
UC San Diego
Technical Reports

Title
Jigsaw: Solving the Puzzle of Enterprise 802.11 Analysis

Permalink
https://escholarship.org/uc/item/9jd3d55t

Authors
Cheng, Yu-Chung
Bellardo, John
Benko, Peter
et al.

Publication Date
2006-02-21
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9jd3d55t
https://escholarship.org/uc/item/9jd3d55t#author
https://escholarship.org
http://www.cdlib.org/


Jigsaw: Solving the Puzzle of Enterprise 802.11 Analysis

Yu-Chung Cheng, John Bellardo, Péter Benkö∗,

Alex C. Snoeren, Geoffrey M. Voelker and Stefan Savage

Department of Computer Science and Engineering

University of California, San Diego

Abstract

The combination of unlicensed spectrum, cheap wireless in-

terfaces and the inherent convenience of untethered comput-

ing has made 802.11-based networks ubiquitous in the en-

terprise. Modern universities, corporate campuses and gov-

ernment offices routinely deploy scores of access points to

blanket their sites with wireless Internet access. However,

while the fine-grained behavior of the 802.11 protocol itself

has been well studied, our understanding of how large 802.11

networks behave in their full empirical complexity is surpris-

ingly limited. In this paper, we present a system called Jig-

saw that uses multiple monitors to provide a single unified

view of all physical, link, network and transport-layer activ-

ity on an 802.11 network. To drive this analysis, we have

deployed an infrastructure of over 150 radio monitors that

simultaneously capture all 802.11b and 802.11g activity in a

large university building (1M+ cubic feet). We describe the

challenges posed by both the scale and ambiguity inherent

in such an architecture, and explain the algorithms and infer-

ence techniques we developed to address them. Finally, using

a 24-hour distributed trace containing more than 1.5 billion

events, we use Jigsaw’s global cross-layer viewpoint to iso-

late performance artifacts, both explicit, such as management

inefficiencies, and implicit, such as co-channel interference.

We believe this is the first analysis combining this scale and

level of detail for a real production network.

1 Introduction

In the last five years, wireless networks based on the 802.11

family of standards have become ubiquitous in the enter-

prise. Integral wireless interfaces — now shipping in almost

90 percent of notebook computers — combined with unli-

censed spectrum and inexpensive “access points” have made

untethered Internet access a reality in almost two-thirds of

U.S. corporations, hospitals and college campuses [11, 10,

6, 5]. However, the reality of these deployments can be quite

complex. A large office building may have hundreds of wire-

less users interacting with dozens of access points under

varying load and environmental conditions.

It is these interactions that make the dynamics of wireless

network behavior so interesting, and yet so difficult to mea-

∗Benkö is a visiting researcher at UCSD from the Traffic Analysis and

Network Performance Laboratory (TrafficLab) at Ericsson Research, Bu-

dapest, Hungary.

sure. Unlike their wired brethren, wireless networks are not

well described as either a single broadcast channel nor as a

graph of links. Whether any transmission is heard by a partic-

ular receiver is a function of many distinct factors including

the ambient environmental interference, the sender’s trans-

mit power, the distance to the receiver, and the strength of

any simultaneous transmissions on nearby channels as heard

by that same receiver. Further complicating this morass is the

802.11 Media Access Control (MAC) protocol, which uses

its own inferences about the physical layer to defer, schedule

and retry transmissions. Finally, these networks are typically

used to carry Internet traffic based on the TCP protocol that

carries its own set of complex dynamics. It is no wonder that

our understanding of these systems tends to be limited to ei-

ther small controlled environments (“how much does inter-

ference between two radios impact throughput”) or to large,

but coarse measurements (“how long is the average TCP flow

on a wireless network”).

It is our belief that developing a deeper understanding of

the dynamics and interactions in production wireless net-

works requires reconstructing their behavior in its entirety

— measuring all frames and delivery outcomes across all

wireless nodes. In the wired network this kind of measure-

ment is typically achieved through passive monitoring, but

in the wireless domain spatial diversity prevents any single

monitor from capturing more than a small subset of traffic.

Thus, extracting a global viewpoint requires many spatially

dispersed monitors working in concert.

In this paper, we approach this problem from a sys-

tems point of view. We have developed a large-scale mon-

itor infrastructure that overlays a building-scale production

802.11b/g network with over 150 passive radio monitors.

These monitors in turn feed a centralized system, called Jig-

saw, that uses this data to produce a precisely synchronized

global picture of all physical, link-layer, network-layer and

transport-layer activity. We believe our principal contribu-

tions are threefold:

• Large-scale Synchronization. We have designed and

implemented a passive synchronization algorithm that

can accurately synchronize over 150 simultaneous

traces down to microsecond granularity. To accomplish

this at scale requires predicting the impacts of individ-

ual radio clock skews and using every available frame

1



to re-synchronize.

• Frame Unification. We use this fine-grained synchro-

nization to combine the contents of all traces, merging

duplicates and constructing a synchronized single trace

of all frame transmissions.

• Multi-layer Reconstruction. From raw frame data we

reconstruct a complete description of all link and

transport-layer conversations. To address the problem

of missing data we have developed a set of infer-

ence techniques to deduce the presence, time placement

and even contents of missing data. Our analysis uses

transport-layer information to resolve questions, such

as frame delivery, that can be inherently ambiguous at

the link-layer alone.

Since Jigsaw constructs a complete description at each

layer, it is possible to relate actions at different layers that

would otherwise be impossible. For example, in analyzing

a client’s transport activity, our TCP analysis will automat-

ically identify a timeout and retransmission. However, by

looking in Jigsaw’s global trace we may find that the client

did send an acknowledgment, but that it overlapped a pe-

riod of broadband interference from a microwave oven that

affected the client’s AP (likely preventing the ACK from be-

ing bridged). While we have not yet completely automated

this particular analysis, it is well within the capabilities of

our system.

The remainder of this paper is organized as follows: In

Section 2 we review the important aspects of the 802.11

MAC protocol and the related work in wireless LAN mea-

surement. In Section 3, we describe our measurement infras-

tructure followed by a description of how traces are merged

and synchronized in Section 4. Section 5 explains how link-

layer and transport-layer viewpoints are reconstructed from

raw frame data. In Section 7 we demonstrate Jigsaw’s capa-

bilities through a set of measurements that exploit its unique

ability to provide a global wireless network perspective. Fi-

nally, Section 9 summarizes our overall conclusions with

constructing and using this wireless monitoring infrastruc-

ture.

2 Background and Related Work

In this section we offer a brief tutorial in the operation of the

802.11 protocol followed by a description of previous 802.11

measurement research.

The 802.11 media-access control (MAC) protocol is a

CSMA/CA variant that uses “virtual carrier sense” to sup-

port an RTS/CTS capability and to protect multi-frame ex-

changes. When a node wishes to send it first validates that

the channel is clear. If the channel stays idle for a set pe-

riod of time (DIFS) it transmits. Otherwise, it selects a ran-

dom backoff time from 0 . . .N , and tries again. 802.11 pro-

vides a link-layer retransmission facility. Thus when a uni-

cast packet is sent, the receiving station is required to re-

spond immediately with an ACK packet. If an ACK is not re-

ceived within a preset timeout then the node doubles N, cal-

culates a new (likely longer) backoff time and schedules a re-

transmission (retransmissions are indicated with a special bit

in each frame header). Each frame carries a “duration” field

that indicates the number of microseconds needed to com-

plete the transaction (i.e., including any acknowledgments

that need to be sent) and each node will defer transmission

until this time has passed. Special RTS and CTS frames are

optionally used to ensure that any “hidden terminal” nodes

will hear the reservation request. Frames are addressed using

48bit IEEE MAC addresses, although some frames (such as

ACK, CTS and RTS) only specify the transmitter or receiver.

Frames from the same transmitter are distinguished using a

12-bit monotonically increasing sequence number carried in

each DATA frame. Special management frames (BEACON

and PROBE) are used to discover the presence and capabili-

ties of access points, while others (ASSOCIATION and AU-

THENTICATION) are used to specifically connect a client

to an access point.

802.11 supports a wide range of physical-layer implemen-

tations – the most popular being 802.11b (CCK modulation

with coded rates up to 11Mbps) and 802.11g (OFDM, coded

up to 54Mbps). Each client is responsible for choosing the

rate to transmit each frame and this choice is encoded in

the PLCP header at a “slow” rate (1-2Mbps for 802.11b,

6Mbps for 802.11g). However, “legacy” 802.11b radios are

unable to decode the OFDM encoding of an 802.11g frame

and can incorrectly sense the medium as idle. To address this

problem, 802.11g access points determine if they have any

802.11b stations as clients. If so they enable “802.11g pro-

tection mode” in which each 802.11g frame is preceded by a

low-rate CCK-coded CTS frame (CTS-to-self) that reserves

the channel for the time needed to complete the 802.11g

transaction.

Over the last 15 years, a progression of wireless network

measurement efforts has provided insight into the behavior,

performance, and reliability of 802.11 and precursor wireless

LAN technologies. Early efforts used active measurements

to study WaveLAN networks, one of a handful of early wire-

less LAN products in the 900 MHz band [7, 8, 21]. Since

these relatively new wireless LANs were expected to have

more severe error characteristics than wired LANs, an ini-

tial primary concern was the effect of wireless LAN errors

on higher-level protocols and application performance. Con-

sequently, these early efforts focused on evaluating the ef-

fects of errors on application performance, and analyzing

and modeling packet and bit errors as a function of various

factors such as distance, obstacles, and co-channel interfer-

ence.

The pace of subsequent wireless measurement efforts in-

creased as 802.11 technology was introduced and matured,

and widespread deployments became commonplace. The

2



goals of these efforts similarly expanded to a broader range

of concerns, exploring a wide range of environments, at in-

creasingly larger scales, and with more extensive analysis

over time. Measurement efforts explored university cam-

puses [12, 13, 18, 19, 24, 25, 27, 28], industrial facto-

ries [26], corporate networks [4], and conference and profes-

sional meetings [3, 15, 16, 22, 23]. These efforts correspond-

ingly became more extensive over time, from weeks of traffic

from 75 users and a dozen APs in a department network [25]

to years of traffic from thousands of users and hundreds of

APs across an entire university campus [12]. These efforts

also analyzed a wider range of characteristics of user behav-

ior and network performance, such as application workloads,

user session durations and user mobility, network installation

and maintenance issues, error characteristics, etc.

Until recently, however, measurements of production

802.11 networks have treated them as a black box. For ease

of methodology, these latter efforts typically have traced traf-

fic on the wired distribution network and polled SNMP man-

agement data from APs as a basis for analyzing wireless

LANs. As a result, such 802.11 measurement efforts have

extensively characterized what user behavior and network

performance wireless LANs provide, but have provided lit-

tle insight into why applications and users experience such

behavior and performance.

Recently, some researchers have started addressing this

question by extending wireless network measurement to cap-

ture and analyze link-level characteristics as well. Such ef-

forts require a change in methodology, however, since the

measurement platform must observe raw network events.

One approach is to use the same devices for experimenta-

tion as for observation. This approach works well for small,

controlled active measurements, such as understanding link-

level characteristics of outdoor mesh networks [2], error

characteristics of factory environments [26], or components

of handoff latency [20].

Passively monitoring the link-layer events of a large de-

ployed network, however, requires dedicated wireless mon-

itors separate from the wireless devices generating traffic.

Three recent efforts have used this approach. Yeo et al. were

the first to explore the feasibility of using separate monitors

for passive wireless network measurement using synthetic

experiments on an isolated 802.11 network [27, 28]. They

use beacon frames to merge traces of a single flow observed

from three wireless monitors, and demonstrate the utility of

merging observations to improve monitoring accuracy. Jar-

dosh et al. analyze the link-level behavior of traffic from a

large IETF meeting using three monitors capturing traffic on

orthogonal channels [15, 16]. They characterize and corre-

late retransmissions, frame size, and rate adaptation with re-

liability. Finally, a study by Rodrig et al. shares a number of

the goals of our work [23]. They use five distributed wire-

less monitors to capture network events in a large confer-

ence venue. Using trace data from one of their monitors, they

characterize the extent of 802.11 management overhead and

retransmissions, and analyze the effectiveness of rate adap-

tation for the clients in their trace.

Our work substantially extends previous efforts in wire-

less network monitoring in terms of scale, methodology, and

analysis. Whereas previous efforts have used a small hand-

ful of monitors [15, 23, 28], our measurement platform uses

over 150 monitors distributed throughout four floors of a

150,000 square-foot building to achieve extensive spatial and

channel coverage. Tracing at such scale, however, presents

new methodological challenges, such as globally synchro-

nizing events in time across subsets of monitors as well as

across channels; previous efforts either focus on separate

channels [15], do not merge traces among monitors [23], or

merge only a small number of traces using globally observed

events [28]. Such extensive monitoring also presents new op-

portunities for analysis, in particular the ability to observe a

large wireless network from a global perspective. From such

a perspective, for example, we can analyze the extent and

impact of co-channel interference in the network.

3 Data Collection

Any data analysis is ultimately predicated on the quantity,

quality and precision of data that can be collected. While we

believe that our analysis techniques are mostly generic, many

of our design decisions have been informed by the capabili-

ties of our infrastructure as well as the unique problems pre-

sented by its scale. For example, our approach to clock syn-

chronization was driven by the need to merge data from 156

simultaneous traces, spanning a wide spatial and frequency

range. In a smaller-scale environment a far simpler approach

would have sufficed. Thus, to better motivate our constraints

and opportunities, we use this section to describe our moni-

toring environment and the hardware/software infrastructure

we have built to produce the raw traces for our analysis.

3.1 Environment

All of our measurement work takes place within the UCSD

Compupter Science and Engineering building — a large

four-story structure shown in Figure 1. The building houses

over 500 faculty, researchers, students and staff members

within roughly 150,000 square feet with a total interior vol-

ume well over 1 million cubic feet. Production wireless ser-

vice is provided by Avaya AP-8 access points (shown as tri-

angles), which are configured to provide both 802.11b and

802.11g service1

Between and among these production APs we have de-

ployed a constellation of 39 wireless sensor pods (shown

1In addition to the 39 production access points shown, the half-wing

basement (not shown) houses five additional APs. We also occasionally

observed signals from 46 additional authorized access points from nearby

buildings and 22 rogue access points (mostly outside the building, but sev-

eral inside).

3



1st Floor

2nd Floor

3rd Floor

4th Floor

Figure 1: Building floorplan. This building comprises roughly

150,000 square feet spread over four floors (and a smaller base-

ment, not shown). Circles indicate wireless sensor pods, and trian-

gles indicate production access points.

as pairs of circles).2 Each pod in turn comprises four inde-

pendent radios, allowing for simultaneous monitoring at four

distinct center frequencies – including all “non-overlapping”

channels (1, 6 and 11) typically used in 802.11b/g deploy-

ments. The density of deployment, combined with this multi-

channel capability, provides a “best case” scenario for cap-

turing global behavior. We are unaware of any production

wireless network monitored at similar scale.

3.2 Hardware

Concretely, each sensor pod consists of a pair of monitors

set a meter apart. This organization provides sufficient an-

tenna separation for active measurement experiments, while

still being proximate enough to abstract both monitors as a

single vantage point for passive monitoring. Each monitor

is engineered from a modified Soekris Engineering net4826

system board, and pairs a 266-Mhz AMD Geode CPU with

128 MB of DRAM, 64 MB of flash RAM, a 100-Mbps Eth-

ernet interface, and two Wistron CM9 miniPCI 802.11a/b/g

interfaces based on the Atheros 5004 chipset. Each wireless

2Our monitoring infrastructure does not cover the basement nor the

northern wing of the 1st floor, which is not under our administrative con-

trol.

interface is connected, via shielded cable, to a separate ex-

ternal omni-directional “rubber duck” antenna mounted six

inches apart on an aluminum enclosure. The antennas pro-

vide a signal gain of 2–3 dBi at 2.4 Ghz. Each monitor re-

ceives wired connectivity and power through a port on an HP

2626-PWR switch (seven in total).3

Finally, trace data from all 156 radios is sent via NFS to

a single 2.8-Ghz Pentium server hosting 2 GB of memory

and 2 TB of storage (four 500-MB SATA disks in a RAID-0

configuration).

3.3 Software

Each monitor runs a modified version of the Pebble Linux

distribution designed for small memory embedded comput-

ers and a version of the open-source madwifi driver to drive

the Atheros-based wireless interfaces [1]. We have made

significant modifications to the driver to support additional

transparency to the physical layer and improved capture ef-

ficiency.

Driver Modifications

We make three critical modifications to the default madwifi

driver. While the standard driver only delivers valid 802.11

frames (even in so-called “monitor mode”), our version cap-

tures all available physical layer events, including corrupted

frames and physical errors. Atheros hardware uses a 1µ res-

olution clock to timestamp each packet as it is received. Our

driver slaves this timestamp facility to the clock of a sin-

gle radio, so frames are recorded at both radios using the

same time reference. Finally, our driver batches the delivery

of physical event records, 64KB at a time, to amortize the

impact of network load.

Jigdump

Data capture is managed by a specialized user-level appli-

cation called jigdump. Each monitor executes two jigdump

processes, one per radio, that are responsible for putting

the wireless interface into monitor mode, “pulling” physical

event records from the kernel and then transferring this data

via NFS to a central repository. Jigdump reads data records

64 KB at a time via a standard PF PACKET socket and gen-

erates an associated meta-data record that holds aggregate

statistics and index information used to support subsequent

random accesses. The raw data then is compressed using the

LZO algorithm to minimize storage and I/O overhead (the

two bottlenecks on our monitor platform). Data and meta-

data are written to separate files via NFS, creating a new file

pair each hour. In steady state, the NFS traffic across all 156

simultaneous feeds averages between 2–4 MB per second.

Together, jigdump and the driver modifications comprise

roughly 950 lines of code.

3Soekris Engineering uses an incompatible implementation of the

802.3af Power-Over-Ethernet standard and thus each system board is mod-

ified by hand to allow the HP switch to drive it.

4



R1       R2       R3       R4

T
i

m
e

R1       R2       R3       R4 R1       R2       R3       R4 R1       R2       R3       R4

(a)                                                        (b)                                                        (c)                                                        (d)

Figure 2: Description of synchronization steps, each color shade represents a unique frame. (a) “Wall clock” time at which frames received

at four different radios, R1, ..., R4. (b) “Local time” at which frames received; bootstrap process groups identical frames until there are

enough overlapping sets to normalize the time of every radio. (c) Later, clock skew causes timestamps for simultaneous frames to diverge.

Timestamps for R1 and R2 are adjusted. (d) R1 and R2 are resynchronized and this process is repeated. Note that the adjustment of R2 has

also closely aligned subsequent frames with in-sync clock R4 as well.

4 Trace Merging

Each individual trace represents a particular local vantage

point on wireless activity. However, to construct a global

viewpoint it is necessary to combine these traces into a sin-

gle coherent description. This merging procedure must sat-

isfy three key requirements:

1. Unification. A particular frame may be heard by mul-

tiple radios and therefore appear in multiple traces. It

is important that these “duplicates” are identified as be-

longing to the same frame. In some cases a frame may

not even be a perfect duplicate (e.g., due to corruption

or truncation), yet it is important that this not be treated

as a unique frame.

2. Synchronization. While each frame is timestamped in

each trace, the clocks used can vary significantly. To

place these frames in proper order it is necessary to syn-

chronize all frames to a common time standard. How-

ever, merely capturing the logical order is not sufficient

for performing fine-grained analyses — like inferring

interference between simultaneous transmissions. Such

studies require all frames to be synchronized to at least

the precision of a physical layer “slot time” (20 µs for

802.11b and 802.11g).

3. Efficiency. To permit on-line applications, trace merg-

ing should execute faster than real-time and scale well

as a function of the number of traces. Thus, we desire

an algorithm that can merge traces in a single pass over

the data.

Our approach, similar to Yeo et al.’s framework [27], ex-

ploits the broadcast nature of wireless. Since wireless is fun-

damentally a broadcast medium, each transmission can po-

tentially reach multiple in-range receivers. Moreover, in an

indoor environment, propagation delay is effectively instan-

taneous — less than 1 microsecond to cover 500 meters at

2.4 Ghz. Consequently, we can treat the time at which a

given frame is received by multiple monitors as a simulta-

neous instant for all potential interactions. Thus, we can use

frames heard by multiple monitors as a common reference

point to synchronize the clocks at each monitor and globally

order subsequent events between traces. Finally, these refer-

ence frames can be used to calculate global timestamps for

subsequent events within each trace, using the offset in the

local clock to place them accurately. Subsequently, identical

frames with the same timestamps can be unified, thereby cre-

ating a single global trace. In the remainder of this section we

describe the synchronization and unification algorithms used

by Jigsaw.

Our synchronization approach is inspired by Elson et al.’s

RBS protocol for sensor networks, which shares many of the

same assumptions [9]. The two algorithms, however, diverge

significantly in implementation due to the differing demands

of their applications: Jigsaw must be opportunistic in find-

ing time references yet permits a centralized implementa-

tion, while RBS mandates reference broadcasts, yet requires

a distributed implementation. Most importantly, RBS pro-

vides relative time synchronization between pairs of sensors,

while Jigsaw must accurately synchronize all traces to a sin-

gle global clock. Accomplishing this involves two phases:

bootstrapping the synchronization algorithm to instantiate

a single universal time standard across all radios, and then

maintaining synchronization to this standard during frame

unification.

4.1 Bootstrap Synchronization

Bootstrapping is accomplished by finding reference points

to synchronize the radios of a set of individual monitors

5



and then synchronizing between sets until a single — albeit

imaginary — coordinated time standard is established.

More precisely, let ri denote the ith radio and let Ti repre-

sent the difference between its clock and “universal time” —

the global time reference we hope to agree on. Let sk denote

the kth reference frame used to synchronize radios and let

Ei,k be the set of pairs < ri, sk > such that radio ri receives

frame sk. Moreover, let yik denote the local value of ri’s

clock when it received sk (defined if and only if < ri, sk >
is in E) and Ti to be the offset needed to adjust ri’s clock to

universal time. Thus, when sk has been received, the univer-

sal time can be defined as

Uk = yik + Ti.

To bootstrap synchronization, Jigsaw must simply find Ti for

each radio. Once the offset Ti is available, Jigsaw can place

each frame sks into universal time by adjusting its timestamp

yik.

Ideally Jigsaw could locate a single 802.11 frame sk re-

ceived by all radios and then yi1 could be picked arbitrarily

to represent the initial universal time. Unfortunately, we can-

not depend on such events in a large deployment since signal

strength decays with distance and no single frame is likely

to cover an entire building. Moreover, real deployments use

multiple channels and a frame transmitted on one channel

may never be heard by a monitor on another.

To overcome this problem, we can synchronize transi-

tively via overlapping subsets of radios that are each syn-

chronized with each other. For example, suppose radio r1

and r3 are too far apart to share any reference frames, but

each share distinct reference frames with an intermediate ra-

dio r2. If s1 is a reference frame received only by r1 and r2,

and s2 is a reference frame only received by r2 and r3, then

y1,2+T1 = U1 = y2,1+T2, and y2,2+T2 = U2 = y3,2+T3.

Then T3 = y1,1 − y2,1 + y2,2 − y3,2 +T1. The more densely

radios are deployed, the more such transitive paths between

r1 and r3 are likely to exist. However, to maximize the

likelihood that Tis are globally consistent — meaning that

(Tj − Ti) plus (Tk − Tj) will equal (Tk − Ti) — we try

to maximize the overlap between paths by minimizing the

number of distinct reference frames.

Our protocol works as follows. Jigsaw examines the first

second of data from each trace.4 For each frame sk, Jigsaw

checks if it was also received by any other radios. If Jigsaw

finds an identical frame heard by some radio ri, it adds ri

into Ek. Note that not all 802.11 frames are good references

for synchronization. For example, ACK frames to the same

destination are always identical, the same stations are always

identical, some stations always use zero sequence numbers

4In this case, “the first second” refers to true time (UTC) as measured

by the system clock on each monitor. Each monitor maintains their system

clock within milliseconds using the NTP protocol and records this value in

its traces. This is the only point at which the system clock time is ever used.

on probe frames, and frame retransmissions cannot be distin-

guished from one another. Thus, Jigsaw only uses “unique”

frames for all synchronization activities. Generally, these are

DATA frames that do not have the retransmit bit set.5

For every radio trace, Jigsaw picks the set Ek that contains

the maximum number of radios and adds it into the synchro-

nization set G. Jigsaw stops filling G when G contains an

instance of each radio. At this point, there usually exists at

least one path between any arbitrary two radios (if not, the

original one-second window could be widened or more ra-

dios added to G, but we have never had need to do this).

Then, for each radio ri, Jigsaw performs a depth first search

in G to reach r1 (see parts (a) and (b) in Figure 2). Recently,

Karp et al. [17] have discussed ways of picking the optimal

paths for a similar problem, but we have found that most

paths from r1 to ri are precise enough in practice (± 10 µs).

As described, this algorithm is sufficient to synchronize

all radios on the same channel. However, there is no tran-

sitive path between radios on strongly disjoint channels. To

fully synchronize the trace we exploit the fact that our moni-

tors use a single clock to timestamp frames received on both

of their radios. Thus, in this particular context local times-

tamps for frames on one channel can be directly related to

timestamps on another — effectively bridging a path be-

tween them. However, since this particular set only contains

two radios, by definition it is unlikely to be picked early in

constructing G (leading to excessively long paths and poorer

accuracy). Therefore, we modify our algorithm to prioritize

the use of inter-channel sets early in the construction of G.

4.2 Frame Unification

After bootstrap synchronization, Jigsaw processes all traces

in time order and unifies duplicate frames, called instances,

into a single data structure called a jframe. Each jframe holds

a timestamp, the full contents of the frame and the identity of

the radios that heard each instance. Figure 3 provides an ex-

ample of this source data as it is being unified. As part of the

unification process, Jigsaw also aggressively resynchronizes

the clocks between each trace. We describe the evolution of

our algorithm below.

Basic Unification

For each trace (i.e., radio) Jigsaw maintains a frame queue

sorted in time order. The simplest unification approach is

to linearly scan the head of all frame queues and group the

frames with the same timestamps and contents. More con-

cretely, Jigsaw will select the first valid frame (i.e., FCS was

successful) as the representative instance and then perform

content comparisons to find instances among the candidates.

To quickly prune false negatives, Jigsaw compares frame

length and FCS fields first and short-circuits the compari-

son on failure. For PHY-restart frames or frames with invalid

5Some Intel 802.11 implementations incorrectly retransmit data without

the retransmit bit set, but thankfully this is rare.

6



Figure 3: Jigsaw visualization of synchronized trace. Time appears

on the x-axis in microseconds and individual radios (only six shown

here) on the y-axis. At roughly 400µ a client sends a data frame that

is heard by all six radios. However, radio “p4450” is too far away

(signal strength of -88dbM) and both the frame is corrupted and

the subsequent ACK is not received. However, more than enough

radios are present to construct a jframe for path parts of the frame

exchange. At 2000µ a different client sends and it is heard by a

different set of radios. Note that p5218 is too far away to even syn-

chronize with the preamble.

FCS, Jigsaw cannot perform a full content comparison and

simply matches on the transmitter’s address field (since these

frames are not directly used for any higher-layer reconstruc-

tion, any rare false matches will have little impact).

However, there are two problems with this approach. First,

for large deployments the linear scan can have tremendous

overhead. In our environment, most jframes contain 10 or

fewer instances and yet we have over 150 simultaneous

traces whose queues must be checked. To minimize this

overhead, Jigsaw instead populates a single priority queue

sorted by time with the most recent frame from each trace.

To create a jframe, Jigsaw simply pops this queue until

the timestamp changes and groups the resulting candidate

frames according to their content (it is still crucial to com-

pare frame contents since it is possible that distinct frames

may be serendipitously transmitted at the same time). Thus,

the time to create a new jframe is roughly O(log(N)) instead

of linear time.

The second problem is that each radio’s clock skews over

time. The 802.11 standard mandates an accuracy of at least

100 PPM (0.01%) and our experience is that Atheros hard-

ware has far better frequency stability in practice. However,

even good clocks diverge from each other over time. If the

time offset between clocks becomes great enough, then some

instances of a given frame may not be correctly merged into

the same jframe. To mitigate this problem, we modify the

procedure for creating a jframe. After the first frame candi-

dates are popped and grouped, we remove additional frames

from the priority queue until the timestamp at the head of the

queue exceeds some time offset threshold with respect to the

candidate instances — i.e., a “search window.” Some of these

additional frames will have identical content with the other

candidates and will be grouped into a new jframe while the

others will simply be reinserted back into the priority queue.

Clock Adjustment

Solving this unification problem also provides a means to

resynchronize the traces. When a set of frame instances are

unified the time differences between their timestamps repre-

sent how much each clock now differs (again, it is critical

that we only use unique frames to drive this synchroniza-

tion). We select the median timestamp value and elect it to

become the new universal time reference. The difference be-

tween this value and the timestamps on each instance repre-

sents a correction factor — positive or negative — that is then

used to bring each of the associated traces back into synchro-

nization (see parts (c) and (d) in Figure 2). A tradeoff can be

made between accuracy and the overhead of resynchronizing

by placing a threshold on the minimum group dispersion —

the difference between the earliest and latest timestamp for a

frame instance — before resynchronizing. In our implemen-

tation we set this threshold to 10 µs. (Note that this does not

limit the synchronization accuracy to 10 µs.)

Managing Skew and Drift

If resynchronization happened frequently and uniformly

across all traces, then it would be easy to maintain very tight

synchronization bounds. However, there are frequently ex-

tended periods (although rarely over 100 ms since this is

roughly the period between AP beacon frames) during which

a particular radio may not observe any frames in common

with others. During these times the synchronization of this

radio’s observations is only guaranteed by the accuracy of

its own local clock. Thus, the slope of its skew with re-

spect to universal time will determine how quickly it will

lose synchronization without readjustment. In practice, we

have found that with large numbers of radios, unless the

search window is made dangerously large (100s of millisec-

onds) perfect synchronization is lost quickly. However, many

of these problems can be eliminated by incorporating mea-

surements of per-radio clock skew into the synchronization

algorithm. Thus, the timestamp of each frame is adjusted

to compensate for the impact of the clock skew on the ra-

dio receiving it. In addition, for large numbers of radios we

have also found it important to compensate for clock drift

— the change in skew over time — by using an exponen-

tially weighted moving average of past skew measurements

to predict future skew on a per-frame basis.

7



 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25  30  35  40

%
 J

fr
am

es

Dispersion Value (us)

Figure 4: Cumulative Distribution Function of group dispersion

across all frames.

Thus, Jigsaw can use almost every new data frame for

continual resynchronization.6 This presents several key ad-

vantages compared to approaches that simply use reference

beacons to synchronize [27]. First, in large environments it is

not possible to identify frames heard by all monitors and thus

time synchronization must be transitive. Having more syn-

chronization actions will almost always increase synchro-

nization accuracy since the impact of clock skew is mini-

mized. Second, since clients are mobile, their traffic creates a

richer set of synchronization opportunities — touching pairs

of radios that might never be directly synchronized other-

wise. Finally, more clock samples allow for better manage-

ment of skew and drift and therefore accuracy. In small-scale

environments these factors may be minor. As the number

of monitored radios increases, however, variability in skew,

drift and workload conspire to raise the probability of a syn-

chronization loss. This additional robustness becomes criti-

cal at a modest increase in complexity. Jigsaw’s synchroniza-

tion and unification code totals roughly 4,000 lines of C++.

Figure 4 illustrates the current accuracy of our algorithm

using a 10ms search window over unique frames. The graph

shows the CDF of group dispersion values calculated for ev-

ery frame processed from 156 radios over a 24-hour period.

Thus for 90% percent of all frames, the worse case time off-

set between any two radios is less than 10 µs, and 99% see a

worst case offset under 20 µs. While the details of this graph

are a function of individual clock characteristics, the network

workload and the number of clocks being kept in sync, we

believe it demonstrates that fine-grained broadcast synchro-

nization is achievable in a building-scale environment.

5 Link and Transport Reconstruction

Having constructed a single global view of each observed

physical event, the next task is to reconstruct each link-layer

6In truth, there are still a few esoteric reasons why synchronization can

be briefly lost. However, we have encountered these problems in less than

one thousandth of one percent of over 530M frames processed in our trace.

and transport-layer conversation in its entirety. In principle,

this is easy since Jigsaw provides a time ordered list of all

frames and each frame contains up to 200 bytes of payload

that can be used to identify MAC addresses, IP addresses and

TCP port numbers. However, in practice this construction is

complicated by missing data and by vantage point ambigui-

ties. Thus, Jigsaw must use inference to help reconstruct the

these higher-layer descriptions.

5.1 Link-layer Inference

In reconstructing link-layer conversations, Jigsaw first iden-

tifies each transmission attempt from a sender. For exam-

ple, a CTS-to-self packet, a subsequent DATA frame and

the trailing ACK response may all be part of the same at-

tempt. To group these together automatically we first use the

MAC address: DATA frames carry the address of the sender

explicitly, CTS-to-self frames (used for 802.11g protection)

do as well and ACK frames indicate the recipient’s address.

Then we examine the Duration field in the CTS and/or DATA

frames, and use it to deduce the future time in which an

ACK, if sent, must have been received. This timing analy-

sis is especially critical when frames are missing from the

trace since otherwise we might risk assigning an ACK for a

missing DATA frame to an earlier observed DATA frame.

We then group transmission attempts into frame ex-

changes — complete sets of transmission attempts that end

in a link-layer frame being successfully delivered or not.

Since 802.11 implements ARQ for unicast frames, a frame

exchange may involve multiple transmission attempts. Nor-

mally it is sufficient to simply group nearby transmission at-

tempts that share the same frame sequence number. How-

ever, when portions of transmission attempts are missing

(e.g., CTS and ACK, but not DATA), then we must deduce

the presence of or absence of this missing data based on the

subsequent behavior of the sender and receiver. For exam-

ple, if we observe a lone CTS-to-self frame immediately fol-

lowed by a subsequent CTS/DATA frame pair with the retry

bit set, we can infer that the first CTS was followed by a

DATA frame (and indeed that this frame held exactly the

same content as the latter). Moreover, we can infer the rate

at which this packet was sent based on the length of the sub-

sequent packet and the size of the duration field in the first

CTS. Finally, we hypothesize that the first data packet was

lost since we did not observe an ACK and acknowledgments

are lost less frequently than data. Our inferences are imple-

mented using a finite-state machine capturing the visible as-

pects of the transmitter’s MAC state in addition to several

heuristics (e.g., that DATA is more likely lost than ACKs).

We do not make inferences about frames for which we have

no direct information (i.e., sequence gaps greater than one)

but our experience is that these situations occur rarely in our

traces.

Finally, one of the most important questions we wish to

infer is whether a particular frame exchange was successful

8



or not. Unfortunately, the vantage point of a passive moni-

tor does not allow this to be determined unambiguously. To

wit: if, after transmitting a DATA frame, we see an ACK, we

can feel confident that the data was delivered. However, if

we never see an ACK, it is ambiguous if the frame was lost

or if we simply did not observe the ACK. However, we can

disambiguate this situation by using transport-layer informa-

tion.

5.2 Transport Inference

Our transport-layer analysis takes frame exchanges as input

and reconstructs individual TCP flows based on the network

and transport headers. We use a variant of Jaiswal et al’s

analysis (designed for wired passive monitors) to then in-

fer connection characteristics (e.g., RTT, RTO, fast retrans-

missions, segment losses, etc.) [14]. The passive wireless

context, however, has two ambiguities that differ from the

wired environment. First, we may process frame exchanges

in which it is unclear if the frame was actually delivered or

not (as described previously). However, we can frequently

use the transport-layer side effects of this frame as an oracle

to determine what truly happened. For example, a data frame

carrying a new TCP segment will cause subsequent TCP ac-

knowledgments to “cover” its TCP sequence space. Thus,

observing a covering TCP ACK proves that the link-layer

frame containing the associated data was actually delivered.

To our knowledge we are the first to exploit transport-layer

inference to ascertain link-layer delivery. The second prob-

lem is that existing analyses assume that monitors are loss-

less (that is, they observe all packets that are delivered be-

tween endpoints). In the wireless content, even with many

different monitors, sometimes a frame exchange is com-

pleted but not observed at all by a monitor. Thus we have

modified Jaiswal et al.’s analysis to infer the delivery of un-

observed TCP data based on protocol behavior (our analysis

is robust to any single loss).

6 Validation

A fundamental challenge with distributed wireless moni-

toring is obtaining effective coverage of all network trans-

missions. Since the monitors are not co-located with either

clients or APs, it is possible for monitors to miss some net-

work transmissions due to range, environmental conditions,

interference, etc. In this section we describe two experiments

to evaluate the coverage of our monitoring platform at both

the link and transport layers.

First, we performed a controlled experiment to compare

link-level events measured using an observer with perfect

knowledge with measurements using the monitor platform.

Using a wireless laptop, we generated a network workload

at various locations throughout the building. The workload

was a combination of Web browsing on the Internet, inter-

active ssh sessions to wired hosts, and scp copies of large

files. This workload produced both short and long flows as

well as small and large packets. We generated this workload

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1

%
 F

lo
w

s

Ratio of Captured Packets

Downlink
Uplink

Figure 5: Coverage of packets in TCP flows by the monitor-

ing platform.

at three locations in each wing of each floor. These locations

ranged from heavy to light places of wireless usage.

While performing communication, the laptop recorded the

link-level events it generated and observed from its associ-

ated APs. At the same time, we used the monitoring platform

to observe the laptop communications. Comparing the events

recorded at the laptop with those recorded by the monitoring

platform, the platform observed 95% of all link-level events

generated by the laptop. The coverage in this experiment is

consistent with other studies using similar wireless monitor-

ing methodology: [15] reports a coverage of 80–97%, [23]

reports 90%, and [28] reports 97%.

Second, we compared the TCP flows captured in a day-

long trace of the wireless network (described in more de-

tail in the next section) with a second trace of the same traf-

fic captured on the wired distribution network. We restricted

the comparison to the set of TCP flows that could be pos-

sibly observed at both vantage points; the monitor for the

wired network, for example, does not see traffic sent from

one wireless host to another. For every packet in every TCP

flow in the wired trace, we checked to see if the packet also

appeared in the wireless trace. Overall, the coverage of TCP

packets is excellent. For 57,782 TCP flows containing a total

of 6 million packets in the wired trace, 98% of those packets

also appear in the wireless trace. This high coverage is par-

ticularly encouraging since the trace includes distant clients

connected to the building APs from the basement and the

administrative wing on the first floor, locations lacking mon-

itors.

Figure 5 shows the results of this experiment in more de-

tail. Across all TCP flows, it shows the fraction of packets in

a flow that appear in the wired trace that also appear in the

wireless trace. It separates the flows into the downlink (to

wireless network) and uplink (from wireless network) direc-

tions. The graph shows that, for most TCP flows, the mon-

itoring platform captured all of their packets (88% uplink,

9



Start 1/24/06 @ 00:00

Duration 24 hours

Sniffers 156

Total APs 107

Our APs 39

Other APs 68

Our Clients 1,026

Total Events 2,700 M

Physical Errors 338 M (13%)

CRC Errors 956 M (35%)

Valid Frames 1,410 M (52%)

Jframes 530 M

Jframe Events 1,580 M

Events/Jframe 2.97

Table 1: Summary of trace characteristics.

91% downlink). Although the remaining flows have missing

packets in the wireless trace, almost all still have high cov-

erage. We also see a slight coverage difference based upon

direction: the platform captures a slightly higher fraction of

downlink packets than uplink packets. This effect is due to

the fact that our monitors have better coverage of APs (e.g.,

the monitors are closer to APs than clients on average).

Based upon the coverage measured in both experiments,

we conclude that the monitoring platform provides sufficient

coverage to perform detailed analyses of traces captured us-

ing the platform.

7 Analyses

In this section we perform a series of analyses on a trace of

the building wireless network captured by the monitor plat-

form. Since the amount of data and range of possible analy-

ses is quite large, we focus on analyses that take advantage

of the global perspective afforded by the distributed moni-

tors. Our goal is not to be exhaustive, but rather to illustrate

the unique capabilities of a global synchronized viewpoint

and cross-layer analysis. We start by summarizing high-level

characteristics of the trace, and then examine the effects of

interference, the effects of 802.11g protection mode in net-

works with both 802.11b and 802.11g clients, and distin-

guishing link-layer and wired effects on TCP loss rate.

7.1 Trace Summary

We start by summarizing the high-level characteristics of

our trace and then show network activity over time. Table 1

presents the characteristics of the trace we use for our anal-

yses. The trace captures traffic for the entire day of Tuesday,

January 24, 2006, a typical workday in our building. Just

as APs within buildings are not isolated, buildings them-

selves are not isolated: we observe traffic associated with

more than twice as many APs in surrounding buildings than

in the building. For the subsequent analyses, though, we fo-

cus only on the traffic generated by clients associated with

our APs; our monitors cannot capture traffic from external

APs with reasonable coverage due to their remote location.

We see 1,026 unique client MAC addresses associated with

our APs during the day.

Throughout the day the monitors observe over 2.7 billion

events. Over 47% of these events are physical or CRC er-

rors. This high percentage is not too surprising given trans-

missions observed by distant monitors just beyond reception

range, the presence of both co-channel interference (hidden

terminals) and broadband interference (microwave ovens),

etc.

Jigsaw unifies 1.58 billion events (valid frames and a sub-

set of associated error frames) into 530 million jframes, for

an average of 2.97 events per jframe. In other words, on av-

erage the monitoring platform makes three observations of

every observed transmission of a valid frame in the network.

Figure 6 shows network activity as a time series through-

out the day at the granularity of one minute. Figure 6(a)

shows the number of active clients and APs per one-minute

time slot as a stacked bar graph. We define an active client as

one that is communicating with an AP or is actively estab-

lishing an association. An active AP is one communicating

with an active client (an AP only sending out beacons, for

example, would not be active). Activity exhibits an expected

diurnal pattern. Most clients are active from late morning

(10am) until late afternoon (5pm), with many clients active

in the early morning and well into the night. The number of

active APs grows as more clients become active throughout

the building. The clients active overnight are likely active

wireless devices without user activity, such as wireless lap-

tops left running with applications that produce background

traffic.

Figure 6(b) shows the amount of traffic per one-minute

time slot as a stacked bar graph of four traffic categories.

“Data” counts both unicast and broadcast data frames, and

“Management” counts various management and control traf-

fic (RTS/CTS, ACKs, association, etc.). Although the num-

ber of active clients is relatively smooth over time. the traf-

fic generated by those clients is much more bursty. Many

of the bursts start on an hour or half-hour time boundary,

likely indicating laptop usage during meetings and talks in

the building. Since most management and control traffic re-

lates to data traffic, it closely tracks the amount of data traffic.

We also separate out two explicit categories of manage-

ment traffic because of their high prevalence: “Beacon”

shows the amount of periodic AP beacon traffic, and “ARP”

shows the amount of ARP broadcast ARP traffic. Because

APs broadcast beacon traffic independent of activity, beacon

traffic is constant throughout the day. ARP traffic is more

interesting. In addition to legitimate use, outside scans and

worms generate ARP traffic as they probe unallocated IP ad-

dress space. However, it appears that the largest source of

ARP is due to an 802.11 management server from Vernier

that uses regular ARPs to track the liveness and network lo-

10



 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

N
um

be
r 

of
 A

ct
iv

e 
N

od
es

Time (hour:min), January 24 2006

Clients
APs

(a) Active Clients and APs

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

# 
Jf

ra
m

es
 (

x1
00

0)

Time (hour:min), January 24 2006

Data
Managment

ARP
Beacon

(b) Traffic Breakdown

Figure 6: Time series of network activity throughout the day in one-minute intervals.

cation of registered clients. However, the important aspect

of ARP traffic is that it is broadcast. Because 802.11 APs

are designed to act as transparent bridges all ARP “who-

has” broadcasts from the wired network are also broadcast

on the wireless channel. Since broadcast frames are always

encoded at the lowest rate they make highly inefficient use

of the medium. Indeed, if we examine our trace strictly from

an air time perspective, broadcast traffic (primarily ARP and

Beacons) regularly consumes 10% of the channel as seen by

any given monitor. Finally, because they are delivered to all

APs at the same time, they are broadcast on all APs on all

channels at roughly the same time as well – likely interfer-

ing with themselves in the process.

Indeed, all network-layer broadcast traffic has this side ef-

fect as well, including client DHCP requests and application

broadcasts 7 Moreover, aspects of this traffic scale with the

size of the network or the size of the user population while

the capacity of the channel remains constant. Thus, we ar-

gue that applications should use multicast instead of broad-

cast on 802.11 networks and 802.11 APs should be modified

to perform selective filtering of non-unicast traffic. Finally,

to eliminate the implicit synchronization caused by wired

broadcasts, APs should add random jitter to the transmission

time for broadcasts frames received from the wired network.

7.2 Interference

In this section, we analyze the extent of transmission inter-

ference experienced by nodes in our trace. Since the plat-

form monitors orthogonal channels, adjacent-channel inter-

ference is rare and co-channel interference from hidden ter-

minals is likely the dominate cause of interference. As a re-

7One particularly egregious example – almost 100,000 frames in our

trace – is the Mac version of the MS Office suite. As part of an anti-piracy

mechanism the software regularly broadcasts its license information to UDP

port 2222.

sult, the distributed monitoring platform provides the key

ability to observe co-channel interference. By providing a

global perspective on the network, we can simultaneously

detect a transmission from a sender to a receiver, hypothe-

size that the transmission was lost, and detect that a third

node was transmitting at the same time as the sender. With

only a single vantage point, it would be very difficult to de-

tect and correlate such simultaneous transmissions.

We define an interference event as a unicast transmission

from a sender s to a receiver r in which one (or more) in-

terferers i simultaneously transmit and cause the transmis-

sion from s to r to fail. Based upon events in the trace, our

goal is to estimate what fraction of these simultaneous trans-

missions cause a loss due to interference. Note that packet

transmissions are distinct from frame exchanges; a success-

ful frame exchange might experience multiple transmission

losses and recover using link-level retransmissions.

We measure simultaneous transmissions when the trace

contains more than one transmission overlapping in time dur-

ing which s transmits a packet to r. We infer that the trans-

mission from s failed to reach r when we do not observe an

ack from r. At this point, though, when a loss happens we

cannot say for certain that a particular simultaneous trans-

mission was the true cause of the loss. It may be the case, for

instance, that a node in a remote part of the building just hap-

pened to have transmitted at the same time as a transmission

from s to r was lost; the loss itself may have been caused

by any number of reasons entirely unrelated to the remote

node’s transmission.

We can, however, infer when losses are likely due to si-

multaneous transmissions. In particular, we can infer the

conditional probability Pi of a simultaneous transmission

causing interference given that there is a simultaneous trans-

mission from s to r. We can infer Pi based upon the losses

between s to r when simultaneous transmissions both do and

11



do not occur. Informally, if we assume that the background

loss rate is constant regardless of the number of transmis-

sions, we can attribute the losses between s and r during si-

multaneous transmissions accordingly: If s and r experience

few losses in the absence of simultaneous transmission, the

more likely the losses they experience during simultaneous

transmission are due to interference.

More formally, let I be the event that interference causes

a lost transmission from s to r, and L be the event that the

transmission from s to r was a background loss due to some

other cause (e.g., range, obstacles). Let S be the event that

there is a simultaneous transmission from at least one other

device i when s transmits to r. Note that I and L are inde-

pendent events. For the case where no multiple simultaneous

transmissions occur, P [I|¬S] is obviously 0. Unfortunately,

when there are multiple transmissions we cannot empirically

distinguish between I, L, or (I ∪ L) upon observing a loss.

We can, however, calculate the probability of interference

when there is more than one simultaneous transmission as

follows:

Pi = P [I|S] = P [(I ∪ L)|S] − P [L|S] + P [(I ∩ L)|S].

We can calculate this conditional probability based upon

events measured in the trace. For a given (s, r) pair, let n
be the number of transmissions from s to r, n0 ≤ n be the

number of transmissions from s to r without a simultaneous

transmission from another node, and nl
0

be the number of n0

transmissions that are lost. Likewise, let nx be the number of

transmissions from s to r with a simultaneous transmission,

and nl
x be the number of nx transmissions lost.

Then we can measure P [(I ∪L)|S] empirically as nl
x/nx.

Observing that L is independent of S, the case of simulta-

neous transmissions, we have P [L|S] = P [L|¬S] = nl
0
/n0

and P [(I ∩ L)|S] = P [I|S] · P [L]. A bit of algebra then

reveals:

Pi = P [I|S] = [(nl
x/nx) − (nl

0
/n0)]/(1 − nl

0
/n0).

Given Pi, we can then estimate the expected number of

losses during simultaneous transmissions between an (s, r)

pair that are due to interference. Examining all transmissions

between all sending and receiving pairs, we can estimate the

extent to which interference occurs in our network.

We restrict our analysis to (s, r) pairs that exchange at

least 100 packets to provide confidence in our statistical es-

timates. These (s, r) pairs comprise 82% of all (s, r) pairs

in the trace. All such pairs experience losses with at least

one simultaneous transmission. Normalizing these losses ac-

cording to the background loss rate of each pair according

to the above formula, we estimate that 88% of these (s, r)

pairs experience loss due to interference from another node.

Whose transmissions are being interfered with? Of those

(s, r) pairs experiencing interference, the sender s is split

roughly equally between APs (56%) and clients (44%).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

%
 (

s,
 r

) 
P

ai
rs

Interference Loss Rate

Figure 7: Interference loss rate across (s, r) pairs.

Does interference have a significant impact on the over-

all transmissions from senders to receivers? Again, note that

lost transmissions may increase frame exchange times due to

retransmissions, but not necessarily result in a failed frame

exchange. To answer this question, Figure 7 shows the in-

terference loss rate as a CDF across all (s, r) pairs. We de-

fine interference loss rate as the fraction of all transmissions

(i.e., regardless of whether there was a simultaneous trans-

mission or not) from s to r that were lost due to interference;

alternatively, it is the probability that a transmission from s
to r is lost due to interference. As a baseline, the average

background transmission loss rate is 0.12. In comparison,

the results in Figure 7 show that many (s, r) pairs experi-

ence minor interference: 50% of (s, r) pairs experience an

interference loss rate of 0.025 (a 2.5% probability of a trans-

mission lost due to interference), or less. Yet a noticeable

fraction of (s, r) pairs suffer considerably from interference:

10% of pairs experience an interference loss rate of at least

0.1, and 5% at least 0.2. A few (s, r) pairs experienced ter-

rible interference with an interference loss rate higher than

0.5.

7.3 802.11g Protection Mode

Next we analyze the use of 802.11g protection mode in the

network. We find that the protection policy by our APs is

overly conservative, potentially reducing performance for

802.11g clients. We then take advantage of the global per-

spective provided by the distributed monitoring platform to

estimate the number of 802.11g clients that would benefit

from using a more practical 802.11g protection mode policy.

During busy periods, we found a high rate of CTS con-

trol frames in the trace. Investigating further, we determined

that these are primarily CTS-to-self frames used for 802.11g

protection (Section 2). Since protection mode increases de-

lay and reduces throughput for 802.11g clients, APs should

only use protection mode when any active 802.11b clients

12



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00

N
um

be
r 

of
 S

ta
tio

ns

Time

Overprotective APs
Overprotected .g Clients

Active .g Clients

Figure 8: Overprotective APs and active 802.11g clients during the

busy period of the trace.

are in range. The APs in the network implement this protec-

tion policy, but with an overly conservative timeout. An AP

will not turn off protection until an hour has passed without

sensing an 802.11b client in range.

In this analysis, our goal is to identify which APs in the

trace are using protection mode that unnecessarily impacts

802.11g clients; we refer to these APs as overprotective APs.

We can identify the set of APs using protection mode based

upon CTS-to-self client transmissions to those APs. Then,

using the global perspective of the unified trace, for each AP

using protection mode over time we can infer whether any

802.11b clients are in range of that AP after a more practi-

cal timeout of one minute. If no 802.11b clients are in range,

then the AP is overprotective. We infer whether any 802.11b

clients are in range of an AP using protection mode using ob-

served probe responses. APs send these frames after they re-

ceive a corresponding probe request from a client. Our mon-

itor density allows us to capture these responses throughout

the building and create a reasonable estimate for a client’s

transmission range.

Figure 8 shows the impact of overprotective APs on

802.11g clients in the network for the duration of the trace.

It shows (1) the total number of overprotective APs that use

protection mode unnecessarily, (2) the total number of active

802.11g clients associated with these APs, and (3) the to-

tal number of active 802.11g clients in the network. During

busy periods of many active clients, the number of overpro-

tective APs decreases as more 802.11b clients become ac-

tive. Similarly, the number of 802.11g clients increases and,

during these busy periods, 25–50% of them are associated

with overprotective APs.

A more practical protection policy would provide two ben-

efits to clients in the network. First, the 802.11g clients as-

sociated with overprotective APs could potentially improve

 75

 80

 85

 90

 95

 100

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

%
 o

f T
C

P
 fl

ow
s

Wireless Loss Rate
Internet Loss Rate

Figure 9: TCP Loss Rate.

their throughput substantially. With large frames transmitted

at 54 Mbps without the need for CTS-to-self, these clients

could potentially improve their throughput by a factor of

two.8 Of course, this result is an upper bound: not every

802.11g client would be able to transmit at full rate, and mul-

tiple clients would still contend for the channel. However, we

have found that the network is rarely at maximum utilization,

even during the busiest periods. As a result, 802.11g clients

should be able to benefit, especially when performing bulk

transfers and the wireless network is the bottleneck hop in

their path.

Second, reducing the use of CTS-to-self reduces the pos-

sibility of exposed terminals in the network, which could im-

prove the performance of the network. Like ARP and other

low-rate short frames, CTS frames have relatively high pene-

tration and can reserve the channel across a larger space than

necessary when transmitting data frames at high rates.

8 TCP Loss Rate Inference

Using the TCP reconstruction algorithm described in Sec-

tion 5, we assemble all flows that complete a handshake

(eliminating port scans and connection failures). From these

flows we then calculate the loss rate using a variant of Jaiswal

et al.’s approach [14]. Then, by analyzing the frame ex-

changes making up each TCP segment we are able to de-

termine if each loss — as seen by TCP — is due to a lost

802.11 frame or some subsequent loss in the wired network.

Figure 9 illustrates this data, showing — as expected — that

the wireless component of TCP loss is dominant. What is

important about this analysis is less the result itself than the

capability to easily examine interactions between layers in

8CTS: 248 us (our APs send CTS at 2Mbps with the long preamble),

SIFS: 16us, MSS TCP at 54Mbps: 248us, SIFS: 16us, ACK: 28us, backoff

(with g): 16/2*20, backoff (with b/g): 32/2*20. The potential performance

improvement is (248 + 16 + 248 + 16 + 28 + 32/2 ∗ 20)/(248 + 16 +
28 + 16/2 ∗ 20) = 1.98.

13



our global trace.

9 Conclusion

Network research comes to understand the artifacts it has

created slowly — by careful instrumentation, monitoring and

analysis. Production 802.11 wireless networks have so far

escaped the level of detailed analysis experienced on the

wired network – largely because of the difficulty in moni-

toring the wireless environment. To address this problem we

have built a system called Jigsaw that unifies traces from

multiple passive wireless monitors to reconstruct a global

view of network activity in a production 802.11 network. We

have described the algorithms used to scalably synchronize

traces, unify common frames, and reconstruct the link- and

transport-layer conversations embedded in those frames. Fi-

nally, we have deployed a large-scale instance of Jigsaw us-

ing over 150 monitors and used a 24-hour trace captured by

our monitoring infrastructure to demonstrate complex inter-

actions such as co-channel interference that would otherwise

be difficult to analyze.

Acknowledgments

Beyond the authors, a number of individuals contributed to

make this paper possible. Among them, Ryan Brown created

the visualization of the UCSD CSE building, Greg Chesson

of Atheros provided critical insight into the Atheros PHY im-

plementation, Gordon Hamman arranged for all of our sen-

sors to be wired and installed, Jim Madden supported the op-

erational needs of our network measurement efforts and Bill

Young helped us coordinate our technical activities within

the department. Finally, Michelle Panik provided detailed

feedback and copy-editing of earlier versions of this paper.

This work was supported in part by the UCSD Center for

Networked Systems (CNS), the Sloan Foundation, Ericsson,

NSF CAREER grant CNS-0347949 and by U.C. Discovery

CoRe grant 01-10099 as a Calit2-sponsored research project.

References

[1] Madwifi atheros driver for linux, 2003. http://

sourceforge.net/projects/madwifi/.

[2] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris.

Link-level Measurements from an 802.11b Mesh Network. In

Proceedings of the ACM SIGCOMM Conference, pages 121–

132, Portland, OR, Sept. 2004.

[3] A. Balachandran, G. M. Voelker, P. Bahl, and P. V. Rangan.

Characterizing User Behavior and Network Performance in a

Public Wireless LAN. In Proceedings of ACM SIGMETRICS,

Marina Del Rey, CA, June 2002.

[4] M. Balazinska and P. Castro. Characterizing Mobility and

Network Usage in a Corporate Wireless Local-Area Network.

In Proceedings of USENIX MobiSys, San Francisco, CA, May

2003.

[5] C. Computing. 2005 National Survey of Information Tech-

nology in U.S. Higher Education, Oct. 2005.

[6] E. Daley. Enterprise LAN Grows Up, 2005.

[7] D. Duchamp and N. F. Reynolds. Measured Performance of

a Wireless LAN. In Proceedings of the 17th Conference on

Local Computer Networks, pages 494–499. IEEE, September

1992.

[8] D. Eckardt and P. Steenkiste. Measurement and Analysis of

the Error Characteristics of an In-Building Wireless Network.

In Proceedings of ACM SIGCOMM, pages 243–254, 1996.

[9] J. Elson, L. Girod, and D. Estrin. Fine-Grained Network Time

Synchronization using Reference Broadcasts. In Proceedings

of the 5th ACM/USENIX Symposium on Operating System De-

sign and Implementation (OSDI), Boston, MA, Dec. 2002.

[10] Gartner. Market Share: Wireless LAN Equipment Worldwide,

2005 (Preliminary Statistics), 2005.

[11] D. Group. Wireless LAN Five Year Forecast Report, Jan.

2006.

[12] T. Henderson, D. Kotz, and I. Abyzov. The Changing Usage

of a Mature Campus-wide Wireless Network. In Proceedings

of ACM Mobicom, pages 187–201, September 2004.

[13] F. Hernández-Campos and M. Papadopouli. A Compara-

tive Measurement Study of the Workload of Wireless Access

Points in Campus Networks. In Proceedings of the 16th In-

ternational Symposium on Personal Indoor and Mobile Radio

Communications (PIMRC 2005), September 2005.

[14] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley.

Inferring TCP Connection Characteristics from Passive Mea-

surements.

[15] A. P. Jardosh, K. N. Ramachandran, K. C. Almeroth, and

E. M. Belding-Royer. Understanding Congestion in IEEE

802.11b Wireless Networks. In Proceedings of the Internet

Measurement Conference, Berkeley, CA, October 2005.

[16] A. P. Jardosh, K. N. Ramachandran, K. C. Almeroth, and

E. M. Belding-Royer. Understanding Link-Layer Behavior

in Highly Congested IEEE 802.11b Wireless Networks. In

Proceedings of the Workshop on Experimental Approaches to

Wireless Network Design and Analysis (E-WIND), Philadel-

phia, PA, August 2005.

[17] R. Karp, J. Elson, D. Estrin, and S. Shenker. Optimal and

Global Time Synchronization in Sensornets. Technical Report

CENS-TR0012, CENS, UCLA, April 2003.

[18] D. Kotz and K. Essien. Analysis of a Campus-wide Wireless

Network. In Proceedings of ACM MobiCom, 2002.

[19] M. McNett and G. M. Voelker. Access and mobility of wire-

less pda users. Mobile Computing and Communications Re-

view, 9(2):40–55, 2005.

[20] A. Mishra, M. Shin, and W. Arbaugh. An Empirical Analy-

sis of the IEEE 802.11 MAC Layer Handoff Process. ACM

Computer Communications Review, 33(2):93–102, 2003.

[21] G. T. Nguyen, R. H. Katz, B. Noble, and M. Satyanarayanan.

A Trace-Based Approach For Modeling Wireless Channel Be-

havior. In Winter Simulation Conference, pages 597–604,

1996.

[22] K. N. Ramachandran, E. M. Belding-Royer, and K. C.

Almeroth. DAMON: A Distributed Architecture for Moni-

toring Multi-hop Mobile Networks. In IEEE International

Conference on Sensor and Ad hoc Communications and Net-

works (SECON), October 2004.

[23] M. Rodrig, C. Reis, R. Mahajan, D. Wetherall, and J. Za-

horjan. Measurement-based Characterization of 802.11 in a

Hotspot Setting. In Proceedings of the Workshop on Experi-

14



mental Approaches to Wireless Network Design and Analysis

(E-WIND), Philadelphia, PA, August 2005.

[24] D. Schwab and R. Bunt. Characterising the Use of a Campus

Wireless Network. In Proceedings of IEEE Infocom, 2004.

[25] D. Tang and M. Baker. Analysis of a Local-Area Wireless

Network. In Proceedings of ACM MobiCom, pages 1–10,

2000.

[26] A. Willig, M. Kubisch, C. Hoene, and A. Wolisz. Measure-

ments of a wireless link in an industrial environment using an

ieee 802.11-compliant physical layer. IEEE Transactions on

Industrial Electronics, 43(6):1265–1282, December 2002.

[27] J. Yeo, M. Youssef, and A. Agrawala. A Framework for Wire-

less LAN Monitoring and its Applications. In Proceedings of

the ACM Workshop on Wireless Security (WiSe04), 2004.

[28] J. Yeo, M. Youssef, T. Henderson, and A. Agrawala. An Ac-

curate Technique for Measuring the Wireless Side of Wire-

less Networks. In Proceedings of the International Workshop

on Wireless Traffic Measurements and Modeling, Seattle, WA,

June 2005.

15




