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Low Dose carbon Monoxide 
exposure in idiopathic pulmonary 
fibrosis produces a co Signature 
comprised of oxidative 
phosphorylation Genes
nancy casanova  1, tong Zhou2, Manuel L. Gonzalez-Garay1, ivan o. Rosas3, 
Hilary J. Goldberg3, Stefan W. Ryter10, Harold R. collard4, Souheil el-chemaly3, 
Kevin R. flaherty7, Gary M. Hunninghake3, Joseph A. Lasky8, David J. Lederer9, 
Roberto f. Machado5, fernando J. Martinez10, imre noth11, Ganesh Raghu6, 
Augustine M. K. choi10 & Joe G. n. Garcia1

compelling preclinical studies indicate that low-dose carbon monoxide (co) abrogates experimental 
lung fibrosis. We recently reported the results of a multicenter, double-blinded, clinical trial of 
inhaled CO in patients with idiopathic pulmonary fibrosis (IPF). Identifying no significantly changes 
in metalloproteinase-7 (MMP7) serum concentration, or secondary endpoints of physiologic 
measurements, hospitalization, death, or patient-reported outcomes. in the present study, we 
evaluated the effect of low dose CO exposure (100–200 ppm) for 12 weeks on genome-wide gene 
expression in peripheral blood mononuclear cells (pBMc) derived from these ipf study subjects. We 
conducted transcriptome profiling on 38 IPF subjects with time points available at 0, 12, and 24 weeks. 
Total RNA isolated from PBMCs was hybridized onto the Affymetrix Human Gene 2.0 ST Array. We 
identified 621 genes significantly upregulated in the 24-week CO exposed group compared with the 12-
week. pathway analysis demonstrated association with oxidative phosphorylation (adjusted p < 0.05). 
We identified a clear CO signature dominated with 23 oxidative phosphorylation-related genes (FDR 
<10%). We confirmed the expression of nine selected gene products using Nanostring’s nCounter 
analysis system. These findings suggest this signature may serve as a potential genomic biomarker for 
co exposure and for potential titration of dosage to allow precision testing of therapies in future low 
dose co therapeutic studies in ipf.

Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive interstitial lung disease characterized by the 
excessive formation of scar tissue in the absence of any known provocation1. IPF patients typically experience 
a progressive decline in lung function leading to a fatal respiratory failure2. In the absence of treatment, IPF is 
usually fatal within 2–3 years of the onset of symptoms. Lung transplantation is the only cure for IPF patients, but 
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many IPF patients expire before receiving a lung transplant and only 20% to 30% of IPF patients survive 5 years 
after diagnosis. The approvals of Pirfenidone and Nintedanib3,4 provides additional, much needed therapeutic 
options. However, 20% of IPF patients discontinue treatment as a consequence of adverse events, and the high 
cost of these new drugs prohibit their wider use5. More sobering yet is that these costly drugs have a modest 
impact on disease progression and survival. Thus, IPF remains an incurable disease with a dismal prognosis and 
there is a continuing search for better tolerated, safer and economical treatments.

The pleiotropic biological functions of carbon monoxide (CO) include protection against oxidative injury6,7, 
inhibition of cell proliferation8, suppression of matrix production9, repression of fibrinolysis10, modulation of 
apoptosis, and inflammation, and protection against other environmental insults11–16. CO can bind to hemo-
proteins resulting in modulation signal transduction pathways affecting gene regulation that result in signifi-
cant reduction of processes associated with the pathogenesis of lung fibrosis. Numerous pre-clinical studies have 
examined the protective effect of low CO concentrations on the lung parenchyma and vasculature. Mice exhibit 
an increased tolerance to lethal concentrations of oxygen (hyperoxia) with increased survival and attenuation 
of lung injury12. CO provides lung protection for lung transplantation17, aeroallergen-induced inflammation18 
and lethal ischemic lung injury10. Low levels of CO suppress bleomycin-induced lung fibrosis and CO-exposed 
cells displayed impaired production of extracellular matrix proteins such as fibronectin and collagen9. CO (100–
125 ppm) was well tolerated in patients with chronic obstructive pulmonary disease (COPD) and was shown to 
reduce sputum eosinophilia and improves methacholine responsiveness19. CO has antivaso-occlusive and immu-
nomodulatory effects beneficial to sickle cell disease patients to prevent cardiovascular complications20.

The use of transcriptomic data to characterize biological effects of small molecules has become popular in 
drug discovery projects21 to determine biological effects of a drug at gene expression level. We recently completed 
a multicenter, double-blinded, clinical trial of inhaled CO in IPF which demonstrated the safety and tolera-
bility of low doses (100–200 ppm) of CO in IPF22. However, despite modest increases in carboxy-hemoglobin 
(CO-Hb) blood levels, low dose CO exposure failed to significantly affect the primary study endpoint of changes 
in metalloproteinase-7 (MMP7) serum concentration, or secondary endpoints of physiologic measurements, 
hospitalization, death, or patient-reported outcomes. The aim of the present study was to determine the effect of 
CO exposure on genome-wide gene expression in peripheral blood mononuclear cells from room air (RA) and 
CO-exposed IPF study subjects.

Methods
Study overview. We conducted a multicenter phase II randomized, double blind, placebo-controlled of 
clinical trial of inhaled CO compared to placebo, which was approved by each participating center’s Institutional 
Review Board (Brigham and Women’s IRB #210P001676). Research was performed in accordance with relevant 
guidelines and regulations. Written informed consent was obtained from all subjects enrolled at Brigham and 
Women’s Hospital-Harvard Medical School, University of Illinois, University of Chicago, University of California 
San Francisco, University of Michigan, Tulane University, Columbia University, and University of Washington. 
Participants had IPF diagnosed according to ATS/ERS/ALAT guidelines for IPF diagnosis and management2, 
mild to moderate lung disease (FVC greater than or equal to 50% predicted). Inclusion/exclusion criteria, rand-
omization, carbon monoxide dosing and administration were previously described22. Briefly, subjects were rand-
omized to inhaled CO treatment with an initial dose of 100 ppm for one week followed by dose escalation to 200 
ppm, or to placebo with RA (21% inhaled oxygen). Inhaled CO was administered twice weekly for a total of 12 
weeks. Peripheral blood samples were collected on specified research visits. A total of 51 subjects completed 12 
weeks of randomized therapy (CO or placebo) and 45 subjects completed follow-up period. Complete enrolled 
cohort baseline demographics, imaging, biopsy findings and pulmonary function testing of randomized subjects 
were balanced; statistically significant differences were not noted between subjects treated with CO compared to 
treatment with placebo for any element22. We excluded 9 subjects in the CO arm and 11 in the RA due to early 
termination or sample issues, additional details are depicted in Fig. 1. There was no clinical significant differences 
between these and the subjects included in the gene expression analysis.

Genomic analysis of co trial participants. For this genomic analysis, we assessed the treatment effects 
in IPF subjects with at base line (week 0), end of treatment dosing period (week 12), and follow up visit (week 
24). We included the subjects with isolated mononuclear cells available on these time points PBMC isolation was 
performed on each of the centers using the Ficoll-Paque isolation method; samples were stored at the BWH-HMS 
and transferred to the University of Arizona where the total RNA was isolated from PBMCs using RNAeasy 
MiniKit Qiagen™ following manufacturer’s protocol. RNA concentration and quality (RIN > 7) was assayed by 
Nanodrop™ (Thermo Fisher) and 2100 Bioanalyzer RNA™ (Agilent).

Transcriptome profiling. RNA was hybridized onto the Affymetrix GeneChip® Human Gene 2.0 ST Array 
(Thermo Fisher Scientific), to conduct transcriptome profiling. The expression microarrays were analyzed using 
the Affymetrix Power Tools v.1.15.1. Probeset expression signals were summarized with the robust multi-array 
average (RMA) algorithm23 and log2 transformed with a median polish. Transcripts were considered to be reli-
ably expressed in the samples if the Affymetrix implemented DABG (detection above ground) P-value was less 
than 0.01 in at least 67% of the samples. SAM (Significance Analysis of Microarrays)24, implemented in the samr 
library of the R Statistical Package, was used to compare log2-transformed gene expression levels between 0-week 
and 12-week samples and between 12-week and 24-week samples, respectively. False discovery rate (FDR) was 
controlled using the q-value method25. Transcripts with FDR less than 10% were deemed differentially expressed. 
We searched for any enriched Kyoto Encyclopedia of Genes and Genomes (KEGG)26 physiological pathways 
among the differential genes relative to the final analysis set using the NIH/DAVID27. An adjusted P-value < 0.05 
after the Benjamini-Horchberg procedure was used as the cutoff.
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computing geneset scores using human transcriptomic data. The Functional Analysis of Individual 
Microarray Expression (FAIME) algorithm was applied to assign a geneset score for each KEGG pathway28. 
FAIME computes geneset scores using rank-weighted gene expression of individual samples, which provides a 
translation of each sample’s transcriptomic information to molecular mechanisms28. Higher geneset score indi-
cates overall upregulation of a given KEGG pathway.

Validation. Trascriptomic results obtained by microarray were validated in the 18 subjects from the CO arm 
using the NanoString’s nCounter® analysis system (NanosString Technologies, Seattle, WA, USA)29. We selected 
oligonucleotides probes for molecular barcoding of the nine microarray-selected genes and three housekeeping 
genes (OAZ1, RPL24, RPS29). After hybridization and magnetic bead purification, barcodes were counted for 
each target molecule. Following normalization, we calculated the fold-change for the genes of interest. Using R 
Statistical Package, one tailed paired t-test (P-value < 0.05), was used to compare gene expression levels between 
0-week and 12-week samples and between 12-week and 24-week samples, respectively.

Figure 1. Flowchart of total study enrollment and subjects included in transcriptome and validation analysis.

https://doi.org/10.1038/s41598-019-50585-3


4Scientific RepoRtS |         (2019) 9:14802  | https://doi.org/10.1038/s41598-019-50585-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Results
Human subjects. We conducted transcriptome analysis and validation analysis on 38 from the original 58 
subjects enrolled in the clinical trial, selected based upon study completion, sample availability and sample qual-
ity Fig. 1. 20 subjects were randomized in the CO arm and 18 subjects received RA. Baseline demographics and 
pulmonary function testing results are outlined in Table 1. No significant differences on baseline demographic 
and clinical characteristics were present in the two study arms.

Differential gene expression induced by co exposure. At the specified significance level (FDR 
<10%), we failed to identify any differentially-expressed genes between the 0-week and 12-week groups and 
between the 0-week and the 24 week under CO treatment. However, 621 genes were significantly upregulated in 
the 24-week CO exposed group compared with the 12-week CO samples (Fig. 2A). The increase at week 24 repre-
sented a normalization to baseline values. Pathway analysis based on the KEGG database demonstrated that the 
top KEGG pathway associated with the 621 upregulated genes is “Oxidative Phosphorylation” (adjusted P < 0.05) 
(Fig. 2B). In addition, we found that due to the large proportion of overlapped genes (>40%) with the “Oxidative 
Phosphorylation” pathway; the “Parkinson’s disease”, “Huntington’s disease”, and “Alzheimer’s disease” pathways 
were also significantly enriched by the upregulated genes (adjusted P < 0.05) (Fig. 2B). We further computed the 
“Oxidative Phosphorylation” pathway score (see Methods for details) for both the CO and RA samples at each 
time point. Paired comparison revealed that for the patients with CO treatment, the “Oxidative Phosphorylation” 
pathway score is significantly lower at 12-week compared with 0-week (paired t-test: P = 0.035) (Fig. 2C), while 
this pathway is significantly upregulated at 24-week relative to 12-week (paired t-test: P = 0.009) (Fig. 2C). These 
results suggest that the dysregulation caused by CO treatment is remarkably recovered by discontinuation of 
CO treatment. As expected, patients with RA treatment did not demonstrate any significant difference in the 
“Oxidative Phosphorylation” pathway score among the three time points (Fig. 2C).

oxidative phosphorylation pathway-based gene signature. To understand the CO-induced gene 
dysregulation pattern, we developed a gene signature based on the genes within the “Oxidative phosphoryla-
tion” pathway. Only the genes differentially expressed between 12-week and 24-week for the CO treated patients 
(FDR < 10%) were retained. In total, a gene signature with 23 oxidative phosphorylation-related genes was iden-
tified (Fig. 3).

Candidate gene biomarkers confirmed by nanostring. We confirmed the expression of nine selected 
gene products using Nanostring in 18 subjects from the same cohort of CO treated patients (Fig. 4). All nine 
genes were downregulated at 12-week compared with 0-week (one-tailed paired t-test: P < 0.05). Two genes, 
CYC1 and NDUFA6, were significantly upregulated at 24-week compared with 12-week (one-tailed paired t-test: 
P < 0.05). In the RA control group, five of the 11 genes were confirmed by Nanostring at nominal p-value < 0.05.

Discussion
The present study identified changes in gene expression in PBMCs of Idiopathic pulmonary fibrosis patients 
following exposure to low dose (100–200 ppm) for 12 weeks using the Affymetrix microarray platform. A val-
idation study was conducted in the same cohort of patients. Despite the absence of significant difference in the 
pulmonary function testing and functional clinical assessment in the CO-receiving group22, we detected signifi-
cant dysregulation of gene expression in subjects receiving CO twice a week. We analyzed gene expression levels 
between 0-week and 12-week samples and between 12-week and 24-week samples, and 0 week and 24 week 
respectively. Significant differential expression was observed at week 12 and week 24 with gene dysregulation 
response abolished after treatment termination. The differentially-expressed genes were dominantly enriched in 
mitochondrial-related signaling pathways with oxidative phosphorylation, Parkinson’s disease and Huntington’s 
disease pathways representing the top dysregulated pathways during CO administration.

Characteristics CO (n = 20)
Room Air 
(n = 18) P value

Age 65 ± 6.9 65.8 ± 8.2 0.81

Gender (Male/Female) 17(85)/3(15) 13(72)/5(28) 0.48

Race/ Ethnicity 0.11

  White 15 16

  Black 2 0

  Asian 3 0

Latino 0 2

PFT

  FVC, L 3.08 ± 0.65 2.92 ± 0.96 0.435

  FVC % predicted 75.6 ± 17.1 69.05 ± 13.6 0.147

  TLC % predicted 70.4 ± 11 66.23 ± 13.6 0.305

  Dlco % predicted 44.2 ± 11.9 41.06 ± 15.7 0.26

Table 1. Baseline demographics and pulmonary function testing by study arm. Values are No. (%), 
mean ± SD, or as otherwise indicated. CO = carbon monoxide; Dlco = diffusing capacity for carbon monoxide; 
FVC = forced vital capacity; TLC = total lung capacity.
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There is evidence of mitochondrial dysfunction in IPF includes a decreased efficiency of electron transport 
and increases in reactive oxygen species (ROS) production30. Oxidative phosphorylation is the coordinated trans-
fer of electrons and protons leading to the ATP production. The mitochondrial electron transport chain (ETC) is 
vital for cellular energy production, but may serve as a source of aberrant ROS production from ETC complexes I 
and III during pathophysiological states. Complex I (NADH dehydrogenase) is a site of ROS leakage under patho-
physiological conditions. CO inhibits Toll-like receptor signaling by suppressing the ROS generated through 

Figure 2. (A) Means of expression (log2) comparison of 621 genes significantly upregulated at 12 week and 
24-week in the CO-exposed cohort. (B) Oxidative phosphorylation was the top KEGG pathway associated with 
the 621 upregulated genes (adjusted P < 0.05). A proportion of genes (40%) in this pathway overlapped with 
Parkinson’s disease, Huntington’s disease and Alzheimer’s disease pathways (adjusted P < 0.05). (C) Oxidative 
Phosphorylation pathway score according to FAIME algorithm indicates that the dysregulation caused by CO 
treatment recovers following discontinuation of CO treatment (24 wk).

Figure 3. The 23 oxidative phosphorylation-related CO gene signature. Only genes within the Oxidative 
phosphorylation with differential expression between 12-week and 24-weeks in the CO-treated patients (FDR 
<10%) were retained. In total, a gene signature with 23 oxidative phosphorylation-related genes was identified.

https://doi.org/10.1038/s41598-019-50585-3
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NADPH oxidase activation29. Mitochondria heme functional groups have been strongly implicated as a primary 
targets of CO action31. Notably, we identified that CO therapy decreased the expression of genes encoding ETC 
complex I genes: NDUFB4, NDUFS2, NDUFAB1, NDUFA6, NDUFB9, also enriched in Parkinson’s, Huntington’s 
and Alzheimer disease pathways. Similarly, complex IV, cytochrome c oxidase (COX) subunits: COX4I1 and 
COX7A2 within the terminal enzyme respiratory chain appear to be modulated by CO exposure with a down-
regulation that appear to return to baseline at week 24. CYC1, from the complex III, an ubiquinol-cytochrome c 
reductase complex subunit, also followed the same dysregulation pattern.

In the present study, we were able to identify the downregulation of gene expression at the mitochondrial 
level secondary to CO modulation at COX and NADH levels. These findings raise the possibility that CO expo-
sure in IPF, targets modulation of mitochondrial energy production and potentially impacts mitochondrial ROS 
production.

Despite the reproducibility of our findings, we recognize the limitations of our study. Additional dose-titration 
studies are required to determine the CO dose and duration that can evoke changes on other clinical markers of 
disease progression. Despite these limitations, similar to other molecular profiling strategies designed to subphe-
notype patients with chronic lung disease32,33, our study suggests that a microarray-derived molecular signature 
successfully identifies the transcriptomic profile of CO in IPF patients dominated by significant dysregulation of 
genes in the oxidative phosphorylation pathway. These findings demonstrate interesting transcriptional effects 
associated to the CO administration and suggest this signature may serve as a potential genomic biomarker for 
CO exposure that can be used for dose stratification to potentially allow future precision testing of low dose CO 
therapies in IPF.
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