage of around 0.300 atoms/Å2, which was where the
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Figure 3.9: Third-sound speed and isothermal compressibility of the 4He

film on graphite foam. The plot is from Reference [55], which showcases c3

and KT as functions of the 4He coverage. The dashed vertical lines indicate layer-

completion coverages, starting from the completion of the 2nd layer. Note that

the change for both the compressibility and for the third-sound speed is more

dramatic for the lower-temperature data. Moreover, note that the minima in

KT and the maxima in c3 align very well with the layer-completion coverages,

while the maxima in the compressibility and the minima in the sound speed occur

slightly before and slightly after the half-layer-completion points, respectively.
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Figure 3.10: c3 and Q as functions of 4He coverage at 250 mK. The Q is

plotted as a function of coverage for two different drive levels (2.0 V and 2.5 V)

for the shaker. The Q has local minima at 0.306 and 0.344 atoms/Å2, indicating

an interesting attenuation pattern that is not commensurate with half- or full-

layer-completion points. However, there seems to be a rise to a local maximum in

the Q at the 4th and 5th layer completions. The solid line running through each

plot of Q is meant for visual enhancement of the witnessed trends.
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Figure 3.11: Temperature sweep at a coverage of 0.303 atoms/Å2. The

drop in the Q occurs at around 520 mK, which is taken as TKT for this particular

coverage.
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first temperature sweep was performed. The result of this sweep, specifically at a

coverage of 0.303 atoms/Å2, is shown in Figure 3.11.

One of the strange features of this temperature sweep was its rather high

KT onset temperature. In other words, a small change in the coverage from the

presumed onset region—which one would assume to have a superfluid onset around

250 mK and, thus, a KT onset temperature slightly below that—resulted in a

significant change in the KT and superfluid onset temperatures. In comparison to

the study by Zimmerli et al.—where the lowest operating temperature was no less

than 600 mK—it was initially believed that the onset coverage in the MCNT study

should have more readily corresponded to a film thickness below the completion

of the third layer, simply based on the fact that the operating temperature was

significantly lower. From the KT theory, a lower temperature should allow for the

detection of a superfluid film at an overall thinner film. [37]

According to Crowell et al. [89]—in which the adsorption of superfluid 4He was

studied on Grafoil in a torsion-oscillator assembly—a coverage near the completion

of the 3rd layer has TKT = 600 mK, as shown in Figure 3.12. As the coverage

is increased beyond the 2nd-layer completion, at a coverage of 20.4 atoms/nm2,

the onset temperature becomes roughly 300 mK 1.3 atoms/nm2 before the 3rd-

layer completion at 28.0 atoms/nm2. By the completion of the 3rd layer, the

onset temperature is in the neighborhood of 600 mK. However, this study with

the MCNT powder would be inconsistent with the study of Crowell et al. if it

was assumed that the initial peak in Figure 3.8 corresponded to the 2nd-layer

completion (instead of the 3rd-layer completion), as a KT onset temperature of

600 mK is seen almost immediately after that c3 maximum.10 In the Crowell study,

a superfluid signal in the 3rd layer (i.e., the film above the 2nd-layer completion

coverage) with a transition temperature in the neighborhood of 300 mK is seen

10Again, the maximum in c3 is a tell-tale sign of the completion of a layer. Thus, a layer
completion must be recognized at this particular coverage.
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Figure 3.12: Oscillator period shift (∆P) and superfluid attenuation (Q−1)

as functions of the temperature, from Reference [89]. The closed circles in

the ∆P plot correspond to the 2nd layer, while the open circles and triangles cor-

respond to the third and fourth layers, respectively. The 4He coverage is indicated

to the left of each trace. An abrupt shift in TKT occurs over a small change in

coverage, from 200 mK at 26.1 atoms/nm2 to 600 mK at 27.9 atoms/nm2, which

is right before the 3rd-layer completion at 28.0 atoms/nm2.
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with a significant coverage above the completion point: almost 6.3 atoms/nm2 =

0.063 atoms/Å2 above the 2nd-layer completion. Thus, interpreting the first c3

maximum in Figure 3.8 as the 2nd-layer completion would be difficult. Although

it is true that the studies are not exactly the same based on the vastly different

geometries involved, there should still be some general consistency between the

studies, suggesting that the chosen scale for this MCNT study is reasonable even in

the wake of having such high KT onset temperatures while operating significantly

below the operating temperature of Zimmerli et al.

Another possibility regarding the absence of superfluidity in the third layer

may be due to an absence of a connected path for macroscopic detection of the

signal until a significant coverage is reached. In the study of Whitlock et al., a

2D helium film was studied under the absence of a substrate for the purposes of

establishing exactly at what value of coverage the film turned into a self-bound

liquid. [106] In other words, it was shown that it takes the helium film a specific

coverage in order for the film to actually be connected. Prior to reaching that

critical coverage, the film is in a phase of (2D) gas-liquid coexistence consisting of

unconnected liquid droplets. Above the critical coverage, which was determined

to be 4 atoms/nm2, the system would then condense into a connected liquid while

possibly still in a coexistence regime with a 2D gas. Another study, by Clements

et al., looked at a more realistic helium film undergoing multilayer growth on

top of two solid layers of 4He on graphite. [107] In this study, it was determined

that the 1st fluid layer (i.e., the 3rd overall 4He layer) would condense into a

self-bound liquid at a coverage of 3.5 atoms/nm2. Moreover, the subsequent

fluid layers were also found to undergo a transition into a self-bound liquid once

each layer reached the same critical coverage. Although these studies exclusively

focused on the adsorption of helium on flat geometries, their conclusions regarding

liquid nucleation at a critical coverage should equally well apply to a cylindrical

geometry, particularly since the existence of liquid globules—which do not form
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an interconnected film—at low coverage should not be affected by surface-tension

effects. In other words, the cylinder should look relatively flat for each of the

liquid droplets, and the effects of surface tension could perhaps drive the critical

coverage to a higher value since it now costs the globules extra energy to form a

self-bound film on the inherently curved surface.

Coupling these notions with the MCNT powder geometry at the macroscopic

scale—which showcases grain boundaries on length scales of approximately 10 µm

as in Figures 2.4a and 2.4b—it is possible that a significant coverage must be

obtained until a proper connected path is achieved across the macroscopic cell.

Put another way, even though a superfluid film may exist on many of the grains

across the sample, the linking between the films on adjacent grains may be weak

enough to suppress the propagation of third-sound with significant attenuation.

Perhaps this is the reason why there is no clear-cut reduction in the Q in Figure

3.10 at the presumed onset region. Adding to this, it may also be the reason

why there is a very clear attenuation observed in Figure 3.5 for the experiments

at 1300 mK, since this operating temperature requires a significantly thicker film

for a superfluid layer to form. So, with an already macroscopically connected

superfluid film established at these temperatures, the KT onset at the critical

thickness is more readily observed with the reduction in the Q due to the vortex-

antivortex screening of the superfluid current. As mentioned before, the data at

250 mK does not readily show such a reduction in the Q at the onset coverage in

Figure 3.8, so that it is likely that the signal in this region already had a value of

TKT much higher than 250 mK, and it was just difficult to capture a signal with

a lack of macroscopic connection across the powder.

Figures 3.13 to 3.20 show c3 and Q as functions of the temperature for 0.308,

0.318, 0.331, 0.350, 0.355, 0.361, 0.364, and 0.381 atoms/Å2, respectively. As in

Figure 3.12—where TKT is taken to coincide with the maximum in the attenuation,
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Figure 3.13: Temperature sweep at a coverage of 0.308 atoms/Å2. The

drop in the Q occurs at around 560 mK, which is taken as TKT for this particular

coverage.
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Figure 3.14: Temperature sweep at a coverage of 0.318 atoms/Å2. The

drop in the Q occurs at around 635 mK, which is taken as TKT for this particular

coverage. Notice that c3 also slightly increases as a function of the temperature

before reaching the KT onset temperature.
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Figure 3.15: Temperature sweep at a coverage of 0.332 atoms/Å2. The

drop in the Q occurs at around 720 mK, which is taken as TKT for this particular

coverage.
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Figure 3.16: Temperature sweep at a coverage of 0.350 atoms/Å2. There

is a drop in the Q around 520 mK, taken as TKT for this coverage. However, this

drop is not substantial, as the Q remains quite high compared to the points prior

to the rise at 490 mK. No signal was seen at any temperature above 590 mK,

which could equally well serve as TKT. For these reasons, a 70-mK uncertainty is

quoted for TKT at this coverage.
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Figure 3.17: Temperature sweep at a coverage of 0.355 atoms/Å2. There

is no apparent drop in the Q to suggest the appropriate KT onset temperature. At

635 mK the Q is 110, while at 700 mK it is about 60. The KT onset temperature

could perhaps be in between these values, or even above 700 mK since the signal

could no longer be detected beyond this value. A value of 670 mK is taken as

TKT, with a 50-mK uncertainty.
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Figure 3.18: Temperature sweep at a coverage of 0.361 atoms/Å2. There

is a drop in the Q to a value below 100 around 750 mK, particularly in the 2.0-V

drive data. There is a rise in the Q for this drive from this point to the last data

point, but the largest value in this rise in the Q remains below 100. The KT onset

is taken to occur at 750 mK with an uncertainty of 60 mK to account for these

issues.
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Figure 3.19: Temperature sweep at a coverage of 0.364 atoms/Å2. A

drop in the Q occurs at around 920 mK, which is taken as TKT for this particular

coverage. There are regions where the Q is low—such as at 520 mK—but the onset

must occur at much higher temperatures for consistency with the KT theory.
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Figure 3.20: Temperature sweep at a coverage of 0.381 atoms/Å2. Al-

though the data points near the onset temperature are represented by different

drive levels (which may have different levels of attenuation), a drop in the Q seems

to occur near 950 mK, which is taken as TKT for this coverage. An uncertainty of

70 mK is taken to make up for this lack of data points, owing to the difficulty of

controlling the dilution refrigerator above 900 mK.
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Q−1—a similar analysis is done in this study when the Q sharply decreases.11 For

the temperature sweeps at 0.308, 0318, and 0.332 atoms/Å2, the general trend

is that the KT onset temperature increases as the coverage increases, which is

consistent with the KT theory [40], even under the circumstances of finite-size [43]

and finite-frequency broadening [38,43].

However, one notable signature that is not seen in any of the other temperature

sweeps is the slight increase in the sound speed as the temperature is increased

at 0.318 atoms/Å2, as shown in Figure 3.14. This is rather peculiar, as the

sound speed—and thus the superfluid fraction—should gradually decrease as the

temperature is increased towards TKT, after which would come the gradual drop in

the speed in the finite-size-broadened reduction of the superfluid fraction. Such an

initial increase in the sound speed as a function of temperature seems to suggest a

film thinning of the superfluid fraction, or perhaps a stiffening of the film, before

the indicative KT drop.

It is not entirely clear exactly why this happens, particularly since a similar

effect has not been seen in other studies, including the low-temperature, torsion

oscillator studies on Grafoil [89]. Perhaps the coverage at which this sweep was

done saw a restructuring in the film, which has been seen in other studies as

a function of coverage [108, 109], and could possibly be seen as a function of

temperature under specific conditions. In particular, it has been reported [109]

that the second layer of 4He adsorbing onto graphite undergoes a restructuring at

the completion of the third layer. So, the core layers are affected by the adsorbate

and are not static by any means in their structure. In particular, the restructuring

is of the form that the second-layer solid is actually further compressed towards the

substrate upon the 3rd-layer completion. In this sense, the increase in the density

11In some cases, as can be seen in some of the mentioned figures, the Q does not sharply
decrease where signal was actually seen. Under those circumstances, a larger error bar in the
KT onset temperature is employed to account for a range that also includes the point at which
no signal was seen.
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in the 2nd layer will prevent the 4th layer from filling until the restructuring is

complete. Moreover, when the new layer begins to fill, there is a lack of percolation

of the helium film in this new layer due to the need to reach a critical density

for a self-bound liquid to form [107]. Because of the gas-liquid coexistence of the

new layer, the helium atoms that are added to the cell are also going into the

gaseous phase. A combination of this restructuring of the core film and this non-

percolating topmost film layer is believed to result in a constancy in the value of

TKT in the 4th adsorbed layer as reported by Crowell et al. [89] This constancy

can be seen in the attenuation, Q−1, profile in Figure 3.21.

This restructuring of the film may be the cause behind probably the most

anomalous feature observed in the temperature sweeps on the MCNT powder.

Notice that the KT onset temperature is around 720 mK at 0.332 atoms/Å2, but

that there is altogether no superfluid signal detected beyond 590 mK and 700 mK

at coverages of 0.350 and 0.355 atoms/Å2, respectively. A temperature at which

a signal is no longer detectable would ideally indicate the superfluid transition

temperature Tc. However, the detection of third sound relies on the presence of

a strong signal, and it is not as sensitive to the superfluid transition temperature

as compared to torsion-oscillator measurements, as these Andronikashvili-type ex-

periments can extend to capturing the superfluid fraction down to effectively zero,

as can be seen in Figures 1.11 and 3.12.12 Predominantly because of finite-size

effects, the KT onset temperature, TKT, will occur at a lower value of temperature

than the superfluid onset temperature, Tc. So, if the signal in the MCNT powder

at coverages of 0.350 and 0.355 atoms/Å2 is lost at the temperatures of 590 mK

and 700 mK, respectively, then these values of temperature should be an upper

bound for TKT. However, there is no clear-cut reduction in the Q at these cover-

ages to suggest a finite-size broadened KT transition when a third-sound signal

12The sensitivity of the torsion-oscillator assembly owes to the great precision with which the
period shift can be detected due to the superfluid decoupling from the oscillator’s moment of
inertia (provided the oscillation angular velocity does not exceed a critical velocity for superfluid
atoms to get excited into higher-energy states).
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Figure 3.21: Attenuation, Q−1, as a function of temperature and coverage

from Reference [89]. The peaks represent points of large attenuation. Note

the encircled region between 28 - 30 atoms/nm2 in coverage, where the peak—

attributed to the KT transition—remains constant. The peaks at slightly lower

temperatures next to the encircled region are an anomaly that could be attributed

to a 3rd-sound resonance, although it was interpreted by Crowell et al. as a phase

transition on some other surface in the cell (not the Grafoil) that happened to be

detected at certain coverages.
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is observed. Thus, it is difficult to use the observed data to robustly infer a rea-

sonable KT onset temperature. Whatever the case may be, the value of the KT

onset temperature at these coverages (even upon taking these upper bounds in

temperature for each coverage) is less than the value obtained from the sweep at

the coverage before it. This peculiarity thus presents a dip—instead of a plateau

as in the work of Crowell et al. in Reference [89]—in the behavior of TKT as

a function of the 4He coverage, as shown in Figure 3.23. Even when considering

finite-size and finite-frequency effects in the KT transition, the universal KTN line

will still determine the transition temperature, since these effects aim to broaden

the transition to a superfluid fraction of zero without necessarily changing the

essential physics of the transition.13 The temperature sweep at 0.361 atoms/Å2

continues the dip away from the linear relationship until it is again restored at

0.364 atoms/Å2.

It is not clear why a dip in TKT—seen at coverages ranging from roughly 0.345

- 0.365 atoms/Å2—should occur in the MCNT powder as opposed to a plateau.

This coverage range is in the neighborhood of the 4th-layer completion in the c3

profile in Figure 3.8, so that it seems that a restructuring of the core film may be

taking place closer to the 4th-layer completion instead of the 3rd-layer. Moreover,

issues of the new film not being self-bound should occur at low coverages in the

4He atoms adsorbing onto the new layer, but the dip in the KT profile is seen while

a layer completes and a new one begins to form. Perhaps this latter inconsistency

can be somewhat resolved by noting that there is not a single type of tube present

in the MCNT powder. Indeed, there could certainly be some smearing in the

adsorption of a new layer, as the tubes with a larger outer diameter would have

their own 4th layer completed before the smaller-diameter ones.14 The fact that

13The underlying physics is still unchanged, in the sense that the phase transition is controlled
by the thermal excitation of vortex-antivortex pairs.

14Such a trend is established because a smaller radius of curvature would invariably result in
a larger cost in surface energy, so that the smaller-diameter tubes should have a smaller film
thickness than the ones with the larger diameter.
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this smearing does not wash out the c3 profile is a testament to the fact that the

distribution of sizes is not considerably vast, but instead concentrated enough to

make it reasonable to analyze the trends with a single diameter in mind. It is

also important to note that these coverages at which there is a dip in TKT do not

correspond directly to the minima in Q seen in Figure 3.10.

Although the linear trend in TKT versus the coverage is restored at 0.364

atoms/Å2, the temperature at which onset is taking place—namely at or above

800 mK—is obscured by attenuation mechanisms other than just the topological

excitations. Indeed, according to the Atkins-Bergman theory of third-sound atten-

uation, at temperatures above 800 mK, the 4He vapor pressure becomes significant

enough to provide an extra mechanism of attenuation, which is predominantly due

to desorption effects. [49, 61, 62, 110] Thus, it is a bit more difficult to pin down

the KT onset in looking at the attenuation profile alone, since desorption effects

are also prevalent. The data point at the highest coverage shown in Figure 3.23 is

from the data taken at 1300 mK, where the onset coverage at which a superfluid

signal was detected was 0.413 atoms/Å2.

Figure 3.23 also presents one other effect that has been seen regarding re-

entrant superfluidity. In Reference [89], the second layer exhibited a novel phe-

nomenon in which a period-shift was observed over some coverage, but then disap-

peared on account of reaching a different phase of the adsorbed helium film in this

layer, as shown in Figure 3.24. At temperatures around or above 20 mK—which

was the baseline temperature in the study—the superfluid signal disappears once

crossing over into the C+F (Commensurate + Fluid) phase on account of the

formation of a quasi-solid in the film. In other words, it is believed that because

the atoms in the liquid film become locked-on to the graphitic lattice structure,

the mobility of the superfluid atoms becomes vanishingly small. As a result, there

is no mass decoupling, which is why there is no period shift in the oscillator.

In the study on the MCNT powder, a similar effect occurs, which can be seen

154



Figure 3.22: Schematic representation of the KTN line for a newly

formed 4He layer on Grafoil from Reference [89]. The validity of the KTN

line is not completely clear in the gas-liquid coexistence (G+L) region, particu-

larly when the coverage in this new layer is below the critical density, nc, where a

self-bound liquid has not yet formed.
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Figure 3.23: TKT as a function of the 4He coverage on the MCNT pow-

der. The vertical lines indicate layer-completion coverages, starting from the

3rd-layer completion. The data points are taken from the temperature sweeps in

Figures 3.11 and 3.13 to 3.20, with the last data point obtained from the onset

coverage at 1300 mK in Figure 3.6. The solid line is the (theoretical) KTN line

obtained using Equation 1.32. There is a dip in TKT in the experimental data

around the 4th-layer completion. A possible explanation for the mismatch in the

slopes of the data and the theory is that a good fraction of the 4He atoms remain

gaseous and perhaps do not condense into a liquid to participate in superfluidity.
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if one is sweeping the third-sound profile as a function of coverage at, for example,

a temperature of 600 mK. According to Figure 3.23, a superfluid signal will not be

seen until approaching 0.320 atoms/Å2, since the onset temperature is below this

value at lower coverages. Upon increasing the coverage from this point forward,

a superfluid signal would be seen until approaching the neighborhood of 0.340 -

0.350 atoms/Å2. Eventually, the superfluid signal will again be detectable upon

reaching a coverage around 0.360 atoms/Å2 or so. In this sense, there are two

superfluid onsets instead of one, to which the second onset is referred as a case

of re-entrant superfluidity. Such has not been seen to occur on other substrates,

so that the effect seems to not only require long-ranged crystalline order in the

underlying substrate, but also a strong coupling between the adsorbate and the

substrate.

Albeit, it can be argued that the re-entrant behavior seen in the work of

Crowell et al. may not be of the superfluid type. If it is, in fact, true that the

first two layers of 4He on graphite are solid [81], the period-shifts seen in these

torsion-oscillator measurements could be on account of properties of the helium

solid. Initially, it was believed that there was a supersolid phase in helium from

the experiments of Kim and Chan [111], which saw a period shift in solid helium

at a temperature below 100 mK. However, the shear modulus was also seen to

exhibit the same strange behavior at identical transition temperatures. [112–114]

Theories employing the importance of dislocations to help explain the novel effects

seen in the shear modulus (e.g., Reference [115]) helped discredit the idea of the

supersolid. Nonetheless, it is possible that the period-shift seen in Reference [89]

in the 2nd layer might have been due to these effects within the solid helium, so

that seeing the signal beyond the C+F phase in Figure 3.24 should really be taken

as the only onset in superfluidity. The work of Crowell et al. was sensitive to an

anomaly in the KT onset temperature that strayed away from the KTN line, as

mentioned before. However, since it was a plateau in the onset temperature—as
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opposed to a dip in the MCNT study—then the superfluid signal would not have

disappeared when investigating the period-shift as a function of the coverage at a

particular temperature.

A final note regarding Figure 3.23 is the disagreement between the slope of

the KTN line in comparison to the experimental data. It is not completely clear

if the KTN line should necessarily apply to the superfluid film in each layer, as

shown in the schematic in Figure 3.22. For the MCNT powder, the KTN line

shown in Figure 3.23 is determined by making a few assumptions. Since the

coverage at which a third-sound signal is first seen is slightly above the 3rd-layer

completion, the dead layer, Ddead, is taken to be three layers—which includes

the initial two solid layers and roughly a full layer of inert liquid film. Thus,

TKT = 0 at 3 layers = 0.279 atoms/Å2. Another point must be determined in

order to draw the theoretical line. To calculate TKT at the 4th-layer completion,

the universal-jump criterion in Equation 1.32 is utilized.

Since each layer after the 2nd-layer completion completes at a density of

0.076 atoms/Å2, then the areal superfluid density is σs = 5.05 × 10−25 g/cm2.

Using Equation 1.32 and solving for TKT, the KT onset temperature should be

1440 mK. Therefore, TKT = 1440 mK at 4 layers = 0.354 atoms/Å2. Of course,

aside from the anomalous dip in TKT seen in the data, the mismatch in the slopes

between the experimental data and the theory suggests that there is less super-

fluid in the system than is predicted. Changing the coverage scale will still not

change the slope of the experimental data in relation to the KTN line. Perhaps

this is further evidence to suggest the presence of the gas-liquid coexistence on

these substrates, where, for instance, the addition of more 4He atoms above the

3rd layer completion has a large fraction going into the gas phase instead of into

the liquid regions. So, in calculating the onset temperature at the 4th-layer com-

pletion for drawing the KTN line in Figure 3.23, it was assumed that all of the

helium atoms became superfluid. Relaxing this assumption may allow for better
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Figure 3.24: Superfluid fraction as a function of 4He coverage overlaid on

the 2nd-layer phase diagram, from Reference [89]. The open circles repre-

sent the period-shift in the torsion oscillator—which is sensitive to the superfluid

fraction—while the closed circles represent data taken from Reference [116]. The

C+F (Commensurate + Fluid) phase represents a region of coverages at which

there is a fluid film present, but that it is locked-on to the underlying substrate’s

lattice structure. The locking-on of the fluid film is thought to immobilize the

superfluid, resulting in the loss of superfluidity in this phase. The superfluid frac-

tion becomes nonzero again beyond the C+F phase, thus coining the phenomenon

as a re-entrance of superfluidity.
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agreement with the experimental data. Nonetheless, it is not completely clear

why there should be a depression in the KT profile in Figure 3.23, as such effects

would seemingly suggest a constancy in the KT temperature.

3.5 KT Transition on a Cylindrical Geometry

Before discussing the theoretical implications that the cylindrical geometry im-

poses on the helium film adsorbed on the exterior of the MCNT powder, it is

important to discuss some further evidence regarding this study’s insensitivity to

adsorption on the interior of the nanotubes. Recall that one of the reasons for

which it is believed that there is no significant adsorption on the inside diameter

of the tubes is purely an inconsistency in the adopted coverage scale, as described

in Section 3.2. However, even though the calibration of the coverage scale led

to an unusually large estimate for the average inner diameter of the tubes in the

powder, it would have been expected that two superfluid transitions would have

been detected had there been a macroscopic adsorption within the tubes: one for

the interior and one for the exterior.

The superfluid onset would first have taken place on the interior, since the film

would preferentially adsorb onto the concave interior as opposed to the convex

exterior [104], as in the discussion regarding capillary condensation in Section

3.3.15 In this sense, the superfluid transition within the interior would have been

the first onset observed in the acoustical investigation using third sound. As in the

theoretical study of the adsorption of helium within cylindrical pores, by Saam

and Cole, there eventually would have been an instability in the adsorbed film

on the interior as the coverage was increased. [117] This instability is discussed in

terms of surface modes within the film. The quasiparticle of these surface modes

15Of course, this is assuming that the interior is large enough that a helium atom can overcome
its zero-point energy to be caged. As discussed in Section 3.2, this would not be a problem as
the inner diameter—albeit assumed to be very large in this study due to the adopted coverage
scale—should definitely be much larger than 18 Å [70].
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is the ripplon, which is a quantized capillary-tension wave on the surface. At a

specific coverage on the interior, the instability will result in the complete filling

of the cylindrical pore, so that there is no longer a film. Upon following the

third-sound wave on the interior film, this instability should result in a complete

loss of the third-sound signal, as the relevant sound wave upon pore filling will

be fourth sound. Although there will be some smearing of the signal from the

distribution of diameters within a system like the MCNT powder of this study,

eventually the third-sound signal should completely disappear. Afterwards, the

film should begin adsorbing on the exterior, which will then result in a secondary

onset of superfluidity. However, only a single onset was observed even though the

sound signal was tracked very carefully at many coverages, particularly in the data

taken at 1300 mK where an additional effort was made to obtain the adsorption

isotherm of the helium film. A conscious effort was also made to search for the

fourth-sound signal at higher frequencies in the FFT profile—since c4 > c3—but

no such resonances were observed.

It is possible that even if a good number of the tubes were open, that an

interconnected film may not have been present to detect the flow across the MCNT

powder. Indeed, it is not even clear if the gaps between the micron-sized grains

in the powder—as in Figure 2.4—would even allow for the connection of the film

between the interiors without the presence of a film on the exteriors. Moreover,

it is possible that a vast majority of the tubes are capped in the first place, so

that even if some proportion of the tubes are open on one or both ends, there

still might not even be a macroscopic connection of the film internally through

the tubes for the detection of a signal. It is possible to open the interior of

carbon nanotubes by breaking the tubes to, at least, open one cap. One method

of doing this is via sonication [118], but the tubes used in this study were not

sonicated upon receipt from the manufacturer. Thus, it is inconclusive whether

or not there is adsorption of helium on the interior of the tubes. As a result,
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this study assumes that no adsorption takes place within the tubes both on the

premise of the consistency of the adopted coverage scale with other studies on

graphitic substrates—as discussed in Section 3.2—but also because of the absence

of a dual onset in the superfluid signal.

However, there is most certainly helium adsorbing to the exterior of the tubes,

and a theoretical model has been devised, by Machta and Guyer, to describe the

modified KT transition that takes place on the constraining cylindrical geometry.

One of the main conclusions of this study, taken directly from Reference [119],

is that there is no vortex unbinding transition16, so that there is a continuous,

instead of abrupt, decrease of the superfluid fraction to zero. On the flat, 2D

geometry, the energy required to separate two vortices grows logarithmically in

the separation between the vortex-antivortex pairs. In this sense, there is enough

thermal energy present within the film to separate the pairs to effectively infinite

separation. In the case of the cylindrical geometry, the energy to separate the

pairs, instead, grows linearly in the axial separation, so that there is not enough

thermal energy available at the relevant temperatures to separate the vortices to

infinite separation. It must be noted that separation can occur in both axial and

azimuthal directions. Of course, the vortices cannot separate much azimuthally

because of the constraining geometry; however, even on the longer length scale—

namely, the axial direction—a vortex-unbinding transition is still forbidden due

to the energy profile in the separation of vortices. Thus, the KT transition is

considerably broadened with no abrupt drop in the superfluid fraction.

Another important conclusion is that even though the vortex pairs do not

unbind, there is a zero-frequency dissipation mechanism that is set up by the

counter-rotation of a pair of vortices azimuthally to reduce the superfluid current.

On the flat, 2D geometry, finite frequency effects do create a rounded KT transi-

16This is true for a single cylinder, but a jungle gym of such cylinders may allow for a vortex
unbinding transition, as in the discussion regarding vortex strings in Section 1.6.
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tion [38]. In the absence of an alternating superfluid current, the KT transition

on such a flat geometry introduces an abrupt drop in the superfluid fraction at the

KT onset temperature. However, even though there is a rounded transition on

the cylindrical geometry, there is a considerable amount of dissipation sufficiently

below TKT—where finite-size effects can be neglected—which aims to reduce the

superfluid fraction.

Indeed, because of the difference in the energy involved in separating bound

pairs azimuthally and axially, the superfluid density is actually different along

each of these directions. In this sense, the superfluid density must be treated as

a tensor. However, although the superfluid density must be treated as a tensor,

as Machta and Guyer explain, experiments that deal with cylindrical geometries

with a large aspect ratio will only be sensitive to the axial superfluid density.

3.6 Future Work

A significant amount of future work can be conducted regarding this system of

MCNT powders. It would be worthwhile to provide fits of this experimental data

according to the theory of the KT transition on the cylindrical geometry provided

by Reference [119]. However, to do this requires a much more detailed survey of

the surface area available for adsorption of the helium film. A correspondence

between the helium adsorption isotherm of Figure 3.3 and a nitrogen (N2) BET

adsorption isotherm [120] would help characterize the adsorption profile a bit more

conclusively. Moreover, the installation of an in situ pressure gauge would further

help characterize the adsorption properties of the helium film by looking for the

layer-completion steps as seen by Zimmerli et al., which is shown in Figure 3.4.

To obtain potential agreement with the predictions set forth by the KT theory

on the cylinder, it would also be paramount to have better control over the dis-

tribution of diameters in the MCNT powder. A scalable, cost-effective technique
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of producing MCNTs of a very specific diameter would be very helpful, as the

system would then be more readily understood in its adsorption behavior. It is

also very important to characterize whether or not the tubes are open. Such an

ambiguity makes the adsorption profile very difficult to establish. If the tubes are

known to be open to a large degree, then it would be easier to pursue a diligent

search of a signal at the lowest coverages.

If a cost-effective technique of harvesting a macroscopic number of nanotubes

at a very small range of diameters was possible, the adsorption properties could

be mapped out as a function of diameter. This would be particularly beneficial

for verifying the specific trend that the helium film follows to better establish a

more complete experimental backbone to compare with the theory of superfluid

helium on the cylindrical geometry. Although it would be ideal to look at very

small diameters by resorting to a powder of SCNTs, this was seen to be difficult

because of the tendency for a collection of such tubes to form ropes, causing the

effective diameter to be larger and for the presence of an extra corrugation in the

geometry. [121]

The ultimate investigation into adsorption on such a geometry is to truly build

up to a one-dimensional regime. Due to the unfortunate engineering issues in this

study regarding the cooling power of the dilution refrigerator, a thin-enough su-

perfluid film was not encountered to try to drive up the vortex core size to become

comparable to the MCNT diameter. A way to get around this, without resolving

the cooling issue, is to add 3He on top of the 4He film, because this may drive up

the vortex-core size on account of the normal 3He atoms getting sucked into the

vortex cores and expanding them on account of the Pauli Exclusion Principle. [73]

This was seen to increase the core size to about 100 Å around 250 mK on Al2O3

powders. Searching for such a one-dimensional crossover is very meaningful in the

further extrapolation of phase transitions and how dimensionality plays a role in

its physics.
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Studies of the multilayer film growth, particularly of the superfluid, on carbon

nanotubes would also help in establishing a better idea regarding the adsorp-

tion properties of helium on such cylindrical substrates. Some simulations have

looked at adsorption on graphene [122] and buckyballs [123], while others have

looked strictly at cylindrical geometries such as nanotube bundles [124], inside

a single nanotube [125], and on a single nanotube [126, 127], but they have not

been tremendously focused on investigating superfluidity. The focus has mostly

been on the first couple of layers, which may not necessarily display superfluid

behavior. Although the studies have established interesting phases, ranging from

incommensurate to commensurate solids and sometimes to liquids if the condi-

tions are correct (mainly determined by the cylinder radius), the focus has been

shifted away from the superfluid phase transition. It would be very valuable to

witness a simulation study that is strictly determined to establish trends in the

superfluid nature of helium films adsorbed on cylindrical geometries.
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