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STOCHASTIC MODELING OF SPATIAL HETEROGENEITIES CONDmONED 
TO HYDRAULIC AND TRACER TESTS 

ABSTRACT 

Akhil Datta Gupta, D. W. Vasco and J. C. S. Long 
Earth Sciences Division 
Lawrence Berkeley Laboratory 
Berkeley, CA 94720 
(510) 486-6115 

This paper discusses an approach to generation of 
stochastic permeability. fields through simultaneous in­
version of flow and transport data. For tracer transport 
calculations, we have used a semianalytic transit time 
algorithm which is fast, accurate and free from numeri­
cal dispersion. The inversion of data has been accom­
plished through the use of simulated annealing. We 
have addressed the non-uniqueness associated with our 
results by shifting the focus from the search for a single 
model that fits the data best to inferences about the 
properties that are shared by an ensemble of acceptable 
models. We then determine a most likely model for 
heterogeneity. The approach has been illustrated 
through application to tracer migration in a synthetic 
fracture plane. 

l INTRODUCTION 

Uncertainty concerning the physical and chemical 
nature of subsurface heterogeneities constitutes a severe 
technical barrier to assessing long term performance of 
nuclear waste repositories. Traditional stochastic imag­
ing techniques to describe these heterogeneities (e. g. 
spectral methods, turning bands method etc.) are often 
poorly suited to reproduce th.e complex geologi­
cal/morphological patterns and do not have the ability 
to incorporate fluid flow and transport data directly. 
Characterizing heterogeneous permeable media using 
flow and transport data typically requires solution of an 
inverse problem. Such inverse problems are computa­
tionally intensive and often involve iterative procedures 
requiring many forward simulations of the flow and 
transport problem. Previous attempts have been mostly 
limited to flow data such as pressure transient (inter­
ference) tests using multiple observation wells.l,2 In 
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this paper we examine the possibility of obtaining 
stochastic permeability fields conditioned to flow as 
well as transport data such as cross-hole tracer tests. 

We assume permeability to be a spatially corre­
lated random variable with a known distribution speci­
fied by a mean and a standard deviation. The flow and 
transport data are used to infer the underlying correla­
tion structure. A critical aspect of our approach is an 
accurate and efficient solution of the transport problem. 
Modeling of tracer motion is complicated by the fact 
that any grid-based numerical method would be limited 
in resolution by the size of the grid block. If the charac­
teristic length scale of heterogeneity is much smaller 
than the feasible grid block size, then dispersion would 
be impossible to model accurately, irrespective of the 
sophistication of the discretization scheme (higher order 
finite difference, curvilinear finite element, particle-in­
cell, etc.). We circumvent the problem through the use 
of a novel semianalytic transit time algorithm which is 
fast, accurate and free of numerical dispersion. 3 

Another important issue that is common to all in­
verse problems is the uniqueness of the solution. Al­
though incorporation of transport data in addition to flow 
data helps better constrain the problem, the permeabil­
ity fields obtained by inversion are still non-unique. We 
address such non-uniqueness through the use of an en­
semble approach, which is an attempt to go beyond 
previous work by developing new methods for under­
standing characteristics shared by all solutions of an in­
verse problem. The general approach is to generate and 
describe a collection of models that fit the data in some 
sense. A basic feature of this approach is that the focus 
of the problem shifts from the search for a single model 
that fits the data best to inferences about the properties 
that are shared by the ensemble of acceptable models. 

Datta Gupta, et al. 1 



We can then determine a most likely model and quan­
tify the associated uncertainties in estimations.4 

II. THE APPROACH 

Our approach involves a two-step procedure. First 
the problem is posed as an optimization question and 
then, the optimization problem is solved using simu­
lated annealing which is a flexible and heuristic opti­
mization technique with its foundation in statistical 
mechanics. An objective function is defined as the 
weighted sum of difference between the properties of 
any simulated image and reference values. The opti­
mization problem consists of lowering the objective 
function enough so that the image has desired proper­
ties. Such an approach allows us to impose constraints 
that cannot be easily incorporated within the traditional 
framework of geostatistics.5 

A. Construction of an Objective Function 

The objective function during inverse modeling 
quantifies the mismatch between the observed and 
computed data. It also provides a mechanism to incor­
porate data from various sources by imposing con­
straints during the minimization. We have used a two 
part objective function defined as follows, 

nw 0 Pi 

E(m)= ~I L L OOpi[Pj,obs(ti)- Pj,cal (ti)]2 

j= I i= I 

nw nlj 

+ ~2 L L OOcj[Cj,obs(ti)- Cj,cal (ti)]2 · 
i=l i= I 

(1) 

In the above expression, m is the parameter vector 
comprised of permeability values at grid blocks, nw is 
the total number of wells, npj and ntj are the number of 
pressure and tracer data recorded at the j-th well. The 
pressure or the tracer data can be weighted as desired, 
the weights being ~ 1 and ~2· In our application, we use 
~. = ~2· 

The pressure transients are computed through a fi­
nite difference solution of the flow field. For tracer 
transport calculations, the flow field is assumed to have 
reached steady state conditions. Then the tracer history 
is obtained using the semianalytic transit time algo­
rithm described in the next section. In Eq.(l), the 
weights ffipi and OOci for the pressure and the concentra­
tion histories are chosen to emphasize the early times 
in pressure transients and tracer response. 

B. Modeling of Tracer Motion 

For tracer transport calculations, we have used a 
semianalytic transit time approach which is computa­
tionally efficient and free from numerical dispersion. 
The method is semianalytic because we obtain the ve­
locity field numerically. This generalizes the approach 
to any arbitrary configuration of wells and also to are­
ally heterogeneous permeability fields. The semiana­
lytic approach is based on the observation that in a ve­
locity field derived by finite difference, streamlines can 
be approximated as piecewise hyperbolic intervals. 
Along each interval, we can solve the evolution equa­
tion exactly. Once the transit times to a producing well 
are determined, the tracer response can be obtained 
from simple integral expressions. 

For steady flow in a non-deformable permeable 
medium, the stream function, 'If, must satisfy the differ­
ential equation 

(2) 

where, A. = k/Jl, is the fluid mobility. Equation (2) 
follows from the requirement that the curl of head 
gradient must vanish.6 

The simplest representation of the stream function 
'If on a rectangular lattice grid block is a bilinear func­
tion, 

'Jf(x,y) = 'Jfo + ax + by + cxy , (3) 

which satisfies Eq (2) since A. is constant on a grid 
block. The four constants are fixed by \(1 on the four cor­
ners of the grid block. 

From Eq (3) one obtains, 

a"' Yx=-=b +ex ay (4a) 

a"' Vy =- ax =-(a+ cy). (4b) 

Thus, the component velocities vary linearly in the re­
spective directions only. 
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Consider a tracer particle initially (t = 0) at 
(x 0 ,y0 ), which convects according to Eq (4). The parti­
cle trajectory can be calculated by direct integration, 
for example in the x direction, 

J ~=~tx b+cx 

In b +ex = c ~t 
b + CXo x 

x = xo + Vx(xo) . [( ec at, - 1)/c]. 

Analogously, in the orthogonal y direction, 

a+cy 
In =- c ~ty a+cyo 

Y =Yo+ vy(Yo) .[(1 - e·cAty)/c]. 

(5a) 

(5b) 

(6a) 

(6b) 

Since the streamlines must enter and exit through grid 
block faces, the actual transit time across a grid block 
will be given by the minimum over the allowed edges.1 

·Thus, 

Llt = Minimum (~tx , Ll ty) (7) 

where the minimum is examined only for positive val­
ues. One may verify that along these trajectories, 'Jf is 
constant. From Eqs (Sa, 6a) 

(b + cx)(a + cy) = (b + cx0)ec.1.t (a+ cy0)e-<=Ll.t =constant 
(8) 

while (b + ex) (a + cy) =c. 'JI(x,y) + (ab - c 'Jio) . 

Hence the streamlines are hyperbola with asymptotes at 
x = -b/c, y = -ale. 

In a block centered finite difference model, linear 
interpolation of the velocity components is consistent 
with the assumptions of the flow model. 8 Hence, in a 
finite difference scheme, we may approximate 'JI by 
piecewise hyperbolic intervals. On each of these 
streamlines, the tracer particle convects according to 
Eqs. (5b), 6b). 

The transit time to any location in the domain is 
obtained by following the streamline backwards in time 
to the injector and summing up the travel times through 
successive grid blocks in the finite difference model. 

Given a configuration of permeabilities, first a transit 
time function, 't('JI) is calculated at each producing 
well. For calculating the transit time function 't(\jl), we 
follow the procedure outlined above; however, we origi­
nate the trajectory at the producing well and follow it 
backwards in time until an injector is reached. Finally, 
we label the transit times as a function of the stream­
line. Once 't('JI) for a producing well is obtained, the 
tracer history can be derived simply by integrating the 
response of individual streamlines, allowing for appro­
priate delay time. Thus, 

C(t) = t Ci(t- -c(\JI)) d 'I' 
~all ljf (9) 

where Cj (t) is the injection history of the tracer slug. In 
Eq.(9) we have neglected physical dispersion and as­
sumed that dispersion of the tracer occurs because of 
permeability heterogeneities only. However, this ap­
proach can be easily extended to incorporate longitudi­
nal diffusion along streamlines. 

C. Ensemble Analysis 

The inverse approaches to hydrologic characteriza­
tion have the advantage that they can incorporate flow 
as well as transport data directly in deriving the spatial 
heterogeneity patterns. Thus the approach naturally em­
phasizes the underlying features that impact the fluid 
flow and transport. Most often one seeks the model 
which maximizes the likelihood of the data, i. e. mini­
mizes the misfit to the data.l However, given the uncer­
tainties associated with a set of measurements, it is 
probable that many sets of models may fit the· data 
within some specified tolerance. In particular, a network 
of flow channels, which may be rather elaborate, is 
likely to be poorly constrained by limited data. Thus, 
hydrologic models derived by inversion are non-unique 
in general and it may not be informative to seek a sin­
gle model. Instead, it may be best to generate a large 
collection or ensemble of models approximately satisfy­
ing the data. That is, models for which some measure of 
misfit, say xP misfit, is small. When a sufficient num­
ber of models have been accumulated various statistical 
quantities may be extracted from the ensemble. 

ill. APPLICATION 

We now illustrate the approach discussed above by 
application to tracer migration in a single fracture 
plane. The flow geometry consists of a single injection 
well located in the middle of the fracture plane and a 
single producing well located in the upper right hand 
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Fig. I. Synthetic Fracture Plane 

corner as shown in Fig. I using star symbols. The model 
can be thought of as an approximation to a tracer test in 
a fracture plane where the tracer is collected in a drift 
represented by the producing we11.9 

. For generation of the synthetic fracture plane, we 
have assumed permeability to be a spatially correlated 
random variable specified by a probability distribution­
and a correlation length. A stochastic moving average · 
method was then used in order to generate spatial pat­
terns of permeability within the fracture plane as shown 
in Fig. I. In Fig. I, we have removed the mean and 
compressed the scale in order to highlight the extreme 
value features of the permeabifity field. Clearly, there is 
a central high permeability region surrounded by two 
low permeability regions. For this example, we have 
used a log-normal distribution of permeabilities with a 
mean of 0.5 Darcy, log standard deviation of 0.6 and an 
isotropic correlation length of 40% of the fracture plane 
dimensions. 

A. The Forward Problem 

A block centered finite-difference model was used 
for solving the forward problem. We have used a grid 
size of 35x35 with .1-x = .1-y = 5 ft. Pressures at the 
nodes were obtained using a five-point central differ­
ence scheme. The velocities at the block faces were 
then computed using Darcy's law. The tracer motion 
was calculated using the semianalytic transit time algo-

iii 
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Fig. 2a. Transit Time Function for the Synthetic 
Fracture Plane. 
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Fig. 2b. Tracer Response From the Synthetic Fracture 
Plane. 

rithm discussed before. First, the transit time function 
was computed at the producing well (Fig. 2a) and then, 
the tracer response was computed using Eq. (9) 
(Fig. 2b). 

Figure 3a shows the isochrones for the synthetic 
fracture plane. These isochrones are contours of ·equal 
arrival times and thus, represent the tracer front at dif­
ferent time intervals. As expected, most of the tracer 
flows through the central high permeability region. This 
is evidenced by the early breakthrough of the tracer due 
to flow channelization. The same behavior is also re­
flected by the streamlines (Fig. 3b) which are grouped 
in the central region, indicating preferential fluid 
movement through these areas. While evaluating the 
conductivity patterns obtained by inversion of transport 
data, we will pay particular attention to this central 
high permeability region. 
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Fig. 3a. Isochrones (in Days) for the Synthetic Fracture 
Plane. 
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Fig. 3b. Streamlines for the Synthetic Fracture Plane. 

B. The Inverse Problem 

For inversion of flow and transport data, we chose 
steady head at the six locations indicated by circles in 
Fig. 1 along with the tracer response at the producing 
well as shown in Fig. 2b. As mentioned before, simu­
lated annealing was used for inversion. We have at­
tempted alternative approaches such as conjugate gra­
dient for inversion of flow and transport data. However, 
for large number of parameters, simulated annealing 
was found to be more robust and computationally effi-

cient for the example problem studied here. Starting 
with an initial distribution of permeabilities, we choose 
a location at random and replace the permeability of 
that location with a value sampled from a specified log­
normal distribution. A change in misfit, also known as 
energy, is computed due to the perturbation. If the en­
ergy decreases, then the perturbation is accepted~ oth­
erwise the perturbation is accepted with a probability 
P(.1E) = exp{ -.1Eff) where T is analogous to tempera­
ture in Gibbs ·distribution. By allowing to accept 
changes which result in an increase in energy, the simu­
lated annealing approach to optimization provides a 
mechanism of probabilistic hill climbing which allows 
the method to escape from local minima. I 0,11 

z 
0 
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() 
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Fig. 4a. Inversion of Tracer Data. 
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Fig. 4b. Inversion of Steady Head Data (Meters) 

Figs. 4a and 4b compare the tracer history and the 
steady heads obtained from one such inversion with the 
synthetic data. Overall, the agreement with the data is 
reasonably good. However, since the tracer history is an 
integrated response, a more rigorous test of the inver­
sion will be to compare the flow fields. Figs. Sa and Sb 
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Fig. 5b. Streamlines for the Inverted Permeability 
Field. 

show the isochrones and the streamlines from the in­
verted permeability field. On comparing with Fig. 3, we 
now see that many of the important features of the orig­
inal flow field have not been reproduced by the inver­
sion. For example, the streamlines are more uniformly 
spaced in Fig. 5b compared to Fig. 3b indicating lack of 
preferential flow patterns as present in the synthetic 
data. The permeability field obtained by the inversion is 
shown in Fig. 6. The permeability field appears to be 
noisy with scattered patches of high permeability re-

gions. Clearly, the central high permeability streak pre­
sent in the synthetic data has not been adequately re­
produced by inversion. This example also emphasizes 
the inherent non-uniqueness underlying such inversions 
and the danger associated with basing performance pre­
dictions on a single model derived through inversion of 
limited data. 

C. Ensemble Inversion 

We now shift our focus from the search for a single 
model that fits the data best to inferences about the 
properties that are shared by an ensemble of acceptable 
models. Several inversions of the steady head and tracer 
data were performed and statistical analysis was carried 
out to discern the underlying features shared by the in­
dividual models. 

Fig. 7 shows the energy vs. iterations from about 90 
inversions of the data. The wide band of energy ob­
served here indicates that many of the models actually 
converged to local minima. The ensemble mean and 
median models derived from these inversions are shown 
in Figs. 8a and 8b. The central high permeability region 
present in the data is now apparent in these models. On 
comparing with Fig. 6, which is a member of the en­
semble, the mean or the median model appears much 
less noisy and the preferential flow paths are more 
clearly discernible here. 

It is interesting to examine the characteristics of 
the individual models obtained by inversion in relation 
to the ensemble statistics. For this, we compared mov­
ing window semivariance estimates of individual mod­
els with the ensemble mean and median. The moving 
window semivariance describes the variance of a mov­
ing window of size h as a function of h (scale) and is 
defined as follows: 12 

l!<(h) = r f s•-y(l;) dl; 
~d-1 d~ 0 

0 

(10) 

where d is the dimension in Euclidean space and y(h) 
is the classical semivariance estimator defined as fol­
lows: 

N(h) 

l(h) = _1 -I, [z(xJ- z(xi + h)]2· (11) 
2N(h)i=I 
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In Eq. (11), z(xj) is the data value at Xi and N(h) is 
the number of data pairs for lag distance h. The moving 
window semivariance estimator has been shown to be 
robust and superior to other such existing estimators and 
can be used to examine the 'scale effects' (variance vs. 
scale) of heterogeneity.l2 
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Fig. 8a. The Ensemble Mean Model. 
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Fig. 8b. The Ensemble Median Model. 

Fig. 9 shows the histograms of moving window 
semivariance estimates of individual models obtained 
by inversions. The semivariance for the ensemble me­
dian is also superimposed in the same figure (shown us­
ing asterisk symbols) along with the data from the syn­
thetic fracture plane (shown as dashed lines). The re-
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suits clearly indicate that whereas the individual mod­
els are quite noisy, such small scale fluctuations disap­
pear in the ensemble median. Thus the underlying struc­
ture can be inferred more clearly through the ensemble 
analysis. The behavior of the ensemble' median as a 
function of number of realizations is shown in Fig. 10 
which again underscores the need for a large number of 
models that fit the data. 

IV. SUMMARY AND CONCLUSIONS 

I. An approach for generation of stochastic permeabil­
ity fields through simultaneous inversion of flow 
and transport data has been presented. For data in­
version, we have used simulated annealing which 
was found to be very robust and computationally ef­
fective, particularly for large number of parameters. 
The tracer transport was computed using a semiana­
lytic transit time algorithm which is fast, accurate 
and free from numerical dispersion. 

2. Whereas individual models obtained by inversion 
were found to be noisy and highly non-unique, we 

.have addressed the non-uniqueness issue by focus­
ing on the determination of underlying features 
shared by an ensemble of acceptable models rather 
than trying to obtain a model that fits the data the 
best. 
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Fig. 10. The Ensemble Median as a Function of 
Number of Realizations. 

3. The ensemble approach was particularly successful 
in reproducing the major features of heterogeneity 
and the preferential flowpaths. An examination of 
moving window semivariance estimates of the indi­
vidual models indicated that the ensemble analysis 
resulted in natural cancellation of small scale fluc­
tuations, thus facilitating the determination of the 
underlying correlation structure. 
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NOMENCLATURE 

a,b,c Parameters for bilinear streamfunction 
Cj,obs Observed tracer response 
Cj,cal Calculated tracer response 
k Permeability, L2 
Pj,obs Observed pressure response, ML-1T2 
Pj,cal Calculated pressure response, ML -1 T2 
Vx, Vy x andy velocities, Lrr 
dtx, .:lty Transit times in the x and y directions, T 
y(h) Semivariance 
A. Mobility ( = k/J.L) 
11 Viscosity, ML-lT-1 
'I' Streamfunction, L2fT 
't('JI) Transit time function, T 
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