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Military operations require the capability and capacity to gain a situational understanding

of complex megacity environments. This is often formulated in Intelligence, Surveillance, and

Reconnaissance (ISR) missions. These mission types occur during varied phases of the battle, in-

cluding Combat Operations and Stability and Support Operations (SASO). Teams of autonomous

mobile robots can be tasked to conduct patrol and reconnaissance missions in known dynamic

urban environments, in support of Soldiers.
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In this thesis, we aim to develop a probabilistic framework called Risk Maps. The

autonomous robot will use Risk Maps to plan its actions, which indicate a tactically relevant

location where exposure or the environment might enable an attack to inflict maximum damage

(e.g., possible IED or sniper locations).

Risk Maps are based in a decision process, which allocate robot patrols against adaptive

adversary events. These techniques will use temporal evolution to prevent an inevitable adversary

adaption to these strategies, which can nullify much of their effectiveness.

Using a multi-robot coordination approach for decentralized, informative and adaptive

sampling application has not a single point of failure. It allows for anytime prediction, and any

robot at any point in time to have a reasonable model of the environment. Furthermore, it keeps the

required amount of communication to a minimum. Besides that, proper Geographic Information

System (GIS) technology provides military commanders the means to rapidly integrate data sets,

assess conditions, plan strategies, and evaluate options.
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Chapter 1

Introduction

In the future, humans will collaborate closely with artificially intelligent systems. Intelli-

gent systems will be team members and will serve to extend the reach and capability of individual

units to enable unprecedented capabilities.

Intelligent exploration and robust collaborative surveillance by autonomous robots will be

essential to urban operations, allowing them to prevent future risk of vulnerability and threats.

This thesis addresses how prior knowledge of an environment and the history of actions in

similar scenarios can predict and prevent future attacks. In this thesis, we present a probabilistic

framework into which a set of domain expert rules can be incorporated with spatial and semantic

knowledge to enable an autonomous agent to gather information. Autonomous agents can then

use this evolving framework to plan optimal actions with respect to this changing information

landscape to best accomplish its mission. Our approach extends the techniques described in

[Pit+08; ZST15] for use with the Information Based-Exploration framework presented in this

thesis used by the MAST/ARL* navigation module. Pita et al. created the system architecture:

ARMOR. This system provides a monthly calendar that satisfies all the key requirements by LAX

officers for checkpoint and canine deployment at LAX.

*Micro Autonomous Systems and Technology MAST Collaborative Technology and Research Alliances. U.S.
Combat Capabilities Development Command Army Research Laboratory (ARL)
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A major challenge to provide support to the troops by the multi-robot team is to understand

how the environment is dynamically changing to provide security of zones in which a convoy

should choose the most obvious or convenient route. To address this challenge, it is of interest in

utilizing GIS data and activity logs about specific locations. One approach to achieve it is to use

an information-based map (Risk Map) formed by a set of modular components which represent

knowledge of enemy strategy when evaluating the prior probability of risk. Also, the risk map

has a temporal component that blends gradually back to the prior map state, representing the fog

of war.

We consider realistic scenarios in which a team of robots with different capabilities

explores an unknown environment, and each robot acquires and computes its own map and

exchanges this information with the other members of the team considering constraint commu-

nication, i.e., robots can only communicate within a specific distance and the exchange of the

amount of information is due to bandwidth constraints. Furthermore, each robot is capable of

switching from exploration to a source seeking a task and can provide or request assistance when

it is needed.

Thesis Statement

Coordination strategies for multi-robot exploration and navigation utilizing adaptive in-

formative sampling to enable robot platforms to autonomously perform intelligence, surveillance

and reconnaissance (ISR) missions in unknown environments allowing them to prevent future risk

of vulnerability and threats.
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Contributions

This statement is supported through the following contributions:

• A complete distributed multi-robot SLAM solution performing feature-based, object-based

as well as pose-based graph SLAM, complete with probabilistic data associations and loop

closure.

• A distributed algorithm to estimate the 3D trajectories of multiple cooperative robots or

mobile devices from relative pose measurements.

• A system framework which provides high and low threat-level information, which will be

used as an action plan for movement formation and patrols.

• Novel coordination strategies for heterogeneous multi-robot adaptive informative sampling

which is decentralized and robust.

*All the contributions of this thesis are validated through experimental results using both

simulated and real data
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Chapter 2

Simultaneous Localization and Mapping -

“SLAM”

2.1 Introduction

The deployment of distributed systems in the real world poses many technical challenges,

ranging from coordination and formation control, to task allocation and distributed sensor fusion.

In this work we tackle a specific instance of the sensor fusion problem. We consider the case in

which a team of robots or mobile devices explores an unknown environment and each robot or

mobile device has to estimate its trajectory from its own sensor data and leveraging information

exchange with the teammates. Trajectory estimation is relevant as it constitutes the backbone for

many estimation and control tasks e.g., geo-tagging sensor data, 3D map reconstruction, position-

aware task allocation. Indeed, in our application, trajectory estimation enables distributed 3D

reconstruction and localization. Poses are shown in red, static landmarks are shown in green, and

moveable landmarks are shown in blue, connected by a blue dotted line showing their movement.

We consider a realistic scenario, in which the robots or mobile devices can only communicate

when they are within a given distance. Moreover, also during a rendezvous (i.e., when the robots

4



or mobile devices are close enough to communicate). The robots cannot exchange a large amount

of information, due to bandwidth constraints (e.g., there exist an upper bound on the number of

bytes that the robots or mobile devices can exchange).

2.2 SLAM as a Probabilistic Framework

In landmark-based SLAM, a robot, while navigating, tries to localize itself and at the

same time build a map of the environment (represented using landmarks). Assuming a pose of the

robot at the ith time step is xi with i ∈ 0 . . .M, a landmark is l j with j ∈ 0 . . .N and a measurement

is zk, with k ∈ 0 . . .K, the joint probability model is given as:

P(X ,L,Z) = P(xo)∏
M
i=1 P(xi|xi−1,ui)∏

K
k=1 P

(
zk|xik, l jk

)
where P(xo) is a prior on the initial state, P(xi|xi−1,ui) is the motion model, parametrized by a

control input ui and P(zk|xik, l jk) is the landmark measurement model, xik and l jk corresponds to

measurement zk. Assuming the motion and measurement models are Gaussian, P(xi|xi−1,ui) ∝

exp−1
2‖ fi(xi−1,ui)− xi‖2

Λi
and P(zk|xik, l jk) ∝ exp−1

2‖hk(xik, l jk)− zk‖2
Σk

where f () is the robot

motion equation and h() is a landmark measurement equation with Λi and Σk as the respective

covariances. We use a factor graph to represent the joint probability model P(X ,L,Z) where each

factor represents either P(xo) or P(xi|xi−1,ui) or P
(
zk|xik, l jk

)
. Therefore the joint probability

model can be written as P(X ,L,Z) ∝ g(Θ) = ∏i gi(Θi) where Θi is the set of variables θ j adjacent

to the factor gi. Figure 2.2 shows the corresponding factor graph. Given all the measurements, we

obtain the maximum a posteriori (MAP) estimate by maximizing the joint probability P(X ,L,Z).

Θ
∗ = argmax

Θ

P(X ,L|Z) = argmin
Θ

(− logg(Θ)) (2.1)
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X0 X1 X2 X3

L0 L1 L2

Z0 Z1 Z2 Z5 Z6 Z7Z3 Z4

Figure 2.1: Belief Net corresponding to the landmark-based SLAM problem. The pose of the
robot at ith time step is xi with i ∈ 0 . . .M, a landmark is l j with j ∈ 1 . . .N and a measurement is
zk, with k ∈ 1 . . .K.

which leads to the following non-linear least squares problem:

Θ
∗ = argmin

Θ

M

∑
i=1
‖ fi (xi−1,ui)− xi‖2

Λi
+

K

∑
k=1
‖hk(xik, l jk)− zk‖2

Σk
.

The non-linear least squares problem is solved using a non-linear optimization method such as

the Levenberg-Marquardt algorithm which solves a succession of linear approximations in order

to approach the minimum. We use Square Root SAM (Dellaert and Kaess [DK06b]) to optimize

the resulting factor graph.

2.3 SLAM with Expectation Maximization for Moveable

Object Tracking

Many SLAM algorithms rely on the assumption that the environment is static, and will

perform poorly or fail if mapped objects move. However, to operate in real world dynamic

environments, algorithms will need to recognize moveable objects. Consider, for example, a

robot that makes a map of a room, and then returns several days later. Some of the features in
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X0 X1 X2 X3

L0 L1 L2

Figure 2.2: Factor graph representation of the SLAM problem. Blue circles denote the poses
(X) and green circles denote landmarks (L). Small purple circles represent odometry constraints
and red circles represent landmark-pose constraint.

its map might correspond to immobile objects, such as walls, while some might correspond to

objects that may have moved, such as furniture. If someone has moved some of the objects in

the room that were part of the robot’s map, it will be potentially catastrophic because the SLAM

system will make an inconsistent map out of incompatible measurements.

In this section, we propose an Expectation Maximization (EM) approach to data associa-

tion and static vs. moveable object determination for performing SLAM in a pathological office

environment where mapped landmarks move. Our algorithm has been validated in an indoor

environment.

A common assumption is that the environment being mapped is static. There are two

main research directions which attempt to relax this assumption. One approach partitions the

model into two maps; one map holds only the static landmarks and the other holds the dynamic

landmarks. Hähnel et al. use an EM based technique to split the occupancy grid map into

static and dynamic maps over multiple iterations in a batch process. This technique is shown

in [HSB02] and [Häh+03] to be effective in generating useful maps in environments with moving

people. Biswas et al. take a finite set of snapshots of the map and employ an EM algorithm

to separate the moving components to generate a map of the static environment and a series of
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separate maps of the dynamic objects at each snapshot. Wolf and Sukhatme [WS05] [WS04]

[WS03] are able to separate static and dynamic maps with an online algorithm. Stachniss and

Burgard developed an algorithm in [SB05] which identifies dynamic parts of the environment

which engages a finite number of states.

The map is represented with a “patch map” that identifies the alternative appearances of the

portions of the map which are dynamic, like doors.

The second direction with respect to relaxing the static world assumption is to track

moving objects while mapping the static landmarks. Wang et al. in [WT02] and [WTT03]

are able to track moving objects and separate the maps in an online fashion by deferring the

classification between static and dynamic objects until several laser scans can be analyzed to

make this determination. Bibby et.al [BR07] use an EM based technique over a finite time-

window to perform dynamic vs. static landmark determination; however, their approach differs

from ours in several important ways. First, they use a finite sliding window after which no

data associations can be changed. Our approach has no such limitation as we are attempting to

determine which aspects of the environment are static vs dynamic over the entire mapping run.

Bibby’s technique does a good job of detecting moving objects but it will not be able to detect

moveable objects over longer time intervals, that might move when they aren’t being observed

by the robot. Additionally, Bibby addresses the static data association problem by maintaining a

distribution of data associations across the sliding window; the data association decision is made

permanent at the end of the window (6 steps in Bibby’s implementation). An infinite sliding

window would be computationally intractable in this implementation due to exponential growth

of the interpretation tree; however, our approach offers an alternative solution to the static data

association problem which does not suffer from finite history.
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Approach

Our algorithm is based upon the Square Root SAM of Dellaert [Del05b]. We have

modified this algorithm with a per-landmark weighting term which enables discrimination between

stationary and mobile landmarks to allow for more reliable localization. The remaining landmarks

which have a low weight are classified as being moveable and are now tracked by the robot

without influencing the robot’s trajectory.

Square Root SAM

Our implementation of Square Root SAM finds the assignment for the robot trajectory

and landmark positions that minimizes the least squares error in the observed measurements. As

is common in the SLAM literature, our motion and measurement models assume Gaussian noise.

Each adjacent pose in the robot trajectory is modeled by the motion model in equation 2.2.

xi = fi(xi−1,ui)+νi (2.2)

where fi(.) is the nonlinear motion model and ui is the observed odometry from the robot, and νi

is the process noise. In our case, we use a differential drive robot which has a three-dimensional

pose (xi,yi,θi). The model is shown in equation 2.3.


∆xi

∆yi

∆θi

=


u0 cos(θ̃)−u1 sin(θ̃)

u0 sin(θ̃)+u1 cos(θ̃)

u2

 (2.3)

where u0 is the forward motion, u1 is the side motion, u2 is the angular motion of the robot, and

θ̃ = θi−1 +
u2
2 . The measurement model determines the range and bearing to the landmarks. It
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has the form shown in equation 2.4.

h(xi, l j) =


√

(xi− lx
j)

2 +(yi− ly
j)

2

tan−1
(

(ly
j−yi)

(lx
j−xi)

)
−θi

 (2.4)

The linearized least squares problem is formed from the Jacobians of these motion and measure-

ment models as is seen in [Del05b]. By organizing the Jacobians appropriately in matrix A and

collecting the innovation of the measurements and odometry in vector b we can iteratively solve

for the robot trajectory and landmarks which are stacked in Θ as seen in equation 2.5.

Θ
∗ = argmin

Θ
‖AΘ−b‖2 (2.5)

After each iteration, the Jacobians are re-linearized about the current solution Θ. The solution

to this minimization problem can be found quickly by direct QR factorization of the matrix A

using Householder reflectors followed by back-substitution. The source paper for this technique

[Del05b] exploits sparsity to vastly improve performance; however, we are currently using dense

matrices. The optimization currently runs in approximately one second per iteration for a SAM

problem of around 50 poses and 100 measurements with dense matrices. We anticipate achieving

much better performance once we utilize sparse matrices.

Expectation Maximization

To establish an EM algorithm for SAM with moveable objects, we first must express the

joint probability model in equation 2.6.

P(X ,M,Z) = ∏
poses

P(xi|xi−1,ui)∗ ∏
landmarks

P(zk|xik , l jk) (2.6)

where P(xi|xi−1,ui) is the motion model and P(zk|xik , l jk) is the sensor model. We add a hid-
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den variable ωk to each landmark measurement, which changes the joint probability model to

equation 2.7.

P(X ,M,Z,Ω) = ∏
poses

P(xi|xi−1,ui)∗ ∏
landmarks

P(zk|xik , l jk ,ωk) (2.7)

With a Gaussian representation for the sensor model, this new set of parameters ωk results in the

sensor model in equation 2.8.

P(zk|xik , l jk ,ωk) ∝ exp−(ωk((zk−h(xik , l jk)
T

Σ
−1(zk−h(xik , l jk))) (2.8)

With the interpretation that ωk is the likelihood that this measurement comes from a static

landmark, if the landmark is not static (i.e. ωk = 0), then the measurement does not affect the joint

likelihood since P(zk|xik , l jk ,ωk) = 1 for all assignments to the robot poses and landmark positions.

When the landmark is static (i.e. ωk = 1), then this weighting term makes this measurement

behave like normal. Obviously, the hidden variables ωk cannot be directly observed by the robot

and must instead be estimated from multiple observations of each object. The M step selects new

assignments for the ωk to maximize the joint likelihood. Since the likelihood can be trivially

maximized by setting all ωk = 0, we introduce a Lagrange multiplier to penalize setting too many

moveable landmarks. The non-constant portions of the log likelihood for the measurements is

now seen in equation 2.9.

l(Z,X ,L,Ω) = ∑
measurements

(−ωk(η
T
k Σ
−1
k ηk))−λ(1−ω)T (1−ω) (2.9)
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where ηk is the innovation of the k-th measurement (the k-th measurement minus its predicted

value). This log likelihood is maximized when

δl(Z,X ,L,Ω)

δΩ
= 0 (2.10)

For each ωk we get the equation 2.11

−(ηT
k Σ
−1
k ηk)+2λ−2λωk = 0 (2.11)

so

ωk = 1−
ηT

k Σ
−1
k ηk

2λ
(2.12)

We have made the additional modification that the ωk is not assigned per measurement, but instead

since these measurements come from objects we would like to treat the objects as the things that

are moveable instead of the measurements being unreliable. This is a simple modification which

changes equation 2.9 into equation 2.13.

l(Z,X ,L,Ω) = ∑
measurements

(−ωlk(η
T
k Σ
−1
k ηk))−λ(1−ω)T (1−ω) (2.13)

where ωlk is the weight of landmark l involved in the kth measurement. For each ωlk we get the

equation

∑
k∈Kl

−(ηT
k Σ
−1
k ηk)+2λ−2λωl = 0 (2.14)
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so

ωl = 1− ∑k∈Kl
ηT

k Σ
−1
k ηk

2λ
(2.15)

where Kl is the set of measurements of landmark l. The Lagrange multiplier λ can be assigned to

trade off the penalty for having moveable landmarks. This was the M step of EM.

The E step of EM computes the robot trajectory and the landmark positions with the

current estimates of the weighting terms ωl . The least-squares problem solved by Square Root

SAM to find the most likely map is simply the weighted least squares problem, which is to add a

weighting term ωl ∈ [0,1] to each landmark measurement row i.e.

H ∗ xi + J ∗ l ji = zi j−h(xi, l ji) (2.16)

becomes

ωl ji
∗ (H ∗ xi + J ∗ l ji) = ωl ji

∗ (zi j−h(xi, l ji)) (2.17)

where H = δν

δxi
and J = δν

δl ji
with ωl ji

is the weight assigned to the landmark which we are

measuring in this row. In the least squares formulation, this will have the effect of scaling the

contribution of this measurement to the overall solution.
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2.3.1 Moveable Landmark Tracking

After the terminal iteration of the EM algorithm, landmarks which have a weight factor

falling below a specific threshold are removed from the SAM optimization and collected in a

separate data structure. The final map is optimized once again with the moveable landmarks

removed. Measurements on the dynamic landmarks are used with the final trajectory to compute

global locations for the dynamic landmarks. These landmarks are now moved into a separate list

of moveable landmarks where they could be referred to later to find a list of observed positions. If

the moveable landmarks were tagged with semantic information, the robot would then be able to

use this data structure as a candidate list of search locations for the object for a retrieval task. The

robot can start with the most recently seen position for this object and then try the other places

that the object has been seen in the past. Currently, the distribution of positions of the moveable

landmarks is being represented as a list of observed locations.

2.3.2 Experiments

To verify the performance of our algorithm, we performed a series of experiments with

moveable landmarks in our office environment.

Robot Platform

To test our system, we collected data with a Mobile Robotics Peoplebot. Our robot is

equipped with a SICK LMS-291 laser scanner, as well as a Logitech webcam. As measurements,

we detect ARToolKit Plus [WS07] markers in the camera images. The ARToolKit was used in

these experiments because the emphasis here is on the detection of static and mobile landmarks.

Having landmarks with trivial data association helps us focus on the key contribution of this

paper; however, there is no loss of generality and natural landmarks will be considered in future

work. The resulting measurements give the relative pose of each marker with respect to the
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camera. Laser data was also logged, but is only used for visualization purposes. Wheel odometry

is also logged, and is used as the input for the motion model.

Figure 2.3: The robot platform used for these experiments. The webcam attached to the laptop
is the one that is used to collect visual measurements.

Experimental Setup

The environment used for our experiment was a portion of our lab, consisting of two

student offices and the corridors connecting them. ARToolKit markers were placed throughout

the environment to serve as landmarks. Some of the markers were pinned to the walls, while

others were held by moveable frames which facilitated their movement during the experiments.

Procedure

Our first experiments were to move the robot in a circle in one of our student offices

measuring 4.5 meters on a side. This office had 12 ARToolKit markers pinned to the walls. In

addition to these static landmarks, this office had a total of 10 moveable landmarks which were
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placed upon the desks and shelves. We performed tests of our implementation of the standard

SAM algorithm by moving the robot in this office to collect measurements of landmarks without

moving them during the test run. The next experiment was to move the landmarks to a second

location within this same cubicle midway through the data collection.

We performed a larger scale experiment in which the robot moved between both of our

group’s student offices. Each of these offices is 4.5 meters on a side, and they are separated by

about 12 meters of corridors. We left the 12 ARToolKit markers in the first office from the small

scale experiment, and placed 9 markers in the second office. Additionally, we pinned 8 markers

to the walls in the corridor between our offices. Several data sets were collected in this setup with

varying numbers of moveable landmarks. In each run, the robot was moved in the first office so

that each landmark was observed multiple times and then the robot was driven down the corridor.

While the robot was being moved down the corridor, the moveable landmarks were transferred

from the starting office to random locations in the second office. The robot was then maneuvered

in the second office so that each landmark was observed multiple times and then it was driven

back to the first office. The robot was driven in the first office in a few loops and was finally

placed as close as possible to its starting location. Each test run of this type featured similar

trajectories, but always the moveable landmarks were placed in arbitrary positions in the two

offices.

The logs were used as input for our algorithm. While the ARToolKit Plus measurements

provide the relative pose of the landmark in Cartesian space with respect to the camera, we

instead converted this to a range and bearing measurement. As described in section 2.3, the

algorithm first considered all measurements, and iteratively adjusted the weights to determine

which landmarks were moveable, and which were static. The algorithm iterated until the state

converged and the updates were below a specified threshold. Once a stable configuration had

been found, the landmarks which had weights below a certain threshold were removed from the

SAM problem and were tracked separately. At this point, a final map was generated.
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2.3.3 Results

Figure 2.4: One of the images used as part of our experiments, as taken from the robot.

We present the longest test run in detail. The initial state of the problem can be seen in

Figure 2.5a. This corresponds to the raw odometry and sensor measurements. The robot starts

out in the upper rightmost corner of the left office, facing up in the image. The initial iteration

of the EM algorithm will have 1.0 in each ωk, so each landmark is initially assumed to be static.

The SAM optimization is iterated until convergence with these parameters, resulting in a very

poor quality map as can be seen in Figure 2.5b. It is apparent in this figure that the moveable

landmarks have resulted in incorrect loop closures causing the two offices to intersect almost

completely. After two iterations of the EM algorithm the map can be seen in Figure 2.5c. This

map is clearly better than the initial state; with two additional iterations of the EM algorithm

the low weight landmarks can be thresholded to generate the final map in Figure 2.5d. In this

particular run, there were 10 moveable landmarks, 6 of which were detected as moveable. No

static landmarks were mistakenly detected as moveable. The remaining 4 moveable landmarks

which were mistakenly classified as static were only observed in one of the two offices. Without

the observation of the landmark in its second position, the algorithm cannot determine that the

17



(a) Initial State of the Map. (b) The resulting map with all measure-
ments (including moveable objects) prior
to the first weight assignment.

(c) The resulting map after two iterations
of the EM algorithm

(d) The resulting map after all iterations
and thresholding to exclude moveable ob-
jects.

Figure 2.5: Poses are shown in red, static landmarks are shown in green, and moveable
landmarks are shown in blue, connected by a blue dotted line showing their movement. The
dark green points are laser scans, and are for visualization purposes only.
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landmark had moved. The missing observations can be explained by our use of a webcam and

some poor lighting, or the missing landmarks do not appear with a front aspect view which

ARToolKit Plus can detect. We have performed two additional test runs of this length and four

runs of the single office test, with similar results.

We performed an additional test run where we ignore measurements from the static

landmarks. This test was generated by running one of our normal test runs with measurements

suppressed from markers that we know to have been static. In this test run, the EM operation was

able to correctly identify all of the landmarks as moveable. The final output appears the same as

the initial odometry solution. This makes sense because the SAM problem has no measurements

between landmarks which affect the trajectory since all of the landmarks had moved.

2.4 OMNIMAPPER

Our mapping system is based upon the GTsam library developed at Georgia Tech. This

library extends the Square Root SAM technique in [DK06b] with sparse linear algebra in a

nonlinear optimization engine. We optimize a graph of measurements between robot poses along

a trajectory, and between robot poses and various landmarks in the environment. Measurements

come from various software components. Measurements of simple objects like points, lines, and

planes are data associated to mapped landmarks with the joint compatibility branch and bound

(JCBB) technique from [NT01a]. Measurements of richer landmarks such as objects or signs are

data associated based upon interpretation of this semantic information.

OmniMapper is a complete SLAM solution performing feature-based as well as pose

graph SLAM, complete with probabilistic data association and loop closure. A complete SLAM

solution consists of a back-end as well as a front-end; these two components must work together

to build a map of an environment. There are many options for back-end SLAM libraries; however,

they can be described by the two basic categories of Filtering approaches like the EKF and
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Smoothing approaches like iSAM2.

Figure 2.6: Map generated using OmniMapper.

Omnimapper is a plugin architecture using the M-space formulation of Folkesson and

Christensen [FC04]. The M-space representation makes incorporating new landmark measure-

ment types simple by expressing linearization parameters in terms of simpler components via the

chain rule and then multiplying the matrices together to form the linearized measurement model

Jacobians.handle multiple landmark types simultaneously such as lines, planes, walls, doors, and

objects. Also, we have developed plugins for 2D canonical scan matching (CSM) [Cen08], and

full point cloud alignment via generalized iterated closest point (G-ICP) [SHT05].

2.4.1 Object mapping

In [Rog+11a], we developed techniques for mapping visual objects. This study and a novel

technique called semantic data association. The plugin for handling objects in the OmniMapper

is simpler than the plane and line plugins described above, because objects are tracked as 3D

points.

h = RT ∗ (~p−~t) (2.18)
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The Jacobian with respect to the robot pose is then given by:

δh
δXr

=


0 −hz hy 1 0 0

hz 0 −hx 0 1 0

−hy hx 0 0 0 1

 (2.19)

The Jacobian with respect to the landmark is given by:

δh
δl

= RT (2.20)

2.4.2 Data association

Data association is the process of assigning sensor measurements to previously mapped

or new landmarks. One of the core problems in SLAM is how to perform this data association,

and how to recover from erroneous data associations.

There are a number of approaches to performing data association of measurements to

mapped landmarks. The various techniques differ in what is needed to make the data association

determination. The simplest technique, dubbed Simple, is not probabilistically motivated because

it does not consider the uncertainty in the location of the robot relative to a measured landmark.

A more sophisticated technique, called Nearest Neighbor uses the covariance between the robot

and the landmark position to compute the probability that a measurement was generated from a

mapped landmark. Finally, the most sophisticated technique, called Joint Compatibility Branch

and Bound, performs probabilistic data association on all measurements simultaneously.

We have implemented these three data association algorithms within the OmniMapper via

generic template programming. Each of these data association modules takes the current map and

sensor measurements. Each module then returns indices referring to mapped landmarks for sensor

measurements which correspond to these previously found landmarks. The data association

module also inserts new landmarks for measurements which do not correspond to previously

21



mapped landmarks.

The Simple data association module takes a measurement function which computes the

error corresponding to inserting a new measurement on an existing landmark. This error function

does not take into account the shape of the covariance between the robot and this mapped

landmark, and does not make a probabilistic data association. The error function is illustrated in

equation 2.21.

e(x, l,m) = ‖pred(x, l)−m‖ (2.21)

Here, a data association is accepted between pose x, landmark l, with measurement m if

the predicted measurement between x and l is close to m. This data association module is fast and

easy; however, it is not probabilistically motivated and can therefore not resolve fine detail on

landmarks which are close. It also cannot handle loop closures well when uncertainty is too great.

The Nearest Neighbor data association module does a much better job at resolving fine

detail and performing data association in a loop closure. This is because the error function

between a measurement and the robot is now the Mahalanobis distance between these entities

using the covariance of the predicted measurement, as can be seen in equation 2.22.

e(x, l,m) = ‖pred(x, l)−m‖Σ(meas) (2.22)

The covariance of the predicted measurement is computed from the joint distribution of

the robot pose in question (usually the new robot pose) and the landmark being tested. This joint

covariance is projected into the measurement space using the measurement Jacobians, as can be

seen in equation 2.23.

Σ(meas) =
dh
dx
∗Σ(x, l)∗ dh

dx

T
+Σ(m) (2.23)

Here, Σ(meas) is the covariance in measurement space, Σ(x, l) is the covariance between
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the robot and landmark, and dh
dx is the Jacobian for the function transforming landmark and robot

positions into measurement space. Σ(m) is the sensor error model. A nearest-neighbor data

association is accepted if this Mahalanobis distance falls below a probabilistic threshold. It should

be noted that a coarse version of the Simple data associator is used to filter and avoid testing

data associations that are very far apart. This is needed due to the computational complexity of

computing the joint distribution between the robot pose and each potential matched landmark.

The Joint Compatibility Branch and Bound (JCBB) data associator extends the Nearest-

Neighbor data associator with an additional joint compatibility test. Once the Nearest-Neighbor

(or individual compatibility test) is passed, the group of measurements is considered together

against a χ2 test with as many degrees of freedom as measurements given. Measurements are

added in an interpretation tree search with a branch and bound test. The branch and bound test

prevents exploring other interpretations of landmarks and measurements which are worse than

one that has already been tried. This module is based upon the paper [NT01a], which should be

consulted for the implementation details.

2.5 Robot mapping in large-scale mixed indoor and outdoor

environments

Tactical situational awareness in unstructured and mixed indoor/ outdoor scenarios is

needed for urban combat as well as rescue operations. Situational awareness gathered by mobile

robots can increase the margin of safety for military as well as rescue personnel through increased

stand-off as well as the ability to automate the gathering of information and to leverage advanced

sensory modalities. To successfully operate in unstructured and unfamiliar environments, mobile

robots must be equipped with the ability to build a world model or map of their environment and

the ability to use that map to track their position and perform their mission. With the introduction

of a wider variety of sensors that can generate dense point clouds it is of interest to provide
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mapping systems that can utilize these sensors for generation of detailed maps and to utilize the

extra information to solve challenging problems such as loop closing. We present a strategy to

build dense maps and to do automatic loop closing. The system is designed to have two parallel

threads, one building a map and the other detecting potential loop closures. The approach has

been integrated into a mapping system named OmniMapper. The system can utilize a variety

of different sensors such as the Velodyne 32E, Kinect style 3D cameras, or a Hokuyo sensor

mounted on a nodding pan-tilt unit such as the Direct Perception PTU-46, in addition to 2D

measurements from standard laser scanners.

2.5.1 Approach

The OmniMapper was initially developed for feature-based mapping of landmarks in

various types of highly structured environments. Feature-based techniques are useful for mapping

man-made buildings, but are less useful in unstructured outdoor environments, or even highly

cluttered indoor environments. In the presence of clutter, large sections of planes and walls might

be hard to identify; to operate in these situations, mapping plugins based upon iterative closest

point (ICP) algorithms were developed. The first of these is designed for indoor environments

with a 2.5D planar constraint and lot of clutter; it is based upon canonical scan matching 13(CSM).

The second of these is designed for outdoor environments where the robot may have general

6-DOF motion; it is based upon G-ICP. The 2.5D mapping plugin based upon CSM is described

in 2.5.2, and the full 3D mapping plugin based on G-ICP is described in 2.5.3.

Both of the featureless mapping plugins described in this section are based upon the ICP

algorithm. The ICP algorithm is a two phase algorithm which is repeated until convergence. ICP

algorithms take as their input two point clouds (or scans), a reference cloud from the previous scan

and a new cloud from the current scan. In the first phase, putative point matches are determined

by selecting for each point in the new cloud the closest point in the reference cloud. In the second

phase, these putative point matches form a set of constraints which is optimized via a nonlinear
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estimation algorithm to determine the relative pose between these two clouds. This procedure is

now repeated by selecting a new set of putative point matches and solving for the relative pose

until a convergence threshold is reached.

2.5.2 OmniMapper CSM

To enable operation in general indoor environments where no level of clutter or structural

assumptions can be made, we developed a featureless map plugin called OmniMapper CSM.

This mapping plugin uses the iterative closest point algorithm based on the point to line metric

described in [Cen08] to compute the relative pose between trajectory elements.

Andrea Censi provided a library routine called canonical scan matching(CSM) which

computes the rigid body transform between two 2D laser scans. This library routine is called from

two threads of computation in the OmniMapper CSM plugin. The first thread of computation

processes incoming laser scans and registers them to the previously incorporated scan. The

robot’s odometry is used to provide an initial estimate of the transform between the two scans;

the CSM library routine then completes the alignment to refine this transform.

The second thread of computation looks back at previous laser scans and finds loop

closures. For each new scan, the centroid of the laser data projected as a point cloud is computed

in a map coordinate reference frame. This centroid is compared to the centroids of all previous

scans already incorporated in the map. Whichever is the closest to the current scan is then

analyzed by the CSM library routine to attempt to find the transform between these scans. If

this procedure is successful, then a new pose constraint is added to the trajectory and the map is

re-optimized.

The CSM library routine also computes an estimate of the covariance of the laser scan

match using the technique described in [Cen07]. This estimate takes into account the statistical

noise of the laser scanner as well as the geometry of the environment when computing the

covariance estimate. The result is a large covariance along a structure such as a hallway, with a
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tight covariance across the hallway, in the direction normal to the wall. This covariance estimate

is used as the error model for each constraint added to the GTsam nonlinear factor graph.

Figure 2.7: OmniMapper CSM builds a map of the Boeing lab at the MIRC building at Georgia
Tech on the OmniX platform*. OmniMapper CSM was able to achieve the 1cm accuracy needed
to position the platform to perform a drilling demo.

OmniMapper-CSM was used to localize the Boeing Omnix platform in Figure 2.7. In this

experiment, the platform was able to determine its position within a few centimeters, which was

needed to perform a drilling operation in an industrial setting.

2.5.3 OmniMapper ICP

The OmniMapper has also been extended with a plugin to use 3D iterative closest point

(ICP) to build a detailed map in an arbitrary environment. The OmniMapper-CSM plugin

described in section 2.5.2 is limited to indoor use because the planar ICP can only function well if

the robot remains on flat ground. To support mapping arbitrary geography in outdoor navigation,

a full 3D ICP mapping plugin was developed. This plugin uses the Generalized-ICP algorithm

described in [SHT05] and provided in a PCL implementation.

The ICP plugin in OmniMapper contains two threads of computation. The first thread of

*The OmniX is a large holonomic industrial robot base. It has been augmented with Hokuyo UTM30 laser
scanners for localization, mapping, and safety. The robot is also equipped with a drilling rig.
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computation processes new point clouds as they are produced from sensor data. These point clouds

can be produced from many types of sensors. The sensor modalities which have been used with

this plugin include Hokuyo UTM30 laser scanners which are mechanically actuated via Directed

Perception pan-tilt units, Kinect type 3D cameras, and Velodyne 32E 3D LIDAR scanners. The

second thread of computation looks for loop closures with the most recent point cloud and other

point clouds which were already used. These two threads provide pose measurement constraints

which are used to compute the robot’s trajectory. This trajectory information is used to render all

point cloud data into one large point cloud representing the entire map.

The Generalized ICP algorithm described in [SHT05], and provided as an implementation

in PCL, has a number of advantages over the vanilla ICP procedure described above. Due to

limited sensor resolution, exact points in the reference cloud are rarely imaged by the new cloud.

In the case of a long range sensor with limited (vertical) resolution such as the Velodyne 32E,

the reference cloud points could fall in-between the new scan. These points could be up to a

meter apart. Due to this effect, the errors are projected onto the surface normals to constrain

their correction only in the direction of the normal. This is called the point-to-plane error. In

Generalized ICP, both the new and the reference cloud normals are used in computing the point-

to-plane error; this technique significantly improves performance as is shown in [SHT05] and

empirically verified in our own comparisons.

The ICP algorithm is costly in terms of computation time. To maintain online operation,

the resolution and density of the point clouds is reduced to a more manageable level. The filter

which contributes the most to producing manageable point clouds is a voxel grid filter. This filter

limits the density of the point cloud to one point in each 5cm voxel. This reduces the density

close to the robot without affecting the long range density, where errors are more apparent and

can be used to correct the robot’s trajectory.

Even with reducing the density of the incoming point clouds, the ICP routine requires

almost 2 seconds per point cloud. Fortunately, since the robot has a good estimate of its relative
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(a) A 3D view of a small segment of hallway from
OmniMapper ICP

(b) Loop closure illustrated on an outdoor run. Loop closure constraints
are drawn as green lines between trajectory elements which are drawn
as red arrows. Relative pose constraints solved by ICP are represented
with blue lines between adjacent trajectory elements

Figure 2.8: OmniMapper-ICP maps by finding relative poses in adjacent point-clouds and loop
closures between distant trajectory elements.

motion from IMU and odometry, the ICP routine can be initialized close to the final solution.

This allows for significant platform motion between point clouds; therefore, the robot can still

travel quickly and keep track of its motion and build a map. In Figure 2.8a, a robot is seen using

OmniMapper-ICP to build a 3D map of a hallway in an office building.
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2.5.4 Experiments

Experiments were performed with the iRobot PackBot robot which was augmented with

additional computing resources and sensors. Two of the robots used in these experiments is shown

in Figure 2.9. These robots are tele-operated in these experiments; however, in other work we

have automated exploration while mapping.

(a) A robot with a custom 3D tilt
LIDAR.

(b) A robot with a custome
Velodyne 32E 3D LIDAR.

Figure 2.9: iRobot PackBots used in these experiments. These robots have been augmented
with additional sensors and onboard computing for online mapping

We have tested the featureless mapping components of OmniMapper in a variety of

environments representing various operational scenarios. The first environment consists of

an underground complex of long and narrow tunnels. The second environment consists of a

training facility consisting of a number of buildings made to look like a small village. The third

environment consists of the interior of an office building. The final environment is along a roadway

between two buildings. The first environment which we mapped with the OmniMapper for these

experiments consists of an underground complex of narrow tunnels. The tunnels themselves are

smooth and indistinguishable; however,periodically along their length are rooms which contain

machinery and salient structures and features. This test environment also contains some outdoor

29



portions where GPS can be used to correct some drift.

Figure 2.10: A path through an underground tunnel over one kilometer in length. The robot
started outside in the fuzzy area in the bottom-right and entered the upper tunnel, proceeding in
a counter-clockwise direction. GPS measurements (GPS was sufficient to correct the trajectory
enough that ICP was able to close the loop) helped make this loop closure as the robot exited
the lower tunnel.

The results from this experiment can be seen in Figure 2.10. In this test run, the robot

starts outside in the area shown in the middle-right and proceeds into the tunnel in the top of

the image. The robot proceeds around the tunnel complex and exits at the bottom of the image

back to the outside. At this point, the robot has accumulated approximately 5 meters of error

in its map due to the lack of good constraints in the narrow tunnels. The robot receives a GPS

lock which adds a few more constraints to its pose. Once these additional constraints are avail-

able, the pose of the robot is corrected to within one meter of error. At this point, the loop

closure mechanism is able to identify locations of structure which have been previously observed

and corrects the remaining map error. The robot then re-enters the tunnel complex and repeats

the mapping procedure down the tunnels. This experiment demonstrated the usefulness of the

GPS plugin in the mixed indoor/outdoor mapping application. GPS has some poor performance

30



especially in the transition between outdoor to an indoor environment due to multipath reflections

of GPS signals, so its information can only be used with an appropriately weak noise model.

Therefore, it takes a series of observations to leverage the information provided by GPS to correct

the map. The accuracy of GPS information is also not sufficient to perform mapping alone, but in

this experiment it has been shown to provide the constraints needed to guide the ICP process to

correct the map.

The second experimental environment is a training facility built to resemble a small

village. In this experiment, the robot maps the interior and exterior of several buildings and moves

across a variety of terrain. The results from one of the runs of this experiment can be seen in

Figure 2.8b.

The output from the mapping run can be seen in 2.11a and approximate ground-truth

overlaid on an aerial image can be seen in Figure 2.11b. In this test run, the robot starts in the

area in the upper-left of the image indicated by the green dot. The robot proceeds down the road

and turns to pass under an overpass in the curved building. The robot makes a path around another

building and re-visits the overpass again via a second path. The robot then enters the building at

the bottom of the image from the left side and exits it from the right side having built a map of its

interior. The end of the run is indicated by a blue dot. Aerial imagery is provided for a reference

with the robot’s approximate trajectory indicated in red in Figure 2.11b. From this view it can be

seen that ground robots can provide additional detail not available from aerial surveillance, such

as side profile information such as window and door locations. Additionally, ground robots can

enter some buildings to yield high quality tactical situational awareness which might be hard to

get from the air. These advantages can be seen in Figure 2.11b.

A variety of additional test runs were performed at the same training facility. An additional

run is presented in Figure 2.13a. This run is entirely outdoors and covers a larger area of the

training facility. The output from the mapping procedure can be seen in Figure 2.13b. In this

test run, the robot starts in the area at the bottom-right denoted by a green dot in the approximate
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(a) Optimized map generated by 3D ICP on a ground robot
featuring mixed indoor and outdoor elements

(b) Approximate ground truth drawn on an overhead view.
Image courtesy of GoogleEarth

Figure 2.11: An experiment where a robot examines the interior and exterior of a series of
buildings at a training facility.

ground-truth aerial image shown in Figure 2.13b. The robot then proceeds to the village in the

upper-left and makes a loop along the main road, rejoining its previous trajectory at the blue dot.

The third experimental environment is an outdoor scene along the road between two

buildings approximately one kilometer apart. The results from this experiment can be seen in

Figure 2.12. OmniMapper-ICP is used together with the GPS plugin for very large outdoor

mapping. In this experiment, the robot proceeds from the exterior of one building, along a

roadway flanked by trees, to the exterior of another building. This experiment made use of
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Figure 2.12: A robot uses Omnimapper-ICP together with the GPS plugin to map an outdoor
route. Robot point cloud data is shown along optimized trajectory overlaid on Google Maps.

3D ICP measurements of the environment, including more distant trees. In addition to the ICP

measurements, this run made use of GPS measurements to provide additional constraints to

correct the map. GPS measurements come with significant noise which requires an equally weak

noise model to incorporate them into a map. When multiple GPS measurements are incorporated

over a long distance into a map via the OmniMapper, they can be helpful in correcting the map

and overcoming the noise inherent in GPS measurements. The image shown in Figure 2.12 was

generated by manually aligning the resulting mapped point cloud data with an image taken from

Google Earth.

The final experiment is to map the interior of a large office building. This is a scenario

which would also have been possible with a feature-based mapping technique such as lines or

planes. The versatility of featureless mapping techniques allows this structured environment to be

mapped successfully in addition to unstructured environments.

The final map built from this environment can be seen in Figure 2.14. This office

environment provided significant features and texture to enable robust ICP matching of adjacent

robot poses. Due to the presence of constraining measurements in the environment, the trajectories

had minimal error before loop closure. The loop closure routine was able to identify multiple

33



(a) Optimized map generated by 3D ICP on a ground robot
featuring mixed indoor and outdoor elements over a longer
test run.

(b) Approximate ground truth drawn on an overhead view.
Image courtesy of GoogleEarth

Figure 2.13: Another experiment where a robot examines the interior and exterior of a series of
buildings at a training facility.

loop closure locations and correct any remaining error.

2.5.5 Discussion

The ability to build a model of the environment is critical to enable mobile robots to

provide tactical situational awareness to first responders and military personnel in a variety

of hazardous missions. To enable operation in realistic scenarios such as arbitrary cluttered
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Figure 2.14: OmniMapper-ICP run on an indoor office environment. Measurements are made
by a Velodyne 32E 3D laser scanner from a ground robot

environments or even disasters like collapsed buildings after an earthquake, these robots can

use current state-of-the-art sensors to build maps of these complex environments. This type of

situational awareness can enable planning by rescue and military personnel for operations; it can

also enable autonomous mobile robot mission execution. We have demonstrated a system, dubbed

OmniMapper, that can be used by a mobile robot to build a map of large-scale mixed indoor

and outdoor environments. This system has been tested in a variety of challenging environments

combining indoor, outdoor, and mixed elements to examine performance across the spectrum of

operations that will be expected of future robot systems. This system works by analyzing point

cloud data from powerful 3D sensors, such as the Velodyne 32E, to determine the robot’s precise

motion in the environment. The sensor data is then rendered at this optimized trajectory, resulting

in a high-quality 3D representation. With the prevalence of UAV’s to provide broad situational

awareness, overview information is currently available to support operations. Due to high altitude

flying, this situational awareness does not extend to the interior of buildings or even to low-angle

viewing of the side of smaller buildings. This type of information can be provided by ground

robots using these types of sensors. Micro aerial platforms could also be used for this purpose.
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2.6 Effects of sensory precision on map performance

The current equipment needed to build a domestic service robot is too expensive for the

average family to afford. Recent developments in sensor technology such as the Microsoft Kinect

3D camera have been revolutionary in delivering a new sensor modality at a commodity price.

Current research sensors such as LIDAR systems are very precise and expensive units. This study

will address how feature based mapping techniques using OmniMapper can allow for the use of

less precise, and therefore cheaper, sensor equipment on mobile robots.

Making robots cheaper also enables new uses in dangerous environments such as disaster

sites or urban counter-insurgency operations. Simultaneous Localization and Mapping (SLAM)

techniques can be used to build maps which can be shared with emergency workers or soldiers as

robots complete exploration missions [BBS10]. Projects such as the Micro Autonomous System

Technologies Collaborative Technology Alliance (MAST CTA) [ARL06] are working to develop

techniques and components to enable robot mapping with low power and small form factor robots

and sensors. MAST’s mission is to develop robots which are autonomous and collaborate to

provide situational awareness in urban environments for military and rescue operations. MAST

platforms are required to have a small form factor and long operational availability, so we must

understand where compromises can be made on sensor performance.

There is a need to determine what level of performance is required from sensors to enable

SLAM techniques to deliver a map of sufficient quality from autonomous exploration of an

unknown environment. Sensors such as laser scanners are appropriate in laboratory applications

but other sensory modalities such as radar or vision may be preferred when considering cost

levels, power usage, and size. Some of the accuracy, density, annular confinement, and field of

view assumptions which are common with laser scanners might no longer be valid with these

other sensory modalities. Low cost radar based scanners are currently under development as

part of the MAST project; until these are available, we will simulate the performance of radar
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in software using data from laser scanners. To investigate the effects of various properties of a

sensor on the mapping result, we use high quality laser data and degrade properties such as the

maximum range, angular resolution, field-of-view, or range accuracy. We call this de-featuring

the data. The performance requirements for robot mapping must be determined to guide the

development of these new miniaturized radar scanners to ensure that they will work well for robot

mapping tasks.

An objective benchmark for comparing SLAM algorithms was reported in [Bur+04].

This benchmark compares the incremental relative error along the robot’s trajectory instead

of comparing maps. This allows the authors to directly compare the results between different

algorithms or sensor types. Ground truth is generated by manually aligning laser scans using ICP

as an initial guess. We use the relative pose error metric and ground truth generation method from

this benchmarking paper to assess SLAM performance levels under various sensor configurations.

Research has been reported on analysis of localization performance and sensing char-

acteristics. O’Kane and Lavalle proved that it is possible to localize in a known map with a

robot equipped with only a contact sensor and a compass in [OL05] and [OL07]. The authors

determined that it is impossible to localize a robot in a known map if the compass is replaced

with an angular odometer. In the SLAM domain, work has been done to support simpler and less

expensive sensor modalities. Bailey developed techniques for delaying initialization of landmarks

in bearing-only SLAM in [Bai03]. A paper by Müller et.al. relates the performance of their 6D

SLAM algorithm to the precision of their 3D laser scanner in [Mül+06].

The feature detectors developed for this mapping application have been designed to be

robust to noise and performance degradation. We have chosen to extract line segments from laser

range data using the RANSAC technique. We have selected parameters such as minimum line

length and maximum gap which correspond to the size of walls and door openings in a typical

office environment.
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The experiments in this section were run on data collected from two types of mobile robots

and were processed offline to compare mapping performance with different sensor de-featuring.

Though these techniques were compared in offline operation, it should be noted that the mapper

can comfortably run online on a modest CPU.

2.6.1 Experimental Design

(a) The experimental setup (b) The Scarab mobile robot developed at
the University of Pennsylvania

Figure 2.15: Experimental setup and equipment used to gather data for robot experiments

The operation of the experimental framework is shown in Figure 2.15(a). Ground

truth was generated by manual alignment of the full unaltered laser scan data in an initial run.

This serves as an adequate estimate of ground truth for the purpose of this relative comparison

of path trajectory error with different sensor performance levels. It allowed the operator to

correct the (x,y,θ) between subsequent poses so that the laser scans came into alignment. This

information was then captured in a ground-truth file where it was compared to the posterior

relative displacements in the test run trajectories.
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Stored robot data was replayed with various settings of laser scan data de-featuring. The

laser line extractor extracted line segments from the de-featured laser data and sent them to the

mapper. As shown in figure 2.16, once the run was completed, the robot trajectory from the

mapper was compared to the ground truth for this run. The average incremental absolute error

was then recorded.

Figure 2.16: The alignment tool used to generate ground truth trajectories. Poses illustrated in
this figure are displayed at a poor solution to illustrate operation.

2.6.2 Experiments

The first source of sensor data used in these experiments was a series of logs taken from

the Scarab robots developed at the University of Pennsylvania. An image of the Scarab robot can

be seen in figure 2.15b. The Scarab is a differential drive mobile robot equipped with a Hokuyo

URG laser scanner. In this series of experiments, the robot was tele-operated for ten runs in an

indoor office environment to collect data which is used for offline processing.

The laser scanner accuracy was de-featured for our analysis to determine what level of

performance in the mapping task can be expected with progressively simpler (and therefore less
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expensive and lower power) sensors. All sensor values were captured during the data collection

phase and were de-featured with software in the post-processing phase.

In the first round of experiments, several de-featuring modifications were made to the laser

scanner readings. First, the range of the scanner was restricted. Second, the angular precision of

the laser scanner was limited by omitting beams from the line extraction process. Thirdly, the

angle subtended by the laser scan was reduced. Finally, the range accuracy of the sensor was

corrupted by varying degrees of Gaussian noise. This series of experiments will establish which

parameters of the scanner can be varied while still yielding sufficient performance in the mapping

task.

Figure 2.17: The Georgia Tech robot “Jeeves”. Right-top(green): Hokuyo UTM-30 laser
scanner.Right-middle(magenta): Hokuyo URG laser scanner. Right-bottom(blue): SICK
LMS291 laser scanner.

In the second experiment, the Georgia Tech robot ”Jeeves” was outfitted with three

different laser scanners to collect a run where each laser can be used to compare the mapping

results. The robot is a Segway RMP 200 modified to be statically stable, as seen in figure 2.17.
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This platform is configured to simultaneously collect data from the SICK LMS291, Hokuyo URG,

and the Hokuyo UTM 30 laser scanners, all of which are seen in the right of Figure 2.17. This

data is used individually in the mapping process and the resultant relative errors are compared. In

this experiment, there is no need to de-feature the performance of the laser scanners in software

since each exhibits a unique price and performance level.

2.6.3 Results

(a) Maximum range restricted between 0.4m to
5.6m

(b) Angular resolution restricted between 0.25◦ to
2.5◦

(c) Angle subtended by laser restricted between
270◦ to 30◦

(d) Gaussian noise added with variance up to 10cm

Figure 2.18: Mean incremental heading error with various types of sensor defeaturing
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In the first set of experiments, Scarab robots were driven along a similar trajectory in

an office building 10 times. Two of the runs were of poor quality due to wheel slip on a thick

concrete seam and were eliminated from the analysis. In Figure 2.18(a) the mean trajectory error

is displayed from a series of test runs where the maximum range of the laser scanner was varied

from 5.6 meters down to 0.4 meters. 5.6 meters is the maximum range of the Hokuyo URG laser

scanner. It can be seen from this figure that the performance is poor when the range is restricted to

below 2 meters, but it rapidly improves at longer ranges to a nearly constant level of performance.

The residual incremental error (due to the inaccuracy in the odometry of the robot) is reached as

the range is restricted to 0.8 meters and below. This experiment indicates that the accuracy of the

mapper can be maintained until the range of the laser scanner is restricted to about 1.6 meters,

roughly the width of the hallways in the test site.

In Figure 2.18(b) the mean trajectory error is displayed from a series of test runs where

progressively higher proportions of the laser beams are left out of the line extraction process.

This test is meant to simulate a sensor with less angular resolution than the Hokuyo URG. It is

apparent from the graph that until the resolution is lowered to around 1 degree, the mapper is

able to deliver a similar level of performance to the results from the fully featured laser scan.

This corresponds to throwing away 75% of the data coming from the laser scanner. When the

resolution is lowered below 1 degree, the accuracy drops to the level of the robot odometry alone.

In Figure 2.18(c) the mean trajectory error is compared with various angles viewed by the

laser scanner. The default Hokuyo URG laser scanner can view 270 degrees. This metric is meant

to simulate a sensor which views a smaller angle. The viewing angle is always faced towards the

front as it is expected that the sensors would need to observe this region in order to avoid hitting

obstacles during autonomous operation. This graph suggests that the mapper remains accurate

until as little as 90 degrees is viewed from the laser scanner. This is probably due to the fact that

in this test the range was kept at its maximum value of 5.6 meters, so the mapper was still able to

see wall line segments. If the range was restricted while the angular view was also restricted, then
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Figure 2.19: The map of the the corridors in our lab. There are two large storage rooms
in the lower right. The map is shown as an occupancy grid only for display purposes – all
measurements are made based on wall features.

we would expect poor performance.

In Figure 2.18(d) the mean trajectory error is displayed from a series of test runs where

Gaussian noise is added to the range measurements. The noise is sampled from a Gaussian

distribution with the variance indicated along the x-axis. It can be seen from this figure that with

even a moderate 2 centimeter noise is added to the laser scan significant error is introduced into

the map. The mapper is particularly susceptible to noise in the laser ranges, though it should be

noted that this noise level is significantly higher than in a typical laser scanner.

In the second experiment, mapping results from three different laser scanners which are

commonly used by the SLAM research community were compared. An example map from this

run is shown in Figure 2.19. The robot successfully closed the loop with each of the laser scanners.

The absolute relative incremental position and angular errors can be seen in Table 2.1. It can be

seen with these results that the SICK and URG mapping results are similar in displacement error,

whereas the UTM30 is much more accurate in recovering the relative displacements. This is to be

expected since the UTM30 slightly outperforms the SICK 291 laser scanner in angular resolution,
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range accuracy, and speed.

Table 2.1: Absolute incremental position and orientation error for test comparing performance
of mapping with three typical laboratory laser scanners

Error URG SICK UTM-30
Position error 0.020162 0.020942 0.009785
Angular error 0.009924 0.006612 0.007033

Resolution 1◦ 1◦ 0.25◦

Range 5.6m 80m 30m
Range Error 1% ±35mm ±30mm

Angle 240◦ 180◦ 270◦

2.6.4 Discussion

The longer range of the laser scanner does not appear to improve performance in the office

environment. This indicates that the line extraction algorithm is working well when even a small

amount of the wall can be seen from the scanner, so the range of the scanner doesn’t need to be

much more than the width of the hallway in order to achieve good performance. We believe that

in general the range of the scanner needs to be no more than such that it can see about 1 meter of

the wall from the middle of the hallway.

We were surprised to find that the mapper was so susceptible to range accuracy given that

our line extraction algorithm performs a least-squares fit to many laser points and should be able

to handle zero-mean noise. It should be noted that the noise levels explored here were relatively

large and that the line extraction performs very well for noise levels more typical of laser scanners.

We believe that, with additional parameter tuning, the line extractor could be made to perform

well with more noise; so this technique should translate well to radar scans.

The angular resolution parameter is effectively reducing the range of the scanner slightly

because the missing resolution is causing gaps in the extracted lines beyond a certain range.

This prevents long lines from being extracted; however, we have already determined that range

much longer than the hallway width is not very important in the range test. We have now also
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determined that high angular resolution is not needed to perform the mapping task well.

For the second experiment with the robot “Jeeves”, we notice that the incremental angular

error is comparable between the SICK and UTM30 laser scanners, with the URG performing

slightly worse. We believe this is because the office environment for the second experiment has

larger, cluttered rooms for which the limited range would often result in few measurements of

the walls with the URG. The incremental displacement error seems to show that the UTM30 is

performing better than the SICK laser scanner. In our first experimental analysis we determined

that the mapping results are particularly susceptible to range accuracy, but the The UTM30 claims

a ±30mm range accuracy whereas the SICK claims a ±35mm range accuracy. There is only 5

millimeters difference here so this is likely not the main cause. It is more likely that the extended

viewing angle combined with the longer range of the UTM30 is allowing the robot to observe

both the walls behind it as well as those in front of it for a significant portion of the run. The

SICK can only see in front of the robot and is therefore only correcting based on the walls in

front – it cannot see the wall behind the robot as it passes through a doorway. We think that this

effect was not seen in the first experiment with the Scarab robots because they were operated in

an environment with narrow corridors and few larger rooms. The Scarab robots never had the

opportunity to pass through doorways and therefore could not benefit from this effect.

Based on these results, we determined that the Hokuyo UTM30 is the ideal laser scanner

for use in environments with larger open spaces. It has additional advantages over the LMS291

laser scanner, namely size and power usage. In environments with more confined spaces, the

Hokuyo URG performs well enough to make useful maps.
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2.7 Simultaneous Calibration, Localization and Mapping

Introduction

Autonomous robots depend on high quality extrinsic calibration of their sensors to re-

liably perform their tasks. As a motivating example, one of the tasks typically performed by

mobile robots is inferring the structure of the environment using sensor measurements. Given

a representation of the world, the robot could generate a plan of actions to accomplish a given

goal like navigation. Performance of autonomous navigation by mobile robots can be greatly

affected by the quality of extrinsic calibration of the utilized sensors. A mobile robot is often

assigned the task of performing inference from sensor measurements, in order to build a model of

the surrounding environment and to estimate variables of interest. Moreover, it has to generate a

plan of actions to accomplish a given goal, such as exploration or navigation.

We study the self calibration problem to autonomously estimate the extrinsic parameters

of the sensors. Simultaneous Calibration Localization and Mapping problem attempts to jointly

estimate the location of landmarks, trajectory of the robot and the extrinsic parameters of the

sensors on the robot. We exploit the structure of this problem to greedily plan a path that would

reduce the uncertainty of the extrinsic parameters of the robot. Figure 2.20 shows the output of

such a system where the calibration parameters, trajectory and landmarks are jointly estimated.

In this case, the robot’s goal is to self-calibrate the extrinsic parameters of the sensors

before performing any autonomous task. The variables of interest that are estimated are the

extrinsic transform of the sensors to the base of the robot, the poses of the robot and the landmarks

in the world in relation to each pose. The motivation is to reduce the amount of manual labor

required and eliminates the human error introduced during calibration by offloading the task to

the robot itself.
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Figure 2.20: The figure above shows the robot’s estimated trajectory and the two transforms
represent the ground truth transform and the estimated sensor transform with respect to base at
that time.

Often a human operator is given a task with easy objectives such as repeatedly aligning the

robot’s field of view with the calibration grid, a process that could be sped up through automation.

This would also allow the robot to be robust to sensor alignment changes between different

experiments due to either intentional or accidental reconfigurations.

We propose a novel algorithm that allows the robot to perform a self-calibration routine

through autonomous investigative movements around a previously unknown environment that

would then enable the robot to autonomously perform other tasks. The main contribution of this

paper is to show the possibility of a generalized, multi-modal approach to autonomously calibrate

extrinsic parameters of available sensors on the robot by leveraging a greedy planner to quickly

estimate the extrinsic sensor transform. This would greatly reduce the amount of time and effort

required to setup an autonomous robot. We further demonstrate the utility of planning towards

the application of simultaneous localization calibration and mapping.

47



Approach

As the robot moves in an unknown environment, it continuously maps using the simulta-

neous localization and mapping (SLAM) pipeline presented by Trevor et al. [TRC14b]. However

in contrast to the known extrinsic sensor calibration as assumed in general, we model the extrinsic

calibration as an unknown parameter and estimate its uncertainty along with other unknown

parameters like landmarks and poses. At each instant the robot plans a trajectory which actively

reduces the uncertainty of extrinsic calibration parameters. As a result, the robot autonomously

calibrates its sensor by actively moving in the direction of the maximum uncertainty reduction.

Our approach:

• Does not rely on human input

• Requires no prior knowledge of the world

• Need not be provided engineered patterns or environmental infrastructure

• Supports asynchronous sensor measurements

• Intended for calibration and help

• Resulting solutions not only provide relative sensor extrinsics, but also provides an confi-

dence for each

• Performs simultaneous localization calibration and mapping while actively reducing the

sensor transform uncertainty

In order to perform simultaneous calibration, localization and mapping we explicitly

represent the additional calibration parameters in the joint probability model as

P(X ,L,Z,Ω,Φ) = P(xo)
M

∏
i=1

P(xi|xi−1,ui,Ω)
K

∏
k=1

P
(
zk|xik, l jk,Φ

)
(2.24)
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Figure 2.21: Factor graph representing the Simultaneous Calibration, Localization and Mapping
problem. Gray circles represent the additional calibration parameters (Ω,Φ) which are connected
to other factors resulting in joint optimization over landmarks, poses and calibration parameters

where Ω represents odometry bias parameters and Φ represents the extrinsic transformation

between the robot base and the corresponding exteroceptive sensor which has to be calibrated.

Figure 2.21 shows the corresponding factor graph. Each sensor will have a different extrinsic

transformation Φ but for simplicity we use a single Φ corresponding to a single sensor. Op-

timization can be done in a similar manner as shown in the previous section with additional

variables representing the extrinsic calibration Φ and odometry bias Ω. The resulting non-linear

optimization is Θ∗ = argminΘ ∑
M
i=1 ‖ fi (xi−1,ui,Ω)− xi‖2

Λi
+∑

K
k=1 ‖hk(xik, l jk,Φ)− zk‖2

Σk

2.7.1 Autonomous Extrinsic Calibration using Active Planning

We use active planning in belief space for autonomous extrinsic calibration of an extero-

ceptive sensor. Planning is done such that it actively reduces calibration parameter uncertainty at

each instant in a previously unknown environment. To achieve that end, we integrate simultaneous

calibration, localization and mapping with an active planning framework resulting in planning for

calibration.

In order to compute the optimal control action over the l look ahead steps, we compute
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Figure 2.22: Factor graph representing the Planning for Calibration problem. Orange circles
to the right represent the future control inputs and predicted poses. Maximum likelihood
observations are represented by small orange circles.

the predicted belief over the time horizon. However we don’t know the observations ZM+1:M+l

ahead of time, given M is the current time step. We assume the maximum likelihood observation

as future observation given the current belief over landmarks and poses and future control inputs.

Modeling future observations as unknown has insignificant increase in efficiency [VPA12]. We

also assume that the number of landmarks do not change when we predict the belief over the time

horizon.

Given the estimated extrinsic calibration parameter ΦM and odometry bias ΩM, estimated

poses and landmarks up to time M, current observations Z1:M, control inputs UM+1:M+l , and the

corresponding predicted observations ZM+1:M+l , the predicted calibration belief ΦM+l,ΩM+l at a

future time step l is given as:

gb(ΦM+l,ΩM+l) = P(ΦM+l,ΩM+l|X1:M+l,L1:M+l,Z1:M+l,UM+1:M+l) (2.25)

Figure 2.22 shows the corresponding factor graph. The control action minimizes the
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general objective function J(UM+1:M+l) over l look ahead steps

J(UM+1:M+l) = cl(gb(ΦM+l,ΩM+l))

where cl is defined as the determinant of predicted joint covariance of the calibration parameters

ΦM+l,ΩM+l . At each step the general objective function selects the control action that results in

the minimum predicted uncertainty of the calibration parameter. In turn, the resulting planning

algorithm will ensure that the robot moves in a direction that will reduce the associated calibration

uncertainty. Given the control action, the robot is moved in the corresponding direction followed

by re-estimation of landmarks and pose beliefs. Using the new added poses and landmarks, we

again estimate the predicted belief over the next l look ahead steps.

This algorithm is run until the change in the uncertainty determinant of the calibration

parameters is below a certain threshold or the maximum number of steps are taken. Algorithm 1

summarizes the process.

Monte-Carlo Sampling

To select the control action that minimizes the objective function J(UM+1:M+l) we perform

Monte-Carlo sampling where we randomly select sequence of control actions from among a

discrete set of control action sequences and estimate the corresponding value of the objective

function. The control action which results in the minimum value of the objective function is taken

as the optimal control action. Algorithm 2 summarizes it.

1: {X ,L}← Initialize by taking random step
2: repeat
3: Select control action that minimizes the objective

function: U = minUM+1:M+l J(UM+1:M+l)
4: Move the robot in the corresponding direction.
5: Re-estimate the pose and landmark beliefs
6: until stopping criterion is met

Algorithm 1: Active Planning based Extrinsic Calibration
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We use random sampling in the discrete control space, as opposed to using a gradient

descent in continuous space to reduce the probability of being stuck in local minima and to allow

for better back-tracking.

1: Vmin← ∞,Umin← /0

2: for K iterations do
3: U ← Select random sequence of controls UM+1:M+l .
4: Forward simulate the robot poses given the controls.
5: Add Maximum-Likelihood observations.
6: Generate predicted graph g(Θ) and estimates.
7: V ← Estimate the value of objective function J(U).
8: if V ≤Vmin then
9: Vmin←V

10: Umin←U
11: end if
12: end for
13: return Umin

Algorithm 2: Monte-Carlo Sampling(X ,L)

Uncertainty Prediction

Instead of re-optimizing the trajectory in order to evaluate the objective function J(U),

we use an approximation to predict the joint covariance of the calibration parameters required for

the evaluation. Future pose estimates are predicted given the latest pose and control inputs.

We linearize the current graph around the current estimate and future pose estimates to

generate the Jacobian A and the corresponding Hessian AT A. In order to compute the covariance

of Ω,Φ, we eliminate rest of the variables (non-calibration parameters: X ,L) from the Hessian

AT A using QR factorization and evaluate the determinant of remaining matrix corresponding to

probability distribution P(Ω,Φ) as shown in Equations 2.26 and 2.27. Algorithm 3 summarizes

it.
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|Σ|−1 = |AT A|= |

 R T

AΩ,Φ


T  R T

AΩ,Φ

 | (2.26)

P(X ,L,Ω,Φ) = P(X ,L|Ω,Φ)P(Ω,Φ) (2.27)

The algorithm 3 plans a trajectory that minimizes the calibration uncertainty. The resulting plan

will ensure that the robot moves in a direction that actively calibrates the sensor transforms.

1: G← Linearize g(Θ) around X̂ ,L̂,Ω̂,Φ̂
2: (R,AΩ,Φ)← Eliminate X ,L from G
3: logdet← ln |AΩ,ΦA−1

Ω,Φ|=−2× ln |AΩ,Φ|
4: return exp(logdet)

Algorithm 3: Uncertainty Prediction(g(Θ),X̂ ,L̂,Ω̂,Φ̂)

2.7.2 Experimental Results

In this section, we describe the experimental setup, define the metrics used for evaluation

and show the results.

Setup

We evaluate our algorithm in a simulated environment with known data association

and ground-truth parameter values and real environment using a robot platform. In rest of the

experiments we assume that odometry bias (Ω) is known since the focus of this paper is to perform

extrinsic calibration of an exteroceptive sensor. However this algorithm can be easily extended to
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Figure 2.23: Simulated Scenarios used for Experiments. Red dots represent the landmarks.
Start location of the robot is near the center of each scene. The size of the world is 500x500.

estimating odometry biases as well at the cost of increased non-linearity in the resulting objective

function.

Simulated Environment

In simulation, we directly compare the result of our autonomous calibration algorithm

against known extrinsic calibration parameter values for the exteroceptive sensor. It allows us to

analyze the performance of the algorithm with different scenarios and parameter initializations,

and noise in a controlled setting.

We evaluate the algorithm against random walk algorithm since there is not an existing

state of the art for this particular problem. In random walk, at each instant the robot moves

in a random direction instead of moving in a direction which results in maximum reduction in

uncertainty.
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Table 2.2: Default parameter values used in the simulated environment. #steps refer to the
number of look ahead steps considered during each iteration. step size is the size of each step
taken in any direction. angular resolution divides 360 degrees into set of directions which
are considered at each time step. #samples refer to the number of Monte-Carlo samples
considered. sensor location is the default ground truth value at which sensor is placed and sensor
initialization is the noisy initial sensor location used as input to the algorithm. N (µ,Σ) is a
normally distributed pseudo random number generator having mean µ and variance Σ.

Parameter Value
#steps 1

step size 50
angular resolution 1 deg

#samples 360
sensor location (0,50,0)

sensor initialization (0+N (0,10),50+N (0,10),0+N (0,0.1rad))

For the first set of experiments, we present four different 2D scenarios to compare the

proposed approach against the random walk algorithm. These scenarios are shown in Figure 2.23.

In each scenario the robot starts at the same location for both random walk algorithm and our

proposed approach and we compare the algorithms based on the evaluation metrics proposed in

section 2.7.3. We assume that there are no false positive data-associations as the robot moves

through the scene. The robot is assumed to be a 2D point robot with a range-bearing sensor

attached to the robot with a known extrinsic transformation. For each scenario, we run each

algorithm for 10 independent trials given the same start location and measure the covariance

determinant of the estimated extrinsic transformation and the median transformation error to the

known ground truth calibration. Evaluation metrics are explained in detail below. We log the

evolution of these metrics with the number of planning iterations and demonstrate that using

active planning results in faster convergence as compared to random walk algorithm. The default

parameter values are explained in Table 2.2.
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Table 2.3: Default parameter values used in Gazebo and Real environment. #steps refer to the
number of look ahead steps considered during each iteration. #samples refer to the number of
Monte-Carlo samples considered. Range min refers to the minimum range of the sensor. Range
max refers to the maximum range of the sensor. measurement res is the resolution of the sensor.

Parameter Value
#steps 1

#samples 100
range min 0.10 m
range max 30.0 m

measurement res 0.01 m deg

Gazebo Environment

For the second set of experiments in simulation, we use Gazebo[KH04] simulation

environment to run our algorithm on a turtlebot. It is modified to attach a Hokuyo laser scanner at

a certain height from the turtlebot base. Instead of maintaining landmarks in the environment

and using landmark-pose constraints, we estimate pose-pose constraints through scan matching

and add the corresponding pose-pose-transform factor similar to the odometry bias factors.

Omnimapper [TRC14b] is used for mapping. We do not have any assumption on data-association

as well.

In this experiment we sample the control in the velocity space, and estimate the change

in the confidence of the sensor extrinsic parameters to choose the next control. The default

parameters for this are shown in Table 2.3. Ground-truth sensor location is at (0,0,1.36m) and

the sensor initialization used is (1,−3,1.36m) which is chosen at random. We measured the rate

of the convergence of the error of the estimate for 5 independent iterations with random start

location.

Real Environment

For experiments in real environment, we run our algorithm on a physical robot. The robot

platform consists of a Segway RMP-200 mobile base, which has been modified to be statically
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(a) (b) (c)

Figure 2.24: The figures above show an example reconfiguration for the experiments conducted.
The figure on the left shows the Hokuyo laser on the top of the robot and the figure on the right
shows the Hokuyo laser towards the right of the robot.

stable. For experiments we mounted a Hokuyo UTM30LX-EW laser Range Finder at a certain

height. Computation is performed on an on board laptop. To evaluate the system, the robot was

allowed to attempt self calibration in different locations in an indoor lab environment. The robot

is shown in Figure 2.24. This was an example scenario for the experiment where the system was

evaluated to test the variance against the reconfiguration. Similar to the Gazebo environment, we

use scan matching to add pose-pose constraints instead of adding landmark-pose constraints.

2.7.3 Evaluation Metrics

Below we explain the evaluation metrics used to compare our algorithm against random

walk algorithm.

Median transformation error

It is evaluated by computing the median over the translation errors when comparing the

ground truth sensor translation values to the estimated sensor translation values. The translation
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errors are computed after every planning iteration and the median translation error is computed

over 10 independent trials of the algorithm.

Median covariance determinant

Covariance determinant is evaluated by computing determinant of marginal uncertainty of

the extrinsic transformation parameter. Similar to the previous metric, we compute covariance

determinant after every planning iteration and compute its median over 10 independent trials of

the algorithm.

Results

Simulated Environment

We compared our algorithm against random walk algorithm and plotted the evolution of

median transformation error and median covariance error as shown in Figure 2.25. We used the

default parameters as summarized in Table 2.2 and ran it on scenes shown in Figure 2.23.

In median covariance comparison (Figure 2.25), the median of the covariance of the

sensor transform for all of the 10 runs is plotted with the x axis being the planning iteration. The

proposed method performs better on all of the scenes. Scene 3 is the only one where the random

walk performs comparably.

Similarly in median error comparison (Figure 2.25), the median of the absolute error

(translation error between the estimate and the ground truth) for all of the 10 runs is plotted with

the x axis being the planning iteration. The proposed method performs significantly better on all

the scenes except 3. This is because Scene 3 is a grid of landmarks with a lot of landmarks being

visible as the robot moves in the scene. This provides good calibration uncertainty convergence

irrespective of the used strategy (random walk or active planning based calibration). Below we

analyze the effect of varying parameter values on the evolution of median error and covariance
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Figure 2.25: Plots showing evolution of median transformation error (left) and median covari-
ance determinant (right) over planning iterations. Blue line shows the results using our approach
and Red dotted line shows the result using random walk algorithm.

values.

Rigidity of plan in each iteration

We reduce the rigidity of plan in each iteration by reducing the step size and increasing

the number of steps. We experiment with three configurations of rigidity, default: (step size: 50,
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#steps: 1), medium rigidity: (step size: 25, #steps: 2), low rigidity: (step size: 10, #steps: 5).

Figure 2.26 summarizes the results. Reducing the rigidity of the plan increases the variance in

median error but has better median covariance than more rigid plans. The reason behind this is

that reducing the rigidity might result in robot getting stuck in local minima even though it leads

to faster covariance reduction.
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Figure 2.26: Plots showing evolution of error (left) and covariance (right) for different plan
rigidities.

Angular Resolution

We experimented with three different values of angular resolution, default: 1 degree,

medium: 2 degrees, high: 4 degrees. Figure 2.27 show the results. Varying angular resolution has

an insignificant effect on the number of median error and covariance values.
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Figure 2.27: Plots showing evolution of error (left) and covariance (right) for different angular
resolution. Blue plot uses the default parameter value, green dotted plot uses 2 degrees angular
resolution and red dotted plot uses 4 degrees angular resolution.
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Number of Monte-Carlo Samples

We experimented with three configurations of the number of monte-carlo samples used in

the Algorithm 2. The configurations we experimented with are: default: 360, medium: 180, low:

90. Figure 2.28 show the results. Reducing the number of samples have insignificant effect on the

error and covariance values.

0 3 6 910-1

102 Median Error
Default

0 3 6 910-9

10-6

10-3

100
Median Covariance

Med
Low

Figure 2.28: Plots showing evolution of error (left) and covariance (right) for different number
of samples. Blue plot uses the default (360) number of samples, green dotted plot uses 180
samples and red dotted plot uses 90 samples.

Robustness to bad initialization

To analyze the robustness of our algorithm to bad initializations, we experiment with three

configurations of sensor location initializations:

default: (0+N (0,10),50+N (0,10),0+N (0,0.1rad)),

medium noise: (0+N (0,20),50+N (0,20),0+N (0,0.5rad)),

large noise: (0+N (0,40),50+N (0,40),0+N (0,1rad).

N (µ,Σ) is a normally distributed pseudo random number generator having mean µ and variance

Σ. Figure 2.29 summarizes the result. Increasing the initialization noise has an insignificant effect

on the convergence. This implies that the objective function has a wide basin of attraction and

can converge given bad initializations as well.
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Figure 2.29: Plots showing evolution of error (left) and covariance (right) for different sen-
sor initializations. Blue plot uses the default initialization, green dotted plot uses medium
initialization noise and red dotted plot uses high initialization noise.

Gazebo Environment

We experimented in the simulated Gazebo environment with 10 trials with random initial

locations and random initial poses of the sensor. We measured the convergence of the absolute

error with respect to the known ground truth over time. This is summarized in the Figure 2.30.

This shows that the robot is able to estimate the extrinsic of the sensor in a timely fashion and

to high degrees of accuracy. This can consistently be seen across the random restarts and this

shows that the algorithm is able to converge quickly for each of the test cases. As can be seen in

the graph, the robot can autonomously calibrate the sensor with required accuracy within 300

seconds.
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Figure 2.30: Plots showing evolution of error over time for 5 separate gazebo simulations. The
y axis is in log scale and the x axis is time in seconds. The lines represent the error over time for
each of the random restarts.
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Real Environment

For the real experiment, we measured the ground truth extrinsic calibration by hand. We

experimented with different configurations to measure the absolute error with respect to time. This

is summarized in Figure 2.31. This shows that the approach can be used effectively to estimate

the extrinsic parameters of the sensor on the real robot quickly. The estimation of the sensor is

also invariant to changing the pose of the sensor with respect to the base. This is consistent with

the theoretical analysis and the simulations.
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Figure 2.31: Plots showing evolution of error over time for 7 separate real robot experiments.
The y axis is in log scale and the x axis is time in seconds. The lines represent the error over
time for each of the random restarts and different configurations of the robot.

2.7.4 Discussion

In robotics, proper extrinsic calibration are often mission critical and the effects of this

are apparent. For instance, in the DARPA robotics challenge, a fall could result in throwing off

the extrinsic calibration. This in turn affects other tasks such as the tele-operation, and perception.

Online techniques that have the ability to self calibrate can help mitigate such issues to a certain

extent. However, this would be more useful if the robot could perform a self calibration routine

before performing any operation.

The laborious and human error prone task of calibration requires a researcher to collect

data for a camera given a calibration object manually. This is often random motion but does
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presuppose some knowledge of the calibration procedure with some level of experience, and so

may not be purely random. As seen from the results however, the proposed algorithm performs

better than merely a random walk approach that thought of as a novice human performing manual

calibration, but more so in accordance of an expert who’s each motion serves to reduce a specific

uncertainty.

When calibration is performed one of the points of note is that the person performing the

calibration will attempt to collect data at as many unique pose transforms between the sensor and

the calibration targets. This intuitively can be seen in the plots from the trajectories generated in

the simulation that the robot chooses to reduce its uncertainty.

Although a human has an intuition of what kind of motion helps generate better results

for the camera calibration problem, this is not equivalent in having a numerical estimate of the

variance in the change in error between steps. This often means that an over abundance of data

is collected to ensure the quality of calibration. Performing this task manually every time a

configuration change occurs on the robot is a time consuming task as well as challenging from a

repeatability and reproducibility standpoint.

In the proposed algorithm, we use the idea of a look ahead to see what the consequence of

an action is, and this allows us to estimate the parameter very close to the ground truth in fewer

steps. Some of the constraints of this type of setup are that the amount of information available in

the world is limited to what we can observe and what we have observed. This means that we can

have an initial belief state estimate where the world is completely unknown and the belief state

can be updated over time. The number of possible belief states is large and searching through

all possible situations is not possible. This restricts the amount of look ahead that will actually

help the algorithm. This highlights one of the main differences between our work and similar

past research. We believe that this research will greatly benefit the mobile robot community as a

whole and allow us to reduce the time taken on calibration routines between experiments.

One of the interesting observations, while performing the experiments was that there were
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certain emergent behaviors. For instance, the robot initially prefers taking paths that are cyclic

and this could be attributed to a notion of closing the loop. This is an interesting behavior as it

relates the active planning to intuition.
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Chapter 3

Semantic Segmentation of the

Environment

3.1 Introduction

Humans are constantly trying to make their lives easier. Service robots capable of

operating in human environments have the potential to improve daily life by assisting humans in

a variety of tasks. Endowing these robots with the ability to understand and reason about spatial

regions such as individual rooms, as well as understanding the semantic labels of such spaces,

could facilitate tasks such as navigation and mobile manipulation in human environments.

Human environments are typically partitioned into discrete spaces, such as offices, corri-

dors, living rooms, etc. Such a partitioning allows humans to organize and enable their everyday

activities, and these spaces typically have specific purposes and labels. Service robots that under-

stand the partitioning of human environments can utilize this information to better assist humans

in everyday tasks. For example, if a robot is given the command “fetch the red mug from the

kitchen”, having an understanding of the location and extent of the region considered “kitchen” is

beneficial.
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In the last years, we have seen important developments in service and assistive robots for

domestic applications and tasks. These works focus on the understanding of the environment

using semantic information in order to create a synergistic interaction between humans and robots.

Dellaert and Bruemmer[DB04] proposed extending FastSLAM to add semantic information of the

environment to each particle’s map. Several approaches have been presented for map partitioning,

using topological and geometric representations of the environment. For example, Oberländer

[Obe+08] proposed a SLAM algorithm based on FastSLAM 2.0 [Mon+03] that maps features

representing regions with a semantic type, topological properties, and an approximate geometric

extent. The resulting maps enable spatial reasoning on a semantic level and provide abstract

information allowing efficient semantic planning and a convenient interface for human-machine

interaction. Thrun [Thr98] integrated grid-based maps to learn the environment using artificial

neural networks and naı̈ve Bayesian integration to generate a topological map by partitioning the

latter into coherent regions.

Another body of work focuses on extracting semantic spatial properties of the environment

from 2D and 3D data. Donsung and Nevatia [KN94] introduced a new spatial representation,

s-map, for an indoor navigation robot. This map represents the locations of visible 3D-surfaces of

obstacles in a 2D space. O’Callaghan [ORD09] developed a new statistical modeling technique for

building occupancy maps by providing both a continuous representation of the robot’s surrounding

and an associated predictive variance employing a Gaussian process and Bayesian learning. Ekvall

[EKJ07b] applied an automatic strategy for map partitioning based on detecting borders between

rooms and narrow opening to denote doors or gateways using different types of features (lines,

points, SIFT). Rhino [Bur+98] is an example of a service robot which integrates localization,

mapping, collision avoidance, planning, and various modules concerned with user interaction

telepresence giving tours on a museum. BIRON, a mobile Home Tour Robot [Spe+06], uses

integrated vision based localization, a modular architecture and a spoken dialog system for on-line

labeling and interaction about different locations in a real, fully furnished home environment
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where it was able to learn the names of different rooms. The approach presented by Topp and

Christensen [TC06] and [TC10], provides a separation of regions that relate to a user’s view on the

environment and detection of transitions between them. They assumed an interactive setup for the

specification of regions and showed the applicability of their method in terms of distinctiveness

for space segmentation and in terms of localization purposes. Also, semantic place categorization

using visual features has been addressed in [PMC08; SI07]. Many robotics researchers focused

on place recognition tasks or on the problem of scene recognition in computer vision [OT01;

QT09].

Ekvall et al. [EKJ07a] demonstrated a strategy for integrating spatial and semantic

knowledge using SLAM and object recognition based on Receptive Cooccurrence Histograms.

Espinace et al. [Esp+10] presented an indoor scene recognition system based on a generative

probabilistic hierarchical model to associate objects to scenes. The performance of the object

classifiers is improved by including geometrical information obtained from a 3D range sensor that

facilitates a focus of attention mechanism. Kollar et al. [KR09] utilizes the notion of object-object

and object-scene context to reason about the geometric structure of the environment to predict the

location of the objects. These approaches only identify the place based in the specific objects

detected and the hierarchical model that is used to link the objects with the place.

Quattoni and Torralba [QT09] introduced a purely vision-based place recognition system

which improves the performance of the global gist descriptor by detecting prototypical scene

regions. The size, shape, and location of up to ten object prototypes has to be labeled and learned

in advance. The labeling part is especially work-intense while the approach with several almost

fixed regions can only find objects in typical views on the scene. However, it is not suited well for

robotic applications. Since we want to deal with flexible positions of typical objects, we apply a

visual attention mechanism that finds important regions automatically.

There has also been work on recognizing known places under various changes (e.g.

furniture, weather conditions, walking people) [Pro+06; Ull+08]. Their approach combines
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local SIFT [Low04] features and global Composed Receptive Field Histograms (CRFH) [LL04]

features.

Mozos et al. [Moz+07a; MB06] proposed a place categorization method for building

topological maps using AdaBoost[FS95] on a plethora of simple features extracted from laser

range data. They improved their semantic labels with an object recognition system that found

known objects in omnidirectional camera images. In [WCR09] , Wu et al. presented a solution

to visual place categorization based on a global visual descriptor, the spatial Census Transform

Histogram (CENTRIST), and Bayesian filtering [WR11].

3.2 Gaussian Regional Analysis

As robots have to cooperative with humans it is advantageous that they have a shared

representation of the space, preferably a model that is simple for the human to use as part of

commanding the robot and understanding feedback. Semantic mapping literature has focused

on developing robotic mapping techniques capable of functionally supporting these types of

interactions. To perform these tasks, one of the strategies that is used is to portray the relationship

between a place and the knowledge that is associated with it e.g.( functionality, objective location),

is semantic mapping. Kuipers [Kui+00] proposed the Spatial Semantic Hierarchy (SSH), which

is a qualitative and quantitative model of knowledge of large-scale space consisting of multiple

interacting representations. This map also informs the robot of the control strategy that should be

used to traverse between locations in the map. This representation is based on the relationship

of objects, actions and the dependencies from the environment. More recently, Beeson et al.

[Bee+07] provided a more specific framework representation of spatial knowledge in small scale

space. This framework is focused on the robot’s sensory horizon e.g.(global and local symbolic,

and metrical reasoning of the space), but also human interaction.
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Existing approaches for robot indoor navigation build an occupancy grid map using range

data from its sensors. These maps, however, only provide geometric information such as obstacles

and open areas in the environment without a semantic understanding of it. Martı́nez-Mozos and

Rottmann [Moz+07b] [Rot+05] introduce a semantic understanding of the environment creating

a conceptual representation referring to functional properties of typical indoor environments.

Providing semantic information enables a mobile robot to more efficiently accomplish a variety

of tasks such as human-robot interaction, path-planning, and localization. Ekvall [EKJ07b]

integrated an augmented SLAM map with information based on object recognition, providing a

richer representation of the environment in a service robot scenario.

3.2.1 Approach

Our goal was to design a system capable of reasoning about spaces. In contrast to work

such as [Moz+07b], which builds a topological map on top of a metric map, we instead provide a

continuous classification of the metric map into semantically labeled regions.

The semantic map layer of our system is a multivariate probability distribution on the

coordinates of our metric map to a set of semantic labels. This multivariate distribution is modeled

as a Gaussian model. Each of the Gaussians in the model is based on the robot’s sensor data when

it was provided a label by a human guide. Each spatial region is represented using one or more

Gaussians in our metric map’s coordinate frame. So, a region with label L and n Gaussians, each

with mean µ and covariance Σ, is represented as:

Region = {L,{{µ1,Σ1},{µ2,Σ2}, ...,{µn,Σn}}}

A semantic map is then just a collection of such regions, so a semantic map with m regions

would be represented as:
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Map = {region1,region2, ...,regionm}

Our system builds these maps partitions of our metric maps through human guidance.

The human takes the robot on a tour of the space (either by driving the robot manually, or using

a person following behavior), and teaches the robot typing the appropriate label for the space

that it is currently in. The regional analysis technique is to take a laser scan measurement, fit a

Gaussian to the resulting points, and store the mean and covariance in the map along with the

label provided by the human.

Using this semantic map partition, the robot can be asked for its belief of the name of

the region it is currently occupying. This is done by evaluating the Mahalanobis distance of

the robot’s current pose x close by labels coded as Gaussian region models (Equation 3.1), and

choosing the region that is closest using this metric.

DM(x) =
√
(x−µ)T Σ−1(x−µ) (3.1)

This map representation allows for probabilistic classification of the map by region label.

Additionally, while navigating through the environment, the robot continuously checks its position

with respect to the semantic map partition. If it is not sufficiently confident (more than a certain

threshold) that it is in a region with a known label, it prompts the user to input the name of the

current region.

Once the robot has a semantic map partition, users can request that the robot navigate to

one of the regions, such as “living room”. The robot can then find the region in the map with

label “living room”, and calculate the Mahalanobis distance from its current position to the mean

of each Gaussian in the region.

The robot selects the closest of these as the goal, and sends this to its path planner in order

to autonomously navigate to that region. While traveling, the robot continuously calculates its
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confidence of which region it is, and stops when it is confident that it is more likely to be in the

goal region than any other region as follows:

Distance to goal <
1
4
∗Nearest distance to the non-goal

This results in the robot entering a region, but not attempting to move to the region’s center.

Additionally, if the robot enters the region with the desired label at any point while navigating to

its goal point, perhaps because the path to the closest point was blocked, it will recognize this and

stop once it is sufficiently in the goal region.

In this work, we only use the semantic map partition for navigation tasks; however, we

believe this map representation has a number of other applications, such as searching for objects.

For example, if we have a mobile manipulation platform and ask the robot to “get the mug from

the kitchen”, our map representation can be used to give a spatial region of our metric map which

should be search, by finding the area that is labeled as kitchen with at least a certain confidence

level.

When a human is leading a robot on such a tour and instructs it that it is in a new location

with label L, our approach is to then take the point cloud generated by our laser range finder,

fit a Gaussian to the points in the point cloud and associate it with that label. If the robot was

positioned such that it had a good view of the extent of the room or area with its laser scanner, the

resulting Gaussian’s mean and variance will give us a reasonable idea as to the room’s location

and extent. Our system currently requires at minimum a single Gaussian to represent each label’s

area, but also allows for multiple such Gaussians to be taught with a single label, which allows us

to approximate arbitrarily shaped rooms.

Reasoning about the extent of spaces in this way provides several benefits. If we wish to

make a request of the robot, such as “move to the kitchen and search for a mug”, it now has some

idea of the extent of the area it must search that is considered to be part of “the kitchen”, whereas

with a waypoint, it would not. For navigation tasks, this means that we can ask the robot to
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move to a room, and it will move to the nearest point within the room. Also, since the Gaussians

provide probabilistic classification, we can also use our model to determine the likelihood that we

are within a certain labeled space.

3.2.2 Experiments

Our approach has been implemented and evaluated in several experiments. We designed

two simulated environments in Stage[GVH03]* in which the robot can be taught locations

and navigate between them. Preliminary experiments were also performed using our Segway

RMP-200 mobile platform to verify our technique on a real robot platform.

Simulation Environment

Figure 3.1: A visualization of the Gaussian regions representing the rooms and hallways. All
the Gaussians are colored in different colors for identification. This figure is best viewed in
color.

In this simulated experiment, we tested the effectiveness of our method by providing

labels for each of the rooms and hallways. The first experiment, shown in Figure 3.1, consisted of

labeling each room and each hallway and navigating between them in order to test the system’s

*Stage is a 2D multiple-robot simulator from the Player project. http://playerstage.sourceforge.net
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effectiveness at accepting this type of navigation command.

Figure 3.2: The robot’s path is obstructed with a simulated block. The robot is the smaller blue
object and the obstacles are the large red cubes.

The robot is able to successfully navigate with the calculated trajectory, avoiding obstacles.

One of the tests was to move from a room labeled “room 9” to “room 4” in the map as appears in

Figure 3.1. Shown in Figure 3.2, the shortest path was obstructed with a simulated block and the

robot replanned a new trajectory to reach the goal as can be seen in Fig 3.3. The laser hits on the

obstacle that blocks the shortest path can be seen near the robot in Figure 3.3.

Figure 3.3: Robot path replanned to navigate from room ’9’ to central hallway and arrived
in room ’4’. The blue circle represents the robot, the green line the robot path and in red the
obstacles detected by the laser scan.
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Figure 3.4: The second simulated office environment used for our experiments. Colored ellipses
represent the Gaussians in our model, and different colors represent different spaces. This figure
is best viewed in color.

For the second experiment, we labeled twenty seven rooms and a hallway in the map, and

left one unknown area unlabeled, as can be seen in the upper right corner of Figure 3.4. The main

purpose was to simulate an office environment, where the transition region between rooms is a
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hallway. The robot is able to continuously provide the current location and navigate from one

region to another. Based on this map classification, we created several different scenarios to test

our system. One of the test scenarios, shown in Fig 3.5, involved the robot navigating between

two regions with different labels, a room and a hallway, represented by Gaussians with means

very close to each other. The robot was requested to navigate from the room to the hallway and

back.

Figure 3.5: Visualization of the robot navigating between to regions in the environment.

Our system calculated the Mahalanobis distance to find the closest Gaussian region, but

the regions are very close to each other that the robot only turn and move only a short distance.

Figure 3.6: A visualization of the decision boundaries of the regions representing the rooms
and hallways on the map shown in 3.4. All the Gaussians are colored in different colors for
identification. This figure is best viewed in color.
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This demonstrates that our system will cause the robot to move into a region until it has a

certain confidence level that it is in the region, rather than stopping on the equiprobable decision

boundary between the regions as shown in Fig 3.6. Another scenario, shown in Figure 3.7 is to

drive the robot through a hallway to an unknown area which has never been assigned any label.

When the robot reached a location that was not likely to be part of any previously labeled region,

it displayed “I do not know where I am.” and requested that the user provide the current location’s

label displaying “Please tell me where I am”.

Figure 3.7: The robot is driven in an unknown area which has not been assigned any label.

Several more scenarios consisted of teaching the robot with different orientations and

locations inside of the rooms. Localizing the robot between rooms and hallways worked better

when the user taught new locations to the robot in the middle of the room as opposed to in the

doorways because the laser hits were more representative of the room’s extent.

Finally, we tested the robot by starting it with no semantic map information, so that it

would prompt the user immediately for a label, which the human guide provided. The robot then

navigated around the environment, and would stop whenever it was not confident that it knew the

label for the current pose. Upon being provided with a label for the current location by the human

guide, the tour resumed until it again needed a new label.

This resulting map is shown in Figure 3.8. This experiment demonstrates our method’s
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Figure 3.8: Result from starting the robot with no known locations in the semantic map, and
prompting the user when the robot was not confident of the appropriate label.

effectiveness at determining when a new label is required. The robot began in the left middle

room, and ended in the upper right.

Real Environment

Figure 3.9: Our robot platform used in our experiments.

Our approach has been implemented on a Segway RMP-200 mobile platform (Fig 3.9). It
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is equipped with a SICK LMS-291 laser scanner, which is used for localization, mapping and

obstacle avoidance, and is controlled by an on-board Mac mini computer (2.26GHz/Core 2 Duo).

Figure 3.10: Robotics and Intelligent Machines Laboratory Map.

We conducted an experiment in our real office environment (Figure 3.10), teaching the

robot with 5 different rooms and several different points in the hall. The first step was to drive our

robot through the environment while collecting laser data and odometry. The SLAM gmapping

module included with ROS[Qui+09b], which is based on the Rao-Blackwellized particle filter

technique by Grisetti et. al [GSB07], was then used to build a metric grid map of the environment.

The map shown in Figure 3.11 was then used for localization in our experiments. Begin-

ning with the map, the human tour started from the hallway to one of the three cubicles. When

the human guide stopped, the robot was provided with the name of the location. During the tour,

the robot could be queried for its current location, then the robot would calculate the Mahalanobis

distance to the Gaussians regions and report the label of the nearest one. If the robot pose was not

near to a previously labelled location, the robot report the location as “unknown”. Also, the robot

can be asked to move to a specific known location, for example move from “C-3” to “LAB 1”.

81



Then, the robot calculates a safe trajectory to the room using the global map and con-

tinuously runs a local planner to avoid obstacles throughout the environment. When the robot

successfully completed the task, it reported that it arrived at the current location’s label.

Figure 3.11: Generated Occupancy Grid Map for localization used in our experiments.

3.2.3 Discussion

We presented a technique for partitioning metric maps into labeled spatial regions using a

Gaussian model. This representation enables the robot to perform navigation tasks in the map,

as demonstrated by our experiments both in simulation and on a real robot platform. Also, this

technique allows constraining the search space when processing tasks using automatic labeling;

for example, if the robot detects a coffee machine and a microwave, then the region should be

labeled as a kitchen. We will discuss in this chapter how to do the automatic semantic labeling of

a specific region.
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3.3 Region Decomposition

3.3.1 Approach

The region decomposition stage breaks the map into areas which are determined by

distance and line of sight (LOS) to a specific point in a region. This point is called the region

anchor. In indoor environments, we hypothesize that distance and line of sight are good heuristics

for delineating regions. Region decomposition is a well studied problem in robotics and often

reduces to a variant of the Voronoi diagram computation. In [LSB10], the authors propose an

algorithm to update a Voronoi decomposition based on input from a dynamic occupancy grid

representation of the environment. In [OF10] Voronoi information is used to extract higher-level

semantic information about the environment in order to identify features such as hallways, doors,

and rooms. This strategy also operatver a k-means with a (LOS) awareness. Our approach

continues in this vein and adapts Boris Lau’s code to serve a prior for the clustering algorithm.

This prior is used to sort and determine potential anchor points for creating the regions. As a result

the decomposition is different from a Voronoi based decomposition in that smaller rooms and

regions can expand into hallways. Larger rooms are not form continuous regions and hallways

are also divided up by distance. In a Voronoi based decomposition, the region would be bounded

by the intersection with the hallway. However, this decomposition provides for situations where

the portion of the hallway might be more strongly correlated to the entrance of that room than the

a section of hallway which is farther away.

In the decomposition algorithm, A possible regions are considered given a Map M . The

cells of the map that are considered part of the voronoi decomposition in Boris Lau’s code are the

possible anchor points A . The algorithm uses the initial position within the map to perform a

brushfire computation on A . As a result, points which are not burned are dropped from A . This

forces the decomposition to be over a continuous space. Afterwards A is sorted by distance from

each point in A to its the nearest obstacle.
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Require: Initial map M , Initial pose pinit , Number of Regions K
1: P ← Brushfire(M , pinit)
2: Assign points within P to Regions R
3: while ∃R j ∈ R p do
4: Calculate centroids for R
5: for P do
6: if Points are assigned to this region then
7: determine the point’s distance to the region center
8: if The point is above the threshold distance or not in LOS then
9: Remove point from the region

10: Add this point to the list of unregioned points
11: end if
12: end if
13: for R do
14: if Point is closer to region R centroid and is in LOS then
15: Move the point to the closer LOS region
16: Note that a point exchange has taken place
17: end if
18: end for
19: end for
20: Add unregioned points to regions without points.
21: end while

Algorithm 4: ContourSeekingExploration

In general, spatial correlation of RSS will depend on wavelength and varies according

to environment geometry. In this paper, we will assume that a fixed characteristic length ρ is

known a priori to be valid across the entire environment and will be used as a parameter for our

region decomposition algorithm. Given a partially known occupancy grid representation of the

free space in the environment, the k-means algorithm is used to find a decomposition of space

with k regions where k is given by

k =
Mδ2

m
πρ2 . (3.2)

M is the total number of open cells in the occupancy grid M and δm is the resolution of the

grid. Initialization of the k regions are chosen randomly within the free space. The basic

k-means algorithm will perturb region centers until the Voronoi cells induced by the k centers are

approximately the same size, i.e., with characteristic length ρ.
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3.3.2 Sampling Regions

We want to partition the environment into regions such that we can obtain good estimates

of the RSS average within each region, being sufficiently large so that the RSS average will vary

across neighboring regions, and not so small to require a large overall amount of sampling and

computation. The choice of region size is informed by the evolution of the nominal RSS value,

and the local decorrelation of the RSS measurements due to fast fading and shadowing. The

RSS average trend generally obeys d−α decay with range d, where α varies depending on the

environment with 2≤ α≤ 5 typical. On the other hand, the fast fading results in rapid spatial

variation. Consider the Rayleigh fading model for local RSS measurements, which has spatial

autocorrelation given by

R(δ) = aJ2
0(2πδ/λ) (3.3)

where δ is the distance between locations, a is a constant, J0 is the zero-order Bessel function of

the first kind, and λ is the carrier wavelength. This indicates that samples taken 0.38λ apart have

zero correlation, and samples taken at larger distances have small correlation. This heuristic is

well-supported in rich scattering environments by many measurement campaigns, especially at

microwave frequencies [LJB07]. However, the spacing necessary for decorrelation is variable

depending on the propagation environment, with generally longer correlation in line of sight

conditions. In practice, non-LOS indoor microwave measurements taken one or two wavelengths

apart are generally viewed as experiencing independent fades. In other cases, such as hallways

with LOS, the distance required for highly decorrelated RSS samples can increase by an order

of magnitude (10 to 20 wavelengths, say), and the correlation will tend to drop off less rapidly

with distance, e.g., see [LJB07]. An interesting special case occurs with a fixed ground node and

an elevated mobile node; here the spatial correlation varies slowly in a trajectory along the LOS

direction, whereas it varies more rapidly in a trajectory orthogonal to the LOS direction.
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3.3.3 Experiments and Results

The robots used in the point-to-point wireless connectivity experiments are shown in

Fig. 3.12. The Packbot is a ground platform equipped with a skid-steer drive system, onboard com-

putation, and 802.11 wireless communication and Microstrain 3DM-GX2 inertial measurement

unit (IMU). These systems are managed by an on-board computer. Each Packbot is equiped with

a Hokuyo UTM-30LX scanning laser range finder with 60 m range. In addition, a Zigbee standard

radio is mounted on each Packbot. This radio is used solely for measuring RSS between Packbot

1 and 2. Packbot1 is equipped with a Zigbee with a chip antenna and UTM-30LX. Packbot2 is

equipped with a Zigbee with a chip antenna and UTM-30LX-EW. These are minor configuration

differences since both robots use the same methods for wireless Zigbee commuunication and

localization enabled by a laser range finder.

Figure 3.12: Packbots 1 and 2 equipped with Zigbee radios and Hokuyo laser scanners

Autonomous behaviors such as probabilistic localization and navigation are provided by

leveraging the open source Robotics Operating System (ROS). This enables the robot to be able

to localize in 2d map and navigate throughout a defined 2D environment. Rather than focus on

the complicated problem of finding optimal sampling trajectories for a kinematically constrained

vehicle in this work, we randomly visit different points within a prescribed region. When it is

not possible to plan a path to this goal, the Packbot samples by rotating in place. The ZigXbee
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radio is mounted 0.23 m in front of the robot’s center of rotation in order to take advantage of

this rotation.

Figure 3.13: Region descomposition of the environment.

The testing environment is a typical office space. Furniture and walls provide are closely

space creating multipath interference and the potential for shadowing regions. The size of the

environment was chosen to show the full dynamic range of the ZigXbee transmitter-receiver pair

when set at maximum power. The map used in testing was marked with imaginary obstacles for

the sake of convenience.

3.4 Place Categorization

Scene recognition and understanding has been an important area of research in the

Robotics & Computer Vision community for more than a decade now. Programming robots

to identify their surroundings is integral to building autonomous systems for aiding humans in

house-hold environments. In the past, many robotics researchers focused on place recognition

tasks [PMC08; SI07] or on the problem of scene recognition in computer vision [OT01; QT09].
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Recently, there have been several approaches to Scene Recognition using Neural Networks.

Liao et al. [Lia+16; Lia+17] used Convolutional Neural Networks (CNNs) to recognize the

environment based on object occurrence for semantic reasoning, but their system information

and mapping results are not provided. Sun et al. [Sun+18] proposed a Unified Convolutional

Neural Network which performs Scene Recognition and Object Detection. Luo et al. [LC18]

developed a semantic mapping framework utilizing spatial room segmentation, CNNs trained

for object recognition, and a hybrid map provided by a customized service robot. Niko et

al. [Sün+16] proposed a transferable and expandable place categorization and semantic mapping

system that requires no environment-specific training. Mancini et al. [Man+18] addressed Domain

Generalization (DG) in the context of semantic place categorization. They also provide results of

state-of-the-art algorithms on the VPC Dataset [WCR09] that we compare to. However, most of

these results do not test their algorithms on a wide variety of platforms.

Kostavelis et al. [KG15] provided a survey of previous work in semantic mapping using

robots in the last decade. According to their study, scene annotation augments topological maps

based on human input or visual information of the environment. Bormann et al. [Bor+16] pointed

out that the most popular approaches in room segmentation involve segmenting floor plans based

on spatial regions.

An essential aspect of any spatial region is the presence of specific objects in it. Some

examples include a bed in a bedroom, a stove in a kitchen, a sofa in a living room, etc. Niko et

al. [Sän+18] formulated the following three reasoning challenges that address the semantics and

geometry of a scene and the objects therein, both separately and jointly: 1) Reasoning About

Object and Scene Semantics, 2) Reasoning About Object and Scene Geometry, and 3) Joint

Reasoning about Semantics and Geometry. The content in this thesis focuses on the first reasoning

challenge and uses Convolutional Neural Networks (CNNs) as feature extractors for both scenes

and objects. The goal is to design a system that allows a robot to identify the area where it is

located using visual information in a manner similar to how a human being would.
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3.4.1 Approach

We consider a set of five different models, abbreviated as Diverse scEne Detection

methods in Unseen Challenging Environments (DEDUCE), for place categorization. Each model

is derived from two base modules, one based on the PlacesCNN [Zho+17] and the other being an

Object Detector-YOLOv3 [RF18]. The classification model can be formulated as a supervised

learning problem. Given a set of labeled training data X tr = {(x1,y1),(x2,y2)...(xN ,yN)}, where

xi corresponds to the data samples and yi to the scene labels, the classifier should learn the

discriminative probability model

p(ŷ j|Φ(X tr)) (3.4)

where ŷ j corresponds to the j-th predicted scene label and Φ = {φ1,φ2...φt} are the set of different

feature representations obtained from the xi. This trained model should be able to correctly

classify a set of unlabelled test samples X te = {x1,x2...xM}. It is to be noted that while the goal

of each of our five models is to perform place categorization, it is the Φ which varies across them.

We now describe the two base modules, and how our five models are derived and trained from

them. The complete network architecture is given in Figure 3.14.
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Bedroom

YOLOv3

Input Image 

Hot-encoded vector 

Scene_only
Object_only
Combined

1

PlacesCNN

Kitchen

Living Room 
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Figure 3.14: Model Architecture. The highlighted regions represent the portion of the network
which was trained for the respective models.
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3.4.2 Scene Recognition

For scene recognition, we use the PlacesCNN model. The base architecture is that of

Resnet-18 [He+16] which has been pre-trained on the ImageNet dataset [Den+09] and then

fine-tuned on the Places365 dataset [Zho+17]. We choose seven classes out of the total 365

classes, which are integral to the recognition of indoor home/office environments - Bathroom,

Bedroom, Corridor, Dining room, Living room, Kitchen and Office. We use the official training

and validation split provided for our work. The training set consists of 5000 labelled images for

each scene-class, while the test set contains 100 images for each scene.

3.4.3 Object Detection

Object detection is a domain that has benefited immensely from the developments in deep

learning. Recent years have seen people develop many algorithms for object detection, some of

which include YOLO [Red+16b; RF17; RF18], SSD [Liu+16], Mask RCNN [He+17], Cascade

RCNN [CV18] and RetinaNet [Lin+17]. We work with the YOLOv3 [RF18] detector here, mainly

because of its speed, which makes real-time processing possible. It is a Fully Convolutional

Network (FCN), and employs the Darknet-53 architecture which has 53 convolution layers,

consisting of successive 3x3 and 1x1 convolutional layers with some shortcut connections. The

network used here has been pre-trained to detect the 80 classes of the MS-COCO dataset [Lin+14].

3.4.4 Place Categorization models

Scene Only

The first model which we use consists of only the pre-trained and fine-tuned PlacesCNN

with a simple Linear Classifier on top of it. This model accounts for a holistic representation of a

scene, without specifically being trained to detect objects. Thus, the feature vector for this model

is given by Φscene = φs.
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Object Only

The second model acts a Scene classifier using only the information of detected objects.

There is no separate training performed here to identify the individual scene attributes. For this

purpose, we create a codebook of the most common COCO-objects seen in all the seven scenes.

This is shown in Table 3.1. It is to be noted that every object has been associated to only one scene,

thereby making it a landmark. For this model, the feature representation is given by Φob j = φ{ob j}

where {ob j} is the set of objects detected in the image.

Table 3.1: Top landmark objects (non-human) for the seven different scene classes

Bathroom Toilet Sink - -
Bedroom Bed - - -
Corridor - - - -
Dining Room Dining Table Chair Wine Glass Bowl
Kitchen Oven Microwave Refrigerator -
Living Room Sofa Vase - -
Office TV-Monitor Laptop Keyboard Mouse

Scene+Attention

In this model, we compute the activation maps for the given image of a scene, and using

those, we try to visualize where the network has its focus during scene classification. From the

output of the final block convolutional layer (layer 4) of the WideResnet architecture [ZK16],

we get the 14x14 feature blobs which retain the spatial information corresponding to the whole

image. Our model is similar to the soft attention mechanism of [Xu+15] in the sense that here

too, we assign the weights to be the output of a softmax layer, thereby associating a probability

distribution to it. However, since we are not classifying based on a sequence of images, we do

not employ a recurrent network to compute the sequential features. Instead, we simply utilize

the weights of the final FC layer and take its dot product with the feature blobs to obtain the

heatmap. The final step is to up-sample this 14x14 heatmap to the input image size, and then
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overlay it on top to obtain the activation mask m(xn) of the input image xn. Therefore, the feature

representation for this model is Φattn. = φm(xn). The basic architecture is given in Figure 3.15.

14 x 14 Feature Map 

Input Image Activation Map PlacesCNN

Figure 3.15: Architecture for Generation of the Activation Map. The 14x14 feature maps
obtained from the block layer 4 of WideResNet are combined with the weights from the final
FC layer, and then their dot product id up-sampled to the image size and overlaid on top to get
the activation maps

Combined

In this model, we use the PlacesCNN mentioned above as a feature extractor to give the

semantics of a scene. In addition, the YOLO detector gives us the information regarding the

objects present in the image. Given an image of a scene, our model creates a hot-encoded vector

of 80 dimensions, corresponding to the object classes of MS-COCO, with only the indices of the

detected objects set to 1. We then concatenate this vector along with that of the output of the scene

feature extractor, and train a Linear Classifier on top of it. Since we combine the two different

features of scene and objects, the feature representation here is given by Φcomb. = {φs,φ{ob j}}.

Scene+N-best objects

Our final model is similar to the above in the sense that here also, we use both the

PlacesCNN and the YOLO detector. However, this model does not need to be retrained again

and so, it is significantly faster. For this model, we place a certain confidence threshold on the

scene detector, and only when the probability of classification is below this threshold, we search

for the information about specific objects in the scene (as obtained from Table 3.1). The reason
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for introducing this as a new model is two-fold. Firstly, we eliminate the scenario of looking at

every object present since it is often redundant, given the semantics of the scene. Secondly, this is

similar to how we as human beings operate when we come across an unknown scene. The feature

representation for this model is given by ΦN−best = {φs,φ{N−ob j}}.

3.4.5 Experiments and Results

We evaluated our five models described above on a number of platforms. In this section,

we first describe our training procedure, and then talk about the different experiment settings used

for evaluation.

Training Procedure

As mentioned in Section 3.4.1, the base architecture for our scene classifier is the ResNet-

18 architecture. The data pre-processing and training process is similar to [Zho+17]. We used the

Stochastic Gradient Descent (SGD) optimizer with an initial learning rate of 0.1, momentum of

0.9, and a weight decay of 10−4. For the Φscene and the Φattn. models, the training was performed

for 90 epochs with the learning rate being decreased by a factor of 10 every 30 epochs. The

Φcomb. model converged much faster and so, it was only trained for 9 epochs, with the learning

rate reduced by 10 times after every 3 epochs. For all the 3 training procedures, the cross-entropy

loss function was optimized, which minimizes the cost function given by

J(ŷ j,y j) =−
1
N
(

N

∑
j=1

y j� log(ŷ j)) (3.5)

The training process was carried out on a NVIDIA Titan Xp GPU using the PyTorch

framework. The performance of the five DEDUCE algorithms on the test set of Places365 is

shown in Table 3.2 for the seven classes chosen.
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Table 3.2: Accuracy in percentage of DEDUCE on Places365 dataset

Scenes Φscene Φob j Φattn. Φcomb. ΦN−best

Dining room 79 94 75 79 80
Bedroom 90 74 90 90 91
Bathroom 92 65 92 91 92
Corridor 94 90 99 96 94
Living Room 84 25 68 80 84
Office 85 29 76 94 83
Kitchen 87 62 70 87 87
Avg 87.3 62.6 81.4 88.1 87.3

Experiment Settings

In order to check the robustness of our models, we further evaluated their performance on

two state-of-the-art still-image datasets.

SUN Dataset

The SUN-RGBD dataset [SLX15] is one of the most challenging scene understanding

datasets in existence. It consists of 3,784 images using Kinect v2 and 1,159 images using Intel

RealSense cameras. In addition, there are 1,449 images from the NYUDepth V2 [Sil+12], and

554 manually selected realistic scene images from the Berkeley B3DO Dataset [Jan+13], both

captured by Kinect v1. Finally, it has 3,389 manually selected distinguished frames without

significant motion blur from the SUN3D videos [XOT13] captured by Asus Xtion. Out of this,

we sample the seven classes of importance and use the official test split to evaluate our models.

We only consider the RGB images for this work since our training data doesn’t have depth

information. The performance is summarized in Table 3.3.

Upon comparison with Table 3.2, which contains the results on the Places365 dataset

where our models were fine-tuned, a number of observations can be made which are consistent

for both the datasets. Firstly, the Φcomb. model performs the best. This is intuitive since here,

the scene classification is done using the combined training of both the information about the

scene attributes and the object identity. Secondly, the Φob j model works the best for the Dining
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Table 3.3: Accuracy in percentage of DEDUCE on SUN dataset

Scenes Φscene Φob j Φattn. Φcomb. ΦN−best

Dining room 65.2 83.7 53.3 67.4 72.8
Bedroom 43.7 36.5 48.9 48.9 47.3
Bathroom 94.5 87.0 97.3 96.6 95.2
Corridor 44.4 67.6 67.6 44.4 41.7
Living Room 58.8 24.0 43.6 59.2 58.8
Office 84.0 12.6 75.8 90.6 80.6
Kitchen 77.1 63.5 63.9 83.8 77.4
Avg 66.8 53.6 64.3 70.1 67.7

Room class, even though its overall performance is the worst. This trend can be attributed to the

fact that dining rooms can be easily identified by the presence of specific objects, whereas the

scene attributes might throw in some confusion (for instance when the kitchen/living room is

partially visible in the image of a dining room). Thirdly, for Corridor, the performance of the

Φattn. model is best for both the datasets. This supports the fact that in order to classify a scene

like a corridor, viewing only a small portion of the image close to the vanishing point is sufficient.

Finally, the ΦN−best model performs just as good or better than the Φscene model. This proves

that presence of objects does indeed improve the scene classification. For the best performance

using the ΦN−best model, the threshold was set to 0.5 for the Places dataset while it was 0.6 for

the SUN dataset. The reason for the higher confidence on scene attributes for Places dataset is

most likely due to the fact that the scene classifier itself was fine tuned on it.

VPC Dataset

The Visual Place Categorization dataset [WCR09] consists of videos captured autonomously

using a HD camcorder (JVC GR-HD1) mounted on a rolling tripod. The data has been collected

from 6 different home environments, and three different floor types. The advantage of this dataset

is that the collected data closely mimics that of the motion of a robot - instead of focusing on

captured frames or objects/furniture in the rooms, the operator recording the data just traversed

across all the areas in a room while avoiding collision with obstacles. For comparison with the
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state-of-the-art algorithms, we test our methods only on the five classes which are present in all

the homes - Bathroom, Bedroom, Dining room, Living room and Kitchen. Table 3.4 contains the

results for the individual home environments for these five classes. For the AlexNet [KSH12] and

ResNet [He+16] models, we adopt the same training procedure as in [Man+18]. It can be seen

from the table that our models perform better than the rest in all but one of the home environments

and much better in the overall performance.

Table 3.4: VPC Dataset: Average Accuracy across the 6 home environments

Networks H1 H2 H3 H4 H5 H6 avg.
AlexNet 49.8 53.4 49.2 64.4 41.0 43.4 50.2
AlexNet+BN 54.5 54.6 55.6 69.7 41.8 45.9 53.7
AlexNet+WBN 54.7 51.9 61.8 70.6 43.9 46.5 54.9
AlexNet+WBN∗ 53.5 54.6 55.7 68.1 44.3 49.9 54.3
ResNet 55.8 47.4 64.0 69.9 42.8 50.4 55.0
ResNet+WBN 55.7 49.5 64.7 70.2 42.1 52.0 55.7
ResNet+WBN∗ 56.8 50.9 64.1 69.3 45.1 51.6 56.5
Ours (Φscene) 63.7 57.3 63.7 71.4 60.2 65.9 63.7
Ours (Φcomb.) 63.7 60.7 64.5 70.7 65.7 68.8 65.7

Table 3.5 further compares our models with all other baseline algorithms tested on the

VPC dataset. The reported accuracies are the average over all the six home environments. We

first consider the methods described in [WCR09], which use SIFT and CENTRIST features

with a Nearest Neighbor Classifier, and also exploit temporal information between images by

coupling them with Bayesian Filtering (BF). Next, we look at the approach of [FT12] where

Histogram of Oriented Uniform Patterns (HOUP) is used as input to the same classifier. [YW12]

proposed the method of using object templates for visual place categorization, and reported

results for Global configurations approach with Bayesian Filtering (G+BF), and that combined

with the object templates (G+O(SIFT)+BF). Ushering the deep learning era, AlexNet [KSH12]

and ResNet [He+16] architectures give better results, both with their base models, as well as

the Batch Normalized (BN) and the Weighted Batch Normalized versions [Man+18]. However,

comparisons with our Φscene and Φcomb. models show that our methods beat all the other results
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by significant margins.

Figure 3.16: Detection Results on Real-World Videos. Top row corresponds to the video of a
Real-Estate model house. The next 2 rows are from the houses of the authors and their friends.
The bottom row is obtained from a house in the movie “Father of the Bride”.

Real-World Scene Recognition

In order to test the robustness of our DEDUCE models, we expand the domain of test

cases beyond the aforementioned still image data sets. Figure 3.16 does this by showing the

results of scene recognition on real-world data recorded using hand-held cameras. We employ the

ΦN−best model for these cases due to its ability to mimic the natural behavior of humans, whereby

an initial prediction is made based on the scene attributes, and if unsure, more information related

to specific objects is gathered in order to update/re-inforce the initial prediction. The top row

corresponds to the tour of a semi-furnished real estate home obtained from YouTube which only

has the relevant objects in the scene. Although it is not a sequential tour of the house, it does

contain all the rooms. Also, professional photographers captured this video and hence, the image

quality and white-balance of the camera is pretty good. The next-2 rows pose a more challenging

case as they correspond to homes currently inhabited by people. We consider two examples

of these houses, one which is a standard bungalow residence, while the other being a student

apartment. From experience, the bungalow is a much cleaner home, whereas student apartments
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are prone to presence of cluttered objects and overlapping scene boundaries. Moreover, the videos

were recorded by the inhabitants using their cellphone cameras. This inherently brings motion

blur into the picture, specially during scene transitions. Finally, the last row depicts the settings

of a house from the movie “Father of the Bride”. This ensures that our model is robust enough

to classify scenes even when the focus of the recording is on people instead of the background

settings. All the detection results mentioned in this chapter are available as individual videos in

the following link https://goo.gl/sYyVZ2.

3.4.6 Semantic Mapping

Figure 3.17: Visualization of the semantic mapping performed while the Fetch robot is navigat-
ing through the environment.

The experimental setting for semantic mapping involves running our algorithm on a

mobile robot platform in two different environments. The platform is a Fetch Mobile Manipulator

and Freight Mobile Robot Base by Fetch Robotics†. Figure 3.17 shows the robot performing

scene classification in one of the environments.
†https://fetchrobotics.com/robotics-platforms/
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The semantic maps for the experiments were constructed using our mapping system

Omnimapper [TRC14a] described in chapter 2. It utilizes the GTsam library in order to optimize

a graph of measurements between robot poses along a trajectory, and between robot poses and

various landmarks in the environment. The measurements of simple objects like points, lines,

and planes are data associated with mapped landmarks using the joint compatibility branch

and bound (JCBB) technique [NT01b]. The regions for color segmentation are acquired by the

Gaussian Region algorithm of [Nie+10b]. However, in our gaussian region approach described in

section 3.2 and [Nie+10b], the map partitions were built through human guidance, whereby the

robot was taken on a tour of the space (either by driving the robot manually, or using a person

following behavior) and the respective scene labels were taught to it. This is in contrast to our

approach, where the labels are learned from our visual place categorization system. Thus, the

robot is itself capable of identifying the scenes without any human guide. We used the ΦN−best

model for this task, and retrained the scene classifier to exclude the Bedroom, Dining Room

& Bathroom scenes, and instead include Conference Room as it is more likely to occur in an

academic building environment. Figure 3.18a shows the navigation of the robot in the Computer

Science and Engineering (CSE) Building. Our system was able to classify the seven regions of

the floor map. However, there are some regions detected by Omnimapper using the laser range

finder. These are painted in white to denote their invisibility to the camera. The second test

environment is the Contexual Robotics Institute (CRI) building, which has a very different floor

map in comparison to CSE. The result of the run made here is shown in Figure 3.18b.
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(a) Semantic Map of the CSE building.

(b) Semantic Map of the CRI.

Figure 3.18: Place categorization experiments with mobile robots. Each color represents one of
the seven classes of the visual place categorization that our system classified.
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3.4.7 Discussion

In our approach we considered five different models for performing place categorization,

which are derived mainly from two base modules - a scene recognizer, and an object detector.

We demonstrated the effectiveness of our algorithms in a series of experiments, ranging from

scene recognition in still-image data sets to real-world videos captured from different sources,

and finally via the generation of labeled semantic maps using data gathered by multiple mobile

robot platforms. We showed that (i) different models are favorable for different scenes (Table

3.2 and 3.3), and thus the ideal scene recognition system would likely be a combination of these

five models, (ii) the proposed methods give successful results on many different types of video

recordings, even when they are affected by object clutter, motion blur, and overlapping boundaries

and (iii) our models are robust enough to be tested on data gathered by mobile robotic platforms

on multiple building scenarios which are affected by occlusions and poor lighting conditions.
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Chapter 4

Autonomous Exploration and Navigation

4.1 Introduction

Multi-robot mapping and exploration was addressed by Fox et al. [Fox+06] and Vincent et

al. [Vin+08]. These papers build a map using up to three robots with a decision theoretic planner

that trades off robot rendezvous operations with frontier exploration. These robots rendezvous

to determine their relative pose transforms to provide constraints to recover the final map. In

contrast, our approach does not require this rendezvous step because landmarks are globally data

associated between each robot using a centralized map coordinator. The exploration strategy used

is similar to our strategy called Reserves; however, we will not use a rendezvous step and do not

require a decision-theoretic planner. In Olson et al. [Ols+12] the authors describe a system which

controls a team of up to 14 mobile robots in an urban reconnaissance mission. In this system, a

planning algorithm allocates robots to explore navigation goals in an unknown environment and

build a map.

Robots are coordinated in team collaboration behavior to accomplish other goals of the

MAGIC 2010 competition, but they do not move together in formations to maximize availability

of additional robots. In Hollinger et al. [HSK10], the authors prove performance characteris-
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tics on a multi-robot collaboration strategy to perform adversary search. By representing the

topological configuration of a map as a graph, the robots can guarantee that the adversarial

search will prevent recontamination of previously cleared nodes with an arbitrarily sized team.

In Joyeux et al. [Joy+09], the authors describe a distributed system for managing robot plans

for performing high-level tasks. This architecture prevents conflicts between robot plans and

can handle communication failures. These papers both present strategies and architectures for

collaboration between robot agents to perform tasks.

In [Sim+00b] and [Bur+05], the authors present a coordination algorithm for multi-robot

exploration and mapping which tries to maximize information gain through greedy assignment

of robots to exploration frontiers. Since the allocation of one robot to an exploration frontier

will diminish the predicted information gain to that frontier when allocating other robots, the

team will tend to spread out. The authors recognize an important property that their system

exhibits of minimizing interference between platforms; one of the key differences between

the coordination strategies which we will evaluate in this paper is this property of platform

interference. The authors in [Sim+00b] describe a collaboration strategy which is most similar

to the Reserves strategy, in that idle robots remain until new exploration goals with sufficient

predicted information gain require their attention. The authors of [Sim+00b] allude to potential

future work where idle robots move to near the exploration frontier to try to be ready for new

exploration goals.

Distributed estimation in multi robot systems is currently an active field of research,

with special attention being paid to communication constraints [Pau+15], heterogeneous teams

[Bai+11; Ind+12], estimation consistency [BWL09], and robust data association [Ind+14;

Don+15]. Robotic literature offers distributed implementations of different estimation tech-

niques, including Extended Kalman filters [RB02; ZR06], information filters [TL03], and particle

filters [How06; Car+14]. More recently, the community reached a large consensus on the use

of maximum likelihood (ML) estimation (maximum a-posteriori, in presence of priors), which,
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applied to trajectory estimation, is often referred to as pose graph optimization or pose-based

SLAM. ML estimators circumvent well-known issues of Gaussian filters (e.g., build-up of lin-

earization errors) and particle filters (e.g., particle depletion), and frame the estimation problem

in terms of nonlinear optimization. In multi robot systems, ML trajectory estimation can be

performed by collecting all measurements at a centralized inference engine, which performs the

optimization [AN08; Kim+10; Bai+11]. Variants of these techniques invoke partial exchange of

raw or preprocessed sensor data [Laz+11; Ind+14].

In many applications, however, it is not practical to collect all measurements at a single

inference engine. When operating in a hostile environment, a single attack to the centralized

inference engine (e.g., one of the robot) may threaten the operation of the entire team. Moreover,

the centralized approach requires massive communication and large bandwidth. Furthermore,

solving trajectory estimation over a large team of robots can be too demanding for a single

computational unit. Finally, the centralized approach poses privacy concerns as it requires to

collect all information in a single robot; if an enemy robot is able to deceive the other robots and

convince them that it is part of the team, it can easily gather sensitive information (e.g., trajectory

covered and places observed by every robot). These reasons triggered interest towards distributed

trajectory estimation, in which the robots only exploit local communication, in order to reach a

consensus on the trajectory estimate.

Cunningham et al. [CPD10] use Gaussian elimination, and develop an approach, called

DDFSAM (Decentralized Data Fusion Smooth and Mapping), in which each robot exchanges a

Gaussian marginal over the separators (i.e., the variables shared by multiple robots); the approach

is further extended [CID13], to avoid storage of redundant data.

Grisetti et al.[GKN12] compute a good initial estimate for global alignment through a

submapping approach. [ZHD13] propose an approximation for large-scale SLAM by solving for a

sequence of submaps and joining them in a divide-and-conquer manner using linear least squares.

[Sug+14] present an approximate SLAM approach based on hierarchical decomposition to reduce
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the memory consumption for pose graph optimization. While Gaussian elimination has become a

popular approach it has two major shortcomings. First, the marginals to be exchanged among

the robots are dense, and the communication cost is quadratic in the number of separators. This

motivated the use of sparsification techniques to reduce the communication cost [Pau+15]. The

second reason is that Gaussian elimination is performed on a linearized version of the problem,

hence these approaches require good linearization points and complex bookkeeping to ensure

consistency of the linearization points across the robots [CID13]. The need of a linearization point

also characterizes gradient-based techniques [KB13]. In many practical problems, however, no

initial guess is available, and one has to develop ad-hoc initialization techniques, e.g., [Ind+14].

4.2 Linguistic Composition of Semantic Maps and

Hybrid Controllers

This framework provides an approach to generate robot policies by automatically com-

bining Semantic Mapping and Hybrid Control. Semantic mapping and hybrid control are both

effective approach within robotics. Semantic mapping produces detailed models of unstructured

environments [Nie+10b; TNC10; TC10; ORD09; TRC12]; however, this approach provides no

direct link to robot action. Hybrid models combine continuous and discrete robot dynamics to

efficiently and verifiably represent robot action [DKS11; DS11a; DS12; Alu+93; Hen96; BK04];

however, there is no automatic method to produce control models for large, complicated systems.

While superficially, it appears that semantic mapping and hybrid control are fundamentally differ-

ent approaches, they are actually closely related. The topological graph of a semantic map and

the discrete event system of a hybrid control model are both instances of formal language. Thus,

we propose to combine the linguistic representations of semantic maps and robot action models

to produce an efficient and verifiable control policy for mobile manipulation in unstructured

environments.
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This work focuses on the application domain of service robots in human environments.

Previously, we developed new techniques for mapping using Semantic SLAM [Nie+10b; TNC10]

and for hybrid systems using our Motion Grammar [DKS11; DS11a; DS12]. Here, we integrate

these approaches to produce a combined robot-environment action model. Then, we apply

established methods in supervisory control [CL08] to derive a robot control policy for a mobile

manipulation task. This control design approach formally guarantees that the resultant policy

satisfies the task specification. Finally, we demonstrate of this approach on a Segway RMP-200

mobile robot.

4.2.1 Approach

The method of this paper produces a robot control policy for unstructured environments by

combining Simultaneous Localization and Mapping (SLAM) with Hybrid Control. We combine

these two approaches through Formal Language. First, we produce a basic grammar for the

robot’s actions and generate the map of the environment via SLAM. Then we compose the

action grammar and environment map using the Motion Grammar Calculus. Finally, we apply a

supervisory controller to generate the policy for the robot. We now explain some background

on formal language, define our hybrid systems model, the Motion Grammar, and summarize the

SLAM technique.

4.2.2 Formal Language

Formal language is the underlying representation we use to combine mapping and hybrid

control. Language and automata theory provide a rigorous method for reasoning about the discrete

dynamics of a robotic system. A formal language is a set of strings. Strings are sequences of

atomic symbols which we can use to describe discrete events, predicates, locations, or actions

within our system. A grammar defines a formal language. We first briefly review some relevant
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points of language theory. For a thorough coverage of formal language and its applicability to

robotic systems, please see [HU79; CL08; DS11a].

Definition 1 (Context-Free Grammar, CFG)

G = (Z,V,P,S) where Z is a finite alphabet of symbols called tokens, V is a finite set of

symbols called nonterminals, P is a finite set of mappings V 7→ (Z∪V )∗ called productions, and

S ∈V is the start symbol.

The productions of a CFG are conventionally written in Backus-Naur form. This follows

the form A→ X1X2 . . .Xn, where A is some nonterminal and X1 . . .Xn is a sequence of tokens

and nonterminals. This indicates that A may expand to all strings represented by the right-hand

side of the productions. The symbol ε is used to denote an empty string. For additional clarity,

nonterminals may be represented between angle brackets 〈〉 and tokens between square brackets

[].

Grammars have equivalent representations as automata which recognize the language of

the grammar. This automata form provides a more convenient representation for some tasks, such

as defining languages for maps in Section 4.2.6. The equivalence of grammars and automata

means that we can freely choose whichever representation is most convenient. In the case of a

Regular Grammar – where all productions are of the form 〈A〉 → [a]〈B〉, 〈A〉 → [a], or 〈A〉 → ε –

the equivalent automaton is a Finite Automaton (FA), similar to a Transition System with finite

state. A CFG is equivalent to a Pushdown Automaton, which is an FA augmented with a stack;

the addition of a stack provides the automaton with memory and can be intuitively understood as

allowing it to count.

Definition 2 (Finite Automata, FA)

M = (Q,Z,δ,q0,F), where Q is a finite set of states, Z is a finite alphabet of tokens,

δ : Q×Z 7→Q is the transition function, q0 ∈Q is the start state, F ∈Q is the set of accept states.
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Definition 3 (Acceptance and Recognition)

An automaton M accepts some string σ if M is in an accept state after reading the final

element of σ. The set of all strings that M accepts is the language of M, LM, and M is said to

recognize LM.

Regular Expressions [HU79] and Linear Temporal Logic (LTL) [BK+08] are two al-

ternative notations for finite state languages. These representations are convenient forms for

defining supervisory controllers as in Section 4.2.8. The basic Regular Expression operators

are concatenation αβ, union α|β, and Kleene-closure α∗. Some additional common Regular

Expression notation includes ¬α which is the complement of α, the dot (.) which matches any

token, and α? which is equivalent to α|ε. Regular Expressions are equivalent to Finite Automata

and Regular Grammars. LTL extends propositional logic with the binary operator until ∪ and

unary prefix operators eventually ♦ and always �. LTL formula are equivalent to Büchi automata,

which represent infinite length strings, termed ω-Regular languages. We can also write ω-Regular

Expressions by extending classical Regular expressions with infinite repetition for some α given

as αω. These additional notations are convenient representations for finite state supervisors.

Any string in a formal language can be represented as a parse tree. The root of the tree is

the start symbol of the grammar. As the start symbol is recursively broken down into tokens and

nonterminals according to the grammar syntax, the tree is built up according to the productions

that are expanded. A production A→ X1 . . .Xn will produce a piece of the parse tree with parent

A and children X1 . . .Xn. The children of each node in the parse tree indicate which nonterminals

or tokens that node expands to in a given string. Internal tree nodes are nonterminals, and tree

leaves are tokens. The parse tree conveys the full syntactic structure of the string.

While grammars and automata describe the structure or syntax of strings in the language,

something more is needed to describe the meaning or semantics of those strings. One approach

for defining semantics is to extend a CFG with additional semantic rules that describe operations

or actions to take at certain points within each production. Additional values computed by a
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semantic rule may be stored as attributes, which are parameters associated with each nonterminal

or token, and then reused in other semantic rules. The resulting combination of a CFG with

additional semantic rules is called a Syntax-Directed Definition (SDD) [Aho+07, p52].

4.2.3 The Motion Grammar

Next, we model robot action using the Motion Grammar (MG), giving an initial set of

hybrid control actions the robot can perform. MG represents the operation of a robotic system

as a Context-Free language, augmenting a Context-Free Grammar with additional variables to

handle the continuous dynamics. We use this combined representation to describe the operation

of the full robotic system [DKS11; DS11a].

Definition 4 The Motion Grammar is a tuple

GM = (Z,V,P,S,X ,Z,U,η,K)

where:

Z set of events, or tokens

V set of nonterminals

P⊂V × (Z∪V ∪K)∗ set of productions

S ∈V start symbol

X ⊆ℜm continuous state space

Z ⊆ℜn continuous observation space

U ⊆ℜp continuous input space

η : Z×P×N× 7→ Z tokenizing function
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K ⊂ X ×U×Z 7→ X ×U×Z semantic rules

The Motion Grammar describes the language of the robotic system. The terminal symbols

of this language are robot events and predicates, representing a discrete abstraction of the system

path.

We use two properties to ensure the validity of a system modeled as a Motion Grammar:

completness and correctness. Completeness ensures that our model G is a faithful representation

of the physical system F . We define this property using the simulation relation, that all paths in F

are also paths in G . Correctness ensures that our model G satisfies some desired property S. We

define correctness using the subset relation.

Definition 5

Given GM and system F then complete{G} ≡ F � GM

Definition 6

A Motion Grammar G is correct with respect to some specification S when all strings in

the language of G are also in S: correct{G ,S} ≡ L(G)⊆ L(S)

4.2.4 Semantic Simultaneous Localization and Mapping

Our mapping system identifies surfaces and connected free spaces in the world [Tre+10a;

TRC12]. We use the surfaces, such as walls and tables, to localize the robot based on its relative

position to these object. We represent free spaces as Gaussian regions in ℜ3 with mean at

the center of the free space and standard deviation indicating the dimensions of the free space

[Nie+10a]. Topological connections between these Gaussian regions indicate connected free

spaces in the environment. For example, a door or hallway between two rooms would connect the

Gaussian regions for those rooms.
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We then extend the metric and topological information of the map surfaces and connected

Gaussians with additional semantic information by labeling each of the Gaussian regions. These

Semantic Maps provide useful information for navigation and localization of the robot.

In addition, the semantic content of the map permits higher-level reasoning about the

spatial regions of the environment. We exploit this semantic information in our composition of

the map with a grammar for robot action.

4.2.5 Composing Maps and Grammars

Policy G′Supervisor G∩SSystem G

Spec. S

MGC G0 G

Map M

Action G0

Figure 4.1: Sequence of operations to generate policy.

We produce the control policy for the robot by composing a semantic map and a base

action grammar, following Figure 4.1. We will explain this approach using the example map for

the Georgia Tech Aware home, Figure 4.2(a), and the base grammar for mobile manipulation,

Figure 4.2(b). First, we convert the map graph into a grammar for the map language. Then, we

compose the map grammar and the action grammar using the Motion Grammar Calculus (MGC)

to model the robotic system operating within the mapped environment. Finally, we produce a

task policy by applying a supervisory controller to this system model.

4.2.6 Map Languages

To better analyze the semantic map, we first represent this map using formal language.

The Gaussian free space regions of the map are arranged in a graph, indicating connectivity

between these regions. The graph for the Aware Home is Figure 4.2(a). This graph is equivalent
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to a Regular Language representing the set of all traces through the map.

KITCHEN

LIVING_ROOM

HALL

GARAGE

BEDROOM

BATHROOM

(a) Semantic Map M#

"

 

!

〈S〉 → [room]〈S〉
| [object] [pick]〈S′〉

〈S′〉 → [room]〈S′〉
| [place]〈S〉

(b) Base Grammar G0

Figure 4.2: Example of Semantic Map M and base manipulation grammar G0. This map
represents the Georgia Tech Aware Home.

Definition 7

Let Map M = (N,V ), where N is a finite set of location symbols, and V ⊂ N×N is the

set of adjacent symbols ni→ n j.

We can transform any Map M into a regular grammar. We note that when analyzing Finite

Automata, the language symbols are typically given along transitions [HU79; Aho+07] wheres in

a map, location symbols mark a state. For regular languages, these two conventions – terminal

language symbols on states and terminal language symbols on edges – are equivalent.
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Input: Q ; // Initial States
Input: E : Q×Q ; // Initial Edges
Output: Q′ ; // Final States
Output: Z′ ; // Edge Symbols
Output: E ′ : Q′×Z′×Q′ ; // Final Edges
Z′ = Q;
Q′ = E ;
E ′ = /0;
forall q ∈ Q do

forall (ei = Q→ q) ∈ E do
forall (e j = q→ Q) ∈ E do

E ′ = E ′∪ ei
q−→ e j

end
end

end
Algorithm 5: State to Edge Symbols

Algorithm 5 transforms the state terminal map to an edge terminal automaton. Then, we

can directly convert this automaton to a Regular Grammar.

0 1

HALL

BATHROOM
BEDROOM

GARAGE

2
LIVING_ROOM

HALL
3

KITCHEN

LIVING_ROOM
start

'

&

$

%

〈0〉 → [hall]〈1〉
〈1〉 → [bathroom]〈0〉

| [bedroom]〈0〉
| [garage]〈0〉
| [livingroom]〈2〉

〈2〉 → [hall]〈1〉
| [kitchen]〈3〉

〈3〉 → [livingroom]〈2〉

Figure 4.3: Representing maps with formal language.
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We demonstrate the conversion for the map in Figure 4.2(a). First, we apply Algorithm

Algorithm 5 to produce a FSM from the map graph. Since the output of this algorithm is a

Nondeterminisic Finite Automaton with more than the minimum necessary number of states,

we convert the NFA to a DFA [Aho+07, p152] and minimize the number of DFA states with

Hopcroft’s Algorithm [Aho+07, p180]. This result is Figure 4.3(a). Note that in this example, we

save two states over the original map in Figure 4.2(a). Finally, we convert the FSM to the Regular

grammar in Figure 4.3(b).

4.2.7 Composition using the Motion Grammar Calculus

In order to semantically merge the robot and environment models, we apply our Motion

Grammar Calculus (MGC). MGC is a set of rewrite rules for hybrid systems modeled in the

Motion Grammar [DS12]. According to these rules, we extend our action grammar with each

map symbol while maintaining only those transitions allowed by the map. While supervisory

control can only operate to restrict system G using existing symbols, the MGC crucially describes

how to introduce new symbols into G. There are two relevant rewrite rules from the MGC that we

use here.

Transform 1 (Symbol Splitting)

Given some ζ0 = [x ∈ R0] ∈ Z, create tokens ζ1 = [x ∈ R1] and ζ2 = [x ∈ R2] such that

R1∪R2 = R0∧R1∩R2 = /0 and update token set Z′ = Z−ζ0∪{ζ1,ζ2}. The new nonterminal

set is V ′ =V ∪{A0,A1,A2,A3,A4}. The new production set is P′ = P−{(A→ α1ζ0κα2) ∈ P}∪

{(A→ α1A0) ,(A0→ A1|A2) : (A→ α1ζ0κα2) ∈ P}

∪{(A1→ ζ1κA3) ,(A2→ ζ2κA4) : (A→ α1ζ0κα2) ∈ P}

∪{(A3→ A2|α2) ,(A4→ A1|α2) : (A→ α1ζ0κα2) ∈ P}.
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Transform 2 (Adjacency Pruning)

For p1 = A→ rAκAB, B→ β1| . . . |βn, if rA is not adjacent to R0(βn) WLOG, then P′ =

P− p1∪{A→ rAκAB′}∪{B′→ β1| . . . |βn−1}

By applying these transforms, we can introduce the map symbols into the action grammar

while preserving the validity of the model. Each derivation step maintains the completeness of the

model according to the path of the hybrid system. By assuming that the initial model is complete,

this ensures that all derived models are also complete. For the remainder of the MGC and proofs

of its correctness, please see [DS12].

In addition to these two transforms, we also use the first() and follow() sets [Aho+07]

to define initial and adjacent symbols. The first() set defines all terminals which may begin

some derivation of a grammar symbol. The follow() set defines all terminals which may appear

immediately to the right of some symbol in a grammatical derivation [Aho+07][p221].

Definition 8 (First Set)

Define first(X) for some grammar symbol X to be the set of terminals which may begin

strings derived from X .

Definition 9 (Follow Set)

Define follow(X) for grammar symbol X to be the set of terminals a that can appear

immediately to the right of X in some sentential form. Note that for map grammars such as Figure

4.3(b), the follow set for each terminal symbol is equivalent to the adjacent nodes in the map

graph Figure 4.2(a).

Proposition 1

Given a grammar G representing some map M, follow(z) of some terminal symbol z of G

represents the set of all map locations adjacent to z.
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Input: (ZM,VM,PM,SM) ; // Map Grammar
Input: (ZA,VA,PA,SA) ; // Action Grammar
Output: (Z,V,P,S) ; // Combined Grammar
(Z,V,P,S)← (ZA,VA,PA,SA) ;
/* Add map symbols by splitting first(SA) */
z0 = first(SA);
forall z ∈ ZM do

(Z,V,P,S)← Transform 1 to split z0 into z and z0
end
/* Prune non-adjacent map symbols */
forall z1 ∈ ZM do

forall z2 ∈ ZM do
if z2 6∈ follow(z1) then

(Z,V,P,S)← (Z,V,P,S)∩L{.∗z1ZA
∗z2.∗} ;

end
end

end
Algorithm 6: Composing Map and Action Grammars

Algorithm 6 describes how we apply these transforms to compose the Map and Action

grammars. First, we introduce all map symbols into the action grammar by repeatedly splitting

the initial terminal symbol of the action grammar by direct application of Transform 1. Next, we

prune out productions indicating transitions between non-adjacent map locations. To prune these

productions, we apply Transform 2 by intersecting the grammar with sets of allowable transitions.

The disallowed transitions are indicated by the regular expression L = (.∗z1ZA
∗z2.
∗) in line 8 of

Algorithm 6. The complement of this regular expression defines all paths which do not move

directly from z1 to z2. Since z1 and z2 are non-adjacent, intersecting with L will preserve only

paths which do not contain the disallowed transition. The result is a grammar which contains the

original action model and all permissible transitions from the semantic map. We apply Algorithm

6 to combine the map grammar(Figure 4.3), with the base grammar for mobile manipulation

(Figure 4.2). In this process, the initial nonterminal of the base grammar, [room], is repeatedly

split into all the symbols of the semantic map. Then all transitions between non-adjacent map

symbols are pruned away. This produces the combined grammar of Figure 4.4(a).
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〈S0〉 → [h]〈H〉
〈H〉 → [r]〈R〉 | [b]〈B〉 | [o]〈O〉

| [d]〈D〉 | [l]〈L〉 | [object] [pick]〈H′〉
〈B〉 → [h]〈H〉 | [object] [pick]〈B′〉
〈O〉 → [h]〈H〉 | [object] [pick]〈O′〉
〈R〉 → [h]〈H〉 | [object] [pick]〈R′〉
〈D〉 → [h]〈H〉 | [object] [pick]〈D′〉
〈L〉 → [h]〈H〉 | [k]〈K〉 | [object] [pick]〈L′〉
〈K〉 → [l]〈L〉 | [object] [pick]〈K′〉
〈H′〉 → [r]〈R′〉 | [b]〈B′〉 | [o]〈O′〉

| [d]〈D′〉 | [l]〈L′〉 | [place]〈H〉
〈B′〉 → [h]〈H′〉 | [place]〈B〉
〈O〉 → [h]〈H′〉 | [place]〈O〉
〈R〉 → [h]〈H′〉 | [place]〈R〉
〈D〉 → [h]〈H′〉 | [place]〈D〉
〈L′〉 → [h]〈H′〉 | [k]〈K′〉 | [place]〈L〉
〈K′〉 → [l]〈L′〉 | [place]〈K′〉

(a) Uncontrolled: G
• Let R = {[h] , [r] , [o] , [d] , [l]}

• Pick object in kitchen:
S0 = .∗ [k] (¬R)∗ [pick] .∗

• Place object in bedroom:
S1 = .∗ [b] [place] .∗

• Don’t put the object anywhere else:
S0 = ¬(.∗¬ [b] [place] .∗)

• Move the object only once:
S2 = (¬ [place])∗ [place]¬([pick])∗

• Let X = (¬ [x])∗ [x] (¬ [x])∗

• Don’t revisit rooms:
S3 =

⋂
[x]∈R X (([pick] | [place])X )∗

• End in the hallway: S4 = .∗ [h]$

(b) Supervisor: S'

&

$

%

〈S0〉 → [h]〈H〉
〈H〉 → [l]〈L〉
〈L〉 → [k]〈K〉
〈K〉 → [object] [pick]〈K′〉
〈K′〉 → [l]〈L′〉
〈L′〉 → [h]〈H′〉
〈H′〉 → [b]〈B′〉
〈B′〉 → [place]〈B′′〉
〈B′′〉 → [h]

(c) Controlled: G′
Figure 4.4: Grammars for the Uncontrolled and Controlled mobile manipulator in the Aware
Home.
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4.2.8 Supervisory Control

Finally, we use supervisory control to produce the policy G′ from our system model G

and task specification S, [CL08, p133]. This application of supervisory control will permit only

those transitions of the model G which are also contained in specification S. We represent this as

the intersection, G′ = G∩S Given that G is Context-Free and S is Regular, we use the algorithm

defined in [HU79, p135] to produce Context-Free G′, ensuring that we can efficiently execute the

policy given by G′. This algorithm operates on a Context-Free language model for system G and

a Regular language specification for correct operation S with the assumption that we can block

any undesirable transitions in G. The corrected system language, then, is G′ = G∩S, where G′ is

also Context-Free. We note in addition that to prune non-adjacent regions permitted by Transform

2 in Algorithm 6, we apply this same language intersection operation.'

&

$

%

〈S〉 → [room]〈S〉
| [victim− alive]〈V〉
| [victim−dead]〈D〉

〈V〉 → ([healthy] | [injured])〈notify〉〈S〉
〈D〉 → 〈notify〉〈S〉

Figure 4.5: A potential base grammar for rescue robots.

We use supervisory control of the grammar in Figure 4.4(a) to perform the desired mobile

manipulation task. To instruct the robot to bring an object from the kitchen to the human in the

bedroom, we construct our supervisor according to the regular expressions in Figure 4.4(b). Thus,

our controlled system is:

G′ = G∩
4⋂

i=0

Si = [h] [l] [k] [object] [pick] [l] [h] [b] [place] [h] (4.1)
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4.2.9 Experiments

We implemented this approach on a Segway RMP-200 mobile platform as shown in

Figure 4.6. This platform is equipped with an ASUS Xtion PRO LIVE camera, providing RGBD

information for plane and surface extraction and with a UTM-30LX Hokuyo laser used to label

the spatial regions as Gaussian models. It includes a Schunk parallel jaw gripper to manipulate

objects.

(a) Aware Home (b) RIM Center (c) Picking

Figure 4.6: Segway RMP-200 mobile platform in the Georgia Tech Aware, the RIM Center,
and picking a soda can.

We conducted the experiments in the Georgia Tech Aware Home [Kie+08] and RIM

center. For both of the home and office environments, we first drove the robot through each

area collecting 3D point clouds, laser, and odometry. Our mapper extracts planes and surfaces

in the environment, building the map and localizing the robot. During the navigation, the robot

partitions the environment into Gaussian regions. This produces the Gaussian map in Figure 4.7.

Then, we annotate the Gaussian regions of the map with semantic labels. The result is

a graph, shown previously for the Aware Home in Figure 4.2(a) and also for the RIM center in

Figure 4.8. This resulting map is suitable for both human interpretation and automatic symbol

manipulation.
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Next, we apply the method described in Section 4.2.5 to generate the symbolic model for

the robot in each of the environments. For the Aware home, this model is given in Figure 4.4(a),

and for the RIM center in Figure 4.8.

Figure 4.7: Generated Semantic Maps for the Aware Home. In the map, black shows 3D robot
model, gray shows point clouds, yellow shows connected Gaussian regions (blue edges), and
red shows the surfaces.

For the Aware Home, we asked the robot to perform the following task, Collect a soda

from the kitchen and bring it to the bedroom, expressed as the specification in Figure 4.4(b). For

the RIM Center, we apply a similar supervisor in Figure 4.9 to collect a soda from kitchen and

bring it to library. The labeled location can be queried at the end of the tour. The main purpose of

this labeling is to correlate the location of each room known to the robot with a symbol to use in

specific tasks later requested by a human user.
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(a) RIM Map]
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(b) RIM Graph
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start

(c) RIM FSM

Figure 4.8: Generated Semantic map of Georgia Tech RIM Center and the equivalent graph
and Finite Automata forms.

The policy for the task in the RIM environment, Figure 4.11, is more complicated than for

the Aware Home, Figure 4.4(c). This is because the RIM map contains multiple paths between all

rooms. Thus, all these possible paths are captured in the control policy grammar. The result is the

nine strings represented by the following regular expression,

G′ = (k|rl f k|ol f k) [pick] ( f l| f osrl|srl) [place] (4.2)
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• Let R = {[s] , [k] , [o] , [f] , [l] , [r]}

• Pick object in kitchen:
S0 = .∗ [k] (¬R)∗ [pick] .∗

• Place object in library:
S1 = .∗ [l] [place]$

• Move the object only once:
S2 = (¬ [place])∗ [place]¬([pick])∗

• Let X = (¬ [x])∗ [x] (¬ [x])∗

• Don’t revisit rooms:
S3 =

⋂
[x]∈R X (([pick] | [place])X )∗

Supervisor: S
Figure 4.9: Supervisor for the Grammars for the Uncontrolled and Controlled mobile manipula-
tor in the RIM Center.

These generated policies direct the robot along the path to complete the specified task.

For the Aware Home, the robot fetches the object from the kitchen and delivers it to the bedroom,

illustrated in Figure 4.10. This figure shows the path of the robot, both as a trajectory though the

map and as the sequence of language symbols.

Living Room

Kitchen

Hall Bedroom

[h]

START

[l]

[k][object][pick]

[l] [h]

[b][place]

[h]
HALT

Figure 4.10: Path of the robot following controller in Figure 4.4(c) and Equation 4.1, shown as
robot enters the living (green oval). Solid blue lines show the map connections between rooms,
and dotted red lines show the robot path.
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〈S0〉 → [s]〈S〉
〈S〉 → [r]〈R〉 | [o]〈O〉 | [k]〈K〉 | [pick]〈S′〉
〈O〉 → [s]〈S〉 | [f]〈F〉 | [pick]〈O′〉
〈K〉 → [s]〈S〉 | [f]〈F〉 | [pick]〈K′〉
〈K〉 → [s]〈S〉 | [f]〈F〉 | [pick]〈K′〉
〈F〉 → [o]〈O〉 | [k]〈K〉 | [l]〈L〉 | [pick]〈F′〉
〈L〉 → [f]〈F〉 | [r]〈R〉 | [pick]〈L′〉
〈R〉 → [l]〈L〉 | [s]〈S〉 | [pick]〈R′〉
〈S′〉 → [r]〈R′〉 | [o]〈O′〉 | [k]〈K′〉

| [place]〈S〉
〈O′〉 → [s]〈S′〉 | [f]〈F′〉 | [place]〈O〉
〈K′〉 → [s]〈S′〉 | [f]〈F′〉 | [place]〈K〉
〈F′〉 → [o]〈O′〉 | [k]〈K′〉 | [l]〈L′〉

| [place]〈F〉
〈L′〉 → [f]〈F′〉 | [r]〈R′〉 | [place]〈L〉
〈R′〉 → [l]〈L′〉 | [s]〈S′〉 | [place]〈R〉

(a) Uncontrolled: G'

&

$

%

〈S0〉 → [s]〈S〉
〈S〉 → [k]〈K〉 | [r]〈R〉 | (4.3)

[o]〈OL〉
〈K〉 → [pick]〈K′〉
〈R〉 → [l]〈OL〉
〈OL〉 → [f]〈F〉
〈F〉 → [k]〈K〉
〈K′〉 → [f]〈F′〉 | [s]〈S′〉
〈F′〉 → [l]〈L′〉 | [o]

[
O′
]

〈S′〉 → [r]〈R′〉
〈O′〉 → [s]〈S′〉
〈R′〉 → [l]〈L′〉
〈L′〉 → [place]

(b) Controlled: G′
Figure 4.11: Grammars for the Uncontrolled and Controlled mobile manipulator in the RIM
Center. Notice how the policy captures all possible paths through the environment that satisfy
the specification.

4.2.10 Discussion

In this approach, we combine a Semantic Map and a Motion Grammar using the Motion

Grammar Calculus (MGC). This ensures the validity of our final system model because each

transform of the MGC preserves completeness of the model. Then, applying a supervisory

controller guarantees that the final policy is correct with regard to the specification. Thus, the
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overall approach is correct-by-construction in the sense that the final system model is guaranteed

by the MGC to simulate our initial system, and the resultant policy satisfies the supervisory

control specification.

The defining characteristic of this method is the uniform representation of the set of all

robot paths as a language with an explicit grammar. This representation allows iterative develop-

ment of the grammatical control policy by the progressive application of MGC transformations

and supervisory control specifications. At each step of this derivation, the mechanical application

of the MGC transforms and supervisory control ensures that we maintain a valid model of the

system. Furthermore, because the policy for each task is itself a grammar, we can compose

multiple individual task policies to produce a system to perform each of those tasks, all within

the same grammatical framework. We expect these capabilities for incremental design and policy

composition to be useful as we extend our work to multiple tasks and more complicated systems

with larger grammars.

While search-based motion planning could perform some of the tasks in this work, there

are certain advantages given by our linguistic formulation and use of supervisory control for policy

generation. Random-sampling planners such as RRTs and PRMs assume a continuous search

space, while our application domain includes discrete features for detecting and manipulating

objects. General search based planning assumes an explicit goal state and produces a plan to

reach that state. In contrast, the linguistic approach considers the set of acceptable paths and

produces a policy to stay within that set of paths.

4.3 Coordination Strategies for Multi-robot Exploration and

Mapping

Mobile robots are already widely used by first responders both in civilian and military

operations. Today, these robot missions are usually performed by a person through tele-operation.
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Such a mode of operation challenges the operator as the cognitive load is significant, which was

presented in [Zhe+11]. There is consequently a desire to introduce some degree of autonomy to

reduce the burden on the operator. For design of fully autonomous systems, there is a need to

supply the system with a complete map of the environment or to endow the system with methods

for automated mapping and exploration. Significant progress has been made on mapping and

exploration with single robot systems, an thorough overview can be found in [DB06; BD06].

Moving from single robot systems to multi-robot teams poses a number of additional

challenges. First of all the operator is posed with an added complexity in terms of controlling

multiple entities at the same time, which is known to be a challenge [Zhe+11]. In addition,

integration of maps generated by multiple robots into a coherent representation is also a challenge.

Finally, there is a need to consider how the team-members can cooperate to accelerate the

exploration of a previously unseen environment. There has been some progress reported on

multi-robot mapping as presented in [Fox+06]. A number of methods for exploration of spaces

have also been presented, see [Par08] for a recent summary of related research.

In our approach, we consider multi-robot exploration and mapping for larger teams. i.e.

multi-robot systems with up to 9 team members. The main contribution for this work is an

evaluation of different strategies for coordinating the efforts of a robot team during an exploration

mission in an unknown environment. Three strategies are presented; these strategies will be

referred to as Reserves, Divide and Conquer, and Buddy System. These strategies differ in how

proactive extra members of the team are when they would otherwise not be needed for the

exploration task, i.e. when all potential paths or frontiers are allocated to other team members.

The first strategy, Reserves, is the least proactive. In this strategy, extra robots will wait in

the starting area until they are needed. The second strategy, Divide and Conquer, is the most

proactive. In this strategy, robots travel in as large a group as possible and split in half when

new navigation goals (branches, junctions in corridors) are uncovered. The final strategy, Buddy

System, represents a compromise between the other two strategies. In Buddy System, robots travel
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in teams of two until new navigation goals are detected and the team will split to follow both

paths.

4.3.1 Approach

Mapping System

We use the library called OmniMapper described in section Figure 2.4 shown in 4.12. In

this application, the mapper is using the plane mapping plugin described in Section 2.4.

Figure 4.12: OmniMapper.

Each robot in the team builds a map locally with the OmniMapper and sends map data

to the map coordinator. Each robot can incorporate new landmark measurements whenever

it has moved far enough from the last pose where measurements were made. In the current

implementation this is set to 10cm. When a robot finishes optimizing its local map with new

landmark measurements, all relevant information needed by the map coordinator is packaged and

transmitted.

The information which is needed by the map coordinator to incorporate a new piece of

information from a team member consists of many components. First, the sensor measurement
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data is needed. In the current implementation, this consists of the extracted plane information

consisting of a plane equation along with a convex hull of points along the perimeter of the

plane. This represents a significant compression over an alternative scheme where all point-cloud

data could be transmitted and processed at the master node. The relevant information which is

sent from the robot to the remote master map coordinator consists of as little data as possible to

minimize communication overhead. This information is collected into a map-chunk message. The

extracted feature measurement is one component which is sent; this extracted feature is typically

much simpler than the raw sensor data which it is based upon. Secondly, the team member’s

integrated odometry is transmitted. An odometric estimate is used because it is a smooth value

and will not jump due to loop closures on the individual robot. For small motions, odometry is

a good estimate of the robot’s relative pose to the previous measurement taken. The individual

robot’s posterior estimate of where it thinks it is in its own local map frame is sent to the master

map coordinator. The master uses this estimate toproduce a correction to establish the relationship

between the global map frame and each of the local map frames. Since the master mapper knows

the transformation between the global map frame and each robot’s local map frame, it translates

all motion commands into the robots local frames of reference before they are sent to the robots.

This allows the master node to compute the odometric relative pose since the prior landmark

measurement data was incorporated; this is used to insert a relative pose factor and also give

initial conditions for data association. Finally, the team member’s local map pose is transmitted.

This is used by the master node to compute a map pose correction. This correction is sent back to

the team member so that it knows it’s relative pose in the global map frame. This knowledge is

needed so that the team member can interpret exploration goals correctly.

The map coordinator maintains trajectories for each of the robots in the team. Mea-

surements from each robot are merged into one global view of the landmarks. This is realized

through a simple modification to the standard OmniMapper through duplication of data structures

tracking indexing data and pose information used for interaction with GT-SAM into arrays. This
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implementation potentially allows for an unlimited number of team members to build a map

together.

Each turtlebot in these experiments maps planar wall structures using a Microsoft

Kinect sensor. Planar segments corresponding to walls are extracted from point clouds via

a RANSAC [FB81] based algorithm [RC11]. This process was described in section 2.4.

The Kinect sensor on each robot has a narrow field-of-view which is not ideal for detecting

exploration frontiers. To alleviate this problem, we incorporated a strategy by which each robot

will rotate periodically to get a 360 degree view of its surroundings. This data is synchronized

with robot odometry to synthesize a 360 degree laser scan. This synthesized laser scan is sent

to the local mapper and forwarded to the global mapper. At the global mapper, it is linked

to a trajectory pose element and used to populate an occupancy grid. This occupancy grid is

re-computed after every map optimization so that a loop closure will result in a correct occupancy

grid map. The frontier based exploration strategies detailed below use this occupancy grid to find

the boundary between clear and unknown grid cells.

4.3.2 Exploration Strategy

Each robot team leader uses a frontier based exploration strategy similar to the one used

in [Vin+08]. An exploration frontier is defined on a costmap cellular decomposition where

each cell has one of three labels: Clear, Obstacle, and Unknown. The costmap is initialized as

Unknown. Costmap cells are set to Obstacle corresponding to locations where the Kinect sensor

detects an obstacle in the environment. The cells on a line between the obstacle cell and the

robot’s current location are set to Clear. Exploration frontiers are defined as Clear cells which

are adjacent to at least one neighbor where the label is Unknown, illustrated in Figure 4.13.

The high level robot exploration goal allocation is centrally planned on the same work-

station where the global map is constructed. There are many choices which can be made by

the exploration planner when choosing which robot or group of robots should move towards an
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Figure 4.13: An example cost-map representing the exploration frontier. Green cells represent
the exploration frontier between Unknown and Clear grid cells. Black cells have the Obstacle
label.

exploration goal. We have chosen to employ a greedy strategy by which the nearest robot or team

is allocated to a goal instead of a more sophisticated traveling-salesman type of algorithm. We be-

lieve that this is appropriate because the exploration goals will change as the robots move through

the environment; re-planning will be required after each robot or team reaches an exploration

goal.

4.3.3 Coordination Strategy

The coordination strategy used between robot agents as well as the number of robots are

the independent variables in the experiments performed in this section. The coordination strategy

refers to the proportion of robots which are dispatched to each exploration goal. On one extreme,

a single robot can be sent to explore a new goal; at the other extreme all available robots can be

sent to a new goal. Larger robot teams sent to a new exploration goal will improve availability

of new agents at the location of new exploration goals are discovered. The larger group has

spare robots which can be quickly allocated to explore new goals, such as those discovered when

the team moves past a corridor intersection or t-junction. If the group of robots allocated to a

navigation goal is too large, then the robots can interfere with each other due to local reactive
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control of multiple agents with respect to dynamic obstacles and limited space in corridors. The

strategies selected for testing trade off availability (robots are close and able to explore branching

structure quickly) with non-interference (robots do not get in each other’s way).

The first coordination algorithm is called Reserve. In this algorithm shown in Figure 4.14,

all unallocated robots remain a the starting locations until new exploration goals are uncovered.

When a branching point is detected by an active robot, the closest reserve robot will be recruited

into active status to explore the other path. This strategy has low availability because all of the

reserve robots remain far away at the entrance; however, it has minimal interference because the

exploring robots will usually be further away from other robots.

Figure 4.14: A map built by three robots using the Reserve cooperative mapping strategy.

The second coordination algorithm is Divide and Conquer. In this strategy, shown in

Figure 4.15, the entire robot group follows the leader until a branching point is detected. The

group splits in half, with the first n
2 robots following the original leader, robot n

2 +1 is selected

as the leader of the second group, and robots n
2 + 2 through n are now members of its squad.

Once there are n squads with one robot, no further divide operations can be made and new

exploration goals will only be allocated once a robot has reached a dead-end or looped back into a
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previously explored area. This algorithm maximizes availability, but potentially causes significant

interference between robots.

(a) Two robots approaching the intersection. (b) Two robots split and move past the intersec-
tion

Figure 4.15: An illustration of the Divide and Conquer exploration strategy. As the robots
approach an intersection, the team must split and recruit new partner robots from the reserved
units.

The third coordination algorithm is called the Buddy System. In this strategy, shown in

Figure 4.16, robots are recruited from the reserve pool in teams of two. When a branching point

is detected by a full team of two robots, the team will split into two and proceed along both paths.

When these single robots detect additional split points, new teams of two robots will be allocated

out of the reserve pool and they will explore this new goal and divide when another branching

point is reached. This strategy uses small teams of robots which are able to maneuver around one

another without too much interference, while maintaining good availability to respond quickly to

explore new frontiers.

An example 3D map built by two robots as they approach a branch point can be seen in

Figure 4.15(a). At this point, the robot team splits and each team member takes a separate path,

as seen in Figure. 4.15(b). The map shown is built concurrently with local maps built on each

robot. The global map is used to establish a global frame of reference for robot collaboration

message coordinates.
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(a) A map built by seven robots in an experiment
using the Reserve cooperative mapping strategy.

(b) The same map shown from a different angle
to demonstrate 3D plane features which are used
for map landmarks.

Figure 4.16: Global maps gathered by a team of seven mobile robots.

4.3.4 Experiments

Simulation Experiments

We first evaluated our collaboration strategies in simu-lated environments with the Stage

simulator (Gerkey et al.,2003) in which the robot can explore and navigate.We then performed

live robot experiments in multiple environ-ments including an office building and a training

facility. Results from live robot experiments will be presented in Section 4.

Three different scenarios were chosen for these simulation experiments. In each of these

scenarios, the robots were introduced in a single entrance from an initial formation to simulate a

breach entrance into a hostile environment. The first scenario is shown in Figure 4.17(a); this

scenario is designed to be typical of a home or office environment. There is a combination of

open space and smaller rooms. Many rooms are connected via main corridors, but some rooms

are connected to each other through other side passages. Since this environment has a lot of

maneuvering room and early opportunities for exploration in multiple directions, we expect that

exploration will be accelerated as robot team size is increased. Availability of additional robots
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will also be important in this environment,since new exploration frontiers will be uncovered

quickly as exploration proceeds; therefore, we expect the Divide and Conquer strategy to perform

well. The second scenario, which is modeled after a simple maze, is shown in Figure 4.17(b).

Again, the robot team is introduced from an initial formation at an entrance point to the maze.

Since this is a relatively simple maze, it has allow branching factor and will not benefit large robot

team sizes. Availability of additional robots will be helpful, but due to the limited number of

points where additional robots are needed for exploring branching structure, Divide and Conquer

should enjoy less of an advantage over the other strategies.The third scenario is shown in Figure

4.17(c). It consists of a series of moderately-sized rooms with large obstacles connected by long

corridors. This structure is meant to represent an underground base where the rooms are placed

down long corridors to provide separation from the entrance and protection from assault. In

this environment, the robots will have to travel longer distances before branching points,so the

availability of additional robots in Divide and Conquer,as well as Buddy System to a lesser extent,

should be helpful for exploring the map quickly. Large team sizes may not be that helpful in this

environment, since teams should be able to reform and continue the exploration after vising the

rooms while other team members are still proceeding down the next section of corridor.

Simulation test runs were launched automatically from a script. Three computers were

used for running simulations; to keep machine performance from affecting timing results, all

runs for each scenario were run on one machine. A checking program was implemented which

monitors the robots and compares their progress through the exploration procedure by refering

to a set of ground-truth navigation keypoints. When a robot passes within a 1.5 meter threshold

of a navigation keypoint, this event is recorded by the checking program. When all navigation

keypoints have been visited by the robot team, the exploration task is complete and the checking

program records results and allows the script to start the next test run.
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(a) Simulated environment S1:
Rooms world. This map is
meant to represent a home or
office environment.

(b) Simulated environment S2:
Maze world. This is a maze type
structure with a relatively low
branching factor.

(c) Simulated environment S3:
Lair world. This environment
is meant to simulate an under-
ground bunker with high branch-
ing factor and many corridors.

Figure 4.17: Simulated maps used to test coordination strategies on various types of environ-
ments within the Stage simulator. Robots are shown as a line of red dots in their initial starting
area which represents a breach entrance. Navigation keypoints are illustrated with red ’X’ marks.

This system of navigation keypoints is used to get a reasonable measure of when the robot

team has completed the exploration and mapping task. Navigation keypoints are selected such

that if all of them are uncovered, then the environment is fully explored, and vice-versa.

Total exploration time results for these three simulation scenarios are presented in Figure

4.18. Each of these graphs presents the time taken to fully explore the environment with a team

size from 2 to 12 robots and each of the three strategies Divide and Conquer, Buddy System, and

Reserves. Since there is no collaboration with a single robot, there isn’t any difference between

the performance of each strategy. For this reason, exploration timing for a team with a single

robot was omitted.
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(a) Results from environment S1: Rooms world (b) Results from environment S2: Maze world

(c) Results from environment S3: Lair world

Figure 4.18: Times taken to fully explore each simulation environment with varying team size,
by strategy. A map is fully explored when every location marked with a red ’X’ from Figure
4.17 has a robot approach within a 1 meter radius.

In the Rooms World simulation scenario shown in Figure 4.17(a), the results can be seen

in Figure 4.18(a). Rooms World is meant to represent a typical domestic or office environment

with a mixture of larger and smaller spaces separated by both corridors as well as some direct

connections. For all three strategies, the time taken to fully explore the map is reduced as the

team size is increased initially, but then plateaus above 9 robots. We believe that this is due to the

fact that this is still a relatively simple scenario and large teams of robots are not necessary to

proceed through the map. In the scenarios Divide and Conquer and Buddy System we noticed

that robot teams often stayed together as they proceeded around structures such as in the upper

right and lower right corners of Figure 4.17(a). These rooms often did not present more than one

exploration frontier at a time and therefore additional robots were not very helpful in pursuing
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alternate frontiers. Divide and Conquer seems to maintain its performance at larger team sizes

better than Reserves. This indicates that in a typical domestic or office environment, the additional

availability of additional robots in a Divide and Conquer strategy is helpful for exploration.

Divide and Conquer outperforms other strategies for almost all robot team compositions. In this

scenario, using more than 9 robots isn’t helpful in terms of exploration time; however, this is the

largest environment and the other two test scenarios will plateau with a smaller team size.

The results for the Maze World scenario illustrated in Figure 4.17(b) are shown in Figure

4.18(b). In this environment, additional robots do not have much of an advantage over smaller

team sizes beyond 6 robots. This is likely due to the fact that though this is a maze environment, it

does not exhibit significant branching factor; additional robots are not needed beyond the number

of exploration frontiers which are open at a given time. As the robots explore this maze, the

number of exploration frontiers which are open at a time is around this number, so it makes sense

that additional robots beyond 4 would not be very helpful, as is seen with the more proactive

strategies Divide and Conquer and Buddy System. Divide and Conquer and Buddy System appear

to have an advantage in exploration time over Reserves with smaller team sizes. This map is

relatively small, so robots are able to move to new frontiers quickly, and having additional robots

available only saves this small amount of additional time. Due to the small branching factor in

this scenario, high availability collaboration strategies like Divide and Conquer allocate resources

more efficiently when they are scarce with smaller team sizes, but this advantage disappears as

team sizes grow.

The results for the Lair World simulation environment from Figure 4.17(c) are shown in

Figure 4.18(c). This environment is comprised of a series of corridors which attach rooms to a

central room. In this simulation, additional robots seem to not improve performance beyond 7

robots. Buddy System outperforms other strategies, which indicates that each robot encounters a

single branch point by the time that a new team is available to reform the teams. This result is

also apparent in the results for Maze World shown in Figure 4.18(b).
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The second series of simulated experiments repeats the previous experiments with much

larger teams of 25 robots. An example of these experiments is shown in Figure 4.19.

Figure 4.19: A simulation run using 25 robots on environment S3 with the strategy Divide and
Conquer. Robots are shown as red and blue squares. The field of view of the sensors are shown
in green.

This series of simulations has demonstrated that the performance of the collaboration

strategies which we have presented is dependent on the topology and geometry of the environment.

Strategies such as Divide and Conquer kepp additional robots available to explore branching

structure; however, these strategies also generate more interference between robots. Divide and

Conquer, and, to a lesser extent, Buddy System require robots to navigate close to each other.

With such close approach of other robots, navigation is more cautious to avoid collision. In

smaller environments, the risk of collision is higher and larger teams of robots interfere with each

other more. Also, the utility of these types of strategies is dependent on the degree of branching

structure exhibited by the environment during exploration.
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Live robot experiments

Figure 4.20: Nine TurtleBots used in these experiments

We evaluated the performance of various robot coordination strategies in the multi-robot

exploration and mapping task. An example scenario for the Divide and Conquer cooperative

mapping strategy can be seen in the panorama image in Figure 4.21. Live-robot experiments

were performed in two settings: an office environment, and a training facility consisting of several

buildings simulating a small village. At the time when the office experiments were performed,

only the Divide and Conquer and Reserves strategies were available; the Buddy System strategy

was not tested here. All three strategies were tested in many of the buildings in the simulated

village training facility.

Office environment

In the first series of live robot experiments, we evaluated the first two strategies which

were developed, the Reserves and Divide and Conquer. This series of experiments was designed

to evaluate the performance of these two cooperative exploration strategies. A total of 6 runs were

performed for each cooperation strategy, team size, and starting location. For each experiment
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Figure 4.21: An example scenario for the experiments described in this paper. Three teams
of two robots are exploring the branching hallway structure in an office environment. In this
illustration, the robots are using the Divide and Conquer cooperative mapping strategy.

run, the TurtleBot team explored the environment from a wedge-shaped starting configuration,

which can be seen in Figure 4.20. These experiments were performed in an office environment.

In order to measure the exploration and mapping performance in each location, we chose specific

starting locations which are labeled Base1 and Base2 in Figure 4.22. These initial configurations

were chosen to represent a breaching action where mobile robots would be introduced into a

hostile environment*.

The first series of experiments demonstrate team performance based upon coverage in a

mapping task on an unknown office environment. Robot team sizes were varied from 2 to 9 robots.

A map built with 7 robots at TurtleBots using the Reserve strategy is seen in Figure 4.23(a). An

image showing the same final global map from a side view demonstrates the 3D plane features in

Figure 4.23(b).

Each of the collaboration strategy and robot team size experiments were performed from

two starting locations. These starting locations are labeled Base1 and Base2 in Figure 4.22. A

series of interesting locations was determined in advance by examining the building floor-plan;

these points of interest are also marked in Figure 4.22. Each experiment run gets a score based

*Red lines indicate artificial barricades to restrict the initial exploration of the robot teams to simulate a breach
entrance into a hostile environment. Blue squares indicate the location of navigation keypoints used for evaluating
test runs, as described in the text.
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Figure 4.22: Our office environment where the experiments were performed. The areas labeled
Base1 and Base2 are the initial position of the robots.

on how many of these points of interest are visited and mapped before a time limit is reached.

This score represents the effectiveness of that algorithm and team size at exploring the entity of

an unknown map.

In the first experiment series from Base1 in Figure 4.22, both strategies achieve reduced

exploration coverage per robot as the team size is increased, as can be seen in the graphs in Figure

4.24. In this starting location, there is limited space to maneuver, so both strategies generate

significant interference between robots trying to move to their goals. In several instances, pairs of

robots even crashed into each other due to the limited field-of-view of their sensors. We believe

that the Divide and Conquer strategy results in Figure 4.24(b) indicate that the team was slightly

more effective than the Reserves strategy in Figure 4.24(a). At the largest team size of 9 robots,

the Divide and Conquer strategy usually visited one additional point-of-interest more than the

Reserves strategy.
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(a) A map built by seven robots in an experiment using the
Reserve cooperative mapping strategy.

(b) The same map shown from a different angle to demon-
strate 3D plane features which are used for map landmarks.

Figure 4.23: Global map gathered by a team of seven mobile robots using the Reserve strategy.
In Figure (a) shows a top-down view after a loop closure is detected at the large loop. In Figure
(b) is the same map viewed from an angle to show the extent of the 3D walls.

Additional qualitative impressions are that the Divide and Conquer strategy explored the points-

of-interest that it reached more quickly than with the Reserves strategy. For both strategies, the

best team size appears to be 8 robots in this starting location, with a sharp increase at 6 robots.
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Divide and Conquer, Starting Area #1

(b) Divide and Conquer

Figure 4.24: Results from the first starting area

In the second set of the first series of experiments, the robot teams were placed in the

starting area labeled Base2 in Figure 4.22. As in the first experiment, the per-robot performance

of both strategies decreased as the number of robots were increased. This series of experiments

demonstrates a marked improvement of the Divide and Conquer strategy over the Reserves

strategy as can be seen in Figure 4.25. The Divide and Conquer strategy causes more robots to

be making observations of exploration frontiers due to the fact that groups contain more than one

robot. These additional observations of the frontier allow the Divide and Conquer strategy to

find exploration frontiers faster than the Reserves strategy, and therefore explore more points-of-

interest. The second experiment started from an area where there is more room to maneuver. This

allowed the Divide and Conquer strategy to have less interference since the entire team moved

together out of the starting area into the larger area before any divide operations were performed.

The Reserves strategy still had to initially maneuver from the cramped starting location. As in the

first experiment, the Divide and Conquer strategy qualitatively explored the environment faster

than the Reserves strategy. The Divide and Conquer strategy behaved similarly with the first

experiment, with increased performance with additional robots up to the limits of our study, while

the Reserves strategy exhibited reduced performance due to interference with team sizes above 6.
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(a) Reserves (b) Divide and Conquer

Figure 4.25: Results from the second starting area

Training facility

In the second series of live robot experiments, we evaluated all three collaboration

strategies Reserves, Divide and Conquer, and the new strategy Buddy System in various buildings

in a training facility designed to simulate an urban environment or village. Due to the remoteness

of this training facility, we only brought five robots for testing. The robot team size is varied

from three to five robots. We attempted to run each test three times, though some runs were not

completed due to scheduling constraints.

The procedure used for the experiments at the training facility differs somewhat from

the experiments at the office building. In these experiments, we evaluated robot exploration

performance using the same metric as in the simulations from Section 4.3.4. In the experiments

in the training facility, we allowed the teams to take as long as needed to explore every keypoint.

The amount of time elapsed to fully explore each building is the metric used for comparing

strategies in these experiments.

Architectural floor-plans from the buildings explored in this experiment are shown in

Figures 4.26(a), 4.26(b) and 4.26(c). The set of keypoint locations were manually labeled by

room separation. Some of these locations are difficult to reach given the physical capabilities of

the robots. In Figure 4.27(a), the robot needs to navigate through a narrow hallway in order to
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explore the rest of the floor of building C. For example in Figure 4.26(b), the robot needs to reach

the goal labeled P and O in order to complete the exploration of the room. These experiments

were performed with teams of three, four and five robots. Figure 4.27(d) shows the initial

configuration of one of the experiments ran in Building C. This initial configuration needs to be

set in order to fit the robots close to a door. This is meant to simulate an exploration task for a

rescue mission which starts by introducing the robots through a doorway into the building.

(a) Building A (b) Building B

(c) Building C

Figure 4.26: Architectural floor plans for buildings used for robot exploration and mapping
experiments. Navigation key points used for scoring runs are indicated by letters on the maps.

As shown in Figure 4.27(b), the robots explore and navigate in an environment which

exhibits difficult lighting conditions; however, this is not a problem for the Microsoft Kinect

sensor.
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(a) Robots navigating trough
narrow hallways in Building B

(b) Three robots exploring
Building B

(c) Two robots exploring a nar-
row hallway on Building C

(d) The initial configuration of
the robots in Building A, in-
tended to simulate a breach en-
try from the door.

Figure 4.27: Robot teams running exploration and mapping experiments

4.3.5 Results

Our results are summarized in tables 4.1, 4.2, 4.3 show the average on time that each group

of robot takes to explore the three buildings. In comparison with the simulation experiments,

the implementation in real robots are subject to hardware failures and a hostile environment

with debris and small potholes. In some of the experiments, particularly those which took place
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in building C, this caused a high degree of variability between runs. However, running the

experiments in the other two environments provided a good estimation of the performance of

each exploration strategy.

Table 4.1: Average time of each exploration strategy with 3 robots. Buddy System was not run
in Building C. Statistics are gathered from three runs.

Strategy Building A Building B Building C
Divide and Conquer 2233±56 1718±287 1127±30

Reserves 2526±− 1699±58 1521±241
Buddy System 1989±58 1531±86 −

Table 4.2: Average time of each exploration strategy with 4 robots. Buddy System was not run
on Building C. All other statistics are gathered from three runs, except Reserves in Building C
was only run once.

Strategy Building A Building B Building C
Divide and Conquer 1997±46 1188±93 773±31

Reserves 2221±95 1271±36 1602±−
Buddy System 1991±182 1237±90 −

Table 4.3: Average time of each exploration strategy with 5 robots.

Strategy Building A Building B Building C
Divide and Conquer 1437±61 689±35 920±69

Reserves 1832±38 947±83 1689±−
Buddy System 1529±212 685±66 −

We analyze each strategy in terms of the average time that the robots took to finish the

exploration task given team size and collaboration strategy. As the results indicated in figures

4.28(a), 4.28(b), and 4.28(c), the strategies Divide and Conquer and Buddy System always

performed better than the Reserves strategy. The performance also always increases as the team

size is increased in buildings A and B.

This results is consistent with the office building results presented in the first series of

experiments. Those experiments showed decreased performance improvement only once the

team size was increased beyond 6 robots, which is larger than the teams we were able to test
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(a) Building A (b) Building B

(c) Building C

Figure 4.28: Comparison of the strategies and team sizes the buildings at the test facility. Note
that the Buddy System was not tested in Building C due to time constraints.

in this experiment series. The team performance is not improved in building C due to the poor

conditions in that building including debris and concrete seams which inhibited progress.

4.3.6 Discussion

We have presented experiments which evaluate two collaboration strategies which can

be used by teams of mobile robots to map and explore an unknown environment. We have also

evaluated the impact of the number of robots on coverage in the exploration and mapping task.

The first collaboration strategy, called Reserves keeps a pool of unallocated robots at the

starting location. A new robot is activated when there are more exploration frontiers than currently
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active robots. This strategy was intended to minimize the amount of interference between robot

agents since robots would be far away from each other during exploration. The results from our

experiments do not indicate that this strategy results in less interference than other strategies since

performance decreases more when more robots are added in some environments. The Reserves

strategy is significantly slower at exploring the environment than other strategies.

The second collaboration strategy, called Divide and Conquer has all available robots

proceed in one large group. Once there are two exploration frontiers, at a corridor t-junction for

example, the team will divide in half and each sub-team will follow one of the exploration frontiers.

This process will be repeated with teams dividing in half each time they see branching structure

in the environment. It was anticipated that this strategy would result in higher interference since

robots would be maneuvering close together; however, the increased availability of robots near

new exploration frontiers offsets this phenomenon.

Divide and Conquer appears to be a more effective strategy than Reserves for exploring

and mapping an unknown environment. There are additional hybrid strategies which could now

be considered such as the Buddy System, which modifies the Reserves strategy with teams of

2 robots instead of 1. We believe that this strategy will mitigate much of the slowness of the

Reserves strategy while still minimizing interference.

4.4 Distributed mapping with privacy and

communication constraints

The use of multiple cooperative robots has the potential to enable fast information gath-

ering, and more efficient coverage and monitoring of large areas. For military applications,

multi-robot systems promise more efficient operation and improved robustness to adversarial

attacks. In civil applications (e.g., pollution monitoring, surveillance, search and rescue), the use

of several inexpensive, heterogeneous, agile platforms is an appealing alternative to monolithic
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Figure 4.29: In our field experiments, distributed trajectory estimation enables 3D reconstruc-
tion of an entire building using two robots (red, blue). Each column of the figure shows the
reconstructed point cloud of a floor (top), and the estimated trajectories overlaid on an occupancy
grid map (bottom).

single robot systems.

The deployment of multi-robot systems in the real world poses many technical challenges,

ranging from coordination and formation control, to task allocation and distributed sensor fusion.

In this paper we tackle a specific instance of the sensor fusion problem. We consider the case

in which a team of robots explores an unknown environment and each robot has to estimate its

trajectory from its own sensor data and leveraging information exchange with the teammates. Tra-

jectory estimation is relevant as it constitutes the backbone for many estimation and control tasks

(e.g., geo-tagging sensor data, 3D map reconstruction, position-aware task allocation). Indeed,

in our application, trajectory estimation enables distributed 3D reconstruction and localization

(Figure 4.29).
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We consider a realistic scenario, in which the robots can only communicate when they

are within a given distance. Moreover, also during a rendezvous (i.e., when the robots are close

enough to communicate) they cannot exchange a large amount of information, due to bandwidth

constraints. Moreover, we aim at a technique that allows each robot to estimate its own trajectory,

while asking for minimal knowledge of the trajectory of the teammates. This “privacy constraint”

has a clear motivation in a military application: in case one robot is captured, it cannot provide

sensitive information about the areas covered by the other robots in the team. Similarly, in civilian

applications, one may want to improve the localization of a device (e.g., a smart phone) by

exchanging information with other devices, while respecting users’ privacy. Ideally, we want

our distributed mapping approach to scale to very large teams of robots. Our ultimate vision is

to deploy a swarm of agile robots (e.g., micro aerial vehicles) that can coordinate by sharing

minimal information and using on-board sensing and computation. This section takes a step

in this direction and presents distributed mapping techniques that are shown to be extremely

effective in large simulations (with up to 50 robots) and in real-world problem (with up to 4

robots).

4.4.1 Approach

We consider a distributed ML trajectory estimation problem in which the robots have to

collaboratively estimate their trajectories while minimizing the amount of exchanged information.

We focus on a fully 3D case, as this setup is of great interest in many robotics applications (e.g.,

navigation in uneven terrain, UAVs). We also consider a fully distributed setup, in which the

robots can communicate and acquire relative measurements only during rendezvous events.

We present two key contributions to solve the distributed mapping problem. The first

contribution are a set of distributed algorithms that enable distributed inference at the estima-

tion back-end. Our approach can be understood as a distributed implementation of the chordal

initialization discussed in [Car+15b]. The chordal initialization consists in approximating the
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ML trajectory estimate by solving two quadratic optimization subproblems. The insight of the

present work is that these quadratic subproblems can be solved in a distributed fashion,leveraging

distributed linear system solvers. In particular, we investigate distributed implementations of the

Jacobi Over-Relaxation and the Successive Over-Relaxation. These distributed solvers imply a

communication burden that is linear in the number of rendezvous among the robots. Moreover,

they do not rely on the availability of an accurate initial guess. The second contribution is the

use of high-level object-based models at the estimation front-end and as map representation.

Traditional approach for multi-robot mapping rely on feature-based maps which are composed of

low level primitives like points and lines [Dav+07]. These maps become memory-intensive for

long-term operation, contain a lot of redundant information (e.g., it is unnecessary to represent a

planar surface with thousands of points), and lack the semantic information necessary for per-

forming wider range of tasks (e.g., manipulation tasks, human-robot interaction).To solve these

issues, we present an approach for multi-robot SLAM which uses object landmarks [Sal+13b]

in a multi -robot mapping setup. We show that this approach further reduces the information

exchange among robots, results in compact human-understandable maps, and has lower computa-

tional complexity as compared to low-level feature-based mapping. The third contribution is an

extensive experimental evaluation including realistic simulations in Gazebo and field tests in a

military facility. The experiments demonstrate that one of the proposed algorithms, namely the

Distributed Gauss-Seidel method, provides accurate trajectory estimates,is more parsimonious,

communication-wise, than related techniques, scales to large tea, and is robust to noise. Finally,

our field tests show that the combined use of our distribute algorithms and object-based models

reduces the communication requirements by several orders of magnitude and enables distributed

mapping with large teams of robots.
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4.4.2 Multi-Robot Pose Graph Optimization

We consider a multi-robot system and we denote each robot with a Greek letter, such

that the set of robots is ΩΩΩ = {α,β,γ, . . .}. The goal of each robot is to estimate its own trajectory

using the available measurements, and leveraging occasional communication with other robots.

The trajectory estimation problem and the nature of the available measurements are made formal

in the rest of this section.

Figure 4.30: An instance of multi-robot trajectory estimation: two robots (α in blue, and β

in dark green) traverse and unknown environment, collecting intra-robot measurements (solid
black lines). During rendezvous, each robot can observe the pose of the other robot (dotted red
lines). These are called inter-robot measurements and relate two separators (e.g., xxxαi , xxxβ j ). The
goal of the two robots is to compute the ML estimate of their trajectories.

We model each trajectory as a finite set of poses (triangles in Figure 4.30); the pose

assumed by robot α at time i is denoted with xxxαi (we use Roman letters to denote time indices).

We are interested in a 3D setup, i.e., xxxαi ∈ SE(3); when convenient, we write xxxαi = (RRRαi, tttαi),

making explicit that each pose includes a rotation RRRαi ∈ SO(3), and a position tttαi ∈ R3. The

trajectory of robot α is then denoted as xxxα = [xxxα1,xxxα2, . . .].

Measurements.

We assume that each robot acquires relative pose measurements. In practice these are

obtained by post-processing raw sensor data (e.g., scan matching on 3D laser scans). We

consider two types of measurements: intra-robot and inter-robot measurements. The intra-robot

measurements involve the poses of a single robot at different time instants; common examples of

intra-robot measurements are odometry measurements (which constrain consecutive robot poses,
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e.g., xxxαi and xxxαi+1 in Figure 4.30) or loop closures (which constrain non-consecutive poses, e.g.,

xxxαi−1 and xxxαi+1 in Figure 4.30).

The inter-robot measurements are the ones relating the poses of different robots. For

instance, during a rendezvous, robot α (whose local time is i), observes a second robot β (whose

local time is j) and uses on-board sensors to measure the relative pose of the observed robot in its

own reference frame. Therefore, robot α acquires an inter-robot measurement, describing the

relative pose between xxxαi and xxxβ j (red links in Figure 4.30). We use the term separators to refer

to the poses involved in an inter-robot measurement.

While our classification of the measurements (inter vs intra) is based on the robots

involved in the measurement process, all relative measurements can be framed within the same

measurement model. Since all measurements correspond to noisy observation of the relative pose

between a pair of poses, say xxxαi and xxxβ j , a general measurement model is:

z̄zzαi
β j

.
= (R̄RRαi

β j
, t̄ttαi

β j
), with:

 R̄RRαi
β j
= (RRRαi)

TRRRβ jRRRε

t̄ttαi
β j
= (RRRαi)

T(tttβ j−tttαi)+tttε

(4.4)

where the relative pose measurement z̄zzαi
β j

includes the relative rotation measurements R̄RRαi
β j

, which

describes the attitude RRRβ j in the reference frame of robot α at time i, “plus” a random rotation

RRRε (measurement noise), and the relative position measurement t̄ttαi
β j

, which describes the position

tttβ j in the reference frame of robot α at time i, plus random noise tttε. According to our previous

definition, intra robot measurements are in the form z̄zzαi
αk , for some robot α and for i 6= k; inter-robot

measurements are in the form z̄zzαi
β j

for two robots α 6= β.

In the following, we denote with Eα
I the set of intra-robot measurements for robot α,

while we call EI the set of intra-robot measurements for all robots in the team, i.e., EI =∪α∈ΩΩΩEα
I .

The set of inter-robot measurements involving robot α is denoted with Eα
S (S is the mnemonic for

“separator”). The set of all inter-robot measurements is denoted with ES. The set of all available

measurements is then E = EI ∪ES.
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Centralized ML Estimation

Let us collect all robot trajectories in a single (to-be-estimated) set of poses

xxx = [xxxα,xxxβ,xxxγ , . . .]. The ML estimate for xxx is defined as the maximum of the measurement

likelihood:

xxx? = argmax
xxx ∏

(αi,β j)∈E
L(z̄zzαi

β j
| xxx) (4.5)

where we took the standard assumption of independent measurements. The expression of the

likelihood function depends on the distribution of the measurements noise, i.e., RRRε, tttε in Equation

4.4.

We follow the path of [Car+15a] and we assume that translation noise is distributed

according to a zero-mean Gaussian with information matrix ω2
t I3, while the rotation noise x is

distributed according to a Von-Mises distribution with concentration parameter ω2
R. Under these

assumptions, it is possible to demonstrate [Car+15a] that the LLL estimate xxx .
= {(RRRαi, tttαi),∀α ∈

Ω,∀i} can be computed as solution of the following optimization problem:

min
tttαi∈R

3

RRRαi∈SO(3)
∀α∈ΩΩΩ,∀i

∑
(αi,β j)∈E

ω
2
t

∥∥∥tttβ j−tttαi−RRRαi t̄tt
αi
β j

∥∥∥2
+

ω2
R

2

∥∥∥RRRβ j−RRRαiR̄RR
αi
β j

∥∥∥2

F
(4.6)

The peculiarity of problem 4.6 is the use of the chordal distance ‖RRRβ j−RRRαiR̄RR
αi
β j
‖F to quantify rota-

tion errors, while the majority of related works in robotics uses the geodesic distance [Car+15b].

A centralized approach to solve the multi-robot PGO problem 4.6 works as follows. A

robot collects all measurements E . Then, the optimization problem 4.6 is solved using iterative

optimization on manifold [Del12a] or fast approximations [Car+15b]. In this work, we consider

the more interesting case in which it is not possible to collect all measurements at a centralized

estimator. This problem can be formally stated as follows.
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Problem (Distributed Trajectory Estimation). Design an algorithm that each robot α can

execute during a rendezvous with a subset of other robots Ωr ⊆Ω\{α}, and that

• takes as input: (i) the intra-robot measurements Eα
I and (ii) the subset of inter-robot

measurements Eα
S , (iii) partial estimates of the trajectories of robots β ∈Ωr;

• returns as output: the ML estimate xxx?α, which is such that xxx? = [xxx?α,xxx
?
β
,xxx?γ , . . .] is a minimizer

of problem 4.6.

Note that, while the measurements Eα
I and Eα

S are known by robot α, gathering the

estimates from robots β ∈Ωr requires communication, hence we want our distributed algorithm

to exchange a very small portion of the trajectory estimates.

Centralized Two-Stage PGO

The present work is based on two key observations. The first one is that the optimization

problem 4.6 has a quadratic objective; what makes problem 4.6 hard is the presence of non-convex

constraints, i.e., RRRαi ∈ SO(3).

The second key observation is that each of this two stages can be solved in distributed

fashion, exploiting existing distributed linear system solvers. We propose the use of a Distributed

Jacobi algorithm. To help readability, we start with a centralized description of the approach,

which is an adaptation of the chordal initialization of [Car+15b] to the multi-robot case.

Two-Stage Trajectory Estimation: Centralized Description

The approach proceeds in two stages. In the first stage, one solves for the unknown

rotations of the robots by solving a relaxed problem. Then, one recovers the full poses via a single

GN iteration. The two stages are detailed in the following:
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Stage 1: rotation initialization via relaxation and projection

The first stage computes a good estimate of the rotations of all robots by solving the

following rotation subproblem:

min
RRRαi∈SO(3)
∀α∈ΩΩΩ,∀i

∑
(αi,β j)∈E

ω
2
R

∥∥∥RRRβ j−RRRαiR̄RR
αi
β j

∥∥∥2

F
(4.7)

which amounts to estimating the rotations of all robots in the team by considering only the

relative rotation measurements (the second summand in problem 4.6). While problem 4.7 is

nonconvex (due to the nonconvex constraints RRRαi ∈ SO(3)), many algorithms to approximate

its solution are available in literature. Here we use the approach proposed in [MP07] and

reviewed in [Car+15b]. The approach first solves the quadratic relaxation obtained by dropping

the constraints RRRαi ∈ SO(3), and then projects the relaxed solution to SO(3). In formulas, the

quadratic relaxation is:

min
RRRαi ,∀α∈ΩΩΩ,∀i ∑

(αi,β j)∈E
ω

2
R

∥∥∥RRRβ j−RRRαiR̄RR
αi
β j

∥∥∥2

F
(4.8)

which simply rewrites problem 4.7 without the constraints. Since problem 4.8 is quadratic in the

unknown rotations RRRαi,∀α ∈ΩΩΩ,∀i, we can rewrite it as:

min
rrr
‖AAArrrr−bbbr‖2 (4.9)

where we stacked all the entries of the unknown rotation matrices RRRαi,∀α ∈ΩΩΩ,∀i into a single

vector rrr, and we built the (known) matrix AAAr and (known) vector bbbr accordingly (the presence

of a nonzero vector bbbr follows from setting one of the rotations to be the reference frame, e.g.,

RRRα1 = I3). Since equation 4.8 is a linear least-squares problem, its solution can be found by
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solving the normal equations:

(AAAT
r AAAr)rrr = AAAT

r bbbr (4.10)

Let us denote with r̆rr the solution of Equation 4.10. Rewriting r̆rr in matrix form, we obtain

the matrices R̆RRαi , ∀α ∈ΩΩΩ,∀i. Since these rotations were obtained from a relaxation of Equation

4.7, they are not guaranteed to satisfy the constraints RRRαi ∈ SO(3); therefore the approach [MP07]

projects them to SO(3), and gets the rotation estimate R̂RRαi = project(R̆RRαi), ∀α ∈ ΩΩΩ,∀i. The

projection only requires to perform an SVD of R̆RRαi and can be performed independently for each

rotation [Car+15b].

Stage 2: full pose recovery via single GN iteration.

In the previous stage we obtained an estimate for the rotations R̂RRαi,∀α∈ΩΩΩ,∀i. In this stage

we use this estimate to reparametrize problem 4.6. In particular, we rewrite each unknown rotation

RRRαi as the known estimate R̂RRαi “plus” an unknown perturbation; in formulas, we rewrite each

rotation as RRRαi = R̂RRαiExp(θθθαi), where Exp(·) is the exponential map for SO(3), and θθθαi ∈ R3

(this is our new parametrization for the rotations). With this parametrization, Equation 4.6

becomes:

min
tttαi ,θθθαi
∀α∈ΩΩΩ,∀i

∑
(αi,β j)∈E

ω
2
t

∥∥∥tttβ j−tttαi−R̂RRαiExp(θθθαi) t̄ttαi
β j

∥∥∥2
(4.11)

+
ω2

R
2

∥∥∥R̂RRβ jExp
(

θθθβ j

)
−R̂RRαiExp(θθθαi) R̄RRαi

β j

∥∥∥2

F

Note that the reparametrization allowed to drop the constraints (we are now trying to

estimate vectors in R3), but moved the nonconvexity to the objective (Exp(·) is nonlinear in

its argument). In order to solve Equation 4.11, we take a quadratic approximation of the cost
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function. For this purpose we use the following first-order approximation of the exponential map:

Exp(θθθαi)' I3 +SSS(θθθαi) (4.12)

where SSS(θθθαi) is a skew symmetric matrix whose entries are defined by the vector θθθαi .

Substituting Equation 4.12 into Equation 4.11 we get the desired quadratic approxima-

tion:

min
tttαi ,θθθαi∈R

3

∀α∈ΩΩΩ,∀i

∑
(αi,β j)∈E

ω
2
t

∥∥∥tttβ j−tttαi−R̂RRαi t̄tt
αi
β j
−R̂RRαiSSS(θθθαi)t̄tt

αi
β j

∥∥∥2
(4.13)

+
ω2

R
2

∥∥∥R̂RRβ j−R̂RRαiR̄RR
αi
β j
+ R̂RRβ jSSS(θθθβ j)−R̂RRαiSSS(θθθαi)R̄RR

αi
β j

∥∥∥2

F

Rearranging the unknown tttαi,θθθαi of all robots into a single vector ppp, we rewrite Equation

4.13 as a linear least-squares problem:

min
ppp
‖AAAp ppp−bbbp‖2 (4.14)

whose solution can be found by solving the linear system:

(AAAT
p AAAp)ppp = AAAT

p bbbp (4.15)

From the solution of Equation 4.15 we can build our trajectory estimate: the entries of ppp

directly define the positions tttαi , ∀α ∈ΩΩΩ,∀i; moreover, ppp includes the rotational corrections θθθαi ,

from which we get our rotation estimate as: RRRαi = R̂RRαiExp(θθθαi).
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Remark 1 (Advantage of Centralized Two-Stage Approach). The approach reviewed in

this section has three advantages. First, as shown in [Car+15b], in common problem instances

(i.e., for reasonable levels of measurement noise) it returns a solution that is very close to the ML

estimate.

Second, the approach only requires to solve two linear systems (the cost of projecting

the rotations is negligible), hence it is computationally efficient. Finally, the approach does

not require an initial guess (the initial relaxation produces a good initial guess); therefore, the

approach is able to converge even when the initial trajectory estimate is inaccurate (in those

instances, iterative optimization tends to fail [Car+15b]).

4.4.3 Dealing With Bandwidth Constraints I: Distributed Algorithms

Distributed Pose Graph Optimization

In this section we show that the two-stage approach described in Section 4.4.2 can be

implemented in a decentralized fashion. Since the approach only requires solving two linear

systems, every distributed linear system solver can be used as workhorse to split the computation

among the robots. For instance, one could adapt the Gaussian elimination approach of [CPD10]

to solve the systems 4.10, 4.15. In this section we propose an alternative approaches, based on the

Distributed Jacobi Over-Relaxation and the Distributed Successive Over-Relaxation algorithms,

and we discuss their advantages.

In both Equations 4.10 and 4.15 we need to solve a linear system where the unknown

vector can be partitioned into subvectors, such that each subvector contains the variables associated

to a single robot in the team. For instance, we can partition the vector rrr in 4.10, as rrr = [rrrα,rrrβ, . . .],

such that rrrα describes the rotations of robot α. Similarly, we can partition ppp = [pppα, pppβ, . . .] in

Equation 4.15, such that pppα describes the trajectory of α.
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Therefore, Equations 4.10 and 4.15 can be framed in the general form:

HHHyyy = ggg⇔


HHHαα HHHαβ . . .

HHHβα HHHββ . . .

...
... . . .




yyyα

yyyβ

...

=


gggα

gggβ

...

 (4.16)

where we want to compute the vector yyy = [yyyα,yyyβ, . . .] given HHH and ggg; on the right of Equation

4.16 we partitioned the square matrix HHH and the vector ggg according to the block-structure of yyy.

In order to introduce the distributed Jacobi algorithm, we first observe that the linear

system 4.16 can be rewritten as:

∑
δ∈ΩΩΩ

HHHαδyyyδ = gggα ∀α ∈ΩΩΩ

Taking the contribution of yyyα out of the sum, we get:

HHHααyyyα =− ∑
δ∈ΩΩΩ\{α}

HHHαδyyyδ +gggα ∀α ∈ΩΩΩ (4.17)

The set of equations 4.17 is the same as the original system 4.16, but clearly exposes the

contribution of the variables associated to each robot. The equations 4.17 constitute the basis for

the Successive Over-Relaxation (SOR ) and the Jacobi Over-Relaxation (JOR ) methods that we

describe in the following sections.

Distributed Jacobi Over-Relaxation (JOR ):

The distributed JOR algorithm [BT89] starts at an arbitrary initial estimate

yyy(0) = [yyy(0)α ,yyy(0)
β
, . . .] and solves the linear system 4.16 by repeating the following iterations:

yyy(k+1)
α = (1− γ)yyy(k)α +(γ)HHH−1

αα

(
− ∑

δ∈ΩΩΩ\{α}
HHHαδyyy(k)

δ
+gggα

)
∀α ∈ΩΩΩ (4.18)
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where γ is the relaxation factor. Intuitively, at each iteration robot α attempts to solve Equation

4.17 (the second summand in Equation 4.18 is the solution of Equation 4.17 with the estimates

of the other robots kept fixed), while remaining close to the previous estimate yyy(k)α (first summand

in 4.18). If the iterations 4.18 converge to a fixed point, say yyyα ∀α, then the resulting estimate

solves the linear system 4.17 exactly [BT89, page 131]. To prove this fact we only need to rewrite

Equation 4.18 after convergence:

yyyα = (1− γ)yyyα +(γ)HHH−1
αα

(
− ∑

δ∈ΩΩΩ\{α}
HHHαδyyyδ +gggα

)

which can be easily seen to be identical to Equation 4.17.

In our multi-robot problem, the distributed JOR algorithm can be understood in a simple

way: at each iteration, each robot estimates its own variables (yyy(k+1)
α ) by assuming that the ones of

the other robots are constant (yyy(k)
δ

); iterating this procedure, the robots reach an agreement on the

estimates, and converge to the solution of Equation 4.16. Using the distributed JOR approach,

the robots solve Equations 4.10 and 4.15 in a distributed manner. When γ = 1, the distributed

JOR method is also known as the distributed Jacobi (DGS) method.

We already mentioned that when the iterations 4.18 converge, then they return the exact

solution of the linear system. So a natural question is: when do the Jacobi iteration converge? A

general answer is given by the following proposition.

Proposition 2 (Convergence of JOR [BT89]). Consider the linear systems 4.16 and

define the block diagonal matrix DDD .
= diag

(
HHHαα,HHHββ, . . .

)
. Moreover, define the matrix:

MMM = (1− γ)I− γDDD−1(HHH−DDD) (4.19)

where I is the identity matrix of suitable size. Then, the JOR iterations 4.18 converge from any

initial estimate if and only if ρ(MMM) < 1, where ρ(·) denotes the spectral radius (maximum of
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absolute value of the eigenvalues) of a matrix.

The proposition is the same of Proposition 6.1 in [BT89] (the condition that I−MMM is

invertible is guaranteed to hold as noted in the footnote on page 144 of [BT89]).

It is non-trivial to establish whether our linear systems 4.10 and 4.15 satisfy the condition

of Proposition 2. In the experimental section, we empirically observe that the Jacobi iterations

indeed converge whenever γ≤ 1. For the SOR algorithm, presented in the next section, instead,

we can provide stronger theoretical convergence guarantees.

Distributed Successive Over-Relaxation (SOR )

The distributed SOR algorithm [BT89] starts at an arbitrary initial estimate

yyy(0) = [yyy(0)α ,yyy(0)
β
, . . .] and, at iteration k, applies the following update rule, for each α ∈ΩΩΩ:

yyy(k+1)
α = (1− γ)yyy(k)α +(γ)HHH−1

αα

− ∑
δ∈ΩΩΩ

+
α

HHHαδyyy(k+1)
δ

− ∑
δ∈ΩΩΩ

−
α

HHHαδyyy(k)
δ

+gggα

 (4.20)

where γ is the relaxation factor, ΩΩΩ
+
α is the set of robots that already computed the (k+ 1)-th

estimate, while ΩΩΩ
−
α is the set of robots that still have to perform the update 4.20, excluding node

α (intuitively: each robot uses the latest estimate). As for the JOR algorithm, by comparing

Equations 4.20 and 4.17, we see that if the sequence produced by the iterations 4.20 converges to a

fixed point, then such point satisfies 4.17, and indeed solves the original linear system 4.16. When

γ = 1, the distributed SOR method is known as the distributed Gauss-Seidel (DGS ) method.

The following proposition, whose proof trivially follows from [BT89, Proposition 6.10, p.

154] (and the fact that the involved matrices are positive definite), establishes when the distributed

SOR algorithm converges to the desired solution.

Proposition 3 (Convergence of SOR ). The SOR iterations 4.20 applied to the linear

systems 4.10 and 4.15 converge to the solution of the corresponding linear system (from any
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initial estimate) whenever γ ∈ (0,2), while the iterations do no converge to the correct solution

whenever γ /∈ (0,2).

According to [BT89, Proposition 6.10, p. 154], for γ /∈ (0,2), the SOR iterations 4.20 do

not converge to the solution of the linear system in general, hence also in practice, we restrict the

choice of γ in the open interval (0,2). In the experimental section, we show that the choice γ = 1

ensures the fastest convergence.

Communication Requirements for JOR and SOR

In this section we observe that to execute the JOR and SOR iterations 4.18 and 4.20, robot

α only needs its intra and inter-robot measurements Eα
I and Eα

S , and an estimate of the separators,

involved in the inter-robot measurements in Eα
S . For instance, in the graph of Figure 4.31 robot α

only needs the estimates of yyyβ1
and yyyβ3

, while does not require any knowledge about the other

poses of β.

Figure 4.31: Example: (left) trajectory estimation problem and (right) corresponding block
structure of the matrix HHH.

To understand this fact, we note that both Equations 4.10 and 4.15 model an estimation

problem from pairwise relative measurements. It is well known that the matrix HHH (sometimes

called the Hessian [Del05a]) underlying these problems has a block structure defined by the

Laplacian matrix of the underlying graph [BH07]. For instance, Figure 4.31 (right) shows the

block sparsity of the matrix HHH describing the graph on the left: off-diagonal block-elements in

position (αi,β j) are non zero if and only if there is an edge (i.e., a measurement) between αi and
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β j.

By exploiting the block sparsity of HHH, we can further simplify the JOR 4.18 iterations as:

yyy(k+1)
α = (1− γ)yyy(k)α +(γ)HHH−1

αα

− ∑
(αi,δ j)∈Eα

S

HHHαiδ jyyy
(k)
δ j

+gggα

 , ∀α ∈ΩΩΩ (4.21)

where we simply removed the contributions of the zero blocks from the sum in Equation 4.18.

Similarly we can simplify the SOR 4.20 iterations as:

yyy(k+1)
α = (1− γ)yyy(k)α +(γ)HHH−1

αα

 − ∑
(αi,δ j)∈Eα

S
+

HHHαiδ jyyy
(k+1)
δ j
− ∑
(αi,δ j)∈Eα

S
−

HHHαiδ jyyy
(k)
δ j
+gggα

 (4.22)

where we removed the contributions of the zero blocks from the sum in 4.20; the sets Eα
S
+ and

Eα
S
− satisfy Eα

S
+∪Eα

S
− = Eα

S , and are such that Eα
S
+ includes the inter-robot measurements

involving robots which already performed the (k + 1)-th iteration, while Eα
S
− is the set of

measurements involving robots that have not performed the iteration yet (as before: each robot

simply uses its latest estimate).

Equations 4.21 and 4.22 highlight that the JOR and SOR iterations (at robot α) only

require the estimates for poses involved in its inter-robot measurements Eα
S . Therefore both JOR

and SOR involve almost no “privacy violation”: every other robot β in the team does not need to

communicate any other information about its own trajectory, but only sends an estimate of its

rendezvous poses.

The DGS algorithm starts from the insight that we can rewrite the linear system 4.16,

by splitting the block diagonal terms of HHH from the off-diagonal terms: We describe the DGS

algorithm to solve a generic Matrices are compatible with the graph: nonzero blocks only for

edges in the graph. Essentially, we solve the linear systems of Section 4.4.2 using the distributed

Jacobi algorithm. Note that we only need to solve two linear systems to get a very good solution,
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while with DDF-SAM we may need to perform multiple GN iterations and we need complex

bookkeeping of the linearization points. description from [Ber97], page 131,143 Consider a

linear system

Ax = b (4.23)

with x ∈ Rdn and A ∈ Rdn×dn. Considering a partition of the vector x into n sub-vectors xi ∈ Rd

(this describe the trajectory of each robot). Partition the matrix A accordingly. Therefore the

linear equation above can be written as:

n

∑
j=1

Ai jx j = bi (4.24)

where Ai j is a block of A. Assuming Aii is invertible for each i = 1, . . . ,n, we can solve for xi:

xi =−A−1
ii [∑

j 6=i
Ai jx j−bi] (4.25)

The Jacobi algorithm is an iterative solution for the linear system, and works by iterating the

following computation:

xi(t +1) =−A−1
ii [∑

j 6=i
Ai jx j(t)−bi] (4.26)

what makes it interesting in our context is that, we can simplify the iterations as:

xi(t +1) =−A−1
ii [ ∑

j∈Ni

Ai jx j(t)−bi] (4.27)

where Ni are the neighbors of robot i. The simplification follows from the block sparsity of the

matrix A. If the sequence converges, then it must satisfy Equation 4.25, hence solving the original

linear system.
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4.4.4 Flagged Initialization

As we will see in the experimental section and according to Proposition 3, the JOR and

SOR approaches converge from any initial condition when γ is chosen appropriately. However,

starting from a “good” initial condition can reduce the number of iterations to converge, and

in turns reduces the communication burden (each iteration 4.21 or 4.22 requires the robots to

exchange their estimate of the separators).

In this work, we follow the path of [BH05a] and adopt a flagged initialization. A flagged

initialization scheme only alters the first JOR or SOR iteration as follows. Before the first itera-

tion, all robots are marked as “uninitialized”. Robot α performs its iteration 4.21 or 4.22 without

considering the inter-robot measurements, i.e., Equations 4.21 and 4.22 become yyy(k+1)
α = HHH−1

ααgggα;

then the robot α marks itself as “initialized”. When the robot β performs its iteration, it includes

only the separators from the robots that are initialized; after performing the JOR or SOR iteration,

also β marks itself as initialized. Repeating this procedure, all robots become initialized after

performing the first iteration. The following iterations then proceed according to the standard

JOR 4.21 or SOR 4.22 update. [BH05a] show a significant improvement in convergence using

flagged initialization. As discussed in the experiments, flagged initialization is also advantageous

in our distributed pose graph optimization problem.

4.4.5 Dealing With Bandwidth Constraints II: Compressing Sensor Data

via Object-based Representations

The second contribution of this paper is the use of high-level object-based models at the

estimation front-end and as a map representation for multi-robot SLAM. Object-based abstractions

are crucial to further reduce the memory storage and the information exchange among the robots.

Previous approaches for multi-robot mapping rely on feature-based maps which become
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memory-intensive for long-term operation, contain a large amount of redundant information, and

lack the semantic understanding necessary to perform a wider range of tasks (e.g., manipulation,

human-robot interaction). To solve these issues, we present an approach for multi-robot SLAM

which uses object landmarks [Sal+13b] in a multi-robot mapping setup.

Section 4.4.5 introduces the additional mathematical notation and formalizes the problem

of distributed object-based SLAM. Section 4.4.6 presents the implementation details of our

distributed object-based SLAM system.

Figure 4.32: Factor graph representation of Multi-Robot Object based SLAM. xxxαi and xxxβi

denote the poses assumed by robot α and β at time i respectively. The pose of the kth object as
estimated by robot α and β is denoted with oooα

k and oooβ

k respectively. Green dots shows inter-robot
factors whereas orange and purple dots shows intra-robot factors.

Distributed Object-based SLAM

We consider a multi-robot system as defined in Section 4.4.2. Each robot, in addition to

estimating its own trajectory using local measurements and occasional communication with other

robots, also estimates the pose of a set of objects in the environment. We model each trajectory as

a finite set of poses; the trajectory of robot α is xxxα = [xxxα1,xxxα2, . . .]. In addition, we denote with

oooα

k ∈ SE(3) the pose of the kth object as estimated by of robot α (Figure 4.32).
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Measurements Similar to distributed pose graph optimization (Section 4.4.2), we assume

that each robot acquires two types of relative pose measurements: intra-robot and inter-robot

measurements. The intra-robot measurements consist of the odometry measurements, which

constrain consecutive robot poses (e.g., xxxαi and xxxαi+1 in Figure 4.32), and object measurements

which constrains robot poses with the corresponding visible object landmarks (e.g., xxxαi and oooα

k in

Figure 4.32). Contrarily to Section 4.4.2, the inter-robot measurements relate the object poses

observed by different robots. During a rendezvous between robot α and robot β, each robot

shares the label and pose of detected object landmarks with the other robot. Then, for each object

observed by both robots, the teammates add an inter-robot measurements, enforcing the object

pose estimate to be consistent across the teammates.

For instance, if oooβ

k and oooα

k in Figure 4.32 model the pose of the same object, then the two

poses should be identical in the global coordinate frame. For this reason, inter-robot measurement

between a pair of associated object poses is the identity.

The intra-robot object measurements follow the same measurements model of Equation

4.4. For instance, if the robot α at time i and at pose xxxαi observes an object at pose oooα

k , then the

corresponding measurement z̄zz
xxxαi
oooα

k
measures the relative pose between xxxαi and oooα

k . Similarly we

denote inter-robot measurement between object poses oooα

k and oooβ

k as z̄zz
oooα

k

oooβ

k

. In order to ensure that

the object pose estimate is consistent across teammates, we define the inter-robot measurement

model z̄zz
oooα

k

oooβ

k

as:

z̄zz
oooα

k

oooβ

k

.
= (I,0), with:


RRR

oooα
k

oooβ

k

= (RRRoooα
k
)TRRR

oooβ

k
RRRε = I

t̄tt
oooα

k

oooβ

k

= (RRRoooα
k
)T(ttt

oooβ

k
−tttoooα

k
)+tttε = 0

(4.28)

where the relative object pose measurement z̄zz
oooα

k

oooβ

k

includes the relative rotation measurements

RRR
oooα

k

oooβ

k

= I, which describes the attitude of the estimated object pose oooβ

k , RRR
oooβ

j
with respect to the

reference frame of robot α, “plus” a random rotation RRRε (estimation noise), and the relative
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position measurement t̄tt
oooα

k

oooβ

k

= 0, which describes the position ttt
oooβ

k
in the reference frame of robot α,

plus random noise tttε.

In the following, we denote with Eα
I the set of intra-robot odometry for robot α, while we

call EI the set of intra-robot odometry measurements for all robots in the team, i.e., EI =∪α∈ΩΩΩEα
I .

Similarly the set of intra-robot object measurements for robot α is denoted as Eα
o , whereas the

set of all intra-robot object measurements is denoted as Eo. Similar to Section 4.4.2, the set of

inter-robot measurements involving robot α is denoted with Eα
S .

The set of all inter-robot measurements is denoted with ES. The set of all available

measurements is then E = EI ∪EO∪ES. Note that each robot only has access to its own intra

and inter-robot measurements Eα
I , Eα

O and Eα
S .

4.4.6 Centralized ML Estimation

ML trajectory and objects estimation. Let us collect all robot trajectories and object

poses in a (to-be-estimated) set of robot poses xxx = [xxxα,xxxβ ,xxxγ, . . .] and set of object poses ooo =

[oooα,oooβ,oooγ, . . .]. The ML estimate for xxx and ooo is defined as the maximum of the measurement

likelihood:

xxx?,ooo? = argmax
xxx,ooo ∏

(xxxαi ,xxxαi+1)∈EI

L(z̄zz
xxxαi
xxxαi+1
| xxx)︸ ︷︷ ︸

odometry factors

∏
(xxxαi ,ooo

α
k )∈EO

L(z̄zz
xxxαi
oooα

k
| xxx,ooo)︸ ︷︷ ︸

intra-robot object-measurement factors

∏
(oooα

i ,ooo
β

j )∈ES

L(z̄zzoooα
i

oooβ

j

| xxx,ooo)︸ ︷︷ ︸
inter-robot object-object factors

(4.29)

where we used the same assumptions on measurement noise as in Section 4.4.2. Defining
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X = xxx∪ooo, we rewrite Equation 4.29 as:

X ? = argmax
X ∏

(αi,β j)∈E
L(z̄zzαi

β j
| X ) (4.30)

Since the optimization problem in Equation 4.30 has the same structure of the one in

Equation 4.5, we follow the same steps to solve it in a distributed manner using the Distributed

Gauss-Seidel method. The next section presents the implementation details of our distributed

object-based SLAM system.

Object-based SLAM Implementation

Object detection and pose estimation Each robot collects RGBD data using a depth

camera, and measures its ego-motion through wheel odometry. In our approach, each RGB frame

(from RGBD) is passed to the YOLO object detector [Red+16a], which detects objects at 45

frames per second. Compared to object-proposal-based detectors, YOLO is fast, since it avoids

the computation burden of extracting object proposals, and is less likely to produce false positives

in the background. We fine-tune the YOLO detector on a subset of objects from the BigBird

dataset ([Sin+14]). The training dataset contains the object images in a clean background taken

from different viewpoints and labeled images of the same objects taken by a robot in an indoor

environment. During testing, we use a probability threshold of 0.3 to avoid false detections.

Each detected object bounding box is segmented using the organized point cloud segmen-

tation [Tre+13]. The segmented object is then matched to the 3D template of the detected object

class to estimate its pose. We extract PFHRGB features [Rus+08] in the source (object segment)

and target (object model) point clouds and register the two point clouds in a Sample Consensus

Initial Alignment framework [Rus09]. If we have at least 12 inlier correspondences, GICP

(generalized iterative closest point [SHT05] is performed to further refine the registration and the

final transformation is used as the object pose estimate. If less than 12 inlier correspondences are
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found, the detection is considered to be a false positive and the corresponding measurement is

discarded. In hindsight, this approach verifies the detection both semantically and geometrically.

Data Association If object pose estimation is successful, it is data-associated with other

instances already present in the map by finding the object landmark having the same category

label within 2σ distance of the newly detected object. If there are multiple objects with the same

label within that distance, the newly detected object is matched to the nearest object instance. If

there exists no object having the same label, a new object landmark is created.

Convolutional 
Network based 

Object Detection

RGBD Image

Segment 
Detected Object

If successful

Data associate w.r.t 
known instances in the 

map

Add object-pose factor 
to the matching object 

instance

Estimate Object Pose 
w.r.t 3D Model of the 

detected object

Add new object 
landmark and 

object-pose factor

if associated

if not associated

SLAM

Figure 4.33: Flowchart of Object based SLAM

Before the first rendezvous event, each robot performs standard single-robot SLAM using

OmniMapper [TRC12]. Both wheel odometry and relative pose measurements to the observed
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objects are fed to the SLAM back-end. A flowchart of the approach is given in Figure 4.33.

Robot Communication During a rendezvous between robots α and β, robot α communi-

cates the category labels (class) and poses (in robot α’s frame) of all the detected objects to robot

β. We assume that the initial pose of each robot is known to all the robots, hence, given the initial

pose of robot α, robot β is able to transform the communicated object poses from robot α’s frame

to its own frame.† For each object in the list communicated by robot α, robot β finds the nearest

object in its map, having the same category label and within 2σ distance. If such an object exists,

it is added to the list of shared objects: this is the set of objects seen by both robots. The list of

shared objects contains pairs (oooα

k ,ooo
β

l ) and informs the robots that the poses oooα

k and oooβ

l correspond

to the same physical object, observed by the two robots. For this reason, in the optimization we

enforce the relative pose between oooα

k and oooβ

l to be zero.

We remark that, while before the first rendezvous the robots α and β have different

reference frames, the object-object factors enforce both robots to have a single shared reference

frame, facilitating future data association.

4.4.7 Experiments

We evaluate the distributed JOR and SOR along with DGS and DGS approaches (with

and without using objects) in large-scale simulations (Sections 4.4.8 and 4.4.9) and field tests

(Sections 4.4.10 and 4.4.11). The results demonstrate that (i) the DGS dominates the other

algorithms considered in this paper in terms of convergence speed, (ii) the DGS algorithm is

accurate, scalable, and robust to noise, (iii) the DGS requires less communication than techniques

from related work (i.e., DDF-SAM), and (iv) in real applications, the combination of DGS and

object-based mapping reduces the communication requirements by several orders of magnitude

compared to approaches exchanging raw measurements.

†The knowledge of the initial pose is only used to facilitate data association but it is not actually used during
pose graph optimization. We believe that this assumption can be easily relaxed but for space reasons we leave this
task to future work.
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4.4.8 Simulation Results: multi-robot Pose Graph Optimization

In this section, we characterize the performance of the proposed approaches in terms of

convergence, scalability (in the number of robots and separators), and sensitivity to noise.

Simulation setup and performance metrics For our tests, we created simulation datasets

in six different configurations with increasing number of robots: 4, 9, 16, 25, 36 and 49 robots.

The robots are arranged in a 3D grid with each robot moving on a cube, as shown in Figure 4.34.

When the robots are at contiguous corners, they can communicate (gray links).

(a) 4 Robots (b) 9 Robots (c) 16 Robots

Figure 4.34: Simulated 3D datasets with different number of robots. Robots are shown in
different colors. Gray links denote inter-robot measurements.

Unless specified otherwise, we generate measurement noise from a zero-mean Gaussian

distribution with standard deviation σR = 5◦ for the rotations and σt = 0.2m for the translations.

Results are averaged over 10 Monte Carlo runs.

In our problem, JOR or SOR are used to sequentially solve two linear systems, 4.10 and

4.15, which return the minimizers of 4.9 and 4.14, respectively. Defining, mr
.
= minrrr ‖AAArrrr−bbbr‖2,

we use the following metric, named the rotation estimation error, to quantify the error in solving

Equation 4.10:

er(k) = ‖AAArrrr(k)−bbbr‖2−mr (4.31)

er(k) quantifies how far is the current estimate rrr(k) (at the k-th iteration) from the minimum of

the quadratic cost. Similarly, we define the pose estimation error as:

ep(k) = ‖AAAp ppp(k)−bbbp‖2−mp (4.32)
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with mp
.
= minppp ‖AAAp ppp−bbbp‖2. Ideally, we want er(k) and ep(k) to quickly converge to zero for

increasing k.

Ultimately, the accuracy of the proposed approach depends on the number of iterations,

hence we need to set a stopping condition for the JOR or SOR iterations. We use the following

criterion: we stop the iterations if the change in the estimate is sufficiently small. More formally,

the iterations stop when ‖rrr(k+1)− rrr(k)‖ ≤ ηr (similarly, for the second linear system ‖ppp(k+1)−

ppp(k)‖ ≤ ηp). We use ηr = ηp = 10−1 as stopping condition unless specified otherwise.

Comparisons among the distributed algorithms In this section we consider the scenario

with 49 robots. We start by studying the convergence properties of the JOR and SOR algorithms

in isolation. Then we compare the two algorithms in terms of convergence speed. Figure 4.35

shows the rotation and the pose error versus the number of iterations for different choices of

the parameter γ for the JOR algorithm. Figure 4.35a confirms the result of Proposition 2: JOR

applied to the rotation subproblem converges as long as γ≤ 1. Figure 4.35a shows that for any

γ > 1 the estimate diverges, while the critical value γ = 1 (corresponding to the DGS method)

ensures the fastest convergence rate.
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Figure 4.35: JOR : convergence of (a) rotation estimation and (b) pose estimation for different
values of γ (grid scenario, 49 robots). In the case of pose estimation, the gap between the initial
values of γ > 1 and γ≤ 1 is due to the bad initialization provided by the rotation estimation for
γ > 1.
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Figure 4.36 shows the rotation and the pose error versus the number of iterations for

different choices of the parameter γ ∈ (0,2) for the SOR algorithm. The figure confirms the

result of Proposition 3: the SOR algorithm converges for any choice of γ ∈ (0,2).

Figure 4.36a shows that choices of γ close to 1 ensure fast convergence rates, while

Figure 4.36b established γ = 1 (corresponding to the DGS method) as the parameter selection

with faster convergence.
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Figure 4.36: SOR : convergence of (a) rotation estimation and (b) pose estimation for different
values of γ (grid scenario, 49 robots).

In summary, both JOR and SOR have top performance when γ = 1. Later in this section

we show that γ = 1 is the best choice independently on the number of robots and the measurement

noise.

Let us now compare JOR and SOR in terms of convergence. Figure 4.37 compares the

convergence rate of SOR and JOR for both the rotation subproblem (Figure 4.37a ) and the pose

subproblem (Figure 4.37b ). We set γ = 1 in JOR and SOR since we already observed that this

choice ensures the best performance.
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Figure 4.37: JOR vs SOR : convergence of (a) rotation estimation and (b) pose estimation for
the JOR and SOR algorithms with γ = 1 (grid scenario, 49 robots).

(a) Rotation Estimation (b) Pose Estimation

Figure 4.38: JOR vs SOR : number of iterations required for (a) rotation estimation and (b)
pose estimation for the JOR and SOR algorithms with γ = 1 (grid scenario, 49 robots). The
average number of iterations is shown as a solid line, while the 1-sigma standard deviation is
shown as a shaded area.

The figure confirms that SOR dominates JOR in both subproblems. Figure 4.38 shows

the number of iterations for convergence (according to our stopping conditions) and for different

choices of the parameter γ. Once again, the figure confirms that the SOR with γ = 1 is able to

converge in the smallest number of iterations, requiring only few tens of iterations in both the

rotation and the pose subproblem.

We conclude this section by showing that setting γ = 1 in SOR ensure faster convergence

regardless the number of robots and the measurement noise. Figure 4.39 compares the number of
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Figure 4.39: SOR : number of iterations required for (a) rotation estimation and (b) pose
estimation in the SOR algorithm for different choices of γ and increasing number of robots.

iterations required to converge for increasing number of robots for varying γ values.

Similarly Figure 4.40 compares the number of iterations required to converge for increas-

ing noise for varying γ value. We can see that in both the cases γ = 1 has the fastest convergence

(required the least number of iterations) irrespective of the number of robots and measurement

noise. Since SOR with γ = 1, i.e., the DGS method, is the top performer in all test conditions, in

the rest of the paper we restrict our analysis to this algorithm.
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Figure 4.40: SOR : number of iterations required for (a) rotation estimation and (b) pose
estimation in the SOR algorithm for different choices of γ and increasing measurement noise.

Flagged initialization In this paragraph we discuss the advantages of the flagged initial-

ization. We compare the DGS method with flagged initialization against a naive initialization in
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which the variables (rrr(0) and ppp(0), respectively) are initialized to zero. The results, for the dataset

with 49 robots, are shown in Figure 4.41.
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Figure 4.41: DGS : Comparison between flagged and non-flagged initialization on the grid
scenario with 49 robots. Average estimation errors (solid line) and 1-sigma standard deviation
(shaded area) are in log scale.

In both cases the estimation errors go to zero, but the convergence is faster when using

the flagged initialization. The speed-up is significant for the second linear system (Figure 4.41b),

for both linear systems. We noticed a similar advantage across all tested scenarios. Therefore, in

the rest of the paper we always adopt the flagged initialization.

Stopping conditions and anytime flavor. This section provides extra insights on the

convergence of the DGS method.

(a) Initial (b) 10 iterations (c) 1000 iterations

Figure 4.42: DGS : Trajectory estimates for the scenario with 49 robots. (a) Odometric estimate
(not used in our approach and only given for visualization purposes), (b)-(c) DGS estimates
after given number of iterations.
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Figure 4.43: DGS : convergence statistics of rotation estimation and pose estimation for each
robot (49 Robots). Robots are represented by different color lines.

Figure 4.43a -b show the evolution of the rotation and pose error for each robot in the

49-robot grid: the error associated to each robot (i.e., to each subgraph corresponding to a robot

trajectory) is not monotonically decreasing and the error for some robot can increase to bring

down the overall error.

Figure 4.43c -d report the change in the rotation and pose estimate for individual robots.

Estimate changes become negligible within few tens of iterations. As mentioned at the beginning

of the section, we stop the DGS iterations when the estimate change is sufficiently small (below

the thresholds ηr and ηp).

181



Figure 4.42 shows the estimated trajectory after 10 and 1000 iterations of the DGS

algorithm for the 49-robot grid. The odometric estimate (Figure 4.42a ) is shown for visualization

purposes, while it is not used in our algorithm. We can see that the estimate after 10 iterations

is already visually close to the estimate after 1000 iterations. The DGS algorithm has an any-

time flavor: the trajectory estimates are already accurate after few iterations and asymptotically

converge to the centralized estimate.

Scalability in the number of robots. Figure 4.44 shows the average rotation and pose

errors for all the simulated datasets (4, 9, 16, 25, 36 and 49 robots). In all cases the errors quickly

converge to zero. For large number or robots the convergence rate becomes slightly slower, while

in all cases the errors is negligible in few tens of iterations. While so far we considered the

errors for each subproblem (er(k) and ep(k)), we now investigate the overall accuracy of the DGS

algorithm to solve our original problem 4.6.

We compare the proposed approach against the centralized two-stage approach of [Car+15b]

and against a standard (centralized) Gauss-Newton (GN) method, available in gtsam ([Del12b]).

We use the cost attained in problem 4.6 by each technique as accuracy metric (the lower the

better).
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Figure 4.44: DGS : convergence for scenarios with increasing number of robots.

Table 4.4 reports the number of iterations and the cost attained in problem 4.6, for the

compared techniques. The number of iterations is the sum of the number of iterations required to
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solve Equations 4.10 and 4.15. The cost of the DGS approach is given for two choices of the

thresholds ηr and ηp.

Table 4.4: Number of iterations and cost attained in problem 4.6 by the DGS algorithm (for
two choices of the stopping conditions), versus a centralized two-stage approach and a GN

method. Results are shown for scenarios with increasing number of robots. Measurement noise
is generated from a Gaussian distribution with standard deviation σR = 5◦ for the rotations and
σt = 0.2m for the translations. Results are averaged over 10 Monte Carlo runs.

#Robots Distributed Gauss-Seidel Centralized
ηr = ηp = 10−1 ηr = ηp = 10−2 Two-Stage GN

#Iter Cost % Diff. #Iter Cost % Diff. Cost Cost
w/ GN w/ GN

4 10 1.9 0 65 1.9 0 1.9 1.9
9 14 5.3 1.9 90 5.2 0 5.2 5.2

16 16 8.9 2.2 163 8.8 1.14 8.8 8.7
25 17 16.2 1.88 147 16.0 0.62 16.0 15.9
36 28 22.9 1.77 155 22.7 0.88 22.6 22.5
49 26 35.1 8.0 337 32.9 1.23 32.7 32.5

As already reported in [Car+15b], the last two columns of the table confirm that the

centralized two-stage approach is practically as accurate as a GN method. When using a strict stop-

ping condition (ηr = ηp = 10−2), the DGS approach produces the same error as the centralized

counterpart (difference smaller than 1%). Relaxing the stopping conditions to ηr = ηp = 10−1

implies a consistent reduction in the number of iterations, at a small loss in accuracy (cost increase

is only significant for the scenario with 49 robots).

In summary, the DGS algorithm (with ηr = ηp = 10−1) ensures accurate estimation

within few iterations, even for large teams.

Sensitivity to measurement noise. Figure 4.45 shows the average rotation and pose

errors for increasing levels of noise in the scenario with 49 robots. Also in this case, while larger

noise seems to imply longer convergence tails, the error becomes sufficiently small after few tens

of iterations.
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Table 4.5 evaluates the performance of the DGS method in solving problem 4.6 for

increasing levels of noise, comparing it against the centralized two-stage approach of [Car+15b]

and the Gauss-Newton method.
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Figure 4.45: DGS : convergence for increasing levels of noise (scenario with 49 Robots).
(a) Average rotation error for σR = {1,5,10,15,20}◦. (b) Average pose error for σt =
{0.1,0.3,0.5,0.8,1.0}m.

The DGS approach is able to replicate the accuracy of the centralized two-stage approach,

regardless the noise level, while the choice of thresholds ηr = ηp = 10−1 ensures accurate

estimation within few tens of iterations.

Table 4.5: Number of iterations and cost attained in problem 4.6 by the DGS algorithm (for two
choices of the stopping conditions), versus a centralized two-stage approach and a GN method.
Results are shown for increasing measurement noise in a scenario with 49 robots

.

Measurement Distributed Gauss-Seidel Centralized
noise ηr=ηp=10−1 ηr=ηp=10−2 Two-Stage GN

σr(
◦) σt(m) #Iter Cost % Diff. #Iter Cost % Diff. Cost Cost

w/ GN w/ GN

1 0.05 8.5 2.1 16.0 51.0 1.8 0 1.8 1.8
5 0.1 21.8 14.8 6.47 197.8 14.0 0.71 14.0 13.9
10 0.2 35.6 58.4 4.28 277.7 56.6 1.07 56.6 56.0
15 0.3 39.8 130.5 3.57 236.8 128.4 1.90 129.3 126.0
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Scalability in the number of separators

In order to evaluate the impact of the number of separators on convergence, we simulated

two robots moving along parallel tracks for 10 time stamps. The number of communication links

were varied from 1 (single communication) to 10 (communication at every time), hence the number

of separators (for each robot) ranges from 1 to 10. Figure 4.46a shows the number of iterations

required by the DGS algorithm (ηr = ηp = 10−1), for increasing number of communication

links.

#Communication Links

0 2 4 6 8 10

#
It

e
ra

ti
o

n
s

5

10

15

20

Rotation Estimation

Pose Estimation

#Communcation Links
2 4 6 8 10C

o
m

m
u
n
ic

a
ti
o
n
 B

u
rd

e
n
 (

b
y
te

s
)

×10
5

0

0.5

1

1.5

2

2.5

Distributed Gauss-Seidel

DDF-SAM

(a) (b)

Figure 4.46: DGS vs DDF-SAM: (a) average number of iterations versus number of separators
for the DGS algorithm. (b) communication burden (bytes of exchanged information) for DGS
and DDF-SAM, for increasing number of separators.

The number of iterations is fairly insensitive to the number of communication links.

Figure 4.46b compares the information exchanged in the DGS algorithm against a state-of-the-art

algorithm, DDF-SAM ([CPD10]). In DDF-SAM, each robot sends KGN

[
sBp +(sBp)

2
]

bytes,

where KGN is the number of iterations required by a GN method applied to problem (4.6) (we

consider the best case KGN = 1), s is the number of separators and Bp is the size of a pose in

bytes. The quadratic term derives from the exchange of a dense marginal (mean and covariance).
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In the DGS algorithm, each robots sends Kr
DGS (sBr)+K p

DGS (sBp) bytes, where Kr
DGS

and K p
DGS are the number of iterations required by the DGS algorithm to solve the linear

systems (4.10) and (4.15), respectively, and Br is the size of a rotation (in bytes).

We assume Br = 9 doubles (72 bytes)‡ and Bp = 6 doubles (48 bytes). The number of

iterations Kr
DGS and K p

DGS are the one plotted in Figure 4.46a . From Figure 4.46b we see that the

communication burden of DDF-SAM quickly becomes unsustainable, while the linear increase in

communication of the DGS algorithm implies large communication saving.

Realistic simulations in Gazebo

GroundTruth Estimate

Figure 4.47: Gazebo tests: ground truth environments and aggregated point clouds correspond-
ing to the DGS estimate.

We tested our DGS -based approach in two scenarios in Gazebo simulations as shown in

Figure 4.47. The robots start at fixed locations and explore the environment by moving according

to a random walk. Each robot is equipped with a 3D laser range finder, which is used to intra-robot

‡In the linear system (4.10) we relax the orthogonality constraints hence we cannot parametrize the rotations
with a minimal 3-parameter representation.
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and inter-robot measurements via scan matching.
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Figure 4.48: (a) Number of exploration steps required to explore a fixed-sized grid with
increasing number of robots. (b) Samples of robot trajectories from our Gazebo-based Monte
Carlo experiments.

In both scenarios, two robots communicate only when they are within close proximity of

each other (0.5m in our tests). Results are average over 100 Monte-Carlo runs.

(a) Rotation Noise (b) Translation Noise

Figure 4.49: Convergence for increasing levels of noise (scenario with 2 Robots in Gazebo).
(a) Average rotation estimation error for σR = {1,5,10,15,20}◦. (b) Average pose estimation
error for σt = {0.1,0.3,0.5,0.8,1.0}m.

Figure 4.47 shows the aggregated point cloud corresponding to the DGS trajectory

estimate, for one of the runs. The point cloud closely resembles the ground truth environment

shown in the same figure.
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Figure 4.48a shows that number of steps required to explore the whole environment

quickly decreases with increasing number of robots.

This intuitive observation motivates our interest towards mapping techniques that can

scale to large teams of robots. Figure 4.48b reports trajectory samples for different robots in

our Monte Carlo analysis. Figures 4.49 and 4.50 show the average errors er(k) and ep(k) for

increasing levels of noise and for the scenario with 2 and 4 robots respectively.

(a) Rotation Noise (b) Translation Noise

Figure 4.50: Convergence for increasing levels of noise (scenario with 4 Robots in Gazebo).
(a) Average rotation estimation error for σR = {1,5,10,15,20}◦. (b) Average pose estimation
error for σt = {0.1,0.3,0.5,0.8,1.0}m.

4.4.9 Simulation Results: Multi-Robot Object based SLAM

In this section we characterize the performance of the DGS algorithms associated with

our object-based model described in Section 4.4.5. We test the resulting multi-robot object-based

SLAM approach in terms of scalability in the number of robots and sensitivity to noise.
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Simulation setup and performance metrics

We consider two scenarios, the 25 Chairs and the House, which we simulated in Gazebo.

In the 25 Chairs scenario, we placed 25 chairs as objects on a grid, with each chair placed at a

random angle. In the House scenario, we placed furniture as objects in order to simulate a living

room environment.

Figure 4.51 shows the two scenarios. Unless specified otherwise, we generate measure-

ment noise from a zero-mean Gaussian distribution with standard deviation σR = 5◦ for the

rotations and σt = 0.2m for the translations. Six robots are used by default. Results are averaged

over 10 Monte Carlo runs. We use the absolute translation error (ATE*) and absolute rotation

error (ARE*) of the robot and landmark poses with respect to the centralized estimate as error

metric.

These two metrics are formally defined below.

25 Chairs Scene

House Scene

Figure 4.51: Multi robot object-based SLAM in Gazebo: the 25 Chairs and House scenarios
simulated in Gazebo.
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Absolute Translation Error (ATE*)

Similar to the formulation by Sturm et al. [Stu+12], the average translation error measures

the absolute distance between the trajectory and object poses estimated by our approach versus

the centralized GN method. The ATE* is defined as:

AT E∗ =

(
1

∑α∈Ω nα
∑

α∈Ω

nα

∑
i=1
‖tttαi− ttt∗αi

‖2

) 1
2

(4.33)

where tttαi is the position estimate for robot α at time i, ttt∗αi
is the corresponding estimate from GN,

and nα is the number of poses in the trajectory of α. A similar definition holds for the object

positions where X i is the ith trajectory pose or object location estimated using our approach and

X i
c is the ith corresponding pose estimated using the centralized Gauss-Newton method, trans(x,y)

measures the euclidean distance between x and y.

Absolute Rotation Error (ARE*)

The average rotation error is computed by evaluating the angular mismatch between the

(trajectory and objects) rotations produced by the proposed approach versus a centralized GN

method:

ARE∗ =

(
1

∑α∈Ω nα
∑

α∈Ω

nα

∑
i=1
‖Log

(
(RRR∗αi

)TRRRαi

)
‖2

) 1
2

(4.34)

where RRRαi is the rotation estimate for robot α at time i, RRR∗αi
is the corresponding estimate from

GN. A similar definition holds for the object rotations.

Accuracy in the number of robots

Figure 4.52 compares the object locations and trajectories estimated using multi-robot

mapping and centralized mapping for the two scenarios. Videos showing the map building for the

two scenarios are available at:
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https://youtu.be/nXJamypPvVY and https://youtu.be/nYm2sSHuGjo.

Centralized Distributed

Figure 4.52: Trajectories of the six robots and object locations (shows as red dots) estimated
using the centralized GN method and the proposed DGS method for the 25 Chairs (top) and
House scenarios (bottom).

Table 4.6 reports the number of iterations and our accuracy metrics (cost, ATE*, ARE*)

for increasing number of robots. The table confirms that the distributed approach is nearly as

accurate as the centralized Gauss-Newton method and the number of iterations does not increase

with increasing number of robots, making our approach scalable to large teams. Usually, few

tens of iterations suffice to reach an accurate estimate. Note that even when the cost of the DGS

method is slightly higher than GN, the actual mismatch in the pose estimates is negligible (in the

order of millimeters for positions and less than a degree for rotations). Therefore, our approach is

scalable in the number of robots.
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Table 4.6: Number of iterations, cost, ATE* and ARE* of our approach compared to the
centralized Gauss-Newton method for increasing number of robots. ATE* and ARE* are
measured using η = 10−1 as stopping condition. Measurement noise is generated from a
Gaussian distribution with standard deviation σR = 5◦ for the rotations and σt = 0.2m for the
translations. Results are averaged over 10 Monte Carlo runs.

#Robots Distributed Gauss-Seidel Centralized ATE* (m) ARE* (deg)

η=10−1 η=10−2 GN Poses Lmrks. Poses Lmrks.

#Iter Cost #Iter Cost Cost

2 5.0 56.1 9.0 56.0 54.7 1.5e-03 8.0e-04 2.1e-01 2.8e-01

4 5.0 118.0 8.0 117.9 113.8 9.7e-04 7.5e-04 2.0e-01 2.8e-01

6 5.0 166.6 7.0 166.5 160.9 3.1e-03 2.1e-03 3.3e-01 4.0e-01

Sensitivity to measurement noise. We further test the accuracy of our approach by

evaluating the number of iterations, the cost, the ATE* and ARE* for increasing levels of noise

in 25 Chairs scenario with 6 robots. Table 4.7 shows that our approach is able to replicate the

accuracy of the centralized Gauss-Newton method, regardless of the noise level.

Table 4.7: Number of iterations, cost, ATE* and ARE* of our approach compared to a
centralized Gauss-Newton method for increasing measurement noise in 25 Chairs scenario
with 6 robots. ATE* and ARE* are measured using η=10−1 as stopping condition.

Measurement Distributed Gauss-Seidel Centralized ATE* (m) ARE* (deg)

noise η=10−1 η=10−2 GN Poses Lmrks. Poses Lmrks.

σr(
◦) σt(m) #Iter Cost #Iter Cost Cost

1 0.05 5.0 12.7 6.0 12.7 12.5 1.8e-04 1.3e-04 7.5e-02 9.0e-02

5 0.1 5.0 166.6 7.0 166.5 160.9 3.1e-03 2.1e-03 3.3e-01 4.0e-01

10 0.2 5.0 666.2 8.0 665.9 643.4 1.3e-02 8.8e-03 6.7e-01 8.1e-01

15 0.3 6.0 1498.3 10.0 1497.8 1447.2 3.0e-02 2.1e-02 1.0e+00 1.2e+00

4.4.10 Field Experiments: Multi-Robot Pose Graph Optimization

We tested the DGS approach on field data collected by two to four Jackal robots (Figure

4.53), moving in a military training facility. Each robot collects 3D scans using Velodyne 32E,
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and uses IMU and wheel odometry to measure its ego-motion §. 3D scans are used to compute

inter-robot measurements (via ICP [TRC14a]) during rendezvous. We evaluated our approach in

multiple buildings in the military training facility.

Figure 4.53: (Left) Clearpath Jackal robot used for the field tests: platform and sensor layout;
(right) snapshot of the test facility with the two Jackal robots.

Figures 4.54, 4.55, and 4.56 show the aggregated 3D point clouds (left), the estimates

trajectories (center), and the aggregated occupancy grid map (right) over multiple runs.

The central part of the figures compares the DGS estimate against the DDF-SAM estimate

and the corresponding centralized estimate. Note that the test scenarios cover a broad set of

operating conditions. For instance Figure 4.55 corresponds to experiments with 4 robots moving

in indoor environment, while Figure 4.54 corresponds to tests performed in a mixed indoor-

outdoor scenario (with robots moving on gravel when outdoor, Figure 4.57). The four tests of

Figure 4.56 correspond to early results with 2 robots for which we do not have a comparison

against DDF-SAM.

§https://github.com/CognitiveRobotics/omnimapper
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Point Cloud DGS DDF-SAM Centralized Occupancy Grid

Figure 4.54: Mixed indoor-outdoor scenarios: (Left) aggregated point cloud obtained from the
DGS trajectory estimate. (Center) estimated trajectories for DGS , GN and DDF-SAM (robots
shown in red, blue, green and black for the distributed techniques). (Right) overall occupancy
grid map obtained from the DGS trajectory estimate.
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Point Cloud DGS DDF-SAM Centralized Occupancy Grid

Figure 4.55: Indoor scenarios: (Left) aggregated point cloud obtained from the DGS trajectory
estimate. (Center) estimated trajectories for DGS , GN and DDF-SAM (robots shown in red, blue,
green and black for the distributed techniques). (Right) overall occupancy grid map obtained
from the DGS trajectory estimate of the scenario obtained from the DGS trajectory estimate.
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Point Cloud DGS Centralized Occupancy Grid

- -

-

Figure 4.56: Early tests with 2 robots: (Left) aggregated point cloud obtained from the DGS
trajectory estimate. (Center) estimated trajectories for DGS and GN. (Right) overall occupancy
grid map obtained from the DGS trajectory estimate.

Quantitative results are given in Table 4.8, which reports the cost attained by the DGS

algorithm as compared to the centralized GN cost and DDF-SAM. Number of iterations, ATE*

and ARE* are also shown.

Each line of the table shows statistics for each of the 15 field tests in the military training

facility. The first four rows (tests 0 to 3) correspond to tests performed in a mixed indoor-outdoor

scenario (Figure 4.54).
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Table 4.8: Performance of DGS on field data as compared to the centralized GN method and
DDF-SAM. Number of iterations, ATE* and ARE* with respect to centralized Gauss-Newton
estimate are also shown.

#Test #vertices #edges #links Distributed Gauss-Seidel Centralized DDF-SAM

ηr = ηp = 10−1 ηr = ηp = 10−2 Two-Stage GN

#Iter Cost ATE* ARE* #Iter Cost ATE* ARE* Cost Cost Cost

0 194 253 16 12 1.42 0.21 1.63 197 1.40 0.07 0.67 1.40 1.40 4.86

1 511 804 134 10 0.95 1.22 6.64 431 0.91 1.18 6.37 0.89 0.89 6.88

2 547 890 155 21 1.99 1.03 4.74 426 1.95 1.08 4.79 1.93 1.93 12.54

3 657 798 47 176 0.32 0.68 2.40 446 0.32 0.69 2.06 0.32 0.32 2.39

4 510 915 179 23 10.89 1.10 6.69 782 10.57 0.71 4.53 10.51 10.50 37.94

5 418 782 151 13 3.02 0.51 5.75 475 2.92 0.39 4.32 2.91 2.90 18.31

6 439 720 108 26 9.28 0.68 5.08 704 9.12 0.31 2.39 9.10 9.07 72.76

7 582 1152 228 10 3.91 0.31 3.40 579 3.78 0.26 2.43 3.78 3.78 16.38

8 404 824 183 11 1.92 0.13 1.78 410 1.89 0.12 1.25 1.89 1.89 6.82

9 496 732 86 41 4.30 0.54 4.20 504 4.29 0.45 3.04 4.28 4.27 21.53

10 525 923 147 15 5.56 0.39 3.93 577 5.43 0.23 2.04 5.43 5.40 19.59

11 103 107 3 71 0.85 1.58 14.44 328 0.84 0.27 2.18 0.84 0.84 -

12 227 325 50 16 0.79 1.11 10.44 511 0.71 0.80 7.02 0.68 0.68 -

13 77 127 26 10 0.33 0.34 2.23 78 0.26 0.21 1.25 0.26 0.26 -

14 322 490 85 28 1.42 0.83 5.05 606 1.07 0.47 2.10 1.04 1.04 -

The next seven rows (tests 4 to 10) correspond to tests performed with 4 robots in an

indoor environment. The last four rows (tests 11 to 14) correspond to early results with 2 robots.

Higher ATE* and ARE* in the first few rows is due to the fact that the robots move on gravel in

outdoors which introduces larger odometric errors. Consistently with what we observed in the

previous sections, larger measurement errors may induce the DGS algorithm to perform more

iterations to reach consensus (e.g., test 3).
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The columns “#vertices” and “#edges” describe the size of the overall factor graph

(including all robots), while the column “#links” reports the total number of rendezvous events.

In all the tests DDF-SAM performed worse than DGS which is shown by higher cost attained by

DDF-SAM as compared to DGS .

(a) Clearpath Jackal robot moving on gravel

(b) Multi-robot team exploring and
mapping inside buildings.

Figure 4.57: Experiments performed at the MOUT.

This is because DDF-SAM requires good linearlization points to generate condensed

graphs and instead bad linearization points during communication can introduce linearlization

errors resulting in higher cost. Figure 4.58 shows the corresponding histogram visualization

comparing the cost attained by the DGS algorithm and centralized Two-Stage and GN algorithm.
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4.4.11 Field Experiments: Multi-Robot Object-based SLAM

Figure 4.59: Objects from the BigBird dataset used in the field experiments of Section 4.4.11.

We test the combination of the DGS method and our object-based model on field data

collected by two Jackal robots (Figure 4.60) moving in a military training facility. We scattered

the environment with a set of objects (Figure 4.59) from the BigBird dataset ([Sin+14]). Each

robot is equipped with an Asus Xtion RGB-D sensor and uses wheel odometry to measure its

ego-motion. We use the RGB-D sensor for object detection and object pose estimation.

Figure 4.60: Snapshot of the test facility, the two Clearpath Jackal robots, and the objects used
for object-based SLAM for the tests of Section 4.4.11.
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We evaluated our approach in two different scenarios, the stadium and the house. We did

two runs inside the stadium (stadium-1 & stadium-2) and one run in the house with objects

randomly spread along the robot trajectories. The stadium datasets were collected in an indoor

basketball stadium with the robot trajectories bounded in a roughly rectangular area. The house

dataset was collected in the living room and kitchen area of a house.

Figure 4.61: Snapshot of the YOLO object detection in two difference scenes: (left) stadium
dataset, (right) house dataset.

Object detection. We used 12 objects from the BigBird dataset in all three runs. The two-

stage process of object detection (semantic verification) followed by pose estimation (geometric

verification) ensured that we do not add false positive detections. Similarly to the standard GN

method, our current distributed optimization technique (DGS ) is not robust to outliers. The

detection thresholds can be further relaxed when using robust pose graph optimization techniques.

In the first run (stadium-1), 6 objects were added to the map out of the 12 objects present

in the environment. Similarly, 5 objects were detected in stadium-2 and house. Figure 4.61

shows a snapshot of the bounding box of the detected object in three different scenes. Videos

showing YOLO object detection results on other datasets are available at https://youtu.be/

urZiIJK2IYk and https://youtu.be/-F6JpVmOrc0.
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Memory Requirements. Table 4.9 compares the average memory requirement per robot

to store a dense point cloud map (PCD) with respect to storing a object-based map (Obj) in our

real tests.

Table 4.9: Memory and communication requirements for our object based approach (Obj) as
compared to Point cloud based approach (PCD) on field data.

Scenario Avg. Per-Robot Avg. Comm.
Memory Req. (MB) Bandwidth Req. (MB)

PCD Obj PCD Obj

Stadium-1 1.2e+03 1.9e+00 1.9e+01 1.5e-05
Stadium-2 1.4e+03 1.9e+00 1.4e+01 1.1e-05

House 2.1e+03 1.9e+00 1.6e+01 1.3e-05

Per-robot memory requirement in the case of dense point cloud is computed as n f KC

where n f is the number of frames, K is the number of points per frame and C is the memory

required to store each point. In the case of object level map, it is computed as noPC where no is

the number of object models and P is the average number of points in each object model. Table

4.9 shows that, as expected, the per-robot memory requirement is orders of magnitude smaller

with our object-based map as compared to point-cloud-based maps.

Communication Bandwidth Requirements. Table 4.9 also compares the average com-

munication requirements in the case of transmission of dense point clouds and object-based

models. When using point clouds, the robots are required sending at least one RGB-D frame

at every rendezvous to estimate their relative pose. So the average communication for dense

point cloud map is computed as ncKC where nc is the number of rendezvous, K is the number of

points per frame and C is the memory required to send each point. Communication in the case

of our object-based map requires sending object category and object pose; a upper bound can

be computed as noL where no is the number of objects and L is the memory required to store

category label and pose of an object. Table 4.9 confirms that our approach provides a remarkable

advantage in terms of communication burden as it requires transmitting 6 orders of magnitude
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less than a point-cloud-based approach.

Accuracy. Figure 4.62 shows the trajectories of the two robots in three runs and the object

pose estimates. The figure compares our approach and the corresponding centralized GN estimate.

Quantitative results are given in Table 4.10, which reports the cost attained by our approach, the

number of iterations, ATE*, ARE* as compared to the centralized GN approach.

Centralized Distributed

stadium-1

stadium-2

house

Figure 4.62: Real tests: estimated trajectories and object poses for our approach and for the
centralized GN method. Trajectories of the two robots are shown as red and blue lines, while
objects are shown as colored dots.
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Table 4.10: Number of iterations, cost, ATE* and ARE* of our approach as compared to
centralized Gauss-Newton method for Field data

Scenario Initial Distributed Gauss-Seidel Centralized ATE* (m) ARE* (deg)

ηr=ηp=10−1 ηr=ηp=10−2 GN Poses Lmrks. Poses Lmrks.

Cost #Iter Cost #Iter Cost Cost

Stadium-1 120.73 5.0 1.1e-09 5.0 1.1e-09 1.6e-10 1.9e-10 1.9e-10 1.4e-03 1.2e-04

Stadium-2 310.24 5.0 4.5e-12 8.0 4.4e-12 3.5e-13 2.1e-03 2.2e-03 1.2e-02 1.4e-02

House 43.59 5.0 1.1e-03 6.0 1.0e-03 8.4e-04 4.4e-02 6.2e-02 4.3e-01 4.9e-01

The table confirms that our distributed approach converges in few iterations and is prac-

tically as accurate as the centralized GN method; in particular the mismatch between the DGS

and the GN estimates is in the order of millimeters for the position estimates and tenth of degrees

for the rotation estimates. Note that for these indoor experiments the wheel odometry is fairly

accurate, since the robot moves on wooden or tiled floor. This results in better performance for

the proposed technique and in small costs in GN. The initial cost, instead, is large mostly because

of the error in the initial alignment between the two robots.

4.4.12 Discussion

We investigate distributed algorithms to estimate the 3D trajectories of multiple cooper-

ative robots from relative pose measurements. Our first contribution is the design of a 2-stage

approach for distributed pose estimation and propose a number of algorithmic variants. One

of these algorithms, the Distributed Gauss-Seidel (DGS ) method, is shown to have excellent

performance in practice: (i) its communication burden scale linearly in the number of separators

and respect agents’ privacy, (ii) it is robust to noise and the resulting estimates are sufficiently

accurate after few communication rounds, (iii) the approach is simple to implement and scales

well to large teams. We demonstrated the effectiveness of the DGS approach in extensive

simulations and field tests.
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Our second contribution is to extend the DGS approach to use objects as landmarks

for multi-robot mapping. We show that using object-based abstractions in a multi-robot setup

further reduces the memory requirement and the information exchange among teammates. We

demonstrate our multi-robot object-based mapping approach in Gazebo simulations and in field

tests performed in a military training facility.

We are currently extending the approach proposed in this paper in several directions. First,

our current approach for object-based mapping assumes that a model of each observed objects is

known in advance. However it can be challenging to store a large number of object models, and

to account for intra-class variations. As a future work, we plan to extend our approach to the case

where object models are not previously known (at an instance level) and instead object shapes are

jointly optimized within our SLAM framework.

Second, our current approach is based on a nonlinear least squares formulation which

is not robust to gross outliers. Therefore future work will focus on designing more general

algorithms that are robust to spurious measurements.

Third, we plan to extend our experimental evaluation to flying robots. While we demon-

strated the effectiveness of our approach in large teams of ground robots, we believe that the next

grand challenge is to enable coordination and distributed mapping in swarms of agile micro aerial

vehicles with limited communication and computation resources.
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Chapter 5

Information-Based Exploration

5.1 Introduction

Single-vehicle informative sampling work for spatial field modeling has been pioneered by

[Sin+07; KSG08; Low+09]. They showed that using information-theoretic measures as part of the

path planning approach can significantly improve modeling performance. Low et al. [Low+09]

modified this initial off-line planning approach to run as adaptive sampling. In adaptive sampling,

the robot plans the next steps during the mission, based on the last measurements that were taken.

Singh et al. [Sin+07] used sequential allocation, where a centralized path planner planned paths

for each robot in sequence, and all robots ran informative sampling in parallel. Ouyang et

al. [Ouy+14] used active coordination in a decentralized approach. Robots would coordinate their

actions, but only when there were other robots within their robot’s planning neighborhood.

Typical multi-robot coordination approaches used in other domains, e.g. exploration and

mapping with ground robots, include auction-based methods [Zlo+02; Sim+00a; SX04] and

spatial segregation, typically through Voronoi partitioning [SSR12; Mar+15; PFS13].
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Nieto-Granda et al. [NRC14] used three heuristics for multi-robot coordination:

1. additional robots wait until they are explicitly needed.

2. robots travel in groups and split when appropriate.

3. robots move in teams of two and split when needed.

The results indicated that a divide & conquer strategy is more effective than keeping

robots waiting in reserve. The multi-robot strategies used in adaptive sampling are mostly

considering only local collaboration or requiring a central planner. We do not want to use any

central components in our system to avoid having a single point of failure. Furthermore, we

would prefer strategies that consider the global space, be less susceptible to local minima, and

account for the exploration-exploitation trade-off. Some commonly used methods of coordination,

such as auction-based methods, require a fair amount of communication between the robots. We

want to keep communication between robots to an absolute minimum, given the constraints of the

acoustic communication channel, and limit time spent on communication, versus sampling.

In this work, we show that the multi-robot approach’s modeling performance can be

improved through coordinating actions between robots. This method prevents the scenario where

robots choose the same waypoints, based on similar models of the world. We use an approach that

combines Voronoi partitioning with a communication strategy for data sharing between robots to

achieve a decentralized multi-robot coordination approach.

Previous approaches using Voronoi partitioning include the works of Patten, Schwager,

and Soltero [PFS13; Sch+14; SSR14]. Patten et al. [PFS13], and Schwager et al. [Sch+14] used

a single initial Voronoi partitioning which is used to divide the sample space across the robots.

Patten et al. then had each robot run a traveling salesman problem (TSP) tour over sampling

locations. These sampling locations have been greedily selected based on mutual information

from within the Voronoi region.
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Schwager et al. and Soltero et al. [Sch+14; SSR14] discussed coverage control ap-

proaches. In both cases, the density function to be estimated is modeled using a linear combination

of a set of basis functions. Schwager et al. [Sch+14] had each robot also run a TSP tour inside

their partition, but overall sampling locations, to create the model. The estimated density function

is then used to calculate the weighted voronoi centroids, to which robots are deployed for sensor

coverage.

In [SSR14], robots either already have the density function or run a lawnmower survey to

obtain it. Robots then run paths whose waypoints are Voronoi generators. The waypoints move

based on a control law that considers the density function, towards the (weighted) centroid of the

area. The paths thus change shape to monitor the interesting regions of the survey area only.Both

of these approaches run two stages: model estimation, followed by static sensor deployment,

or persistent monitoring. Note that in this work, we focus only on the field estimation, and

creating an informative model. We do not assume to know the density function beforehand and

are interested in using online and adaptive approaches for modeling it. Patten et al. [PFS13] used

a similar approach, where Voronoi partitioning is used to split the survey area across multiple

robots. They then have each robot find a subset of sampling locations using mutual information

and calculate a TSP tour for sampling. This approach is different in that a Voronoi partitioning

is only calculated once, and similar to [Sin+07], the sampling locations, and TSP tour are also

calculated only once at the start of the mission, assuming a reasonable model of the environment

is already available.

In our research, we are interested in an online, adaptive approach to sampling, which

reacts to changes in the model as the robot sample. In [Sch+14], they use Voronoi partitioning

for coverage control, where an environment is initially divided into (Voronoi) partitions, using

distributed K-means. The robots run a TSP tour inside their partitions, to estimate the density

function. This density function is then used to calculate the Voronoi centroids, to which the

robots are deployed for sensor coverage. In [SSR14], a control law is laid out, which is used for
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waypoint control.

After estimating the density function using a lawnmower survey, the waypoints in the

robots’ trajectories move based on a control law. This applies the density function for the Voronoi

partition centered on the waypoint.

5.2 Multi-robot coordination for Informative Adaptive

Sampling

Autonomous vehicles are cost and time-efficient systems for exploration and mapping

of unknown environments. We are interested in the problem of modeling these unknown envi-

ronments efficiently. For example, modeling algae abundance in lake environments. Note that

this is, in essence, a problem of learning a spatial field. Previous works have shown the benefits

of informative and adaptive sampling over traditional methods [Sin+07; Low+09; TWP11].

Multi-robot approaches can reduce the time required to explore or map an area. Our focus is on

improving the multi-robot system efficiency and modeling performance through the addition of

decentralized multi-robot coordination approaches.

We investigate a multi-robot coordination approach for decentralized, informative, adap-

tive sampling with autonomous underwater vehicles. We want a decentralized approach for the

robustness of the system, such that there is no single point of failure, and to allow for anytime

prediction; any robot at any point in time should have a reasonable model of the whole environ-

ment. Furthermore, we want an approach that keeps the required amount of communication to a

minimum. Especially in underwater environments, communication is severely limited, and we

cannot assume continuous access to a reliable communication channel.

To decentralize the approach, each robot maintains its own model of the environment. At

specific points in time, robots can share measurements with each other, and add these to their

own models. Each robot uses its own model, together with the model’s entropy, to decide which
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locations to sample next.

We combine this with dynamic Voronoi partitioning, to decrease overlap in actions and

decisions between vehicles, effectively coordinating actions between the vehicles, with minimal

communication overhead. The Voronoi partitioning is re-calculated after every data-sharing event,

such that the partitioning changes with the uncertainty in the model, i.e., where the vehicles need

to sample. In such, we create a decentralized, multi-robot coordination approach for informative,

adaptive sampling of unknown environments.

5.2.1 Approach

We developed a dynamic Voronoi partitioning approach for decentralized adaptive sam-

pling. The vehicles create a model of the environment using Gaussian Process regression and

running adaptive sampling utilizing the posterior map entropy of the model. To differentiate

vehicle actions, each vehicle runs Voronoi partitioning over possible sampling locations. The

posterior map entropy is used here as a density function for shifting the centroids of the Voronoi

partitions towards interesting regions. While the vehicles are sampling, at depth, they can not

share data. However, they can request data sharing events, at which time data is shared, and the

Voronoi partitions are re-calculated. This section will briefly explain each of these subparts of our

dynamic Voronoi partitioning* for vehicle coordination in informative adaptive sampling.

5.2.2 Gaussian Process regression & path planning

A common technique for spatial modeling, known in geostatistics as Kriging, is Gaussian

Process (GP) regression [RW06]. GP regression is a non-parametric modeling technique, where

the GP is completely specified by its mean function and its covariance matrix. While the GP

*Note: we call our approach ‘dynamic Voronoi partitioning’ because we re-calculate the (weighted) Voronoi
partitions after every data-sharing event. Our approach is different from Bakolas and Tsiotras’ ‘dynamic Voronoi
diagram’ [BT10], where a Voronoi partition is re-calculated given expected time to reach Voronoi centers or ‘terminal
positions.’
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is a non-parametric model, its performance is affected by hyperparameters. These are typically

estimated from the data using gradient-based optimization [RW06]. In our experiments, we use a

zero-mean prior and an isotropic squared exponential covariance function for the GP [KCS16].

Furthermore, we use resilient backpropagation (Rprop) for finding hyperparameters that maximize

the likelihood of the model [BR13].

To model biological data, we use log-Gaussian Processes (`GP), as in [Low+09]: Let Yx

denote an `GP, modeling the sensor value yx at location x ∈ X , where X ⊂ R2. Let Zx = logeYx,

denote a GP. Then we can create the `GP using GP regression by utilizing the fact that zx = loge yx.

The GP’s posterior mean and variance, µZx|di and σ2
Zx|di

(for sampled data di), are used to calculate

the posterior mean and variance of the `GP [Low+09]:

µYx|di = exp{µZx|di +σ
2
Zx|di

/2} (5.1)

σ
2
Yx|di

= µ2
Yx|di

(exp{σ2
Zx|di
}−1) (5.2)

Each vehicle thus creates an `GP model on-board, as it is sampling the environment.

The goal of the vehicle’s actions is to reduce the uncertainty in the model. The vehicle

executes movements using a waypoint behavior. We take a greedy approach to finding future

sampling locations, based on the vehicle’s `GP model. As optimization criteria, we use posterior

map entropy for the log-GP, as derived in [Low+09]:

H
[
Yxi+1|di

]
= log

√
2πeσ2

Zxi+1|di
+µZxi+1|di

(5.3)

where di is the already sampled data. Thus the vehicle chooses as its next waypoint an unvisited

location with the highest posterior map entropy. For the log-GP, as follows from Equation 5.3,

this means locations with high posterior variance (to reduce it) and high expected sensor values
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(interesting areas). When the AUVs start sampling, the model will initially be uniform. To this

end, the vehicles’ initial waypoint is a random location in the survey area. The vehicles make

straight-line movements to waypoints. It is assumed that there are no obstacles within the survey

area. Those could be handled via an obstacle avoidance behavior.

5.2.3 Dynamic Voronoi partitioning

For action coordination between vehicles, we use dynamic Voronoi partitioning. This

allows us to coordinate vehicle movements without the need for constant communication. The

vehicles independently estimate Voronoi regions to limit their prospective sampling locations.

Note that this is not used as a control law for vehicle movement. Assuming all vehicles have a

relatively recent estimate of each other’s positions, they can each calculate the Voronoi partitioning

for the survey area: Each vehicle considers all (unvisited) sampling locations and creates a subset

with only those locations closest to itself. If the vehicles would not know the positions of all other

vehicles, one could use decentralized Voronoi partitioning, e.g., [Cor+02].

For these initial Voronoi partitions, we then consider the density function (i.e., the posterior

map entropy), and calculate the weighted centroid for each partition. The weighted centroid is

determined by considering all unvisited sampling locations in the partition and their posterior

map entropy. Each location is weighted by its entropy (Equation 5.3), and the sums of all

weighted latitude and longitude values are divided by the sum of all weights to find the latitude

and longitude of the partition’s weighted centroid. These weighted centroids are used as the

Voronoi generators for the second round of Voronoi partitioning. The resulting partitions are then

used in the path planning algorithm (Section 5.2.2).
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5.2.4 Data sharing

Due to the limited bandwidth and potentially reduced throughput of underwater acoustic

communications, it is not practical to have all vehicles broadcast their measurements underwater.

However, we assume that the underwater communication channel is stable enough to get some

messages through, e.g., for inter-vehicle collision avoidance, and for requesting surfacing events.

Each vehicle, at any time, can request a surfacing event. It broadcasts a message to the

other vehicle(s) to request surfacing and meanwhile continues sampling. Vehicles receiving a

request send an acknowledgment and start surfacing. Upon receipt of acknowledgments from

all other vehicles, the initiating vehicle also surfaces. Once on the surface, the vehicles initiate

a handshake protocol to ensure all other vehicles are at the surface and ready to start sharing

data. After the handshake, all vehicles broadcast their (not yet transmitted) sensor measurements,

through Wi-Fi communications. The received measurements from other vehicles are added to

each vehicle’s local `GP. At this point, each vehicle will recalculate the Voronoi partitioning (as

per Section 5.2.3), and then re-commence with (at-depth) adaptive sampling.

There are many possible ways of determining when a surfacing event is required; e.g.,

the criterion could be time-based or information-based. In this work, we take the approach of

requesting surfacing events when the vehicles detect that they are sampling close to the border of

Figure 5.1: Scenario 1: single bloom

215



their Voronoi region. In such a case, the interesting areas are near the border of their region, and

thus it is considered a good time to reconsider the partitioning. Note that vehicles can not request

a surfacing event within five minutes of a previous surfacing event.

5.2.5 Experiments

We ran simulation experiments with two autonomous underwater vehicles, using the

MOOS-IvP middleware [Ben+10]. The middleware includes a simple simulation of vehicle

dynamics and PID control, as well as behavior-based autonomy. We use the following standard

behaviors; loiter, waypoint, constant depth, and (inter-vehicle) collision avoidance. We use a

constant speed of 1.5m/s, and constant depth of 5m. Our path planning approach updates the

waypoint behavior.

To simulate algae blooms in a lake, we generated a 2-D grid space (400x200m, 10m

spacing) with a 2-D Gaussian to represent a bloom, and additive Gaussian noise. For the data,

we use a data value amplitude of 40, as a proxy for high Chlorophyll µg/L values, with a noise

amplitude of 10-20 percent. Within the MOOS-IvP simulation, each vehicle samples from this

simulated data, and we add Gaussian noise (σ = 1.5) to model sensor noise [KCS16]. Note that

the sensors take point measurements, there is no range to the sensors, and all vehicles have the

Figure 5.2: Scenario 2: dual bloom
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same sensor. We simulate two different scenarios for the grid space; a single bloom with low

noise, and two (differently sized) blooms in opposite corners with higher noise, as shown in

Fig. 5.1 and 5.2.

To simulate communications between the vehicles, we use two forms of simulated commu-

nications: acoustic and Wi-Fi. For acoustic communications (acomms), the Goby acomms suite

enables us to simulate the whole acomms stack; modem driver, medium access control, priority-

based message queuing, and encoding and decoding of messages [Sch14]. We use a TDMA

(Time Division Multiple Access) scheme for sharing the data channel between the vehicles. Each

vehicle has a pre-assigned 3-second time slot, in which it can send one to two 32-byte messages.

We limit the acomms range to 500m, and are able to reduce the throughput of the channel to

probabilistically drop messages, e.g. to drop 30% of the messages. For Wi-Fi communications,

we simulate UDP communications, without restrictions on throughput or range†.

In [KCS16], we showed the improvements in modeling performance when adding data

sharing between vehicles. Vehicles sharing data performed better than those vehicles that did not

share data and ran standard lawnmower surveys‡ or adaptive sampling in parallel.

In this work, we compare the dynamic Voronoi partitioning approach for informative

adaptive sampling with the data sharing approach, and run the following experiments:

• 2 AUVs, timed data sharing, no coordination,

• 2 AUVs, dynamic Voronoi partitioning,

• 3 AUVs, timed data sharing, no coordination,

• 3 AUVs, dynamic Voronoi partitioning.

†Assuming Wi-Fi via 2.4Ghz radio and good antennas, which we have empirically found capable of at least
500m (unobstructed) range, which covers the current experimental area.

‡A lawnmower survey is a typical coverage behavior where a vehicle travels back and forth across the survey
area.
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In the timed data sharing approach, the AUVs surface every ten minutes§, to be able to

share data. When all vehicles are on the surface, they share data after executing the handshake

protocol (Section 5.2.4).

For every 2 AUV and 3 AUV experiments, we ran 10 and 15 simulations respectively,

and we averaged over all results. Furthermore, we ran all these simulations over both scenarios

(Fig. 5.1 and 5.2). The duration of each experiment was limited to the duration of simulations

with the vehicles running lawnmower surveys. For example, to survey the area with three vehicles

running high resolution, 20m track spacing, lawnmower surveys takes on average approximately

3500 seconds. Therefore, after the vehicles have run adaptive sampling for 3500 seconds, they are

requested to return to the start location, for the final data sharing and hyperparameter optimization.

5.2.6 Results

The results from all experiments are evaluated using root mean squared error (RMSE)

between the posterior mean from the `GP and the generated data, and using the negative log-

likelihood (NLL). The RMSE captures the predictive mean performance of the `GP, and the NLL

incorporates also the predictive variances. We store the model predictions throughout the mission,

at 10 minute intervals (600s), for evaluation. Note that all figures in this section show results per

these 10 minute time steps, and all changes therefore seem to occur at the same times. We run a

first hyperparameter optimization at the first surfacing event. For the timed data sharing, this is

at around 600 seconds into the mission. For the Voronoi mission, this is on average at 400-450

seconds into the mission. A second hyperparameter optimization is run at the end of the survey.
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Figure 5.3: Scenario 1 (s1), one bloom: Average RMSE and one standard deviation (SD) error
bars, averaged over all AUVs in the 2-AUV mission, for both timed data sharing (tds) and
dynamic Voronoi partitioning (vor).

Two AUVs

We ran simulation with two AUVs, running either timed data sharing or dynamic Voronoi

partitioning. Results are averaged over all vehicles, for 10 simulations per experiment and

scenario.

Figure 5.3-5.6 show the results, in terms of RMSE and NLL, for two AUVs running adap-

tive sampling with only data sharing, versus coordination through dynamic Voronoi partitioning.

Note that the final time step is after the final hyperparameter optimization, when the survey is

finished, and can hence lead to a bigger reduction of RMSE or NLL. The vehicles running timed

data sharing surfaced 5 times during the mission. The number of surfacing events for the dynamic

Voronoi approach was 7-9 times.

Figure 5.3 and 5.4 show the RMSE and NLL for the first scenario, running with two

AUVs. As can be seen, the performance for the two approaches is on average the same.

§This assumes that the vehicles have synchronized clocks, which is a given in our simulations, but should be
paid attention to at field trials.
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Figures 5.5 and 5.6 show the RMSE and NLL for the second scenario, running with

two AUVs. As can be seen, the RMSE initially drops more quickly for the dynamic Voronoi

partitioning, showing improved performance. Both methods reach similar values at the end of the

mission. The performance is about the same in terms of NLL, but the dynamic Voronoi approach

is in general more consistent in performance. Overall, for the experiments with 2 AUVs, we see

that the modeling performance between the two methods is the same for the first scenario, but

better with dynamic Voronoi partitioning in the second scenario.

Three AUVs

We also ran simulation with three AUVs, running timed data sharing and dynamic Voronoi

partitioning. Results are averaged over all vehicles, for 15 simulations per experiment and scenario.

Figures 5.7-5.10 show the averaged results for the simulations with three AUVs. Note that the

final time step is after the final hyperparameter optimization, when the survey is finished, and

can hence lead to a bigger reduction of RMSE or NLL. The vehicles running timed data sharing

surfaced 4 times during the mission. The average number of surfacing events for the dynamic

Figure 5.4: Scenario 1 (s1), two blooms: Average NLL and one SD error bars, averaged over
all AUVs in the 2-AUV mission, for tds and vor.
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Figure 5.5: Scenario 2 (s2), two blooms: Average RMSE and one SD error bars, averaged over
all AUVs in the 2-AUV mission, for both tds and vor.

Voronoi approach was 6-7 times.

Figures 5.7 and 5.8 show the RMSE and NLL for the first scenario with a single bloom.

The figures show that with the coordination through Voronoi partitioning, the modeling perfor-

Figure 5.7: Scenario 1 (s1), one bloom: Average RMSE and one SD error bars, averaged over
all AUVs in the 3-AUV mission, for both tds and vor.
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Figure 5.6: Scenario 2 (s2), two blooms: Average NLL and one SD error bars, averaged over
all AUVs in the 2-AUV mission, for both tds and vor.

mance improves both in terms of RMSE and NLL, in particular over the first 3-4 time steps

(1800-2400 seconds) of adaptive sampling.

Figures 5.9 and 5.10 show the RMSE and NLL for the second scenario with two blooms.

Figure 5.8: Scenario 1 (s1), one bloom: Average NLL and one SD error bars, averaged over all
AUVs in the 3-AUV mission, for both tds and vor.

222



Figure 5.9: Scenario 2 (s2), two blooms: Average RMSE and one SD error bars, averaged over
all AUVs in the 3-AUV mission, for both tds and vor.

Note that, due to the higher noise in the dual bloom scenario (see Figure 5.2), the RMSE and

NLL are higher than for the single bloom scenario. Again we see that the performance is better

when using coordination through Voronoi partitioning, instead of only data sharing. Overall, we

see for the experiments with 3 AUVs that the use of dynamic Voronoi partitioning for vehicle

coordination results in higher quality models, in particular for the second scenario with two

blooms.

5.2.7 Discussion

The results show that the modeling performance improves with addition of a coordination

approach, in multi-robot informative adaptive sampling. For the 2-AUV experiments, the per-

formance is the same for the experiments on the first scenario. For the 3-AUV experiments, the

performance improvement is also not as well defined for this scenario. This is likely because the

single bloom scenario, with low noise, is a simple scenario, where the addition of vehicles, or

coordination in the multi-robot approach, does not pay off.
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Figure 5.10: Scenario 2 (s2), two blooms: Average NLL and one SD error bars, averaged over
all AUVs in the 3-AUV mission, for both tds and vor.

For the second scenario, the performance improvement is more pronounced. We see that

in particular the RMSE improvement is bigger at the start of the mission, and overall the NLL

performance is more consistent. The improvement is bigger at the beginning, because this is

where the biggest improvement can be obtained. After ca. 3-4 time steps (1800-2400 seconds) of

sampling, the performance starts to level off for all methods. This indicates that the model after

this time span is about as good as it gets, and reaching the limit in possible performance given

model and sensor noise. The addition of another hyperparameter optimization step at this time

may aid in improving modeling performance. However, it is also an indicator that the mission

could be ended earlier for all these adaptive sampling approaches.

We have not evaluated the overall time taken for the missions, because time was used to

regulate mission duration, and no other stopping criteria were tested. All missions took exactly

the same amount of time, and vehicles traveled approximately the same distance, given that the

AUVs never stopped and ran at the same speed. If we were to let all robots run for infinity, every

approach would end up with the same model performance. This is also evidenced by the final

performance being similar, if not the same, for all methods.
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We are thus looking for improvements in modeling performance at early stages of the

mission. In [KCS16], we showed that the modeling performance for adaptive sampling is greatly

improved in the early stages of the mission, after which the performance levels out, suggesting the

adaptive mission could have been ended earlier. For the 3-AUV Voronoi approaches, we see also

see improvements in the early stages, which mean that (a) we could potentially end the mission

earlier, and (b) if we had to stop the mission at an earlier stage, we would have a better model.

This type of ‘anytime prediction’ capability is very promising.

As mentioned in Section 5.2.6 and Section 5.2.6, the numbers of surfacing events for

the dynamic Voronoi approach was a little higher for both the 2-AUV and 3-AUV experiments

(7-9 versus 5, and 6-7 versus 4, respectively). For timed data sharing, the vehicles surfaced

every 10 minutes (600s). For dynamic Voronoi partitioning, the trigger for surfacing events

existed of a vehicle nearing the Voronoi border of their partition. The number of surfacing events

thus depends on the size of the Voronoi partition, the location of the vehicle, and the location

of informative unsampled areas in this partition. The number of surfacing events therefore is

not optimized (i.e. minimized). It is limited however by a ‘blackout’ period of five minutes

after each previous surfacing event, to prevent immediate re-surfacing, for example if a new

Voronoi region border happens to be near a vehicle. It would be interesting to investigate different

triggers for requesting surfacing events, and to develop a strategy for minimizing surfacing, while

still maintaining the benefits of regular data sharing and anytime prediction capability. While

our current research efforts focus on shallow waters and relatively shallow depths of features

of interest, the minimization of surfacing events will be of greater importance for deep water

operations.

Asynchronous surfacing strategies, via a central sharing vehicle/system, were not evalu-

ated in this work either, because we wanted to avoid having a single point of failure on the surface

or on shore, and we wanted to avoid the addition of a surfaced data mule for both cost and vehicle

safety reasons.
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Another approach for asynchronous surfacing would be to have vehicles share information

in subsets or teams, and to share with those who do not have the data yet, whenever possible.

This would require a lot more internal accounting and the capability of vehicles to share or

negotiate what has (not) been transferred. While asynchronous sharing would remove the current

system’s ability to provide a good model from any vehicle at any time, it is an interesting avenue

for future work. In particular when considering the application of adaptive sampling systems

to environments where any form of communication can only be achieved in certain areas or at

certain times.

In the future, we intend to explore different coordination approaches, as well as the effect

on performance of the use of different path planning algorithms, and the application to larger areas.

Furthermore, efforts are ongoing to demonstrate the adaptive sampling performance through field

trials. Thus we also aim to create new scenarios for future simulations based on field data.

Overall, we have shown that informative adaptive sampling with multiple robots benefits

from the addition of action coordination between vehicles. Previous works have focused mostly on

coordinating within close range for local planning, or coordinating between vehicles by planning

sequentially. We developed an approach where the vehicles can coordinate their actions, without

limiting the coordination approach or the path planning to a local neighborhood.

Furthermore, our approach is completely decentralized, and creates a robust multi-robot

system for adaptive sampling. In combination with the communications strategy, this makes the

approach applicable for deployments in hazardous or communication-constrained environments.

Our dynamic Voronoi partitioning technique for multi-robot coordination is thus an effective

method in running decentralized, informative adaptive sampling with multiple robots, in unknown

environments.
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5.3 Information Gain Exploration - “Infosploration”

Teams of robots can potentially improve efficiency in persistent monitoring of environ-

mental conditions, for monitoring of natural or human-made disasters, or search and rescue after

such disasters.

For many of these scenarios, it is useful to create spatial models of the environment or

environmental characteristics, such as temperature or algae distributions in the ocean, radiation

levels after nuclear disasters, or radio/WiFi strength in buildings or disaster zones. One effective

way of creating such spatial models is by using Gaussian Process (GP) regression, also known

as Kriging in spatial statistics. When information-theoretic metrics, such as entropy or mutual

information, are used on top of the GP model’s predictions to decide where to place sensors

or robots, we speak of informative sampling, as further explained in Section 5.3.1. When

informative sampling locations are determined after a model has been created, this is called

off-line informative sampling, when the robot is creating a model. At the same time, sampling

data, this is called on-line or adaptive informative sampling.

We address the efficient tasking of teams of robotic platforms to sample and map envi-

ronmental properties. For this paper, we monitor radio signal strength indication (RSSI) in an

indoor environment. Highly structured indoor environments represent a unique challenge in this

kind of environmental modeling due to navigational complexity. This effect is magnified, where

teams of robots must also take care to avoid blocking or crashing into one another due to narrow

passageways or doorways.

We present a multi-robot coordination approach for informative adaptive sampling in

structured environments. Specifically, our contributions include:

• identifying high priority points of interest according to an information gain rate adaptive

metric

• an efficient partitioning of an environment for multi-robot cooperative missions
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• a strategy for over segmenting a region to more deliberately coordinate multiple robots

• an implementation and experimental evaluation of these strategies on real world robotic

platforms

5.3.1 Approach

We task multiple robotic platforms to model RSSI signals for an established environment.

The system utilizes a priori knowledge of the environment, without knowledge of the RSSI topol-

ogy. Up to four robots are tasked to traverse the area and measure the environment according to

expected information gain per distance traveled. We utilize a high-level approach to coordination,

in which the central tasking unit separates the robots by directing them to different areas of the

environment.

Signal modeling by GP regression

We model RSSI using Gaussian Process (GP) regression, a standard method for spatial

field modeling [RW06]. The GP approximates measurements at different locations with Gaussian

functions based on a prior mean and covariance function k(·, ·), also known as the kernel. When a

sample y at location x is added to the GP, the Gaussians at locations x′ are updated based on the

chosen kernel, where x,x′ ∈ R2.

For each possible sampling location x∗ the GP has a predictive mean and predictive

variance [RW06]:

µy∗(x,x∗,y) = k(x∗,x)k(x,x)y (5.4)

σ
2
y∗(x,x∗) = k(x∗,x∗)− k(x∗,x)k(x,x)−1k(x,x∗) (5.5)

where x and y are training locations and measurements, x∗ are test locations, and k(·, ·) is the

kernel, i.e. the covariance function. The predictive variance is especially useful in adaptive
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sampling because it gives an estimate of the confidence in the predicted mean and robots can

choose to sample in locations with larger uncertainty (entropy).

The GP is initialized with a zero mean prior, and we use a combination of an isotropic

squared exponential (SE) kernel, and white noise covariance function, for the kernel. The SE

covariance function is given by [RW06]:

k(x,x′) = σ
2
f exp

(
− 1

2l2 |x−x′|2
)

(5.6)

where x and x′ are two training sample locations, x,x′ ∈ R2, σ2
f is the signal variance (or

amplitude), and l is the kernel’s length scale. The signal variance and length scale are the

GP’s hyperparameters. We combine the SE kernel with a white noise kernel, to better model

the expected noise in the data. This kernel has one hyperparameter: noise variance (σ2
n). The

hyperparameters can be estimated from data or set based on prior knowledge.

In this work, we use two GP models. The first GP model is created from real world RSSI

data, which is collected by manually operating robotic sensors platforms in a series of controlled

environments that contained several radio signal generators. The RSSI readings are collected and

GP regression is used to create an RSSI model from the sensor data. This RSSI model is used

as the ground truth in our evaluation. During subsequent simulation experiments, the simulated

sensor data is generated from the trained ‘real world GP model’. The second GP model concerns

the GP models that are created on-board the robots, based on their sampled data, as part of the

adaptive sampling procedure during all simulation runs. For real world experimentation, there

is no ground truth model and instead we evaluate performance based on overall entropy of the

environmental model.
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Information Gain Utility

For any sampling location, the Gaussian Process model gives us a predictive mean and

predictive variance which we can use to decide where to sample next. We use the differential

entropy (h(x)) as a measurement of information. Because the RSSI is modeled as a Gaussian

Process, we use the differential entropy of a normal distribution:

h(x) = ln(σ
√

2πe) (5.7)

We note here that the differential entropy is independent of the mean of the normal distribution

and depends only on the variance (σ2).

Using the differential entropy for each point of interest, the system seeks to minimize the

entropy of the map by tasking robots to points of high entropy. We calculate the utility of a point

of interest (xpoi) from a point of origin (x0) as:

U(x0,xpoi) =
∑h(x1),h(x2), ...,h(xpoi)

(dist[x0,xpoi]+α)
(5.8)

where x1,x2, ...,xpoi are the series of points that are traversed to achieve the shortest path, and α

is a constant value parameter used to weight the travel distance according to the time the system

needs to calculate a new travel path. This value considers that there is a cost involved with

calculating where to go, such that choosing to visit nearby points is penalized. For these series of

experiments, we use α = 1. The value of dist[xa,xb] refers to an estimation of the shortest path

distance between two points, calculated in Section 5.3.2.

5.3.2 Multi-robot coordination and task allocation

For the multi-robot coordination problem, we seek to partition the sampling space into

distinct regions and assign a robot to each partition. By separating the exploration space of
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each robot, we reduce the occurrence of repeated coverage as well as the amount of physical

interference between robots. We use Equation 5.8 to calculate the utility of a specific path along a

list of points. We then calculate the utility of a region as:

U(Ri) = max
(x0,x1,...,xn)∈Ri

∑U(xp−1,xp) (5.9)

in which we maximize the sum of the utility values of the points within a partitioned region over

the traversal order of the points.

The optimal partition can be defined as a partitioning such that the utility of each partition

is equal:

∀Ri,R j∈R : U(Ri) =U(R j) (5.10)

Partitioning under this criteria would allow for each robot to explore a different region and to

attain the same amount of information over time.

However, optimal partitioning is not practical in this context because the information gain

is based on a model that is being trained in real time. As the model is updated, the amount of

utility estimated for each partition will change. While the partitions could then be updated, this

can be computationally expensive. Instead, we partition along the traversal cost of each segment.

That is, each partition takes a similar amount of time to exhaustively traverse. Using travel cost

as an approximation of utility gain has a number of advantages including that it is static and

computationally easy to calculate. It is also a fair approximation because the entropy term only

considers the GP’s predictive variance, which is a measure of sampling location distances and not

dependent on the measurements taken at sampling locations.

To create our partitioning, we form a graph structure representing the points of interest

within the floor plan and perform a normalized graph cut. We formulate the graph structure

through the establishment of each node as a point of interest and each edge as a line of sight neigh-

bor connection, weighted by the physical distance. We then use the Floyd-Warshall algorithm to
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iteratively search through the weighted graph and find the shortest graph distance between each

pair of vertices [Flo62]. We store these values in a distance matrix.

Each entry Ci, j in the distance matrix is an approximation to the traversal cost between

vertex i and vertex j, which are navigational points of interest sampled in the map. We define the

matrix with entries Wi, j =
1

Ci, j
to represent “spatial affinity”, which means that point pairs will

have large affinities if the robot can travel between them quickly. We then perform a normalized

graph cut to partition the graph into segments in which the travel distances are balanced within

each partition. Shi and Mallik described the normalized graph cut in [SM00]. Key details are

provided here, but the reader should refer to their work for a complete treatment. The approach

consists of finding the eigenvector corresponding to the second smallest eigenvalue of the matrix:

D−1(D−W )D−1 (5.11)

where D is the diagonal matrix with Dii set as the sum of edges adjacent on vertex i in the affinity

matrix W . Elements of the second smallest eigenvector that are positive are assigned to one group

and negative are assigned to the other group in a binary partition. To create more partitions for

larger robot teams, this algorithm is recursively applied to the previously computed partitions.

When multiple potential partition candidates must be decided upon, as in the case of 3 robots

where one of the two partitions from the previous step must be sub-partitioned, the one with the

lowest normalized cut cost metric is selected.

There are several cases related to the number of partitions in relation to the number of

robots. If the number of robots is equal to the number of partitions, i.e. equal partitioning, each

robot is assigned its closest partition to explore. If there are more partitions than robots, i.e. over

partitioning, a task assignment procedure is used to instruct each robot to sample an individual

partition. This assignment will be revised over time as information is incorporated into the model.

As the information gathering operation progresses, the entropy in the sampled partitions will be

232



reduced, and robots will be reallocated to other partitions to improve the model.

The task assignment routine begins by adding up the entropy of each point of interest

within a partition. These partitions are then sorted on the entropy measure and the highest entropy

partitions are each assigned to a robot. In the case of over segmenting, some partitions will not

initially be assigned to a robot for sampling. To ensure that robots continue to collect information,

once the total entropy of their assigned partition falls to a ratio of 70% of the original value, the

partition assignment procedure is repeated for that robot. At this point, the robot will be assigned

to the region with the largest cumulative entropy in the model that is not currently assigned to

a a robot. It is possible for this new assignment to be to the same partition if it has the largest

entropy sum. Figure 5.11 shows partitions created for our test environments, showing fixed cuts

for two to four robots (left three columns of images) and over segmentation using the normalized

cut (rightmost column of images).

Figure 5.11: Partitions selected by normalized graph cuts on inverse path cost affinity matrix
for between two and four robots for one of the test environments. From left to right are shown
partitions for 2, 3, and 4 robots. On the right is an example of over segmenting the environment.
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5.3.3 Experiments

Real world RSSI data

Real world RSSI data was collected in a controlled test environment using robotic sensor

platforms, namely the Jackal robots, shown in Figure 5.18, with an accompanying sensor suite.

The sensors include a laser range finder, X-Bee radio, and wireless access point. These robots

were manually driven through a building environment that contained three static radio signal

generators, each with unique identification. A robot is tele-operated along several trajectories

within the building while RSSI, laser, and odometry data are recorded.

We create a model from this real world data to have a realistic sensor model, from which

we can draw ground truth values in simulation. Alternatives to this approach include generating

received signal strength measurements by a numerical electromagnetic propagation solver such as

EM Cube [EMA]. To apply this type of simulation engine to our problem would require accurate

modeling of electrical properties of materials and structures within the test environment, which is

infeasible. It is also not clear how other phenomena such as radioactivity or especially chemical

diffusion would be modeled by this process, though other types of numerical simulators could be

applied to these other problems.

A simpler log-distance path loss model [CGK09] with parameters learned from mea-

surements in the test environment could approximate the overall range-dependent component of

RSSI, but would fail to adjust for line-of-sight and occlusion. This model would also be a poor

approximation for a diffusion process such as may be measured with a chemical sensor. To build

the simulation model, first, a map is generated from one of the test runs for each environment

using OmniMapper [TRC14b]. Each run in that environment with a given configuration is then

localized via Adaptive Monte-Carlo Localization (AMCL) [Fox+99] with recorded laser and

odometry data.
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An initial pose estimate is used to speed up the convergence of the localization routine.

While the localization routine is converged on a pose hypothesis, the corresponding RSSI mea-

surements are recorded into a GP model using libGP [Blu]. This process is repeated for each

trajectory with that given transmitter configuration. For each configuration, four separate models

are built for additional evaluation options: one with just each of the three transmitters alone, and

a final model which consists of the maximum RSSI value over all transmitters. A false-color

image representing these learned ground truth models can be seen in Figure 5.12. Simulated

RSSI values are generated from this model during a test run by sampling from our learned GP

model at the robot’s location.

Simulation experiments

For the simulation experiments, the robots traverse the area and sample from the GP

model trained from real world data in order to obtain simulated sensor measurements. A sensor

measurement is taken from the GP for the corresponding real world location, according to the GP

mean and variance, with noise sampled according to the ground truth model statistics, reflecting

the variability in sensor measurements observed during the multiple training runs. We assume that

the robots have a floor plan, but do not know the RSSI distribution or any information regarding

the position of the transmitters. Localization is assumed to be accurate and for this simulation it

is generated without noise. There is a centralized controller that decides on the task assignment

of the robots and we assume full communication between all robots and the central server.

We simulate the following experiments:

• single robot nearest point - the robot traverses to the nearest unsampled point of interest

• multi robot information adaptive, uncoordinated - each robot seeks the point of interest

with highest utility (information/cost)

• multi robot information adaptive, coordinated - the map is partitioned and each robot is

236



assigned its own area to explore

• multi robot information adaptive, coordinated over segmented - the map is partitioned

into more segments than robots and each robot is assigned a segment to explore once its

assigned segment has been measured

Figure 5.13: Annotated single robot sample run: The robot proceeds from point 0 (start) to A
through H (end).
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An annotated sample run alongside the corresponding RMSE and entropy measurements

can be seen in Figure 5.13.

As the robot enters previously unexplored areas, we see a corresponding drop in overall

entropy and a reduction in the overall error of the system. For example at point E, the robot

progresses toward a large unexplored area and this results in a large reduction in error.

Figure 5.14: Sampling trajectory with four robots in one of our test environments. Partitions
assigned to each robot are shown via shading open occupancy grid cells.

The experiments are carried out on three different floor plans labeled Bank, Hospital Floor

1, and Hospital Floor 2 corresponding to real world locations. The environments were seeded

with 3 radio signal generators labeled 2, 3, and 4 (radio 1 is located on the exploration vehicle)

placed within the environment under two different configurations: A and B. Including the “Max”

radio configuration, in which all the radio signals are active, this results in 8 different radio signal
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configurations. This yields 24 different environments. The data from Hospital Floor 2, radio 4 in

configuration B was lost due to a battery failure on radio 4.

A sample simulation run in Figure 5.14 shows the partitioned floor plan, model entropy

and model error over time, as well as bar plots with overall entropy and error of the system at

completion for different numbers of robots.

Table 5.1: Area under RMSE curves for the baseline (nearest-first) approach with up to four
robots compared to the information adaptive, and information adaptive with coordination vs
figures shown in Figure 5.15

Baseline dI-Adaptive dI-Adaptive Partitioned

1 Robot 8701 ± 1010 5913 ± 1143 n/a

2 Robots 7662 ± 1833 4149 ± 853 3118 ± 343

3 Robots 6184 ± 1057 3183 ± 1013 2505 ± 184

4 Robots 5602 ± 469 3143 ± 1114 1675 ± 270

We also test the information rate adaptive approach against a baseline algorithm that

simply traverses to the nearest neighboring unmeasured point. The results of this experiment

can be seen in Table 5.1. We note here that the results for the 1 robot run for partitioned and

unpartitioned space is not duplicated as it is the same scenario.

We evaluate the simulation results using the root-mean squared error (RMSE) between

the ground truth (GP model of real world data) and the GP model created through sensor

measurements by the simulated robot.

Figure 5.15 shows the area under the RMSE curves for the information adaptive approach

with the area partitioned for the robots, for Hospital Floor 2 with radio configuration 2A. We

can measure the area under the RMSE curve to evaluate how quickly the RMSE falls as the

robots build their GP models. A small area under curve indicates that the error fell quickly,

demonstrating an improvement on performance.
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Figure 5.15: RMSE curves for up to four robots, using adaptive informative sampling and
normalized graph cut-based partitioning for coordination, for Hospital Floor 2 configuration 2A.
Averages are shown and two standard deviations are shaded from at least 5 simulations.

The simulation results show that the information rate adaptive approach performed better

than the nearest neighbor baseline approach in all instances. Table 5.1 summarizes the final area

under the RMSE curve against the baseline. As expected, larger robot teams are able to lower

the system entropy faster. In addition, entropy drops significantly when adding our multi-robot

coordination approach through area partitioning.

Table 5.2 shows the improvement in performance we see across all data sets for scenarios

when the environment is segmented into the same number of partitions as robots versus when the

robots are left uncoordinated. When considering each specific scenario, we find that on average

the improvement is 30−35%.
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For a clearer visual analysis, Figure 5.16 shows a more detailed graph with the area

under the curve for a specific scenario, Hospital Floor 2 configuration 2A, comparing between

partitioned versus uncoordinated multi-robot for a specific area and radio configuration.

Table 5.2: Area under RMSE curves, averaged across all maps and radio configurations, to
compare the uncoordinated and coordinated (partitioned) information adaptive approaches.

dI-Adaptive Uncoordinated dI-Adaptive Partitioned Improvement

1 Robot 4160.63 n/a

2 Robots 2897.58 2076.17 0.717

3 Robots 2321.25 1495.61 0.644

4 Robots 2017.46 1404.52 0.696

From this result we see that overall modeling performance improves when we coordinate

multiple robots through the partitioning of the sampling space. This improvement increases with

the number of robots, showing the biggest improvement for the simulation with four robots. In

addition, we explore the performance when operating under exact partitioning or over partitioning.

Figure 5.16: Comparison of the area under the curve between partitioned vs. uncoordinated
results, on Hospital Floor 2, configuration 2A, for 1 to 4 robots.

Under this series of simulation experiments, Figure 5.17 shows that the coordinated (blue)

approach generally performs better than the uncoordinated (red) multi-robot approach.
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Figure 5.17: Montage of area under the RMSE curve results, across all environment configura-
tions. Red bar plots are for equal number of partitions and robots, and blue bars are for the over
segmented paritioning and task assignment. For each subgraph, the x axis shows the results for
2, 3, and 4 robots.

Live robot experiments

The system was then implemented on Jackal robots as seen in Figure 5.18. Experiments

were performed on a number of different indoor environments on the campus of the University of

California, San Diego.

Figure 5.18: The Jackal robot used to gather RSSI data, indicating its sensors. The RSSI data
was used to build the ground truth GP models.

Three radio signal generators were stationed through each environment and the robots
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were tasked from a central control station. We performed experiments with one, two, and three

robots operating simultaneously. We gathered data comparing uncoordinated tasking of the robots

to coordination with exact or over partitioned segments of the environment.

Figure 5.19: Comparison between 2 or 3 robots under uncoordinated tasking, tasking using
exact partitioning, and tasking under over environments using information rate adaptive sampling
for the first floor of Atkinson Hall (Figure 5.20) and the Computer Science & Engineering
Building

The system was fielded on groups of up to three Jackal robots (see Figure 5.18) and

experiments were run on the campus of the University of California, San Diego. Similar to the

simulation experiments, radio transmitters were placed within the indoor environment and the

robots attempted to build a GP model of the RSSI from the transmitters. Figure 5.19 shows the

results from Atkinson Hall, 6th floor experimentation comparing the entropy of the environment

over time under uncoordinated, exact, and over segmenting partitions strategies.

We see that with 3 robots, over segmenting resulted in a marked improvement in perfor-

mance. We can see the partitioning for exact and over segmenting for the Atkinson Hall, 6th floor
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environment in Figure 5.20.

Figure 5.20: Comparison between exact and over segmenting partitions for 3 robots on the 6th
floor of Atkinson Hall on the campus of the University of California, San Diego.

5.3.4 Discussion

We described a multi-robot coordination approach for adaptive informative sampling

in structured environments. We utilized entropy reductions as an information gain metric and

implemented a utility function designed to maximized expected information gained per distance

travelled. We paired this utility with coordination through region segmentation for teams of robots

and verified the approach through simulation and real world experimentation. Experimental data

was gathered using teams of 1 to 4 robots, both without and with our coordination approach.

We show that in simulation and in our initial real world testing, the coordination through region

partitioning results in a faster rate of information gain reflecting in lower entropy in our GP model.

Thus we have demonstrated the potential of our multi-robot coordination algorithm.
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Chapter 6

Distributed Systems for Robust

Exploration

6.1 Introduction

Search and rescue robots often need to find the source of a signal like radio-active material,

heat signature, or gas leak. This problem is known as stochastic source seeking. To plan an

optimal exploration trajectory, many researchers [ALP14] have suggested using information

gain metrics like Mutual Information. However, in partially observable environments computing

information gain of a trajectory becomes challenging if parts of the map are unknown.

Stochastic source seeking has been typically addressed in fully observable environments,

with a single target [ALP14]. On the other hand, exploration in partially observable environment

[Cho+17b] has dealt with exploration without a source seeking objective. However, the existing

approaches that depend upon fully observable state do not generalize to all kinds of maps

and obstacles. Specifically, we consider a U-maze (Fig 6.1), which has local optima with

respect to greedy source seeking. The work closest to our approach is Shreshta et al. [Shr+19].

However, they attempt to predict large regions in the map, which are unlikely to generalize to new
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maps. Moreover, Shreshta et al. [Shr+19] use a flood-fill over the predicted map to estimate the

information gain for each action. Flood filling can be brittle and lead to misleading information

gains with even small holes in the map walls.

In this chapter, we present our state of the art architecture for multi-robot source seeking

visual recognition. Our approach has been tested in simulation and real experiments at the

University of California San Diego. Besides that, we provide a mathematical model of the

problem and an algorithm solution to the source seeking problem.

6.2 Distributed Heterogeneous Multi-robot source seeking

using information based sampling with visual recognition

6.2.1 Approach

We deployed a heterogeneous multi-robot team with UGVs and UAVs, whose mission is

to locate, identify, and neutralize (defuse) an unknown number of IEDs hidden in the environment.

The robots can measure radioactivity emitted by the IEDs. Besides that, the robots navigate and

perform source seeking the task autonomously. The robots can request or provide service to use

all the available resources to minimize the time to defuse all the IEDs. Also, each robot can

negotiate with the other members of the team and re-compute the exploration regions.

6.2.2 Stochastic source seeking

Stochastic source seeking is the problem of searching a stochastic source yi ∈ Y of a

signal in an unknown environment m ∈M , using signal zi,t ∈ R at time t when robot is at pose

xt ∈ X . The problem of stochastic source seeking is typically addressed either using model-based

or model-free methods. In this work, we focus on model-based methods because the many

signal sources, like radio-activity, gas-leak, and heat, can be easily modeled or approximated.
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Model-based methods assume that the signal model φ : Y ×X ×M → R is given. We further

assume that the signal sources can be in two states, active or inactive. Let ai,t = 1 denote that the

ith source is active. Let the signal sensed by the robot is given by:

zt =
N

∑
i=1

ai,tφ(yi,xt ,m), (6.1)

where ai,t ∈ {0,1} denotes whether the target i is active. A transition model is also known for the

activation states of the signal-sources ai,t+1 = g(ai,t ,xt ,m,ut).

Figure 6.1: Our algorithm has a dual objective of exploration and source seeking. The robot is
represented with a blue triangle and the target (source) is represented with a yellow star.

Problem (Model-based source seeking). Consider N targets, whose locations {yi}N
i=1 are

unknown. We are given a robot with pose xt that moves according to a given dynamics model

xt+1 = f (xt ,ut ,m)+ηt . The problem is finding the policy π that deactivates all the targets in
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minimum time:

π
∗ = argmin

π
T

s.t ai,T = 0 ∀i ∈ {1, . . . ,N}

ai,t+1 = g(ai,t ,xt ,m,ut)

xt+1 = f (xt ,ut ,m)+ηt

zt =
N

∑
i=1

φ(xt ,yi,m)+ εi,t

ut = π(z1:t)

(6.2)

6.2.3 Information gathering

Information gathering is the problem of exploring an unknown environment with the

objective of collecting maximum information about the environment map. Given a robot with pose

xt at time t is present in an unknown environment m and observes lidar scans lt = ψ(xt ,m)+ωt

according to a known observation model ψ and noise ωt . Also assume that the dynamics of the

robot are known.

Problem (Information Gathering). The Information Gathering problem is the problem of

seeking to maximize the information about the unknown map m using the observations l1:t:

π
∗ = argmin

π
H(m | l1:t ,x1:t)

s.t xt+1 = f (xt ,ut ,m)+ηt

lt = ψ(xt ,m)+ωt

ut = π(l1:t),

(6.3)

where H(m | l1:t ,x1:t) is an information measure over the map m. Typically it is the Shannon

entropy of the map random variable.
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In this work, we combine the two problems, Problem 6.2.2 and Problem 6.2.3, to address

them jointly. We also extend this problem to a heterogeneous multi-robot setting.

6.2.4 Distributed Heterogeneous Multi-Robot Source Seeking

(DHMRSS)

We consider pairs of Heterogeneous robots with each pair containing a ground robot and

an aerial vehicle. The ground robots have a large battery back-up and can cover large areas on

the ground, while aerial vehicles that ride on top of ground robots have short battery back-up.

However, they can reach places were ground robots cannot.

State transition model

Consider K pairs of robots with pose of the kth ground robot at time t denoted as xk,t ∈ Xk.

Let the a binary variable χk,t ∈ {0,1} denote where the ground robot is carrying the aerial vehicle

χk,t = 0 or the aerial vehicle is flying χk,t = 1. Let the pose of the aerial vehicle be denoted by x(a)k,t .

Let the dynamics of flying aerial vehicle be f (a)k (.) and the control signal be u(a)k,t . The dynamics

of aerial vehicle is then given by:

x(a)k,t+1 = χk,t f (a)k (x(a)k,t ,u
(a)
k,t ,m)+(1−χk,t) fk(x

(a)
k,t ,uk,t ,m) (6.4)

χk,t+1 =
(
1− [‖x(a)k,t −

a Tgxk,t‖< δ]
)
χk,t +[‖x(a)k,t −

a Tgxk,t‖< δ]u(χ)k,t +η
(a)
k,t (6.5)

where fk(.) is the dynamics of the ground robot, uk is the control signal for ground robot,

[‖x(a)k,t −
a Tgxk,t‖< δ] denotes whether the aerial vehicle is close enough to the ground robot to

land and u(χ)k,t denotes control signal to land.

We consider an activation transition model that depends upon an object-detection al-

gorithm, ObjDeti : I → {0,1}, where I is the space of Image input and the algorithm returns

1 on detecting the source and 0 otherwise. When the robot has detected the target object
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ObjDeti(Ik,t) = 1, then the target object i gets diffused automatically and it is no longer active

ai,t+1 = min{1−maxK
k=1 ObjDeti(Ik,t),ai,t}. With slight abuse of notation, we include the image

observation model as a part of object detection function oi,k,t = ObjDeti(xk,t ,yi,m) and write the

updated model of activeness of target object as ai,t+1 = min{1−maxK
k=1 oi,k,t ,ai,t}.

In this work, we consider a partially observable setting where we estimate map and robot

pose using a typical SLAM pipeline that uses Bayes Filter to update the distribution over both the

map m and the ground robot pose xk,t ,

belt+1(m,xk,t+1) := p(m,xk,t |lk,1:t ,uk,1:t−1)

=
1
Z
Em,xk,t+1

[
p(lt+1|m,xk,t+1)p(xk,t+1|xk,t ,uk,t ,m)

]
∈ Bel, (6.6)

where bel0(m,xk,0) := p(m,xk,0) is given as a prior over the map and initial robot location, Bel is

the belief space and Z is the normalizing factor.

The full transition model can then be written as:

ai,t+1

xk,t+1

x(a)k,t+1

χk,t+1

belt+1(m,xk,t+1)


︸ ︷︷ ︸

sk,t+1

=



min{maxK
k=1 oi,k,t ,o

(a)
i,k,t ,ai,t}

fk(xk,t ,uk,t ,m)+ηk,t

χk,t f (a)k (x(a)k,t ,u
(a)
k,t ,m)+(1−χk,t) fk(x

(a)
k,t ,uk,t ,m),

(
1− [‖x(a)k,t −

a Tgxk,t‖< δ]
)
χk,t +[‖x(a)k,t −

a Tgxk,t‖< δ]u(χ)k,t +η
(a)
k,t

1
ZEm,xk,t

[
p(lk,t+1|m,xk,t+1)p(xk,t+1|xk,t ,uk,t ,m)

]


︸ ︷︷ ︸

F(sk,t ,m,uk,t ,u
(a)
k,t ,u

(χ)
k,t )

(6.7)
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Observation model

Each robot captures three kinds of observations: radio signal, object detections through

vision sensor, and Lidar observations. First observation is the scalar radio-signal zk,t ∈ R, which

is unaffected by the map. The second kind of observations are object detections using vision

oi,k,t = ObjDet(xk,t ,yi,m). The third is Lidar observations lk,t which help us detect obstacles run

SLAM algorithm to estimate belief over map and pose belt(m,xk,t). We can write the observation

model as: 

zk,t

lk,t

oi,k,t

o(a)i,k,t


︸ ︷︷ ︸

ζk,t

=



∑
N
i=1 ai,tφ(xk,t ,yi,m)+ εi,t

ψ(xk,t ,m)+ωt

ObjDet(xk,t ,yi,m)

ObjDet(x(a)k,t ,yi,m)


︸ ︷︷ ︸

O(sk,t ,m)

(6.8)

Communication model

We assume that the robot k can communicate with neighboring B(xk,t ,xt) robots, receiving

incoming messages αk,b,t ∈A from robot b∈ B(xk,t ,xt) and sending broadcast outgoing messages

as βk,t ∈ B . Let αααk,t = {αb}b∈B(xk,t ,xt) denote all incoming messages at time t for kth robot.

Problem (DHMRSS). Under the transition model (6.7) and observation model (6.8), we

want to design a policy πk : Zt ×AKt →U×U(a)×{0,1}×B for each robot k ∈ {1, . . . ,K}.

The kth robot takes an action uk,t ,u
(a)
k,t ,u

χ

k,t ,βk,t = πk(ζk,1:t ,αααk,1:t) at each time step in order to
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deactivate all the signal sources in least time possible:

{π∗k}K
k=1 = arg min

{πk}K
k=1

T

s.t ai,T = 0 ∀i = {1, . . . ,N} // Terminal condition

Bk ≥
T−1

∑
t=1

χk,t // Battery constraint

sk,t+1 = F(sk,t ,m,uk,t ,u
(a)
k,t ,u

(χ)
k,t ) // State transition model

ζk,t = O(sk,t ,m) // Observation model

uk,t ,u
(a)
k,t ,u

(χ)
k,t ,βk,t = πk(ζk,1:t ,αααk,1:t) // policy

(6.9)

where Bk is the battery constraint for each of the aerial vehicle and ŷi,t is the current estimate of

the location of the target.

Note that Problem 6.2.4 is a combination of Problem 6.2.2 and Problem 6.2.3, but the

objective of information gathering is implicit in the problem. Since we want to defuse all the

signal-sources, we need to find all of them which requires exploration of the environment. We

consider two specific instantiations of bel0(s0) in Problem 6.2.4: one with uniform prior over the

map space, and another with given map of the building but unknown locations of the furniture

and obstacles.

Known vs Unknown map

In these experiments, we tested both scenarios:

a) The robots navigate a known environment.

b) The robots explore and navigate in an unknown environment.
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Input: Robot state: sk,t , Robot observation ζk,t , Input messages αααk,t

Output: uk,t ,u
(a)
k,t ,u

(χ)
k,t ,βk,t

if zk,t ≤−70dBm then
uk,t ← Problem 6.2.3 ; /* Explore for information gathering */

else
ŷi,t ,σi,t ← EstimateSignalSourceLoc(zk,1:t ,xk,1:t)
issuccess, x̂k,t+1:t+m← PlanTrajToTarget(xk,t , ŷi,t)
tleaving← t ; /* Record the time when leaving */
while issuccess AND t < tleaving+ 1 min do

uk,t ← PathFollowing(x̂k,t+1:t+m,xk,t)
if ObjDeti(Ik,t) = 1 then

ai,t = 0 ; /* Deactivate signal source */
break

end
end
/* Ground robot needs drone for help */

u(χ)k,t ← 1 ; /* Take off */

if issuccess then
/* Ground robot timed out. */

x̂(a)k,t+1:t+m← PlanExploratoryTrajectory(x(a)k,t , ŷi,t ,σi,t)
else if MapRegionHasUnknownVoxels(belt(m,xk,t), ŷi,t ,σi,t) then

x̂(a)k,t+1:t+m← PlanExploratoryTrajectory(x(a)k,t , ŷi,t ,σi,t)
else

issuccess, x̂(a)k,t+1:t+m← PlanTrajToTargetAndBack(x(a)k,t , ŷi,t)
end
Send desired trajectory x̂(a)k,t+1:t+m to aerial vehicle
/* Aerial vehicle follows trajectory */
for r ∈ {t, . . . , t +m−1} do

u(a)k,r ← PathFollowing(x̂(a)k,r+1,xk,r)

if ObjDeti(I
(a)
k,t ) = 1 then

ai,t = 0 ; /* Deactivate signal source */
end

end
u(χ)k,t ← 0 ; /* Land when done */

end
Algorithm 7: Ground robot policy πk to Identify and Defuse the Target
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Known maps

As it is explained in Chapter 5, our technique Infosploration gives a solution of the

partition of the map and how to manage the resources to look for the transmitters.

Unknown maps

In this case, the robots start together in a hallway and share their current position and a

local map. Then, the robots move to specific frontiers and broadcast a message to the rest of

the robots to avoid exploring the same regions. Besides, our coordination strategies Divide and

Conquer is a trigger so the robots can explore in an efficient way of managing the exploration

regions among the team members.

6.2.5 New Coordination Strategy

In [Nie+18], our robot team is capable of performing their tasks and accomplishing

their mission. However, we did not take care of the management of resources. For example,

when a robot finishes a task, it just continues mapping and navigating even if the assigned region

for exploration was explored entirely. We extend our framework to provide the robots with

the capability to broadcast two new messages: a) Task accomplished - Offering assistance. b)

Requesting assistance to accomplish a task.

In our preliminary experiments, the time to explore a floor plan decreased comparing

to our previous exploration strategy. However, the robots need to be able to communicate with

the other members of the team. To enable the capability to communicate with the other robots

even if one of them is far from the team, we developed a new module that allows the robot that

finished the task to find other members. As we explained in Chapter 5, the segmentation of

the environment is based on graph cuts. Therefore, we recompute the robots’ initial knowledge

to navigate in the trajectory or exploration regions that the other robots follow. One of the
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Figure 6.2: Comparison between the exact segmentation with the new dynamic reconfiguration
after the robots agreed to explore regions from the other ones.

requirements to use this module is that the robot team has to know the map. The comparison

between our previous and the current system is shown in Figure 6.2. In this scenario, the robot

A, which exploration area is in color green, sent a broadcast message Offering Assistance to the

robot B (exploration area color purple). Robot A and Robot B negotiated and recomputed their

exploration areas, robot A continued exploring and searching for targets while robot B provides

paths to the drone inside of the rooms.
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6.2.6 Semantic Mapping: Adaptation of Gaussian Regions for

Rooms and Hallways

In [Hea07], the US Marine Corps explained that common areas of IED emplacement

include structure environments such as building, houses, and storage facilities. The explosive

ordnance disposal team demonstrates that it is advantageous to know the rooms inside a building

to predict the size and location of the explosive. In our architecture, we include this knowledge

using our Place Categorization module explained in Section 3.4.4.

Shape Adaptation of Gaussian Regions

Our exploration module, called “Infosploration”, explained in Section 5.3, allows the

robots to explore an unknown environment using frontiers and identify rooms and hallways. We

improve our Gaussian regions module to adapt to the shape of the rooms and hallways. This

improvement allows the robots to label the rooms and enable a voxel exploration module called

“Voxelsploration”. The details of this application are found in [Nie19]. These regions are labeled

by our place categorization system previously presented in Section 3.4.4.

Exploration Paths and Areas for Target Localization

In our previous work, Infosploration (Section 5.3 computes all the trajectories that the

robot can travel considering the robot dynamics, power consumption, distance to the frontiers or

regions, and the probability of the target’s location. However, all the trajectories are computed in

a 2D environment. Voxelsploration [Nie19] computes the paths in 3D, which allows us to have a

heterogeneous team with different dynamics. Our system has been tested in 3 different platforms:

packbots (capable of going upstairs), jackals (only navigate in one floor), and quadrotors (capable

of navigating on different heights).

257



Figure 6.3: Visualization of two searching trajectories provided to the drone to localize a target.

Our new exploration module provides the capability to reach areas where the mobile robot

cannot reach. Algorithm 8 explains the steps that our method follows to segment and decrease

the search region on the environment. Figure 6.3 shows two different trajectories in which the

UGV after navigating on the environment computes the probability of the target location and

provides the search path that the drone has to follow to find the target.

Input: VoxelMap region, Robot Full Trajectory: Xk, Voxels Uncertaintiy: tau

if UGV ←− /0 No reachable area then

Compute a plane with high probability to find the target given by radio signal zt ;

Create an exploration region enclosed of the computed planes Am;

if Robot Full Trajectory Xk provides high values of radio signal zt then

Map the trajectory Xk to 3D and substract it as a polygon;

from the Am −→ Sarea;

end

Run our planner to provides a trajectory that satisfy the full coverage of Sarea;

end

Output: Searching Plan

Algorithm 8: Segmentation of Searching Areas
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We have tested our framework on different floors and buildings from the University of

California, San Diego. Each environment has a different level of complexity for the UGV and

UAV navigation.

Figure 6.4: Floor plan of UCSD Atkinson Hall - 1st Floor.

In each experiment, the ZigXbees are tuned randomly, so the robot might listen to some

from a far distance while others the robot has to be in the room to detect them. Besides, some

of the rooms have obstacles that deny access to the UGV so it needs to request the assistance

of the UAV. One of the environments that we explored is the Atkinson Hall First Floor. This

scenario, shown in Fig 6.4, has different rooms with long hallways. Inside, most of the rooms

have glass, and the semantic label provided is hallway, office, or lab. In this series of experiments,

we only run the adaptable Gaussian Regions to determine if the robot was in another area different

than a hallway. The size of this floor and the long hallways made a perfect exploration scenario.

The communication among the robots is so constrained so that in most of the cases there is no

communication.
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6.2.7 Experiments

We deploy a team of ground robots (UGVs) paired with an aerial vehicle (UAV) to

explore the environment. Each UGV runs its own mapping system (Omnimapper) and broadcasts

messages among the team members. Each ground robot can listen to the radio signals. These

signals are simulating radioactivity or gas emission in the area.

The robot behavior on this mission is the following:

Input: Robot pose: Xk, Radio signal: zt
Output: Task
while zt = 0 do

Explore and look for targets
end
Find the location of the target

Algorithm 9: Robot tasks

When the task of the UGV is to find the target’s location, it will navigate to the highest

probability location of the signal and make visual identification of the target. However, there

are many scenarios where the UGV will not be able to identify the target base on its dynamics,

hardware, or reachability of the sensors. Then, the UGV will compute a trajectory with specific

viewpoints that the UAV is requested to navigate to identify the target.

Simulation Experiments

We tested our framework in a virtual scenario using the ARL Unity-ROS-based simulation

engine shown in figure 6.5. The robot team consisted of pairs of UGV, and UAV. Each team

explored the environment looking for targets (a box with a sign in one of the faces).
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Figure 6.5: Our hetereogeneous UAV/UGV robot team used in the simulation experiments.

Each UGV is equipped with a Lidar and a camera, and each UAV has a RGB-d and

monocular camera. The visualization of the trajectory of each UGV (blue and red), and each

UAV trajectory (green) is shown in Figure 6.6. The IEDs are classified into two groups: only

reached by UGV and only reached by UAV.

Figure 6.6: Visualization of the map explored in simulation by the UGV/UAV team.
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Figure 6.7 shows how our framework using the new coordination strategy performed

better than our previous approach. As expected, the new strategy keeps all the robots looking for

the targets while they explore all the environment. The result is that entropy decreases faster.

Figure 6.7: The result of running our exploration methods with and without the new coordination
strategy module. The entropy decreases faster, because the robots are constantly exploring the
environment.

Live Robot Experiments

A series of experiments were performed with a DJI drone which was augmented with a

pozyx device and a Zigxbee, and 3 Clearpath Jackals (UGV), which were augmented with a 360

Velodyne sensor, an RGB-d camera, an IMU LORD Microstrain, a Ubiquiti 5ghz bullet antenna, a

ZigXbee and a Pozyx device (to test different sensors for seeking RSSI), a GoPro Camera and an

additional 2TB SSD for data storage. The UGVs are autonomous in these experiments. However,

in the situation when the UGV requires assistance from the UAV, the UGV will stop for setting

up the UAV (Figure 6.13).
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Figure 6.8: Our hetereogeneous UAV/UGV robot team used in these experiments.

System Architecture

Our framework needs to share information between the UAV and the UGV. Unfortunately,

our UAV does not have computing power. However, we implemented a streaming node where the

UAV transmits its video trough a phone and the phone to an Apple TV. The Apple TV is plugged

to an external computer which processes all the visual exploration area and the target recognition.

All the actions and the trajectories are generated on the computer. Only the UAV is manually

teleoperated, flying to specific waypoints and patterns provided by our system.

Object of Interest - IED

In these experiments, we tried to simulate a dangerous situation where IEDs are hidden

on the floor of a building. A team of autonomous robots has found, recognized, and defused the

device. As for the device, we used a toy from the famous Super Mario Brothers called Bob-omb.

The Bob-omb has a particular shape as a bomb, this is shown in Figure 6.10 . To make
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Figure 6.9: Simple drawing showing the interaction between the UGV and the UAV doing the
source seeking and visual target identification.

visual recognition more complicated, we have to identify it by looking at his face. When the

UGV or UAV looks at the front of the Bob-omb, the device is defused.

Figure 6.10: Our fake IED Bob-omb. The right image shows the location of two of the Bob-
ombs at Atkinson Hall 1st Floor. Even that one of the Bob-ombs is hanging from the ceiling,
both Bob-ombs can only be reached by an UAV.

The signal that we are simulating as radioactivity or other isotope measurement is provided

by the Zixbee (Figure 6.11) and Pozyx. We deployed eleven bob-ombs in different places on the

floor. The robots did not know the location of the devices. Therefore, the team had to explore all

264



the buildings.

Figure 6.11: Our Arduino with Zigxbee and Psyx devices used for radioactivity emulation from
the IED.

6.2.8 Results

The main mission of this work was to locate, identify, neutralize threats on the environment.

In this case, we simulated explosives installed and hidden on different floors of our university

buildings. We are interested in optimizing the time that the robot team would take to accomplish

the task. We ran our exploration and source seeking system in each UGV on board. Each UGV

was autonomous and had a UAV that was teleoperated following the path planning computed and

visualized by the operator. However, our system is capable sending navigation commands to a

UAV with a computer onboard. We deployed the multi-robot UGV/AUV team on the following

scenarios:

Atkinson Hall - 1st Floor

This scenario consists of big hallways, two rooms, and a big atrium. Unfortunately, in

this scenario, our place categorization only provides two labels. Therefore, it was not relevant to

use it to label the exploration regions.
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Figure 6.12: Our robot team exploring and defusing IEDs at Atkinson Hall 1st Floor.

Figures 6.12 and 6.13 shows one UGV and UAV exploring Atkinson Hall 1st Floor. We

can observe that the UGV finds the IED in the hallway, and the drone flies over the table and the

cube to localize the other IED.

(a) UGV looking for the fake IED which
is impossible for it to reach it.

(b) After the UGV failed. The UAV assistance is
required and it flies with the trajectory provided
by the UGV.

Figure 6.13: Source seeking scene where the UGV is not capable to reach the fake IED and
requests the assistance of the UAV.

The visualization of the trajectory of each UGV (blue, green, and purple), and the UAV

trajectory in red is shown in Figure 6.14. The IEDs are classified into two groups: only reached

by UGV (blue star) and only reached by UAV (red star).

In this experiment, it is clear that the robot with a blue trajectory explored more than the

other two. The reason is that the exploration with the UAV was faster than the other two robot

teams. We compute the entropy as a metric to guarantee that the robot team explores all the
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(a) Full robot trajectories from the 3 teams UAV/UGV.
The UAV trajectory is shown in red and the rest of
the robots in green, blue and purple.

(b) The targets that can only be reached and identified
using a UAV are shown with a red star, and the rest
are only reached by the UGVs are shown with a blue
star.

Figure 6.14: Atkinson Hall 1st Floor explored with drone trajectories and targets.

floor map while at the same time is defusing the IEDs. The comparison of our framework with

and without the new coordination strategy is shown in Figure 6.15. As expected, the entropy

decreases faster when we use the new coordination strategy.

Figure 6.15: A comparison of the entropy over time of the robot team at Atkinson Hall 1st floor.
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Atkinson Hall - 6th Floor

This experiment was performed on the 6th Floor of Atkinson Hall. The floor map consists

of hallways, and offices with different dimensions. The targets were set up on the top of the tables

where the robot has to avoid various obstacles during the exploration.

This scenario is entirely semantically labeled using DEDUCE (explained in section 3.4),

as is shown in Figure 3.18. Figure 6.17 shows the trajectory of each UGV (red, blue, and green),

and the UAV trajectory (purple).

Figure 6.16: Our UGV/UAV exploring and defusing IEDs at Atkinson Hall 6th Floor.

The IEDs are classified into two groups: only reached by UGV (blue star) and only

reached by UAV (red star). Besides that, the trajectories in blue and green show that the new

coordination strategy re-computed to explore and find the IEDs without waiting for the other

robot. The initial and the new segmentation are shown in Figure 6.2.

We compute the entropy as a metric to guarantee that the robot team explores all the floor

map while at the same time is defusing the IEDs.
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(a) Full robot trajectories from the 3 teams
UAV/UGV. The UAV trajectory is shown in
red and the rest of the robots in green, blue
and purple.

(b) The targets that can only be reached and
identified using a UAV are shown with a red
star and the rest are only reached by the UGVs
are shown with a blue star.

Figure 6.17: Atkinson Hall 6th Floor explored with drone trajectories and targets.

The comparison of our framework with and without the new coordination strategy is shown

in Figure 6.18. As expected, the entropy decreases faster when we use the new coordination

strategy.

Figure 6.18: A comparison of the entropy over time of the robot team at Atkinson Hall 6th
floor.
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Computer Science and Engineering Bldg. 2nd Floor

This experiment was performed on the 2nd Floor of the Computer Science and Engineer

Building. For safety reasons, we only deployed three UGV robots without UAV. As shown in

Figure 6.19, the floor map consists of long hallways, study and social rooms and offices with

different dimensions.

Figure 6.19: UGV team exploring and looking for IEDs at the Computer Science and Engineer-
ing Bldg. 2nd Floor.

The targets were set up on the floor. Figure 6.20 shows the trajectory of each robot and

the IEDs that they found and defused. In addition, we labeled the floor as is shown in Figure 3.18

using DEDUCE which is explained in Section 3.4.6 .

We compute the entropy as a metric to guarantee that the robot team explores all the floor

map while at the same time is defusing the IEDs.
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(a) Full robot trajectories from the 3 UGVs (green,
blue, and red).

(b) All the targets can be reached and identified by
the UGVs are shown with a blue star.

Figure 6.20: CSE Builiding 2nd Floor explored with UGVs’ trajectories and the targets.

The comparison of our framework with and without the new coordination strategy is shown

in Figure 6.21. As expected, the entropy decreases faster when we use the new coordination

strategy

Figure 6.21: A comparison of the entropy over time of the robot team at the Computer Science
Building in the 2nd Floor.
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6.2.9 Discussion

In this work, we incorporated all the techniques presented in the previous chapters of this

thesis. We aim that our framework is robust to find policies that satisfy the exploration and source

seeking missions. This capability enables the possibility of performing real scenario missions.

For example, the robot is performing a surveillance task when it detects a leak of gas. Then the

robot switches to a source seeking task to prevent a possible explosion. Besides that, when the

robot has prior knowledge of the environment and its history, the robot can make decisions faster

and effectively. Our Risk Maps framework provides this capability. Also, we presented with

experimental results that the robots can cooperate and manage their resources. The modularity in

which the framework is programmed allows users to extend the system’s capabilities and enable

scalability on the management of big teams.

Currently, the U.S. Army Combat Capabilities Development Command Army Research

Laboratory uses this framework for military and rescue missions.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

In this thesis, we provided a complete, robust decision-making framework that allows a

team of heterogeneous robots to accomplish different tasks autonomously in a distributed way.

We showed that each robot is capable of exploring and navigating in unknown environments

while it is performing source seeking tasks. All the experiments performed in each chapter

focused on simulating real military and rescue scenarios where the robots have an essential role

in accomplishing the troops’ mission. Moreover, our approach enables scalability in the number

of members of the robot team. Besides that, robots can perform their tasks without interrupting

the soldier’s mission. This is critical, and it is one of the goals of the current mission of the U.S.

Army Combat Capabilities Development Command Army Research Laboratory (ARL). As well,

our system could be used not only for military purposes. The same models can be quickly adapted

for rescue missions or industry tasks.

Our first contribution is a complete, distributed SLAM solution. Our approach performs

in feature-based, object-based, as well as pose-based SLAM. The results in our publications show

that we can map large scale areas (more than one kilometer). We developed a Graph SLAM with
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complete probabilistic data associations and loop closures. Besides that, our mapping system can

handle communication constraints, information shared among the significant number of robot

teams, and performed in outdoor and indoor environments.

The second contribution is our system framework Risk Maps, which provides high and

low threat-level information. It provides a detailed action plan for preventing attacks, movement

formation, and patrols of possible endangered areas. This framework is already compatible with

the software at ARL.

The third contribution is the novel coordination strategies for heterogeneous multi-robot

adaptive informative sampling. We show their capabilities in a centralized and distributed system.

Our approach provides a policy to solve different tasks, such as source seeking. We demonstrated

the effectiveness and robustness of our techniques in extensive simulations and field experiments

in different applications (e.g., industrial, military, and service).

The lessons learned during this work presented in this thesis are:

• There is no perfect robotics system that never fails. Therefore, our systems have to be

robust enough to predict possible failures and be able to recover from them.

• Our current framework Risk Maps has been tested in real scenarios providing action plans

that prevent attacks. However, the action plan will not work unless the robot team will

perform the task of avoiding switching to other tasks commanded by a human leader. In

addition, the action plans can be followed not only by robots. The human platoon could

easily use the framework to prevent or be prepared for a probable attack.

• Scalability of a multi-robot system increases the complexity of managing all the resources.

It does not guarantee that the time to accomplish a task decreases faster than using a small

team of robots.
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7.2 Future Work

The capabilities of our Risk Maps framework are limited to the use of robots or humans.

A simple improvement would be to create a module that allows robot-human teams to share and

cooperate to perform some tasks. Besides that, receiving real-time commands from a human

operator will enable the framework to learn faster in attack scenarios and consider action plans

that human leaders plan on real missions.

Another improvement to our current semantic segmentation of the environment techniques

would be to adapt the Gaussian Regions with our Voxel Exploration system. Also, the use of

temporal information of the previous exploration will allow the robot to predict the next step to

navigate an unknown environment. This helps find loop closures on the map and enables the

robot to think in more patterns in different exploration scenarios. Currently, our semantic place

categorization does not work in outdoor environments, and it is not capable of making new labels.

For example, in the previous training, the neural network learned that a specific room is a garage.

However, for task purposes, we would like to label it as a lab.

Signal modeling was not developed for this thesis. However, creating a module that learns

transmission models will help to perform source-seeking and to understand the environment

where the source is transmitting or emitting. As well, it would provide a solution to find a source

when there is a multi-signal situation.

Currently, we are adapting Infosploration and Voxelsploration with the supervisory control

of hybrid controllers for UGVs and UAVs. A significant challenge will be an online adaptation of

the Motion Grammars. For example, the robot has to defuse a bomb. However, the robot task

changes to control a toxic liquid leak. The Motion Grammar does not know what a poisonous

liquid leak is and how to manage it.
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The improvement of the Coordination Strategies is starting to be adaptable to the current

situation of the system. A quick improvement would be to create formations that the robot team

can follow depending on the environment’s physical conditions. In our previous experiments

at the MOUT, the robots had to navigate through a very narrow hallway. The robots try to go

through without taking care of the other members of the team. In addition, the robots could learn

how to create new formations for the adaptability of the environment and perform specific tasks.

Also, we are currently exploring the optimal way to maintain connectivity among the robots. Our

preliminary results allow a team of 50 robots to maintain connectivity in a 2D environment. We

are extending this capability in 3D scenarios, which will enable the use of UAVs and UGVs.

We are improving our distributed mapping using only visual capabilities, and making the

mapper robust using state-of-the-art techniques to decrease outliers on the images. We are also

trying to understand the minimum amount of information that we have to share among the robots

to create a map that is useful for navigation and exploration of the environment.

Voxelsploration is in current development. We are exploring the problem of map resizing. For

example, the robot is mapping the floor plan of a building. After navigating for the tenth time,

someone opens a door that increases the map’s size, or closes another door to decrease the map.

We are interested in finding those changes on the map and adding that information in our graph

slam.

Finally, our Distributed Heteregenous Multi-robot system will be tested in a real scenario

where the robots frequently have to switch tasks. We would like to check the robustness of our

framework and find it when it fails. Besides that, we are currently implementing a virtual reality

and touchscreen tablet interfaces that enable humans operators to interact with the robots that are

members of the team. Also, we are interested in extending the robots’ capability to guarantee that

they are able to quickly find other robots that will assist them in their missions.
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[NT01b] José Neira and Juan D Tardós. “Data association in stochastic mapping using the
joint compatibility test”. In: the IEEE Transactions on Robotics (T-RO) Volume
17.Number 6 (2001).

[NWR14] E.D. Nerurkar, K.J. Wu, and S.I. Roumeliotis. “C-KLAM: Constrained Keyframe-
Based Localization and Mapping”. In: the IEEE International Conference on
Robotics and Automation (ICRA). Hong Kong China, 2014.

[Obe+08] Jan Oberländer, Klaus Uhl, Johann Marius Zöllner, and Rüdiger Dillmann. “A
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