
UC San Diego
Technical Reports

Title
Agent Behavior Patterns in a Wireless Internet Environment

Permalink
https://escholarship.org/uc/item/9jb255pz

Authors
Hung, Eugene
Pasquale, Joseph

Publication Date
2001-12-17
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9jb255pz
https://escholarship.org
http://www.cdlib.org/


1

Agent Behavior Patterns in a Wireless Internet

Environment
Eugene Hung, Joseph Pasquale

University of California, San Diego

Abstract—

Internet applications with wireless clients, which are

rapidly increasing in popularity, face obstacles in terms of

performance, reliability, and security. While much can be

done to address these problems at the lower layers of the

protocol stack, we focus on what can be done at the applica-

tion level, which is complementary to the lower layer work

but also has the advantage that it can be easily be deployed

on top of existing or newer wireless Internet infrastructures.

We propose that wireless Internet applications be enhanced

through the use of a stylized form of mobile agent technol-

ogy which we call behavior patterns. These are software tem-

plates that aid in the construction of these applications, and

help in categorizing and constraining their behavior so that

agent-hosts (the intermediary machines capable of executing

mobile agents), are more willing to accept them for execution

and provide them with the appropriate processing and com-

munication resources. This paper provides an overview of

the goals and design of this agent behavior pattern architec-

ture, especially as it relates to supporting wireless Internet

applications.

Keywords—Wireless, mobile agents, behavior patterns

I. INTRODUCTION

A. Mobile Agents in Wireless Internet Environments

W

ITH the growth in use of cellular phones, PDAs

(personal digital assistants), and other types of

handheld devices, there has been a corresponding growth

in demand for wireless Internet applications. Existing In-

ternet applications, most of which are structured according

to the client-server model, can exhibit problems when run

in a wireless Internet environment. These problems are

often due to the typically large changes in performance,

reliability, and security, that can occur at wireless/wired

boundaries. The most common scenario is where the client

has wireless access to the rest of the Internet, most of

which is composed of wired links (in other words, where

the last hop to the client is wireless). For simplicity, we

will assume this scenario when we refer to a wireless In-

ternet environment in this paper (although our work is not

limited to this special case).

One approach to addressing these problems is to use

E-mail: feyhung, pasqualeg@cs.ucsd.edu

A

Client Server

Wireless

Link

Base-station

Agent Host

Fig. 1. Agents in a wireless Internet environment

mobile agents[1] to extend and enhance the client-server

model. By a mobile agent, we simply mean a program that

acts on behalf of a client, typically originating at the client

machine and migrating to another machine (which we call

the agent-host) that acts as an intermediary between client

and server. The agent-host runs middleware to support the

execution of mobile agents, allowing them to communi-

cate with the client or server and possibly migrate again.

In a wireless Internet environment, the agent-host would

be either near or at the base-station, as shown in Fig. 1.

(The base-station may or may not be able to execute down-

loaded software itself; if not, a general purpose computer

is added alongside it for this purpose.)

Applying agent-based computing to the wireless Inter-

net scenario promotes the following advantages:

Performance Despite the limitations of current wireless

devices, a mobile agent can operate in an agent-host’s

resource-rich environment by migrating there. In addition,

with the ability to move closer to the object of computa-

tion, a mobile agent may be able to reduce the latency in a

portion of the application’s network communications.

Reliability Given the ability to move the computation to

an intermediary, a mobile agent allows a user to minimize

the use of the less-reliable wireless link. A separate proto-

col (structured to work within the Internet protocol frame-

work) between the client and the agent can be established

for this purpose.

Security A mobile agent can be sent to a secure and

trusted agent-host, carrying out more sensitive communi-

cations from there (e.g., bypassing the wireless link which

may be more susceptible to eavesdropping). The agent-

host then has the ability to control the amount, type, and

format of communication sent by the agent back to the

client (over the wireless link). For example, it may be en-



2

crypted if not already done so.

Flexibility Mobile agents allow servers to distribute con-

tent without worrying about a client’s special requirements

(e.g., for display), by putting the onus of customization on

the client. The mobile agent is constructed to intercept a

server’s content and customize it specifically for the client.

An example of a wireless mobile-agent application that

achieves these advantages is an e-commerce transaction

broker. By inserting an agent at the base-station to han-

dle the transaction for the client, the wireless handheld

client gains flexibility by having the output customized for

its limited display, performance by operating closer to the

data server and limiting communications over the prob-

lematic wireless link (including the use of compression),

reliability by the agent’s ability to cache and resend a trans-

action result, and security by the agent’s ability to use an

encryption protocol with the client, in a flexible, client-

specific manner.

B. Agent Behavior Patterns

Despite the advantages offered above, mobile-agent ap-

plications are not as common as might be expected. The

reason is twofold: using mobile agents involves learning

an unfamiliar programming paradigm, and potential agent-

hosts are reluctant to execute foreign code without guar-

antees on how this code will behave, such as what types

of resources will be requested and how they will be used,

and what are its security implications. While efforts have

been undertaken to improve resource control and security

in specific agent systems, more work needs to be done on

defining the movement and communication behaviors of

an agent application. More generally, there is a need for

frameworks that facilitate the building of agent applica-

tions that take these issues into account.

As a step towards such frameworks, we introduce the

concept of an agent behavior pattern. An agent behavior

pattern is a codification of general distributed program be-

havior that would benefit from the use of mobile agents.

Specifically, a behavior pattern assumes the client/server

model where the client sends a mobile agent to interact

with the server on its behalf, and is characterized by (1)

how the agent moves, and (2) how it communicates. Ap-

plications that are similar in these characteristics can be

created from the same pattern, yet are distinguished by

their client-specific functionality (CSF), which is essen-

tially their application-specific program logic. By combin-

ing a pattern’s generic code with an application’s specific

functionality, a programmer can build a mobile-agent ap-

plication more easily.

Agent behavior patterns also improve control over de-

ployment. By constraining the CSF to use specialized

methods for movement and communication, the pattern

restricts the application’s behavior to act according to its

characteristics. This gives agent-hosts the ability to under-

stand the mobile agent’s behavior (with respect to move-

ment and communication) before execution, which it may

then use to decide whether in fact to even run the agent.

In this paper, we will demonstrate how agent behavior

patterns help build deployable mobile-agent applications

for a wireless Internet environment. After reviewing the

related work in this area in Section II, we describe the pat-

terns and their characteristics in Section III. We then dis-

cuss the design and use of these patterns in Section IV,

before presenting our conclusions.

II. RELATED WORK

With the growth of the wireless market, many program-

mers have attempted to port popular network applications

to wireless Internet environments. One class of problems

is due to the fact that TCP/IP (and related Internet pro-

tocols) were not originally designed to take into account

some of the unique problems (or opportunities, such as

mobility) presented by the integration of wireless links

with an Internet comprised of mainly wired networks. Per-

haps the best known example is that of TCP’s congestion

avoidance mechanisms, which may be incorrectly trig-

gered due to wireless link failures that have nothing to do

with congestion, leading to a further loss in performance.

Some solutions use various forms of agents to mitigate

these problems. For example, in [2], the SNOOP Pro-

tocol uses a Snoop agent (not necessarily mobile) at the

base-station to re-send packets that appear to have been

dropped by the network due to wireless losses. Extending

this concept to constructing an architecture to support a

similar mechanism (the active proxy) for controlling com-

munications between a wireless client and its base-station

was well-demonstrated in [3]. In [4], a more mobile solu-

tion is used by sub-dividing the communication link into

wired and wireless and migrating the communication han-

dler if the mobile client moves far away from the original

base-station.

Mobile agents also provide a means for an application

to adapt to the wide variation of capabilities provided by

wireless clients. There has been extensive work done on

adaptive applications in the past, the majority of which has

been under the topic of handling multimedia data streams.

Reference [5] introduced the Odyssey system as a set of

extensions to an operating system to allow applications

to adapt to environment changes in a flexible and agile

manner. Reference [6] describes a proxy-based mecha-

nism implemented within the network infrastructure called

dynamic distillation to provide appropriate levels of data



3

compression for a wide variety of clients. Reference [7]

then extends the concept of adaptability to mobile code

by describing a mobile proxy server that hosts proxies

that transform incoming data into a suitable format for the

client.

III. AGENT BEHAVIOR PATTERNS

An agent behavior pattern describes and codifies the

general movement and communication behavior of a mo-

bile agent. Through use of a pattern, a programmer can

create a mobile agent application that embodies the pat-

tern’s behavior, while the server receives useful informa-

tion to decide whether or not to execute the agent.

A. Pattern Characteristics

Patterns define the movement and communication be-

havior of a client/server-based application extended with

mobile agents. While these characteristics are by no means

the only possible categorizations of behavior, we chose

them because they directly addressed the problems faced

by agent-hosts in determining whether or not to run an

agent. Controlling movement allows the server to limit po-

tential security leaks, and controlling communication rate

allows the agent-host to determine whether the agent’s de-

mands regarding communication with the client (e.g., over

the wireless link) are acceptable.

While each pattern is unique in its synthesis of move-

ment and communication, patterns do share some simi-

larities. All patterns are based on the assumptions that

the agent will migrate to a remote agent-host and execute

there, and then communicate with a specified server on the

client’s behalf, the communication being restricted by the

agent to a pre-determined (by the programmer) maximum

bandwidth rate. Furthermore, upon completion, the agent

never migrates off the agent-host, a model that we call the

one-shot model of agent computing. A one-shot model of

mobile agents provides similar functionality to an itinerant

(can move to multiple sites in a pre-determined order) or

autonomous model (can choose its destination(s) at run-

time) by allowing the agent to spawn child agents that can

migrate to other sites, while eliminating the requirement

that the CSF actually use migration commands to move to

another site and thus violate behavior. The child agents

must also use patterns as the basis for their creation, so

that their behavior does not violate the behavior of their

parents.

A.1 Differences in Characteristics

The differences between patterns lie in whether the

agent can spawn other agents from the agent-host, and

is the AgentAis the Client processC is a Server objectS

represents unrestricted communication

represents migration through spawning

represents pattern-restricted communication

Fig. 2. Structure graph key

whether it can communicate with the client (as opposed

to simply moving back with the results).

A.1.a Movement.

� Cannot spawn children from the agent-host. When a

one-shot agent is unable to spawn from the agent-host, the

agent-host knows it has full control over the agent’s future

behavior and the information it sends, while a programmer

knows that all the necessary operations must be done from

that agent-host.

� Can spawn children from the agent-host to specific

destinations. The agent-host is given a list of poten-

tial destinations, which it can use to decide whether the

agent is a potential security leak. In return, the capabil-

ity to spawn children gives the programmer the ability to

emulate further migration without circumventing behavior

constraints.

A.1.b Communication.

� Cannot communicate to the client from the agent-

host. A programmer will use patterns with this behavior to

minimize the amount of communications over the wireless

link between the client and the agent-host. An agent-host

can run an agent based on this pattern knowing that it will

not communicate with the client during execution.

� Can communicate from the agent-host at a maximum

rate of N Kbps. The pattern will enforce a maximum rate

of communication back to the client, allowing the agent-

host to better allocate bandwidth when hosting multiple

agents. While the programmer gets to specify the max-

imum rate of communication, an agent-host is given the

opportunity to reject the agent if its communication de-

mands are deemed too high.

B. Fundamental Behavior Patterns

For mnemonic purposes, the patterns have been given

names that reflect their characteristics. Each pattern is de-

scribed in terms of its movement and communication char-

acteristics, and its utility towards wireless Internet applica-

tions. There will also be a graphical structure depicting the

pattern, using symbols as defined in Fig. 2.

B.1 Standard

� Movement: Can spawn children but not move off host.

� Communication: Can communicate with client.



4

C SA

Fig. 3. Structure of the Standard pattern

C SA

Fig. 4. Structure of the Deadend pattern

The Standard pattern does not bar any specific behavior,

but it is still restricted in that it can only create children

at the destinations within the list provided, and the com-

munication rate is bounded as specified. While the Stan-

dard pattern could be used for any application from the

programmer’s perspective, agent-hosts may be reluctant to

execute a Standard pattern-based application over a more

restricted one.

B.2 Deadend

� Movement : Cannot spawn children or move off host.

� Communication : Can communicate to client.

A mobile agent built from the Deadend pattern is a pro-

gram that is sent to execute on an agent-host in order to

capitalize on that machine’s resources or network location.

Since the agent is not allowed to move or create further

agents from this host, either the agent-host is highly de-

sirable from the agent’s viewpoint for operations, or the

agent plans to terminate at the end of execution.

B.3 Silent

� Movement : Can spawn children but not move off host.

� Communication : Can not communicate with client.

Many applications require reliable or private communi-

cations between client and server. An unstable, insecure

wireless network can reduce the utility of such applica-

tions. An application that uses the Silent pattern creates a

mobile agent that attempts to circumvent the wireless link

nearest the client. The agent is sent to an agent-host, possi-

bly the base-station, to transact on behalf of the client, and

does not communicate with the client over the problematic

link while executing. Upon completion, the agent spawns

a child to transmit the results back to the client, invoking

any agent recovery methods built into the system in case

of failure.

C SA

Fig. 5. Structure of the Silent pattern

C SA

Fig. 6. Structure of the Isolated pattern

B.4 Isolated

� Movement: Cannot spawn children or move off host.

� Communication: Cannot communicate to client or re-

mote server.

The Isolated pattern is the most restrictive pattern in that

it forces the mobile agent to act in complete isolation from

the client. When the agent completes, it is destroyed by the

agent-host and no children are allowed. However, when

the agent is destroyed, the agent may provide the agent-

host with results to be communicated back to the client,

at the agent-host’s discretion. This pattern is most useful

for running on agent-hosts that distrust the security of the

client that the agent comes from: these will accept Isolated

agents that give them complete control over the data that

gets sent back.

IV. SOFTWARE INTERFACE

A. Programming Language

We have chosen to use Java[8] as our implementa-

tion language for patterns, due to several reasons. First,

Java’s modularity allows the delineation of the client-

specific functionality from the core pattern code as sepa-

rate classes, or method packages. Second, Java’s dynamic

extensibility allows the pattern code to instantiate and load

classes on demand, a necessity for providing a pattern’s

flexibility in restriction and invocation. Java programs are

also portable, only requiring that the destination server be

able to run a Java Virtual Machine (JVM). Portability is a

requirement in any heterogeneous environment, which is

the common case for the pattern’s targeted wireless Inter-

net scenario. Finally, JVMs are currently the de facto stan-

dard for running foreign code on the Web, making Java-

based applications highly deployable.

Consequently, we expect that any programmer wish-

ing to employ patterns in their applications will use agent



5

Manifest

Generator

arguments params
move

params
comm

Movement

Handler

Comm.

Handler

Upper

Layer

Pattern Logic

Functionality
Client-Specific

Agent System

Lower
Layer

Fig. 7. Pattern architecture

systems that are both able to invoke Java programs and

have their movement and communication procedures be

invoked in return by a Java program. We also require

that the agent system be able to obtain a copy of the code

for the client-specific functionality, whether it be carried

by the agent or downloaded from a software repository.

These requirements are all met if the agent system is writ-

ten to support Java-based agents. We feel this to be a

reasonable requirement, as leading agent systems such as

Aglets[9], Concordia[10], D’Agents[11], Mole[12], and

NOMADS[13], all support Java-based agents to some de-

gree.

B. Interface

The software interface to these patterns can be sepa-

rated into two layers: the upper layer, which is the inter-

face to the application programmer, and the lower layer,

which is the glue between the agent host and the pattern

logic(Fig. 7).

B.1 Upper Layer

The programmer invokes a pattern by calling the con-

structor of the appropriate pattern class. The constructor

takes the following as arguments: the name of the target

agent-host, the name and port of the data server connec-

tion, the name of the client-specific functionality class file

and its arguments, and behavior characteristic restrictions

(i.e., potential destinations and maximum bandwidth rate

(in Kbps) to the server and client). For example, this is the

header of the Standard constructor:

Deadend (String hostName,

int serverPort, String serverName,

String csfName, String[] csfArgs,

String[] destinationList,

int serverBand, int clientBand)

Other pattern constructors may omit some or all of the

final characteristic restriction parameters if those charac-

teristics are not supported by the pattern.

The constructor then runs the pattern logic, which en-

capsulates the differences unique to each pattern. The

pattern logic checks whether the arguments are consistent

with the behavior and generates an agent that moves to

the specified agent-host to execute the CSF while limit-

ing its movement and communication behavior. In addi-

tion, depending on the pattern, the programmer has access

to the communication handler’s interface of send/receive

methods, which consists of fsendServer, receiveServerg

and possibly fsendClient,receiveClientg. The programmer

should use these methods, and only these methods, for the

CSF’s communications.

B.2 Lower Layer

The lower layer consists of the manifest generator,

movement handler, and communication handler.

B.2.a Manifest Generator. A method that generates a

manifest, which is a declaration (in the form of a text file)

that a potential agent-host can read to understand the ex-

pected behavior. The manifest currently describes the pa-

rameters that restrict movement and communication.

B.2.b Movement Handler. A method that acts as an inter-

face for the Standard and Silent patterns to spawn another

agent on a remote agent-host. (The Deadend and Isolated

patterns do not have a movement handler.) The destination

list parameter is incorporated into the method’s variables

during agent creation, and this list is used to guarantee that

a child agent will not migrate to an unexpected host. A

child agent is formed by instantiating a pattern so that the

behavior guarantees of the parent may still be maintained.

To support flexibility, the child is not required to be the

same type as the parent, but Silent agents are only allowed

to spawn Silent or Isolated children to prevent violation of

the parent’s Silent behavior. In addition, the child’s per-

mitted destination list, if any, must be a subset of the par-

ent’s destination list so that the movement behavior is also

enforced.

B.2.c Communication Handler. This consists of send and

receive methods that regulate and control the agent’s abil-

ity to communicate with the client and server. The CSF is

only able to call these methods to communicate so that the

pattern can enforce the promised communication behav-

ior. In the case of the Silent and Isolated patterns, these

methods do not exist.

The send methods are implemented as separate threads

so that its routines can be performed without the parent



6

blocking. Each thread is initialized during agent creation

with the maximum bandwidth parameter (in Kbps), the ap-

propriate socket handle (to server or client), and the maxi-

mum burst it can send (specified by the agent-host through

an argument to the agent). The thread keeps a queue of

messages that are added whenever the CSF calls the ap-

propriate send method. When there is a message in the

queue, the thread tries to send as much of the message as

possible within the bandwidth rate limits. These limits are

maintained by keeping track of the time and size of the last

packet transmitted in order. If the size and time preclude

sending any data, the thread will sleep for a pre-determined

interval (chosen by the agent-host) before attempting to

send again.

The receive methods are implemented as functions that

listen at a socket and return data that arrives — all the work

in regulating bandwidth is done in the send methods.

C. Using Patterns

In order to build an agent application from patterns, the

programmer selects the appropriate pattern and prepares

the CSF by only communicating through that pattern’s

send and receive methods (if any). The programmer then

invokes the pattern constructor with its parameters to gen-

erate an agent that behaves according to its general pattern

and specific functionality, and whose movement and com-

munication methods are instantiated with the limitations

set forth by the parameters. The pattern logic then nego-

tiates with the target agent-host to run the agent (through

generating and sending a manifest describing the agent’s

behavior), and, upon acceptance, sends the agent to the

agent-host. The agent-host can then start the agent (with

parameters such as the maximum burst to further control

the agent’s communication abilities). The agent code is

responsible for executing the CSF, spawning child agents

from other patterns, and communicating with the server

and client.

V. CONCLUSIONS

We have constructed a number of wireless Internet ap-

plications using the agent behavior patterns described in

this paper, and our current experience is that they indeed

ease (and speed up) the design process, and provide im-

proved operation over their non-agent-based counterparts.

Through the pattern-based process of construction, the ap-

plication is able to describe its expected behavior to the

agent-host, which can use the information to properly allo-

cate resources and consequently is encouraged to execute

pattern-based agents over other agents. We are presently

investigating the design of easily-deployable middleware

that specifically supports our approach to application-

level pattern-based mobile agents, with an emphasis on

demonstrating improved flexibility, performance, reliabil-

ity, and security, relative to standard agent construction

and middleware-support methods.

REFERENCES

[1] D. Chess, C. Harrison, and A. Kershenbaum, Mobile agents: are

they a good idea?, IBM Research Report, reprinted with an update

in J. Vitek (Ed.) ”Mobile Object Systems”, Springer, 1997.

[2] H. Balakrishnan, S. Seshan, E. Amir, and R. Katz, Improving

TCP/IP performance over wireless networks, In Proc. of the 1st

ACM Int’l Conf. on Mobile Computing and Networking (Mobi-

com), 1995.

[3] B. Zenel, A proxy based filtering mechanism for the mobile envi-

ronment, PhD Thesis, Columbia University, 1998.

[4] A. Fieger, A. Boger, and M. Zitterbart, Migrating state information

in mobile environments, In 5th IEEE Workshop on Future Trends

of Distributed Computing Systems (FTDCS), Tunis, Tunisia, 1997.

[5] B. Noble and M. Satyanarayanan, Agile application-aware adap-

tation for mobility, In Proc. of the 16th ACM Symposium on Op-

erating Systems Principles (SOSP), St. Malo, France, pg 276–287,

1997.

[6] A. Fox, E. Brewer, S. Gribble, and E. Amir, Adapting to network

and client variability via on-demand dynamic distillation, In Proc.

of the 7th Intl. Conf. on Arch. Support for Prog. Lang and Oper.

Sys (ASPLOS-VII), Cambridge, MA, 1996.

[7] J. Vass, S. Zhuang, J. Yao, and X. Zhuang, Efficient mobile video

access in wireless environments, IEEE Wireless Communications

and Networking Conference, New Orleans, LA, 1999.

[8] K. Arnold and J. Gosling, The Java programming language

Addison-Wesley, Reading, MA, 2nd ed., 1998.

[9] D. Lange, M. Oshima, G. Karjoth, and K. Kosaka, Aglets: pro-

gramming mobile agents in Java, In Proc. of Worldwide Comput-

ing and its Applications (WWCA’97), Lecture Notes in Computer

Science, Vol. 1274, 1997.

[10] D. Wong, N. Paciorek, et al, Concordia: An infrastructure for

collaborating mobile agents, in Proc. of the First International

Workshop on Mobile Agents 97 (MA’97), April 1997

[11] R. Gray, G. Cybenko, D. Kotz, R. Peterson, and D. Rus,

D’Agents: Security in a multiple-language, mobile-agent system.,

In Mobile Agents and Security, Lecture Notes in Computer Sci-

ence, ed. Giovanni Vigna, Springer-Verlag, 1998.

[12] M. Straber, J. Baumann, and F. Hohl, Mole — Concepts of a

mobile agent system, World Wide Web Journal, Vol 1., Nr. 3, pp.

123–137, 1998.

[13] N. Suri, J. Bradshaw, et al, Strong Mobility and Fine-Grained

Resource Control in NOMADS In ASA/MA 2000, p. 2–15, Zurich,

Springer-Verlag, 2000.




